MP/ M TM
Mul ti-Programm ng Monitor Control Program

USER S GUI DE

Copyright (c) 1979, 1980

Di gital Research
P. 0. Box 579
801 Li ght house Avenue
Paci fic G ove, CA 93950
(408) 649- 3896
TWK 910 360 5001

Al'l Rights Reserved Digital Research 1980

MP/ M User's Qi de

(Al

COPYRI GHT

Copyright (c) 1979 by Digital Research. Al rights
Reserved. No partof this publication may be
Reproduced, transmtted, transcribed, stored in a
retrieval svstem or translated into any |anguage or
conput er | anguage, in any formor by any neans,

el ectroni c, nechanical, magnetic, opotical , chem cal
manual or otherw se, without the prior witten

perm ssion of Digital Research, Post O 4~ice Box 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial, in nature. Thus,
the reader is granted perm ssion to include the
exanmal e prograns, either in whole or in part, in his
own Prograns.

DI SCLAI MER

Digital Research makes no representations or
warranties with resopct to the contents hereof and
specifically disclainms any inplied warranties of
merchantability or fitness for any particul ar
purpose. Further, Digital Research reserves the
right to revise this publication and to nake changes
fromtinme to tine in the content hereof w thout
obligation of Digital Research to notify any person
of such revision or changes.

Fourth Printing: July 1981

Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

(Al

OO WNPE

Tabl e of Contents

M Features and Facilities .

| ntroduction . .

Functional Descri ptl on of I\/P/ M
Consol e Commands . .

Commonly Used System Programs .o
St andard Resi dent System Processes .

nterface Cuide .

| nt roduction . :
Basi ¢ Di sk Operati ng Syst em Functl ons

Queue and Process Descriptor Data Structures :

Ext ended Di sk Operating System Functions .
Preparati on of Page Rel ocatabl e Prograns .
Install ati on of Resident System Processes

MP/ M Al terati on CGui de

DU WNE

I ntroduction . . .

Basic 1/0 System Entry Por n| s oo
Extended I/0 System Entry Points .
System File Conponents .

System Gener ati on

MP/ M Loader .

Information Herein is Proprietary to Digital Research.)

WoOoOPrWkREF

17
29
53
62
81
83

85

85
96

102

107
110
114

MP/ M User's Qi de

m ©O O W >

L o ™|

(Al

Appendi x

Fl ag Assignnents .
Process Priority Assignnents .
BDOS Function Sumrary

XDOS Function Summary

Menory Segnment Base Page Reser Ved Locations

Qperation of MP/Mon the Intel MS-800 .

Sanpl e Page Rel ocat abl e Program
Sanpl e Resident System Process .
Sanmpl e XI OS

MP/ M DDT Enhancenments

Page Rel ocatable (PRL) File Specification

v
Information Herein is Proprietary to Digital

Resear ch.)

116
117
118
119
120
121
122
127
131
148

149

MP/ M User's Qi de
FOREWORD

This manual is intended as a guide for three different
| evel s of MP/Musers. Section 1 contains all the information
required to enable a person to operate applications prograns
runni ng under the MP/ M Operating System Thus, the first section
of this manual should enable the casual user to operate the
systemw th a m ni mrum anount of study and trai ning.

The second section of this manual describes the MP/ M system
organi zation including the structure of nenory and system cal
functions. The intention is to provide the necessary information
required to wite page rel ocatable progranms and resident system
processes which operate under MP/M and which use the real-tine
mul ti-tasking, peripheral and disk I/Ofacilities of the system

The | ast section provides the information needed to tail or
MP/ M to anot her conputer system |In particular, the hardware
dependent basic and extended I1/0O systementry points are
descri bed. Preparation of the MP/ M| oader using a CP/M 2.0 BICS
is al so covered.

The system generation procedure is also described in the
| ast section. This procedure is of interest to all three levels
of MP/ M users because it describes howto configure MP/Mfor a
particul ar applications environnent. This configuration includes
t he specification of nenory segnentation, nunber of consoles, and
sel ection optional resident system processes such as the printer
spool er.

\
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

This page was intentionally |left blank.

Vi
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
1. MP/ M FEATURES AND FACI LI TI ES
1.1 | nt roducti on

The purpose of the MP/ M multi-programm ng nonitor contro
programis to provide a m croconputer operating system which
supports multi-term nal access with nulti-programm ng at each
t erm nal

OVERVI EW

The MP/ M operating systemis an upward conpati bl e version
of CP/IM2.0 with a nunber of added facilities. These added
facilities are contained in new | ogical sections of MP/M call ed
the extended I/ O system and the extended di sk operating system
In this manual the name XIOCS wll refer to the conbi ned basic and
extended 1/0O system BDOS will refer to the standard CP/M 2.0
basi ¢ di sk operating systemfunctions and XDOS will refer to the
ext ended di sk operating system As an upward conpati bl e version,
users can easily make the transition fromCP/Mto the MP/ M
operating system In fact, existing CP/M*.COMfiles can be run
under MP/M providing that the program has been correctly
witten. That is, BDOS calls are nade for I/OQ and the only
direct BICS calls made are for console and printer 1/QO There
must al so be at |east 4 bytes of extra stack in the CP/M*. COM
program

The follow ng basic facilities are provided:

o multi-term nal support

o Multi-Progranm ng at each term na

o0 Support for bank switched nenory and
menory protection

o Concurrency of 1/0 and CPU operations

0 I nterprocess comruni cation, nutua
excl usion and synchroni zati on

o Ability to operate in sequential, polled
or interrupt driven environnments

o Systemtimng functions

0 Logical interrupt systemutilizing flags

0 Selection of systemoptions at system
generation tine

o Dynam c system configuration at |oad tine

The follow ng optional facilities are provided:

Spooling list files to the printer
Schedul i ng prograns to be run by date and tine
Di splaying conplete systemrun-tine status

0
0
0
o Setting and reading of the date and tine

1
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
HARDWARE ENVI RONIVENT

The hardware environnment for MP/ M nust include an 8080 or
Z80 CPU, a m nimum of 32K bytes of nmenory, 1 to 16 consoles, 1 to
16 | ogical (or physical) disk drives each containing up to eight
megabytes, and a clock/tinmer interrupt.

The distributed formof the MP/M operating systemis
configured for a polled I/0O environnment on the Intel MDS-800 with
two consoles and a real-tinme clock. Milti-programmng at two
termnals is supported with this configuration. To inprove the
system perfornmance and capability the follow ng increnental
har dware additions can be utilized by the operating system

a. Full Interrupt System
b. Banked Menory
c. Additional Consoles

MEMCRY SI ZE

The MP/ M operating systemrequires |ess than 15K bytes of
menory when configured for two consol es and ei ght nenory segnents
on the Intel MDS-800. Each additional console requires 256
byt es.

Optional resident system processes can be specified at
system generati on which require varying amounts of nenory.

PERFORMANCE

Wen MP/Mis configured for a single console and is
executing a single process, its speed approxi mates that of CP/ M
I n environnments where either nultiple processes and/or users are
runni ng, the speed of each individual process is degraded in
proportion to the amount of 1/0O and conpute resources required.
A process which perforns a |large anount of 1/Oin proportion to
conmputing exhibits only m nor speed degradation. This al so
applies to a process that perforns a | arge anount of conputing,
but is running concurrently with other processes that are largely
| /O bound. On the other hand, significant speed degradation
occurs in environments in which nore than one conpute bound
process i s running.

2
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
1.2 Functional Description of MP/ M

The MP/ M Qperating Systemis based on a real-tine
mul ti-tasking nucl eus. This nucl eus provi des process
di spat chi ng, queue managenent, flag nanagenent, nenory managenment
and systemtimng functions.

MP/Mis a priority driven system This neans that the
hi ghest priority ready process is given the CPU resource. The
operation of determning the highest priority ready process and
then giving it the CPU is called dispatching. Each process in
the system has a process descriptor. The purpose of the process
descriptor is to provide a data structure which contains all the
information the system needs to know about a process. This
information is used during dispatching to save the state of the
currently running process, to determ ne which process is to be
run, and then to restore that processes state. Process
di spatching is perforned at each systemcall, at each interrupt,
and at each tick of the systemclock. Processes with the sane
priority are "round-robin" scheduled. That is, they are given
equal slices of CPU tine.

Queues perform several critical functions in a real-tine
mul ti-tasking environnment. They can be used for the
comuni cati on of nmessages between processes, to synchronize
processes, and for nutual exclusion. As the nanme "queue"
inplies, they provide a first in first out |list of nessages, and
as inplenented in MP/M a list of processes waiting for nessages.

The flag managenent provided by MP/Mis used to synchroni ze
processes by signaling a significant event. Flags provide a
| ogical interrupt systemfor MP/Mwhich is independent of the
physi cal interrupt system Flags are used to signal interrupts,
mappi ng an arbitrary physical interrupt environnent into a
regul ar structure.

MP/ M manages nenory in pre-defined nenory segnents. Up to
ei ght nenory segnents of 48K can be managed by MP/ M This
managenent of nenory is consistent with hardware environnents
where nenory i s banked and/or protected in fixed segnents.

Systemtimng functions provide tine of day, the capability
to schedul e prograns to be | oaded from di sk and executed, and the
ability to delay the execution of a process for a specified
period of tine.

3
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
1.3 Consol e Conmands

The purpose of this section is to describe the consol e
commands whi ch make up the operator interface to the MP/ M
operating system It is inportant to note fromthe outset that
there are no systemdefined or built-in commands. That is, the
system has no reserved or special conmands. Al comands in the
system are provi ded by resident system processes specified during
system generation and prograns residing on disk in either the
CP/M*. COMfile format or in the MP/M *. PRL (page rel ocatabl e)
file format.

Wen MP/Mis | oaded fromdisk a configuration table and
menory segnent map are displayed on console #0. Wen the | oadi ng
is conplete each of the 1 to 16 configured consoles is a system
or master console. Additional slave consoles (maxi mumtotal of
sl ave and master consoles is 16) can be accessed using XDOS
system cal |l s.

After loading, the follow ng nessage is displayed on each
consol e:

MP/ M
XA>

The 'x' shown in the pronpt is the user code. At cold
start an association is made between the user code and consol e
nunber. The initial user code is equal to the consol e nunber.
For exanple, console #0 is initialized to user #0 and the
foll ow ng pronpt is displayed on consol e #0:

OA>

The default user code can then be changed to any desired
user code with the USER command (see USER in section 1.4). Al
users have access to files with a user code of 0. Thus, system
files and progranms should have a user code of 0. Caution nust be
used when operating under a user code of O since all its files
can be accessed whil e operating under any other user code. In
general, user code 0 should be reserved for files which are
accessed by all users. In the event that a file with the sane
name i s present under user code 0 and anot her user code, the
first file found-in the directory will be accessed.

The "A" in the pronpt is the default (currently | ogged)
disk for the console. This can be changed individually at any
console by typing in a disk drive nane (A B,C,...,or P) followed
by a colon (:) when the pronpt has been received. Since there
are no built-in commands, the default disk specified nust
contain the desired command files (such as DIR, REN, ERA
etc.) , or each command nust be preceeded by an "A ".

4
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
RUNNI NG A PROGRAM

A programis run by typing in the program nane followed by
a carriage return, <cr>. sone prograns obtain paraneters on the
sanme |ine follow ng the program nane. Characters on the |ine
foll ow ng the program nane constitute what is called the command
tail. The conmmand tail is copied into | ocation 0080H (relative
to the base of the nenory segnent in which the programresides)
and converted to upper case by the Command Line Interpreter
(CLI). The CLI also parses the command tail producing two file
control bl ocks at 005CH and 006CH respectively.

The prograns which are provided with MP/M are described in
sections 1.4 and 1.5.

ABORTI NG A PROGRAM

A program may be aborted by typing a control C (~C) at the
console. The affect of the "Cis to term nate the program which
currently owns the console. Thus, a detached program cannot be
aborted with a C. A detached program nust first be attached and
then aborted. A running program nay al so be aborted using the
ABORT command (see ABORT in section 1.5).

RUNNI NG A RESI DENT SYSTEM PROCESS

At the operator interface there is no difference between
running a programfromdi sk and running a resident system
process. The actual difference is that resident system processes
do not need to be | oaded from di sk because they are | oaded by the
MP/ M | oader when a systemcold start is perfornmed and remain
resi dent.

DETACHI NG FROM A PROGRAM

There are two nmethods for detaching froma running program
The first is to type a control D (D) at the console. The second
method is for a programto nake an XDOS detach call.

The restriction on the fornmer nethod, typing D, is that
t he runni ng program nust be performng a check console status to
observe the detach request. A check console status is
automatically performed each time a user program nakes a BDOS
di sk function call

ATTACHI NG TO A DETACHED PROGRAM

A program which is detached froma console, that is it does
not own a console, may be attached to a console by typing
"ATTACH followed by the program nanme. A program nay only be
attached to the console fromwhich it was detached. If the
term nal nmessage process (TMP) has ownership of the console and

5
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

the user enters a "D, the next highest priority ready process
which is waiting for the consol e begins running.

LI NE EDI TI NG AND OQUTPUT CONTROL

The Term nal nmessage Process (TMP) allows certain |ine
editing functions while typing in conmand |ines:

r ubout
ctl-C
ctl-D
ctl-E
ctl-H
ctl-j

ctl-M
ctl-R
ctl-U
ctl-X
ctl-Z

The control
out put as shown bel ow.

(Al

ctl-P

ctl-Q

Del ete the | ast character typed at the console,
removes and echoes the | ast character

MP/ M abort program Term nate runni ng process.
MP/ M det ach consol e.
Physi cal end of I|ine.

Del ete the |l ast character typed at the consol e,
backspaces one character position.

(line feed) termnate current input.
(carriage return) term nates input.

Retype current command line: types a "clean |ine"
foll ow ng character deletion wth rubouts.

Renove current line after new li ne.

Delete the entire line typed at the consol e,
backspaces to the beginning of the current line

End i nput fromthe console.

functions ctl-P, ctl-Qand ctl-S affect console

Copy all subsequent console output to the Iist
device. Qutput is sent to both the list device
and the console device until the next ctl-P

is typed. If the list device is not avail able
a 'Printer busy' nessage is displayed on the
consol e.

ot ain ownership of the printer nutual exclusion
message. Obtaining the printer using this conmand

will ensure that the MP/ M spooler, PIP, and ot her
ctl-P or ctl-Q comuands entered from ot her
consoles will not be allowed access to the

printer. The printer is "owned" by the TWMP until

another ctl-P or ctl-Qis entered, releasing the
printer. The ctl-P should be used when a program
(such as a CPPM*.COMfile) is executed that does

6
Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

not obtain the printer nutual exclusion nessage
prior to accessing the printer. If the list
device is not available a 'Printer busy' nessage
i s displayed on the consol e.

ctl-S Stop the consol e output tenporarily. Program
execution and out put continue when the next
character is typed at the console (e.g., another
ctl-S). This feature is used to stop output on
hi gh speed consol es, such as CRT's, in order to
vi ew a segnment of output before continuing.

7
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
1.4 Commonl y Used System Prograns

The comonly used system prograns (CUSPs) or transient
commands, as they are called in CP/M are | oaded fromthe
currently | ogged di sk and executed in a rel ocatable nenory
segnent if their type is PRL or in an absolute TPA if their type
is COM

This section contains a brief description of the CUSPs.
Operation of many of the CUSPs is identical to that under CP/ M
In these cases the commands are marked with an asterisk '*' and
the reader is referred to the Digital Research docunent titled
"An Introduction to CP/M Features and Facilities" for a conplete
description of the CUSP

GET/ SET USER CODE

The USER conmand is used to display the current user code
as well as to set the user code value. Entering the conmand USER
followed by a <cr> will display the current user code. Note that
the user code is already displayed in the pronpt.

1A>user
user =1

Entering the conmand USER foll owed by a space, a user code
and then a <cr> will set the user code to the specified user
code. Legal user codes are in the range 0 to 15.

1A>user 3
user = 3
3A>

CONSOLE
The CONSOLE command is used to deternine the consol e nunber
at which the command is entered. The consol e nunber is sonetinmes
of interest when exam ning the system status to determ ne the
processes which are detached from consol es.

1A>consol e
Console = 0

DI SK RESET
The DSKRESET (di sk reset) command is used to enable the
operator to change disks. If no paraneter is entered all the
drives are reset. Specific drives to be reset may be incl uded
as paraneters.

1A>DSKRESET

8
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
1A>DSKRESET B: , E

If there are any open files on the drive(s) to be reset,
the disk reset is denied and the cause of the disk reset
failure i s shown:

1A>DSKRESET B
Di sk reset denied, Drive B: Console O Program Ed

The reason that disk reset is treated so carefully is that
files left open (e.g.- in the process of being witten) wll |ose
their updated information if they are not closed prior to a disk
reset.

ERASE FI LE *

The ERA (erase) comrmand renoves specified files having the
current user code. If no files can be found on the sel ected
di skette which satisfy the erase request, then the nessage "No
file" is displayed at the consol e.

An attenpt to erase all files,
2B>ERA *.*

wi |l produce the follow ng response from ERA
Confirmdelete all user files (Y/N?

A second formof the erase command(ERAQ enabl es t he
operator to selectively delete files that match t he
specified fil enane reference. For exanpl e:

OA>ERAQ *. LST
A XI OS LST? y
A: MYFI LE LST? N

TYPE A FILE *

The TYPE command di splays the contents of the specified
ASCI | source file on the consol e device. The TYPE conmand
expands tabs (ctl-1 characters), assum ng tab positions are set
at every eighth colum.

The TYPE conmand has a pause node which is specified by
entering a 'P followed by two decimal digits after the
filename. For exanpl e:

OA>TYPE DUWP. ASM P23

9
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

The specified nunber of lines will be displayed and then TYPE
wi |l pause until a <cr> is entered.

The TYPE programis small and relatively slow because it
buffers only one sector at a tine. The larger PIP program can
be used for faster displays in the foll ow ng nanner:

QA>PI P CON: =MYFI LE. TEX
FI LE DI RECTORY *

The DIR (directory) command causes the nanes of files on
the specified or logged-in disk to be listed on the consol e
device. If no files can be found on the sel ected di skette which
satisfy the directory request, then the nmessage "Not found" is
typed at the console.

The DIR command can include files which have the system
attribute set. This is done by using the 'S option. For
exanpl e:

OA>DIR *. COM S
RENAMVE FI LE *

The REN (renane) conmand all ows the user to change the nane
of files on disk. If the destination filenane exists the
operator is given the option of deleting the current destination
file before renam ng the source file.

TEXT EDI TOR *

The ED (editor) command allows the user to edit ASCII text
files.

PERI PHERAL | NTERCHANGE PROGRAM *

The PI P (peripheral interchange program conmand all ows the
user to performdisk file and peripheral transfer operations.
See the Digital Research docunent titled "CP/M 2.0 User's Quide
for CP/M1.4 Owmers"” for a detailed description of new PIP
oper ati ons.

ASSEMBLER *

The ASM (assenbl er) command all ows the user to assenble the
speci fied program on di sk.

SUBM T *

The SUBM T conmand all ows the user to submt a file of
commands for batch processing.

10
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
STATUS *

The STAT (status) command provi des general statistical
informati on about the file storage. See the Digital Research
docunent titled "CP/M 2.0 User's Guide for CP/M 1.4 Owmers"” for a
detail ed description of new STAT operations.

DUWP *

The DUMP conmand types the contents of the specified disk
file on the console in hexadecimal form

LOAD *

The LOAD command reads the specified disk file of type HEX
and produces a nenory inmage file of type COM which can
subsequent |y be execut ed.

GENMCD

The GENMOD command accepts a file which contains two
concatenated files of type HEX which are offset from each ot her
by 0100H bytes, and produces a file of type PRL (page
relocatable) . The formof the GENMOD command is as foll ows:

1A>gennod b:file.hex b:file.prl $1000

The first parameter is the file which contains two concatenated files
of type HEX. The second paraneter is the nane of the

destination file of type PRL. The optional third paraneter is a
specification of additional nmenory required by the program beyond

the explicit code space. The formof the third paraneter is a

'$" followed by four hex ASCI| digits. For exanple, if the

program has been witten to use all of 'available' nenory for

buffers, specification of the third paraneter will ensure a

m ni mum buf fer all ocati on.

GENHEX

The GENHEX command is used to produce a file of type HEX
froma file of type COM This is useful to be able to
generate HEX files for GENMOD i nput. The GENHEX command has
two paraneters, the first is the COMfile name and the second is
the offset for the HEX file. For exanple:

OA>CGENHEX PROG. COM 100
PRLCOM
The PRLCOM command accepts a file of PRL type and produces

afile of COMtype. If the destination COMfile exists, a query
is mde to determne if the file should be del eted before continuing.

11
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
QA>prl com b: program prl a: program com
DYNAM C DEBUGA NG TOOL *

The DDT (dynam ¢ debuggi ng tool) comrand | oads and executes
the MP/ M debugger. In systens with banked nmenory nultiple DDT
prograns can be running concurrently in absolute TPAs. A PRL
(rel ocatable) version of DDT is al so provided which enabl es

mul tiple DDTs to run in a non-banked system The nane of the
rel ocatable DDT is RODT.

MP/ M DDT enhancenents are described in Appendi x J.

12
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
1.5 St andard Resi dent System Processes

The standard resident system processes (RSPs) are new
prograns specifically designed to facilitate use of the MP/ M
operating system The RSPs may either be present on disk as
files of the PRL type, or they may be resident system processes.
Resi dent system processes are selected at the tine of system
generati on.

SYSTEM STATUS

The MPMSTAT command al l ows the user to display the run-tine
status of the MP/ M operating system MPMSTAT is invoked by
typi ng ' MPMSTAT followed by a <cr>. A sanple MPMSTAT output is
shown bel ow.

*xxxxx MP/M Status Display ******

Top of menory = FFFFH
Nunber of consoles = 02
Debugger breakpoint restart # = 06
Stack is swapped on BDOS calls
Z80 conpl enentary regi sters managed by di spat cher
Ready Process(es)
MPMSTAT I dl e
Process(es) DQ ng:
[Sched] Sched
[ATTACH] ATTACH
[AiQ] cl
Process(es) NQ ng:
Del ayed Process(es):
Polling Process (es)

Pl P
Process(es) Flag Waiting:
01 - Tick
02 - dock
Fl ag(s) Set:
03
Queue(s):
MPNMSTAT Sched CiQ ATTACH MXPar se
MXLi st [TnpO] MXDi sk

Process(es) Attached to Consol es:
[0] - MPMSTAT

[1] - PIP
Process(es) Waiting for Consol es:
[0] - TMPO D R
[1] - TwP
Menory Al | ocati on:
Base = OOOCH Size = 4000H Allocated to PIP [1]
Base = 4000H Size = 2000H * Free *
Base = 6000H Size = 1100H Allocated to DIR [O]

13
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
The MP/ M status display is intepreted as foll ows:

Ready Process (es): The ready processes are those
processes which are ready to run and are waiting for the
CPU. The |ist of ready processes is ordered by the
priority of the processes and includes the consol e nunber
at which the process was initiated. The highest priority
ready process is the running process.

Process(es) DQ ng: The processes DQ ng are those
processes which are waiting for nessages to be witten to
t he specified queue. The queue nanme is in brackets
foll owed by the names of processes, in priority order,
whi ch have executed read queue operations on the queue.

Process(es) NQ ng: The processes NQ ng are those
processes which are waiting for an available buffer to
wite a nmessage to the specified queue. The queue nane is
in brackets foll owed by the nanmes of the processes, in
priority order, which are waiting for buffers.

Del ayed Process(es): The del ayed processes are those
whi ch are delaying for a specified nunber of ticks of the
systemtine unit.

Pol ling Process(es): The polling processes are those
which are polling a specified 1/0O device for a device ready
stat us.

Process(es) Flag Waiting: The processes flag waiting
are listed by flag nunber and process nane.

Flag(s) Set: The flags which are set are displayed.

Queue(s): Al the queues in the systemare |isted by
gueue nane. Queue names which are all in capital letters
are accessible by command line interpreter input. For
exanpl e, the SPOOL queue can be sent a nessage to spool a
file by entering 'SPOOL" followed by a file nane.
Processes DQ ng from queues whi ch have a nanme that natches
the process nanme are given the consol e resource when they
recei ve a nessage. Queue nanes that begin with 'MX' are
cal | ed mutual exclusion queues. The display of a nutual
excl usi on queue includes the name of the process, if any,
whi ch has the mutual excl usion nessage.

Process(es) Attached to Consol es: The process
attached to each console is listed by consol e nunber and
process nane.

Process(es) Waiting for. Consol es: The processes
waiting for each console are listed by consol e nunber and
process name in priority order. They are processes which

14
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

have detached fromthe console and are then waiting for the
consol e before they can continue executi on.

Menory Al l ocation: The nenory all ocation map shows
t he base, size, bank, and allocation of each nmenory
segnent. Segnents which are not allocated are shown as '*
Free *', while allocated segnments are identified by process
name and the console in brackets associated with the
process. Menory segnents which are set as pre-all ocated
during system generation by specifying an attri bute of OFFH
are shown as Reserved

SPOOLER

The SPOCL command al l ows the user to spool ASCII text files
to the list device. Multiple file names may be specified in the
command tail. The spool er expands tabs (ctl-1 characters),
assum ng tab positions are set at every eighth colum.

The spool er queue can be purged at any tine by using the
STOPSPLR command.

An exanpl e of the SPOOL command is shown bel ow
1A>SPOCL LOAD. LST, LETTER PRN

The non-resident version of the spooler (SPOOL.PRL) differs
inits operation fromthe SPOOL. RSP as follows: it uses all of
the nenory available in the nenory segnment in which it is
running for buffer space; it displays a nessage
indicating its status and then detaches fromthe console; it
may be aborted froma console other than the initiator only by
speci fying the console nunber of the initiator as a paraneter of
t he STOPSPLR command.

3B>STOPSPLR 2
DATE AND TI ME
The TOD (tinme of day) command all ows the user to read and

set the date and tinme. Entering 'TOD followed by a <cr> w ||
cause the current date and tinme to be displayed on the console.

Entering 'TOD followed by a date and tine will set the date and
time when a <cr>is entered followng the pronpt to strike a key.
Each of these TOD commands is illustrated bel ow

1A>TOD <cr >

Wed 02/ 06/ 7?0 09:15: 37
Or

1A>TOD 2/9/80 10: 30: 00

15
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

Strike key to set tine
Sat 02/09/80 10: 30: 00

Entering "TOD P will cause the current tine and date to be
continuously displayed until a key is struck at the consol e.

SCHEDULER

The SCHED (schedul er) command all ows the user to schedule a
program for execution. Entering 'SCHED followed by a date, tine
and command line will cause the command |line to be executed when
the specified date and tinme is reached.

In the exanpl e shown bel ow, the program'SAMPLE w || be
| oaded from di sk and executed on February 8, 1980 at 10: 30 PM
Note that only hours and m nutes are specified, not seconds.
Progranms are schedul ed to the nearest m nute.

1A>SCHED 2/8/ 79 22: 30 SAMPLE
ABORT

The ABORT conmand al l ows the user to abort a running
program The programto be aborted is entered as a
paranmeter in the ABORT comrand.

1A>ABORT RDT

A programinitiated from anot her console may only be
aborted by including its console nunber as a paraneter of the
ABORT conmand.

3B>ABORT RDT 1

16
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
2. MP/ M | NTERFACE GUI DE

This section descri bes MP/ M system organi zati on incl udi ng
the structure of nenory and systemcall functions. The intention
is to provide the necessary information required to wite page
rel ocatabl e prograns and resi dent system processes which operate
under MP/M and which use the real-tinme, multi-tasking,
peripheral, and disk I/Ofacilities of the system

2.1 | nt roducti on

MP/Mis logically divided into several nodules. The three
primary nodul es are naned the Basic and Extended I/ O System
(XI0S), the Basic Disk Operating System (BDOS), and the Extended
Di sk Operating System (XDOS). The XIOS is a hardwar e- dependent
nodul e whi ch defines the exact low level interface to a
particul ar conmputer system which is necessary for peripheral
device 1/0O Although a standard XIOS is supplied by Digita
Research, explicit instructions are provided for field
reconfiguration of the XIOS to match nearly any hardware
envi ronment .

MP/ M menory structure is shown bel ow.

17
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

hi gh : SYSTEM DAT

| ow

The exact nenory addresses for each of the nenory segnents
shown above will vary with MP/ M version and depend on the
operator specifications made during the system generation
process.

18
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

The nenory segnents are described as foll ows:

(Al

SYSTEM DAT The SYSTEM DAT segnent contains 256 bytes

used by the | oader to dynamcally configure the
system After |oading, the segnent is used for
storage of system data such as submt flags. See
section 3.4 under SYSTEM DATA for a detailed
description of the byte allocation.

CONSOLE. DAT The CONSOLE. DAT segnent varies in length

wi th the nunber of consol es. Each consol e
requires 256 bytes which contains the TMP' s
process descriptor, stack and buffers.

USERSYS. STK The USERSYS. STK segnent is opt i onal

XIGS

dependi ng upon whether or not the user intends to
run CP/M*. COMfiles. This segnment contains 64
bytes of stack space per user nenory segnent and
is used as a tenporary stack when user prograns
make BDOS call s. Specification of the option to
include this segnent is nmade during system
generation. The size of the USERSYS. STK segnent
varies as foll ows:

OOOH - No user system stacks

100H - 1 to 4 nmenory segnents

200H - 5 to 8 nenory segnents

The XIOS segnent contains the user
Custom zed basic and extended 1/ 0O systemin page
rel ocatabl e format.

BDOS/ ODOS The BDOS segnent contains the disk file and

XDCS

RSPs

mul ti pl e consol e managenent functions. The
segnent is about 1400H bytes in | ength.

The ODOS segnent contains the resident portion of
t he banked BDOS fil e and consol e managenent
functions. The segnent is about 800H bytes in

| engt h.

The XDOS segnment contains the MP/M nucl eus
and the extended disk operating system The
segnent is about 2000H bytes in | ength.

The operator makes a selection of Resident
System Processes during system generation. The
RSPs require varying anounts of nenory.

BNKBDOS (Optional) The BNKBDOS segnment is present only

in systenms with a bank switched BDOS. it
contai ns the non-resident portion of the banked
BDOS di sk file managenent. This segnent is about
EOOH bytes in |ength.

19

Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

MEMSEG USR The user can specifiy 1 to 8 user nenory
segnents during the system generati on process.
These nenory segnents may be in the sane address
space with different bank nunbers.

TPA The ABSOLUTE TPA is a user nenory segnent
which is based at OOO0CH. In systens with bank
swi tched nenory there may be nore than one

ABSOLUTE TPA.

Each user nmenory segnent, including the TPA, is further
divided into two regions. The first is called the system
paraneter area. The system paraneter area occupies the first
100H bytes of the. menory segnment and is defined simlarily to
that of CP/M See APPENDI X E for a detail ed description of the
system paraneter area. This area is also called the nenory
segnent base page.

The second region of the user nenory segnent is the user
code area. This area begins at 0100H relative to the base of the
menory segnent. When a programis | oaded, code is placed into
t he user nmenory segnent beginning at the start of the user code
ar ea.

Transi ent prograns are | oaded into nenory by the Command
Line Interpreter (CLI). CLI receives conmands fromthe Term nal
Message Process (TMP) which accepts the operator consol e input.
The TMP is a reentrant programwhich is executed by as many
processes as there are system consol es. The operator
comuni cates with the TMP by typing conmand |ines foll ow ng each
pronpt. Each command |ine generally takes one of the forns:

command
command fil el
command filel file2

where "command” is either a queue such as SPOOL or ATTACH, or the
name of a transient conmand or program

A brief discussion of CLI operation will describe the
| oadi ng of transient prograns.

When CLI receives a command line it parses the first entry
on the command line and then tries to open a queue using the
parsed nane. |If the open queue succeeds the conmand tail is
witten to the queue and the CLI operation is finished. If the
open queue fails, a file type of PRL is entered for the parsed
file name and a file open is attenpted. If the file open
succeeds then the header of the PRL file is read to determ ne the
menory requirenents. A relocatable nmenory request is nade to
obtain a menory segnent in which to |load and run the program if
this request is satisfied the PRL file is read into the nmenory

20
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

segnent, relocated, and it is executed, conpleting the CLI
oper ati on.

If the PRL file type open fails then the file type of COM
is entered for the parsed file nanme and a file open is attenpted.
| f the open succeeds then a nenory request is nmade for an
absol ute TPA, nenory segnment based at OOOOH. If this request is
satisfied the COMfile is read into the absolute TPA and it is
executed conpl eting the CLI operation.

If the command is followed by one or two file
specifications, the CLI prepares one or two file control bl ock
(FCB) nanes in the system paraneter area. These optional FCB s
are in the formnecessary to access files through MP/ M BDOS
calls, and are described in the next section.

The CLI creates a process descriptor for each program which
is | oaded, setting up a 20 level stack which forces a branch to
t he base of the user code area of the menory segnent. The
default stack is set up so that a return fromthe | oaded program
causes a branch to the MP/ Mfacility which term nates the
process. This stack has 19 | evels avail abl e which can generally
be used by the transient programsince it is sufficiently |arge
to handl e systemcalls.

The transi ent programthen begi ns execution, perhaps using
the /O facilities of MP/Mto conmunicate with the operator's
consol e and peripheral devices, including the disk subsystem
The 1/ 0O systemis accessed by passing a "function nunber” and an
"informati on address” to MP/Mthrough the entry point at the
menory segnment base +0005H. In the case of a disk read, for
exanpl e, the transient program sends the nunber corresponding to
a disk read, along with the address of an FCB to MMM M/ M in
turn, perforns the operation and returns with either a disk read
conpl etion indication or an error nunber indicating that the disk
read was unsuccessful. The function nunbers and error indicators
are given in sections 2.2 and 2.4,

OPERATI NG SYSTEM CALL CONVENTI ONS

The purpose of this section is to provide detailed
information for performng direct operating systemcalls from
user prograns. many of the functions |listed bel ow, however, are
nmore sinply accessed through the 1/O nmacro library provided with
the MAC nacro assenbler, and listed in the Digital Research
manual entitled "MAC Macro Assenbl er: Language manual and
Appl i cations CGuide."

MP/Mfacilities which are avail able for access by transient
prograns fall into two general categories: sinple device I/0
disk file 1/0O and the XDOS functions.

21
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
The sinpl e device operations include:

Read/ Wite a Consol e Character
Wite a List Device Character
Print Consol e Buffer

Read Consol e Buffer

| nt errogat e Consol e Ready

The BDOS operations which performdi sk I nput/Qutput are

D sk System Reset

Drive Sel ection

File Creation

File Open

File O ose

Directory Search

File Delete

Fil e Renane

Random or Sequenti al Read
Random or Sequential Wite
I nt errogate Avail abl e Di sks
I nterrogate Sel ected D sk
Set DVA Address

Set/Reset File Indicators
Reset Drive

Access/ Free Drive

Random Wite Wth Zero Fill

The XDOS functions are

Absol ute and Rel ocat abl e Menory Request
Mermory Free

Devi ce Pol |

Flag Waiting and Setting

Make Queue

Open Queue

Del ete Queue

Read and Conditional Read Queue
Wite and Conditional Wite Queue
Del ay

Di spatch

Term nate and Create Process

Set Priority

Attach and Detach Consol e

Set and Assign Consol e

Send CLI Command

Call Resident System Procedure
Parse Fil enane

Get Consol e Nunber

System Dat a Address

CGet Date and Tine

Return Process Descriptor Address
Abort Specified Process

22
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

As nentioned above,

access to the MP/Mfunctions is

acconpl i shed by passing a function nunber and informati on address

through the primary entry point at

+0005H. I n general,

the function nunber
with the informati on address in the double byte pair

| ocati on nenory segnment base
is passed in register C
DE. Single

byte values are returned in register A, with double byte val ues

returned in HL (a zero val ue.
is out of range). For reasons
and register B =
regi ster

H upon return in all
passi ng conventions of MP/Magree with those of

is returned when the function nunber
of conpatibility, register A= 1
cases. Note that the
Intel's

PL/ M systens progranmm ng | anguage.

The list of MP/M BDOS function nunbers is given bel ow

0 Syst em Reset 21
1 Consol e | nput 22
2 Consol e CQut put 23
3 Raw Consol e | nput 24
4 Raw Consol e Qutput 25
5 Li st CQut put 26
6 Direct Console I/O 27
7 Get 1/0 Byte 28
8 Set 1/0 Byte 29
9 Print String 30
10 Read Consol e Buffer 31
11 Get Console Status 32
12 Ret urn Versi on Nunber 33
13 Reset Disk System 34
14 Sel ect Di sk 35
15 Open File 36
16 Close File 35
17 Search for First 36
18 Search for Next 37
19 Delete File 38
20 Read Sequenti al 39
40
(AI'l Information Herein is Proprietary to Digital

Wite Sequenti al
Make File

Renane File

Return Logi n Vector
Return Current D sk
Set DMA Address

Get Addr (Al l oc)
Wite Protect D sk
CGet R/ O Vector

Set File Attributes
Get Addr (Di sk Parms)
Set/ Get User Code
Read Random

Wite Random
Conmpute File Size
Set Random Record
Conmpute File Size
Set Random Record
Reset Drive

Access Drive

Free Drive

Wite Random Wth Zero Fill

23
Resear ch.)

MP/ M User's Qi de

The list of MP/M XDOS function nunbers is given bel ow

128 Absol ute Menory Rgst 143 Term nate Process

129 Rel ocatable Mem Rgst 144 Create Process

130 Menory Free 145 Set Priority

131 Poll 146 Attach Consol e

132 Flag Wait 147 Detach Consol e

133 Flag Set 148 Set Consol e

134 ©Make Queue 149 Assign Consol e

135 Open Queue 150 Send CLI Command

136 Del ete Queue 151 Call Resident Sys. Proc.
137 Read Queue 152 Parse Fil enane

138 Cond. Read Queue 153 Get Consol e Number

139 Wite Queue 154 System Data Address

140 Cond. Wite Queue 155 Get Date and Tine

141 Del ay 156 Return Proc. Descr. Adr.
142 Dispatch 157 Abort Specified Process

DI SK FI LE STRUCTURE

MP/ M inplenments a naned file structure on each di sk,
providing a | ogical organization which allows any particular file
to contain any nunber of records fromconpletely enpty, to the
full capacity of the drive. Each drive is logically distinct
with a disk directory and file data area. The disk file names
are in three parts: the drive select code, the file nane
consi sting of one to eight non-blank characters, and the file
type consisting of zero to three non-blank characters. The file
type nanmes the generic category of a particular file, while the
file name distinguishes individual files in each category. The
file types listed bel ow nane a few generic categories which have
been established, although they are generally arbitrary:

ASM Assenbl er Source PLI PL/1 Source File

PRN Printer Listing REL Rel ocat abl e Modul e

HEX Hex Machi ne Code TEX TEX Formatter Source

BAS Basic Source File BAK ED Source Backup

| NT | nt er medi at e Code SYM SID Synbol File

COM CCP Conmmand Fil e $$$ Tenporary File

PRL Page Rel ocat abl e RSP Resident Sys. Process

SPR Sys. Page Rel oc. SYS SystemFile
Source files are treated as a sequence of ASCI| characters, where
each "line" of the source file is followed by a carriage-return
i ne-feed sequence (ODH foll owed by OAH). Thus one 128 byte MP/ M
record could contain several |ines of source text. The end of an

ASCII file is denoted by a control-Z character (1AH) or a rea

end of file (i.e. no nore sectors), returned by the MP/M read
operation. Control-Z characters enbedded wi thin machi ne code

files (e.g., COMfiles). are ignored, however, and the end of file
condition returned by MP/Mis used to term nate read operations.

Files in MP/M can be thought of as a sequence of up to

24
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

65536 records of 128 bytes each, nunmbered from O through 65535,
thus all owi ng a maxi nrum of 8 negabytes per file. Note, however,

t hat al though the records may be considered | ogically contiguous,
they are not necessarily physically contiguous in the disk data
area. Internally, all files are broken into 16K byte segnents
called | ogical extents, so that counters are easily maintained as
8-bit values. Although the deconposition into extents is

di scussed in the paragraphs which follow, they are of no
particul ar consequence to the progranmmer since each extent is
automatically accessed in both sequential and random access
nodes.

In the file operations starting with function nunber 15, DE
usual |y addresses a file control block (FCB). Transient prograns
often use the default file control block area reserved by MP/ M at
| ocati on nmenory segnment base +005CH for sinple file operations.
The basic unit of file information is a 128 byte record used for
all file operations, thus a default location for disk I/Ois
provi ded by MP/M at | ocation nenory segnment base +0080H which is
the initial default DVA address (see function 26). Al directory
operations take place in a reserved area whi ch does not affect
wite buffers as was the case in CP/Mrelease 1, with the
exception of Search First and Search Next, where conpatibility is
required.

The File Control Block (FCB) data area consists of a
sequence of 33 bytes for sequential access and a series of 36
bytes in the case that the file is accessed randomy. The
default file control block normally | ocated at nenory segnent
base +005CH can be used for random access files, since the three
bytes starting at nenory segnent base +007DH are avail abl e for
t hi s purpose.

25
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

The FCB format is shown with the follow ng fields:

00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35
wher e
dr drive code (0 - 16)

O => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

ié¥> auto di sk select drive P.

fl...f8 contain the file nane in ASCl
upper case, with high bit =0

tl,t2,t3 contain the file type in ASC I
upper case, with high bit =0
tl', t2', and t3' denote the
bit of these positions,

tl' =1 => Read/only file,

t2" =1 => SYSfile, no DR I|i st

t3' =0 => File has been updated
ex contains the current extent nunber,

normally set to 00 by the user, but
inrange 0 - 31 during file 1/0O

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent "ex"
t akes on values from0O — 128

doO. . dn filled-in by MP/M reserved for
system use

cr current record to read or wite in
a sequential file operation, normally
set to zero by user

rorl,r2 optional randomrecord nunber in the
range 0-65535, with overflow to r2,
rorl constitute a 16-bit value with
|l ow byte rO and liigh byte r

Each file being accessed through MP/ M nmust have a
corresponding FCB which provides the name and allocation

26
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

information for all subsequent file operations. Wen accessing
files, it is the progranmmer's responsibility to fill the |ower
si xteen bytes of the FCB and initialize the "cr" field.

Normal Iy, bytes 1 through 11 are set to the ASCI| character
values for the file nane and file type, while all other fields
are zero.

FCB' s are stored in a directory area of the disk, and are
brought into central nmenory before proceeding with file
operations (see the OPEN and MAKE functions). The nmenory copy of
the FCB is updated as file operations take place and | ater
recorded permanently on disk at the termnation of the file
operation (see the CLOSE conmmand).

The CLI constructs the first sixteen bytes of two optional
FCB's for a transient by scanning the remai nder of the |ine
foll owing the transient nane, denoted by "filel"™ and "file2" in
the prototype command |ine described above, wth unspecified
fields set to ASCI1 blanks. The first FCB is constructed at
| ocati on nmenory segnent base +005CH, and can be used as-is for
subsequent file operations. The second FCB occupies the dO...
dn portion of the first FCB, and nust be noved to anot her area of
menory before use. If, for exanple, the operator types

PROGNAME B: X. ZOT Y. ZAP

the file PROGNAME. PRL is | oaded into a user nmenory segnent or if
it is not on the disk, the file PROGNAME. COMis | oaded into the
TPA, and the default FCB at nenory segnment base +005CH is
initialized to drive code 2, file nane "X" and file type "ZOT".
The second drive code takes the default value 0, which is placed
at nmenory segnent base +006CH, with the file name "Y" placed into
| ocati on nenory segnment base +006DH and file type "ZAP" |ocated 8
bytes later at nmenory segnent base +0075H. All renmaining fields
through "cr" are set to zero. Note again that it is the
programmer's responsibility to nove this second file name and
type to another area, usually a separate file control bl ock,
before opening the file which begins at nenory segnment base
+005CH, due to the fact that the open operation will overwite

t he second nane and type.

If no file nanes are specified in the original commuand,
then the fields beginning at nenory segnent base +005DH and
+006DH contain blanks. In all cases, the CLI translates | ower
case al phabetics to upper case to be consistent with the MP/ M
file nam ng conventi ons.

As an added conveni ence, the default buffer area at
| ocati on nenory segnent base +0080H is initialized to the command
line tail typed by the operator follow ng the program nane. The
first position contains the nunber of characters, with the
characters thensel ves follow ng the character count.

27
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

(Al

G ven the above command |ine, the area begi nning at nenory
segnent base +0080H is initialized as foll ows:

Menory Segnent Base +0080H:
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14
14 113 113 113 BH 113 : ” 113 XH 113 . ” 113 ZH 113 01 113 TH 113 113 1] YH 113 . ” 1] ZH 113 AH 113 PH

where the characters are translated to upper case ASCII with
uninitialized nenory followng the last valid character. Again,
it is the responsibility of the programer to extract the
information fromthis buffer before any file operations are
performed, unless the default DVA address is explicitly changed.

The individual functions are described in detail in the
sections which foll ow

28
Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
2.2 Basic Disk operating System Functions
In general, the Basic Di sk Operating System (BDOS)
facilities are identical to that of CP/M2.0. Each function is

covered in this section by describing the entry paraneters,
returned val ues, and any differences between CP/M and MP/ M

kkhkkkhkkhkhkkhhkkhkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkkhkhhkhhkkhkkhhkhkhkhk*k

* *
* FUNCTI ON O0: SYSTEM RESET *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkkhkkhhkhkhkkhkkhhkhkhkk*k

* Entry Paraneters: *
* Regi st er C. OOH *

R R bk S bk S Sk S b S b S b b S b S S R I b Sk S b b S S b S b b

The SYSTEM RESET function term nates the calling program
rel easing the nenory segnment, console, and nutual excl usion
nmessages owned by the calling program Wen the console is
released it is usually given back to the term nal message process
(TMP) for that console.

Ef fectively the operation of the SYSTEM RESET function is
the sane for MP/ Mas it is for CP/M 2.0 because the program
is termnated and the operator receives the pronpt to enter
anot her command. However, MP/ M does not re-initialize the disk
subsystem by sel ecting and | ogging-in disk drive A

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkhhkhkhkhkkhhkhkkhhkhhkkhkkhhkhkhkhk*k

* *
* FUNCTI ON 1:. CONSOLE | NPUT *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkkhkkhhkhkhkkhkkhhkhkhkk*k

* Entry Paraneters: *
* Regi st er C. O1H *
* *
* Returned Val ue: *
* Regi ster A: ASCI| Character *
R R R b b S S S S S S S R S b b b b S S S I S S S

The CONSOLE | NPUT function reads the next consol e character
to register A. Gaphic characters, along with carriage return,
line feed, and backspace (ctl-H) are echoed to the console. Tab
characters (ctl-1) are expanded in colums of eight characters.
A check is made for start/stop scroll (ctl-S) and start/stop
printer echo (ctl-P). The BDOS does not return to the calling
programuntil a character. has been typed, thus suspending
execution if a character is not ready.

29
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkkhhkhkhkhkhhkhkkhhkhkhkkhkkhhkkhkhkhk*k

* *
* FUNCTI ON 2: CONSOLE OUTPUT *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkkhhkhkkhhkkhkhkhkkhhkkhkkhkkhhkkhkkhkkhkhkhk*k

* Entry Paraneters: *
* Regi ster C. 02H *
* Regi ster E: ASCl | Character *
* *

R R bk S b b b S b S b S b S S R Sk I bk S b b S S b S I I

The ASCI| character fromregister-Eis sent to the console
device. Simlar to function 1, tabs are expanded and checks are
made for start/stop scroll and printer echo.

R R R b b S S I S S R S I b b b S b S S S S I S

* *

* FUNCTI ON 3: RAW CONSOLE | NPUT *

R I b b b b b b b b b S S R S b kI b b b b b b b b Sk kb b b S

* Entry Paraneters: *
Regi ster C. O3H

Regi st er A ASCl | Character

R R bk S b S b S b S b S bk S b S Sk I bk b Sk S b b b S b

* *
* *
* Ret ur ned Val ue: *
* *
* *

The RAW CONSOLE | NPUT function reads the next console
character to Register AL There is no testing of the input
character, that is, the systemw 11 directly pass through al
characters including the control characters w thout any
interpretation. This function does not require that the console
be attached, nor does it attach the console.

The READER | NPUT function is not supported under MP/M All
character 1/0O devices such as the reader/punch are treated as
consol es. MP/ M supports up to 16 consoles or character 1/0
devi ces.

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkkhhkhkhkhkhhkhkkhhkhkhkkhkkhhkkhkhkhk*k

* *
* FUNCTI ON 4: RAW CONSOLE OUTPUT *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkkhhkhkkhhkkhkhkhkkhhkkhkkhkkhhkkhkkhkkhkhkhk*k

* Entry Paraneters: *
* Regi ster C. 04H *
* Regi ster E: ASCI| Character *
* *

R R bk S b b b S b S b S b S S R Sk I bk S b b S S b S I I

The RAW CONSCLE OUTPUT function sends the ASCl |
character fromregister Eto the consol e device. There is no
testing of the output character, that is, tabs are not expanded
and no checks are made for start/stop scroll and printer echo.
This function does not require that the console be attached,
nor does it attach the console. Thus, unsolicited nmessages nay
be sent to other consoles by sinply changing the consol e byte of
t he process descriptor and then using this function.

The PUNCH QUTPUT function is not supported under MP/ M

R R b Sk S bk b S b S b S b b S R R Ik I bk b b b S S b S b Sk

* FUNCTI ON 5: LI ST OUTPUT *

R R bk S bk S b S b b S b I b b S R Sk I b Sk b b b S S b b b I

* Entry Paraneters: *
* Regi st er C. O5H *
* Regi st er E: ASCI| Character *
* *

kkhkkkhkkhkhkkhhkkhkkhhkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhrkhkhkkk*k

The LI ST OQUTPUT function sends the ASCI| character in
register Eto the logical listing device.

Caution nust be observed in the use of the printer since
there is no inplicit |ist device ownership. That is, the |ist
device is not "opened" or "closed". MP/M affords a secondary
explicit means to resolve printer nutual exclusion. A
queue naned 'MXList' is created by the systemto handl e nutual
exclusion. To properly obtain use of the printer a program
shoul d open the ' MXList' queue and read the nessage. \Wen the
nmessage is obtained the printer may be used. Wen printing is
conpl eted the nessage should be witten back to the ' MXList'
gueue. This technique is used by the MP/ M PI P, SPOOLer, and TMP
c-tl-P operations.

31
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkkhhkhkhkhkhhkhkkhhkhkhkkhkkhhkkhkhkhk*k
*

FUNCTI ON 6: DI RECT CONSOLE 1/0 *

*
kkhkkkhkkhkhkkhhkkhkhkhkkhhkhkkhhkhhkhkkhhkhhkhkhhkhkhhkhkhkkhkkhrkhhkkx*k

Entry Paraneters: *

Regi st er C. 06H

Regi st er E: OFFH (i nput) or
OFEH (st atus)or
char (output)

Ret ur ned Val ue:
Regi st er A char or status
(no val ue)

kkhkkkhkkhkhkkhhkkhkhkhkkhhkkhkhhkhhkhkhhkkhhkhkkhhkkhkhkhkkihikhkhhkhik*x

b I I I B D . T . . .

*
*
*
*
*
*
*
*
*

Direct console 1/Ois supported under MP/M for those
speci al i zed applications where unadorned consol e i nput and out put
is required. Use of this function should, in general, be avoi ded
since it bypasses all of MP Ms normal control character
functions (e.g., control-S and control-P) . Prograns which
performdirect 1/0 through the Bl OS under previous rel eases of
CP/M however, should be changed to use direct |I/O under BDCS so
that they can be fully supported under MP/ M and CP/ M

Upon entry to function 6, register E either contains
hexadeci mal FF, denoting a console input request, a hexadeci nal
FE, denoting a console input status request, or register E
contains an ASCI|I character. If the input value is FF, then
function 6 returns the next consol e input character.

If the input value is FE, then function 6 returns a val ue
of FF if a character is ready, or a 00 if no character has been
recei ved.

If the input value in Eis not FF or FE, then function 6
assunes that E contains a valid ASCI| character which is sent to
t he consol e.

Note that BDOS functions 3 and 4 (raw consol e i nput/out put)
can be used for totally transparent console 1/O Wen using
functions 3 and 4, the consol e status operation can be perforned
by using function 6 with a paraneter of FE

32
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkkhhkhkhkhkhhkhkkhhkhkhkkhkkhhkkhkhkhk*k

* *
* FUNCTION 7: GET |I/0O BYTE *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkkhhkhkkhhkkhkhkhkkhhkkhkkhkkhhkkhkkhkkhkhkhk*k

* *
* Not supported under MP/ M *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkhhkhkhkhkkhhkhkkhhkhhkkhkkhhkhkhkhk*k

The GET I/ O BYTE function is not supported under MP/ M

R R bk S b b S b S b S b S S R R Ik I b Sk b b b S S b b b
*

* FUNCTION 8: SET I/0O BYTE

*

R R b b S b Sk b b S b S Ik b Sk S b b b S bk S b S b S b S
*

* Not supported under MP/ M

*
*
*
*
*
*
* *
*

R R bk S b Sk b b S b S R I b Sk S b b b S bk b S b S b b S

The SET I/ O BYTE function is not supported under MP/ M

R R b Sk S b Sk b b S b S I R I bk S b b b S bk S b S b S S b b
*

* FUNCTION 9: PRI NT STRI NG

*

R R b b S b Sk b b S b S Ik b Sk S b b b S bk b b S b S b b

* Entry Paraneters:

* Regi ster C. O09H

* Registers DE: String Address
*

*

*
*
*
*
*
* *
*
*
*
*
*

R R b S b S b S b S b bk S R R bk b b S b b b I b

The PRINT STRI NG function sends the character string stored
in menory at the location given by DE to the consol e devi ce,
until a “$" is encountered in the string. Tabs are expanded as
in function 2, and checks are nmade for start/stop scroll and
printer echo.

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkkhhkhkhkhkhhkhkkhhkhkhkkhkkhhkkhkhkhk*k

* *
* FUNCTI ON 10: READ CONSOLE BUFFER *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkkhhkhkkhhkkhkhkhkkhhkkhkkhkkhhkkhkkhkkhkhkhk*k

* Entry Paraneters: *
Regi st er C. OAH
Regi sters DE: Buffer Address

Ret ur ned Val ue:
Consol e Characters in Buffer

*
*
*
*
*
R R b b S b Sk b b S b S b I b Sk S b b b S Rk Rk I b b b S b

*
*
*
*
*
*

The READ BUFFER function reads a |line of edited console
input into a buffer addressed by registers DE. Console input is
term nated when either the input buffer overflows. The READ
BUFFER t akes the form

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 Coe +n

where "nx" is the maxi mum nunber of characters which the buffer
will hold (1 to 255), "nc" is the nunber of characters read (set
by BDOS upon return), followed by the characters read fromthe
console. if nc < nx, then uninitialized positions follow the

| ast character, denoted by "??" in the above figure. A nunber of
control functions are recognized during line editing:

rub/ del removes and echoes the | ast character
ctl-C reboots when at the beginning of |ine
ctl-E causes physical end of line

ctl-H backspaces one character position

ctl-J (line feed) termnates input |ine
ctl-M (return) term nates input line

ctl-R retypes the current line after new |line
ctl-U removes current line after new |line
ctl-X backspaces to begi nning of current |ine

Note al so that certain functions which return the carriage to the
| eftmost position (e.g., ctl-X) do so only to the colum position
where the pronpt ended (in earlier rel eases, the carriage
returned to the extrene left margin). This convention nmakes
operator data input and line correction nore |egible.

34
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkkhhkhkhkhkhhkhkkhhkhkhkkhkkhhkkhkhkhk*k

* *
* FUNCTI ON 11: GET CONSCLE STATUS *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkkhhkhkkhhkkhkhkhkkhhkkhkkhkkhhkkhkkhkkhkhkhk*k

* Entry Paraneters: *
* Regi st er C. OBH *
* *
* Ret ur ned Val ue: *
* Regi st er A Consol e St atus *
R R b S b b S S S S R R S S b b b i S S S S I S

The CONSOLE STATUS function checks to see if a character
has been typed at the console. If a character is ready, the
value OFFH is returned in register A Oherwise a OOH value is
ret ur ned.

R R bk S bk S b S b S b S b S Rk I I b Sk b b b S b b b

* *
* FUNCTION 12: RETURN VERSI ON NUMBER *
* *

R R b Sk S bk b S b S b S b b S b IR Sk I bk b b b S S b b b

* Entry Paraneters: *
Regi ster C OCH

Regi sters HL: Version Nunber

R R bk S b b b S b S b bk S R R S bk b b S b b b S b

* X X X X

*
*
Ret ur ned Val ue: *
*
*

Function 12 provides information which allows version
i ndependent progranm ng. A two-byte value is returned, with H =
00 designating the CP/Mrelease (H=01 for MW M, and L = 00 for
all releases previous to 2.0. CP/M 2.0 returns a hexadeci mal 20
inregister L, with subsequent version 2 releases in the
hexadeci mal range 21, 22, through 2F. Using function 12, for
exanpl e, you can wite application prograns which provide both
sequential and random access functions, with random access
di sabl ed when operating under early rel eases of CP/M

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 13: RESET DI SK SYSTEM *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
Regi ster C ODH

* *
* *
* Ret ur ned Val ue: *
* Regi st er A Ret urn Code *
* *

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkhhkhkhhkkhhkhkkihkkhkhkhkkihikkhkkhhkhik*x

The RESET DI SK function is used to progranmatically restore
the file systemto a reset state where all disks are set to
read/ wite (see functions 28 and 29), and the default DMA address
is reset to the nenory segnent base +0080H. This function can be
used, for exanple, by an application programwhich requires a
di sk change wi thout a systemreboot.

The RESET DI SK SYSTEM function is qualified in MP/M if
there are any open files on any drive, the reset disk system
is denied and the reason is displayed on the console. The
returned val ue indicates whether or not the reset disk was
successful. If any process is currently accessing a drive, an
error code of OFFH is returned in the A register. A return code
of O indicates success.

R R b Sk S bk b S b S b S b S S R R I I bk b b b S S b b S

* *
* FUNCTI ON 14: SELECT DI SK *
* *
R b b b I S S b b b I S b b b b i I S b b b b i i b b b b b I I b S I S
* Entry Paraneters: *
* *
* Regi st er C OEH *
* Regi st er E: Sel ected Di sk *
* *
R b b b I S S I b b I S b b b b i I I b b b b i i S b b b b b I b b S S

The SELECT DI SK function designates the disk drive nanmed in
regi ster E as the default disk for subsequent file operations,
with E =0 for drive A, 1 for drive B, and so-forth through 15
corresponding to drive Pin a full sixteen drive system The
drive is placed in an "on-line" status which, in particular,
activates its directory until the next cold start, warmstart, or
di sk systemreset operation. If the disk nedia is changed while
it ison-line, the drive automatically goes to a read/only status
in a standard MP/ M environnent (see function 28). FCB s which
specify drive code zero (dr = OOH) automatically reference the
currently selected default drive. Drive code val ues between 1
and 16, however, ignore the selected default drive and directly
reference drives A through P

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkkhhkhkhkhkhhkhkkhhkhkhkkhkkhhkkhkhkhk*k

* *
* FUNCTI ON 15: OPEN FI LE *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkkhhkhkkhhkkhkhkhkkhhkkhkkhkkhhkkhkkhkkhkhkhk*k

* Entry Paraneters: *
Regi st er C. OFH
Regi sters DE: FCB Address

Ret urned Val ue:
Regi ster A Directory Code

*
*
*
*
*
R R b b S b Sk b b S b S b I b Sk S b b b S Rk Rk I b b b S b

*
*
*
*
*
*

The OPEN FI LE operation is used to activate a file which
currently exists in the disk directory for either the currently
active user code or user code 0. The BDOS scans the referenced
di sk directory for a match in positions 1 through 14 of the FCB
referenced by DE (byte sl is automatically zeroed), where an
ASCI | question mark (3FH) nmatches any directory character in any
of these positions. Normally, no question marks are included
and, further, bytes "ex" and "s2" of the FCB are zero.

If a directory elenent is matched, the relevant directory
information is copied into bytes dO through dn of the FCB, thus
all owi ng access to the files through subsequent read and wite
operations. Note that an existing file nust not be accessed
until a sucessful open operation is conpleted. Upon return, the
open function returns a "directory code" with the value O through
3 if the open was successful, or OFFH (255 decinmal) if the file
cannot be found. |If question marks occur in the FCB then the
first mtching FCB is activated. Note that the current record
("cr") nust be zeroed by the programif the file is to be
accessed sequentially fromthe first record.

The open-file operation will succeed for files with either
the current user code or user code 0. This presents a problem
when files with the sane nane exist under both the current user
code and under user code 0. When such a situation exists the
first one found in the directory will be opened. Even though
this should not present a probl em because user code 0 is intended
only for systemand commonly used files, a potential problemcan
be detected by using the search file function. The search file
functi on enabl es exam nation of the directory FCB and thus the
actual file user code can be determ ned.

Opening a file sets the appropriate bit in the drive active
vector of the calling processes process descriptor. This bit is
cleared only by termnating the process or naking a free drive
(function 39) call. Setting of the bit in the drive active
vector will prevent any other process fromresetting the drive on
which the file was opened.

37
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 16: CLOSE FI LE *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
Regi ster C 10H
Regi sters DE: FCB Address

Ret ur ned Val ue:
Regi st er A Directory Code

*
*
*
*
*
R R I b b S b Sk b b S b S I R I bk S b b b S bk S b S b S b b S

*
*
*
*
*
*

The CLOSE FI LE function perforns the inverse of the open
file function. Gven that the FCB addressed by DE has been
previously activated through an open or make function (see
functions 15 and 22), the close function permanently records the
new FCB in the referenced disk directory. The FCB mat chi ng
process for the close is identical to the open function. The
directory code returned for a successful close operationis 0, 1
2, or 3, while a OFFH (255 decimal) is returned if the file nane
cannot be found in the directory. Afile need not be closed if
only read operations have taken place. If wite operations have
occurred, however, the close operation is necessary to
permanent|ly record the new directory information.

Note that the close file function does not affect the drive
active vector of the calling processes process descriptor. The
free drive function (function 39) nust be used to reset the bit
of the drive active vector.

kkhkkkhkkhkhkkhhkkhkhhkkhhkhkhhkhhkhkkhhkhkhkhkkhhkhkkhhkhhkkhkkhhkhkkhkhk*k

* *
* FUNCTI ON 17: SEARCH FOR FI RST *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkkhkkhhkkhhkkhkkhhkkhkhkk*k

* Entry Paraneters: *
Regi ster C. 11H
Regi sters DE: FCB Address

Ret urned Val ue:
Regi ster A Directory Code

*
*
*
*
*
R R b b S b Sk b b S b S I I b Sk S b b b S bk S b S b S b b

*
*
*
*
*
*

SEARCH FI RST scans the directory for a match with the file
given by the FCB addressed by DE. Files with either the
currently active user code or user code O will match. The val ue
255 (hexadecimal FF) is returned if the file is not found,
otherwwse 0, 1, 2, or 3 is returned indicating the file is
present. In the case that the file is found, the current DVA
address is filled with the record containing the directory entry,
and the relative starting positionis A* 32 (i.e., rotate the A

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

register left 5 bits, or ADD A five tines). Although not
normal ly required for application prograns, the directory
information can be extracted fromthe buffer at this position.

An ASCI| question mark (63 decimal, 3F hexadecinmal) in any
position from"fl" through "ex" matches the corresponding field
of any directory entry on the default or auto-selected disk
drive. If the "dr" field contains an ASCI| question mark, then
the auto di sk select function is disabled, the default disk is
searched, with the search function returning any matched entry,
all ocated or free, belonging to any user nunber. This latter
function is not normally used by application progranms, but does
all ow conplete flexibility to scan all current directory val ues.
If the "dr" field is not a question mark, the "s2" byte is
automati cal ly zeroed.

To determ ne the user code of a successful search (it may
be the currently active user code or user code 0), the returned
directory code can be used as descri bed above to index into the
DVA buffer and the user code of the directory FCB can be
obt ai ned.

R R I b Sk S b S b S b b S b S b b S b S Sk I b Sk b b b S S b S I

* FUNCTI ON 18: SEARCH FOR NEXT *

R R bk S bk S b S b S b S b b S b I Sk I b Sk S b b S S b S b b

* Entry Paraneters: *
* Regi ster C 12H *
* *
* Ret urned Val ue: *
* Regi ster A Directory Code *
R I b b b b b b b b b S S R b b b Sk b b b b b b b Sk kb b b S

The SEARCH NEXT function is simlar to the Search First
function, except that the directory scan continues fromthe |ast
mat ched entry. Simlar to function 17, function 18 returns the
deci mal value 255 in A when no nore directory itens match

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 19: DELETE FI LE *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
Regi st er C. 13H
Regi sters DE: FCB Address

Ret ur ned Val ue:
Regi st er A Directory Code

*
*
*
*
*
R R I b b S b Sk b b S b S I R I bk S b b b S bk S b S b S b b S

*
*
*
*
*
*

The DELETE FILE function renoves files which match the FCB
addressed by DE. The filenanme and type may contain anbi guous
references (i.e., question marks in various positions), but the
drive select code cannot be anbi guous, as in the Search and
Search Next functions.

Function 19 returns a decimal 255 if the referenced file or

files cannot be found, otherwise a value in the range 0 to 3 is
ret urned.

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkkhkhkhkhhkhkhkhkkhhkhkkhhkhhkkhkkhrkkhkhkhk*k

* *
* FUNCTI ON 20: READ SEQUENTI AL *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhhkhhkkhkkhhkkhkhkk*k

* Entry Paraneters: *
Regi st er C. 14H
Regi sters DE: FCB Address

Ret ur ned Val ue
Regi st er A Directory Code

*
*
*
*
*
R R b b S b Sk b b S b S R I b Sk S b b b S bk b S b S b b

*
*
*
*
*
*

G ven that the FCB addressed by DE has been activated
t hrough an open or nake function (nunbers 15 and 22), the READ
SEQUENTI AL function reads the next 128 byte record fromthe file
Into menory at the current DVA address. The record is read from
position "cr" of the extent, and the "cr" field is automatically
Incremented to the next record position. If the "cr" field
overflows then the next logical extent is automaticall ly opened
and the “cr"” field is reset to zero in preparation for the next
read operation. The value OOH is returned in the A register if
the read operation was successful, while a non-zero value is
returned if no data exists at the next record position (e.g. end
of file occurs).

40
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 21: WRI TE SEQUENTI AL *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
Regi st er C. 15H
Regi sters DE: FCB Address

Ret ur ned Val ue:
Regi st er A Directory Code

*
*
*
*
*
R R I b b S b Sk b b S b S I R I bk S b b b S bk S b S b S b b S

*
*
*
*
*
*

G ven that the FCB addressed by DE has been activated
t hrough an open or nake function (nunbers 15 and 22), the WRI TE
SEQUENTI AL function wites the 128 byte data record at the
current DVA address to the file naned by the FCB. the record is
pl aced at position "cr" of the file, and the "cr" field is
automatically incremented to the next record position. If the
"cr" field overflows then the next |ogical extent is
automatically opened and the "cr” field is reset to zero in
preparation for the next wite operation. Wite operations can
take place into an existing file, in which case newwy witten
records overlay those which already exist in the file. Register
A = OCH upon return froma successful wite operation, while a
non-zero value indicates a full disk.

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhhkhhkkhkkhhkkhkhkk*k

* *
* FUNCTI ON 22: MAKE FI LE *
* *

kkhkkkhkkhkhkkhhkkhkhhkkhhkhkhhkhhkhkkhhkhkhkhkkhhkhkkhhkhhkkhkkhhkhkkhkhk*k

* Entry Paraneters: *
Regi st er C. 16H
Regi sters DE: FCB Address

Ret ur ned Val ue:
Regi st er A Directory Code

*
*
*
*
*
R R b b S bk b b S b S R I b Sk S b b b S bk S b S b S b b S

*
*
*
*
*
*

The MAKE FI LE operation is simlar to the open file
operation except that the FCB nust nane a file which does not
exist in the currently referenced disk directory (i.e., the one
named explicitly by a non-zero “dr" code, or the default disk if
"dr" is zero). The FDOS creates the file and initializes both
the directory and main nenory value to an enpty file. The
programer nust ensure that no duplicate file names occur, and a
precedi ng del ete operation is sufficient if there is any
possibility of duplication. Upon return, register A =20, 1, 2,
or 3 if the operation was successful and OFFH (255 decimal) if no
nore directory space is avail able. The nmake function has the
side-effect of activating the FCB and thus a subsequent open is

41
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
not necessary.

Making a file sets the appropriate bit in the drive active
vector of the calling processes process descriptor. This bit is
cleared only by termnating the process or naking a free drive
(function 39) call. Setting of the bit in the drive active
vector will prevent any other process fromresetting the drive on
which the file was opened.

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkhhkhkkhhkhkhkhkkhhkkhkkhhkkhhkkhkkhhkhkhkhk*k

* *
* FUNCTI ON 23: RENAME FI LE *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkhhkhkhkhkkhhkhkkhhkhhkkhkkhhkhkhkhkk

* Entry Paraneters: *
Regi st er C. 17H
Regi sters DE: FCB Address

Ret ur ned Val ue:
Regi st er A Directory Code

*
*
*
*
*
R R bk S b Sk b b S b S R I b Sk S b b b S bk b S b S b b S

*
*
*
*
*
*

The RENAME FI LE function uses the FCB addressed by DE to
change all occurrences of the file named in the first 16 bytes to
the file naned in the second 16 bytes. The drive code "dr" at
position O is used to select the drive, while the drive code for
the new file nane at position 16 of the FCB is assuned to be
zero. Upon return, register Ais set to a value between 0 and 3
if the rename was successful, and OFFH (255 decimal) if the first
file name could not be found in the directory scan.

R R bk S b S b S b S b I b Sk S R R I I b Sk S b b S S b S b

* *
* FUNCTI ON 24: RETURN LOGd N VECTOR *
* *

R R I b Sk S b b b S b S b S b S S R R Ik I b Sk S b b S S b S b b

* Entry Paraneters: *
* Regi ster C 18H *
* *
* Ret urned Val ue: *
* Registers HL: Login Vector *
R I b b b b b b b b b S S S R b b bk I S b b b b b b b Sk kb b b S

The |l ogin vector value returned by MP/ Mis a 16-bit val ue
in HL, where the least significant bit of L corresponds to the
first drive A, and the high order bit of H corresponds to the
sixteenth drive, labelled P. A"0" bit indicates that the drive
is not on-line, while a "I" bit marks an drive that is actively
on-line due to an explicit disk drive selection, or an inplicit
drive select caused by a file operation which specified a
non-zero "dr" field. Note that conpatibility is maintained with

42
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

earlier releases, since registers A and L contain the sane val ues
upon return.

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkkhhkhkhkhkkhhkkhkkhhkhkhkkhkkhhkhkhkkhk*k

* *
* FUNCTI ON 25: RETURN CURRENT DI SK *
* *

kkhkkkhkkhkhkkhhkkhkkhhkhhkhkhhkhhkhkkhhkhkhkhkkhhkhkkhhkkhkhkkhkkhhkkhkhkhk*k

* Entry Paraneters: *
* Regi ster C. 19H *
* *
* Returned Val ue: *
* Regi ster A Current Disk *
R R R S b S S S S S S R R S S b S b b b S S S S I S

Function 25 returns the currently selected default disk
nunber in register A The disk nunbers range fromO through 15
corresponding to drives A through P

R R I bk S bk b b S b b S b b b S b S S R I b Sk S b b S S b S b b I

* FUNCTI ON 26: SET DMVA ADDRESS *

R R I bk S bk b b S b S b S b b S b I S R I b Sk S b b S S b S b b

* Entry Paraneters: *
* Regi ster C 1AH *
* Registers DE: DVA Address *

R R I bk S b b b S b S b S b b S b I I R I b Sk b b S S S Ik

"DMA" is an acronymfor Direct Menory Address, which is
often used in connection with disk controllers which directly
access the nenory of the mainfranme conputer to transfer data to
and fromthe disk subsystem Although nany conputer systens use
non- DMA access (i.e., the data is transfered through programred
|/ O operations), the DVA address has, in MM M cone to nean the
address at which the 128 byte data record resides before a disk
wite and after a disk read. Upon cold start, warmstart, or
di sk systemreset, the DVA address is automatically set to
BOOT+0080H. The Set DMA function, however, can be used to change
this default value to address another area of nmenory where the
data records reside. Thus, the DVA address becones the val ue
specified by DE until it is changed by a subsequent Set DMA
function, cold start, warmstart, or disk systemreset.

43
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 27: GET ADDR(ALLOC) *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
* Regi ster C. 1BH *
* *
* Returned Val ue: *
* Registers HL: ALLOC Address *
R R b S b b S S S S R R S S b b b i S S S S I S

An "allocation vector"” is maintained in main nmenory for
each on-line disk drive. Various system prograns use the
i nformation provided by the allocation vector to determ ne the
anount of remaining storage (see the STAT program. Function 27
returns the base address of the allocation vector for the
currently selected disk drive. The allocation information may,
however, be invalid if the selected disk has been marked
read/only. Although this function is not normally used by
application prograns, additional details of the allocation vector
are found in the "CP/M 2.0 Alteration Guide."

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkkhkhkhkhhkhkhkhkkhhkhkkhhkhhkkhkkhrkkhkhkhk*k

* *
* FUNCTI ON 28: WRI TE PROTECT DI SK *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhhkhhkkhkkhhkkhkhkk*k

* Entry Paraneters: *
* Regi ster C. 1CH *
* *

kkhkkkhkkhkhkkhhkkhkhhkkhhkhkhhkhhkhkkhhkhkhkhkkhhkhkkhhkhhkkhkkhhkhkkhkhk*k

The disk wite protect function provides tenporary wite
protection for the currently selected disk. Any attenpt to wite
to the disk, before the next cold or warm start operation
produces the nessage

Bdos Err on d: R O
Use of this function is not recommended whil e operating

under MP/ M because it will deny read/wite access to files on the
di sk by anot her user.

44
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 29: GET READ/ ONLY VECTOR *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
* Regi ster C. 1DH *
* *
* Returned Val ue: *
* Registers HL.: R/ O Vector Val ue *
R R b S b b S S S S R R S S b b b i S S S S I S

Function 29 returns a bit vector in register pair HL which
i ndi cates drives which have the tenporary read/only bit set.
Simlar to function 24, the least significant bit corresponds to
drive A, while the nost significant bit corresponds to drive P.
The RRO bit is set either by an explicit call to function 28, or
by the automatic software nmechani sns within MP/ M which detect
changed di sks.

R R bk S bk b b S b S b S b b S R R I I bk S b b S S b S b b
*
* FUNCTI ON 30: SET FI LE ATTRI BUTES
*

R R b b S b S b b S b S I I b Sk S b b b S bk S S R S b I b

* Entry Paraneters:
Regi st er C 1EH
Regi sters DE: FCB Address

0% o X X X X X X X F

*

*

*

* Ret ur ned Val ue:

* Regi ster A D rectory Code
*

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkkhkkhhkhhkhkkhhkkhhkhkkhhkkhkhkhkkihikkhkkhkrkhik*x

The SET FILE ATTRI BUTES function allows programmatic
mani pul ati on of permanent indicators attached to files. In
particular, the R0, System and Update attributes (tl', t2', and
t3’) can be set or reset. The DE pair addresses an unanbi guous
file name with the appropriate attributes set or reset. Function
30 searches for a match, and changes the matched directory entry
to contain the selected indicators. Indicators fl' through f4'
are not presently used, but nmay be useful for applications
prograns, since they are not involved in the matching process
during file open and cl ose operations. Indicators f5 through
f8 are reserved for future system expansion.

45
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 31: GET ADDR(DI SK PARMS) *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
* Regi ster C. 1FH *
* *
* Returned Val ue: *
* Registers HL: DPB Address *
R R b S b b S S S S R R S S b b b i S S S S I S

The address of the BIOS resident disk paranmeter block is
returned in HL as a result of this function call. This address
can be used for either of two purposes. First, the disk
paranet er val ues can be extracted for display and space
conmput ati on purposes, or transient progranms can dynamcally
change the values of current di sk paranmeters when the disk
envi ronnment changes, if required. Normally, application prograns
will not require this facility.

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkhhkkhkhkhkkhhkhkhkhkkhhkhkkhhkhhkkhkkhhkhkhkhk*k

* *
* FUNCTI ON 32: SET/ GET USER CODE *
* *
P b b b b I b b b b b b S b b b b b I I b b b b b b S b b b I I I I b S b b
* Entry Paraneters: *
* Regi ster C 20H *
* Regi ster E: OFFH (get) or *
* User Code (set) *
* *
* Ret ur ned Val ue: *
* Regi ster A Current Code or *
* (no val ue) *
R b b b I S S I b b I S b b b b i i S b b b b i i I b b b i b I b S I S

An application programcan change or interrogate the
currently active user nunber by calling function 32. If register
E = OFFH, then the value of the current user nunber is returned
in register A, where the value is in the range 0 to 15. If
register Eis not OFFH, then the current user nunber is changed
to the value of E (nobdul o 16)

46
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 33: READ RANDOM *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
Regi st er C. 21H
Regi sters DE: FCB Address

Ret ur ned Val ue:
Regi st er A Ret urn Code

*
*
*
*
*
R R I b b S b Sk b b S b S I R I bk S b b b S bk S b S b S b b S

*
*
*
*
*
*

The READ RANDOM function is simlar to the sequential file
Read operation of previous rel eases, except that the read operation
takes place at a particular record nunber, selected by the 24-bit
val ue constructed fromthe three byte field follow ng the FCB (byte
positions rOat 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant byte first (rO mddle
byte next (rl), and high byte last (r2). MP/ M does not reference byte
r2, except in conputing the size of a file (function 35). Byte r2
must be zero, however, since a non-zero value indicates overflow past
the end of file,

Thus, the rO,rl byte pair is treated as a doubl e-byte, or "word"
val ue, which contains the record to read. This value ranges fromO to
65535, providing access to any particular record
of the 8 megabyte file. In order to process a file using random
access, the base extent (extent 0) nust first be opened. Although the
base extent may or nmay not contain any allocated data, this ensures
that the file is properly recorded in the directory, and is visible
in DIR requests. The selected record nunber is then stored into the
randomrecord field (rOrl), and the BDOS is called to read the

record. Upon return fromthe call, register A either contains an
error code, as listed below, or the value 00 indicating the operation
was successful. In the latter case, the current DVA address contains

the randomy accessed record. Note that contrary to the sequenti al
read operation, the record nunber is not advanced. Thus, subsequent
random read operations continue to read the sanme record.

Upon each randomread operation, the |ogical extent and current
record values are automatically set. Thus, the file can
be sequentially read or witten, starting fromthe current randonmy
accessed position. Note, however, that in this case,
the last randomy read record will be re-read as you switch from
random node to sequential read, and the |ast record will be
re-witten as you switch to a sequential wite operation. You can, of
course, sinply advance the randomrecord position follow ng each
randomread or wite to obtain the effect of a sequential /0
oper ati on.

Error codes returned in register A followi ng a randomread

47
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

are |listed bel ow

01 reading unwitten data

02 (not returned in random node)
03 cannot cl ose current extent

04 seek to unwitten extent

05 (not returned in read node)

06 seek past physical end of disk

Error code 01 and 04 occur when a randomread operation accesses
A data bl ock which has not been previously witten, or an extent
whi ch has not been created, which are equivalent conditions.
Error 3 does not normally occur under proper system operation,
but can be cleared by sinply re-readi ng, or re-opening extent
zero as long as the disk is not physically wite protected.

Error code 06 occurs whenever byte r2 is non-zero under t he
current 2.0 rel ease. Normally, non-zero return codes can be
treated as mssing data, with zero return codes i ndi cating

operation conpl ete.

R R I bk S bk b b S b b S b b b S b S S R I b Sk S b b S S b S b b I
*
* FUNCTI ON 34: WWRI TE RANDOM
*

R R b b S b Sk b b S b S I R I b Sk S b b b S bk S b S b S b b

*
*
*
*
* Entry Paraneters: *
Regi st er C 22H *
Regi sters DE: FCB Address *

*

*

*

*

Regi st er A Ret urn Code

kkhkkkhkkhkhkkhhkkhkhkhkkhhkkhkhhkhhkhkkhhkkhhkhkkhhkkhkhkhkkhhkkhkkhkhkhik*x

*
*
*
* Ret ur ned Val ue:
*
*

The WRI TE RANDOM operation is initiated simlar to the READ
RANDOM cal |, except that data is witten to the disk fromthe
current DVA address. Further, if the disk extent or data bl ock
which is the target of the wite has not yet been allocated, the
all ocation is performed before the wite operation continues. As
in the Read Random operation, the random record nunber is not
changed as a result of the wite. The | ogical extent nunber and
current record positions of the file control block are set to
correspond to the randomrecord which is being witten. Again,
sequential read or wite operations can comence follow ng a
randomwite, with the notation that the currently addressed
record is either read or rewitten again as the sequenti al
operation begins. You can also sinply advance the random record
position follow ng each wite to get the effect of a sequenti al
wite operation. Note that in particular, reading or witing the
| ast record of an extent in random node does not cause an
automatic extent switch as it does in sequential node.

The error codes returned by a randomwite are identical to

48
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

the random read operation with the addition of error code 05,
whi ch indicates that a new extent cannot be created due to
directory overfl ow.

R R bk S b S b S b b S b b S S R Sk I bk S b b S S b b I
*
* FUNCTI ON 35: COWPUTE FI LE SI ZE
*

R R b b S b S b b S b S I I b Sk S b b b S bk b b S b S b b

*
*
*
*
* Entry Paraneters: *
Regi st er C 23H *
Regi sters DE: FCB Address *

*

*

*

*

Random Record Field Set

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkkhkhhkhhkhkhhkkhhkhkkhhkkhkhkhkkihikkhkkhhkhik*x

*
*
*
* Ret ur ned Val ue:
*
*

When conputing the size of a file, the DE register pair
addresses an FCB in random node format (bytes rO rl, and r2 are
present). The FCB contains an unanbi guous file nane which is
used in the directory scan. Upon return, the randomrecord bytes
contain the "virtual" file size whichis, in effect, the record
address of the record followng the end of the file. if,
following a call to function 35, the high record byte r2 is 01,
then the file contains the maxi numrecord count 65536.
ot herwi se; bytes rOand rl constitute a 16-bit value (rOis the
| east significant byte, as before) which is the file size.

Data can be appended to the end of an existing file by
sinply calling function 35 to set the randomrecord position to
the end of file, then perform ng a sequence of randomwites
starting at the preset record address.

The virtual size of a file corresponds to the physical size
when the file is witten sequentially. If, instead, the file was
created in random node and "hol es” exist in the allocation, then
the file may in fact contain fewer records than the size
indicates. If, for exanple, only the last record of an eight
megabyte file is witten in random node (i.e., record nunber
65535), then the virtual size is 65536 records, although only one
bl ock of data is actually all ocated.

49
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 36: SET RANDOM RECCORD *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
Regi st er C. 24H
Regi sters DE: FCB Address

Ret ur ned Val ue:
Random Record Field Set

*
*
*
*
*
R R I b b S b Sk b b S b S I R I bk S b b b S bk S b S b S b b S

*
*
*
*
*
*

The SET RANDOM RECORD function causes the BDOS to
automatically produce the randomrecord position froma file
whi ch has been read or witten sequentially to a particul ar
poi nt. The function can be useful in tw ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields.
As each key is encountered, function 36 is called to conpute the
random record position for the data corresponding to this key.

If the data unit size is 128 bytes, the resulting record position
is placed into a table with the key for later retrieval. After
scanning the entire file and tabul ari zing the keys and their
record nunbers, you can nove instantly to a particul ar keyed
record by perform ng a randomread using the correspondi ng random
record nunber which was saved earlier. The schene is easily
general i zed when variable record | engths are invol ved since the
program need only store the buffer-relative byte position al ong
with the key and record nunber in order to find the exact
starting position of the keyed data at a later tine.

A second use of function 36 occurs when switching froma
sequential read or wite over to randomread or wite. Afile is
sequentially accessed to a particular point in the file, function
36 is called which sets the record nunber, and subsequent random
read and wite operations continue fromthe selected point in the
file.

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 37: RESET DRI VE *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
* Regi ster C. 25H *
* Register DE: Drive Vector *
* *
* Ret urned Val ue: *
* Regi ster A Ret urn Code *
R I b b b b b b b b b S S kb b S b b b b b b b b b Sk b b b S

The RESET DRI VE function allows resetting of
specified drive(s). The passed paraneter is a 16 bit vector of
drives to be reset, the least significant bit is drive A, If
there are any open files on a specified drive, the reset drive
is denied and the reason is displayed on the consol e.

The returned val ue indicates whether or not the reset
drive was successful. If any process is currently accessing a
drive to be reset, an error code of OFFH is returned in the A
register. A return code of 0 indicates success.

R R bk S b b b S b S b S b b S R R I I bk S b b S S b b b

* *
* FUNCTI ON 38: ACCESS DRI VE *
* *
R b b b I S S I b b I S b b b b i i b b b b b i i b b b b b b I b b I b
* Entry Paraneters: *
* Regi ster C. 26H *
* Regi ster DE: Drive Vector *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkkhhkhkhkhkhhkhkkhhkhhkkhkkhkkhkhkhk*k

The ACCESS DRI VE function allows setting the drive
access bit(s) in the calling processes process descriptor. The
passed paraneter is a 16 bit vector of drive(s) to be accessed,
the least significant bit is drive A:..

51
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 39: FREE DRI VE *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
* Regi ster C. 27H *
* Regi ster DE: Drive Vector *
* *

R R I bk S b b b S b S b S b b S R R I I b Sk b b b S S b S b b

The FREE DRI VE function allows freeing the drive
access bit(s) in the calling processes process descriptor. The
passed paraneter is a 16 bit vector of drive(s) to be freed,
the least significant bit is drive A:.

R R I bk S bk b b S b b S b S b b S R R I I b Sk b b b S S b b Sk

* *
* FUNCTI ON 40: WRI TE RANDOM W TH *
* ZERO FI LL *
R b b b I S S b b I S S b b b b i i b b b b b i i I b b b I I I b b I S
* Entry Paraneters: *
* Regi ster C. 28H *
* Regi ster DE: FCB Address *
* *
* Returned Val ue: *
* Regi ster A Ret urn Code *
P b 2k b b S b b b b b b S b b b b b I I b b b b b b S b b b I I I I b S I b

The WRI TE RANDOM W TH ZERO FI LL operation is simlar
to FUNCTION 34: WRITE RANDOM w th the exception that a
previously unallocated record is filled with zeroes before the
data is witten.

52
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
2.3 Queue and Process Descriptor Data Structures

This section contains a description of the queue and
process descriptor data structures used by the MP/ M Ext ended Di sk
Operating System (XDOS)

QUEUE DATA STRUCTURES

A queue is a first in first out (FIFO mnmechani smwhich has
been i nplenented in MP/Mto provide several essential functions
in a nmulti-tasking environment. Queues can be used for the
comuni cati on of nessages between processes, to synchronize
processes, and to provide mutual exclusion.

MP/ M has been designed to sinplify queue managenent for
both user and system processes. In fact, queues are treated in a
manner simlar to disk files. Queues can be created, opened,
witten to, read from and del et ed.

A fewillustrations should suffice to describe applications
for queues:

COMVUNI CATI ON:

A queue can be used for conmunication to provide a FIFO
list of nmessages produced by a producer for consunption by a
consuner. For exanple, consider a data |ogging application where
data is continuously received via a serial comrunication |ink and
is to be witten to a disk file. This would be a difficult
application for a sequential operating systemsuch as CP/M
because arriving serial data would be lost while buffers were
being witten to disk. Under MP/M a queue could be used by the
producer to send bl ocks of received serial data (or sinply buffer
pointers) to a consuner which would wite the bl ocks on di sk.
MP/ M supports concurrency of these operations, allow ng the
producer to quickly wite a buffer to the queue and then resune
nmonitoring the serial input.

SYNCHRONI ZATI ON:

When a process attenpts to read a nessage at a queue and
there are no nessages posted at the queue, the process is placed
inapriority ordered |ist of processes waiting for nessages at
t he queue. The process will remain in that state until a nessage
arrives. Thus synchroni zati on of processes can be achi eved,
allowng the waiting (DQ ng) process to continue execution when a
nmessage is sent to the queue.

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
MUTUAL EXCLUSI ON:

A queue can al so be used for nmutual exclusion. Mitual
excl usi on nessages generally have a length of zero. A good
exanpl e of mutual exclusion is that which is used by MP Mto
control access to the printer. A queue is created (MXList) and
sent one nmessage. Wien the printer is to be used by the spool er
or by entering a control-P (~P) at the console an attenpt is nmade
to read the nessage fromthe |list nutual exclusion queue. This
attenpt is nade using the MP/M conditional read queue function.
If the nmessage is available, that is it has not been consunmed by
sonme other process, it is read and the printer is used. \Wen
finished with the printer, the nmessage is witten back to the
[ist nutual exclusion queue. If the nessage is not avail able the
user who entered the ~P receives a nmessage indicating that the
printer is busy. In the case of the spooler, it waits until the
printer is avail able before continuing.

QUEUE DATA STRUCTURES

The queue data structures include the queue control block
and the user queue control block. There are two types of queue
control blocks, circular or linked. The type of queue control
bl ock used depends upon the nessage size. Message sizes of 0O to
2 bytes use circular queues while nessage sizes of 3 or nore
bytes use |inked queues.

Cl RCULAR QUEUES

The follow ng exanple illustrates how to setup a queue
control block for a circular queue with 80 nessages of a one byte
| ength. Each exanple in this section will be shown both in PL/M
and assenbly | anguage.

PL/ M

DECLARE Cl RCULARSQUEUE STRUCTURE (
QL ADDRESS,
NAVE(8) BYTE,
MSGLEN ADDRESS,
NVBVBGS ADDRESS,
DQPH ADDRESS,
NQPH ADDRESS,
MSG$I N ADDRESS,
MBGSOUT ADDRESS,
MSGSCNT ADDRESS,
BUFFER (80) BYTE)
INITIAL (0,' CIRCQUE *, 1,80);

o4
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

Assenbl y Language:

CROQUE:
2 Q
' Cl ROQUE . NAME
MSGLEN
0 NVBVSGS
DOPH
NQPH
MSG N
MSGOUT
MBGCNT
BUFFER DS 80 BUFFER

PRRRR2ERT

The el ements of the circular queue shown above are defined as
fol |l ows:

QL = 2 byte link, set by system
NANVE = 8 ASCI| character queue nane,
set by user
VSGLEN = 2 bytes, |length of nmessage,
set by user
NVBMSGS = 2 bytes, nunber of nmessages,
set by user
DQPH = 2 bytes, DQ process head,
set by system
NQPH = 2 bytes, NQ process head,
set by system
MSGSI N = 2 bytes, pointer to next
message in, set by system
MBGSQUT = 2 bytes, pointer to next
nmessage out, set by system
MBGECNT = 2 bytes, nunber of nessages
in the queue, set by system
BUFFER = n bytes, where nis equal to
the nessage length tines the
nunber of nmessages, space
al l ocated by user, set by system
Not e: Mutual exclusion queues require
a two byte buffer for the owner process
descri pt or address.
Queue Overhead 24 bytes
LI NKED QUEUES
The follow ng exanple illustrates how to setup a queue

control block for a Iinked queue containing 4 nessages. each
bytes in | ength:

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
P L/ M

DECLARE LI NKEDSQUEUE STRUCTURE (
QL ADDRESS,
NAME (8) BYTE,
MSGLEN ADDRESS,
NVBVBGS ADDRESS,
DQPH ADDRESS,
NQPH ADDRESS,
MH ADDRESS,
MT ADDRESS,
BH ADDRESS,
BUFFER (140) BYTE)
INITIAL (0, LNKQUE *,33,4);

Assenbl y Language:

LNKQUE:
DS 2 X
DB " LNKQU ‘o NAME
DW 33 . MSGELEN
DW 4 ;. NVBVBGS
DS 2 ; DQPH
DS 2 ;. NQPH
DS 2 . IVH
DS 2 . MI
DS 2 . BH

BUFFER: DS 2 . MG #1 LI NK
DS 33 . MBG #1 DATA
DS 2 . MBG #2 LI NK
DS 33 . NMBG #2 DATA
DS 2 . MBG #3 LI NK
DS 33 . MBG #3 DATA
DS 2 . MG #4 LI NK
DS 33 . MBG #4 DATA

The el enments of the |inked queue shown above are defined as
fol |l ows:

QL = 2 byte link, set by system
NANVE = 8 ASCI| character queue nane,
set by user
VSGLEN = 2 bytes, |length of nmessage,
set by user
NVBMSGS = 2 bytes, nunber of messages,
set by user
DQPH = 2 bytes, DQ process head,
set by system

NQPH = 2 bytes, NQ process head,
set by system

IVH = 2 bytes, nessage head,

set by system

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

MT = 2 bytes, nessage tail,
set by system
BH = 2 bytes, buffer head,
set by system
BUFFER = n bytes where n is equal to

t he nmessage | ength plus two,
ti mes the nunber of nessages,
space allocated by the user,
set by the system

USER QUEUE CONTROL BLOCK

The user queue control block data structure is used to
provide read/wite access to queues in much the same manner that
a file control block provides access to a disk file. Queues are
"opened", an operation which fills in the actual queue control
bl ock address, and then can be read fromor witten to.

| f the actual queue address is known it can be filled in
the pointer field of the user queue control block, the 8 byte
name field can be omtted, and an open operation is not required
in order to access the queue.

The follow ng exanple illustrates a user queue control
bl ock:

PL/ M
DECLARE USER$QUEUE$CONTROL$BLOCK STRUCTURE (
PO NTER ADDRESS,
MSGADR ADDRESS,
NAVE (8) BYTE)
INITIAL (0, .BUFFER 'SPOOL ‘):;
DECLARE BUFFER (33) BYTE;

Assenbl y Language:

UQCB:
DS 2 ; PO NTER
Dw BUFFER ; MSGADR
DB " SPOCL “; NAME
BUFFER:
DS 33 ; BUFFER
57

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

The el ements of the user queue control block shown above
are defined as foll ows:

PO NTER = 2 bytes, set by systemto address of
actual queue during an open queue
operation, or set by the user if the
actual queue address is known

MSGADR = 2 bytes, address of-user buffer,
set by user

NAME = 8 bytes, ASCI| queue nane,
set byuser, may be omtted if the
pointer field is set by the user

QUEUE NAM NG CONVENTI ONS

The foll ow ng conventions should be used in the nam ng of
gueues. Queues which are to be directly witten to by t he
Ter m nal Message Process (TMP) via the Command Li ne
Interpreter (CLI) nust have an upper case ASCI|I nane. Thus when
an operator enters the queue nanme followed by a command tail at
a console, the command tail is witten to the queue.

In order to nmake a queue inaccessible by a user at a
console it must contain at |east one | ower case character.
Mut ual excl usi on queues shoul d be naned upper case ' MX
followed by 1 to 6 additional ASCI| characters. These queues
are treated specially in that they nust have a two byte buffer
in which MP/ M pl aces the address of the process descriptor owning
t he mutual excl usion nessage.

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
PROCESS DESCRI PTOR

Each process in the MP/ M system has a process descri ptor
whi ch defines all the characteristics of the process. The

foll owi ng exanple illustrates the process descriptor:
PL/ M
DECLARE CNS$HNDLR STRUCTURE (

PL ADDRESS,

STATUS BYTE,

PRI ORI TY BYTE,

STKPTR ADDRESS,

NAME (8) BYTE,

CONSOLE BYTE,

MEMSEG BYTE,

B ADDRESS,

THREAD ADDRESS,

DI SKSETDVA ADDRESS,

DI SK$SLCT BYTE,

DCNT ADDRESS,

SEARCHL BYTE,

SEARCHA ADDRESS,

DRVACT ADDRESS,

REG STERS (20) BYTE,

SCRATCH (2) BYTE)

INITIAL (0, O, 200, .CNS$STK (19),
* ONS ‘.1, OFFH);

DECLARE CNS$STK (20) ADDRESS | NI TI AL (
OC7C7H, OC7C7H, OC7C7H, OC7C7H, OC7C7H, OC7CTH,
OC7C7H, OC7C7H, OC7C7H, OC7C7H, OC7C7H, OC7CTH,
OC7C7H, OC7C7H, OC7C7H, OC7C7H, OC7C7H, OC7CTH,
OC7CT7H, STRT$CNS) ;

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

Assenbl y Language:

CNSHND:
DW O ; PL
DB O ; STATUS
DB 200 ;. PRRORITY
DW CNSTK+38 ; STKPTR
DB 'CNS “; NAME
DB O ; CONSOLE
DB OFFH ; MEMBEG (FF = resident)
DS 2 ; B
DS 2 ; THREAD
DS 2 ; DI SK SET DVA
DS 1 ; DI SK SLCT
DS 2 ; DCNT
DS 1 ; SEARCHL
DS 2 ; SEARCHA
DS 2 ; DRVACT
DS 20 ; REGQ STERS
DS 2 ; SCRATCH
CNSTK
DW QOC7C7H, OC7C7H, OC7C7H, OC7C7H
DW OC7Cr7H, OC7C7H, OC7C7H, OC7C7H
DW QOC7C7H, OC7C7H, OC7C7H, OC7C7H
DW OC7Cr7H, OC7C7H, OC7C7H, OC7C7H
DW QOC7C7H, OC7C7H, OC7C7H
DW CNSPR ; CNSTK+38 =

PROCEDURE ADR

The el enments of the process descriptor shown above are

defined as foll ows:

by user

PL =2 byte link field, initially set by
user to address of next process
descriptor, or zero if no nore
STATUS = 1 byte, process status, set by system
PRRORITY =1 byte, process priority, set
STKPTR = 2 bytes, stack pointer, initially set
by user
NAME = 8 bytes, ASCI| process nane, set by user

The high order bit of each

byte of the

process nanme is reserved for use by the
system The high order bit of the first
byte (identified as NAME(O) ') "on" indicates

that the process is perform
console BICS calls and that

ng direct
MP/Mis to

ignore all control characters. It is also

used to suppress the nornal

consol e status

check done when BDOS di sk functions are
i nvoked. This bit nay be set by the user.

(AI'l Information Herein is Proprietary to Digita

Resear ch.)

MP/ M User's Qi de

CONSOLE = 1 byte, console to be used by process,
set by user

VENVSEG =1 byte, nmenory segnent table index

B = 2 bytes, systemscratch area

THREAD = 2 bytes, process list thread, set
by system

Dl SK$SETSDVMA = 2 bytes, default DVA address, set by user

Dl SK$SLCT = 1 byte, default disk/user code

DCNT = 2 bytes, systemscratch byte

SEARCHL =1 byte, systemscratch byte

SEARCHA = 2 bytes, systemscratch bytes

DRVACT = 2 bytes, 16 bit vector of drives being
accessed by the process

REG STERS = 20 bytes, 8080 / Z80 regi ster save area

SCRATCH = byt es, system scratch bytes

PROCESS NAM NG CONVENTI ONS

The foll ow ng conventions should be used in the nam ng of
processes. Processes which wait on queues that are to be sent
command tails fromthe TMPs are given the console resource if
their nanme matches that of the queue which they are reading.
Processes which are to be protected fromabortion by an
operator using the ABORT command nust have at | east one | ower
case character in the process nane.

61
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
2.4 Extended Di sk Operating System Functions

The Extending Di sk Operating System (XDOS) functions are
covered in this section by describing the entry paraneters and
returned val ues for each XDOS function. The XDOS calling
conventions are identical to those of the BDOS which are
descri bed in OPERATI NG SYSTEM CALL CONVENTIONS in section 2.1

R R I bk S bk b b S b b S b S b b S b S S R I b Sk b b b S S b b b I
*

*
* FUNCTI ON 128: ABSCLUTE MEMORY *
* REQUEST *
R R bk S b b S b S b S b S S R R Ik I b Sk b b b S S b b b
* Entry Paraneters: *
Regi ster C. 80H *
*
*
*
*
*
*

*

* DE: MD Address

*

* Ret ur ned Val ue:

* Regi ster A: Return code
* MD filled in

*

R R bk S b b S b S b bk S R R S S bk b Sk S b b b S b

The ABSOLUTE MEMORY REQUEST function allocates an absol ute
bl ock of nenory specified by the passed nenory descri ptor
paraneter. This function all ows non-rel ocatable prograns, such
as CPPM*. COMfiles based at the absolute TPA address of 0100H,
to run in the MP/ M 1.0 environnment. The single passed paraneter
is the address of a nenory descriptor. The nmenory descri ptor
contains four bytes: the nenory segnent base page address, the
menory segment page size, the nenory segnent attributes, and
bank. The only paraneters filled in by the user are the base and
size, the other paranmeters are filled in by XDGCS.

The operation returns a "bool ean" indicating whether or not
the allocation was nade. A returned val ue of FFH indicates
failure to allocate the requested nenory and a value of 0O
i ndi cates success. Note that base and size specify base page
address and page size where a page is 256 bytes.

Menory Descriptor Data Structure:

PL/ M
Decl are menory$descriptor structure (
base byte,
si ze byte,
attrib byte,
bank byte)

62
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

Assenbl y Language:

MEMDES:
DS 1 . base
DS 1 . Size
DS 1 . attributes
DS 1 . bank

kkhkkkhkkhkhkkhhkkhkkhhkhhkhkhhkhhkhkkhhkhkhkhkkhhkhkkhhkkhkhkkhkkhhkkhkhkhk*k

* *
* FUNCTI ON 129: RELOCATABLE NMEMORY *
* REQUEST *
P ab b b b b b b b b b b S b b b b b I I S b b b b b S b b b I I I I b S I b
* Entry Paraneters: *
* Register C 81H *
* DE: MD Address *
* *
* Returned Val ue: *
* Register A Return code *
* MDfilled in *
P b b b b I b b b b b b S b b b b b I S I b b b b b S b b b I I I I b S I b

The RELOCATABLE MEMORY REQUEST function allocates the
requested contiguous nmenory to the calling program The single
passed paraneter is the address of a nmenory descriptor. The only
menory descriptor paranmeter filled in by the calling programis
the size, the other paraneters, base, attributes and bank, are
filled in by XDCS.

The operation returns a bool ean indicating whether or not
the nenory request could be satisfied. A returned value of FFH
indicates failure to satisfy the request and a value of O
i ndi cat es success.

Not e that base and size specify base page address and page
size where a page is 256 bytes. (See function 128: ABSOLUTE
MEMORY REQUEST for a description of the nenory descriptor data
structure.)

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 130: MEMORY FREE *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
* Regi ster C. 82H *
* DE: MD Address *
* *

R R I bk S b b b S b S b S b b S R R I I b Sk b b b S S b S b b

The MEMORY FREE function rel eases the specified nenory
segnent back to the operating system The passed paraneter is
the address of a nenory descriptor. Nothing is returned as a
result of this operation. (See function 128: ABSCLUTE MEMORY
REQUEST for a description of the nenory descriptor data
structure.)

R R I bk S bk S b S b S b S b b S R R Ik I bk b b b S S b S b b I

* FUNCTI ON 131: POLL *

R R bk S bk b b S b S b S b b S R R I I bk b b b S S b b b

* Entry Paraneters: *
* Regi ster C. 83H *
* E: Devi ce Nunber *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhhkkhkkhkkkhkhkk*k

The POLL function polls the specified device until a ready
condition is received. The calling process relinguishes the
processor until the poll is satisfied, allow ng other processes
to execute.

Note that the POLL function is intended for use in the
custom XI OS since an association is made in the Xl OS between the
devi ce nunber and the actual code executed for the pol
operation. This does not exclude other uses of the poll function
but it does nean that an application program making a poll cal
nmust be matched to a specific Xl CS.

64
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 132: FLAG WAI'T *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
* Regi ster C. 84H *
* E: Flag Number *
* *
* Ret urned Val ue: *
* Regi ster A. Return code *
R I b b b b b b b b b S S kb b S b b b b b b b b b Sk b b b S

The FLAG WAIT function causes a process to relinquish the
processor until the flag specified in the call is set. The flag
wait operation is used in an interrupt driven systemto cause the
calling process to "wait' until a specific interrupt condition
occurs.

The operation returns a bool ean indicating whether or not a
successful FLAG WAIT was performed. A returned val ue of FFH
indicates that no flag wait occurred because anot her process was
al ready waiting on the specified flag. A returned value of O
i ndi cates success.

Note that flags are non-queued, which neans that access to
flags nust be carefully managed. Typically the physical
interrupt handlers wll set flags while a single process wll
wait on each fl ag.

R R bk S bk b b S b b S b S b b S R R Ik I bk b b b S S b b
*
* FUNCTI ON 133: FLAG SET
*

R R b b S b Sk b b S b S R I b Sk S b b b S bk b S b S b b

*
*
*
*
* Entry Paraneters: *
Regi st er C. 85H *
*
*
*
*
*

*

* E: Flag nunber

*

* Ret ur ned Val ue:

* Regi ster A Ret urn code

R R I I b I S S b S S S S S S S

The FLAG SET function wakes up a waiting process. The FLAG
SET function is usually called by an interrupt service routine
after servicing an interrupt and determ ning which flag is to be
set.

The operation returns a bool ean indicating whether or not a
successful FLAG SET was perfornmed. A returned val ue of FFH
indicates that a flag over-run has occurred, i.e. the flag was
al ready set when a flag set function was called. A returned
val ue of O indicates success.

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

R R b b S bk b b S b b S b b Sk S R R I I b Sk b b b S S b b b I

* *
* FUNCTI ON 134: MAKE QUEUE *
* *

R R I bk S b b S b S b S b b S b S S R b Sk S b b S S b b b b I

* Entry Paraneters: *
* Register C. 86H *
* DE: QCB Address *
* *

kkhkkkhkkhkhkkhhkkhkhkhkkhhkhkhhkhhkhkkhhkhkhkhkkhhkkhkkhhkhhkkhkkhikkhkhkhk*k

The MAKE QUEUE function sets up a queue control block. A
gueue is configured as either circular or |inked dependi ng upon
t he nessage size. Message sizes of 0 to 2 bytes use circul ar
gqueues whil e nessage sizes of 3 or nore bytes use |inked queues.

A single paraneter is passed to make a queue, the queue
control bl ock address. The queue control block nust contain the
gueue nane, nessage |ength, nunber of nessages, and sufficient
space to acconodate the nessages (and links if the queue is
i nked) .

The queue control block data structures for both circular
and |inked queues are described in section 2.3.

Queues can only be created either in comobn nmenory or by
user programs in non-banked systens. The reason is that queues
are all maintained on a linked Iist which nust be accessible at
all times. |I.E, a queue cannot reside in a nmenory segnent which
is bank switched. However, a queue created in commbn nenory can
be accessed by all system and user prograns.

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 135: OPEN QUEUE *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
* Regi ster C. 87H *
* DE: UQCB Address *
* *
* Ret urned Val ue: *
* Regi ster A Ret urn code *
R I b b b b b b b b b S S kb b S b b b b b b b b b Sk b b b S

The OPEN QUEUE function places the actual queue control
bl ock address into the user queue control block. The result of
this function is that a user program can obtain access to gueues
by knowi ng only the queue nane, the actual address of the queue
itself is obtained as a result of opening the queue. Once a
gueue has been opened, the queue may be read fromor witten to
usi ng the queue read and wite operations.

The function returns a bool ean indicating whether or not
t he open queue operation found the queue to be opened. A
returned value of OFFH indicates failure while a zero indicates
success.

The user queue control block data structure is described in
section 2. 3.

kkhkkkhkkhkhkkhhkkhkhhkkhhkhkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhhkkhkkhhkhkhkhk*k

* *
* FUNCTI ON 136: DELETE QUEUE *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkkhhkhkhkhkhhkhkkhhkhhkkhkkhkkhkhkhk*k

* Entry Paraneters: *
* Regi ster C. 88H *
* DE: (QCB Address *
* *
* Ret urned Val ue: *
* Regi ster A Ret urn Code *
R I b b b b b b b b b S Rk b b b S b b b b b b b b b Sk b b b S

The DELETE QUEUE function renoves the specified queue from
the queue list. A single paraneter is passed to del ete a queue,
the address of the actual queue.

The function returns a bool ean indicating whether or not
t he del ete queue operation deleted the queue. A returned val ue
of OFFH indicates failure, usually because sonme process is DQ ng
fromthe queue. A returned value of 0 indicates success.

67
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 137: READ QUEUE *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
Regi ster C. 89H
DE: UQCB Address

Ret ur ned Val ue:
Message read

*
*
*
*
*
R R I b b S b Sk b b S b S I R I bk S b b b S bk S b S b S b b S

*
*
*
*
*
*

The READ QUEUE function reads a nessage froma specified
gueue. If no nmessage is available at the queue the calling
process relinquishes the processor until a nessage is posted at
t he queue. The single passed paraneter is the address of a user
gqueue control block. Wien a nessage is available at the queue,
it is copied into the buffer pointed to by the MSGADR field of
t he user queue control bl ock

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkhhkkhkhkhkkhhkhkhkhkkhhkhkkhhkhhkkhkkhhkhkhkhk*k

* *
* FUNCTI ON 138: CONDI TI ONAL READ *
* QUEUE *
R R R S b S S S S S R R S b b b b S S S S S S S S
* Entry Paraneters: *
* Register C. 8AH *
* DE: UQCB Address *
* *
* Ret urned Val ue: *
* Regi ster A. Return code *
* message read if avail able *
R R R b b S S S S S S R R S b b b b S b S S S S S S

The CONDI TI ONAL READ QUEUE function reads a nessage from a
specified queue if a nessage is available. The single passed
parameter is the address of a user queue control block. If a
message is available at the queue, it is copied into the buffer
pointed to by the MSGADR field of the user queue control bl ock.

The operation returns a bool ean indicating whether or not a
nmessage was avail able at the queue. A returned val ue of OFFH
i ndi cates no nmessage while a zero indicates that a nessage was
available and that it was copied into the user buffer.

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 139: WRI TE QUEUE *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
* Regi ster C. 8BH *
* DE: UQCB Addr ess *
* Message to be sent *
* *
R R b S b b S S S S R R S S b b b i S S S S I S

The WRI TE QUEUE function wites a nessage to a specified
gueue. If no buffers are available at the queue, the calling
process relinquishes the processor until a buffer is available at
t he queue. The single passed paraneter is the address of a user
gueue control block. Wen a buffer is available at the queue,
the buffer pointed to by the MSGADR field of the user queue
control block is copied into the actual queue.

R R bk S bk b b S b S b S b b S R R I I bk S b b S S b S b b

* *
* FUNCTI ON 140: CONDI TI ONAL WRI TE *
* QUEUE *
* *
P b b b b I b b b b b b S b b b b b I I b b b b b b S b b b I I I I b S b b
* Entry Paraneters: *
* Regi ster C 8CH *
* DE: UQCB Addr ess *
* Message to be sent *
* *
* Ret ur ned Val ue: *
* Regi ster A Ret urn code *
P b 2k b b I b b b b b b S b b b b b I I S b b b b I S b b b I I I I b S I

The CONDI TI ONAL WRI TE QUEUE function wites a nessage to a
specified queue if a buffer is avail able. The single passed
parameter is the address of a user queue control block. If a
buffer is available at the queue, the buffer pointed to by the
MSGADR field of the user queue control block is copied into the
actual queue.

The operation returns a bool ean indicating whether or not a
buffer was avail able at the queue. A returned val ue of OFFH
i ndi cates no buffer while a zero indicates that a buffer was
avai l abl e and that the user buffer was copied into it.

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 141: DELAY *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
* Register C. 8DH *
* DE: Nunmber of Ticks *
* *

R R I bk S b b b S b S b S b b S R R I I b Sk b b b S S b S b b

The DELAY function del ays execution of the calling process
for the specified nunber of systemtinme units. Use of the del ay
operation avoids the typical programed delay |oop. It allows
ot her processes to use the processor while the specified period
of time el apses. The systemtine unit is typically 60 Hz (16. 67
mlliseconds) but may vary according to application. For exanple
it islikely that in Europe it would be 50 Hz (20 mlliseconds).

The delay is specified as a 16-bit integer. Since calling
the del ay procedure is usually asynchronous to the actual tine
base itself, there is up to one tick of uncertainty in the exact
anount of tine delayed. Thus a delay of 10 ticks gaurantees a
delay of at least 10 ticks, but it may be nearly 11 ticks.

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkkhhkhkhkhkhhkhkkhhkhhkkhkkhhkhhkk*k

* *
* FUNCTI ON 142: DI SPATCH *
* *

kkhkkkhkkhkhkkhhkkhkhhkkhhkhkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
* Regi ster C. 8EH *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkkhhkhkhkhkhhkhkkhhkhhkkhkkhkkhkhkhk*k

The DI SPATCH operation allows the operating systemto
determ ne the highest priority ready process and then to give it
the processor. This call is provided in XDOS to all ow systens
W thout interrupts the capability of sharing the processor anong
conmput e bound processes. Since all user processes usually run at
the sane priority, invoking the dispatch operation at various
points in a programw || allow other users to obtain the
processor in a round-robin fashion. Invoking the dispatch
function does not take the calling process off of the ready I|ist.

Di spatch is intended for non-interrupt driven environnents
in which it is desirable to enable a conpute bound process to
relinquish the use of the processor.

Anot her use of the dispatch function is to safely enable
interrupts follow ng the execution of a disable interrupt
instruction (DI)

70
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

R R b b S bk b b S b b S b b Sk S R R I I b Sk b b b S S b b b I

* *
* FUNCTI ON 143: TERM NATE PROCESS *
* *
R I b b b b b b b b b R S b b S b I b b b b b b Sk bk b b b S
* Entry Paraneters: *
* Regi ster C 8FH *
* D Condi ti onal *
* Menory Free *
* E: Term nate Code *
* *
R R R S b S S S R R S S S b b b S S S S S S

The TERM NATE PROCESS function term nates the calling
process. The passed paraneters indi cate whether or not the
process should be termnated if it is a systemprocess and if the
menory segnent is to be released. A OFFH in the E register
i ndi cates that the process should be unconditionally term nated,
a zero indicates that only a user process is to be deleted. If
a user process is being termnated and Register Dis a OFFH, the
menory segnent is not released. Thus a process which is a child
of a parent process both executing in the same nenory segnent
can termnate without freeing the nenory segnent which is also
occupi ed by the parent.

There are no results returned fromthis operation, the
calling process sinply ceases to exist as far as MP/Mis
concer ned.

R R bk S bk S b S b b S b S b b S b R S I b Sk b b b S S b b b b
*
* FUNCTI ON 144: CREATE PROCESS
*

R R b b S b S S b S b S R bk S b S Rk S b S b S b I

*
*
*
*
* Entry Paraneters: *
Regi ster C. 90H *
DE: PD Address *

*

*

*

*

PD filled in

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkkhhkkhkhkhkkihkkhkkhkrkhik*x

*
*
*
* Ret ur ned Val ue:
*
*

The CREATE PROCESS function creates one or nore processes
by pl aci ng the passed process descriptors on the MP/ Mready |ist.

A single paraneter is passed, the address of a process
descriptor. The first field of the process descriptor is a link
field which may point to another process descriptor.

Processes can only be created either in comon nenory or by

71
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
user prograns in non-banked systens. The reason is that
process descriptors are all maintained on linked |ists which
must be accessible at all tines.

The process descriptor data structure is described in
section 2. 3.

kkhkkkhkkhkhkkhhkkhkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkkhkhhkhhkkhkkhhkhkhkhk*k

* *
* FUNCTI ON 145: SET PRIORITY *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkkhkkhhkhkhkkhkkhhkhkhkk*k

* Entry Paraneters: *
* Regi ster C. 91H *
* E: Priority *
* *

R R bk S b S b S b S b S b b S R R I I b Sk b b b S S b S b b

The SET PRICRITY function sets the priority of the calling
process to that of the passed paraneter. This function is useful
in situations where a process needs to have a high priority
during an initialization phase, but after that is to run at a
| ower priority.

A single passed paraneter contains the new process
priority. There are no results returned fromsetting priority.

R R I bk S b b b S b S b S b b S b I I R I b Sk b b S S S Ik

* FUNCTI ON 146: ATTACH CONSOLE *

R R bk S b S b S b S b I b Sk S R R I I b Sk S b b S S b S b

* Entry Paraneters: *
* Regi ster C 92H *
* *

R R I b Sk S b b b S b S b S b S S R R Ik I b Sk S b b S S b S b b

The ATTACH CONSOLE function attaches the consol e specified
in the CONSOLE field of the process descriptor to the calling
process. If the console is already attached to sone ot her
process, the calling process relinquishes the processor until the
console is detached fromthat process and the calling process is
the highest priority process waiting for the console.

There are no passed paraneters and there are no returned
results.

72
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 147: DETACH CONSOLE *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
* Regi ster C. 93H *
* *

kkhkkkhkkhkhkkhhkkhkkhkhkhhkhkkhhkkhhkhkhhkhkhkhkkhhkkhkkhhkhkhkkhkkhhkkhkhkhk*k

The DETACH CONSOLE function detaches the consol e specified
in the CONSOLE field of the process descriptor fromthe calling
process. If the console is not currently attached no action
t akes pl ace.

There are no passed paraneters and there are no returned
results.

R R bk S bk S b S b S b S b b S b I S R I b Sk S b b S S b S b b

* *
* FUNCTI ON 148: SET CONSOLE *
* *
R b b b I S S I b I I S b b b b i i S b b b b i i b b b b I b I b b I b
* Entry Paraneters: *
* Regi ster C. 94H *
* E: Consol e *
* *

kkhkkkhkkhkhkkhhkkhkhkhkkhhkhkhhkkhhkhkkhhkhkhkhkkhhkkhkkhhkhhkkhkkhhkkhkhkhkk

The SET CONSOLE function detaches the currently attached
consol e and then attaches the console specified as a calling
parameter. If the console to be attached is already attached to
anot her process descriptor, the calling process relinquishes the
processor until the console is avail able.

A single passed paraneter contains the console nunber to be
attached. There are no returned results.

73
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 149: ASSI GN CONSOLE *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *

* Register C. 95H *
* DE: APB Address *
* *
* Ret urned Val ue: *
* Regi ster A Ret urn code *
* *

R R bk S b b S b S b bk S R R Sk S bk b b S b b b S b

The ASSI GN CONSOLE function directly assigns the console to
a specified process. This assignnent is done regardl ess of
whet her or not the console is currently attached to sone other
process. A single paraneter is passed to assign console which is
the address of a data structure containing the consol e nunber for
t he assignnent, an 8 character ASCI| process nanme, and a bool ean
i ndi cati ng whether or not a match with the console field of the
process descriptor is required (true or OFFH indicates it is
required).

The operation returns a bool ean indicating whether or not
t he assi gnnent was nade. A returned val ue of OFFH i ndicates
failure to assign the console, either because a process
descriptor with the specified nane could not be found, or that a
mat ch was required and the console field of the process
descriptor did not match the specified console. A returned val ue
of zero indicates a successful assignnent.

74
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 150: SEND CLI COMVAND *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
* Register C. 96H *
* DE: CLI CVD Address *
* *

R R I bk S b b b S b S b S b b S R R I I b Sk b b b S S b S b b

The SEND CLI COVMAND function permts running prograns to
send command lines to the Command Line Interpreter. A single
paraneter is passed which is the address of a data structure
contai ning the default disk/user code, console and conmand |ine
itself (shown bel ow).

The default disk/user code is the first byte of the data
structure. The high order four bits contain the default disk
drive and the | ow order four bits contain the user code. The
second byte of the data structure contains the consol e nunber for
t he program bei ng executed. The ASCI|I command |ine begins with
the third byte and is termnated with a null byte.

There are no results returned to the calling program

The followi ng exanple illustrates the SEND CLI COMVAND dat a
structure:

PL/ M
Decl are CLI $command structure (
di sk$user byte,
consol e byte,
command$l i ne (129) byte);

Assenbl y Language:

CLI CQVD:
DS 1 . default disk / user code
DS 1 : consol e nunber
DS 129 :; command |i ne
75

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 151: CALL RESI DENT *
* SYSTEM PROCEDURE *
P ab 2k b b S b b b b b b S b b b b b I I I b b b b b S b b b I I I I b S b b
* Entry Paraneters: *
* Register C. 97H *
* DE: CPB Address *
* *
* Ret ur ned Val ue: *
* Registers HL: Return code *
gk b b b I S S b b I S S b b b b i I S S b b b i i b b b b b I I b b I S

The CALL RESI DENT SYSTEM PROCEDURE function permts
prograns to call the optional resident system procedures. A
singl e passed paraneter is the address of a call paraneter bl ock
data structure (shown bel ow) which contains the address of an 8
character ASCI| resident system procedure nane foll owed by a two
byte paraneter to be passed to the resident system procedure.

The operation returns a 0001H if the resident system
procedure called is not present, otherwise it returns the code
passed back fromthe resident system procedure. Typically a
returned value of FFH indicates failure while a zero indicates
success.

The follow ng exanple illustrates the call paraneter bl ock
data structure:

PL/ M
Decl are CALL$PB structure (
Name$adr address,
Param address) initial (
. nane, 0) ;

Declare nanme (8) byte initial (
" Procl BDE

Assenbl y Language:

CALLPB

DW NANME

DW 0 ; paraneter
NAIVE:

DB ‘ Procl ‘

76
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 152: PARSE FI LENAME *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
Regi ster C. 98H
DE: PFCB Address

Regi sters HL: Return code
Parsed file control block

* *
* *
* *
* Returned Val ue: *
* *
* *
R R R b b S S S S S S R R S b b b b S b S S S S S S

The PARSE FI LENAME function prepares a file control block
froman input ASCII string containing a file name term nated by a
null or a carriage return. The paraneter is the address of a
data structure (shown bel ow) which contains the address of the
ASCII file nane string followed by the address of the target file
control bl ock

The operation returns an FFFFH if the input ASCII string
contains an invalid file nane. A zero is returned if the ASClI
string contains a single valid file nane, otherw se the address
of the first character following the file name is returned.

The follow ng exanple illustrates the parse file nane
control block data structure:

PL/ M
Decl are Par seFNCB structure (
Fi | e$nane$adr address,
FCB$adr address) initial (
.filegnane,.fcb);

Declare file$name (128) byte;
Declare fcb (36) byte;

Assenbl y Language:

PFENCB
DwW FLNAME
DW FCB
FLNAME:
DS 128
DS 36

77
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 153: GET CONSOLE NUMBER *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
* Regi ster C. 99H *
* *
* Returned Val ue: *
* Regi ster A Consol e Nunber *
R R b S b b S S S S R R S S b b b i S S S S I S

The GET CONSOLE NUMBER function obtains the value of the
console field fromthe process descriptor of the calling program
There are no passed paraneters and the returned result is the
consol e nunber of the calling process.

kkhkkkhkkhkhkkhhkkhkhhkkhhkhkhhkhhkhkkhhkhkhkhkhhkhkkhhkhhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 154: SYSTEM DATA ADDRESS *
* *

kkhkkkhkkhkhkkhhkkhkhhkkhhkhkkhhkhhkhkhhkhkhkhkkhhkhkkhhkhhkhkkhhkhkhkhk*k

* Entry Paraneters: *
* Regi ster C. 9AH *
* *
* Ret ur ned Val ue: *
* Registers HL: System Data Page *
* Addr ess *
R I b b b b b b b b b S S b b b b b b b b b b b b b b Sk b b b S

The SYSTEM DATA ADDRESS function obtains the base address
of the system data page. The system data page resides in the top
256 bytes of avail able nenory. It contains configuration
i nformation used by the MP/ M| oader as well as run tine data
including the submt flags. The contents of the system data page
are described in section 3.4 under SYSTEM DATA.

There are no passed paraneters and the returned result is
t he base address of the system data page.

78
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

kkhkkkhkkhkhkkhhkkhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhkhkkhhkhkkhhkhkhkkhkkhhkhkhkk*k

* *
* FUNCTI ON 155: GET DATE AND TI ME *
* *

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkkhkkhhkkhkkhhkhkhkhk*k

* Entry Paraneters: *
* Regi ster C. 9BH *
* DE: TOD Address *
* *
* Ret ur ned Val ue: *
* Time and date *
gk b b b I S S b b I S S b b b b i I S S b b b i i b b b b b I I b b I S

The GET DATE AND TI ME function obtains the current encoded
date and tinme. A single passed paraneter is the address of a
data structure (shown below) which is to contain the date and
time. The date is represented as a 16-bit integer with day 1
corresponding to January 1, 1978. The time is respresented as
three bytes: hours, mnutes and seconds stored as two BCD
digits.

The follow ng exanple illustrates the TOD data structure:
PL/ M

Declare TOD structure (
dat e address,

hour byte,

m n byte,

sec byte);

Assenbl y Language:

TOD: DS 2 ; Date
DS 1 ; Hour
DS 1 ; Mnute
DS 1 ; Second

R R I b b S b b b S b S b S b b S b I S R b Sk b b S S b S b b
*

* FUNCTI ON 156: RETURN PROCESS
* DESCRI PTOR ADDRESS

*
*
*
R I b b b b b b b b b S Rk b b b S b b b b b b b b b Sk b b b S
* Entry Paraneters: *
Regi st er C 9CH *
*
*
*
*
*

*
*
* Ret urned Val ue:

* Register HL: PD Address
*

*

kkhkkkhkkhkhkkhhkkhkhkhkkhhkhkhhkhhkhkkhhkhhkhkkihkkhkhkhkkhhikkhkkhkhkhk*x

The RETURN PROCESS DESCRI PTOR ADDRESS function obtains
the address of calling processes process descriptor. By
definition this is the head of the ready Ilist.

79
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

R R b b S bk b b S b b S b b Sk S R R I I b Sk b b b S S b b b I

* *
* FUNCTI ON 157: ABORT SPECI FI ED *
* PROCESS *
R b b b I S S I b I I S b b b b i I S S b b b i i b b b b b b I b b I b
* Entry Paraneters: *
* Regi ster C. 9DH *
* Regi ster DE: APB Address *
* *
* Ret ur ned Val ue: *
* Regi ster A Ret urn Code *
P b 2k b I b b b b b b b S b b b b b b I S b b b b b S b b b I I I b S I

The ABORT SPECI FI ED PROCESS function permts a process
to term nate another specified process. The passed paraneter is
t he address of an Abort Paraneter Bl ock (ABTPB) which
contains the follow ng data structure:

PL/ M
Decl are Abort$paranter$ bl ock structure (
pdadr address,
t erm nati on$code address,
nanme (8) byte,
consol e byte);

Assenbl y Language:

APB:
DS 2 ; process desci ptor address
DS 2 ; term nation code
DS 8 ; process nane
DS 1 ; consol e used by process

| f the process descriptor address is known it can be
filled in and the process nane and consol e can be omtted.
O herwi se the process descriptor address field should be a zero
and the process name and consol e nust be specified. In either
case the term nation code nust be supplied which is the
par anmet er passed to FUNCTI ON 143: TERM NATE PROCESS.

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
2.5 Preparation of Page Rel ocatabl e Prograns

A page relocatable programis stored on diskette as a file
of type 'PRL’. Appendix K contains a PRL file specification
describing the file format. A page relocatable programis
prepared by assenbling the source programtw ce, in which the
second assenbly has 100H added to each ORG statenent. The two
hex files generated by assenbling the source file twice are
concatenated with PIP and then provided as input to the GENMOD
program The GNMOD program (described in section 1.4) produces
afile of type 'PRL’.

This section describes APPENDI X G Sanpl e Page Rel ocat abl e
Program The exanple programillustrates the required use of ORG
statenents to access the BDOS and the default file control bl ock.
Note that the initial ORGis OOOOH |Its purpose is to establish
the equate for the synbol BASE, the base of the rel ocatable
segnent. Next an ORG 100H st atenent establishes the actual
begi nni ng of code for the program During the second assenbly
these two ORG statenents are changed to 100H and 200H
respectively. Note that the first assenbly will generate a file
whi ch can be LOADed to produce an executable 'COM file. In
fact, it is desirable to first debug the programas a 'COM file
and then proceed to nmake the 'PRL'" file.

It is VERY inportant to use BASE to offset all nmenory
segnent base page references. Do not nmake a call to absol ute
0O005H for BDOS calls. In this exanple BASE is used to offset the
BDOS, FCB, and BUFF equates. Wen a user program needs to
determne the top of its nenory segnent the foll ow ng equate and
code sequence shoul d be used:

MEMSI ZE EQU BASE+6

LHLD MEMSI ZE ; HL = TOP OF MEMORY SEGVENT

The foll owi ng steps show how to generate a page relocatable file
for this exanple using the Digital Research Macro Assenbl er
(MAC) :

* Prepare the user program DUMP.ASMin this exanple, with
proper origin statenments as described above.

* Assum ng a systemdisk in drive AA and the DUWP. ASM fil e
is on drive B:, enter the conmmands-

1A>MAC B: DUMP $PP+S
rassenble and list the DUMP. ASM fil e
1A>ERA B: DUMP. HXO

8l
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

file

1A>REN B: DUWMP. HXO=B: DUMP. HEX
1A>MAC B: DUWP $PZSZ+R
;assenble the DUMP. ASM fil e again, offset by 100H
;the offset is generated with the +R MAC option
1A>PI P B: DUVP. HEX=B: DUMP. HXO, B: DUMP. HEX
;concatenate the HEX files
1A>GENMOD B: DUVP. HEX B: DUWP. PRL
;generate the rel ocatable DUWMP. PRL file

The followi ng steps show how to generate a page rel ocatabl e
for this-exanple using the Digital Research Assenbler (ASM:

* Prepare the user program DUMP.ASMin this exanple, with
proper origin statenents as described above.

* Assum ng a systemdisk in drive AA and the DUWP. ASM fil e
is on drive B:, enter the commands-

1A>ASM B: DUWP

assenble the DUMP. ASM fil e
1A>ERA B: DUVP. HXO
1A>REN B: DUMP. HXO, - B: DUMP. HEX
| A>PI P LST: =B: DUVP. PRN[T8]
1A>ERA B: DUMP. PRN

* Edit the DUVWP. ASM file, adding 100H to each ORG statenent.
This can be done by concatenating a preanble to the
program which contains the two initial ORG statenents.

A submit file to performthis function, naned ASMPRL. SUB
is provided on the distribution diskette.

1A>ASM B: DUMP. BBZ
;assenmble the DUVW. ASM file a second tine
1A>PI P B: DUMP. HEX=B: DUVP. HXO, B: DUMP. HEX
;concatenate the HEX fil es
1A>GENMOD B: DUMP. HEX B: DUMP. PRL
;generate the rel ocatable DUWP. PRL file

82

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
2.6 Install ati on of Resident System Processes

This section contains a description of APPENDI X H. Sanpl e
Resi dent System Process. The exanple programillustrates the
required structure of a resident system process as well as the
BDOS/ XDOS access nmechani sm

The first two bytes of a resident system process are set to
t he address of the BDOS/ XDOS entry point. The address is filled
in by the | oader, providing a sinple nmeans for a resident system
process to access the BDOS/ XDOS by | oading HL fromthe base of
the program area and then executing a PCHL instruction.

The process descriptor for the resident system process nust
i medi ately follow the first two bytes which contain the address
of the BDOS/ XDOS entry point. Cbserve the manner in which the
process descriptor is initialized in the exanple. The DS s are
used where storage is sinply allocated. The DB's and DWs are
used where data in the process descriptor nust be initialized.
Note that the stack pointer field of the process descri ptor
points to the address imrediately foll owi ng the stack allocation.
This is the return address which is the actual process entry
poi nt .

It is inportant that the HEX file generated by assenbling
the RSP span the entire program and data area. For this reason
the first two bytes of the resident system process which wll
contain the address of the BDOS/ XDOS entry point are defined with
a DW Using a DS woul d not generate any HEX file code for those
two bytes. The end of the program and data area nust be defined
in alikew se manner. If your RSP has DS statenments preceding
the END statenent it will be necessary to place a DB stat nment
after the DS statenents before the END statenent.

The steps to produce a resident system process closely
follow those illustrated in the previous section on page
rel ocatabl e prograns. The only exception to the procedure is
that the GENMOD output file should have a type of 'RSP' rather
than 'PRL' and the code in the RSP is ORGed at OOCH rat her than
100H.

In addition to resident system processes MP/ M supports
resi dent system procedures. The purpose of a resident system
procedure is to provide a neans to use a piece of code as a
serially reusable resource. A resident system procedure is set
up by a resident system process. The function of the process is
to create a queue which has the nane of the resident system
procedure and to send it one 16 bit nessage containing the
address of the resident system procedure. Once this is
acconpl i shed the resident system process termnates itself.
Access to the resident system procedure is made by opening the
queue with the resident system procedure nane and then reading
the two byte nmessage to obtain the actual nenory address of the

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

procedure itself. Since there is only one nessage posted at the
gqueue, only one process will gain access to the procedure at a
time. When the process executing the resident system procedure

| eaves the procedure it sends the two byte nessage containing the
procedure address back to the queue. This action enables the

next waiting process to use the resident system procedure.

Wen the MP/ M system generation programis executed it
searches the directory for all files with the type 'RSP'. The
user is then pronpted with the file nanme and asked if it should
be included in the generated systemfile.

84
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
3. MP/ M ALTERATI ON GUI DE
3.1 Introduction

The standard MP/ M system assunes operation on an Intel
MDS- 800 m croconput er devel opnment system but is designed so that
the user can alter a specific set of subroutines which define the
har dware operating environnment. In this way, the user can
produce a diskette which operates with any | BM 3741 format
conpati bl e di skette subsystem and ot her peripheral devices.

Al t hough standard MP/Mis configured for single density
fl oppy disks, field-alteration features allow adaptation to a
w de variety of disk subsystens fromsingle drive m nidisks
t hrough hi gh-capacity "hard di sk" systens.

In order to achi eve devi ce i ndependence, MP/Mis distinctly
separated into an XI OGS nodul e which is hardware environnent
dependent and several other nodul es which are not dependent upon
t he hardware configuration.

The user can rewite the distribution version of the MP/M
XICS to provide a new XIOS which provides a custonm zed interface
bet ween-the remai ni ng MP/ M nodul es and the user's own hardware
system The user can also rewite-the distribution version of
the LDRBI OS which is used to | oad the MP/ M system from di sk.

The purpose of this section is to provide the foll ow ng
st ep- by-step procedure for witing both your LDRBI OS and new Xl OS
for MP/ M

(1) | mpl ement CP/M 2.0 on the target conputer

To sinplify the MP/ M adapt ati on process, we assunme (and
STRONGLY recommend) that CP/M 2.0 has al ready been inplenented on
the target MP/ M machine. If this is not the case it wll be
necessary for the user to inplenent the CP/M2.0 BIOS as
described in the Digital Research docunent titled "CP/M 2.0
Alteration Guide" in addition to the MP/ M XIOS. The reason that
both the BIOS and XIOS have to be inplenented is that the MP/ M
| oader uses the CP/M 2.0 BICS to |oad and relocate MP/ M Once
| oaded, MP/M uses the XIOS and not the BIOCS. The CP/M 2.0 BIOS
used by the MP/ Ml oader is called the LDRBICS.

Anot her good reason for inplenmenting CP/M 2.0 on the target
MP/ M machine is that debugging your XIOS is greatly sinplified by
bringing up MM/ Mwhile running SID or DDT under a CP/M 2.0
system

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
(2) Prepare your custom MPMLDR by witing a LDRBICS

Study the BIOCS given in the "CP/M 2.0 Alteration Guide" and
wite a version which has a ORG of 1700H. Call this new BI OS by
the nane LDRBIOS (|l oader BIOS). Inplenent only the primtive
di sk read operations on a single drive, and consol e out put
functi ons.

The first LDRBICOS call nade by the MPMLDR i s SELDSK:, sel ect
disk. If there are devices which require initialization a cal
to the LDRBIOS cold start or other initialization code should be
pl aced at the beginning of the SELDSK handl er.

Not e: The MPMLDR uses 4000H - 6FFFH as a buffer area when
| oadi ng and relocating the MPM SYS file.

Test LDRBIOS conpletely to ensure that it properly perforns
consol e character output and di sk reads. Be especially careful
to ensure that no disk wite operations occur accidently during
read operations, and check that the proper track and sectors are
addressed on all reads. Failure to nmake these checks may cause
destruction of the initialized MP/ M systemafter it is patched.

The follow ng steps can be used to integrate a custom
LDRBI OGS into the MPMLDR. COM

A.) CObtain access to CP/Mversion 1.4 or 2.0 and prepare
the LDRBI OS. HEX file.

B.) Read the MPMLDR.COMfile into nenory using either DDT
or SID.

A>DDT MPMLDR. COM
DDT VERS 2.0
NEXT PC

1A00 0100

C.) Using the input conmand (‘1') specify that the
LDRBI OS. HEX file is to be read in and then read ("R) in the
file. The effect of this operation is to overlay the BIOS
portion of the MP/ M I oader.

-1 LDRBI OS. HEX
-R

NEXT PC

1A00 0000

D.) Return to the CP/M console command processor (CCP) by
executing a junp to | ocation zero.

-0

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

E.) Wite the updated nenory image onto a disk file using
the CP/M'SAVE command. The 'X placed in front of the file
name is used sinply to designate an experinental version,
preserving the original.

A>SAVE 26 XMPMLDR. COM
F.) Test XMPMLDR COM and then renane it to MPMLDR COM
(3) Prepare your custom Xl GS

If MP/Mis being tailored to your conputer systemfor the
first tinme, the new XIOS requires sone relatively sinple software
devel opnent and testing. The standard XIOS is |isted in APPENDI X
|, and can be used as a nodel for the custonm zed package.

The XICS entry points, including both basic and extended,
are described in sections 3.2 and 3.3. These sections along with
APPENDI X | provides you with the necessary information to wite
your XIOS. W suggest that your initial inplenentation of an
XICS utilize polled 1/O wi thout any interrupts. The systemwil|
run without even a clock interrupt. The origin of your Xl OGS
shoul d be OOOCH. Note the two equates needed to access the
di spatcher and XDOS fromthe Xl CS:

ORG OOOCH
PDI SP EQU $-3
XDOS EQU PDI SP-3

The procedure to prepare an XIOCS. SPR file from your
custom zed XICS is as foll ows:

A.) Assenbl e your Xl GOS. ASM and then renane the Xl OS. HEX
file to Xl OS. HXO

B.) Assenble your Xl OS. ASM agai n specifying the +R option
whi ch of fsets the ORG statenents by 100H bytes. O, edit your
Xl OS. ASM and change the initial ORG OOOH to an ORG 100H and
assenbl e it again.
C.) Use PIP to concatenate your two HEX files:

A>PI P XI OS. HEX=XI OS. HXO, Xl CS. HEX

D.) Run the GENMOD programto produce the XICS. SPR file
fromthe concatenated HEX files.

A>GENMOD Xl OS. HEX XI OS. SPR

87
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
* % % \Mr nl ng * % %

Make certain that your XICS.ASM file contains A defined
byte of zero at the end. This is especially critical if your
XICS.ASM file ends with a defined storage. The reason for this
requirenent is that there are no HEX file records produced for
defined store (DS) statenments. Thus, the output HEX file is
m sl eadi ng because it does not identify the true | ength of
your XIOS. The followi ng exanple illustrates a properly
term nated Xl CS:

begdat equ $
di r buf : ds 128

al vo: ds 31

CSVO: ds 16
db 0 force out hex record at end
end

Note that this sanme techni que nust be applied to any
other PRL or RSP prograns that you prepare.

(4) Debug your Xl GCS

An XICS or a resident system process can be debugged using
DDT or SID running under CP/M 1.4 or 2.0. The debuggi ng
technique is outlined in the foll owm ng steps:

A.) Determ ne the anount of nenory which is available to
MP/Mwith the debugger and the CP/ M operating systemresident.
This can be done by | oading the debugger and then listing the
junp instruction at |ocation O005H This junp is to the base of
t he debugger.

A>DDT
DDT VERS 2.0

-L5
0005 JWMP D800
B.) Using GENSYS runni ng under CP/M generate a MPM SYS

file which specifies the top of nenory determ ned by the previous
step, allowi ng at |east 256 bytes for a patch area.

fbb page of nmenory = D6

Al so whil e executing GENSYS specify the breakpoint restart
nunber as that used by the CP/M SID or DDT which you will be
executing. This restart is usually #7.

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
Br eakpoi nt RST # = 7
C.) |If a resident system process is being debugged make

certain that it is selected for inclusion in MPM SYS.

D.) Using CP/PM1.4 or 2.0, load the MPMLDR COMfile into
menory.

A>DDT MPMLDR. COM
DDOT VERS 2.0

NEXT PC
| ACO 0100
E.) Place a ‘B character into the second position of
default FCB. This operation can be done with the 'I’ comand:
-1B

F.) Execute the MPMLDR COM program by entering a ‘G
command:

-G

G) At point the MP/ M| oader will |oad the MP/ M operating
systeminto nenory, displaying a nmenory nap.

H) If you are debugging an XIGS, note the address of the
Xl CS. SPR nmenory segnent. |If you are debugging a resident system
process, note the address of the resident system process. Thi s
address is the relative OOOOH address of the code bei ng debugged.
You nust al so note the address of SYSTEM DAT.

|.) Using the 'S command, set the byte at SYSTEM DAT + 2
to the restart nunber which you want the MP/ M debugger to use.
Do not select the sane restart as that being used by the CP/ M
debugger.

Néﬁnry Segnent Tabl e:
SYSTEM DAT D600H 0100H
- SD602
D602 07 05
J.) Using the ‘X comuand, determ ne the MP/ M begi nni ng
execution address. The address is the first |ocation past the

current program counter.

-X

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
P = OA93 .

K.) Begin execution of MP/Musing the ‘G conmand,
speci fyi ng any breakpoints which you need in your code. Actual
menory address can be determ ned using the '"H command to add the
code segnent base address given in the nenory map to the relative
di spl acenent address in your XIOS or resident system process
listing,

The foll ow ng exanpl e shows how to set a breakpoint to
debug an XIOS |ist subroutine given the nmenory nap:

XIOS SPR CDOOH 0500H
- GA94, CDOF

L.) At this point you have MP/Mrunning with CP/Mand its
debugger also in nmenory. Since interrupts are |left enabl ed
during operation of the CP/M debugger, care nust be taken to
ensure that interrupt driven code does not execute through a
poi nt at which you have broken.

Since the CP/ M debugger operates with interrupts |eft
enabled it is a somewhat difficult task to debug an interrupt
driven consol e handler. This problem can be approached by
| eavi ng console #0 in a polled node whil e debuggi ng the other
consoles in an interrupt driven node. Once this is done very
little, if any, debugging would be required to adapt the
interrupt driven code from another console to console #0. It is
further reconmended that you maintain a debug version of your
Xl OGS which has polled I/O for console #0. O herwise it wll not
be possible to run the CP/ M debugger underneath the MP/ M system
because the CP/ M debugger will not be able to get any consol e
input, as it will all go to the MP/Minterrupt driven console #0
handl er .

(5 Directly booting VP Mfroma cold start

In systens where MP/ Mis to be booted directly at cold

start rather than | oaded and run as a transient program under
CP/M the custom zed MPMLDR.COM file and cold start |oader can be
pl aced on the first two tracks of a diskette. If a CP/M
SYSCGEN. COM program i s available it can be used to wite the
MPMLDR. COM file on the first two tracks. If a SYSGEN. COM program
is not available, or if SYSGEN.COMw || not work because a
different nedia such as a mni-diskette or "hard" disk is to be
used, the user nmust wite a sinple nenory | oader, called GETSYS,
whi ch brings the MP/ M| oader into nmenory and a program cal | ed
PUTSYS, which places the MPMLDR on the first two tracks of a

di skette.

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

Either the SID or DDT debugger can be used in place of
witing a GETSYS programas is shown in the foll om ng exanpl e
whi ch al so uses SYSGEN i n place of PUTSYS. Sanple skel et al
CETSYS and PUTSYS prograns are described later in this section
(for a nore detail ed description of GETSYS and PUTSYS see the
"CP/M 2.0 Alteration Cuide").

In order to nmake the MP/ M system | oad and run
automatically, the user nust also supply a cold start | oader,
simlar to the one described in the "CP/M 2.0 Alteration Cuide".
The purpose of the cold start |oader is to | oad the MP/ M| oader
into nenory fromthe first two tracks of the diskette. The CP/M
2.0 cold start |oader nmust be nodified in the foll ow ng manner:
the | oad address nust be changed to 0100H and t he execution
address nust al so be changed to 0100H.

The foll ow ng techni ques are specifically for the MDS-800
whi ch has a boot ROMthat |oads the first track into |ocation
3000H. However, the steps shown can be applied in general to any
har dwar e.

| f a SYSGEN programis available, the follow ng steps can
be used to prepare a diskette that cold starts MP/ M

A.) Prepare the VPMLDR COMfile by integrating your custom
LDRBIOS as described earlier in this section. Test the
MPMLDR. COM and verify that it operates properly.

B.) Execute either DDT or SID.

A>DDT
DDOT VERS 2.0

C.) Using the input conmand ('1') specify that the
MPMLDR. COM file is to be read in and then read ("R) in the file
with an of fset of 880H bytes.

- | MPMLDR. COM
- R880

NEXT PC

2480 0100

D.) Using the '"I' conmmand specify that the BOOT. HEX file
is to be read in and then read in the file with an offset that
will load the boot into nenory at 900H. The 'H conmand can be
used to calculate the offset.

- H900 3000
3900 D900

- 1 BOOT. HEX
- RD900
NEXT PC

91
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

2480 0000

E.) Return to the CP/M console command processor (CCP) by
junping to | ocation zero.

-0

F.) Use the SYSGEN programto wite the new cold start
| oader onto the first two tracks of the diskette.

A>SYSGEN

SYSGEN VER 2.0

SOURCE DRI VE NAME (OR RETURN TO SKI P) <cr >
DESTI NATI ON DRI VE NAME (OR RETURN TO REBOOT) B
DESTI NATI ON ON B, THEN TYPE RETURN<cr >

FUNCTI ON COVPLETE

| f a SYSGEN programis not available then the foll ow ng steps can
be used to prepare a diskette that cold starts MP/ M

A) Wite a GETSYS program which reads the custom
MPMLDR. COM file with | ocation 3380H and the cold start | oader (or
boot program into |ocation 3300H Code GETSYS so that it starts
at | ocation 100H (base of the TPA).

As in the previous exanple, note that SID or DDT can be
used to performthis function instead of witing a GETSYS
program

Run the GETSYS programusing an initialized MP/M
di skette to see if GETSYS | oads the MP/ M | oader starting at 3380H
(the operating systemactually starts 128 bytes |ater at 3400H).

C.) Wite the PUTSYS program which wites nenory starting
at 3380H back onto the first two tracks of the diskette. The
PUTSYS program shoul d be | ocated at 200H.

D.) Test the PUTSYS programusing a blank uninitialized
di skette by witing a portion of nmenory to the first two tracks;
clear nmenory and read it back. Test PUTSYS conpl etely, since
this programw ||l be used to alter the MP/ M system di skette.

E.) Use PUTSYS to place the MP/ M| oader and cold start
| oader onto the first two tracks of a blank di skette.

SAMPLE PUTSYS PROGRAM
The foll owi ng program provides a framework for the PUTSYS

program The WRI TESEC subroutine nust be inserted by the user to
wite the specific sectors.

92
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

PUTSYS PROGRAM - WRI TE TRACKS 0 AND 1 FROM MEMORY AT 3380M

. REG STER USE
: A (SCRATCH REG STER)
: B TRACK COUNT (0, 1)
: C SECTOR COUNT (1,2,. . . .,26)
; DE (SCRATCH REG STER PAIR)
: HL LOAD ADDRESS
: SP SET TO STACK ADDRESS
START:
LXI SP, 3380M . SET STACK PO NTER TO SCRATCH AREA
LXI H 3380M . SET BASE LOAD ADDRESS
M/i B, 0 . START W TH TRACK 0
WRTRK: - WRI TE NEXT TRACK (I NI TIALLY 0)
M/i C 1 . WRl TE STARTI NG W TH SECTOR |
WRSEC:; - WRI TE NEXT SECTOR
CALL WRI TESEC . USER- SUPPLI ED SUBROUTI NE
LXI D, 128 . MOVE LOAD ADDRESS TO NEXT 1/2 PAGE
DAD D "HL = HL + 128
I NR C . SECTOR = SECTOR + 1
MOV A, C © CHECK FOR END OF TRACK
CPI 27
JC WRSEC . CARRY GENERATED | F SECTOR < 27
. ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
| NR B
MOV A B . TEST FOR LAST TRACK
CPI 2
JC WRTRK . CARRY GENERATED | F TRACK < 2

; ARRI'VE HERE AT END OF LOAD, HALT FOR NOW

HLT

; USER- SUPPLI ED SUBROUTI NE TO WRI TE THE DI SK

V\RI TESEC:

; ENTER WTH TRACK NUMBER | N REG STER 8,
; SECTOR NUMBER I'N REQ STER C, AND
; ADDRESS TO FILL IN H-

PUSH
PUSH

B ; SAVE B AND C REG STERS
H ; SAVE HL REQ STERS

performdisk wite at this point, branch to

| abel START if an error occurs

' oop
POP
RET

END

H,REERHL
B ; RECOVER B AND C REQ STERS
; BACH TO MAI N PROGRAM

START

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
Dl G TAL RESEARCH COPYRI GHT

Read your MP/ M Licensing Agreenent; it specifies your |egal
responsi bilities when copying the M/ Msystem Place the
copyright notice

Copyright (c), 1980
Digital Research

on each copy which is nmade of your custom zed MP/ M di skette.
DI SKETTE ORGANI ZATI ON

The sector allocation for the standard distribution version
of MP/Mis given here for reference purposes. The first sector
(see table on the foll ow ng page) contains an optional software
boot section. Disk controllers are often set up to bring track
0, sector 1 into nenory at a specific location (often |ocation
OO0OOH). The programin this sector, called BOOI, has the
responsi bility of bringing the remaining sectors into nenory
starting at |location O100H |If your controller does not have a
built-in sector |oad, you can ignore the programin track O,
sector 1, and begin the load fromtrack O sector 2 to | ocation
0100H.

As an exanple, the Intel MDS-800 hardware cold start | oader
brings track 0, sector 1 into absol ute address 3000H. Upon
| oading this sector, control transfers to | ocation 3000H, where
t he bootstrap operati on comrences by | oadi ng the remai nder of
track 0, and all of track 1 into nenory, starting at 0100H. The
user should note that this bootstrap |oader is of little use in a
non- MDS environnment, although it is useful to examne it since
sonme of the boot actions will have to be duplicated in your cold
start | oader.

94
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

Tr ack# Sector# Page# Menory Address MP/ M Modul e nane
00 01 (boot address) Cold Start Loader
00 02 00 0100H MPMLDR
00 03 00 0180H “

00 04 01 0200H “

00 05 01 0280H “

00 06 02 0300H “

00 07 02 0380H “

00 08 03 0400H “

00 09 03 0480H “

00 10 04 0500H “

00 11 04 0580H “

00 12 05 0600H “

00 13 05 0680H “

00 14 06 0700H “

00 15 06 0780H “

00 16 07 0800H “

00 17 07 0880H “

00 18 08 0900H “

00 19 08 0980H “

00 20 09 OAOCH “

00 21 09 OQA80H “

00 22 10 OBOCH “

00 23 10 OB80OH “

00 24 11 OCOH “

00 25 11 OC80H MPMLDR
00 26 12 ODOCH LDRBDOS
01 01 12 OD80OH “

01 02 13 OEOOH “

01 03 13 OE8OH “

01 04 14 OFOCH “

01 05 14 OF80H “

01 06 I 5 1000H “

01 07 15 1080H “

01 08 16 1100H “

01 09 16 1180H “

01 10 17 1200H “

01 11 17 1280H “

01 12 18 1300H “

01 13 18 1380H “

01 14 19 1400H “

01 15 19 1480H “

01 16 20 1500H “

01 17 20 1580H “

01 18 21 1600H “

01 19 21 1680H L DRBDOS
01 20 22 1700H LDRBI OGS
01 21 22 1780H “

01 22 23 1800H “

01 23 23 1880H “

01 24 24 1900H “

01 25 24 1980H “

01 26 25 | ACOH LDRBI OGS

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
3.2 Basic I/O System Entry Points

The entry points into the BIOS fromthe cold start | oader
and BDOS are detailed below Entry to the BIOS is through a
"junp vector" |ocated at the base of the BICS, as shown bel ow
(see Appendix | as well). The junp vector is a sequence of-17
junp instructions which send programcontrol to the individual
Bl OS subroutines. The BI OS subroutines may be enpty for certain
functions (i.e., they may contain a single RET operation) during
regeneration of MP/ M but the entries nust be present in the junp
vector. The extended 1/0O systementry points (XIOS) i mredi ately
follow the last BICS entry point.

The junp vector takes the form shown bel ow, where the
i ndi vidual junp addresses are given to the left:

Bl G5+O0H JMP BOOT ; COLD START

Bl OS+03H JMP WBOOT ; WARM START

Bl O5+06H JMP CONST ; CHECK FOR CONSOLE CHAR READY
Bl OS+09H JWMP CONI N ; READ CONSOLE CHARACTER I N

Bl O5+OCH JMP CONOUT ; WRI TE CONSOLE CHARACTER OUT
BI OS+OFH JMP LI ST ; WRI TE LI STI NG CHARACTER OUT
Bl O5+12H JMP PUNCH ; WRI TE CHARACTER TO PUNCH DEVI CE
Bl OS5+15H JMP READER ; READ READER DEVI CE

Bl O5+18H JMP HOVE ; MOVE TO TRACK 00

Bl OS+| BH JMP' SELDSK ; SELECT DI SK DRI VE

Bl OGS+l EH JMP SETTRK ; SET TRACK NUMBER

Bl O5+21H JMP SETSEC ; SET SECTOR NUMBER

Bl O5+24H JMP SETDVA ; SET DVA ADDRESS

Bl O5+27H JMP READ ; READ SELECTED SECTOR

Bl O5+2AH JMP VRI TE ; WRI TE SELECTED SECTOR

Bl O5+2DH JMP LI STST ; RETURN LI ST STATUS

Bl O5+30H JMP SECTRAN ; SECTOR TRANSLATE SUBROUTI NE

Each junp address corresponds to a particul ar subroutine
whi ch perfornms the specific function, as outlined bel ow. There
are three major divisions in the junp table: the system
(re)initialization which results fromcalls on BOOT and WBOOT, '
sinple character |1/0O perforned by calls on CONST, CONI N, CONOUT,
LI ST, and LI STST, and diskette |I/O perfornmed by calls on HOVE,
SELDSK, SETTRK, SETSEC, SETDVA, READ, WRI TE, and SECTRAN

Al'l sinple character 1/0O operations are assuned to be
performed in ASCI |, upper and | ower case, with high order (parity
bit) set to zero. An end-of-file condition for an input device
is given by an ASCIl control-z (1AH). Peripheral devices are
seen by MP/M as "logical" devices, and are assigned to physica
devices within the BICS.

In order to operate, the BDOS needs only the CONST, CONI N

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

and CONOUT subroutines (LIST and LSTST may be used by PIP, but
not the BDOS)

The characteristics of each device are

CONSOLE The principal interactive consol es which
communi cate with the operators, accessed through
CONST, CONIN, and CONQUT. Typically, CONSOLEs are
devi ces such as CRTs or Tel etypes.

LI ST The principal listing device, if it exists on your
system which is usually a hard-copy device, such
as a printer or Teletype.

DI SK Disk 1/Ois always performed through a sequence of
calls on the wvarious disk access subroutines
whi ch set up the di sk nunber to access, the track
and sector on a particular disk, and the direct
menory access (DMA) address involved in the 1/0
operation. After all these paraneters have been
set up, a call is nmade to the READ or WRI TE
function to performthe actual 1/0O operation
Note that there is often a single call to SELDSK
to select a disk drive, followed by a nunber of
read or wite operations to the sel ected disk
before sel ecting another drive for subsequent
operations. Simlarly, there my be a single
call to set the DVA address, followed by several
calls which read or wite fromthe sel ected DVA
address before the DVA address is changed. The
track and sector subroutines are always called
before the READ or WRI TE operations are
per f or med.

Note that the READ and WRI TE routi nes
Shoul d perform several retries (10 is standard)
before reporting the error condition to the BDCS.
If the error condition is returned to the BDOS
it will report the error to the user. The HOVE
subroutine may or may not actually performthe
track 00 seek, dependi ng upon your controller
characteristics; the inportant point is that
track 00 has been selected for the next
operation, and is often treated in exactly the
same manner as SETTRK with a paraneter of 00.

The exact responsibilities of each entry point subroutine are given
bel ow:

BOOT The BOOT entry point gets called fromthe MP/ M
| oader after it has been | oaded by the cold start

97
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

V\BOOT

CONST

CONI'N

LI ST

PUNCH

READER

| oader and is responsible for basic system
initialization. Note that under MP/Ma return
nmust be nmade from BOOT to conti nue execution of
t he MP/ M | oader.

The WBOOT entry point perforns a BDOS system
reset, termnating the calling process.

Sanpl e the status of the consol e device specified
by register D and return OFFE in register Aif a
character is ready to read, or OOH in register A

if no console characters are ready.

Read the next character fromthe consol e device
specified by register Dinto register A and set
the parity bit (high order bit) to zero. If no
consol e character is ready, wait until a
character is typed before returning.

Send the character fromregister Cto the console
out put device specified by register D. The
character is in ASCI1, with high order parity bit
set to zero. You may want to include a delay on
a line feed or carriage return, if your console
devi ce requires sone tine interval at the end of
the line (such as a Tl Silent 700 termnal). You
can, if you wish, filter out control characters
whi ch cause your console device to react in a
strange way (a control -z causes the Lear Seigler
termnal to clear the screen, for exanple).

Send the character fromregister Cto the listing
devi ce. The character is in ASCII with zero

parity.

The punch device is not inplenmented under MP/ M
The transfer vector position is preserved to
mai ntain CP/ M conpatibility. Note that M/ M
supports up to 16 character 1/0 devices, any of
whi ch can be a reader/ punch

The reader device is not inplenmented under MP/ M
See the note above for PUNCH

Return the disk head of the currently sel ected
disk (initially disk A) to the track 00 position.
if your controller allows access to the track O
flag fromthe drive, step the head until the
track O flag is detected. if your controller
does not support this feature, you can translate
the HOVE call into a call on SETTRK with a
paraneter of O.

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

SELDSK Sel ect the disk drive given by register C for
further operations, where register C contains O
for drive A 1 for drive B, and so-forth up to 15
for drive P (the standard MP/ M distribution
version supports four drives). On each disk

sel ect, SELDSK nmust return in HL the base address
of a 16-byte area, called the D sk Paraneter
Header , described in the digital research

docunent titled "CP/M 2.0 Alteration CGuide". For
standard floppy disk drives, the contents of the
header and associ ated tabl es does not change, and
t hus the program segnent included in the sanple
XICS perfornms this operation automatically. If
there is an attenpt to select a non-existent
drive, SELDSK returns HL=0OOOH as an error

i ndi cat or.

On entry to SELDSK it is possible to
determ ne whether it is the first tine the
specified di sk has been selected. Register E
bit O(l east significant bit) is a zero if the
drive has not been previously selected. This
information is of interest in systens which
read configuration information fromthe disk
in order to set up a dynam c disk definition
tabl e.

Al t hough SELDSK nust return t he header
address on each call, it is advisable to postpone
the actual physical disk select operation until
an I/O function (seek, read or wite) is actually
performed, since disk selects often occur w thout
utimately performng any disk 1/0, and nany
controllers will unload the head of the current
di sk before selecting the new drive. This woul d
cause an excessive amount of noise and di sk wear.

SETTRK Regi ster BC contains the track nunber for
subsequent di sk accesses on the currently
selected drive. You can choose to seek the
selected track at this tinme, or delay the seek
until the next read or wite actually occurs.

Regi ster BC can take on values in the range 0-76
corresponding to valid track nunbers for standard
fl oppy di sk drives, and 0-65535 for non-standard
di sk subsyst ens.

SETSEC Regi ster BC contains the sector nunber (1 through
26) for subsequent disk accesses on the currently
selected drive. You can choose to send this
information to the controller at this point, or
i nstead delay sector selection until a read or
wite operation occurs.

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

SETDVA Regi ster BC contains the DVA (di sk nmenory access)
address for subsequent read or wite operations.

For exanpl e, if B= OOH and C = 80H when SETDVA
is called, then all subsequent read oper ations
read their data into 80H t hrough OFFH, and al

subsequent write operations get their data from
80H t hr ough OFFH, until the next call to SETDVA
occurs. The initial DVA address is assuned to be
80H. Note that the controller need not actually
support direct nenory access. If, for exanple,

all data is received and sent through 1/0 ports,
the XI OGS which you construct will use the 128
byte area starting at the selected DVA address
for the menory buffer during the follow ng read
or wite operations.

READ Assuming the drive has been sel ected, the track
has been set, the sector has been set, and the
DVA address has been specified, the READ
subrouti ne attenpts to read one sector based upon
t hese paranmeters, and returns the follow ng error
codes in register A

0O no errors occurred
1 non-recoverable error condition occurred

Currently, MP/Mresponds only to a zero or
non-zero value as the return code. That is, if
the value in register Ais 0 then MP/ M assunes
that the disk operation conpleted properly. If an
error occurs, however, the XIOS should attenpt at
| east 10 retries to see if the error IS
recoverable. when an error is reported the BDOS
will print the nessage "BDOS ERR ON x: BAD
SECTOR'. The operator then has the option of
typing <cr> to ignore the error, or ctl-Cto
abort.

VWRI TE Wite the data fromthe currently sel ected DVA
address to the currently selected drive, track,
and sector. The data should be marked as "non
del eted data" to maintain conpatibility with
ot her MP/ M systens. The error codes given in the
READ command are returned in register A, with
error recovery attenpts as descri bed above.

LI STST Return the ready status of the |list device. The
value 00 is returned in Aif the list device is
not ready to accept a character, and OFFH if a
character can be sent to the printer. Note that
a 00 val ue al ways suffi ces.

100
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

SECTRAN

Per f or ns sector -logical to physical sect or
translation in order to inprove the overal
response of MP/M Standard MP/ M systens are
shipped with a "skew factor” of 6, where six
physi cal sectors are skipped between each | ogi cal
read operation. This skew factor allows enough

time between sectors for nost prograns to | oad
their buffers without m ssing the next sector.

In particular conmputer systens whi ch use fast
processors, menory, and di sk subsystens, the skew

factor may be changed to inprove over al
response. Note, however, that you should

mai ntain a single density |IBM conpatible version
of MP/ M for information transfer into and out of
your conputer system using a skew factor of 6.

In general, SECTRAN receives a |logical sector
nunber in BC, and a translate table address in
DE. The sector nunber is used as an index into
the translate table, with the resulting physical
sector nunber in HL. For standard systens, the
tabl es and i ndexing code is provided in the XGOS
and need not be changed.

101

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
3.3 Extend

The extend
envi ronnent dep
per form nmenory

A junp vec
points is |ocat
shown bel ow

Bl OS+33H
Bl OS+36H
Bl OS+39H
Bl OS+3CH
Bl OS+3FH
Bl OS+42H
Bl OS+45H
Bl OS+48H

Each junmp
whi ch perforns
of each entry p

SEL MVEMORY

PCOLLDEVI CE

STARTCLOCK

ed I/O System Entry Points

ed I/Ofacilities include the hardware
endent code to poll devices, handle interrupts and
managenent functions.

tor containing the extended I/O systementry
ed imedi ately followng the BIOS junp vector as

JWP SELMEMORY ; SELECT MEMORY

JVWP POLLDEVI CE . POLL DEVI CE

JVMP STARTCLOCK . START CLOCK

JMP STOPCLOCK : STOP CLOCK

JWP EXI TREG ON EXI T CRI TI CAL REG ON

JVMP MAXCONSOLE : MAXI MUM CONSOLE NUMBER
JW SYSTEMN T : SYSTEM | NI TI ALI ZATI ON
JW |DLE .| DLE PROCEDURE (Opti onal)

address corresponds to a particul ar subroutine
the specific function. The exact responsibilities
oi nt subroutine are given bel ow

Each tinme a process is dispatched to run a cal
is made to the XIOS nenory protection procedure.
| f the hardware environnment has nenory bank
selection/protection it can use the passed
paraneter to select/protect areas of nenory. The
passed paraneter (in registers BC) is a pointer
to a nenory descriptor fromwhich the nenory
base, size, attributes and bank of the executing
process can be determ ned. Thus, all other
regions of menory can to be wite protected.

I n hardware environnents where there are no
interrupts a polled environnent can be created by
codi ng an Xl GS device poll handl er. The device
poll handler (POLLDEVICE) is called by the XDOS
with the device to be polled in the C register as
a single paraneter. The user witten POLLDEVI CE
procedure can be coded to access the device
polling routines via a table which contains the
addresses of the device polling procedures. An
associ ation is made between a device nunber to be
poll ed and the polling procedure itself. The

pol ling procedures nust return a value of OFFH in
the accunulator if the device is ready, or OCH if
the device is not ready.

When a process delays for a specified nunmber of

102

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

ticks of the systemtinme unit, the start clock
procedure is call ed.

The purpose of the STARTCLOCK procedure is
to elimnate unneccessary system cl ock interrupt
over head when there are not any del ayed
processes.

In some hardware environnents it is not
acutally possible to shut off the systemtine
unit clock while still maintaining the one second
flag used for the purposes of keeping tine of
day. In this situation the STARTCLOCK procedure
sinply sets a boolean variable to true,
indicating that there is a delayed process. The
clock interrupt handler can then determne if
systemtime unit flag is to be set by testing the
bool ean.

STOPCLOCK When the systemdelay list is enptied the stop
cl ock procedure is called.

The purpose of the STOPCLOCK procedure is
to elimnate unneccessary system cl ock interrupt
over head when there are no del ayed processes.

I n sone hardware environnents it is not
acutally possible to shut off the systemtine
unit clock while still mintaining the one second
flag used for the purposes of keeping tinme of
day. (i.e. a single clock/timer interrupt source
is used.) In this situation the STOPCLOCK
procedure sinply sets a bool ean variable to
false, indicating that there are no del ayed
processes. The clock interrupt handler can then
determine if the systemtine unit flag is to be
set by testing the bool ean.

EXI TREG ON The purpose of the exit region procedure is to
test a preenpted flag, set by the interrupt
handl er, enabling interrupts if preenpted is
false. This procedure allows interrupt service
routines to make MP/ M system calls, |eaving
interrupts disabled until conpletion of the
i nterrupt handl i ng.

MAXCONSOLE The purpose of the maxi mum consol e procedure is
to enable the calling programto determ ne the
nunber of physical consoles which the BICS is
capabl e of supporting. The nunber of physical
consoles is returned in the A register.

SYSTEM NI T The purpose of the systeminitialization

103
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

procedure is to performrequired MP/ Mcold start
initialization. Typical initialization includes
setting up interrupt junp vectors, interrupt
masks, and setting up the base page-in each bank
of a banked nenory system

The SYSTEM NI T entry point is called
prior to any other XIOS call. The MPMLDR
di sables interrupts, thus it can be assuned that
interrupts are still disabled upon entry to
SYSTEM NI T. Interrupts are enabled by MP/ M
i mredi ately upon return from SYSTEM NI T.

In systens with bank switched nenory it
is necessary to setup the base page (OOOCH -
OOFFH) within each bank of nmenory. Both the
MPMLDR and MP/Mitself assune that the base
bank (bank #0) is switched in when the MPMLDR
is executed. The base bank is properly
initialized by MP/M prior to entering
SYSTEM NI T. The information required for the
initialization is provided on entry to
SYSTEMNIT in the follow ng registers:

C
DE

MP/ M Debugger restart #
MP/ M entry point address for the debugger
Place a junp at the proper debugger
restart location to the address contai ned
in DE
HL = BIOS direct junp table address
Place a junp instruction at |ocation
O000H i n each banks base page to the
address contained in HL.

| DLE The idle entry poi nt is
included to permt optimzation of system
per formance when the user has an XI OGS t hat is
all interrupt driven. | f you have pol | ed

devi ces in your XICS, the IDLE procedure

may be omtted by placing a NOP instruction
at the BIOS+48H |ocation where there would
otherwi se be a junp to an idle procedure.

The idle entry point is called repeatedly
when MP/Mis idling. That is, when there are no
ot her processes ready to run. In systens that
are entirely interrupt driven the idle
procedure should be as foll ows:

| DLE:
HLT
RET

104
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
| NTERRPUT SERVI CE ROUTI NES

The MP/ M operating systemis designed to work with
virtually any interrupt architecture, be it flat or vectored.
The function of the code operating at the interrupt level is to
save the required registers, determ ne the cause of the
interrupt, renmove the interrupting condition, and to set an
appropriate flag. Operation of the flags are described in
section 2.4. Briefly, flags are used to synchroni ze asynchronous
processes. One process, such as an interrupt service routine,
sets a particular flag while another process waits for the flag
to be set.

At a logical |evel above the physical interrupts the flags
can be regarded as providing 256 levels of virtual interrupts (32
flags are supported under release 1 of MP/ M. Thus, | ogical
interrupt handlers wait on flags to be set by the physical
interrupt handl ers. This nechanismallows a common XDOS to
operate on all mcroconputers, regardl ess of the hardware
envi ronment .

As an exanpl e consider a hardware environnment with a fl at
interrupt structure. That is, a single interrupt level is
provi ded and devices nust be polled to determ ne the cause of the
interrupt. Once the interrupt cause is determ ned a specific
flag is set indicating that that particular interrupt has
occurr ed.

At the conclusion of the interrupt processing a junp shoul d
be made to the MP/M dispatcher. This is done by junping to the
PDI SP entry point. The effect of this junp is to give the
processor to the highest priority ready process, usually the
process readied by setting the flag in the interrupt handler, and
then to enable interrupts before junping to resunme execution of
t he process.

The only XDOS or BDOS call which should be nade from an
interrupt handler is FUNCTI ON 133: FLAG SET. Any ot her XDOS
or BDOS call will result in a dispatch which would then enabl e
interrupts prior to conpleting execution of the interrupt
handl er .

It is recommended that interrupts only be used for
oper ati ons which are asynchronous, such as consol e input or disk
operation conplete. In general, operations such as consol e
out put should not be interrupt driven. The reason that
interrupts are not desirable for console output is that the
systemis afforded sone elasticity by performng polled consol e
outputs while idling, rather than incurring the dispatch overhead
for each character transmtted. This is particularily true at
hi gher baud rates.

105
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

On systens requiring the Z80 return frominterrupt (RETI)
instruction, the junp to PDISP at the end of the interrupt
servicing can be done by placing the address of PDI SP on the
stack and then executing an RETI instruction.

TI ME BASE MANAGEMENT

The time base nanagenent provided by the BI OGS perforns the
operations of setting the systemtick and one second flags. As
described earlier the start and stop clock procedures control the
systemtick operation. The one second flag operation is
logically separate fromthe systemtick operation even though it
may physically share the sane clock/tinmer interrupt source.

The purpose of the systemtine unit tick procedure is to
set flag #1 at systemtine unit intervals. The systemtinme unit
is used by MM Mto manage the delay |ist.

The recomrended tine unit is 16.67 mlliseconds,
corresponding to 60 Hz. When operating with 50 Hz the
reconmended tine unit is 20 mlliseconds.

The tick frequency is critical in that it determ nes the
di spatch frequency for conpute bound processes. If the
frequency is too high, a significant anmount of system
overhead is incurred by excessive dispatches. If the
frequency is too | ow, conpute bound processes will keep the CPU
resource for accordingly |onger periods.

The purpose of the one second flag procedure is to set flag
#2 at each second of real tinme. Flag #2 is used by MP/Mto
maintain a time of day cl ock.

XI OS EXTERNAL JUMP VECTOR

In order for the XIOS to access the BDOS/ XDOS a junp vect or
is dynamically built by the MP/M I oader and placed directly bel ow
t he base address of the XIOS. The junp vector contains two entry
poi nts which provide access to the MP/ M di spatcher, XDOS and
BDCS.

The follow ng code illustrates the equates used to access
the junp table:
BASE EQU O0OOOH ; BASE OF THE BI OS
PDI SP EQU BASE-3 : MP/ M DI SPATCHER
XDOS EQU PDI SP-3 ; MP/ M BDOS/ XDOS
CALL XDOS . CALL TO XDOS THRU JUMP VECTOR
106

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

3.4

The MP/ M system fil e,

conponent s:

or QODCS,

the system data page,
the XDOS, and the resident system processes.

System Fi |l e Conponents

' MPM SYS' consists of five
the custom zed XI OGS, the BDCS

MPM SYS

resides in the directory with a user code of 0 and is usually
read only. The MP/ M| oader reads and rel ocates the MPM SYS file
to bring up the MP/ M system

prepared using the GENSYS program or

SYSTEM DATA

The system data page contai ns 256 bytes used by the | oader
to dynam cally configure the system The system data page can be

it can be manually prepared

using DDT or SID. The follow ng table describes the byte
assi gnnent s:

Byt e

000- 000
001-001
002- 002
003-003
004- 004
005- 005
006- 006
007-015
016- 047
048-079
080- 111
112-122
123-127
128- 143
144- 255

' XI CS. SPR .
cont ai ni ng the page rel ocatable version of the user custom zed
XICS. A submt file on the distribution diskette nanmed

" MACSPR. SUB' or
custom zed XICS. The foll owi ng sequence of commands wil |

a ' XI Cs. SPR

(Al

Information Herein is Proprietary to Digital

Assi gnnent

Top page of nenory

Nurmber of consol es

Br eakpoi nt restart nunber

Al | ocate stacks for user systemcalls,
Bank swi tched nenory, bool ean

Z80 CPU, bool ean

Banked BDOCS fil e manager,
Unassi gned, reserved
Initial nmenory segnent table

Br eakpoi nt vector table, filled in by DDTs
Stack addresses for user systemcalls
Scratch area for nenory segnents

Unassi gned, reserved

Submit flags

Reserved

bool ean

bool ean

CUSTOM ZED XI Os

The custom zed XIOCS is obtained froma file naned
The ' Xl CS. SPR

file is actually a file of type PRL

" ASMSPR. SUB' can be used to generate the user
pr oduce

file given a user ‘XICS. ASM file:

107
Resear ch.)

MP/ M User's Qi de
A>SUBM T MACSPR XI CS
BDOS/ ODOS

The Basic Di sk Operating System (BDOS) fil e naned
'BDOS. SPR is a page relocatable file essentially containing the
CP/M 2.0 disk file managenent. This nodul e handl es all the BDOS
systemcalls providing both nmultiple console support and di sk
file managenent.

In systens with a banked BDCS, the file named * ODCS. SPR is
a page relocatable file containing the resident portion of the
banked BDOCS.

XDOS

The XDOS file named ' XDOS. SPR is a page relocatable file
containing the priority driven MP/ M nucl eus. The nucl eus
contains the foll ow ng code pieces: root nodul e, dispatcher,
gueue managenent, flag managenent, nenory managenent, term nal
handl er, term nal nessage process, command line interpreter, file
name parser, and tinme base managenent.

RESI DENT SYSTEM PROCESSES

Resi dent system processes are identified by a file type of
RSP. The RSP files distributed with MP/Minclude: run-tine
system status display (MPMSTAT), printer spooler (Spool), abort
named process (ABORT), and a schedul er (SCHED)

At system generation time the user is pronpted to sel ect
whi ch RSPs are to be concatenated to the ' MPM SYS' file.

It is possible for the user to prepare customresident
system processes. The resident system processes nust follow
t hese rul es:

* The file itself nmust be page relocatable. Page
rel ocatable files can be sinply generated using the submt file
" MACSPR. SUB' or 'ASMSPR SUB' and then renamng the file to change
the type from'SPR to 'RSP .

* The first two bytes of the resident system process are
reserved for the address of the BDOS/ XDOS. Thus a resident
system process can access the BDOS/ XDOS by | oadi ng the two bytes
at relative 0000-0001H and then perform ng a PCHL.

108
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

* The process descriptor for the resident system process
must begin at the third byte position. The contents of the
process descriptor are described in section 2. 3.

BNKBDOS

In addition to the MPM SYS file a file naned ' BNKBDCS. SPR

is used in systens with a banked BDOS. It is a page rel ocatable
file containing the non-resident portion of the banked BDOCS.
This file is not used by systens w t hout banked nenory.

109
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
3.5 System Generation

MP/ M syst em generation consists of the preparation of a
systemdata file and the concatenati on of both required and
optional code files to produce a file naned ' MPM SYS . The
operation is perfornmed using a GENSYS program whi ch can be run
under either MP/Mor CP/IM The GENSYS autonates the system
generation process by pronpting the user for optional paraneters
and then prepares the ' MPM SYS file.

The operation of GENSYS is illustrated with two sanpl e
executions shown bel ow

A>CENSYS

MP/ M Syst em Generation

Top page of nmenory = ff
Nunmber of consoles = 2
Br eakpoi nt RST # =6

Add system call user stacks (Y N)? vy

Z80 CPU (Y/IN? vy

Bank switched nmenmory (Y/N)? n

Menory segnent bases, (ff termnates |ist)

00
50
ao
. ff
Sel ect Resident System Processes: (Y/N)
ABORT ?n
SPOCL ?n
MPNVBTAT ?y
SCHED ?y

The queries nade during the system generati on shown above
are described as foll ows:

Top page of nmenory: Two hex ASCII digits are to be entered
giving the top page of nenory. A value of 0 can be entered in
whi ch case the MP/ M| oader will determ ne the size of nenory at
load tine by finding the top page of RAM

Nunber of consol es: Each console specified will require
256 bytes of nenory. MP/Mrelease 1 supports up to 16 consol es.
During MP/ Minitialization an XICS call is nmade to obtain the
actual maxi mum nunber of physical consol es supported by the Xl GCS.
This nunber is used if it is less than the nunber specified
during the GENSYS.

110
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

Breakpoi nt RST #: The breakpoint restart nunmber to be used
by the SID and DDT debuggers is specified. Restart 0 is not
allowed. O her restarts required by the Xl OGS should al so not be
used.

Add systemcall user stacks (Y/N)?: If you desire to
execute CP/M*. COMfiles then your response should be Y. A'Y
response forces a stack switch with each systemcall froma user
program MP/ Mrequires nore stack space than CP/M

Bank switched nenmory (Y/N)?: If your system does not have
bank swi tched nmenory then you should respond with a ‘N
ot herwi se respond with a 'Y and additional questions and
responses (as shown in the second exanple) will be required.

Menory segment bases: Menory segnentation is defined by
the entries which are made. Care nust be taken in the entry of
menory bases as all entries nmust be made with successively higher
bases. If your system has ROM at OOOOH then the first nmenory
segnent base which you specify should be your first actual RAM
| ocation only page relocatable (PRL) prograns can be run in
systens that do not have RAM at | ocati on OOOCH

Sel ect Resident System Processes: A directory search is
made for all files of type RSP. Each file found is |isted and
included in the generated systemfile if you respond with a 'Y'.

The second exanple illustrates a nore conplicated GENSYS in
which a systemis setup with bank switched nenory and a banked
BDOS. This procedure requires an initial CGENSYS and MPM.DR
execution to determ ne the exact size of the operating system
foll owed by a second GENSYS

A>CENSYS

MP/ M Syst em Generati on

Top page of nmenory = ff
Nunmber of consoles = 2
Br eakpoi nt RST # =6

Add system call user stacks (Y N)? vy

Z80 CPU (Y/N vy

Bank switched nmenmory (Y/N)? vy

Banked BDOS file manager (Y/N)? y

Enter menory segnent table: (ff termnates list)
Base, si ze,attri b, bank = 0,50,0,0
Base, si ze,attrib, bank = ff

Sel ect Resident System Processes: (Y/N)

ABCORT ?n

SPOOL ? n.

111
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

MPMSTAT ?n
SCHED ?y

The queries made during the system generati on shown above
which relate to bank switched nmenory are described as foll ows:

Bank switched nenory: Respond with a 'Y'.

Bank switched BDOS file nanager: Respond with a 'Y if a
bank swtched BDOS is to be used, this wll provide an additional
OCOOH bytes of common area for large XIOS s and possibly sone
RSP's. The banked BDOS is slower than the non-banked because
FCB' s nmust be copied fromthe bank of the calling programto
comon and then back again each tine a BDOS disk function is
i nvoked.

Menory segnment bases: When bank switched nmenory has been
specified, you are pronpted for the base, size, attributes, and
bank for each nenory segnment. Extreme care nust be taken when
maki ng these entries as there is no error checking done by GENSYS
regarding this function. The first entry made will determ ne the
bank in which the banked BDOS is to reside. It is further
assuned that the bank specified in the first entry is the bank
which is switched in at the time the MPMLDR i s executed. The
attribute byte is normally defined as 00. However, if you
wish to pre-allocate a nenory segnent a val ue of FFH shoul d
be specified. The bank byte value is hardware dependent
and is usually the value sent to the bank sw tching
hardware to sel ect the specified bank.

Then execute the MPMLDR in order to obtain the base address of
t he operating system The base address in this exanple wll be
t he address of BNKBDOS. SPR (BCOCH) .

A>MPMLDR

MP/ M Loader

Nunber of consoles = 2

Br eakpoi nt RST # = 6

Z80 CPU

Banked BDOS fil e manager

Top of nmenory = FFFFH

Menory Segnent Tabl e:

SYSTEM DAT FFOOH 0100H

CONSOLE DAT FDOCOH 0200H

USERSYS STK FCOOH 0100H
112

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

Xl CS
BDCS
XDOS
Sched
BNKBDOS

SPR
SPR
SPR
RSP
SPR

F600H
EECCOH
CFOOH
CAQCH
BCOCH

0600H
0800H
1FOCH
0500H
CECOH

Menmseg Usr OOOCH 5000H Bank OCH

Using the infornmation obtained fromthe initial GENSYS and MPMLDR
execution the followi ng GENSYS can be execut ed:

(Al

A>GENSYS

MP/ M Syst em Generati on

Top page of nenory
Nunber of consol es
Br eakpoi nt RST #
Add system cal

ff
2
6

user stacks (Y/N? vy

Z80 CPU (YIN)? vy
Bank switched nmenmory (Y/N)? vy

Banked BDOCS fil e manager.
Enter menory segnent table:
Base, si ze, attri b, bank
Base, si ze, attri b, bank
Base, si ze, attri b, bank
Base, si ze, attri b, bank

(YYN? y

O bc,
O cO,
O, cO,
ff

Sel ect Resi dent System Processes:

ABCORT
SPOOL
VPNVSTAT
SCHED

n

N)) N

n
n
y

113

0,0
O
0,2

(Y'N)

Information Herein is Proprietary to Digital

(ff termnates list)

Resear ch.)

MP/ M User's Qi de
3.6 MP/ M Loader

The MPMLDR program | oads the ‘MPM SYS file and dynami cally
rel ocates and configures the MP/ M operating system MPM.DR can
be run under CP/Mor |oaded fromthe first two tracks of a disk
by the cold start | oader.

The MPMLDR provides a display of the system| oadi ng and
configuration. It does not require any operator interaction.

In the follow ng exanple the ' MPM SYS' file prepared by the
first GENSYS exanple shown in section 3.5 is | oaded:

A>MPMLDR

MP/ M Loader

Nunber of consoles = 2

Br eakpoi nt RST # =6

Z80 CPU

Top of nenory = FFFFH
Menory Segnent Tabl e:

SYSTEM DAT FFOOH 0100H
CONSOLE DAT FDOCH 0200H
USERSYS STK FCOOH 0100H
Xl OS SPR F600H 0600H
BDOS SPR E200H 1400H
XDOS SPR C300H | FOOH
MPMSTAT RSP B600H ODOCH
Sched RSP B10OH 0500H

Menseg Usr AOOOH 1100H
Menseg Usr 5000H 5000H
Menseg Usr OOOOH 5000H

MP/ M
0A>

114
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

In the foll ow ng exanple the ‘ MPM SYS

file prepared by the

second GENSYS exanple shown in section 3.5 is | oaded:

(Al

A>MPMLDR

MP/ M Loader

Nunber of consoles = 2

Br eakpoi nt RST # =6

Z80 CPU

Banked BDOCS fil e manager
Top of nenory = FFFFH

Menory Segnent Tabl e:

SYSTEM DAT FFOOH 0100H
CONSOLE DAT FDOOH 0200H
USERSYS STK FCOOH 0100H

XIGS SPR F600H 0600H
BDOS SPR EEOOH 0800H
XDGS SPR CFOCH | FOOH
Sched RSP CAOOH 0500H

BNKBDOS SPR BCOOH OEQCCH

Menmseg Usr OOOOH COOCH Bank 02H
Menseg Usr OOOOH COOOH Bank O1H
Menmseg Usr OOOCH BCOOH Bank OCH

MP/ M
0A>

115

Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

APPENDI X A: Fl ag Assignnents

+----+
- 0 Reserved
+----+
1 Systemtime unit tick
+----+
2 One second i nterval
+----+
3 One mnute interval
+----+
4 Undef i ned
: : Undef i ned
+----+
: 31 Undef i ned
+----+

116
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
APPENDI X B: Process Priority Assignnents
O - 31 : Interrupt handlers
32 - 63 : System processes
64 - 197 : Undefined
198 : Term nal nessage processes
199 : Command line interpreter
200 : Default user priority
201 — 254 : User processes

255 : ldle process

117
(AI'l Information Herein is Proprietary to Digital Research.)

FUNC FUNCTI ON NAME

MP/ M User's Qi de

APPENDI X C. BDOS Function Summary

Syst em Reset

Consol e | nput
Consol e out put

Raw Consol e | nput
Raw Consol e CQut put

Li st Qut put

Direct Console I/0
** Not supported **
** Not supported **
Print String

Read Consol e Buffer
Get Consol e Status
Ret urn Ver si on Nunber
Reset Di sk System
Sel ect D sk
Open File
Close File
Search for
Search for
Delete File
Read Sequenti al
Wite Sequenti al
Make File

Renane File

-Return Login Vector
Return Current D sk
Set DMA Address

Get Addr (Al l oc)
Wite Protect D sk
Get R/ O Vector

Set File Attributes
CGet Addr (di sk parns)
Set/ Get User Code
Read Random

Wite Random
Compute File Size
Set Random Record
Reset Drive

Access Drive

Free Drive

Wite Random zerofill

Fi r st
Next

| NPUT PARAMETERS

none
none

E = char

none

E = char

E = char

see def

DE = . Buffer

DE = . Buffer
none

none

none

E=D sk Nunber
DE = . FCB

DE = . FCB

DE = . FCB

none

DE = . FCB

DE = . FCB

DE = . FCB

DE = . FCB

DE = . FCB

none

none

DE = . DVA

none

none

none

DE = . FCB

none

see def

DE = . FCB

DE = . FCB

DE = . FCB

DE = . FCB

DE = drive vctr
DE = drive vctr
DE = drive vctr
DE = . FCB

Note that A =1L, and B = H upon return

(Al

118

Information Herein is Proprietary to Digital

QUTPUT RESULTS

none
A = char

none

A = char

none

none

see def

none

see def

= 00/ 01

HL= Version #
see def

see def

A= Dr Code
A=Dr Code
A=Dr Code
A=Dr Code
A=Dr Code
A = Err Code
A = Err Code
A=Dr Code
A=Dr Code
HL= Logi n Vect*
A = Cur D sk#
none

HL= Al l oc

see def

HL= R/ O Vect*
see def

HL= DPB

see def

A = Err Code
A = Err Code
ro rl, r2
ro, rl, r2

A = Err Code
none

none

A = Err Code
Resear ch.)

MP/ M User's Cuide
APPENDI X D: XDOS Function Summary

FUNC FUNCTI ON NAME | NPUT PARAMETERS OUTPUT RESULTS

128 Absol ute Menory Rqst DE = . MD A = err code

129 Rel ocat able Mem Rqst DE = . MD A = err code

130 Menory Free DE = .MD none

131 Pol | E = Device none

132 Fl ag Wait E = Flag A = err code

133 Fl ag Set E = Flag A = err code

134 make Queue DE = . QCB none

135 Open Queue DE = . UQCB A = err code

136 Del ete Queue DE = . QCB A = err code

137 Read Queue DE = . UQCB none

138 Conditional Read Que DE = .QCB A = err code

139 Wite Queue DE = . UQCB none

140 Conditional Wite Que DE = . UQCB A = err code

141 Del ay DE #ticks none

142 Di spatch none none

143 Term nate Process E = Term code none

144 Create Process DE = .PD none

145 Set Priority E=Priority none

146 Attach Consol e none none

147 Det ach Consol e none none

148 Set Consol e E = Consol e none

149 Assi gn Consol e DE = . APB A = err code

150 Send CLI Command DE = . CLICMD none

151 Call Resident Sys Pr DE .CPB HL = result

152 Parse Fil enane DE . PFCB see def

153 Get Consol e Nunber none A = console #

154 Syst em Dat a Address none HL = sys data adr

155 Get Date and Tine DE = TOD none

156 Return Proc. Dsc. Adr none HL = proc descr adr

157 Abort Spec. Process = . ABTPB A = err code
119

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
APPENDI X E: Menory Segnent Base Page Reserved Locations

Each nmenory segnent base page, between | ocations OOH and
OFFH, contains code and data which are used during MP/ M
processi ng. The code and data areas are given bel ow for
ref erence purposes.

Locati ons Content s

from to

OO0CH - 0002H Contains a junp instruction to XDOS which
term nates the process. This allows sinple
process term nation by executing a JMP
OOOH

0005H - 0007H Contains a junp instruction to the BDOS &
XDOS, and serves two purposes: JWMP 0005H
provides the primary entry point to the
BDOS & XDOS, and LHLD 0006H brings the
address field of the instruction to the HL
register pair. This value is the top of
the nenory segnment in which the programis
executing. Note that the DDT programw ||
change the address field to reflect the
reduced nenory size in debug node.

0008H - 003AH (interrupt locations 1 through 7 not used)
However, one restart nust be selected for
use by the debugger and specified during
system generati on.

003BH - 003FH (not currently used - reserved)

0040H - O004FH 16 byte area reserved for scratch, but is
not used for any pur pose in t he
di stribution version of MP/ M

0050H - 005BH (not currently used - reserved)

005CH - 007CH default file control block produced for a
transi ent program by the command [ine
interpreter.

007DH - O07FH optional default randomrecord position
0080H — OOFFH default 128 byte disk buffer (also filled

with the conmmand |ine when a transient is
| oaded under the CLI).

120
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
Appendi x F: Operation of MP/Mon the Intel MDS-800

This section gives operating procedures for using MP/ M on
the Intel MDS m croconputer devel opnent system A basic
know edge of the MDS hardware and software systens is assuned.

MP/Mis initiated in essentially the same nmanner as Intel's
| SIS operating system The disk drives |abelled O through 3 on
the MDS, correspond to MP/Mdrives A through D, respectively.

The MP/ M system di skette is inserted into drive 0, and the BOOT
and RESET switches are depressed in sequence. The interrupt 2

[ight should go on at this point. The space bar is then

depressed on either consol e device, and the |light should go out.
The BOOT switch is then turned off, and the MP/ M si gn-on nessage
shoul d appear at both consoles, followed by the "OA>" for the CRT
or "I A>" for the TTY. The user can then issue MP/ M conmands.

Use of the interrupt switches on the front panel is not
recomrended. Effective 'warmstarts' should be initiated at the
consol e by aborting the running programrather than pushing the
INT O switch. Also, depending on the choice of restart for the
debugger the INT switch which will invoke the debugger is not
necessarily #7.

Di skettes should not be renoved fromthe drives until the
user verifies that there are no other users with open files on
the disk. This can be done with the ' DSKRESET' conmand.

When perform ng CGENSYS operations on the MDS-800, nake
certain that a negative response is always nade to the Z80 CPU
guestion. Responding with a 'Y wll lead to unpredictable
results.

121
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
APPENDI X G Sanpl e Page Rel ocat abl e Program

kkhkkkhkkhkhkkhhkkhkhkhkkhhkhkhhkhhkhkhhkhkhkhkkhhkhkhhkhhkhkhhkhhkkhkkhhkikhkkk

* Note: *
* This programlisting has been *
* included only as a sanple and may not *
* reflect changes required by later MP/M *
* releases. For this reason the reader *
* shoul d assenble and |ist the program *
* as provided on the distribution disk. *
R R b b b b I S S S bk b S S S S
page O
0000 org 0000h
0000 base equ $
0100 org 0100h

;note: either based OO asm or base0200. asm nust be ap
;to the beginning of this file before assenbling.

; title "file dunp progran
; file dunp program reads an input file and
; prints in hex

;copyright (c) 1975, 1976, 1977,.1978, 1979, 19
;digital research

; box 579, pacific grove

;california, 93950

0005 = bdos equ base+5 ;dos entry point

0001 = cons equ 1 ; read consol e

0002 = t ypef equ 2 ;type function

0009 = printf equ 9 ;buffer print entry

000b = br kf equ 11 : break key function

000f = openf equ 15 ;file open

0014 = r eadf equ 20 ;read function

005c = fcb equ base+bch ;file control block address

0080 = buf f equ base+80h ;input disk buffer address
;non graphic characters

000d = cr equ Odh ;carriage return

000a = | f equ Gah ;line feed
;file control block definitions

005c = f cbdn equ fcb+O ; di sk nane

005d = fcbfn equ fcb+l ;pfile name

0065 = fcbft equ fcb+9 ;disk file type (3 characters)

0068 = fcbrl equ fcb+12 ;file's current reel nunber

122

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

006b
007c
007d

0100
0103

0104
0107

010a
ad
010f

0112
0115
0118

alb
ald

0120

0123
0124
0127
0128
012b

012c
012d
012f

0132
0135

0138
0139
013c
013d
0140
0141

0144

(Al

fcbrc
fcber
fcbln

210000
39

221 f 2
316102
cdc60i

feff
c2l bd

11fdd
cdal A
c35601

openok:

3e80
32| dO2

210000

gl oop:
e5

cda701
el
da5601
47

7d
e60f
c24401

cd7701

cd5ed
o
das5l d
7c
cd9401
7d
cd9401
nonum
23

equ fcb+15
equ fcb+32
equ fcb+33
set up stack
Ixi h,O
dad sp

entry stack pointer in h

shl d ol dsp

set sp to |loca
| xi sp,stktop

;file's record count (0 to 128
;current (next) record nunber
;fcb length

fromthe ccp

stack area (restored at finis)

read and print successive buffers

call setup
cpi 255
] nz openok

file not there,
| xi d, opnnsg

; open operation ok,

;set up input file

;255 if file not present

;skip if open is ok

give error nmessage and return
;to return

set buffer index to end

;set buffer pointer to 80h

hl contains next address to print

call err
jmp finis
nmvi a, 80h
sta ibp
Ixi h,O
push h
call gnb
POP h

jcC finis
nmov b, a

cstart with 0000

:save |ine position

;recall line position
;carry set by gnb if end file

print hex val ues
check for line fold

:check low 4 bits

i ne nunber

check for break key

accumlsb = 1 if character ready

mov a, |
ani Oh

j Nz nonum
pri nt

call crlf
call break
rrc

jc pur ge
nmov a, h
cal | phex
nmov a, |
cal | phex
inx h

Information Herein is Proprietary to Digital

;into carry
;don't print any nore

to next |ine nunber

123
Resear ch.)

MP/ M User's Qi de

0145 3e20
0147 cd6ad
01l4a 78
014b cd9401
014e c32301

pur ge:

0151 Ced
0153 cd0500
finis:

0156 cd7701

0159 2al fQ2
015C f9

015d c9

suDr outi nes

br eak:

015e e5d5c5
0161 Cev
0163 cd0500
0166 cl dl el
0169 c9

pchar:

016a e5d5cS
016d Ce2
016f 5f

0170 cd0500
0173 cl dl el
0176 c9

crilf:

0177 3ed
0179 cd6ad
017¢c 3eta
017e cd6ad
0181 c9

pni b:
0182 e60f
0184 fela
0186 d28ed
0189 ¢630
018b ¢39001

mi a,’
call pchar
mov a,b

pall phex
jmp gl oop

mvi c, cons
call bdos

end of dunmp, return to cap

(note that a jnp to 0000h reboots)

call crlf

I hl d ol dsp

sphl

stack pointer contains cap's stack |ocation
ret ;to the ccp

; check break key (actually any key will do)
push h! push d! push b; environnent saved
nvi ¢, brkf

call bdos

pop b! pop d! pop h; environnment restored
ret

;print a character

push h! push d! push b; saved

nvi ¢, typef

nov e, a

call bdos

pop b! pop d! pop h; restored
ret

mvi a,cr

call pchar

mvi a,lf

call pchar

ret

;print nibble inreg a

ani Oh ;low4 bits
cpi 10

j nc pl o

| ess than or equal to 9
adi ‘o

) mp prn

greater or equal to 10

124

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

018e c637 adi ‘a - 10
0190 cd6ad call pchar
0193 c¢9 ret
phex: ;print hex char inreg a
0194 f5 push psw
0195 O rrc
0196 O rrc
0197 O rrc
0198 O rrc
0199 cd8201 call pnib ;print nibble
019C f1 POP psw
019d cd8201 call pnib
a a0 c9 ret
Err: ;print error nessage
; d, e addresses nessage ending with
aal CeOo mvi c,printf ;print buffer function
a a3 cd0500 call bdos
a a6 c9 ret
gnb: ;get next byte
d a7 3ald® Ida ibp
A aa fe80 cpi 80h
A ac c2b801 jnz go
; read anot her buffer
a af c¢dd30l cal | diskr
a b2 b7 ora a ;zero value if read ok
d b3 cab. 801 |4 go ; for anot her byte
; end of data, return with carry set for eof
a b6 37 stc
a b7 c9 ret
go: ;read the byte at buff+reg a
A b8 5f nv e, a ;1's byte of buffer index
d b9 1600 mvi d, O ; doubl e precision index to de
A bb 3c inr a ;1 nd ex=1 nd ex+l
A bc 321 dX2 sta ibp ; back to nmenory
; poi nt er is increnented
; save the current file address
A bf 218000 I xi h, buff
Olc2 19 dad d
absol ute character address is in hl
A c3 7e nmv a,m
byte is in the accumul at or
A c4 b7 ora a ;reset carry bit
A c5 c9 ret
set up: ;set up file
; open the file for input
125
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

Ad c6 af Xra a ;zero to accum

Adc7 327¢c0O sta fcbcr :clear current record

O ca 115¢c00 Ixi d,fcb

Acd CO nmvi ¢, openf

A cf cd0500 call bdos
; 255 in accumif open error

ad2 c9 ret
di skr: :read disk file record

A d3 e5d5c5 push hl push d! push b

ad dé6 115¢c00 Ixi d,fcb

ado Cel4 mvi ¢, readf

ad db cd0500 call bdos

A de cldl el pop b! pop d! pop h

Ael c9 ret
; fi xed nmessage area
si gnon:

A e2 46696¢6520 db "file dunp np/ mversion 1.0%
opnnsg:

A fd OGdCadebf 20 db cr,If,"'no input file present on disk$
) vari abl e area

021d i bp: ds 2 ;i nput buffer pointer

021f ol dsp: ds 2 ;entry sp value fromccp
: stack area

0221 ds 64 reserve 32 |l evel stack
st kt op:

0261 end

126
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's

Qi de

APPENDI X H: Sanpl e Resident System Process

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkkhhkkhhkhkhhkhkhkhkhhkhkhhkhhkhkhhkhkhkhkkihkkhkkhkhkhik*kx

Not e:

* %k X X X X X X

0000

00la
0002
0009
0014
00o0f

0098
0086
0089
0091
0093

0000 0000

0002 0000

0004 00

0005 GCa

0006 1001

0008 5459504520

r el eases.

page O

title

This programlisting has been
i ncluded only as a sanple and may not
refl ect changes required by |ater
For this reason the reader
shoul d assenbl e and |ist the program
as provided on the distribution disk.

kkhkkkhkkhkhkkhhkkhkhkhkkhhkhkkhhkkhhkhkkhhkhhkhkkhhkkhhkhkkhhkhkhhkkhkhkkhkhkrkhkkx*k

MP/ M

* 0k X X X X X X

"type file on console'
;file type program
;it on the console

;copyright (c) 1979,

;digital

; p. 0. box 579
; paci fic grove,

; bdos entry point address

org
ctlz equ
conout equ
printf equ
r eadf equ
openf equ
parsefn equ
nkque equ
rdque equ
stprior equ
det ach equ
bdosadr :

dw

0000h

| ah
2

9

20
15
152
134
137
145
147

$-%

research

ca 93950

[dr will

; type process descriptor

t ypepd:
dw
db
db
dw
db

0
0
10

st ack+38

"type

127

1980

fi

reads an input file and pri

standard rsp start

control -z used for e
bdos conout function
print buffer

read next record
open fcb

parse file nane

make queue

read queue

set priority

detach consol e

[l this i

i nk

; status

cpriority (initial)

stack pointer

;name in upper case

(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

pdconsol e:
0010 ds 1 ;. consol e
0011 ff db Ofh ; menseg
0012 ds 2 b
0014 ds 2 :t hread
0016 3601 dw buff :di sk set dna address
0018 ds 1 ;user code & di sk se
0019 ds 2 rdent
001b ds 1 : sear chl
001C ds 2 : searcha
00l e ds 2 ;active drives
0020 ds 20 ;regi ster save area
0034 ds 2 ;scratch

; type linked queue control block

t ypel gcb:
0036 0000 dw O 1ink
0038 5459504520 db "type ‘ ;name in upper case
0040 4800 dw 72 ; megl en
0042 0100 dw | ; nnmbnsgs
0044 ds 2 ; dgph
0046 ds 2 ; ngph
0048 ds 2 ; mh
004a ds 2 ;i
004c ds 2 ; bh
004e ds 74 ;buf (72 + 2 byte lin

; type user queue control block

t ypeuserqchb
0098 3600 dw typel qcb ; poi nter
009a 9c0O dw field ; nmsgadr

;field for message read fromtype |inked qcb

field:
009C ds 1 :di sk sel ect

consol e:
009d ds 1 ;. consol e

filenane:
009e ds 72 ; message body

; parse file name control bl ock

pchb:
0Ce6 9e0O dw filenane file name address
00Ce8 1201 dw fcb :file control block a

128
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

;type stack & other |ocal data structures

st ack:
OOea ds 38 : 20 |l evel stack
0110 baO: dw type ; process entry point
0112 fch: ds 36 :file control block
0136 buf f: ds 128 file buffer

; bdos call prdeedure

bdos:
a b6 2a0000 | hl d bdosadr hl = bdos address
a b9 e9 pchl

;type main program

type:

d ba Ce86 mvi ¢, nkque

A bc 113600 I xi d,typel qcb

d bf cdb60l call bdos ; make typel qcb

A c2 eIl nmvi ¢, stprior

QA c4 11c800 I xi d, 200

A c7 cdb601 call bdos ; set priority to 200
forever:

O ca Ce89 mvi ¢, rdque

A cc 119800 I xi d,typeuserqch

d cf cdb6Ol call bdos ; read fromtype queue

a d2 0698 nmvi ¢, parsefn

A d4 11e600 I xi d, pcb

A d7 cdb601 call bdos . parse the file nane

A da 23 inx h

A db 7c nmov a, h

A dc b5 ora 1 ; test for Offfh

A dd cal f02 jz error

a eO 3a9d0O lda console

A e3 321000 sta pdconsol e ; typepd. console = con

A e6 GO nmvi ¢, openf

O e8 111201 Ixi d,fch

A eb cdb601 call bdos ; open file

A ee 3c inr a ;test return code

O ef calf02]z error ;if it was Ofh, no f

af2 af Xra a . el se,

af3 323201 sta fcb+32 ;set next record to
newsect or :

afe Cel4 nmvi ¢, readf

af8 111201 I Xi d,fcb

129
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

A fb cdb6Ol call bdos ;read next record
Afe b7 ora a
aff c22702 j nz done ;exit if eof or error
0202 213601 I xi h, buff ;point to data sector
0205 Ce80 nmvi ¢, 128 ;. get byte count

next $byt e:
0207 7e nmov a, m ;get the byte
0208 5f nv e, a ;save in e
0209 fela cpi ctlz
020b ca2702 |4 ; done exit if eof
020e c5 push b ; save byte counter
020f e5 push h ; save address registe
0210 Ce2 nvi ¢, conout
0212 cdb6Ol call bdos ;wWrite console
0215 el POP h ;restore pointer
0216 cl POP Db ;and counter
0217 23 inx h ; bunp poi nter
0218 d der ¢ ;dcr byte counter
0219 c207x2 jnz next$byte ; nmore in this sector
021c c3f601 jmp new$sect or ;el se, we need a new

error:
021f l1l12f [xi d,err$nmsg ;point to error nessa
0222 CeO9 mvi c,printf ; get function code to
0224 cdb6Ol call bdos

done:

0227 (0e93 nmvi ¢, detach
0229 cdb6Ol call bdos ; detach the consol e
022c¢ c3caol jmp forever

err$nsg:
022f Od0a46696¢C db Cdh, Cah, ' file not found or bad file na
0251 end

130
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
APPENDI X | : Sanple Xl OS

kkhkkkhkkhkhkkhhkkhkhkhkkhhkhkhhkhhkhhhkhhkhkkhhkhhkhkkhhkhhhkhkhkkikkhkrkhkkx*k

* Not e:

* This programlisting has been

* included only as a sanple and may not

* reflect changes.required by later MP/ M
* releases. For this reason the reader

* shoul d assenble and |ist the program

* as provided on the distribution disk.

*

kkhkkkhkkhkhkkhhkkhkhhkkhhkhkkhhkkhkhkhkkhhkhkkhhkhhkhkkhhkkhkhkhkkhhkhkkhkrkhhkk*

* % X X X X X X

page O
0000 org 0000h

;note: this nodule assunes that an org statenent w ||
; provi ded by concatenating either baseO0O00 asmor b
;to the front of this file before assenbling.

title 1xi os for the nds-800

;(four drive single density version)

;- or -
;(four drive m xed doubl e/single density)
;version 1.1 january, 1980

;copyright (c) 1979, 1980
;digital research

; box 579, pacific grove
;california, 93950

0000 = fal se equ O
ffff = true equ not false
ffff = asm equ true
0000 = mac equ not asm
ffff = sql equ true
0000 = dbl equ not sgl
if nmac
macl i b di skdef
endi f
0004 = nundi sks equ 4 ; nunber of drives avail able
;external junp table (below xi os base)
fffd = pdi sp equ $-3

131
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

fffa

00f d
Oof ¢
o 3
Oof f
00f d

0078
0078
0079
007b
0079
007a
0004
0006
0004
000a

0000

= xdos

revrt
intc
i con
rtc

inte

dskbase
dst at
rtype
rbyte
i | ow
i hi gh
r eadf
witf
i ordy
retry

c34b00O

wboot :

0003
0006
0009
000c
000f
0012
0015
0018
001b
00l e
0021
0024
0027
002a
002d
0030

0033
0036
0039
003c
003f

0042
0045
0048

(Al

c34b00O
c35000
c35700
c35e00
c3acOO
c36¢c00
c36¢c00
c306C2
c3e501
c308-2
c30d2
c31202
c32402
c32902
c3cl OO
c31802

c31501
c3fcOO
c31601
c3l cO

c32101
c32801
c32b0O

c34001

equ

: mds
equ
equ
equ
equ
equ

: nmds
equ
equ
equ
equ
equ
equ
equ

D @D D
0 0 0
o C C

o
D
@

3333333333333333 3

33333333¢

Il er equates
rt port

port
rol port
time clock

equat es
of disk io prts
st at us

pdi sp- 3

i nterrupt contro

O dh . reve

O ch ;. mask

O 3h :cont

Ofh . real
1111%$110l b ; enable rst 1
di sk controller

78h . base

dskbase . di sk
dskbase+l :
dskbase+3 ;
dskbase+l :
dskbase+2 :
4h . read
6h oWt
4h i/o
10 ;o max

coldstart ;cold

war nst art
const
coni n
conout
list

rt nenpty
rt nenpty
hone

sel dsk
settrk
set sec
setdma
read
wite
pol | pt
sect $tran

sel nenory ;
pol | devi ce ;
startcl ock ;
st opcl ock ;
exi tregion ;
Maxconsol e ;
system nit ;
idle ;

132

result type

result byte

i opb | ow address

i opb hi gh address
function
e function
fini shed mask
retries on disk i/o

ic i/o systemjunp vector

start

;warm st art

consol e status
consol e character in
consol e character out
|ist character out
punch not i npl enmented
reader' not inplenente
move head to hone

sel ect di sk

set track nunber

set sector nunber

set dma address

read di sk

wite disk

|ist status
sectortransl

xtended i/o systen1junp vect or

:sel ect nenory

; pol | device
;start cl ock
; stop clock

exit region

; maxi num consol e nunb
;systeminitializatio
;i dl e procedure

Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

coldstart:
war nst art :

004b CeQO

004d

0002
0083
0000
0001
0002
0003
0004
0005

0050
0053
0055

coni n:
cd6500
8100
dl OO

0057
005a
005c

conout :

005e
0061
0063

cd6500
8d0O
ddOO

pt bl j np:

0065 7a
0066 fe02
0068 da6eCO
006b fl
rtnenpty:
006¢c af
006d c9

t bl j np:

006e 87
006f el
0070 5f
0071 1600

(Al

mvi C0

jmp xdos

; mp/ m 1.
equ 2

equ 131

equ O

equ 1

equ 2

equ 3

equ 4

equ 5

call ptbljnp
pt ost

ptl st

call ptbljnp
dw ptOin
dw ptlin
call ptbljnp
dw pt Oout
dw ptlout
nmov a,d

cpi nnbcns
jc tbljnmp
POP psw
Xra a

ret

add a

POP h

nov e, a

nvi d, O

;see systeminit
;cold & warmstart in
;for conpatibility w

; systemreset,

termn

consol e handl ers

nunber of consol es

xdos poll function

pol | printer

pol I di sk

poll console out #0 (crt:)
pol|l console out #1 (tty:)
poll console in #0 (crt:)
poll console in #1 (tty:)
; consol e status

conpute and junp to hndlr
consol e #0 status routine
console #1 (tty:) status rt

consol e i nput
conpute and junp to hndlr

; consol e #0 i nput

;console #1 (tty:) input

; consol e out put

;compute and junp to hndlr

; consol e #0 out put

;consol e #1 (tty:) output
;conpute and junp to handl er
;d = console #

; do not destroy <d>

;throw away tabl e address

conpute and junp to handl er

a =

tabl e i ndex

doubl e table index for adr o
return adr points to junp tb

133

Information Herein is Proprietary to Digital

Resear ch.)

MP/ M User's Qi de

0073 19 dad d ; add table index * 2 to thl b
0074 5e nmv e, m ; get handl er address
0075 23 inx h
0076 56 mov d, m
0077 eb xchg
0078 €9 pc hl ; junp to conputed cns handl er
ascii character equates
007f = r ubout equ 7fh
0020 = space equ 20h
; serial i/o port address equates
00f6 = dat aO equ O 6h
a7 = stso equ dat a0+l
o4 = dat al equ O 4h
o5 = st sl equ datal +l
OOfa = | pt port equ O ah
00fb = | ptsts equ | ptport +l
; poll console #0 input
pol ci o:
pt ost : ;return Ofh if ready,
; 000h if not
0079 dbf7 in stso
007b e602 ani 2
007d c8 rz
007e 3eff nvi a,Ofh
0080 9 ret
; consol e #0 i nput
pt Oi n: ;return character inreg a
0081 (Ce83 nvi C, pol
0083 | e04 mvi e, plciO
0085 cdf af f call xdos ; poll console #0 inpu
0088 dbf6 in dat aO ; read character
008a e67f ani 7fh ; strip parity bit
008c c¢9 ret
; consol e #0 out put
pt Oout : ;req ¢ = character to out put
008d dbf 7 in stso
008f e601 ani Odh
0091 ¢29900 jnz coOrdy
0094 c5 push b
0095 ¢d9dOO call ptOwait ;poll console #0 outp
0098 cl POP b
coOrdy:
134
(Al Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

0099 79
009a d3f6
009C C9

pt Owai t :

009d
009f
0Oal

Ce83
| e02
c3faf f

pol coo:

Qa4 dbf 7
Oa6 e601
Qa8 c8
Oa9 3eff
0Oab c9

nov
out
ret

mvi
nmvi

a,c
dat aO ;transmt character
;wait for console #0 out put ready
C, pol
e, pl coO
xdos ; poll console #0 outp

jnp
r et

; pol

in
ani
rz
mvi
ret

consol e #0 out put

creturn Ofh if
: 000h i f not

st so

adh

r eady,

a,0ffh

;line printer driver:

list:
0Oac dbfb
00ae e601
ObO c2bcCO
Qb3 c5
Oh4 (e83
Qb6 | eCO
Ob8 cdf af f
00bb cl

| ptrdy:
Obc 79
OCbd 2f
OObe d3fa
00CO 9

; pol

pol | pt:

00cl dbfb
OCc3 e601
OCc5 c8
O0c6 3eff
00cs (9

(Al

in
ani
j nz
push
mvi
mvi
cal |
POP

nov
cma
out
ret

;11 st output
| ptsts
Ah
| ptrdy
b
C, pol
e, pllpt
xdos
b

a, C

| pt port

printer output

in
ani
rz
mvi
ret

Information Herein is Proprietary to Digital

creturn Ofh if
: 000h i f not

| ptsts

dh

r eady,

a, Odfh

135
Resear ch.)

MP/ M User's Qi de

; pol

pol ci | :

ptlst:

000h

OCc9 dbfb5 in
00cb e602 ani
00cd c8 rz
00ce 3eff nvi
OQdO c9 ret
console #1 (tty:) input

ptlin:
OQdl =83 nvi
Od3 | e05 nvi
OQd5 cdf af f cal |
0OQd8 dbf 4 in
0Oda e67f ani
OQdc c9 ret

console #1 (tty:) output

ptl out:
OQdd dbf 5 in
Oodf e601 ani
00el c2e900 j nz
Ce4 c5 push
00e5 cdedOO cal |
OCe8 cl POP
col rdy:
OCe9 79 nov
0OOea d3f4 out
00ec c9 ret
‘wait for
ptlwait:
00ed (=83 nmvi
00ef 1| e03 nmvi
00fl c3faff jmp
r et
; pol
pol col :
OO 4 dbfbs in
OO 6 e601 ani

(Al

console #1 (tty)

Information Herein is Proprietary to Digital

i nput

;return Ofh if ready,
;1 f not
st sl
2
a,0fh
;return character in reg a
C, pol
e, plcil
xdos ;poll console #1 inpu
dat al ; read character
7fh ;strip parity bit

st sl
Ah
col rdy

;reg ¢ character to output

b
pt | wai t
b

a, C

dat al transmt character

console #1 (tty: output r eady

c, pol 1l
e, pl col
xdos ;

poll console #1 outp

console #1 (tty:) output

;return Ofh if ready,
; 000h if not
st sl
ah
136
Resear ch.)

MP/ M User's Qi de

o 8
o 9
00f b

0006

00f c
00f d
00f f
0102

devok:

0104

0107
0109
010b
010d
010f

0111
0113

0115

0116
0118

(Al

a, Odfh
1.0

a, c
nnmbdev
devok

a, nmbdev

tbljnp

pol | pt
pol dsk
pol coO
pol col
pol ci O
pol ci

rtnenpty

extended i/ 0 system

nunber of devices in poll

reg
retu

; 000h

th

C device # to be polle

rn O&fh if
i f not

i f dev # >= nnbdev,

:set to nnmbdev

;junmp to dev pol

- bad devi ce handl er

pol
pol
pol
pol
pol
pol

;reg b
;bc ->

printer output

di sk ready

console #0
console #1
console #0
console #1

C:
base
si ze
attrib
bank

r eady,

code

out put
(tty:) outpu
i nput
(tty:)input

adr of mem descri pt

1 byte,
1 byte,
1 byte,
1 byte.

;this hardware does not have nenory protection or

c8 rz
3eff nvi
c9 ret
, mp/ m
nnbdev equ
pol | devi ce:
79 nmov
fe06 cpi
da0401 jc
3e6 nvi
cd6eO cal |
cl O dw
7dQo2 dw
a400 dw
f 400 dw
7900 dw
C900 dw
6¢c00 dw
;select / protect nenory
sel nenory:
; bank swi t ching
c9 ret
;start cl ock
startcl ock:
3eff nvi
32e301 sta

a, Odfh
tickn

Wi ||

137
Information Herein is Proprietary to Digital

cause flag #1 to be set
at each systemtine unit tick

Resear ch.)

MP/ M User's Qi de
Alb c9 r et

; stop clock

st opcl ock:
;W |l stop flag #1 setting at
;systemtinme unit tick
Alc af Xra a
01-1d 32e301 sta tickn
0120 c9 ret

;exit region

exi tregion:
. el if not preenpted

0121 3ae401 | da preenp
0124 b7 ora a

0125 cO rnz

0126 fb ei

0127 c9 ret

: maxi mum consol e nunber
maxconsol e:
0128 3e™? mvi a, nnbcns
0,12a c9 ret

systeminitialization

systemnit:
; note: this systeminit assunes that the usarts
; have been initialized by the coldstart boot
; setup restart junp vectors
012b 3ec3 nvi a, Gc3h
012d 320800 sta 1*8
0130 214501 I xi h,intlhnd
0133 220900 shid 1*8+1 ;jmp intlhnd at resta
; setup interrupt controller & real time clock
0136 3efd nvi a,inte
0138 d3fc out intc ;enable int 0',1,7
0l13a af Xra a
013b d3f3 out icon ;clear int mask
013d d3ff out rtc ;enable real tine clo
013f c9 ret

; i1 dle procedure

i dle:
0140 QCe8e nmvi ¢, dsptch
0142 c3faff j mp xdos ; performa dispatch,

138
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

0085
008e

0145
0146
0149
0l14a
0l4c
014f

0150
0153
0156
0157
0158

0159
015b
015e
015f

0162
0163
0166
0167
0l6a
016b
Olee
0171
0172
0173
0175
0178
017b

(Al

, - Or -

; hlt
;ret

mp/ m1.0

fl agset
dsptch

i ntl hnd:

f5
3e?
d3f f
d3fd
3aabd
3d
32ab0O
cab901
fl

fb

c9

tl 6ns:

3el O
32abd
fl
22ddd
el
22el A
f5
210000
39
22df A
31 ddO
d5

ch
3eff
32e401
3ae301
b7

push
mvi
out
out

| da
dcr
sta
|4
POP
ei
ret

nmvi
sta
POP
shl d
POP
shl d
push
| Xi
dad
shl d
| Xi
push
push
mvi
sta
| da
ora

i nter

equ
equ

psw
a, 2h
rtc
revrt
slice
a
slice
tl6nms
psw

a, 16
slice
psw
svdhl
h
svdre
psw
h, O
Sp
svdsp
sp,in
d

b
a, o f

of idle nust be use
;W thout interrupts,

;eil sinply halt until aw

rupt

i nterrupt handl ers
133
142

;i nterrupt 1 handl er entry po
;l ocation 0008h contains a |
;to intlhnd.

reset real tine clock
crevert intr cntlr
;only service every 16th slic

;junmp if 16ns el apsed

reset slice counter

t

; save users stk ptr

t st k+48 lcl stk for intr hnd

h

preenp ;set preenpted flag

tickn
a

; test tickn, indicate
; del ayed process(es)

139

Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

017c ca8601 jz noti ckn

017f (e85 mvi ¢, flagset

0181 | eOl ni e,

0183 cdf aff call xdos ;set flag #1 each tic
noti ckn:

0186 2lacd I xi h,cnt64

0189 35 dcr m ;dec 64 tick cntr

018a c29601 jnz notlsec

018d 3640 mvi m 64

018f (e85 mvi ¢, flagset

0191 | e02 ni e,2

0193 cdf aff call xdos ;set flag #2 @1 sec
not | sec:

0196 af Xra a

0197 32e401 sta preenp ;clear preenpted flag

019a cl POP Db

019b dI POP d

019c 2adfd I hl d svdsp

019f f9 sphl ;restore stk ptr

aao fl POP psw

aal 2aeld | hI d svdret

d a4 e5 push h

A a5 2addd [hl d svdhl
;the follow ng dispatch call will force round robin

; schedul i ng of processes executing at the sane prior
;each 1/64th of a second.

;note: interrupts are not enabled until the ditpatche
;resunmes the next process. this prevents interrupt
;over-run of the stacks when stuck or high frequency
;interrupts are encountered.

A a8 c3fdff jmp pdisp ; mp/ m di spat ch

; bi os data segnent

A ab 10 slice: db 16 ;16 slices = 16nms = 1 tick

A ac 40 cnt 64: db 64 ;64 tick cntr = 1 sec

a ad i ntstk: ds 48 ;local intrpt stk

A dd 0000 svdhl : dw O ;saved regs hl during int hnd
A df 0000 svdsp: dw O ; saved sp during int hndl

A el 0000 svdret: dw O ;saved return during int hnd
A e3 00 tickn: db 0 ;ticking bool ean, true del ay
de4 00 pr eenp: db 0 ; preenpt ed bool ean

*x * % % % * * % % *x * * % % *x * % % *x * * * % *x * * * *

intel nds-800 diskette interface routines

* % ok X F

*x * * % % * * % % *x * * % % *x * % % *x * * * % *x * * * *

140
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de

sel dsk:

210000
79

f e04
do
€602
32bal2
21c202
0600
09

7e
32bc2
60

69

29

29

29

29

Il c602
19

c9

d eb5
d e8
ad e9
deb
d ec

Q
®
®

000000000
CooocoNo s~

aff

hone:

0206 CeQO
settrk:

21be?

71

c9

0208
020b
020c

set sec:
020d
020e
0211

79
32bf O2
c9

set dma:
0212
0213
0214
0217

69
60
22¢cOO2
c9

sect $tran:
0218
0219
021a
021b
021c
021d
02l e
021f
0220
0221

60
69
23
7a
b3
c8
eb
09
6e
2600

(Al

;sel ect disk given by register c
[xi h, O

nov a,c

cpi nundi sks

rnc
ani
sta
| xi
nvi
dad
nov
sta
nov
nov
dad
dad
dad
dad
| Xi
dad
ret

cfirst,
2
dbank :then save it
h, sel $t abl e

O

;times 16
, dpbase

;move to hone position
;treat as track 00 seek
mvi C0

;set track address given by c

I xi h,iot
nmv mc
ret
;set sector nunber given by c
nmov a,c ; sector nunmber to accum
sta io0s ;store sector nunber to iopb
ret
;set dna address given by regs b,c
mv |,c
mov h, b
shld iod
ret
;transl ate the sector
mov h, b
mv |,c
inx h ;in case of no translation
nmov a,d
ora e
rz
xchg
dad b ; point to physical sector
mov |, m
mvi h, O
141
Information Herein is Proprietary to Digital Research.)

i nsure good sel ect

#in <c

MP/ M User's Qi de

0223

0224
0226

0229

022b
022e
022f
0231
0232

0233
0235
0238
0239

023a

023c
023f

0242
0245
0246
0248
024a
024d
024f

0250
0252

0255
0257
0258

025a
025b
025d
025f

0262

(Al

c9

r ead:
et
c32b2

wite:
0:1073

set func:

21bcO2
7e
e6f 8

b

77
€620
2l bf 2
b6

77

wai tio:
CeMa
rewait:

cd9302
cda002
3aba®?
b7
3ebb
0602
c25502
d379
78
d37a
c35al

i odrl:
d389
78
d38a
wai t O
ch
0Ce83
| ed
cdf af f
c

Information Herein is Proprietary to Digital

ret

:read next disk record (assum ng disk/trk/sec/

mvi c,readf ;set to read function

jmp setfunc

disk wite function
mvi c,witf

set function for next i/o (conmand in reg-c)

I xi h,iof ;10 function address

nmv a, m ;get it to accunul ator for
ani 1111%$1000b ; renove previ ous comma
ora c ;set to new conmand

mv ma ;replaced in iopb

single density drive 1 requires bit 5 on in se

mask the bit fromthe current i/o function
ani 0010$0000b mask the di sk sel ect

I xi h,ios raddress the sector se
ora m ; sel ect proper disk ba
mv ma :set disk select bit o

mvi c,retry

start the i/o function and wait fok-

call intype ;in rtype

call inbyte ; cl ears the controller
| da dbank ; set bank fl ags

ora a ;zero if drive 0,1 and

mvi a,iopb and O fh;low address for
nmvi b,iopb shr 8

i opb
; hi gh address for iopb

jnz iodrl ;drive bank 17

out ilow ;| ow address to contro
mov a,b

out ihigh ; hi gh address

jmp waitO ;towait for conplete

cdrive bank 1
out il owt1l0h
mov a,b

out i high+l oh

88 for drive bank 10

push b ; save retry count

mvi C, poll ; function pol

nmvi e, pldsk ; device is disk

call xdos

POP b ; restore retry counte

142
Resear ch.)

conpl etion

mas

;max retries before permerror

MP/ M User's Qi de

0263 cd9302

0266 fe02

0268 ca8602
026b '
026¢

b7
c28c2

cda002
17
da8602
| f
e6fe
c28c

026f
0272
0273
0276
0277
0279

027c c9

p
cdad02

€604
c8
3eff
c9

027d
0280
0282
0283
0285

ol dsk:

wr eady:

0286
0289

cda002
c38c2

WwWerror:

t

028c Od
028d c23c2

(Al

rycount:

| nformati on

check io conpletion ok

cal |

00 unlinked i/o conplete,
10 di sk status changed

cpi
|4
nmust
ora
j nz

cal |
r al
jcC
rar
ani

i ntype ;must be 1o conplete
01 linked i/0 com

11 (not used)

10b ; ready status change?

wr eady

be 00 in the accumul at or

a

Wer r or :sonme ot her condition,
check i/o error bits

i nbyte

wr eady ;unit not ready

11111110b ;any other errors? (d

Wer r or

j nz

r ead
r et

cal |
ani
rz

mvi
ret

paH
jnp

decr
j nz

Herein is Proprietary to Digital

or wite is ok, accunul ator contains zero

i nst at ;get current
i ordy ; operation co
; not done
a,0fh ; done flag
;to xdos
;not ready, treat as error for now
i nbyt e ;clear result byte
t rycount
;return hardware mal function (crc, track, seek
the nds controller has returned a bit in each

of the accumul ator, corresponding to the condi

0 - del et ed data (accepted as ok above)
1 - crc error
2 - seek error
3 - address error (hardware mal function)
4 - data over/under flow (hardware nal fu
5 - wite protect (treated as not ready)
6 - wite error (hardware mal function)
7 - not ready
(accurul ator bits are nunbered 7 6 54 3 2 10
regi ster c contains retry count, decrenent 'ti
c
rewait ;for another try
cannot recover fromerror

143
Resear ch.)

MP/ M User's Qi de

0290 3eO
0292 c9

0293
0296 b7

0297 c29dCe.

029a db79

029c c9

029d db89 intypl:
029f c9

02a0 3aba®2i nbyt e:

02a3 b7

02a4 c2aa®?

02a7 db7b

02a9 c9

02aa db8b i nbytl:
02ac c9

02ad 3abaQ?i nstat:
02bO b7
02bl c2b7Q2
02b4 db78
02b6 c9
02b7 db88 i nstal:
02b9 c9
02ba 00 dbank

i opb:
02bb 80
02bc 04 i Of :
02bd 01 i on:
02be 02 i ot:
02bf 01 i 0S:

02cO 0000 i od:
sel $t abl e:

02c2 00300030

(Al

3abaCﬁintype:

mvi a,l ;error code
ret
i ntype, i nbyte, instat read drive bank 00 or
| da dbank
ora a
jnz intypl ;skip to bank 10
in rtype
ret
in rtype+10h ;78 for 0,1 88 for 2,
ret
| da dbank
ora a
jnz inbytl
in rbyte
ret
in rbyt e+10h
ret
| da dbank
ora a
jnz instal
in dst at
ret
in dst at +10h
ret
data areas (nust be in ram
db 0 ;disk bank 00 if drive 0,1

: 10 if drive 2,3

;1 0 paraneter bl ock
db 80h ;normal i/0 operation
db r eadf 10 function, initial read
db 1 :nunber of sectors to read
db 2 :track nunber
db 1 : sector nunber
dw $-$ i 0 address
i f sql
db 00h, 30h, 00h, 30h ; drive select
endi f
i f dbl
db 00h, 10h, 00h, 30h ; drive select
endi f
i f mac and sgl

144

Information Herein is Proprietary to Digital

Resear ch.)

1

MP/ M User's Qi de

02c6
02c6
02ca
02ce
02d2
02d6
02da
02de
02e2
02e6
02ea
02ee
02f 2
02f 6
02f a
02fe
0302
0306

(Al

15030000
00000000
2f GB06CB
ce03af &3
15030000
00000000
2f GB06CB
f d03de3
15030000
00000000
2f GB06CB
2cAdHA
15030000
00000000
2f GB06CB
5bHA3cHA

di sks

di skdef
di skdef 1
di skdef 2,
di skdef 3

endef
endf f

i f

nundi sks
0,1, 26, 6, 1024, 243, 64, 64, 2

eoNeoNe

mac and dbl

;generate dri

Information Herein is Proprietary to Digital

di sks nundi sks ;generate dr
di skdef 0, 1,52,, 2048, 243, 128, 128,2,0
di skdef 1,0
di skdef 2,1, 26, 6, 1024, 243, 64, 64, 2
di skdef 3,2
endef
endi f
i f asm
dpbase equ $; base of disk paramb
dpeO dw xIt QO 0000h ;translate table
dw 0000h, 0000h :scratch area
dw dirbuf, dpbO ;dir buff, parm bl ock
dw csvQ al vO : check, alloc vectors
dpel: dw xItl,0000h ;translate table
dw 0000h, 0000h :scratch area
dw dirbuf, dpbl ;dir buff, parm bl ock
dw csvl, al vl :check, alloc vectors
dpe2: dw xlt2,0000h ;translate table
dw 0000h, 0000h :scratch area
dw dirbuf, dpb2 ;dir buff, parm bl ock
dw csv2,alv2 :check, alloc vectors
dpe3: dw xIt 3, 0000h ;translate table
dw 0000h, 0000h :scratch area
dw dirbuf, dpb3 ;dir buff, parm bl ock
dw csv3, alv3 :check, alloc vectors
dpbO equ $; di sk param bl ock
endi f
i f asm and dbl
dw 52 ;sec per track
db 4 : bl ock shift
db 15 : bl ock mask
db 0 cextnt mask
dw 242 . disk size-1
dw 127 ;directory max
db 192 ;allocO
db 0 ;al | ocl
dw 32 : check size
dw 2 ; of f set
x1lto equ O ;transl ate table
dpbl equ dpbO
xI'tl equ x1to
dpb2 equ $
145

Resear ch.)

MP/ M User's Qi de

0306
0308
0309
030a
030b
030d
030f

0310
0311
0313

0315

0315
0316
0317
0318
0319
031a
031b
031c
031d
03l e
031f
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
032a
032b
032c
032d
032e

endi f
i f
| a0O dw
03 db
07 db
00 db
f 200 dw
3f 0O dw
cO db
00 db
1000 dw
0200 dw
endi f
i f
x1lto equ
endi f
i f
xI't2 equ
endi f
i f
01 db
07 db
(@] db
13 db
19 db
05 db
b db
11 db
17 db
03 db
09 db
o db
15 db
02 db
08 db
Ce db
14 db
| a db
06 db
Cc db
12 db
18 db
04 db
a db
10 db
16 db
endi f

(Al

i f

Information Herein is Proprietary to Digital

asm
26
3

7

0
242
63
192
0
16
2

sec per track
bl ock shift

bl ock nask
extnt mask

di sk size-1

;directory max

rall ocO

cal | ocl

check size

- of f set

asm and sgl

$

asm and dbl

$

asm
1
7
13
19
25
5
11
17
23
3
9
15
21
2
8
14
20
26
6
12
18
24
4
10
16
22

asm and sgl

146

Resear ch.)

MP/ M User's Qi de

0306
0315
0306
0315
0306
0315

032f
032f

03af
03ce
03de
03fd

040d
042c
043c
045b
046b
013c

046b

046¢

(Al

al vO
cSVO
al vl :
csvl:

dpbl
x|t
dpb2
xlt2
dpb3
xlt3

dpb3
xlt3

begdat
di r buf:

al vo:
cSVO
al vl :
csvl :

al v2:
csv2:
al v3:
csv3:
enddat
datsi z

equ dpbO
equ x1lto
equ dpbO
equ x1lto
equ dpbO
equ x1lto
endi f

i f asm and dbl
equ dpb2

equ xlt2

endi f

if asm

equ $

ds 128 ;directory access buff
endi f

if asm and sgl

ds 31

ds 16

ds 31

ds 16

endi f

i f asm and dbl

ds 31

ds 32

ds 31

ds 32

endi f

if asm

ds 31

ds 16

ds 31

ds 16

equ $

equ $- begdat

endi f

db 0 ; this last db is reqld to
;. ensure that the hex file
;output includes the entire
. di skdef

end
147

Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
APPENDI X J: MP/ M DDT Enhancenents

The foll owi ng commands have been added to the MP/ M
debugger to provide a function simlar to CP/Ms SAVE
command and to sinplify the task of patching and debuggi ng PRL
progr amns.

W WRI TE DI SK

The purpose of the WRITE DI SK command is to provide
the capability to wite a patched programto disk. A single
paraneter imediately follows the "W which is the nunber of
sectors (128 bytes/sector) to be witten. This paraneter is
entered i n hexadeci nal .

V: VALUE

The purpose of the VALUE command is to facilitate use of
the WRI TE DI SK commtnd by conputing the paranmeter to follow the
"W. A single paraneter immediately follows the 'V which is the
NEXT | ocation following the |ast byte to be witten to disk.

Normal ly a user would read in a file, edit it, and then
wite it back to disk. The read command produces a val ue for
NEXT. This value can be entered as a paraneter folllowitig the
"V command and the nunber of sectors to be witten out using
the "W conmand will be conputed and di spl ayed.

N: NCRVALI ZE

The purpose of the NORVALI ZE command is to relocate a
page rel ocatable file which has been read into nenory by the
debugger. To debug a PRL programthe user would read it in
with the 'R command and then use the "N commuand to rel ocate
it within the nenory segnment the debugger is executing.

B: Bl TMAP BI T SET/ RESET

The purpose of the BITMAP BI T SET/ RESET command is to
enabl e the user to update the bitmap of a page relocatable file.
To edit a PRL file the user would read the file in, nmake
changes to the code, and then determ ne the bytes which needed
rel ocation (E.G the high order address bytes of junp
instructions). The 'B' command woul d then be used to update
the bit map. There are two paraneters specified, the address
to be nodified (0100H is the base of the program segnent),
followed by a zero or a one. A value of one specifies bit
setting.

148
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Cuide
APPENDI X K: Page Rel ocatable (PRL) File Specification

Page relocatable files are stored on di skette in
the follow ng format:

Addr ess: Cont ent s:

0001- 0002H Program si ze

0004- 0005H M ni mum buffer requirenments (additional nenory)
0006- OCFFH Currently unused, reserved for future allocation

0100H + Program size = Start of bit map

The bit map is a string of bits identifying which bytes
are to be relocated. There is one bit nap byte per 8 bytes of
program The nost significant bit (7) of the first byte of
the bit map indicates whether or not the first byte of the
programis to be relocated. A bit which is on indicates that
relocation is required. The next bit, bit(6), of the first
byte of the bit map corresponds to the second byte of the
pr ogr am

149
(AI'l Information Herein is Proprietary to Digital Research.)

MP/ M User's Qi de
| NDEX

Abort (~c) , 5

ABCRT, 5, 16

Abort Specified Process, 80
Absol ute Menory Request, 62
ABTPB, Abort Paraneter Bl ock, 80
Access Drive, 51

APB, Assign Paraneter Bl ock, 74
ASM Assenbl er, 10

Assi gn Console, 74

ATTACH, 5

Attach Console, 72

Bank Switched Menory, 102, 112
BDOS, 29-52, 108, 118

Bl S, 96-101

BNKBDOS, 19, 109

Boot, 97

Call Resident System Procedure, 76
Cal li ng Conventions, 21

Circular Queue, 54

CLI, Conmand Line Interpreter, 20
CLI CMD, CLI Command Paraneter, 75
Close File, 38

Condi ti onal Read Queue, 68
Conditional Wite Queue, 69

Coni n, 98
Conout, 98
CONSOLE, 8

Console I /O Direct, 32
Consol e I nput, 29, 30

Consol e Nunber, 78

Consol e Qutput, 30, 31
Consol e Status, 35

CONSOLE. DAT, 19

Const, 98

Control Characters, 6

CPB, Call Paraneter Block, 76
Create Process, 71

Date and Tine, 15

DDT, Dynam c Debuggi ng Tool, 12, 148
Del ay, 70

Delete File, 40

Del ete Queue, . 67

Detach (~d), 5

Det ach Consol e, 73

DR, File Directory, 10

Direct Console I/OQ 32

D skette Organi zation, 94

150

(AI'l Information Herein is Proprietary to Digita

Resear ch.)

MP/ M User's Qi de

Di spatch, 70
DVA Address, 43
DSKRESET, 8
DUWP, 11, 122

ERA, ERAQ Erase File(s), 9
Exi tregi on, 103

FCB, File Control Block, 25, 26
File Attributes, 45

File Structure, 24

Fl ag Assignnents, 116

Flag Wait, 65

Flag Set, 65

Free Drive, 52

GENHEX, 11

GENMOD, 11

GENSYS, 110

Get ' Consol e Number, 78
CGet Date and Tinme, 79

Hone, 98

| dl e, 104
I nterrupt Service Routines, 105

LDRBI OS, 86

Line editing, 6
Li nked Queue, 55
List, 98

Li st Qutput, 31
Li stst, 100
LOAD, 11

Login Vector, 42

Make File, 41

Make Queue, 66

Maxconsol e, 103

Menory Al l ocation, 15

MD, Menory Descriptor, 62
Menory Free, 64

Menory Segnent Base Page, 120
Menory Structure, 18

MPMLDR, 86, 114

MPVSTAT, 13

OoDCS, 108
Open File, 37
Open Queue, 67

Page Rel ocatable Programs, PRL, 81, 149
Parse Fil enane, 77

151

(AI'l Information Herein is Proprietary to Digita

Resear ch.)

MP/ M User's Qi de

PFCB, Parse Filenane Control Block, 77
PI P, Peripheral Interchange Program 10
Pol |, 64

Pol | devi ce, 102

Print String, 33

PD, Process Descriptor, 59

Process Desciptor Address, 79

Process Nam ng Conventions, 61

Process Priority, 72, 117

PRLCOM 11

QCB, Queue Control Block, 54-57
Queue, 53
Queue Nam ng, 58

Raw Consol e | nput, 30

Raw Consol e Qut put, 31

RDT, Rel ocatable DDT, 12

Read, 100

Read Consol e Buffer, 34

Read Fil e Random 47

Read File Sequential,'40

Read Queue, 68

Read/ Only Vector, 45

Rel ocat abl e nmenory Request, 63

REN, Renane File, 10, 42

Reset Di sk System 8, 36

Reset Drive, 51

Resi dent System Procedure, 76, 83
Return Process Descriptor Address, 79
RSP, Resident System Process, 19, 83, 108

SCHED, Schedul er, 16
Search for First, Next, 38, 39
Sectran, 101

Sel menory, 102

Send CLI Conmmand, 75
Sel dsk, 99

Sel ect Di sk, 36

Set Console, 73

Set DMA Address, 43
Set Priority, 72

Set Random Record, 50
Setdma, 100

Set sec, 99

Settrk, 99

SPOCOLer, 15

Startcl ock, 102
STAT, Status, 11

St opcl ock, 103
STOPSPLR, 15

SUBM T, 10

System Data, 107

152

(AI'l Information Herein is Proprietary to Digital

Resear ch.)

MP/ M User's Qi de

System Dat a Address, 78
System Fil e Conponents, 107
System Generation, 110
System Reset, 29

SYSTEM DAT, 19

Systemnit, 103

Text Editing, ED, 10

Term nat e- Process, 71
Tick, 106

Time, 15

Ti me Base Managenent, 106
TOD, Date and Tinme, 15, 79
TPA, 20

TYPE, 9

UQCB, User Queue Control Bl ock, 57

USER, get/set user code, 8, 46
User Queue Control Bl ock, 57
USER, SYS. STK, 19

Ver si on Number, 35

Whoot, 98

Wite, 100

Wite File Random 48, 52
Wite File Sequential, 41
Wite Protect D sk, 44
Wite Queue, 69

XDos, 19, 108, 119
XIos, 19, 87
XI CS External Junp Vector, 106

(AI'l Information Herein is Proprietary to Digital

153

Resear ch.)

