ZASM

TDL Z80 Rel ocati ng/Li nki ng Assenbl er

User's Manual

Revi sion 2.2
Cct ober 15, 1977

Witten by Neil J. Colvin

Copyright 1976, 1977 by Techni cal Design Labs, Inc.

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual
Chapter 1: Introduction

Chapter 1

| nt roducti on

The TDL Z80 Rel ocating/Linking Assenbler is the synbolic assenbly program for
the Z80. It is a two-pass assenbler (requiring the source program to be read
twice to conplete the assenbly process) designed to run under the TDL system
noni t or. It is therefore device independent, allowing conplete user
flexibility in the selection of standard i nput and output device options.

The assenbler perforns many functions, nmaking nachine |anguage programm ng
easier, faster, and nore efficient. Basically, the assenbler processes the
Z80 programmer's source program statenments by transl ating mmenoni ¢
operation codes to the binary codes needed in nachine instructions, relating
synbol s to nuneric val ues, assigning relocatable or absolute nmenory addresses
for program instructions and data and preparing an output listing of the
program whi ch i ncludes any errors encountered during the assenbly.

The TDL Z80 Assenbler also contains a powerful macro capability which allows
the programmer to create new | anguage el enents, thus expanding and adapting
the assenbler to perform specialized functions for each programm ng j ob.

In addition, the TDL Assenbler provides the facilities required to specify
program nodul e |inkages, alloning the TDL Linkage Editor to link
i ndependently assenbled program nodules together into a single executable
program This allows for the nodular and systematic devel opnent of |arge
prograns, and for easy sharing of comon program nodul es anong different
prograns.

St at ement s

Assenbl er prograns are usually prepared on a termnal, with the aid of a text
editing program A program consists of a sequence of statenents in the
assenbly |anguage. Each statenent is normally witten on one line, and
termnated by a carriage return/line feed sequence. TDL assenbler statenents
are free-format. This nmeans that the various statement elenents are not
pl aced at a specific nunbered colum on the line.

There are four elenments in an assenbler statenment (three of which are
optional), separated from each other by specific characters. These elenents
are identified by their order of appearance in the statenent, and by the
separating (or delimting) character, which follows or precedes the el enents.

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 2
Chapter 1: Introduction

Statenments are witten in the general form

| abel : operat or oper and, operand ; comment <CR-LF>

The assenbler converts statenents witten in this form into the binary
machi ne instructions.

| nstructi on Formats

The Z80 wuses a variable Ilength instruction format. A given nachine
instruction may be one, two, three, or four bytes long depending on the
speci fic machi ne code and on the addressing node specified. The TDL assenbl er
automatically produces the correct nunmber of machine code bytes for the
particul ar operation specified. Appendix A specifies the various machi ne code
menoni cs accepted by the assenbler and the format of the operands required.

St at ement For nat

As previously described, assenbler statenents consist of a conbination of a
| abel, an operator, one or nore operands, and a coment; the particular
combi nati on depends on the statenent usage and operator requirenents.

The assenbler interprets and processes these statenents, generating one or
nore binary instructions or data bytes, or perform ng sone assenbly contro
process. A statenment nust contain at |east one of these elenents, and may
contain all four. Sone statenents have no operands, while others nay have
many.

Statenent |abels, operators, and operands nay be represented nunerically or
synbolically. The assenbler interprets all synmbols and replaces them with a
nuneri c (binary) val ue.

Synbol s

The programmer may create synbols to use as statenent |abels, as operators,
and as operands. A synbol nmay consist of any conbination of from one to six
characters fromthe follow ng set:

The 26 letters: A-Z
Ten digits: 0-9
Three special characters:

$ (Dol lar Sign)
% (Percent)
(Peri od)

These characters constitute the Radi x-40 character Set (SO naned because it
contains only 40 characters). Any statenent character which is not in the
Radi x-40 set is treated as a synbol delimter when encountered by the
assenbl er.

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 3
Chapter 1: Introduction

The first character of a synbol nust not be nuneric. Synbols may al so not
contai n enbedded spaces. A synbol may contain nore than six characters, but
only the first six are used by the assenbler.

The TDL assenbler wll accept prograns witten using both upper and | ower
case letters and synbols. Lower case letters are treated as upper-case in
synmbol s. Additional special characters and |ower case letters elsewhere are
t aken unchanged.

Label s

A label is the synbolic nane created by the programmer to identify a
statenent. If present, the label is witten as the first itemin a statenent,
and is termnated by a colon (:). A statenent nay contain nore than one
| abel, in which case all identify the sanme statenment. Each |abel mnust be
followed by a colon, however. A statenment may consist of just a label (or
| abel s), in which case the |abels(s) identifies the foll ow ng statenent.

When a synbol is used as a label, it specifies a synbolic address. Such
synbols are said to be defined (have a value). A defined synbol can reference
an instruction or data byte at any point in the program

A label can be defined with only one value. If an attenpt is nade to
redefine a label with a different value, the second value is ignored, and an
error is indicated.

The following are | egal |abels:

$SUM
ABC:
B123:
VHERE%

The following are illegal:

30QRT: (First character nust not be a digit)
AB CD: (Cannot contain enbedded space)

If too many characters are used in a label, only the first six are used. For
exanpl e the | abel ZYXWWUTSR: is recogni zed by the assenbler to be the sane as
ZYXWUABC.: .

928[’ ators

An operator may be one of the menonic nmachine instruction codes, a
pseudo- operation code which directs the assenbly process, or a user defined
code (either pseudo-op or macro). The assenbl er pseudo-op codes are described
in Chapter 3 and summarized in Appendi x B.

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 4
Chapter 1: Introduction

The operator elenment of a statenent is terminated by any character not in the
Radi x-40 set (usually a space or a tab). If a statenent has no |abel, the
operator nust appear first in the statenent.

A synbol used as an operator nust be predefined by the assenbler or the
progranmmer before its first appearance as an operator in a statenent.

Oper ands

Operands are usually the synbolic addresses of the data to be accessed
when an instruction is executed, the nanes of processor registers to be used
in the operation, or the input data or argunments to a pseudo-op or nacro
i nstruction.

In each case, the precise interpretation of the operand(s)ls dependent on the
speci fic statenment operator being processed. Operands are separated by
commas, and are term nated by a senmicolon or a carriage return/line feed.

Synbol s used as operands nust have a value predefined by the assenbler or
defined by the programmer. These may be synbolic references to previously
defined | abels where the argunents used by this instruction are to be found,
or the synbols may represent constant val ues or character strings.

Comment s

The programmer nmay add a comment to a statement by preceding it with a
semcolon (;). Conmments are ignored by the assenbler but are useful for
docunentation and |ater program debugging. The coment is termnated by the
carriage return/line feed at the end of the statenment. In certain cases (e.qg.
condi tional assenbly and macro definitions), the use of the left and right
square brackets ([]) should be avoided in a comment as it could affect the
assenbly process.

An assenbl er statenment may consist of just a comment, but each such statenent
must begin with a sem col on

St at enent Processi ng

The assenbler nmintains several internal synbol tables for recording the
nanes and val ues of synbols used during the assenbly. These tables are:

1. Macro Table - This table contains all nmacros. It is initially enpty, and
grows as the programer defines nacros.

2. p- Code Table - This table contains all of the machi ne operation
mmenoni cs (op-codes), the assenbler pseudo-operations (pseudo-ops), and
user defined operators (.OPSYNs). It initially contains the basic
op- codes and pseudo-ops, and grows as the progranmer provides additional
definitions.

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 5
Chapter 1: Introduction

3. Synbol Tabl e - This table contains all programer-defined synbols
ot her than those described above. It initially contains the standard
regi ster names, and then grows as new synbols are defined.

Internally, all of these tables occupy the sane space, so that all of the
avai |l abl e space can be used as required.

Order of Synbol Eval uation

The following table shows the order in which the assenbler searches the
tables for a synbol appearing in each of the statenent fields:

Label Field:
1. Synbol followed by a colon. If no colon is found, no l|abel is
present.

Qperator Field:

Macr o

Machi ne oper at or
Assenbl er operat or
Synbol

PR

Operand Fi el d:

1. Nurber
2. Macr o
3. Synbol
4. Machi ne oper at or

Because of the different table searching orders for each field, the sane
synmbol could be used as a | abel, an operator, and a nacro, with no anbiguity.

Pr ogr anmer - Defi ned Synbol s

There are two types of progranmer-defined synbols: |abels and assignnents. As
previously described, |abels are generated by entering a synbol followed by a
colon (e.g. LABEL:). Synbols wused as labels cannot be redefined with a
different value once they have been defined. The value of a label is the
val ue of the location counter at the tine the |abel is defined.

Assignments are used to represent, synbolically, nunbers, bit patterns, or
character strings. Assignnents sinplify the program devel opnent task by
allowing a single source program nodification (the assignnent statenent) to
change all uses of that nunber or bit pattern throughout the program Synbols
given values in an assignnent statenent may have new values assigned in
subsequent statenments. The current value of an assigned synbol is the |ast
one given to it.

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 6
Chapter 1: Introduction

A synbol may be entered into the synbol table with its assigned val ue by
using a direct assignnment statenment of the form

synmbol = value (; or CRLF)

where the value may be any valid nuneric val ue or expression.

The val ue assigned to the synbol may subsequently be changed by anot her
di rect assignnent statenent.

The following are valid assignnment statenments

VALUE1 = 23
SI ZE = 4*36
ZETA = SI ZE

If it is desired to fix the value assigned to a synbol so that it cannot
subsequently be redefined, the direct fixed assignnent statenment should be
used. This statenment is the sanme as the direct assignnent statenent except
that the synbol is followed by two equal signs instead of one. For exanple:

FI XED == 46
NEW/AL == SI ZE

Assenbl y-rine Assi gnnents

It is often desirable to defer the assignnent of a value to a synbol
until the assenbly is actually underway (i.e. not specify the value as part
of the source programj. This is especially useful in setting program origin,
buffer sizes, and in specifying paraneter values which will be used to
control conditional assenbly pseudo-ops.

The TDL Assenbl er provides the ability to specify synbols with values to
be determ ned at assenbly tine, and the mechanism by which the values nmay be
interactively defined. To specify an assenbly-tine assignnent, the follow ng
format is used:

synbol =\ [dtextd]

where the dtextd in brackets indicates the optional specification of a
nmessage to be output on the console device at assenbly tinme before requesting
the synbol's value. The d represents a text delimter, and my be any
character (other than a space or tab) which is not contained in the text
itself. The text may contain carriage return/line feed sequences which would
result in a nulti-line message on the console.

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 7
Chapter 1: Introduction

After the optional nessage is output on the console, a colon (:) is
output to indicate that the assenbler is waiting for the desired value to be
entered. The value which is to be assigned to the synbol is then input on the
console device and the assenbly continues with the synbol having the
specified value. This interaction only occurs during the first assenbly pass.
The synbol's val ue remai ns unchanged duri ng subsequent passes.

Only nuneric values may be entered through the console in this fashion
The nunber which is input nust conformto the sane rules as any other nunber
used in the assenbly source program and nmay be followed by an optional radix
nodi fier (see the section on Nunbers below). The nunber is assuned to be
deci mal unl ess foll owed by a radix nodifier

The value being input is not processed until a carriage return is
entered. Any mstyped character nay be deleted by the use of the DELETE (or
RUBQUT) key (which will echo the deleted character), and the entire nunber
may be deleted by entering CTL-U (sinultaneous use of the CTRL and the U
key). Any character which is input but is not valid as part of a nunmber wll
not be echoed and will be ignored.

The foll owi ng are exanpl es of assenbly-tine assignnment statenents:

BUFSI Z =\"BUFFER SI ZE (50 TO 500 CHARACTERS)”
DI SK =\"VERSI ON (0- PAPER TAPE 1-Di SK)"

Assenbl y-tine assignnent statenents are simlar to direct fixed assignnents
(==) in not allowing the synbol to be redefined el sewhere in the program

Local and d obal Synbol s

When assenbling a large program it is sonetines difficult to keep track
of the synbols used for local data references and branching. To facilitate
nmodul ar progranming, the TDL assenbler provides for both global and | ocal
synmbols within a single program Al synbols which start with two periods are
defined as being local, and all other synbols are global. For exanple, the
following are valid | ocal synbols:

. . ABCD:
.. 1234:
A particular occurrence of a local synbol is only defined within the
boundaries of its enclosing global synbols. For exanple, in the follow ng
sequence of [|abel definitions, the synbol ..SYM is only defined (and can

only be referenced) within the program between the definition of GOBl: and
GLOoB2:
GLOBL:
. SYML:
GLOB2:

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 8
Chapter 1: Introduction

This localization of synbol definitions allows the sane synbol to be used
unanbi guously nore than once in the program It also sinplifies program
understandability by inmmediately differentiating between |ocal and globa
synbol s.

In addition to |abels, any other programer-defined synbol nay be
specified as local (e.g. macros) in the same nmanner Because of the | ocal
usage of these synbols, they do not appear in the synbol table listing or in
the synbol table optionally punched on the object tape.

External, Internal, and Entry Synbols

Progranmer - defined synbols may also be used as external, internal, and
entry point synbols in addition to their appearance as labels or in
assi gnnent statenents.

Synbol s which fall into one of these three groups are different from
ot her synmbols in the program because they can he referenced by other,
separately assenbl ed, program -nodul es. The nmanner in which they are used
depends on where they are located: in the programin which they are defined,
or in the programin which they are a reference to a synbol defined
el sewhere.

I f the synbol appears in a programin which it is defined, it nust be
decl ared as being available to other progranms by the use of the pseudo-ops
| NTERN or ENTRY, or through the use of the delimters "::", “=","==", or
“=\:" in their definition statements. These special delimters are exactly
equi val ent to the sequence:

. I NTERN synbol
synbol <delimter without colon (:)>

In each case, the delimter is the normal synbol definition operator (: =,
==, =\) with an additional colon (:) added to indicate an internal synbol
definition

If the synbol is located in a programin which it is a reference to a
synbol defined in another program it nust be declared as external by the use
of the EXTERN pseudo-op, or through the use of the "#" synbol nodifier. This
speci al synmbol nodifier is appended to the end of any synbol to declare it
external. For exanple, the statenent:

LXI H, SYMBOL#
is exactly equival ent to:

. EXTERNAL SYMBOL
LXI H, SYMBCOL

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 9
Chapter 1: Introduction

Nunber s

Nunbers used in a program are interpreted by the assenbler according to a
radi x (nunmber base) specified by the progranmer, where the radix may be 2
(binary), 8 (octal), 10 (decinmal), or 16 (hexadecimal). The programer uses
the .RADI X pseudo-op to set the radix for all nunbers which follow If the
.RADI X statenent is not used, the assenbl er assunmes a radi x of 10 (decimal).

The radix may be changed for a single nunber by appending a radix
nodifier to the end of the nunmber. These nodifiers are B for binary, 0 or Q
for octal, D or . (period) for decimal, and H for hexadecimal. To specify the
hexadeci mal digits, the letters A through F are used for the values 10
through 15 decimal. Al nunbers, however, nust begin with a nuneral. For
exanple, the following are valid nunbers

10 10 in current radix

10. 10 deci nal

10B 10 binary (2 decinal)

OFFH FF hexadeci mal (255 decinmal)

The followi ng are invalid nunbers:

14B 4 is not a binary digit
FFH t he nunber nust start with a nuneral

Arithnetic and Logi cal Operations

Nunbers and defined synbols nmay be conbined using arithmetic and | ogical
operators. The foll owi ng operators are avail abl e:

+ Add (or unary plus)

- Subtract (or unary m nus)

* Multiply

/ Integer division (remainder discarded)
@ | nteger remai nder (quotient discarded)
& Logi cal AND

I Logi cal inclusive OR

AN Logi cal exclusive OR (or unary radi x change)
Logi cal unary NOT

< Left binary shift

> Right binary shift

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 10
Chapter 1: Introduction

The assenbler conputes the 16-bit value of a series of nunbers and defined
synmbol s connected by these operators. Al results are truncated to the left,
if necessary. Two's conplenent arithnetic is used, with the nmeaning of the
sign bit (the nost significant bit) being left to the progranmer. This neans
that a nuneric value nay be either between 0 and 65,535 or between -32,768
and 32,767, depending on whether it is signed or unsigned.

These conbinations of nunber and defined synmbols with arithnetic and
| ogi cal operators are called expressions. Wen evaluating an expression, the
assenbler perforns the specified operations in a particular order, as
fol |l ows:

Unary minus or plus (- +)

Unary radi x change ("B ~O "Q "D "H)
Left and right binary shift (< >)
Logi cal operators (& ! ™ #)

Mul tiply/Divide (* /)

Remai nder (@

Add/ Subtract (+ -)

NoghkwbE

Wthin each of the above groups, the operations are perforned from left to
right. For exanple, in the expression:

- ALPHA+3* BETA/ DELTA&"H55

the unary minus of ALPHA is done first, then DELTA is ANDed wth a
hexadeci mal 55, then BETA is nultiplied by 3, the result of which is divided
by the result of the AND, and finally, that result is added to the negated
ALPHA.

To change the order in which the operations are perforned, parentheses
may be used to delimt expressions and to specify the desired order of
comput ati on. Each expression within parentheses is considered to be a single
nuneric value, and is conpletely evaluated before it is used to conpute any
further values. For exanple, in the expression:

4* (ALPHA+BETA)
the addition of ALPHA to BETA is perfornmed before the nultiplication.

Radi x Change Oper at or

The radi x change operator is used to tenporarily change the radix in
which a followi ng nunber or expression is to be interpreted. It is witten as
an up-arrow (") followed bythe radix nodifier of the desired radi x. These
nodi fiers are the sanme as those used to specify the radix of a single nunber
(B-binary, 0 or Qoctal, Ddecinmal, and H hexadecimal). The radi x change only
affects the imedi ately followi ng nunber or parenthesized nuneric expression.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 11
Chapter 1: Introduction

For exanple, all of the following are valid representations of the deci nal
nunmber 33:

33.
33D

AD33

AD(10* 3+3)

AD(10* THREE+THREE)
A D10*AD3+" D3

but the following is not a representation of decimal 33 if the prevailing
radi x i s not decimal:

A"D3*10+3

because the radi x change only affects the value imediately following it, in
this case 3.

Bi nary Shifting

The binary shift operators (< left, >right) are used to logically shift
a 16-bit value to the left or right. The nunber of places to be shifted is
specified by the value following the shift operator. If that value is
negative, the direction of the shift is reversed. For exanple, all of the
foll owi ng expressions have a val ue of 4 decinal:

8>1
1<2
2>-|

One- byt e Val ues

Al'l of the above discussion has been based on the conputation of 16-bit
(two byte) nuneric values. Many of the Z80 operations require an 8bit (one
byte) value. Since all conputations are done as a 16-bit value, an operation
calling for only eight bits will discard the high order eight bits (the nobst
significant byte) of the value. If the byte discarded is not either zero or
m nus one (all one bits), a warning will be given on the assenbly I|isting.

Char acter Val ues

To generate a binary val ue equivalent to the ASCI| representation of a
character string, the single (') or double (") quotation mark is used. The
character string is enclosed in a pair of the quotation marks. For exanpl e,
all of the following are valid character val ues:

“ An
“ Bn

n AB"
' CD

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 12
Chapter 1: Introduction

Not e that whichever quotation mark is used to initiate the character string
it nmust also be used to termnate it. If the string is |longer than two bytes,
it is truncated to the left. Each 7-bit ASCI | character is stored in an 8-bit
byte, with the high-order bit set to zero.

A character string of this type may be used wherever a nuneric value is
al | owed.

A single quote may be used inside a string delimted by double quotes,
and vice-versa. If it is necessary to use a single quote within a string
delimted by single quotes, two single quotes nust be used. The sane is true
for a double quote in a string delimted by doubl e quotes.

Locati on Counter Reference

The | ocation counter nmay be referenced as a nuneric 16-bit value by the
use of the synmbol . (period). The value represented by . is always the
| ocation counter value at the start of the current assenbly |anguage
statenent. For exanpl e:

JMWP

is an effective error trap, junping to itself continuously.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 13
Chapter 2: Addressing and Rel ocati on

Chapter 2

Addr essi ng and Rel ocati on

Addr ess Assi gnment

As source statenments are processed by the assenbler, consecutive nenory
addresses are assigned to the instruction and data bytes of the object
program This is done by increnmenting an internal program counter each tine a
menory byte is assigned. Sone statenments may increnent this internal counter
by only one, while others could increase it by a large anmount. Certain
pseudo-ops and direct assignnment statenments have no effect on the counter at
all.

In the program listing generated by the assenbler, the address assigned
to every statenment is shown.

Rel ocati on

The TDL Z80 Assenbler wll create a relocatable object program This
program nmay be |oaded into any part of nenory as a function of what has been
previously | oaded. To acconplish this, certain 16-bit val ues which represent
addresses within the program nust have a relocation constant added to them
This relocation constant, added when the program is l|loaded into nenory, is
the difference between the nmenory |ocation an instruction (or piece of data)
is actually loaded into, and the location it was assenbled at. If an
i nstruction had been assenbled at |ocation 100 (decimal), and was | oaded into
|l ocation 1100 (decimal), then the relocation constant wuld be 1000
(deci mal).

Not all 16-bit quantities nust be nodified by the relocation constant.
For exanple, the instruction:

LXl H, OOFFH

references a 16-bit quantity (OOFFH) which does not need relocation. However,
the set of instructions:

JZ DONE

DONE:

does reference a 16-bit quantity (the address of DONE) which nust be
rel ocated, since the physical |ocation of DONE changes dependi ng on where the
programis | oaded into nmenory.

To acconplish this relocation, the 16-bit value formng an address
reference is marked by the assenbler for later nodification by the | oader or
i nkage editor. Wiether a particular 16-bit value is so marked depends on the
eval uation of the arithmetic expression fromwhich it is obtained. A constant
value (integer) is absolute (not relocatable), and never nodified. Point
references (.) are relocatable (assuming relocatable code is being
generated), and are always nodified by the | oader or |inkage editor. Synbolic
references may be either absolute or rel ocatable.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 14
Chapter 2: Addressing and Rel ocati on

If a synmbol is defined by a direct assignnent statenment, it nmay be
absol ute or relocatabl e depending on the expression followi ng the equal sign
(=). If the synbol is a label (and relocatable code is being generated) then
it is relocatable.

To evaluate the relocatability of an expression, consider what happens
at load or linkage edit time. A relocation constant, r, nust be added to each
rel ocatable elenment, and the expression evaluated. For exanple, in the
expr essi on:

Z = Y+2* X- 3* WV

where V, W X, and Y are relocatable. Assune that r is the relocation
constant. Adding this constant to each relocatable term the expression
becones:

Z(r) = (Y+r)+2*(X+r) - 3* (W) +(V+r)

By rearrangi ng the expression, the follow ng is obtained:

Z(r) = Y+2*X-3*WV + r

This expression is suitable for relocation because it contains only a single

addition of the relocation constant r. In general, if the expression can be
rearranged to result in the addition of either of the following, it is |egal:

O*r absol ut e expression

1*r rel ocat abl e expression

If the rearrangenent results in the following, it is illegal:

n*r where nis not 0 or 1

Also, if the expression involves r to any power other than 1, it is illegal

This leads to the follow ng rules:

1. Only two values of relocatability for a conplete expression are
allowed (i.e. n*r where n = 0 or 1).

2. Division by a relocatable value is illegal
3. Two rel ocatabl e values may not be nmultiplied together.
4. Rel ocat abl e val ues may not be conbi ned by | ogical operators.
5. A relocatable value may not be logically shifted.
If any of these rules is broken, the expression is illegal and an error

nmessage i s given

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 15
Chapter 2: Addressing and Rel ocati on

If X, Y, and Z are rel ocatabl e synbols, then:

X+Y-Z is rel ocatable
X-Z is absol ute
X+7 is rel ocatable
3*X-Y-Z is rel ocatable
48X-Z is illegal

Only 16-bit quantities my be relocated. Al 8-bit values nust be
absolute or an error will be given.

Rel ocati on Bases

One of the unique capabilities of the TDL Z80 Assenbler is its ability
to handle synbolic references to separately |located areas of nenory, where
t he mappi ng of synbols to physical addresses occurs at |inkage edit time. The
synmbolic nanmes for independently |ocated nenory areas are called "relocation
bases". These relocation bases may represent ROM vs. RAM shared COVMON
areas, special nenory areas such as video refresh, nmenory mapped 1/0, etc
Wthin each subprogram each of these nenory areas is referenced by a unique
nane, with the actual allocation deferred to the link edit and | oad process.
All nmenory references within the assenbled program are relative to one of
t hese rel ocati on bases.

As each relocation base is assigned a nane in the program (through the
use of the .EXTERN pseudo-op), it is inplicitly assigned a sequentia
i dentifying nunmber. This nunber appears in the listing as part of any address
relative to that base.

Four of these relocation bases (0-3) have predefined nanmes and neani ngs,
and are treated differently at linkage edit tinme than the remainder of the
bases. Base 0 represents absolute nenory locations (i.e. it always has the
value of 0). Base 1 has the nanme .PROG and represents the program area
(maybe PROM or ROM). Most program code (and data in non-ronmed prograns) is
generated relative to this relocation base. Base 2 has the nanme .DATA and
represents the local data area for each nodule. Mst local data is defined
relative to this base. Base 3 has the nanme .BLNK. and represents the gl oba
"blank common". This relocation base is always assigned the value of the
first free byte in nmenory after the local data storage (.DATA.) and other
data rel ocation segnents by the linkage editor. Because it is always the | ast
all ocated, nodules referencing this area can be included in any order,
regardl ess of the anmount of the area they use.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 16
Chapter 2: Addressing and Rel ocati on

Rel ocati on segnents relative to bases 1 and 2 (.PROG and .DATA.) are
al ways allocated additively (i.e. after each nodule is allocated, the value
of the relocation base is increased by the size of the segnment). Al other
rel ocation bases are normally assuned to have constant values during the
al I ocation process (usually assigned by the-linkage editor).

Each synbol defined during the assenbly has a rel ocati on base associ at ed
with it. There are no limtations on inter-base references (i.e. code
relative to .PROG can freely reference data relative to .DATA). Expressions
containing synbols nust evaluate to a value relative to a single relocation
base, but may contain references to multiple relocation bases. Al relocation
base references except for the final result nust be part of sub-expressions
which evaluate to absolute values. For exanple, if T and U are synbols
relative to base 1, V and Wrelative to base 2, and X and Y relative to base
3, then the following are valid expressions:

T+(V-W (note the parentheses to make V-W a subexpressi on)

X+3
T- (V-W*U+(X-Y)

and the followi ng are invalid:
T+U (within a relocation base, the normal relocation rules apply)
T+V-W(T+V is the first subexpression,and it is mxed relocation bases)

It should be noted that conceptually, normal external synbols are sinply
rel ocation bases with a size of zero (0), and the assenbler treats them that
way. An assignnent of the form

N==P+5

where P is an external synbol, makes N a synbol whose address is relative to
P, even though P has no size. Hence, expressions of the form

5% (P-N)

where P and N have the sanme rel ocation base, are in fact valid.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 17
Chapter 3: Pseudo- Qperations

Chapter 3

Pseudo- Oper ati ons

Pseudo- operati ons (pseudo-ops) are directions to the assenbler to
perform certain operations for the progranmer, as opposed to rmachine
operations which are instructions to the conputer. Pseudo-ops perform such
functions as listing control, data conversion, or storage allocation.

Address Mbde and Origin

The TDL Z80 Assenbler normally assenbles prograns in relocatable node,
so that the resultant program can be | oaded anywhere in nenory for execution
Therefore, all prograns are assenbled assuming their first byte is at address
zero (0), because they can be relocated anywhere. \Wen desired, however, the
assenbler will generate absolute object code, either for the entire program
or just selected portions. The assenbler will also |ocate the assenbl ed code
at any address desired. The two pseudo-ops which control address node,
rel ocati on base and address origin are LOC and RELCC.

.LOC n

This statenment sets the location counter to the value n, which may be
any valid expression. If n is an absolute value, then the assenbler wll
assign absolute addresses to all of the instructions and data which follow
If nis relocatable, then relocatable addresses will be assigned, relative to
the rel ocation base of the expression.

The program is assunmed to start with an inplicit .LOC to relocatable
address zero (0) of the relocation base naned .PROG (the default relocation
base for normal prograns). A program can contain nore than one .LOC, each
controls the assignnent of addresses to the statenments following it.

To reset the program counter to its value prior to the last LOC, the
st at ement :

. RELCC

is used. This statenent restores both the value, the relocation base and the
addressing node which were in effect before the imediately preceding .LCC
If no .LOC has been done, then a . RELOC is equivalent to a:

.LOC O

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 18
Chapter 3: Pseudo- Qperations

When in rel ocatabl e addressi ng node, the assenbler will determ ne whet her
each 16-bit value is absolute or relocatable as described in Chapter 2.

Data Definition

The TDL Z80 Assenbl er provides a nunber of different pseudo-ops for
describing and entering data to be used by the program

. RADI X

When the assenbl er encounters a nunber in a statenent, it converts it to
a 16-bit binary value according to the radix indicated by the programrer. The
st at enent :

. RADI X n

where nis 2, 8 10, or 16, sets the radix to n for all nunbers which follow,
unl ess anot her RADI X statenent is encountered, or the radix is nodified by
the ~r operator or a suffix radix nodifier.

The statenent:

. RADI X 10

inmplicitly begins each assenbly program setting the initial radix to
deci mal .

. BYTE

To enter one (or nore) 8-bit (one byte) data values into the program
the statenent: .BYTEn {, n ...)

where n is any expression with a valid 8-bit value is used. Mdrre than one
byte can be defined at a tinme by separating it fromthe preceding value with
a cooma. Al of the bytes defined in a single BYTE statenent are assigned
consecutive nmenory |ocations. For exanpl e:
. BYTE 23, 4*"HOFF, BETA- ALPHA
defines three sequential bytes of data.
. WORD
To enter a 16-bit (two byte) value into the program the statenent:
.MORD nn {, nn ...}
where nn is any expression with a valid 16-bit value, is used. Miltiple

16-bit values may be defined with one . WORD st atenent by separating each from
the preceding one with a comm.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 19
Chapter 3: Pseudo- Qperations

Al'l 16-bit values defined by the .WORD pseudo-op are stored in standard
Z80 word format, |east significant byte first.

For exanple, the follow ng statenent:

WORD ALPHA, 234* BETA, “"HOEEFF

defines three sequential 16-bit values, or a total of six bytes of data.
.ASCl | ,.ASCl Z, and . ASCI S

To enter strings of text characters into the program one of the statenents:
.ASClI | dtextd | [n]

.ASCl Z dtextd | [n]

.ASCI S dtextd | [n]

is used. The d represents a text delimter, and may be any character (other
than space or tab) not contained in the text itself. Each character in the
text is converted to its 7-bit ASCII representation (with the eighth bit
zero), and stored in sequential nenory |locations. Wen the delimter
character is again encountered, the text is considered termnated (the
delimter is not stored with the string). The delimted string my be
foll owed by another delimter, and another string, and this may be repeated
as desired.

If it is necessary to include values in the text string for which no
character exists, then the second option shown above nmay be used. If in place
of a string delimter, the assenbler finds a left square bracket ([), then
the nuneric expression enclosed within it and a matching right square bracket
(]) is evaluated as an 8-bit value and stored as the next byte of the string.
These 8-bit values nay be interm xed with delimted strings as required.

It is inportant to note that tab, carriage return, and line feed are al
valid characters within a delimted text string. It is therefore possible
that a .ASCIx statenment w Il enconpass nore than one line in the source
program

The difference between the three pseudo-ops described above is in their
treatnment of the last byte generated by the statenent. The ASCI| statenent
just stores the byte. The ASCIZ statenent stores one additional byte after
the last one, a null (zero) byte to mark the end of the string in nmenory. The
.ASCI S pseudo-op sets the high-order (eighth) bit of the last byte to one to
flag the | ast byte.

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 20
Chapter 3: Pseudo- Qperations

The following are all valid ASClIx statenents:

.ASCIl /This is a string/

.ASCI Z / This is twd/ ‘ strings in one place
.ASCI S ["HOD] [”~HOA] "Message on new | i ne"
JASCHT

Message on new |ine\

. RAD40

The Radi x-40 character set for synmbols was chosen because it allows a
six character synbol to be stored in only four bytes of nmenory. To allow the
programto define data bytes in this character set, the statenent:

. RAD40 synbol 1 {, synbol2 ... }

is used. The synbol nust conform to all the rules specified for assenbler
synmbols, and is converted into the Radix-40 notation and stored in four
sequential bytes of nenory. If nultiple synbols are to be converted and
stored, each nust be separated fromthe preceding one by a coma.

St orage All ocation

The TDL Z80 Assenbler allows the progranmer to reserve single |ocations,
or blocks of nmany |ocations, for use during the execution of the program The
two pseudo-ops used for this purpose are .BLKB and .BLKW The format of the
statenent using these pseudo-ops is:

.BLKx n
where n is the nunber of storage |ocations to be reserved.

For the .BLKB pseudo-op, each storage |ocation consists of one byte, so the
above statenent will reserve n contiguous bytes of nenory, starting at the
current location counter. The .BLKW pseudo-op uses a word (two bytes) as its
storage unit, so the above statenent would reserve n words, or two tinmes n
byt es of contiguous nenory.

For exanple, each of the following statements reserves 24 (decimal) bytes of
st or age:

. BLKB 24.
. BLKW D12
. BLKB 2*12.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 21
Chapter 3: Pseudo- Qperations

Program Ter m nati on

Every program nust be terminated by a . END pseudo- op.
The format of this statenent is:

.END start

where start is an optional starting address for the program The starting
address is normally only necessary for the main program Subprograns, which
are called fromthe main program need no starting address.

When the assenbler encounters the .END pseudo-op during pass 1 of the
assenbl vy, it returns to the initialization point to await further
instructions (see Appendix C. On a listing pass, the .END pseudo-op
initiates the printing of the synbol table (if not suppressed by a prior
. XSYM pseudo-op). On a punching pass, the .END pseudo-op punches the EOF
record on the object tape.

Subpr ogram Li nkage

Prograns usually consist of a main program and numerous subroutines which
comuni cate with each other through paraneter |inkages and through reference
to synbols defined elsewhere in the program Since the TDL Z80 Assenbler
provides the neans for the various program conponents to be assenbled
separately from each other, the linkage editor (which finally puts the pieces
together) nust be able to identify those synbols which are references (or
referenced) external to the current program For a given subprogram these
"li nkage" synbols are either synmbols defined internally which nust be
available to other prograns to reference, or synbols used internally but
defined externally to the program Synbols defined within the program but
available to other subprograns are called "internal" synbols. Synbols used
internally but defined el sewhere are called "external" synbols.

To set up these |inkages between subprogranms, four pseudo-ops are
provided: .IDENT, .EXTERN, .INTERN, and .ENTRY.

The . | DENT statenment has the format:
. | DENT synbol

where synbol is the relocatable nodule nane. This nane is used by the |inkage
editor to identify the nodule on nenory allocation maps, and to allow the
selective loading of the nodule if it is part of a subprogramlibrary. If the
. I DENT statenent does not appear in a program the nane ".MAIN." is assumed.
The .1 DENT nane appears at the top of every listing page, and is displayed on
the console at the start of the second assenbly pass of that nodul e.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 22
Chapter 3: Pseudo- Qperations

Al'l three remaining statenents have the sane format:

. EXTERN synbol {, synbol2 ...}
. I NTERN synbol {, synbol2 ...}
. ENTRY synboll {, synbol2 ... }

where synboll is the synbol being declared as external, internal, or as an
entry point. Miltiple synbols may be declared in the sane statenent by
separating each fromthe preceding one with a conma.

The .EXTERN statenent identifies synbols which are defined elsewhere.
External synbols must not be defined within the current subprogram The
external synmbols may only be used as addresses, or in expressions that are to
be used as addresses. External synbols may be used in the same manner as any
ot her rel ocatable synbol, with the following restrictions:

1. The use of nore than one external synbol in a single
expression is illegal. Thus X+Y where X and Y are both
external is illegal

2. Externals may only be additive. Therefore the follow ng
expressions are illegal (where X is an external synbol):

- X
2% X

SQR- X
2% X- X

Synbol s decl ared as external by the .EXTERN Pseudo-op nmay al so be used as
rel ocation bases. This is done by using an external synbol as the argunent to
a .LOC pseudo-op. Al menory allocated by the assenbler after the LOC will be
addressed relative to the specified relocation base. The nbst commobn use of
this capability is the declaration of COWON bl ocks for the sharing of data
bet ween assenbl er and FORTRAN subprograns. Al named COWON blocks are in
fact just different relocation bases. Synbols used as relocation bases have
uni que values during the assenbly of the program nodule. At any point in
time, the current value of the relocation base synbol is the nunber of bytes
whi ch have been allocated to that base so far. This neans that subsequent
. LOC pseudo-ops referencing the same external synbol wll start the nmenory
allocation at the next available byte in that relocation base, not at
relative location zero (0).

There are three predefined relocation base synbols: .PROG, .DATA and
.BLNK.. These relocation bases are used for the program code, separately
|located data (in a ROMRAM environnent), and blank (unnanmed) conmmon
respectively.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 23
Chapter 3: Pseudo- Qperations

The . I NTERN pseudo-op identifies those synbols within the current subprogram
which are to be made accessible to other prograns as external synbols. This
statenent has no effect on the assenbly process for the current program but
nmerely records the nanme and value of the identified synbols on the object
tape for later use by the linkage editor. An internal synbol nust be defined
within the current programas a label, or in a direct assignnent statenent.

The . ENTRY pseudo-op functions identically to the .|INTERN pseudo-op, wth
one addition. It is sonetines desirable to put many subroutines wth conmon
usage into one "library", and to allow the linkage editor to select only
those prograns fromthe library which are called by the program being |inkage
edi t ed.

The . ENTRY statenment, in addition to functioning as a .|NTERN statenent,
also -flags the specified synbols as programentry points. |If the subprogram
is later put into alibrary, this will specify to the linkage editor that
this programis to be included only if one of its entry points is referenced
as an external synbol by an already included program

Since these entry points are external to the program referencing them
they nust be listed in a . EXTERN statenment in the calling program

Li sting Control

Program listings are printed on the |ist device during ~ass 2 and 4 (see
Appendix C) of the assenbly. The listing is printed as the source program
statenents are processed during the pass. The standard listing contains (from
left to right):

1. Error flags (if present).

2. Location counter for the first byte generated by this st at enent .
3. Instruction or data in hexadeci mal (maxi nrum of five bytes per |ine
printed).

4. Exact image of the input statenent.

The standard listing displays all 16-bit quantities in 16-bit (two byte),
nost significant byte first, format. These quantities are properly reversed
in the object code as required by the Z80. A 16-bit relocatable address
relative to the .PROG relocation base is flagged with an apostrophe ('), one
relative to the .DATA. relocation base is flagged with an asterisk (*), and
all others are foll owed by the assigned nunber of their relocation base.

Wthin a macro expansion, only the macro call and those statenents which
generate actual object code are normally |isted.

If a single statenment generates nore than the maxi mum of five bytes that
can be listed on a single line, the remaining bytes are properly generated,
but not normally I|isted.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 24
Chapter 3: Pseudo- Qperations

A listing always begins at the top line of the page, and 60 |lines are
printed per page, with a two line margin at the top, and a two line nmargin at
the bottom A page is assuned to be 72 (or 79) colums w de (depending on the
list device selected - see Appendix C). Each page is nunbered, and can have
an optional title and sub-title.

The standard listing options can be changed and expanded by the use of
the foll owi ng pseudo-operations:

. PAGEThi s statenent causes the assenbler to skip to the top of the next page
(by counting lines). A form feed character in the input text wll
have the sane effect.

. XLI ST This statenment causes the assenbler to stop listing the assenbl ed
program at this point.

.LISTThis statenment is normal | y used following a . XLI ST to resune
program | i sting.

.LALL Thi s statenment causes the assenbler to list everything which

is processed. This includes all text, macro expansi ons,
and all other statenents normally suppressed in the standard
listing.
. XALL This statenment is normal |y used following a .LALL to resune the
normal 1isting.

.SALL Thi s statenent causes the suppression of all macro expansions and their
text. It can be reset by a subsequent .LALL or . XALL.

. XSYMThi s st at ement suppresses the synbol table listing normally perforned
upon encountering the END statenent.

.LSYMNormal |y not used, this statenment enables the listing of the
synbol table previously suppressed by the . XSYM pseudo- op.

. LADDR This statenment causes the assenbler to list all 16-bit quantities
in the same order it generates themin the object code (I|east
significant byte first).

. XADDR Normal | y used foll owing a LADDR st at enent, this statenent
resunes the normal listing of 16-bit quantities in non-swapped
format.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 25
Chapter 3: Pseudo- Qperations

. LI MAGE This statenment causes the assenbler to list every byte generated,
even if nmore than one line (at five bytes per line) is required. In

this node, the assenbler will attenpt to split the input source
statenent to indicate which part of the statenent is generating
whi ch byt es.

. XI MAGE Normal |y used following a .LI MAGE statenent, this statenent resunes
the normal listing of only five bytes of generated data per
st at ement .

.LCTLThi s statenment causes all subsequent listing control statenents (e.g.
.XLIST) to be listed thenselves. Normally, no listing contro
statenent is itself listed. The . XCTL
pseudo-op is used to reset this option.

. XCTLNormally used following a .LCTL statenent, this statenment resunes the
default suppression of the listing of listing control statenents.

. SLI ST This statenment causes the current listing control flags to be
saved on a four el enent push-down stack. The current flag settings
remai n unchanged. These settings may | ater be
restored with the .RLI ST pseudo-op. This pseudo-op nmay be foll owed
on the sane line with another listing control pseudo-op, which wll
take effect prior to the listing of the .SLIST statenent.

.RLI ST This statenment restores the listing control flags fromthe top
el enent of the .SLIST push-down stack. These new flags take effect
with the statenent follow ng the .RLIST.

. TITLE dtextd This statement defines the delimted string text to be the
title to be printed at the top of every page of the listing. The
text nmust be delimted in the same manner as
in the . ASCI | pseudo- op, and must be no | onger
than "12 characters. If the . TITLE pseudo op is the first
statenent on a page, then the newtitle will be printed at the top
of that page.

. SBTTL dtextd This statement defines the delimted string text to be the
sub-title to be printed at the top of every page of the listing.
It follows the same rules as the . TITLE pseudo- op.

. REMARK dtextd This statenment inserts a remark into the Ilisting. The
delimted text can be any nunber of lines |ong, being term nated
only by the matching delimter.

.PRNTX dtextd This statenent, when encountered, causes the delimted text
string to-be typed on the console. This statement is frequently
used to print out conditional information, and to report the
progress through pass 1 on very |ong assenblies.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 26
Chapter 3: Pseudo- Qperations

Punch Contr ol

The TDL Z80 Assenbler normally produces an object tape in the TDL
Standard Relocatable Format (see Appendix E). However, the assenbler can
produce an object tape conpatible with the "INTEL Standard" hex tape. To
control which format is being produced, the two pseudo-ops PREL and PABS are
used. The . PABS pseudo-op causes the assenbler to produce an |INTEL conpatible
tape for all following generated code. The .PREL causes the assenbler to
return to producing TDL Standard Cbject Tape.

Every programstarts with an inplicit PREL pseudo-op.

In addition, the assenbler can punch the output tape in both binary and
.ASCII. To control which type of output is being produced, the two pseudo-ops
.PBIN and .PHEX are used. The .PBIN pseudo-op causes the assenbler to produce
a binary tape in the current format. The .PHEX pseudo-op causes the output of
an ASCI| tape. Every programstarts with an inplicit .PHEX pseudo- op.

To control the generation of |inkable object nodules, two pseudo-ops are
provi ded. The .LINK pseudo-op indicates that |inkage information is to be
included in the object file produced. The .XLINK pseudo-op inhibits this
information from being output. Every program starts with an inplicit .XLINK
pseudo- op.

The TDL Z80 Assenbl er provides one additional facility to assist the TDL
Z80 Debuggi ng System At the programmers option, the assenbler will punch all
of the global (non-local) synbols in the program nodule onto the end of the
obj ect tape. For each synbol, the assenbler also punches its relocation base
and its value relative to that base. Two pseudo-ops are provided to control
this synbol table punching. The .PSYM pseudo-op enables the punching, and the
. XPSYM pseudo-op disables it. The default is to not punch the synbol table
(. XPSYM .

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 27
Chapter 3: Pseudo- Qperations

Condi ti onal Assenbly

Parts of a program may be assenbled on a conditional basis depending on
the results of certain tests specified to the assenbler through the use of
the .1 Fx pseudo-op

The general form of the pseudo-op is:

I Fx arg,[true text] ... {[false text]}

where the text within the first square brackets is assenbled only if the
specified test on the argunent is TRUE, and the optional text within the
second set of brackets is assenbled if the condition is false. Any nunber of
spaces or blank lines (or lines with only coments) nay separate the true and
fal se texts.

The square brackets around the true text may be omtted if there is no
false text, and the entire true text is contained on the sanme line as the
. I Fx pseudo- op.

The first set of conditions which can be tested are the nuneric val ue of
the argunment. These pseudo-ops are |isted bel ow

.IFE n,]] TRUE i f n=0 or n=bl ank
AIFN n, |] TRUE if n<0 or n>0
AFG n, [. . L] TRUE i f n>0

JAFGE n, [. 0 L] TRUE if n>0 or n=0
JdFL n, |] TRUE i f n<O

I FLE n, |] TRUE if n<0 or n=0

The following | F pseudo-ops test for whether the assenbler is processing pass
1 or not:

JdFL T . 0 L] TRUE if it is pass 1
JdF2 1 0 0] TRUE if it is not pass 1

The next set of conditionals tests for whether a synbol has been defined yet
or not:

.IFDEF synbol ,[. . .] TRUE if the synbol is defined
.IFNDEF synbol ,[. . .] TRUE if the synbol is undefined,

The next set of |IF pseudo-ops tests to see whether its argunent is blank or
not. These pseudo-ops require that the argunent be enclosed in square
brackets The format is as follows:

AFB [. . .1 ,[. . .] TRUEIif blank
JFNB [. . 2] ,[- . .] TRUE if not blank

The quantity enclosed in the brackets is blank if it is enpty, or consists
only of spaces and tabs. Optionally, the argunment being tested may be
enclosed in paired delimters in the same nanner as the . ASCl x pseudo-ops. |If
the first non-blank, non-tab, character after the pseudo-op is a |left square
bracket ([), the bracket nmethod is used, otherw se,the deliniter nethod.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 28
Chapter 3: Pseudo- Qperations

For exanpl e:
AFB oo T o]

The last pair of conditionals operate on character strings. They take
two argunments which are interpreted as /-bit ASCI| character strings, and
make a character by character conparison of the two strings to determne if
the condition is net. Each of the strings nmay either be enclosed in square
brackets or delimted by a character, as in the .I1FBI/.|FNB pseudo-ops above.
The sanme net hod need not be used for both strings. The format of these
conditionals is as follows:

JFDNT o 1 - - 1 -] TRUE i f identical
JFDIFL o 0 1 - - .1 . - -] TRUE if different

The maxi mum |l ength of the strings to be conpared is 255 characters. |n making
the conparison, all trailing blanks and tabs are ignored in the two
ar gunents.

Synonyns

It sonetinmes becones useful, for docunentation or ease of progranmng, to
define new nanes for already existing synbols. The TDL Z80 Assenbl er has four
pseudo- ops which allow the definition of synonyns for already defined
synbol s. The format of these pseudo-ops is:

. XXSYN synbol | , synbol 2

The four pseudo-ops are .SYN, .OPSYN, .SYSYN, and . MASYN. The only difference
between the four is that the latter three limt the type of synbol for which
the synonymis being defined.

The statenent above defines the second operand as bei ng synonynous with
the first operand. In the case of the .SYN pseudo-op, the synbol tables are
searched for the first operand in the order: programer defined synbol,
macro, operation. The . OPSYN pseudo-op |limts the search to operations, the
. SYSYN t o programer defined synbols, and the . MASYN to nmacros. The second
operand is defined to be identical to the first operand at the tinme the
synonymis defined. Later changes to the first operand will not affect the
second.

The following are valid synonym definitions:

. OPSYN . BYTE, DB
. SYN . WORD, DW

. SYSYN ALPHA, BETA
.SYN AR

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 29
Chapter 3: Pseudo- Qperations

Obj ect Machi ne Validation

Al t hough the TDL Macro Assenbler will run only on a Z80 processor, it can
obviously be used to generate object code for any of the 8080 conpatible
m cro-processors. To facilitate the use of the assenbler for this purpose,
two additional pseudo-ops are avail able: .18080 and .Z80.

The .18080 pseudo-op causes all subsequent uses of nmachine operations
which are unique to the .zZ80 (and hence unavailable on the 8080) to be
flagged with a Z warning nessage. Such wuses wll be properly assenbled
however .

The .Z80 pseudo-op (which is the default) disables the feature so that no
further z warnings will be given.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 30
Chapter 4: Macros

Chapter 4
Macr os

A common characteristic of assenbly |anguage prograns is that nany coding
sequences are repeated over and over with only a change in one or tw of the
operands. It is convenient, therefore, to provide a mechanism by which the
repeated sequences can be generated by a single statement. The TDL Z80
Assenbl er provides the capability to do so by allow ng the repeated sequences
to be witten, with dummy values for the changed operands, as a macro. A
single statenent, referring to the nmacro by name and providing values for the
dummy operands, can then generate the repeated sequence.

Macro Definition

A macro is defined by use of the DEFINE pseudo-op. This is followed by
the synbolic nane of the macro. The macro name nust follow the rules for the
construction of synbols. The nane nmay be followed by a list of dumy
argunments enclosed in square brackets. The dummy argunents are separated by
commas, and may be any synbol which is convenient. Followi ng the macro nane
and optional dunmy argunments nust be an equal sign (=). The following are
exanpl es of the heading part of a nmacro definition:

. DEFI NE MACRO =
. DEFI NE MOVE[A, B] =
. DEFI NE Bl GVAC[ARGL, ARGR2, ARG3, %ARGE] =

Following the nmacro definition header conmes the body of the macro. It
need not start on the sane line as the definition header. The body of the
macro is delimted by a matched pair of left and right square brackets
For exanpl e:

. DEFI NE MOVE] A, B] =
[LDA A
STA B

Macro Calls

A macro may be called by any statenent. A macro call consists of the
macro nanme followed (optionally) by a list of argunents. The argunents are
separated by commas, and may optionally be enclosed in left and right square
brackets ([]). If the brackets are wused (the first non-blank/non-tab
character after the macro nanme is a left square bracket), then the argunents
are termnated by a right square bracket. If there are n dummy argunents in
the macro definition, then all argunents after the first n are ignored
(although they do take space and tinme to process). |If the brackets are
omtted, the argunent string ends when a carriage return or semcolon is
encount er ed.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 31
Chapter 4: Macros

The argunments nust be witten in the order in which they are to be
substituted for the dumry argunents. The first argunent is substituted for
each appearance of the first dumrmy argunent, the second for the second, etc.
The actual argunents are substituted as character strings for the dumy

argunments, no evaluation of the argunents takes place until the macro is
processed.

Ref erring to the definition of MOVE above, the occurrence of the
st at ement :

MOVE ALPHA, BETA

wi || cause the substitution of ALPHA for A and BETA for B in the macro.

Statenents which contain macro calls nay be |abeled and have conments
i ke any ot her statenent.

Macro argunments are termnated only by comma, carriage return, sem col on,
or right square bracket (when started by left square bracket). These
characters may not be used in the argunents unless the argunent is enclosed
in parentheses. Each tinme an argunent is passed to a macro, one set of
mat ched parentheses is renoved, but all of the characters wthin the
parent heses are substituted for the dummy argunment in the macro. Note that
spaces and tabs do not term nate argunments, but are considered to be part of
t hem

Macros do not need to have argunments. The nmacro nanme (and argunents if
any) nmy appear anywhere in a statenment where a synbol would nornmally appear,
and the text of the macro exactly replaces the macro nane and its arguments
in that statenent.

Comment s

Comments may be included within a nmacro definition. Storing the comments
with the macro (so that they will appear when the macro is expanded) takes
space however. |If the comment within the macro definition is preceded by two
sem colons (instead of the normal one), the comment wll be ignored during
the definition of the macro, and wll not be stored as part of the
definition. This will elimnate the appearance of the conment every tine. the
macro expansion is |listed, however.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 32
Chapter 4: Macros

Creat ed Synbol s

When a nmacro is called, it is often useful to generate synbols w thout
explicitly stating themin the call. A good exanple of this is labels within
the macro body. It is wusually not necessary to refer to these |abe
externally to the macro expansion, therefore there is no reason why the
programmrer should be concerned as to what those |abels are. The sanme wth
tenporary data areas. To avoid conflicts, however, it is necessary that a
different synbol be used each tinme the macro is called (even wth |ocal
synbols, the macro could be called nore than once between two globa
synbol s). Created synbols are used for this purpose.

Each time a nacro that requires a created synbol is called, a synbol is
generated and inserted into the nmacro. These synbols are of the form ..nnnn
(two periods followed by four digits). It should be noted that this makes
these synbols Ilocal synbols (start with two periods). The programmer is
advi sed not to use synbols of this form The four digits start at 0000 and
are increnented by one each tine a synbol is created.

A created synbol is specified in the macro definition by preceding a
dumy argunent by a percent sign (t). Wwen the macro is called, all dumy
argunments of the form %ynbol are replaced by created synbols (each with a
different one). |If, however, the position of the dumy argunment in the
argunment |ist corresponds to an actual argument provided in the call, then
the actual argunent is used in place of the created one.

An actual argunent can in fact be enpty (signified by two consecutive

commas in the argunment list). An argument of this kind (a "null" argunent) is
considered to be defined as having a value of the enpty string (no
characters), and wll prevent the generation of a created synbol for its

correspondi ng dummy ar gunent .
For exanpl e:

. DEFI NE PRI NT[A, 98] =
[CALL LI NPRT

IVP 9B

.ASCIS \ A 9%8:]

This macro prints a nessage on the printer. The first argunment to the macro
is the text string to be printed. LINPRT is a line printer routine. Labeling
the location following the text is necessary because of the indeterm nate
I ength of the nmessage. The use of a created synbol here is useful since there
woul d normal |y be no reason to reference the |abel. Calling the macro by:

PRI NT This is the nessage

would result in printing "This is the nessage" when the assenbl ed nacro was
executed. If it had been call ed:

PRI NT This is the nessage, MAIN

t he message woul d have been printed, but control would be transferred to the
| abel MAIN, which substituted for 9B i nstead of a created synbol.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 33
Chapter 4: Macros

Concat enati on

The apostrophe or single quote is defined within a macro definition as
the concatenation operator. This allows a macro argunent to be only part of a
synmbol or expression, with the character string which is substituted for the
dummy argunent being joined with other character strings that are part of the
macro definition to forma conplete synbol or expression. This joining is
cal l ed concatenation. Concatenation is perfornmed by the assenbl er when an
apostrophe is used between the strings to be joined (one or both of which
must be a dummy nmacro argunent). For exanple

. DEFI NE BR[A, B] =

[JR A B]

defines a conditional branch statenent. \Wen called, the argunent Ais
appended to the JRto forma single synbol. If the call were:

BR Z, LOOP

t hen the generated code woul d be:
JRZ LOOP

Def aul t Argunents

Normal |y, m ssing argunments in a nacro are replaced by nulls. For
exanpl e, in the macro:

. DEFI NE BYTES[Al , A2, A3, A4, A5, A6] = [.BYTE Al, A2, A3, Ad4, A5, A6]

a call of BYTES[1,2] would generate an error because of the m ssing argunents
to the pseudo-op .BYTE

To renedy this, the assenbl er provides the programer with the nmeans to
supply default argunents to be used when no argunent is provided in the macro
call. Default arguments are defined as part of the macro definition by
encl osing themin parentheses and inserting theminmediately after the dummy
argunment to which they refer. To solve the above problem the definition
woul d be witten as:

. DEFI NE BYTES[Al (O), A2(0), A3(0), A4(0), A5(0), A6(0)] = [.BYTE Al , A2, A3, Ad, A5, A5]

whi ch woul d al ways generate six bytes of data, regardl ess of how nmany
argunments were provided in the call

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 34
Chapter 4: Macros

ASCI| Interpretation of Nunmeric Argunents

If the reverse slash (\)precedes the first character of an argunent in a
macro call, the value of the expression following the reverse slash is
converted to an ASCI| string. This string is then used as the argunent to the
call. The value is considered to be a 16-bitpositive value, and the

conversion is done in the current radi x. Leadi ng zeros are suppressed unl ess
the value is zero.
For exanpl e:

A 5
B=6
MACRO \ A+B, \ A*B

is the sane as:
MACRO 11, 30
if the current radix is 10.

Macr o Expansi on Termn nati on

Under normal conditions, a macro expansion ternminates at the end of the
macro definition. It is sonmetinmes desirable to ternminate the nacro expansion
prior to the end of the definition. This is usually done as part of sone
conditional assenbly within the macro. A special pseudo-op is provided for
t hi s purpose:

CEXET

When processed by the assenbler, the .EXIT pseudo-op inmrediately term nates
the macro expansion, just as if the end of the macro had been encountered

Only the current expansion is termnated if nultiple macro expansions are
bei ng nest ed.

User Defined Macro Errors

It is sonetines desirable to have a macro cause an assenbly error. This
m ght be done when invalid paranmeters are passed to the macro, or if
paraneters are mssing. A special pseudo-op is provided to allow this:

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 35
Chapter 4: Macros

. ERROR dtextd

Thi s pseudo-op will cause an asterisk (*) to be listed as the error code, the
error count to be increnented by one, and the line to be listed as an error.
The delimted text is treated exactly as in a . REMARK pseudo-op, and can be
used to provide information about the nature of the error.

Nesti ng

Macros may be nested. This nmeans that macros nay be both call ed and defined
within other macros. A macro that is defined within another macro may not be
called until the defining macro has been called. At that time, the new macro
is available to be called by any statenent. The only Iimt to how many | evels
deep macro calls and definitions may be nested is the anmount of nenory
avai | abl e.

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 36
Appendi x A: Summary of Machi ne Operation Mhenonics

Appendi x A

Summary of Machi ne Operati on Mhenbni cs

The followi ng section presents a summary of the ZBO machi ne operations
and their assenbler menonics. The appendix is arranged by type. of
instruction for ease of reference. For further information on the rmachine
operations, refer to the "ZI LOG Z80- CPU Techni cal Manual ".

To make the information presented nore readily usable, a shorthand
notation is used for describing the assenbler format of the instruction and
its actual operation. Al capital letters and special characters in the
mmenoni ¢ description are required. The |lower case letters indicate a class of
val ues which can be inserted in the instruction at that point. A single |ower
case letter indicates an 8bit quantity or register, while a double |ower
case letter indicates a 16-bit quantity or register. A synbol enclosed in
parentheses in the nmachine operation section indicates that the value whose
address is specified is used. The following is a summary of the notation
used; exceptions will be noted where appropriate in the follow ng sections.

r one of the 8-bit registers A, B, C, DL E, H L

n any 8-bit absol ute val ue

i an index register reference, either X or Y

d an 8-bit index displacenent where -128 < d < 127

zz B for the BCregister pair, D for the DE pair

nn any 16-bit value, absolute or relocatable

rr B for the BC register pair, Dfor the DE pair, Hfor the HL pair, SP
for the stack pointer

aq 8 for the BC register pair, Dfor the DE pair, Hfor the
HL pair, PSWfor the A/ Flag pair

S any of r (defined above), M or d(ii)

| FF interrupt flip-flop

CY carry flip-flop

ZF zero flag

tt 8 for the BC register pair, D for the DE pair, SP for the stack
poi nter, X for index register |IX

uu B for the BC register pair, Dfor the DE pair, SP for the stack
pointer, Y for index register |Y

b a bit position in an 8-bit byte, where the bits are nunbered from
right toleft 0 to 7

PC program count er

v[n] bit n of the 8-bit value or register v

vin-m bits n through mof the 8-bit value or register v

vv\ H the nost significant byte of the 16-bit val ue or register vv

vv\ L the least significant byte of the 16-bit value or register vv

v An input operation on port v

Ov An out put operation on port v

W<- v the value of wis replaced by the value of v

W= >V the value of wis exchanged with the val ue of v

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 37
Appendi x A: Summary of Machi ne Operation Mhenonics

BLANK PAGE

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 38
Appendi x A: Summary of Machi ne Operation Mhenonics

8-Bit Load G oup

Mhenoni ¢ Qper ati on # of Bytes
MOV r,r’ r <- r' 1
MV r, M r <- (H) 1
MOV r,d(ii) r <- (ii+d) 3
MOV Mr (HL) <- r 1
MOV d(ii),r (ii+d) <-r 3
MWl r,n r <- n 2
Ml Mn (HL) <- n 2
MWI d(ii),n (ii+d) <- n 4
LDA nn A <- (nn) 3
STA nn (nn) <- A 3
LDAX zz A <- (z2) 1
STAX zz (zz) <- A 1
LDAI A< 1 2
LDAR | <- A 2
STAI A< R 2
STAR R< A 2

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 39
Appendi x A: Summary of Machi ne Operation Mhenonics

16-Bit Load G oup

nmenoni ¢ Operati on # of Bytes

LXI rrynn rr <- nn 3

LXI ii,nn il <- nn 4

LBCD nn B <- (nn+l) 4
C <- (nn)

LDED nn D <- (nn+l) 4
E <- (nn)

LHLD nn H <- (nn+l) 3
L <- (nn)

LI XD nn I X\H <- (nn+l) 4
I X\L <- (nn)

LI YD nn IVN\H <- (nn+l) 4
IMNL <- (nn)

LSPD nn SP\H <- (nn+l) 4
SP\L <- (nn)

SBCD nn (nn+l) <- B 4
(nn) <- C

SDED nn (nn+l) <- D 4
(nn) <- E

SHLD nn (nn+l) <- H 3
(nn) <- L

SI XD nn (nn+l) <- I X\H 4
(nn) <- IX\L

SI YD nn (nn+l) <- IN\H 4
(nn) <- IVN\L

SSPD nn (nn+l) <- SP\H 4
(nn) <- SP\L

SPHL SP <- HL 1

SPI X SP <- |IX 2

SPI'Y SP <- |Y 2

PUSH qq (SP-1) <- qq\H 1
(SP-2) <- qq\L
SP <- SP - 2

PUSH i i (SP-1) <- ii\H 2
(SP-2) <- iil\L
SP <- SP - 2

PCOP qq gg\H <- (SP+l) 1
ggq\L <- (SP)
SP <- SP + 2

POP ii ii\H <- (SP+l) 2
ii\L <- (SP)

SP <- SP + 2

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 40
Appendi x A: Summary of Machi ne Operation Mhenonics

Exchange and Bl ock Transfer and Search G oup

Vhenoni ¢ Oper ati on # of bytes

XCHG HL <-> DE 1

EXAF PSW <- > PSW I

EXX BCDEHL <-> BCDEHL' 1

XTHL H <-> (SP+l) 1
L <-> (SP)

XTI X I X\H <-> (SP+l) 2
IX\L <-> (SP)

XTI'Y IV\H <-> (SP+l) 2
IVNL <-> (SP)

LD (DE) <- (HL) 2

DE <- DE + 1
HL <- HL + 1
BC <- BC- 1

LD R repeat LDl until BC=0O 2
LDD (DE) <- (HL) 2
DE <- DE -
HL <- HL -
BC <- BC - |
LDDR repeat LDD until BC=0O 2
CCl A - (HL) 2

HL <- HL + 1
BC<- BC- 1

CaR repeat CCl until A=(HL) 2
or BC=0O

CCD A - (H) 2
HL <- HL -
BC <- BC -

CCDR repeat CCD until A=(HL) 2

or BC=0

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 41
Appendi x A: Summary of Machi ne Operation Mhenonics

8-Bit Arithnetic and Logi cal G oup

Mhenoni ¢ Qperati on # of Bytes
ADD r A< A+r 1
ADD M A <- A+ (H) 1
ADD d(ii) A <- A+ (ii+d) 3
ADI n A<- A+n 2
ADC S A<- A+s + CY

SUB S

ACI n A< A-s

Sul n

SBB s A<- A- s - CY

SBI n

ANA s A< A&s

AN n

ORA s A< Al S

ORl n

XRA s A< AN S

XRI n

CWP s A- s

CP1 n

INR s s <- s +1

DCR S S< S-1

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 42
Appendi x A: Summary of Machi ne Operation Mhenonics

General Purpose Arithnetic and Control G oup

Mhenoni ¢ Oper ation # of Bytes
DAA convert A to packed BCD 1

after an add or
subtract of packed BCD

oper ands
CMVA A <- #A 1
NEG A<- -A 2
CcMC CY <- #CY 1
STC Cy <- 1 1
NOP no operation 1
HLT hal t 1
DI |FF <- 0 1
El |FF <- 1 1
| MO i nterrupt node 0O 2
| ML i nterrupt node 1 2
| M2 i nterrupt node 2 2

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 43
Appendi x A: Summary of Machi ne Operation Mhenonics

16-Bit Arithnetic G oup

nmenoni ¢ Oper ation # of Bytes
DAD rr HL <- HL + rr 1
DADC rr HL <- HL + rr + CY 2
DSBC rr HL <- H. - rr - CY 2
DADX tt I X <- I X + tt 2
DADY uu Y <- 1Y + uu 2
I NX rr rrm<-rr +1 1
I NX ii iio<- i +2 2
DCX rr rr<-rr -1 1
DCX ii iio<-ii -2 2

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 44
Appendi x A: Summary of Machi ne Operation Mhenonics

Rot ate and Shift G oup

nmenoni ¢ Operati on # of Bytes
RLC Al n+l] <- Al n] 1
Al 0] <- Al 7]
CYy <- A[7]
RAL Al n+l] <- Aln] 1
Al0] < CY
CY <- A 7]
RRC Al n] <- Al n+l] 1
Al 7] <- AO0]
CY <- A 0]
RAR Al n] <- Al n+l] 1
Al7] <- CY
CY <- A 0]
RLCR S s[n+l] <- s[n] 2 (or 4)
s[Q < s[7]
CYy <- s[7]
RALR s s[n+l] <- s[n]
- RAL- S[0] < CY
CYy <- s[7]
RRCR s s[n] <- s[n+l]
S[7] <- 9[0]
CY <- 9[0]
RARR s s[n] <- s[n+l1]
- RAR- s[7] <- CY
CYy <- s[0]
SLAR s s[n+l] <- s[n]
S[0] <- 0
CY <- 9 7]
SRAR s s[n] <- s[n+l]
S[7] < 9[7]
CY <- 9[0]
SRLR s s[n] <- s[n+l]
s[7] <- O
CY <- 9[0]
RLD A[0-3] < (HL) [4-7] 2
HL) [4-7] <- (HL)[O-3]
(HL) [0-3] <- A[0-3]
RRD (HL) [0-3] <- (HL)[4-7] 2

(HL) [4-7] <- A [0-3]
A 0-3] <- (HL) [0-3]

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 45
Appendi x A: Summary of Machi ne Operation Mhenonics

Bit Set, Reset, and Test G oup

Vhenoni ¢ Operati on # of Bytes
BIT b, r ZF <- #r[b] 2
BIT b, M ZF <- #(HL).[Db] 2
BIT b, d(ii) ZF <- #(ii+d)[b] 4
SET b, s s[b] <- 1

RES b, s s[b] <- O

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 46
Appendi x A: Summary of Machi ne Operation Mhenonics

Junp G oup
Vhenoni ¢ Operati on # of Bytes
JMP nn PC <- nn 3
JZ nn i f zero, then JMP 3
el se conti nue

JNZ nn i f not zero 3
Jc nn if carry 3
JNC nn if not carry 3
JPO nn f parity odd 3
JPE nn if parity even 3
JP nn if sign positive 3
JM nn if si gn negative 3
JO nn i f overfl ow 3
JNO nn i f not overfl ow 3
JMPR nn PC <- nn 2

where -126 < nn-PC < 129
JRZ nn if zero, then JMPR 2

el se conti nue
JRNZ nn if not zero 2
JRC nn if carry 2
JRNC nn if not carry 2
DINZ nn B<-B-1 2

if B=O then continue

el se JMPR
PCHL PC <- HL 1
PCl X PC <- Ix 2

PCl'Y PC <- |Y 2

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er

User's Manual Page 47

Appendi x A: Summary of Machi ne Operation Mhenonics

Call and Return G oup

nmenoni ¢ Operati on # of Bytes
CALL nn (SP-1) <- PCH 3
(SP-2) <- PCL
SP <- SP - 2
PC <- nn
Cz nn if zero, then CALL 3
el se conti nue
CNZ nn if not zero 3
cc nn if carry 3
CNC nn if not carry 3
CPO nn if parity odd 3
CPE nn if parity even 3
CcP nn if sign positive 3
Cm nn if sign negative 3
CO nn if overflow 3
CNO nn if not overflow 3
RET PC\H <- (SP+l) 1
PCQ\L <- (SP)
SP <- SP +
Rz if zero, then RET 1
el se conti nue
RNz if not zero 1
RC if carry 1
RNC if not carry 1
RPO if parity odd 1
RPE if parity even 1
RP if sign positive 1
RM if sign negative 1
RO if overflow 1
RNO if no overflow 1
RETI return frominterrupt 2
RETN return from non- maskabl e 2
i nterrupt
RST n (SP-1) <- PC\H 1

(SP-2) <- PCL
PC <- 8 * n
where 0 <= n < 8

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 48
Appendi x A: Summary of Machi ne Operation Mhenonics
| nput and Qut put G oup
Vhenoni ¢ Operati on # of Bytes
I'N n A<-1In 2
| NP r r <-1 (O 2
NI (HL) <- 1 (©Q 2
B<-B-1
HL <- HL + 1
I NI R repeat INl until B=0O 2
| ND (HL) <- 1(0Q 2
B<-B-1
HL <- HL -
| NDR repeat IND until B=0 2
ouT On <- A 2
QUTP r A0 <-r 2
ouTI 0O <- (H) 2
B<-B-1
HL <- HL + 1
QUTI R repeat OUTI until B=0O 2
QUTD 0O <- (H) 2
B<-B-1
HL <- HL -
QUTDR repeat OUTD until B=0O 2

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 49
Appendi x B: Summary of Pseudo- Qperati on Menonics

Appendi x B

Summary of Pseudo- Operati on Mhenoni cs

.ASCI | dtextd | [n]

The . ASCI| pseudo-op enters 7-bit ASCI|I characters into the program The
text is either entered between two delimters, or as a nuneric value
encl osed in square brackets (H), and the two forns may be interm xed and
repeat ed as desired.

.ASCI S dtextd | [n]

The .ASCIS pseudo-op enters 71-bit ASC | characters into the program
and flags the last character by setting its high-order bit on. The
format of the text is the sanme as for the . ASCI| pseudo- op.

.ASCl Z dtextd | [n]

The .ASClIZ pseudo-op enters 71-bit ASC I characters into the program
and flags the end of the characters by inserting an additional nul
byte. The format of the text is the same as for the . ASCI| pseudo- op.

. BLKB nn

The . BLKB pseudo-op reserves a bl ock of contiguous
storage nn bytes | ong.

. BLKW nn

The . BLKW pseudo-op reserves a bl ock of contiguous
storage nn words long (nn x 2 bytes).

.BYTE n {,n ...)

The . BYTE pseudo-op enters single byte values into the program Miltiple
val ues nmay be entered by separating themw th a conma.

. DEFI NE synbol [argl,arg2 J=[text]
The . DEFI NE pseudo-op defines a macro with the name synbol. argl through

argn are optional dummy argunents. The body of the macro is represented
by text.

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 50
Appendi x B: Summary of Pseudo- Qperati on Menonics

. END nn

The .END pseudo-op signals the end of the assenbly. Wen encountered
during PASS 1, it sinply returns to the initialization section. During a
listing pass, it initiates the listing of the synbol table (if not
previously suppressed by the .XSYM pseudo-op). During a punch pass, it
generates an EOF record on the hex tape containing the value-nn as the
starting address of the object program

. ENTRY synbol | synbol 2 ...

The . ENTRY pseudo-op identifies the internally defined synbols which are
subroutine library entry points to this program Miltiple synbols may be
identified by separating themw th conmas.

. ERROR dt extd
The . ERROR pseudo-op causes an error to occur, forcing the listing of
the current linep and an error notification. The delimted text is
treated as a . REMARK.

CEXT

The .EXIT pseudo-op causes an inmediate exit from the current nacro
expansi on to occur.

. EXTERN synbol | 1, synbol2 ...)
The . EXTERN pseudo- op defines those synbols which are referenced in this

program but are defined in another, separately assenbled, program
Mul ti pl e synbol s can be defined by separating themw th comas.

. 18080
The .18080 pseudo-op enables the Z warning nessage. This warning will be
gi ven whenever a machi ne operation unique to the Z80 i s encountered.

. | DENT synbol
The .| DENT pseudo-op gives the nodule a nanme for |ater

use by the linkage editor.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 51
Appendi x B: Summary of Pseudo- Qperati on mmenoni cs

. I NTERN synbol | {, synbol2 . . .}

The . I NTERN pseudo-op identifies those synbols which are defined An this
program and which wll be referenced as external synbols by sone
separately assenbled program Miltiple synbols nay be identified by
separating themw th conmmas.

. LADDR

The .LADDR pseudo-op changes the listing node from displaying 16-bit
gquantities to displaying the Z80 inmage with the least significant byte

first.
. LALL
The .LALL pseudo-op causes the assenbler to list every text character
processed, including those suppressed in the normal |isting.
. LCTL
The . LCTL pseudo-op causes the assenbler to list all listing contro

st at enent s.
. LINK

The . LINK pseudo-op causes the assenbler to output |inkage information
to the object file.

. LI ST

The . LI ST pseudo-op resunmes a |listing which has been stopped by the
. XLl ST pseudo- op.

. LI MAGE

The . LI MAGE pseudo-op changes the listing node to display every byte of
obj ect code generated rather than the normal node of. a nmaxi num of five
byt es per statenent.

. LOC nn
The . LOC* pseudo-op changes the value of the assenbler's program counter
tonn. If nnis relocatable, then all |abels will be assigned
rel ocatable values. If it is absolute, then absolute values will be

assi gned.

TDL %80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 52
Appendi x B: Summary of Pseudo- Qperati on Menonics

. LSYM
The .LSYM pseudo-op re-enables the listing of the synbol table during
the END pseudo-op processing after it has been disabled by the .XSYM

pseudo-op. The .LSYM pseudo-op nust occur prior to the END pseudo-op to
be effective.

. MASYN synbol | , synbol 2
The . MASYN pseudo-op allows the definition of a new nacro to be the sane
as a previously defined one. Synbol2 is defined to be a macro identical
to the one defined as synboll.

. OPSYN synbol | , synbol 2
The . OPSYN pseudo-op allows the definition of a new op code mmenoni c as
a synonym of an already existing one. The synboll nust be a defined

machi ne or pseudo op code (or one previously defined using .OPSYN),
synmbol 2 will be defined to be the sane operation

. PABS

The . PABS pseudo-op signals that the hex object tape produced fromthis
point on in the assenbly is to be in absolute (INTEL conpatible) format.

. PAGE

The . PAGE pseudo-op causes a skip to the top of the next page during a
listing pass.

. PBJN
The . PBIN pseudo-op specifies that the object tape is to be produced in
bi nary.

. PHEX
The . PHEX pseudo-op specifies that the object tape is to be produced in
ASCl | .

. PREL

The . PREL pseudo-op signals that the hex object tape produced fromthis
point on in the assenbly is to be in relocatable (TDL standard) fornat.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 53
Appendi x B: Summary of Pseudo- Qperati on Menonics

. PRNTX dtextd

The .PRNTX pseudo-op will cause its text string to be printed on
the consol e whenever it is encountered in the assenbly process.

. PSYM
The .PSYM pseudo-op signals that the entire synbol table from the
assenbly is to be punched at the end of the object tape. The .PSYM
pseudo- op nust appear prior to the END pseudo-op to be effective.

. RADI X n
The . RADI X pseudo-op changes the default base in which a nuneric
constant is interpreted during the assenbly to n. The valid val ues
for n are 2, 8, 10, or 16. The value is always interpreted as a
deci mal nunber.

. RADA0 synbol
The . RAD40 pseudo-op generates a unique 4 byte value in radix-40
notation for the synbol given. The synbol nust conformto the rules
for any synbol in the assenbly. This pseudo-op is used nostly for
devel opi ng system software utilizing synbol tables.

. RELCC

The . RELOC pseudo-op restores the value of the assenbler's program
counter to whatever it was before the immediately preceding .LOC
pseudo- op.

. REMARK dt ext d

. RLI ST

. SALL

The . REMARK pseudo-op allows the entry of multiple line conments
into the source program All of the text between the delimters is
listed but is ignored. The text may contain carriage return/line
f eeds.

The . RLIST pseudo-op restores the listing control flags from
the top elenent of the SLIST push-down stack.

The . SALL pseudo-op suppresses all macro expansions on the assenbly
listing (normally all l|ines generating code are |isted).

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 54
Appendi x B: Summary of Pseudo- Qperati on mmenoni cs

. SBTTL dtextd

The . SBTTL pseudo-op sets the sub-title for the assenbly listing to the
specified text string (which nust be less than 72 characters in length).
If the .SBTTL pseudo-op is the first

operation after a PAGE
sub-title will appear on the new page.

t he
. SLI ST

The . SLI ST pseudo-op saves the current listing control
of a four el enent push-down stack.

flags on the top
. SYN synbol | , synbol 2

The . SYN pseudo-op makes any two synbols synonynous.
are searched

for synboll in the
(1 abel / synbol , nacro,

val ue as synbol | .

The synbol tables
nor mal operand field order

opcode), and synbol2 is defined to have the sane

. SYSYN synbol | , synbol 2

The . SYSYN pseudo-op nmakes one synbol the synonym of an already defined
synbol /| abel . The value of a synbol/label synboll 1is obtained, and
synbol 2 is defined to be the sane type and val ue.

. TITLE dtextd

The .TITLE pseudo-op sets the title for

the assenbly listing to the
specified text string (which nust be less than 72 characters in length).
The title is put at the top of every page during a listing. If the
. TITLE pseudo-op is the first operation after a PAGE pseudo-op, the
title will be listed on the new page.

.MORD nn 1, nn ...)

The . WORD pseudo-op enters 2-byte values into the program in proper Z80
format (|l east significant byte first).

Mul tiple values may by entered by
separating themw th a comm.
. XADDR

The . XADDR pseudo-op is used after a .LADDR pseudo-op
to return to the standard format of listing 16-bit val ues.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 55
Appendi x B: Summary of Pseudo- Qperati on Menonics

. XALL

The . XALL pseudo-op is used after a .LALL or .SALL pseudo-op to-return
to the standard listing node.

. XCTL

The . XCTL pseudo-op is used after a .LCTL pseudo-op to return the
standard node of suppressing the listing of listing control statenents.

. XI MAGE

The . XI MAGE pseudo-op is used after a .LI MAGE pseudo-op to return to the
standard listing node of only five object bytes per statenent.

. XLINK

The . XLINK pseudo-op is used after a .LINK pseudo-op to suppress the
i nclusion of linkage information in the object file.

. XLI ST

The . XLI ST pseudo-op suppresses the listing of all follow ng statenents
(until a .LIST pseudo-op is encountered).

. XPSYM

The XPSYM pseudo-op di sabl es the punching of the synbol table at the end
of the object tape after it has been enabled by the PSYM pseudo-op. The
. XPSYM pseudo- op nust occur prior to the . END pseudo-op to be effective.

. XSYM

The . XSYM pseudo-op disables the listing of the synbol table by the . END
pseudo-op (unl ess re-enabled by the LSYM pseudo-op). The XSYM
pseudo- op nust appear before the .END pseudo-op to be effective.

. 280
The .Z80 pseudo-op is used to disable the effect of a previous .18080

pseudo-op. This inhibits the Z warning nessage on nachine operations
uni que to the Z80.

TDL-Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 56
Appendi x B: Summary of Pseudo- Qperati on Menonics

I Fx arg,[true text]

{[fal se text])

The .1 Fx pseudo-op will assenble the true text specified only if the
particular condition being tested for is true, The optional false text
is assenbled if the condition is false. The .| Fx pseudo-ops and their
conditions are as foll ows:

.1 F1: assenbling pass 1
.1 F2: not assenbling pass 1

.1 FB: bl ank
.| FDEF: defi ned
.IFDI F: different

.IFE: zero or blank

.IFG positive

.| FGE: zero or positive

.IFIDN: identica
.1 FL: negative

. I FLE: zero or negative

.IFN: not zero
.1 FNB: not bl ank

.| FNDEF: not defi ned

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 57
Appendi x C. Operation of the Assenbler with a TDL Monitor

Appendi x C

Operation of the Assenbler with a TDL Mnitor

The TDL Z80 Relocating Assenbler is designed to operate with a TDL
System Monitor. It relies upon the Mnitor for all 1/0 and nmenory nanagenent
functions. (For further information on the TDL Mnitors, consult the
appropriate nonitor reference nmanual.) Wen operating, the assenbler will use
all available nmenory for its various tables (all nenory between the end of
the assenbler and the highest available nmenory |ocation). No nenory | ocation
bel ow t he assenbler is changed by its operation.

The first step in using the assenbler is to load it into the desired
menory location using the nonitor "R' comand. After the load has been
conpleted, if the nonitor is not |located at the standard nenory address (FO000
hex), it will be necessary to change the assenbler's nonitor transfer vector
to point to the nmonitor. This transfer vector consists of nine (9)
JMP instructions l|located beginning at relative address six (6 hex) in the
program The addresses of these instructions should be nodified to point to
the correct |ocations.

After the assenbler is loaded and ready to operate, the appropriate
nmoni tor conmands should be used to designate the reader, punch, a fid Ilist
devices as desired. The console device is also used during the assenbly.
After readying the source programin the reader, a "G' conmand shoul d be used
to start the assenbler.

It is inportant to note that the assenbler requires a "controlled"
reader device (a device which provides characters on demand, at whatever rate
the program wants them). In the same manner in which the assenbler "waits'
for the next character from the reader, the reader nust be capable of
"waiting" for the next demand from the assenbler. (For further information on
converting a non-controlled reader to a controlled one, see one of the TDL
System Monitor reference manual s.)

When first started (and whenever an assenbly pass is conpleted), the
assenbl er asks "PASS=" on the console. Valid responses to this are only the
nunbers from O to 8. A response of O will return to the nonitor, but in a
manner which will allow resunption of the assenbly by reentering the "G
command. The values 1 through 4 signify which assenbler pass is desired, as
fol |l ows:

1 signifies the first assenbly pass. The source is read, and all necessary
tables are built.

2 signifies the listing only pass. The source is re-read,
and a listing of the assenbled programis produced on
the Iist device.

3 signifies the punch only pass. The source is re-read,
and an object tape of the assenbl ed programis produced
on the punch devi ce.

4 signifies the conbi nati on of passes 2 and 3.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 58
Appendi x C. Operation of the Assenbler with a TDL Monitor

The val ues of 5 through 8 provide the sane options as 1 through 4, but do not
reinitialize the assenbler in any way before proceeding. This allows the
assenbly of a program residing on nore than one source tape. Each of the
pi eces nmust, however, be term nated by its own END pseudo-op

During the first assenbly pass (pass 1), it is possible that sone error

nmessages Wwill be output on the list device. These errors wll be those
uni quely determ ned during the pass.

During the punch only pass (pass 3), no error nessages will be listed
but an errors indication will be given on the console at the end of the
assenbl y.

While an assenbly is taking place, a nunber of console control options
are available. A control-C will always trap back to the nonitor after the

conpletion of the current statenent. The assenbly may be resuned (if no
regi sters have been changed) by using the nonitor "G' command. A control-C
will, however, result in nonitor output on the console device, which could
spoil a listing if the console is the list device. To avoid this, the use of
a control-S will tenporarily halt the assenbly (e.g. to put nore paper in the

teletype), but will not return to the nonitor or cause any spurious output on
the console device. A control-Q will resune the assenbly. If a control-C is
entered after the control-S, a trap to the nonitor will occur as above. In

addition, a control-T my be used to stop the assenbly at the top of the next
out put page of the listing. Wien the control-T is entered on the keyboard,

nothing will happen until the top-of-page is reached, at which time the
assenbler will act as if a control-S had been entered (see above). Al of the
above features will, however, be disabled if the reader device is specified

as the Tel etype.

When starting a listing pass, the paper in the list device should be
positioned at the top line of a page. The assenbler will count |ines and put
a page nunber and heading at the top of every page. The page width is
determ ned by the assigned list device. If the list device is the teletype
(AL=T), then the page is assuned to be -12 characters wide. If not, then it
is assuned to be 80 characters wide. In either case, it is assuned to be 66
lines long, and a two line margin is left at the top and the bottom of the

page.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 59
Appendi x D. Error Codes

BLANK PAGE

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 60
Appendi x D. Error Codes

Appendi x D

Error Codes

Errors in the source program encountered during the assenbly process are
indicated on the listing by a single letter code at the left of the statenent
in error. Although the assenbler my detect nore than two errors per
statenent, only the first two codes are given. As an added aid to |ocating
the error in the statenent, a question mark is printed to the right of the
character which triggered the error. Al errors generate a question mark
even if they are not one of the first two per statenent.

The following is a list of the error codes and their meani ngs:

A Argunent error. This is a broad class of errors which nmay be caused by
many different things.

B Bad nmacro error. Either an error in a macro definition or a call on a bad
macr o.

D Duplicate synbol ref erence error. The synbol fl agged is
mul tiply-defined. The first value given to the synbol is used in the
assenbl y.

E External synbol error. An external synbol is inproperly used in the
st at ement .

Internal synmbol error. An internal synbol is inproperly used in the
st at ement .

L Label error. An invalid character has been found in the | abel field of
t he statenent.

M Mul tiply-defined synmbol error. A synbol is defined nore than once. This
error is given nostly during Pass 1. During the other passes, it usually
wi || appear as a phase error (P).

(@) Qperation error. The synbol in the operation field is not a valid
machi ne operation code, macro nane, or synbol

P Phase error. A label is assigned a value during Pass 2 (or 3 or 4) which
is different than that assigned during Pass 1

Q Questionable error. This is a broad' class of warnings which the
assenbl er gives when it finds anbi guous statenments. Q errors nmay or may
not generate correct code. The assenbler will attenpt to do what the
progranmer i ntended.

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 61
Appendi x D. Error- Codes

Rel ocation error. A relocatable synbol or expression is incorrectlyused
(e.g. in a .BLKB pseudo-op).

Tabl e overflow. One of the Assenbler's internal tables has
overfl owed. The Assenbler will attenpt to continue, but no new | abel s or
macros will be defined.

Undefi ned | abel / synbol error. A synbolic reference which was never
defined is used in the statenent.

I ndex error. Another character appears in a statenent at a point where
only an index register reference is allowed (X or Y).

Z80 error. A Z80 machi ne operation has been encountered while in 8080
node (.18080). This is only a warning and the opcode will be properly
assenbl ed.

User defined macro error. A ERROR pseudo-op was encount ered.

TDL Z80 Rel ocati ng/Linking Assenbl er User's Manual Page 62
Appendi x E: Cbject Tape Formats

Appendi x E

Cbj ect Tape Formats

The TDL Assenbl er produces two different object tape formats depending on the
use of the .PABS and the .PREL pseudo-ops. It also punches the two formats
two different ways, binary (.PBIN and ASCI| (.PHEX). Each of the two formats
will be described separately, and where differences between binary and ASCl I
exist, they wll be noted. In addition, the .XLINK option allows the
suppression of sonme of the information in the relocatable format to allow the
direct production of a relocatable core imge nodul e instead of a relocatable
obj ect nodul e.

TDL Obj ect Modul e- Format Definition

The use of the .PREL pseudo-op (which is default if neither is specified)
causes the generation of the TDL Object Mdule Format. This format allows for
sinple relocation of conplete progranms by the TDL System Mnitors, and for
conmpl ex relocation and |inking of nodules by the TDL Linkage Editor.

The default object nodule format is an extension of the INTEL "hex file"
format, but is not conpatible with that format. The nopdule consists of a
sequential file of ASCI|I characters representing the binary data, synbol, and
control information required to construct a final program from the nodule.
Al binary bytes wthin this structure are represented as two ASC
characters corresponding to the hexadeci mal value of the byte (e.g. 11001001
-> (C9). Al ASClI values are, represented by the corresponding ASClI
character (e.g. A -> A). In the binary punch node, the format is basically
the sane, but all binary bytes are represented by thenselves, not as two
ASCI | characters.

Each of the different records within the nodule is indicated by the use of a
prompt character as the first character of the record (in the INTEL format,
this is the “:”). The valid pronpt characters are:

I -> nodul e identification record
@-> entry point record
-> internal synbol record
\ -> external synbol/relocation base record
& -> synbol table record
; -> datal/program end-of-file record

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 63
Appendi x E: Cbject Tape Formats

(Note that only the records pronpted by a ; are output if the .XLINK node
is in effect.)

Every record in the nodule is term nated by a one byte binary checksum of all
of the preceding bytes in the record except for the pronpt character. The
checksum is the two's conplement of the sum of the preceding bytes. Any
output format (two character binary, one character ASCI| or one byte binary)
still counts as only one byte in the checksum (i.e. before conversion for
out put).

In addition, each record in the ASCII punch node is preceded by a carriage
return/line feed sequence to facilitate listing the nodule on an external
device. It is not present in the binary punch node.

The follow ng descriptions are specified assum ng ASCII punch node. Wth the
above noted exception of the carriage return/line feed preceding each record,
the binary format is identical, with each binary byte being |eft unexpanded.
ASCI| characters are left as they are in either node.

Modul e I dentification Record (!)

Byte 1-2 CR/ LF
3 Excl amati on point (!) pronpt.
4-9 ASCI | nodul e nane.

10- 11 Checksum
Entry Point Record (@

Byte 1-2 CR/ LF
3 At -sign pronpt.
4-5 Nunber of entry points in this record.
6-?7? ASCI | nanmes of entry points, 6 bytes per nane. The nanmes are
left justified and blank fill ed.
?7? Checksum

I nternal Synbol Record (#)

Byte 1-2 CR/ LF
3 Pound si gn pronpt.
4-5 Nurmber of internal synmbols in this record.
6- 11 ASCI | nanme of internal synbol, left justified and bl ank
filled.

12- 13 Rel ocation base for synbol. The value of this synbol is relative
to the relocation base specified.

TDL 280 Rel ocati ng/Linking Assenbl er User's Manual Page 64
Appendi x E: Cbject Tape Formats

14-17 Synbol value (16 bit).

C The above three fields are repeated for each internal synbol in the
record.

?? Checksum

Ext ernal Synbol / Rel ocati on Base Record (\)

Byte 1-2 CR/ LF
3 Back-sl ash (\) pronpt.
4-5 Number of external/rel ocation synbols in this record.
6-11 ASCI|I nane of the synbol, left justified and blank filled.
12-13 Rel ocati on nunber assigned to this synbol in t hi s nodul e.
This nunber is unique for each synbol. It starts with one and

i ncreases sequentially for each subsequent
external /rel ocati on base synbol

14-17 Rel ocati on segment size/external reference flag. If this value is
zero, it represents a reference to a synbol defined
externally to this nodule (usually a subroutine or globa
data item). If it is non-zero, then the value is the size of
the rel ocation segnment as defined in this object nodule. This
segnent can contain either code or data, and may be |ocated
anywhere in menory by the linkage editor, independent of any
ot her segnent.
The above three fields are repeated for each synbol contained
in this record.

?7? Checksum

Synbol Tabl e Record (&)

Byte 1-2 CR/ LF
3 Anpersand (&) pronpt.
4- 7?7 The renminder of this record is identical to the internal
symbol record. Al synbols defined in this nodule are

contained in these records.

Dat a/ Program Record (;)

Byte 1-2 CR/ LF
3 Sem col on (;) pronpt

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 65
Appendi x E: Cbject Tape Formats

4-5 Nunber of binary data bytes in this record. The maximumis 32
binary bytes (64 bytes of ASC I representation). If this
value is zero, this record-is a end-of-file record, described
bel ow.

6-9 Load address of the data relative to the specified relocation
base.

10- 11 Rel ocation base for all relocation in this record. Al relocatable
values in this record are added to the current value of the
specified relocation base before being put into menory. (If
XLINK is in effect, the only allowable relocation bases are 0O
and 1.)

12-13 Rel ocation control byte.. This byte controls the relocation of the
next eight bytes in the record (if that many remai n according
to the count field). The bits are used from left to right.
The bits have the foll owi ng neani ngs:

0: a single absolute byte | oad unnodifi ed.

10: a two byte relocatable value, Ileast significant
byte first -> add the 16 bit value to the current
rel ocation base, and load the result | east

significant byte first. (If XLINKis in effect, and
the current relocation base is 0, then the 16 bit
value is added to relocation base 1.)

110: a three byte reference to a different relocation
base. The first byte is the relocation base nunber,
and the two after that are the 16 bit val ue, | east
significant byte first -> add the specified
rel ocation base to the 16 bit value, and |oad the
result least significant byte first. (In .XLINK
node, this control pattern is not generated.)

Note that a two or three byte conbination is never broken
across a record boundary.

14-29Data bytes controlled as above.

30-?? The above control/data byte conbinations are repeated as specified
by the count.

?7? Checksum

End-of -Fil e Record (;)

Byte 1-2 CR/ LF
3 Sem colon (;) pronpt.
4-5 Zero to indicate end-of-file record.
6-9 Starting address for nodule relative to the specified

rel ocation base. This address is optionally generated by the
| anguage processor and may be zero.

10-11 Rel ocati on base for starting address. (In.XLINK node may be only O
or 1.)

12-13 Checksum

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 66
Appendi x E: Cbject Tape Formats

| NTEL Cbj ect For mat

The use of the PABS pseudo-op causes an |INTEL "hex" object nodule to be
produced. This object tape can also be |oaded by the TDL System Mnitors, but
provides no relocatability.

Al'l of the above conments concerning byte formats and checksuns apply to this
format as wel | .

Byte 1-2 CR/ LF

3 Colon (:) pronpt.

4-5 Nunber of binary data bytes in this record. The maxi mum
nunber is 32 binary bytes(64 bytes of ASCI| representation).
If this val ue is zero, this record is an end-of-file
record, and the | oad address is the program starting
addr ess.

6-9 Load address of the data in this record.

10- 11 Unused.
12-?? Data bytes.
?? Checksum

TDL Z80 Rel ocati ng/Linking Assenbl er User's Manual Page 67
Appendi x F: Additional Capabilities under CP/M

Appendi x F
Additional Capabilities under CP/ M

Li brary File Ceneration

It is often desirable to maintain a related set of independent object nodul es
as a single source and object file for later use with the library search
facility of the TDL Linkage Editor. To facilitate this the .PRGEND pseudo-op
can be used. The format |s:

. PRGEND

This pseudo-op functions identically to the .END pseudo-op, except that,
after conpleting the assenbly of the current nodule, the assenbler continues
with another nodule follow ng. Miltiple nodules assenbled in this manner from
a single source file produce a single object file which can be linked in
i brary search node, and a single listing. Each nodul e assenbly is conpletely
i ndependent however. The last nodule in the source file nust be term nated by
a . END pseudo-op, not a .PRGEND

Li brary Source File Usage

It is often convenient to be able to utilize the same section of assenbler
source code in a nunber of different assenblies. The .|INSERT pseudo-op allows
this to be done easily. The format is:

CINSERT {d:} file{.ext}

where d is the optional CP/M disk specifier (defaulting to the source file
disk), file is the desired file name, and ext is the optional file extension
(defaulting to ASM .

Thi s pseudo-op causes the specified file to be copied into the assenbly
inits entirety, and to be treated exactly as if it were part of the origina

source file. Al inserted source is flagged with an "@ on the listing. Only
one level of .INSERT is allowed, they cannot be nested.
This pseudo-op will generate an "F' error if the file is not found,

incorrectly specified, or if an .INSERT is already in progress.

TDL Z80 Rel ocati ng/ Li nki ng Assenbl er User's Manual Page 68
Appendi x G Assenbler Operation with CP/M

Appendi x G
Assenbl er Qperation with CP/IM

The TDL Z80 Rel ocati ng/Li nking Assenbler is initiated by the CP/M conmand:"’
ASM {sd:}filef{.ext} {dd:){sw tches}

wher e
sd is the optional CP/Mdisk specification for the source file
(defaults to the | ogged in disk)
file is the source file nane
ext is the optional source file extension (defaults to ASM
dd is the optional CP/M disk specification for the output files

(defaults to the sanme as the source file)

swi t ches are the optional assenbly control sw tches, each of which is
a single letter and which my appear in any order (with no
i nt erveni ng spaces)

The object file created by the assenbly will have the sane nane as the
source file, with an extension of .HEX if the .PABS option was used, and .REL
if the .PREL option was used (the default).

Swi t ches

A . LALL

B listing to both disk and Iist device

C . LCTL

D listing to disk (file nane sanme as source with extension of PRN)
H .PHEX (CP/ M default is PBIN)

| . LI MAGE

K . XLINK (CP/ M default is LINK)

L listing only no object file generated

0 obj ect only no |listing generated

P . PSYM

S . SALL

X . XLI ST

Y . XSYM

Note that all switches with pseudo-op equivalents wll be overridden by

contrary pseudo-ops wWithin the source program

TDL Z80 Rel ocati ng/Li nki ng Assenbl er User's Manual Page 69
Appendi x G Assenbler Operation with CP/M

Assenbly Tine Control

Al'l of the assenbly tinme control options (ctl-C, ctl-S, ctl-T) and page wi dth
options described in Appendix C also apply to the CP/ M based versi on.

