
• Introduction to the

COHERENT System

r

•

•

•

•

•

Table of Contents

• 1. Introduction

What is COHERENT?

What is an operating system?

COHERENT design philosophy . 2

COHERENT properties 5

2. How do I begin? 7

Terminals and COHERENT 7

Special terminal keys 7

login - Logging in 8

Try COHERENT commands 10

Commands to COHERENT 11

• help, man - Help with commands 13

Logging out 13

3. Features of COHERENT 15

Information storage and retrieval 15

>, < - 1/0 redirection 16

I - Pipes 17

Processing information in files 18

Document preparation 19

Program writing tools 20

Electronic communication 21

Other COHERENT features 21

Summary 21

• 4 . Files and directories 23

File names 23

Your directory 23

Introduction to the COHERENT System

Pathnames . 24 • mkdir, cd, pwd - More directories 25

mv, cp - Moving files between directories 28

chmod - File protection and mode 31

rm, rmdir - Removing files and directories 32

du, df - How much space 33

In - Linking files together 33

5. Introduction to COHERENT commands 35

cat - List contents of a file 35

>, <, > > - Redirection 36

Lower case sensitivity in commands 37

I - Pipes 38

scat - List files on screen 38 • who - Who is on the system 39

Is, le - Listing your directory 39

msg - Send message 42

mesg - Hear no messages 42

write - Electronic discussion 43

mail - Mailing a letter 44

pr, lpr - Print files 45

echo - Echo the command line 46

ed - Text file editor 47

grep-Find patterns in text fi les 47

date - Print the date 48

time - Measure command execution time 49

passwd - Passwords 49 • stty - Changing terminal behavior 50

II

Introduction to the COHERENT System

• 6. Miscellaneous tools and features 53

units - Convert units of measure 53

be - Desk calculator 54

cal - Calendar maker . 59

crypt - Secure information 60

7. More about COHERENT commands 61

Simple commands . 61

Special characters . 61

Background commands 62

Commands in a file 63

.profile - Login shell file 65

Substitutions 65

• File name substitution 66

Parameter substitution . 69

Shell variable substitution 71

Command substitution . 75

Special shell variables 76

'.' - Read commands 77

tesl - Condition testing 78

Conditional command processing 79

Control flow 80

Summary 86

8. Creating and using programs 87

Basic steps in COHERENT programming 88

ed - Creating the program source 88 • cc - Compiling the program 89

m4 - Macro processing 90

iii

Introduction to the COHERENT System

Programming simple input and output 90 • make - Building larger programs . 93

db - Debugging the program 95

Summary 99

9. A sample problem solved with COHERENT 101

Build a dictionary . 101

Maintaining the dictionary 105

Using the dictionary . 106

Summary of dictionary problem 107

Index 109

•

•
iv

•

•

•

1. Introduction

This document is an introduction to the COHERENT system. It
has two purposes: one, to be a tutorial manual; and two, to be a
reference manual for the COHERENT system.

A related manual is the COHERENT Command Manual. It con
tains detailed descriptions of each command in the system. The ed
Interactive Editor Tutorial is useful to those who have not used the
COHERENT text editor ed. It also contains general information
about the system. The COHERENT Administrator's Guide is use
ful to the person or persons responsible for bringing up the
COHERENT system and maintaining it.

Sections two through nine contain specific details on the use of the
COHERENT system. The remainder of this introductory section
describes what an operating system is and outlines the philosophy
of the COHERENT system.

What is COHERENT?

The COHERENT system is a timesharing operating system that can
be used on many hardware configurations. Its operation employs a
few elegant concepts giving a powerful and flexible system which is
sti ll simple to use. These simple concepts have the same importance
to the practice of software development as interchangeable parts
had to the industrial revolution.

What is an operating system?

When you use a computer, you will use programs and data. A pro
gram is a series of instructions to the computer to direct it to per
form a task, such as playing a game like tic-tac-toe, or balancing a
checkbook. A personalized telephone directory is an example of
data.

Unless the computer you use is very small, you will be sharing its
resources with other people. Resource sharing not only yields many
economies but also allows many people to communicate with each
other and thereby work more efficiently together. At the same
time, users are protected against unwanted interference from other
users .

Introduction to the COHERENT System

The elementary information-processing functions are carried out by
the computer hardware- the boxes, circuits , and wires. However,
software is necessary to provide the complex set of features that
makes the computer do what you want it to do.

This software is called a timesharing operating system. Any
timesharing operating system must be able to :

schedul e computer time
use mass - stor age dev i ces
or gan ize di sk storage space
protect programs f r om unwanted conflict
pr otect stored information from destr uction
f ac i l i tate cooperat i on wi th other use r s

i n sharing programs and data

In short, a timesharing operating system is a set of programs that
enables many computer users to share the hardware and software
resources of a computer efficiently.

Today's computers would not be truly general purpose without an
operating system. Additional tools are often provided as part of
operating systems. Editors, compilers, debuggers and assemblers
are necessary for you to develop and test programs. Document
preparation aids greatly facilitate your creation of memos, manuals
or even books. Command processors assist you in controlling the
computer and solving your problem. Status checking programs tell
you the level of system usage, disk space usage, and which other
users are on the system.

The combination of the basic operating system features and the
additional tools transforms the collection of wires, silicon, circuit
boards and oxide-plated surfaces into a useful computer.

COHERENT design philosophy

COHERENT has all the properties that have been di scussed so far.
But the quality and quantity of the features provided by the
COHERENT operating system distinguishes it from other operating
systems.

The quality is guaranteed by the strict use of state-of-the-art
software technology. All but a very small part of the operating sys
tem software is written in C, a high-level language, rather than

2

•

•

•

•

•

•

Introduction to the COHERENT System

assembler. The result is a very reliable operating system, with no
observable loss in execution speed.

The choice of a high-level language also provides portability. The
C language already exists on a number of popular computers, and
is certain to become more and more available. At this writing it is
available on the Z8000, PDP-I I, the 8086, and the 8088, with the
68000 and other popular machines in development.

An important guiding principle in the design and implementation of
the COHERENT operating system is that good performance is the
direct result of dedication to careful design and implementation of
algorithms and systems, rather than refuge in coding tricks.

The basic features noted above embody the purpose of the operat
ing system at the most primitive level. It is instructive to examine
the necessity and utility of providing these features.

A computer system is not an end in itself but an instrument used to
implement solutions to real-world problems. It is required to be a
tool bench that provides for the construction of other tools with a
myriad of specific applications.

If the design of the operating system is too specialized or limited, it
will only suit a few applications. On the other hand, if too much
specific detail is put into the operating system itself, then the system
becomes very complex, difficult to use and maintain, and potentially
quite unreliable.

The design philosophy of COHERENT is expressed well in this
quote from John Conway*: "The engineer who wants a machine
for some specific purpose will normally approve the simplest
machine that does the job. He will not usually prefer a multiplicity
of parts with the same effect, nor will he countenance the insertion
of components with no function." Machines whose designs are
based upon fundamentals are far more likely to satisfy these cri
teria.

The COHERENT system follows this approach throughout. For
example, consider device-independent 1/0. No distinction is made
between a program, a device (such as a terminal or floppy disk),

*J .H. Conway; Regular Algebra and Finite Machines;
Chapman and Hall Ltd., London 1971, page 3.

3

Introduction to the COHERENT System

and a file. Programs can transfer data between devices and files
without knowing any of the physical characteristics of the device.
This device independence results from basing the design of the 1/0
system on a consistent view of files, devices, and programs. All
look to each other like a stream of bytes, so they can all communi
cate with each other directly.

If an application requires a more complex file structure such as an
indexed sequential file or a B-* tree, such a structure can be added
at a higher level. This greatly simplifies the design of the operating
system, sparing unnecessary overhead for programs operating at the
byte-stream level.

You might wonder at this point about a possible loss of efficiency
or performance compromise within this design. To the contrary,
the speed at which the COHERENT system transfers data between
files on a disk is very nearly the hardware speed of disk-to-disk
transfers. This is achieved· through the use of simple but ingenious
algorithms.

With the consistency of design exemplified by the device
independent 1/0 applied throughout the COHERENT system, a
few primitive operations easily provide communication between
programs, files and devices. With these , any user of the
COHERENT system can construct building blocks which can be
readily assembled to build a solution to a problem.

In the evolution of the classical operating system, features were
added to the basic operating system and its programs in an ad hoc
fashion. To solve a previously unanticipated problem, some exist
ing program was modified to add a new feature. The new feature
was then selected by a switch set by the user.

This approach created an operating system whose programs grew
larger and more complex. As a result, the system was more difficult
to understand and maintain and on the whole, less reliable. For
example, a typical file-to-file copy program provided with a widely
used classical operating system may have three dozen options. In
the COHERENT operating system, there is no comparable pro
gram. To copy files, the program cat is used with its output stream
redirected. cat is the COHERENT command that copies a file to
the user's terminal.

4

•

•

•

•

•

•

Introduction to the COHERENT System

cat is a filter. A Jilter is a program that produces on its output a
possibly modified copy of its input. A user can use existing filters,
alone or in combination, or can easily construct new ones, to
achieve the variety of actions that are elicited by switches in other
operating systems.

This modular approach gives the COHERENT system user a great
productivity advantage, as well as making the system more reliable.
A program or filter designed for use in one application can be used
in many other applications, even those which were not anticipated
by the developer . Commands, even powerful ones, tend to be sim
ple.

For example, you might want to know how many people are using
the computer. The command who will produce a list of user
names, their terminal designation, and the time of day and date
that they logged in. Each user is listed on a separate line.

This may not be the information you want. If you only want to
know how many users there are, the filter named we (for word
count) will help you find out. In the form

WC -1

we will count the number of lines in the input. Combining these
two programs with the vertical bar pipe operator, the command

who I we -1

will tell how many users there are on the system. The pipe connects
the output of the who to the input of the filter we, whose output
will appear on the terminal.

The pipe feature has many applications throughout the use of the
COHERENT system and increases its power substantially.

COHERENT properties

The COHERENT file system has a tree-structured directory. This
means that directories may contain files, which in turn may be data
files or directories. The fact that directories may contain more
directories can be a significant help in managing large numbers of
files.

The COHERENT operating system is modularly designed using cer
tain mathematical concepts. This results in a much better design

5

Introduction to the COHERENT System

for the system. Using this simple but elegant approach, features are
designed to fit well together. This means that COHERENT does
not repeatedly reinvent the wheel-each feature is carefully designed
to function well by itself and work readily in combination with oth
ers. COHERENT avoids the "creeping feature" syndrome com
mon to classical operating systems.

An example of this modular design principle can be found in char
acter patterns, or simply patterns . Many parts of the COHERENT
system use patterns to describe strings of characters in a general
way. Rather than having each part of the system specify strings in
a different fashion , standard pattern specifications are used.

Patterns simplify specification of arbitrary strings of characters.
For example, you can specify all strings of characters beginning
with the letter a, containing one other vowel, and ending with the
letter g with the pattern

a.*[aeiou].*g

6

•

•

•

•

•

•

Introduction to the COHERENT System

2. How do I begin?

This section covers how to get on the system the first time, and is of
most interest for those who have not used the COHERENT system
before. It is also useful to those who may need to review the
basics.

Terminals and COHERENT

You will use a terminal to send commands to the COHERENT sys
tem and view its responses.

There are two kinds of terminals in use today. Each type of termi
nal has a keyboard. The keyboard is like that of a typewriter with
a few special keys.

The older kind of terminal resembles a typewriter. This kind of ter
minal is called a hard copy terminal. The information you type or
that the COHERENT system sends back is printed on paper.

The second kind of terminal widely available today, uses a screen
resembling a television screen, called a video display or CRT. The
purpose of the display is not to show pictures, but to display the
dialogue between you and the computer system.

On a typical video display terminal there are 24 lines of characters
visible on the screen . Each line on the screen can contain up to 80
characters.

All the work you do with the COHERENT system will be done by
typing commands and data on the terminal.

Special terminal keys

One special key on the keyboard that you will use in your work
with the COHERENT system is the <RETURN> key. This key
signals COHERENT that the end of a line has been reached, and
that you want it to process a command. Not all terminals label the
key <RETURN>, but each terminal has a similar key. Some will
call it newline, linefeed, enter, or eol, and the key is usually larger
than other keys (except the space bar). From here on, this key will
be called < RETURN > .
Note that commands to the COHERENT system will end with a
<RETURN>. No action upon your command will take place
until you end a line with this key .

7

Introduction to the COHERENT System

Another special key is the control key, usually labeled ctrl or cntl or
cont. Most terminals place it on the left side of the keyboard.
This is an important key used in sending certain special characters.

To use the ctrl key, you must hold it down while you press another
key. To send the computer a ctrl-D character, hold down the ctrl
key, strike the D key simultaneously, then release both keys.

Since there is usually no printable character corresponding to con
trol characters, in this document they will be represented in the
form:

<ctrl-D>

for the character ctrl-D.

While you are typing information to the COHERENT system, you
can correct the information before it is processed . There are two
keys that help you do this. The first is the <KILL> character,
which will erase the line entirely, and allow you to begin again.
This key is usually the @ key, but you can easily change the
<KILL> character with the stty command, which is discussed in a
later section.

The other key is the <ERASE> character, normally the < ctrl
H > . This will erase the most recently typed character. You can
erase several characters with < ctrl-H > by striking it several times.

One more special key is the <INTERRUPT> key. This key can
be used to halt a command in progress before it normally ter
minates. This key may be labeled rubout, del, or delete on your
terminal.

login - Logging in

Before you use the COHERENT system for the first time, you need
some specific information about your installation and your access to
the COHERENT system. This information will come from your
project leader, or the system administrator. If you have any ques
tions about logging in or other COHERENT system topics, ask this
person.

First, the administrator will tell you what your user name will be .
User names are typically first names, initials, nicknames, or last
names. The COHERENT system recognizes you by your user name

8

•

•

•

•

•

•

Introduction to the COHERENT System

while you are using the system. Others who are using the system
will use this name to communicate with you.

Secondly, the administrator will tell you what your password, if
any, will be. This password is important for the security of the
entire system, and you should not divulge your password to others.
If your installation does use passwords, you will need to know
yours before you get on the system.

Once you have this information, the first thing you must do is to
log in to the COHERENT computer system. Doing so will estab
lish the connection with the computer and ready the system for
your commands.

In order to log in, you must first determine if your terminal is hard
wired to the computer, or whether you must make a phone call to
establish your connection. If you do not know, ask the system
administrator.

If your terminal is not hard wired to the system, your system
administrator will supply you with a telephone number of the com
puter and instructions on how to connect your terminal to the tele
phone.

If your terminal is hard wired to the COHERENT system, your first
step after turning on the terminal is to send the < ctrl-D > com
mand.

Once you are connected to the COHERENT system, it will reply
either:

Login:

or

Coherent login:

In response to this, type your user name, followed by a
<RETURN>. If you have a password, COHERENT will prompt
you to enter it by typing:

Password:

When you type your password, the numbers and letters will not be
shown on the screen or typed on the paper. This is to prevent
unauthorized users from seeing your password . Follow the pass-

9

Introduction to the COHERENT System

word with a <RETURN> . If you entered the password
incorrectly, COHERENT will ask you to try again.

If you have entered your password correctly, you are now logged
in. You will be greeted by the message of the day, if there is any.

Once your login is successful, the COHERENT system is ready for
your commands. To indicate readiness, COHERENT sends a
prompt character to tell you. In most installations, this is a dollar
sign:

$

You are now ready to type commands. When a command is
finished, COHERENT will issue another prompt, meaning that the
system is ready for your next command.

Try COHERENT commands

To see how easy it is to use COHERENT, type the following lines.
Be sure to end each line with a <RETURN>.

ed
i
This is a sample COHERENT file.

w fileOl
q

The characters ed tell COHERENT to call in the editor program,
which is used to build and change files. The information that you
type will then be processed by the COHERENT editor. When you
are finished with the editor, you return to COHERENT by typing
the Q or q command. Now type

cat fileOl

This command types out the contents of the file fileOl that you just
created. Finally, type

le

This command lists the files that you have, and will reply

Files:
fileOl

•

•

•

•

•

•

Introduction to the COHERENT System

Congratulations! You have just made COHERENT work for you .

The first command ed created a file and filled it with some text,
while the second command cat typed the file out on your terminal.
Finally, the le command listed the name of each of your files. See
following sections for full descriptions of each of these commands.

Commands to COHERENT

Once you have logged into the system, all the resources of the
COHERENT system are at your fingertips. COHERENT com
mands give you control over these resources .

COHERENT is easy to learn and well thought out. The best way
to learn the system is to try examples shown here and elaborate
upon them. The more things you try, the more you will learn and
the more proficient you will be in using the COHERENT system.
If there are other users that you can talk to about the system, you
may find it helpful to exchange information with them.

All commands have common elements. Commands consist of two
parts . The first part is the name of the command itself.

Some commands only have the first part. For example, to list the
names of files that you have, type

le

and COHERENT will print their names in columns across the
screen.

A file is a set of information stored on disk. Files are described in
detail in Section 4.

If you have no files, le will not type anything. If you have logged
in for the first time, you may or may not have files, depending upon
your installation . Try it. In any event, COHERENT will prompt
you for another command after it finishes le.

The second part of a command is a list of parameters or arguments
to that command. We may think of parameters as controlling the
behavior of the command, or as the target of the command's
action. Each command must be terminated by hitting
<RETURN>. Spaces or tabs separate the parts of the command.

The parameters of the command can be further divided into options
(or controls) and names. Names are most frequently file names.

11

Introduction to the COHERENT System

The options change the action of the command. Options are indi
cated in the command line by prefixing the option with a ' - ' char
acter.

An example of a name parameter is shown in this example of a cat
command:

cat fileOl

This command will type the information in fileOl on your terminal.
The name argument is fileOl.

The command Is lists your file names one name per line.

ls

will produce a list in the form:

.profile
compu
fileOl
mailbox

However, there is more information available about each file in
addition to its name. In response to the command

ls -1

Is will print this additional information. The ' - ' signifies an
option. And the option letter I means "produce the long listing".
This listing shows the size of the file, the date of creation or
modification of the file, and the degree of protection of the file:

-rw-r--r-- 1 you 17 Sat Aug 15 17:20 fileOl

Another example of a name parameter to a command is a file
name.

If you want to modify an already existing file, use ed with a param
eter giving the name of the file.

ed fileOl

This will allow you to change the file created with the ed command
above. To exit from ed, use the Q command.

As each command is discussed, the parameters to be used with it
will also be discussed. Notice that the name of the command is

12

•

•

•

•

•

•

Introduction to the COHERENT System

separated from the parameters by a space, as the parameters are
from each other.

help, man - Help with commands

The COHERENT system has a help command

help

which will give you a brief description of COHERENT commands.
To introduce yourself to these commands, type help by itself, or

help help

Both will tell you how to use the help command . To get informa
tion on the le command, type

help l e

To obtain detailed information on a command, use the man (abbre
viation for manual) command. On most COHERENT systems,
each command has descriptions online which the man command
will print out for you. To find out about the man command, type

man man

If your CRT screen fills with information, man will wait for you to
type <RETURN> to continue . This is to prevent you from miss
ing information should it scroll too fast. man will also wait for a
<RETURN> after it puts out the last line of the description.

The command descriptions provided by the man command are
available in printed form in the COHERENT Command Manual.
It provides a concise description of each available command.

Logging out

When you are finished using the computer, you need to tell the
COHERENT system that you are done, and free the terminal for
other use. This step is called logging out.

There are two ways to log out. The first is to type a < ctrl-D >
when COHERENT is expecting a command. The second is to type
the command

l ogin

13

Introduction to the COHERENT System

which will log you out and prepare for another login. Either way,
you can then turn off your terminal. •

•

•
14

•

•

•

Introduction to the COHERENT System

3. Features of COHERENT

This section presents some basic concepts, such as files, directories,
and pipes, which are important in understanding and using the
COHERENT system.

Information storage and retrieval

Computer systems store information in files. A file on the com
puter is similar to the files you find in an office filing cabinet. All
operating systems provide programs to help you create and use files.
There are many different ways that file systems are designed. Files
reside on the hardware called a disk. A file, once created, may be
referred to, changed, or removed. The COHERENT system keeps
each individual file as a separate entity. Much of your work with
the COHERENT system will be based upon files.

To keep track of files, you need something that performs the same
function as the index tabs on a file folder. A directory is
COHERENT's way of doing this. The directory holds the names
of files and marks where the files are located so that the
COHERENT system knows where to find them. You will use the
directory to keep track of your files.

As a user of the COHERENT system, you are not limited to one
directory. You may have as many as you wish, as long as you
don't run out of disk resources.

Directories for COHERENT are tree-structured. Your directory is
a file in a parent directory. The following example will clarify this
concept.

If you have three separate projects, and each has files of its own,
then you can set up your directory to look like this:

15

Introduction to the COHERENT System

yourname

proj 1 proj 2 proj J

source.1 source.J pr ojJa source .k

source.2 obj ect.4]a.source

projl, proj2, and proj3 are all subdirectories in directory yourname.
Another level of subdirectory is with proj3a in subdirectory proj3 .

Each user of the COHERENT computer system has his own direc
tory. The COHERENT system makes sure that you automatically
use the directory created for you and not that of other users. Simi
larly, your files are protected from accidental damage by another
user.

However, if you wish, you can allow other users to examine or
change your files .

Whether or not others may examine or change your files depends
upon the type of protection that you choose for your file. In the
usual case, you will not explicitly specify any protection, and the
COHERENT system will create the file unprotected. Since direc
tories are also files, you may prevent other users from examining
the file names in your directory or subdirectory using the same pro
tection mechanism.

Files in the COHERENT system contain several different kinds of
information, ranging from programs to electronic mail. Later sec
tions will present examples of each kind of file.

>, < - 1/0 redirection

Typical COHERENT commands write their output to the standard
output file , which is normally your terminal. For example, who
prints the name of each user currently logged into the system on
your terminal:

who

16

•

•

•

•

•

•

Introduction to the COHERENT System

By using the special character > , you can place this output in a
file. The command

who >whofile

will put this information into whofile. The operator > tells
COHERENT to redirect the standard output. Later, you can list
the information on your terminal using cat:

cat whofile

Once the information is in a file, you can process it in other ways,
like sorting:

sort whofile

will type the users' names on your terminal alphabetically.

Similarly, the standard input may be redirected to accept input
from a file rather than from your terminal. The command we will
count words, lines and characters from the standard input. Using
input redirection, signaled by <, you can do the same processing
for a file, such as whofile:

wc <whofile

I - Pipes

An important feature of the COHERENT system in building modu
lar solutions is the pipe.

Pipes and truly device-independent 1/0 provide COHERENT with
a concept as important as interchangeable parts. Programs can
communicate with each other easily, even though they are indepen
dently created.

Most COHERENT programs are written as filters . A filter is a
program that processes its input sequentially and produces sequen
tial output. Generally, no titles or end· of job messages are pro
duced by filters.

Designing programs as filters gives greater flexibility in connecting
programs with each other, as in the example where the output of
who is processed by we .

17

Introduction to the COHERENT System

The mechanism that connects filters together is called a pipe and is
indicated by a vertical bar:

The pipe operator in the command

who I wc

takes the standard output from who, normally destined for the ter
minal, and connects it to the input of we, which would otherwise
get its input from the terminal.

This command performs the same operation as shown in the section
on I/O redirection:

who >whofile
wc <whofile

except that who file is a file that is to be removed later. The pipe is
much handier to use and does not require you to remember to clean
up temporary files like whofile .

The power and flexibility of the COHERENT operating system
owes much to the pipe.

Processing information in files

This section outlines some tools that COHERENT provides to pro
cess data files.

Computer applications, such as general ledger, mailing label pro
cessing, accounts receivable processing, and inventory control,
center around data files and transactions involving them. If you are
building or supporting a software system, it may be productive to
put project control information on the computer.

COHERENT has data file processing capabilites that can help you
implement such an application easily. Many of these commands
will be directly useful to you.

sort can be used to order the lines or records in a file. By specify
ing options, you can sort a file based on any field or set of fields in
each line, as well as select the field separator. You can also discard
elements that are not unique.

18

•

•

•

•

•

•

Introduction to the COHERENT System

Several input files may be sorted into one output file, thereby giving
a merge capability. The files to be merged need not be previously
sorted.

awk is a pattern scanning and processing language for the
COHERENT system. It can be used to write reports, to detect pat
terns in files and to do online data entry validation. awk treats its
input as lines consisting of fields. awk supports numeric as well as
string processing on the same fields. Totals and averages can be
easily computed on any of the input fields. Associative memory
arrays are provided, where array indices may be integers, strings, or
even floating point numbers.

If you have two text files that contain almost the same information,
you can discover exactly what the differences are with the command
diff. This can be useful in illustrating changes to a document
between versions in showing how today's inventory file relates to
yesterday's inventory file. The command diff can also help you to
find differences between two versions of a contract under
negotiation-your original and the one returned to you, perhaps
changed, by the other party. Used in conjunction with ed, diff can
help you maintain one master file and a series of automatic update
commands to produce other versions of the file.

A similar program cmp can process non-text files.

A related program comm will process sorted files and show you the
similarities they share.

The command uniq inputs a sorted file and outputs a file with
duplicate lines removed.

You can use grep to find patterns in text files.

These commands can be combined to derive many kinds of infor
mation easily.

Document preparation

The COHERENT system can be used for document preparation as
well as program development. It has been used for word processing
applications, computer program documentation, and many user
manuals. With COHERENT, you can write a manual that tells
other people how to use a program. You can write manuscripts as
large as a book, or as small as a memo.

19

Introduction to the COHERENT System

By means of commands embedded in a text file, you can use the
command nroff to format your document attractively. You can set
margins, paragraphs, and page headings. nroff will right-justify the
lines of output text by appropriate padding of blanks between
words.

You first enter the basic document text with ed. Then the text is
given to nroff. If changes are necessary, you only need to enter the
changes using ed-you do not need to re-type the entire document.

nroff is very flexible. It is built with a large number of basic com
mands as well as the ability to add more commands. In fact, when
you write a simple memo or a manual, you are using a small set of
extended commands provided as part of the COHERENT documen
tation package.

If your need is truly sophisticated, you can add your own com
mands to nroff to affect nearly every aspect of the final appearance
of the document. nroff can help you do this in such a way that a
manuscript may appear in any of several different formats, without
changing the content of the manuscript. Also, nroff can produce
output that is used directly in typesetting.

Program writing tools

Writing programs is easy on the COHERENT system. The funda
mental design of the system produces tools suited not only to
accomplishing your desired task but also to provide a superior
environment for program development.

The COHERENT system has a host of high-level language com
pilers. To assist in the debugging of programs, symbolic debuggers
are provided for many of these languages.

The languages currently provided with COHERENT are:

C
assembly language

Pascal will be provided in the near future.

20

•

•

•

•

•

•

Introduction to the COHERENT System

Electronic communication

COHERENT has several features that can provide electronic com
munication.

You may communicate with other users currently logged into the
system with the msg command. write is similar to msg but allows
extended dialogue.

To communicate with someone not currently logged into
COHERENT, you can use the mail command.

Other COHERENT features

COHERENT provides many interesting tools . The program units
converts different units of measure. To perform a calculation using
your terminal, you can use the desk calculator program be. To see
the calendar for year, you can use cal to print a calendar on your
terminal. You can encode files so that they are secure from prying
eyes with the program crypt.

These tools and others are discussed in detail in Section 6 .

Summary

The COHERENT timesharing system provides a powerful base for
the manipulation of information. Its file system has a tree
structured layout. Input and output redirection and pipes enable
the construction of program modules that can be easily recombined
for additional flexibility and power.

The COHERENT system contains many commands that manipulate
information in files, as well as tools that assist you in writing pro
grams .

21

Introduction to COHERENT

•

•

•
22

•

•

•

Introduction to the COHERENT System

4. Files and directories

In earlier sections, we introduced files as the cornerstone of the
COHERENT information storage and retrieval capability. This
section will discuss the topics of files and directories in more detail.

File names

Each file has a name, such as:

.profile
FileOl
cmd.sh
fileOl
test.c

File names are generally made up of upper case and lower case
letters and numbers. COHERENT treats capital letters differently
from lower case letters. The two file names FileOl and fileOl are
therefore different.

A recommended set of symbols for file names is the lower case
alphabet, the upper case alphabet, decimal digits and punctuation
marks:

The file name should not be more than fourteen (14) characters
long. If you specify a longer name, characters beyond the four
teenth will be ignored without any error message.

Your directory

The COHERENT system keeps your directory of file names current.
You can inspect the directory with the Is and le commands. When
you specify a file name, COHERENT looks it up in the directory
and connects the file to the program using it.

There are many directories on the COHERENT system. When you
log in to the system, COHERENT sets up your home directory,
which is determined by the system administrator .

You may sometimes need a program or a data file in another user's
directory. Also, the commands that you use frequently come from
another directory.

23

Introduction to the COHERENT System

To examine or use files in a directory other than your own, you will
need to specify the name of the directory as well as the name of the
file. Separate the parts of the name of the directory by a slash:

I
To see the files in another user's directory, you would issue the
command

le /usr/henry

if the other user's name is henry.

Pathnames

The tree-structured nature of the COHERENT file system means
that all files in the system branch from a common origin. The ori
gin is called the root. The name of the root directory is

I

One file in the root directory is usr. This is a subdirectory that nor
mally contains the directories of all users. To list the names of all
user directories, type the command:

le /usr

If one of the user names is henry as above, the command

le /usr/henry

will list the names of the files in henry's directory.

The parameter / usr/henry is called a pathname. Pathnames may
be fully or partially specified. All fully-specified pathnames begin
with / for root, and continue with further subdirectory names.

Pathnames that do not begin with a slash are partially specified,
and are automatically prefixed with the current directory pathname
to make them complete before use by the system.

Parts of pathnames are separated by slashes, so if there were a file
in newdirectory named newfile, you would refer to it as

newdireetory/newfile

The absence of a beginning slash indicates that the pathname begins
in the current directory. Thus, if your home directory name is

24

•

•

•

•

•

•

Introduction to the COHERENT System

henry, then an alternate but less convenient way to specify the path
name to newfile is

/ usr/ henry/newdirector y/newf i le

Thus, a pathname is a list of all the subdirectories leading from the
root to the file in question. newfile is a file in subdirectory
newdirectory, which in turn is a file in the home directory henry ,
which is further a file in the directory usr. The directory usr is a
file in the master or root directory for the system.

You don't need to specify all of this, fortunately , whenever you
want to specify a file in a subdirectory.

Partially specified pathnames are presumed to be within the current
directory. Therefore, you can specify a subdirectory by specifying
the name of the directory first, followed by the rest of the path
name.

mkdir, cd, pwd - More directories

You can easily create more directories within your primary, or
home directory. You may in fact create several directories, and
even more subdirectories within them.

Some COHERENT users will create subdirectories for program
source, documentation, completed programs, and commands. This
can help locate a single file among many. Additionally, old ver
sions of documents or programs can be kept in a separate directory.

Create fileOl using cat by _typing:

cat > f ileOl
This i s anot he r sample f i le .
<ctr l -D>

Now, you can use the copy command cp:

cp fi leOl file02

creating file02. Then le will show

Files :
fileOl file02

25

Introduction to the COHERENT System

You may have other files present when you log on the first time,
depending upon your installation.

To create a new directory named newdirectory, use the command
mkdir in this fashion:

mkdir newdirectory

If you follow this command with le, it will list your regular files,
but it will also list newdirectory separately as a directory:

Directories:
newdirectory

Files:
fileOl file02

To refer to files, use this new directory name in specifying the path
name.

Now, create a file in the new directory by typing

cat >newdirectory/newfile
lines to be
contained in newfile
<ctrl-D>

This command copies lines to the file described by the partial path
name newdirectory/newfile.

A way to avoid specifying all of the subdirectories in a long path
name is to change the current (or working) directory. When you
first log in, the current directory is set to your home directory.

If you have used the command cd to change your current directory,
you can remind yourself what the current directory is by using

pwd

which means "print working (or current) directory". If you have a
subdirectory backup in your directory, and change directories with

cd backup

then a command

pwd

will respond with

26

•

•

•

•

•

•

Introduction to the COHERENT System

/usr/yourname/backup

The command cd (for change directory) will change the current
directory. To change to newdirectory, issue the command

cd newdirectory

Before this command, your current directory was / usr/ henry if your
user name is henry. If you type the command pwd, the new path
name will be shown to be / usr/henry/ newdirectory.

Now, if you issue an le command, the listing will include only

Files:
newfile

since le with no parameters lists the current directory.

To change back to the directory that you had when you logged in
to the system, use the cd command with no parameters:

cd

This directory is often referred to as the home directory. To
change to another user's directory, you would say

cd /usr/other

or use the abbreviation

cd .. /other

Here ' .. ' is a special COHERENT system abbreviation for parent
directory, which in this case is the / usr directory. In other words,
' .. ' stands for the directory in which the current directory resides.
Every directory in the system except the root directory has a parent.
For the root directory, ' .. ' refers to itself.

Another directory abbreviation is . , meaning current directory.

Assuming that your user name is henry, and your current directory
is your home directory, part of the file system structure is

27

Introduction to the COHERENT System

I

bin us r (..) etc

henry(.) ot her

Here' .. ' is / usr, the parent directory path , and., the current direc
tory pathname / usr /henry. Both ' .' and ' . .' change when you issue
the cd command.

To see what your current directory is, you can use the command

pwd

(for print working directory) and COHERENT will reply with the
full description of your working directory name . For example, if
your user name is henry, and your installation uses the user name
as the directory name, then pwd will reply

/usr/henry

mv, cp - Moving files between directories

Once you have created your new directory, you can move files to it
with mv, or create new files there with commands such as ed.

To move fileOl to newdirectory, the mv command is useful.

mv has two parameters. The first is the file to be moved; the
second is either the new name of the file, or the destination direc
tory of the file . So, to move file fileOl to the new directory, you
can say

mv f ileOl newdir ectory/fileOl

In this case, both parameters are file names. Alternatively, the
second parameter can be a directory pathname:

mv f ile02 newdirectory

The second parameter is the directory that is to contain the file , and
the name of the file in newdirectory will be the same as it was in the
current directory. These two forms have the same effect.

28

•

•

•

•

•

•

Introduction to the COHERENT System

To see where the files are now , type the two commands:

le
l e newdirectory

The result will be:

Di rectories:
newdirectory

followed by

Files :
f i leOl file02 newfile

To move the files back , use a combination of the commands already
shown. Type

mv newdirectory/f i leOl f i leOl
cd newdirector y
mv file02 ..
cd

You can copy files with the cp command. This command has two
parameters. The first parameter is the file to be copied, and the
second parameter is the pathname of the new copy. To copy fileOl
to nfileOl in newdirectory, type the command

cp f i leOl newdir ectory/nfi leOl

The difference between mv and cp is that after the cp command,
both the original file and the copy exist, while after mv, only one
copy exists.

Now, an illustration of what has been discussed so far about direc
tories and files with an example.

Continuing with the user name of henry, assume that you have
some documents that you have entered with ed, and you want to
make backup copies of these files for safekeeping . The document
file names are docl and doc2 and are in your home directory . For
the purposes of this example, create docl with cat by typing:

29

Introduction to the COHERENT System

cat >docl
a few
lines of
text
<ctrl-D>

and similarly doc2:

cat >doc2
second file
with some text
<ctrl- D>

Don' t forget that < ctrl-D > means to hold the control key down
and simultaneously type the D key . An le command tells you what
your file names and directory names are:

Directories:
newdirectory

Files :
docl doc2 fileOl file02

The first step is to create the directory to hold the backup copies.
To help remind yourself what the directory is for, name it backup.

mkdir backup

Then, le will show you:

Directories:
backup newdirectory

Files :
docl doc2 fileOl file02

Now, you can use the cp command to copy your files into the direc
tory with two copy commands:

cp docl backup/docl
cp doc2 backup/doc2

and le will still say:

30

•

•

•

•

•

•

Introduction to the COHERENT System

Directories:
backup newdirectory

Files:
docl doc2 fileOl file02

If you list the contents of the subdirectory,

le backup

you will see:

Files:
docl doc2

The files have been successfully copied.

chmod - File protection and mode

As part of the directory entry, COHERENT keeps information
about attributes of each file, including the time and date of creation
or modification of the file. Also included is the mode of the file. It
controls what can be done with the file and by whom .

For example, you can prevent other users from deleting, reading, or
writing your files by setting the protection of the file. You can even
prevent yourself from reading one of your own files, although this
is not often done.

While there are many combinations of these attributes and different
sets of users that they apply to, this document will cover only the
basic combinations.

To change the protection or mode of a file, you will use the com
mand chmod (meaning change mode). To make a file, say docl in
directory backup from the previous example, protected from writing
or deleting, use the command:

chmod -w backup/docl

where the -w means "remove write permission" and is followed
by the file name.

To allow other users to read the backup file doc2, say:

chmod o+r backup/doc2

31

Introduction to the COHERENT System

where the letter o signifies "other users", · and the + r tells chmod to
grant read permission.

When files are created, they are set up with installation standard
protection levels . Check with your system administrator or local
documentation to be sure what the default protections are on your
system.

To determine what the protection properties are for a given file, use
the command

ls -1

The mode will be printed out as the first column for each file in the
current directory. The format of the output from the ls command
is described in the next section "Introduction to COHERENT com
mands''.

rm, rmdir - Removing files and directories

Files need to be removed to make way for new files. You may have
old copies that you no longer need that are cluttering up your direc
tory, or you may have accidentally created a file that you do not
really want.

To remove a file, use the command rm (for remove). The parame
ter is the pathname of the file that you want to be removed:

rm backup/doc2

This example will remove the doc2 backup that was created in an
earlier example.

You can remove several files with a single command by listing them
as consecutive parameters:

rm fileOl file02

Files that have been protected as unwritable cannot be deleted.
Suppose you created a file tough by typing

cat >tough
linel
line2
<ctrl-D>

and protected it by typing

32

•

•

•

•

•

•

Introduction to the COHERENT System

chmod -w tough

If you try to delete the file with rm, the COHERENT system will
type

tough: unwritable

This is done to prevent you from deleting a file unintentionally. If
you do want to delete it, use the - f option for rm:

rm -f tough

and the file will be deleted.

You can also delete directories using the command rmdir. But
before you delete any directory, it must be empty of files. Other
wise, you will get an error message, and the directory will not be
deleted. The form of this command is

rmdir newdirectory

du, df - How much space

You can determine how much disk space is taken up by your files
with the command du (for disk used). This will tell you how many
blocks are taken up by the files in your directory. If you have sub
directories, they will be listed separately.

Each block on disk contains 512 bytes or characters of information.

To determine how many blocks of information are available for use
in the system, use the command df which shows you disk free
blocks.

In - Linking files together

COHERENT has a unique feature that enables a file to have several
names. These additional names are called links.

To create a link to an existing file, use the command In. If you
have a file named docl, as you will if you have entered the previous
examples, you can create a link to that file:

ln docl another

The protections and the data in the file will always be the same for
both names docl and another.

33

Introduction to the COHERENT System

If one or the other of the names is deleted with the rm command,
the data part of the file will remain. However, if both names are •
removed, then the data will also be removed. The data stays so
long as there is at least one link remaining to the file.

•

•
34

•

•

•

Introduction to the COHERENT System

5. Introduction to COHERENT commands

The commands that you enter into COHERENT are interpreted and
acted upon by sh, a special COHERENT program called the shell.

This section shows some common commands in COHERENT. For
more information on these or other commands see help and man.
Also, consult the COHERENT Commands Manual.

You will need to be aware of some special punctuation characters.
The special characters are:

*?[JI;{}
() $ = : ' I II < > << >>

A void these characters until you have read the Section 7 titled
"More about COHERENT commands" which discusses their use,
or until they are presented in examples.

cat - List contents of a file

A command that can be used to list the contents of a text file-a
program's source, a document, or a message file-is cat. To list the
contents of file pgm say

cat pgm

This will list the file on the terminal, using the standard output .

Another purpose for cat, and in fact the use from which it gets its
name, is to concatenate several files on the standard output.

cat one two three

This command will list all three files one, two, and three, one after
the other on the terminal. The files can be concatenated into
another file by redirecting the standard output to the file . The spe
cial character '> ' is used before the file name to indicate output
redirection . The command

cat one two three >four

will concatenate files one two three into file four. four need not
exist prior to this command, and if it does, the previous contents
will be deleted.

35

Introduction to the COHERENT System

>, <, > > - Redirection

When programs accept input from your terminal and write output
to the terminal, they are doing so through files called standard input
and standard output respectively. Much of the power of
COHERENT stems from the fact that these files can be redirected
to devices other than the terminal, or to COHERENT files. The
redirection is signaled by '< ' for standard input and '> ' for stan
dard output.

To illustrate, the COHERENT command cat will copy standard
input to standard output if you say:

cat
one line
second line
<ctrl-D>

Try it. The lines that you type in following cat will be echoed back
on your terminal. Since the 1/0 is buffered, the resulting output
may not happen until you type the < ctrl-D > .
Redirect the standard output to a file by typing

cat >stuff
one line
second line
<ctrl-D>

The lines are not typed on your terminal, but are put in the file
stuff. You can verify this by using cat to type the contents of the
file:

cat stuff

Try this, and you will see the lines you typed in earlier appear on
your terminal.

Since the COHERENT system treats devices, files, and programs
uniformly, you can send the output from cat to the special file that
is your terminal:

cat stuff >/dev/tty

36

•

•

•

•

•

•

Introduction to the COHERENT System

This will act the same as

cat stuff

so long as the standard output has not been globally redirected, as
is possible when commands are placed in a file. Commands in a file
are discussed in section 7.

If you are directing standard output to a file, the file will be created
if it does not already exist. If it does exist, the old contents will be
deleted.

You can add new output to the end of an existing file rather than
deleting the output by using a different form of output redirection:

cat >stuff
line one
line two
<ctrl-D>
cat >>stuff
line three
<ctrl-D>
cat stuff

The characters '> >' signify that output is to be added to the end
of the file. The second cat command adds lines from the terminal
to stuff. If file stuff does not exist, it is created.

Lower case sensitivity in commands

The commands shown in this manual are all in lower case charac
ters. COHERENT treats upper case characters as distinct from
their lower case equivalents. Therefore, the commands

Cat
CAT
caT
cat

are all different, and only the last one is recognized by
COHERENT .

37

Introduction to the COHERENT System

I - Pipes

As noted in an earlier section, the COHERENT pipe operator is
used to build commands to do many things by combining building
blocks of simple commands. The pipe connects the output of the
command preceding it to the input of the command following it.
The who command lists the users of the system, but in no particular
order. If you want an alphabetical list, you can connect the sort
command to the who command with a pipe:

who I sort

The output of who, normally directed to your terminal, will be
directed to the input of sort, which normally gets its input from the
terminal.

scat - List files on screen

•

If the file you list with cat is more than twenty-four lines long, and
your terminal is directly connected to the COHERENT computer,
the beginning lines of the file will go quickly off the screen before
you can read them. •

At any point that COHERENT is printing on your terminal, you
can cause it to halt temporarily by typing

<ctrl-S>

and the output will resume when you type

<ctrl-Q>

To be sure that you see all of the lines of the file output, use the
scat command. When it has filled the screen with output, it will
pause, waiting for you to hit <RETURN>. If you call scat with
an option of - s,

scat -s file

blank lines will not be shown on your screen. With scat, you will
not need to use < ctrl-S > and < ctrl-Q > .

38

•

•

•

•

Introduction to the COHERENT System

who - Who is on the system

To determine the user names of others who are currently using the
system, use the COHERENT command who.

This command will list the names of those currently logged in to
the COHERENT system, one name per line. You will see your
own user name there as well.

If you find a terminal not in use that someone forgot to log out,
you can type a variant of the who command to see who the user of
the terminal is:

who am i

This will reply with the name of the user of the terminal.

Is, le - Listing your directory

The previous section discussed two of the more commonly used
commands: Is and le These willeach list the files in a directory.

Presume that your directory has the files created in previous sec
tions and that you did not remove newdirectory.

If you want to list files in your directory, simply use the command
with no parameters:

ls

This will will produce

another
backup
docl
doc2
fileOl
file02
newdirectory
stuff

le lists file names like Is does, but in columns across the screen with
files and directories listed separately .

le

will give:

39

Introduction to the COHERENT System

Directories:
backup newdirector y

Files:
another docl doc2 f ileOl fi le02
stuf f

If you want to list files in a directory other than your own, specify
the name of that directory as a parameter to the command. For
example, / bin is a directory in the COHERENT system that con
tains commands . Type

l e / bin

You can specify options to each of these directory listing routines.
To do so, precede the option with a hyphen (and no intervening
space). The option must appear before any other parameters . To
list only the files in the directory for user carol , leaving out any
directories, use the f option with le:

l e -f / us r /carol

or, if you type the command

l e -f

for your directory, the COHERENT system will reply

Fi l es: doc l doc2 fileOl file02

The commonly used options for le are:

-d l i st directories only, omitting f i les
- f list f i les only , omi tt i ng dir ectories
-1 l i st f i l es one per l i ne , not i n columns

The Is command produces a list of file names , one per line, and
optionally much more information. To produce all the informa
tion, use the I option:

l s - 1

A sample output of the long listing produced by this option is
shown here:

40

•

•

•

•

•

•

mode # owner

-rw-r--r-- 1 you
drwxrwxrwx 2 you
-rw-r--r-- 1 you
-rw-r--r-- 1 you
-rw-r--r-- 1 you
drwxrwxrwx ?. you

Introduction to the COHERENT System

size in
bytes

modification
date time

17 Wed Aug 19 17:51

name

FileOl
32 Wed Aug 19 17:53 backup
17 Wed Aug 19 17:52 docl
17 Wed Aug 19 17:52 doc2
17 Sat Aug 15 17:20 fileOl
32 Wed Aug 19 17:52 newdirectory

Headings have been added here to show the meaning of each
column.

The mode column is made up of four separate subfields. This field
describes the access permissions for the file and whether or not the
file is a directory. Taking the entry for file fileOl as an example, we
have:

-rw-r--r-- 1 you
\\ ;\/\I
I -
I I I I
I 2 3 4
1

17 Sat Aug 15 17:20 fileOl

The leftmost position has been labeled I. If the file is a directory,
this position will contain a d, otherwise it will contain a hyphen.

The remainder of the mode field is three subfields, each with three
characters. Subfields 2 through 4 contain three positions each.
These fields represent permissions to be granted to different groups
of users.

Subfield 2 is for the owner of the file . Subfield 3 is for members of
the group that the owner is in, while subfield 4 is for all other users.
The topic of groups is not covered in this manual.

The three positions within each of these subfields represents the per
missions to read, write or execute the file:

rwx

If the permission is to be granted, the corresponding letter is
printed. A hyphen indicates that the permission is denied.

41

Introduction to the COHERENT System

The read permission means that the file can be read, for example by
cat, if the permission is granted. If write permission is granted the
file can be written to, as well as deleted. The execute permission
signifies that the file contains a command and can be executed.

The column labeled # represents the number of links to the file for
non-directory files.

The column labeled owner names the user who owns the file. You
will usually be the owner of files in your directory.

Size shows the number of bytes used in the file.

Next is the date and time that the file was last modified, for exam
ple, by ed.

Finally, the name of the file is shown.

msg - Send message

You can send a short message to a user currently logged in to the
system by using the COHERENT command msg. To illustrate,
send a message to yourself. Type:

msg you
this is a test message

substituting your user name for "you" in the msg command. The
result will be:

you: this is a test message

mesg - Hear no messages

If you do not wish to receive online messages, the command mesg
will prevent other users from interrupting your work:

mesg n

Later, you can allow messages again by saying

mesg y

To determine which of the two mesg options is in effect, use the
mesg command with no option:

42

•

•

•

•

•

•

Introduction to the COHERENT System

mesg

and it will tell you what the current setting is.

write - Electronic discussion

To carry on a more extended dialogue, the command write is more
convenient than repeatedly issuing msg commands. Once started,
the dialogue will continue until a < ctrl-D > is typed on the termi
nal.

To begin the communication using write, jack will issue a command

write jill

indicating communication with user jill. On jill's terminal, the
message

Message from j ack ...

will appear. To establish the other half of the communication, jill
should then say

write jack

and a similar notification will appear on jack's terminal.

At this point, both users simply type lines on their terminal and
write sends the message to the other user. To avoid typing at the
same time as the user you are communicating with, it is recom
mended that each message be ended with a line having the single
letter

0

signifying "over", or "go ahead". When the other user sends you
this, you know it is your turn to send a message, and vice versa.

When your communication is finished, you should type

00

<ctrl-D>

Here, oo means "over and out", and the < ctrl-D > will exit the
write command .

43

Introduction to the COHERENT System

mail - Mailing a letter

If a user is not logged in to COHERENT, or you want to send a
less immediate note, use the command mail.

To send mail to jill, say:

mail j ill

and type the mail message beginning on the following line. You
can also mail messages that have been previously put into a file.
For example,

ed
a
All come to the birthday party at f our
next to the pump room.

w hb.msg
q ·

Now mail the message by typing

mail jill <hb.msg

If the mail is coming from the terminal, terminate the message with
a < ctrl-D > or a line containing only a period.

You can send a mail message to severa: user~ at one time by listing
their user names on the command line:

mail jill jack ted barb <hb.party

will send the message hb.party to jilt, jack, ted and barb. To illus
trate the use of the mail command, send yourself a mail message
by:

mail you
This is a note to
myself to test
mail.

and substitute your user name for "you" in the mail command .

If someone has sent you mail, the COHERENT system will tell
you:

44

•

•

•

•

•

•

Introduction to the COHERENT System

You have mail.

when you log in.

To receive mail, type the mail command with no parameters:

mail

If you have no mail, COHERENT will tell you

No mail.

If you do have mail, each message will be typed out on your termi
nal along with the user name of the sender, and the date and time
that the mail message was sent.

After each message, the mail program types a question mark ? and
waits for your reply. Give a d if you wish to delete the message
that you have just read, a <RETURN> to go onto the next mes
sage without deleting the message you just read, a s command to
save the mail message in the file mbox, or the command q to exit
the mail program .

You will know that you are finished with all of your messages when
mail sends you a ? without typing anything before it.

pr, lpr - Print files

Earlier in this section, the scat command was presented as a way to
list files on your terminal. However, for hard copy or higher
volume output, the line printer is more convenient. The command
lpr will print files for you, making sure that your request does not
conflict with other uses of the printer.

To print a file, issue the command

lpr file

substituting the name of the file to be printed for file . If you want
a banner on the first page of output, use the - b option:

lpr -b banner file

If no file is given, the standard input is printed. Thus, lpr can be
used in pipes.

45

Introduction to the COHERENT System

No processing of the file is done by lpr. This means that no page
headings are printed. Another command pr will do this for you . It
will paginate the standard input, giving a header with date, file
name, page number and line numbers. The paginated output
appears on the standard output.

To print a paginated file on the line printer , say

pr file I lpr - b banner

echo - Echo the command line

The echo command will type on the standard output the value of its
parameters . For example, the command

echo five six

will type out on the terminal

five s ix

While this may not seem to do very much , it can help you find out
exactly what the parameters to any command will be if there are
any special characters involved.

For example, if you had problems with a command of the form

cat**

and you wanted to be sure what the parameters were going to be,
you should give the same parameter string to echo:

echo**

and you will see how the parameters have been transformed. In
this case, the parameters will be a list of file names in the current
directory. To be sure that the double asterisk itself is used as a
parameter, enclose it in single quotes:

echo ' **'

and the result will be

**

on the terminal.

46

•

•

•

•

•

•

Introduction to the COHERENT System

ed - Text file editor

There are many uses for files on the COHERENT system-user
manuals, notes, source programs, mail, and so on.

To create or change text files, use the COHERENT command ed.
This calls the text file editor program which is a powerful yet easy
to use interactive text editor.

With ed you can create files interactively, add more text to files,
rearrange paragraphs in a file, and correct spelling errors.

For a full description of all the ed features, see the ed Interactive
Editor Tutorial.

grep-Find patterns in text files

grep gives you the power to find lines containing a pattern in one or
more files. Patterns are sometimes called regular expressions.

To illustrate grep, create file docl by typing:

cat >docl
a few lines
of text.
<ctrl-D>

Then the command

grep text docl

will print out the second line of file docl:

of text.

The first parameter to grep is the pattern that you are looking for,
and the rest of the arguments are the names of files to be examined.
text is the pattern and docl is the file.

To find out if a particular user is on the system, pipe who into
grep:

who I grep you

substituting the user name in question for you. Try it with your
user name. The pattern is you, but there is no file name specified .
grep will read input from the standard input file, which in this
example is connected to the output of the who command.

47

Introduction to the COHERENT System

You can specify several files to be searched. Simply put the addi
tional file names after the first:

grep pattern docl doc2

Or, you can search all files in the current directory for the pattern
with

grep pattern*

The * will be interpreted to mean all files, and grep will look for
pattern there.

The search pattern can be a pattern. Patterns are fully discussed in
the ed Interactive Editor Tutorial. The name grep is derived from
the ed command

g/re/p

where "re" means regular expression, or pattern. In giving a pat
tern to grep, be sure that you enclose it in single quotes. Other
wise, the shell will interpret the pattern expression before grep sees
it.

You can also locate lines that do not contain given patterns by
using the grep option - v.

grep -v bugs progl prog2

This command will find and print all lines in files progl and prog2
that do not contain bugs.

date - Print the date

The COHERENT system keeps track of the time and date. To find
the date and time, use the command

date

and COHERENT will respond with the day of the week, the month
day and year, and the time of day.

Internally, the date and time is kept in seconds since January 1,
1970 at 00:00:00 GMT. This means that files created in one time
zone and referenced in another time zone will bear the correct time .
The time and date printed out is converted from the internal form
to the local time.

48

•

•

•

•

•

•

Introduction to the COHERENT System

time - Measure command execution time

You can measure how long any command will take with the time
command. This can be useful if you are doing improvements to a
program and need to measure the time it takes, or are determining
how long a program takes under different conditions of input data.

To use the time command, precede the command that you are tim
ing with the time keyword. For example, to time how long it takes
to list the users on the system, type

time who >temp

and when the who command is finished, the time command will
print out the amount of time the command took, the amount of
time spent in the who program, and the amount of time spent in
COHERENT itself. The result will look somewhat (but not
exactly) like:

Real: 0.9
User: 0 .1
Sys: 0 .2

This command will give different results depending on the size of
your computer and the number of users on it when you type the
command. The Real number (0.9) is the amount of elapsed time
taken by the command. The User time (0.1) is the amount of time
spent in the command who itself, and the Sys time (0.2) is the
amount of time that COHERENT itself spent processing the job.

passwd - Passwords

You may wish to change your password from time to time for
greater security.

Changing passwords on the COHERENT system is easy.

Type the command passwd, which will first ask you for your
current password (if you have one), and then ask you to enter your
new password twice. Entering the new password two times helps
ensure that the system gets the password as you want it. If you do
not type it the same way both times, COHERENT will say

Password not changed .

and you must begin again with the command passwd .

49

Introduction to the COHERENT System

Be sure the password is something that you can remember. It is
recommended that the password be at least six characters long. Do
not write it down, but commit it to memory. You can use a four
letter password, but if you do, you should mix upper case and
lower case letters to increase the secrecy of the password.

stty - Changing terminal behavior

Because there is a wide variety of terminals used with the
COHERENT system, even of the video type, it is necessary for the
COHERENT system to know certain things about your terminal.

The command

stty

will describe the information COHERENT currently has for you,
and you can tell COHERENT to treat your terminal differently with
the command stty with parameters.

Normally, each character you type is echoed by the COHERENT
system. This means that when you type a character, the system
types it back to you so that it appears on your screen. If you have
a terminal that is also echoing the character, you will see double
characters. To prevent this, issue the command

stty - echo

You can also use this if your terminal is not echoing the characters ,
but you will be typing in the dark.

To set the echo feature again, say

s t ty echo

When you first log in, the system presumes that your terminal does
not directly handle the tab character, so when COHERENT sends a
tab to your terminal, it simulates it with spaces. If your terminal
does handle tabs, issue the command

stty t abs

and the COHERENT system will no longer substitute spaces for
tabs . To go back to substitution,

stty - tabs

50

•

•

•

•

•

•

Introduction to the COHERENT System

The < ERASE> character allows you to delete the previous charac
ter. The <KILL> character allows you to delete the line that you
have been typing but have not yet finished. You can change these
as you wish with commands of the form

stty erase ~E kill ~K

This particular example will set the erase character to < ctrl-E >
and the kill character to < ctrl-K > . The up-arrow or caret charac
ter ,~, tells stty that you want to specify a control character.

To reset erase and kill to their values at login, the command

stty ek

will suffice. This is equivalent to

stty erase # kill @

To determine what your current terminal parameter settings are,
type

stty

with no parameters. The command will show you the current set
tings of all the options .

51

Introduction to COHERENT

•

•

•
52

•

•

•

Introduction to the COHERENT System

6. Miscellaneous tools and features

This section describes several useful COHERENT commands in
detail.

units - Convert units of measure

COHEREN f provides a program to convert from different units of
measurement. The program units has an encyclopedic knowledge
of units of measure .

To use the program, enter

uni ts

After a short delay, units will ask you

You have :

to which you reply with the unit to be converted from, say cm.
Then, units will ask

You want:

Reply inches. The entire dialogue thus far will appear:

You have: cm
You want : i nches
* 0 .3937
/ 2 . 54000508001016

This means you should multiply the centimeters value by 0.3937
(prefixed by *) to get inches, or divide the inches value by
2.54000508001016 (prefixed by /) to get centimeters.

You have: 98 cm
You want : i nches
* 38.5826
/ 0 . 02591841918377714

which tells you that there are approximately 38.6 inches in 98 cen
timeters or that there are 0.2591841918377714 of 98 centimeter units
in one inch .

You can also combine units, such as "miles per hour". To convert
from a common measure of velocity to one less frequently seen,
you can say:

53

Introduction to the COHERENT System

You have: 60 miles/hr
You want: furlongs/fortnight
* 161280
/ 6 .200J96825J96825e- 06

This tells you that if you traveled at a steady rate of 60 miles per
hour, you would cover I 61,280 furlongs in one fortnight. Notice
that the second number prefixed by / ends with "e - 06". This is
scientific notation meaning "IO to the minus sixth power".

The number of units included in the program is considerable
currently 800. It is possible, although quite unlikely, that you will
come up with a unit that this program does not know about.

Notice that units performs multiplicative conversions. It will not
perform conversions requ iring addition or subtraction, as in
Farenheit to Kelvin .

be - Desk calculator

Another handy tool is the COHERENT desk calculator program
be. It is like having a powerful calculator at your fingertips.

If you type

be
2 + 2

be will reply

4

You can adjust the number of pos1t1ons held to the right of the
decimal point by a statement of the form

scale = lJ

This makes be carry 13 decimal positions.

The number of positions to the left of the decimal point depends
upon the calculation requirements, and is automatically expanded
by be to prevent overflow. The number of digits carried is limited
only by the amount of available computer memory. For example,
try

r500

54

•

•

•

•

•

•

Introduction to the COHERENT System

The result will be

3273390607896141870013189696827599152216\
6420460430647894832913680961337964046745\
5488327009232590415715088668412756007100\
9217256545885393053328527589376

You do not need a print statement. When be sees any formula like
"2 + 2" or a number like "3777", it will print the result on your
terminal.

be understands the following elementary operations within formu
las:

+ add two numbers
subtract the second number from the f i rst

* multiply the two numbers
/ divide the first number by the second
% remainder of division of first by second

first number raised to power of second
quit exit the be program

Each of these operators appears between two names or numbers.
Names are like variables in formulas.

You can add comments to your be programs by enclosing them in
/ *and*/ :

a=l0 /* initial value of a*/

be has several special operators that apply to single names. If you
give to be the input

b=30
a=20
++a+b

the special operator + + will change the value of a by adding one
to it and will use the new value to add to b. The number printed
for this example will be 51 (try it), and the value of a will be 21 .

The special operators are illustrated by the following example pro
gram:

55

Introduction to the COHERENT System

a++ I* add one to a *I
a- - I* subtract one from a *I
a+=2 /* add two to a and store in a *I
b+=a /* b becomes b plus value of a *I
b-=a /* b becomes b minus a *I
c*=b I* c becomes c multiplied by b *I
c/=a I* c becomes C divided by a *I
c%=b I* c becomes remainder of c divided b *I
d~=J /* d becomes d raised to the Jrd power *I

Notice that + + and - - can be used before or after a name.
When used in front of a name, the name takes on the new value,
and the result of the operation is the new value. The input

a= 10
++a

will print the result 11 and the new value of the name a will be 11.

When + + and - - are used following a name, the value used in
the expression will be the old value of the name, but the name will
take on the new incremented or decremented value. The statements

b=20
b--

bc will print 20 (the old value of b), but b will take on the new
value of 19.

The operations in the last two examples are called pre-incrementing
and post-decrementing, respectively. The notation

a+= b

is shorthand for

a= a + b

and means exactly the same thing. To square the current value of
s, type

s ~= 2

remembering that ~, or caret , signifies the power operation . This is
equivalent to typing

56

•

•

•

•

•

•

Introduction to the COHERENT System

or

In the be examples shown so far, all names have been one letter.
Names in fact may be unlimited in length. Names need not be
declared before use, and if they are used before an assignment is
made to them, are presumed to have the value zero. However, it is
good programming practice to explicitly initialize all variables used.

The statements shown so far have been either assignment state
ments, giving a new value to a name; or a formula, which prints
out the resultant value. Several other kinds of statements are avail
able.

An example of the if statement will print the value of x if it is
greater than 200:

if (x>2QQ) X

The while statement will repeatedly execute statement so long as a
decision expression is true. The statements

i = 0
while (++i <= 10) i

will print integers one through ten. Try it!

The for statement is a bit more complex and will not be discussed
in detail here. It resembles the construct of the same name in the C
programming language (as do all the statements in be). For a dis
cussion of how the for statement works, and a complete discussion
of be, see the be Desk Calculator Tutorial.

The first of these statements, the if statement, means "execute a
statement if and only if a decision expression is true". In this state
ment and the while statement, the expression E can include the fol
lowing relational operators:

57

Introduction to the COHERENT System

two operands equal
!= two operands unequal
< = fi r st operand less than or equal to second
< f irst operand less than second
>= f i rst operand greater than or equal to second
> fi r st operand gr eater than second

The statement quit causes be to finish processing and to return to
the COHERENT system.

To describe the statements formally:

if(E)S
while (E) S
fo r (E ; E ; E) S
{S; S; ... ; S}
break
quit

Here, the letter S means statement, and the letter E means expres
sion . Thus, an if statement may have another if statement as part
of it.

Finally, you can define functions in be using the special keywords
define, auto, and return:

defi ne n (pl, . . . , pn)
{

}

where n is the function name, pl through pn are the parameters or
arguments to the function, and the braces { and } enclose the body
of the function definition .

One of two statements used only in functions is the auto statement:

auto nl, n2 , .. . , nn

defines names nl through nn to be automatically allocated by be
when the function is called. These names are separate from any
names outside the function and are separate for each use of the
function, even if it calls itself.

58

•

•

•

•

•

•

Introduction to the COHERENT System

An example of a function definition is for Fibonacci numbers:

def i ne f i b (f) {
if (f==O) return (0)
if (f==l) return (1)
i f (f > 1) r eturn (f i b (f-1) + fib (f- 2))

To call the function and print the result, say

f ib (5)

The COHERENT system command to call be can have the file
name of a be program:

be f i b . be

This causes be to begin by reading the program in fib.be. Use ed to
enter the above function definition into the file fib.be and try this.

After be has read the file, it will then read from your terminal.
This capability will allow you to put the definition of fib into fib.be
using ed and call the function fib from your keyboard. You can
put more than one file on the be command line to enable you to use
several predefined be programs at once.

For more information on be, see the be Desk Calculator Tutorial.

cal - Calendar maker

You can produce a calendar for the year on your hard-copy termi
nal or printer with the command cal. In fact, you can print one for
(almost) any year that you choose. Simply say:

cal 1976

to get the calendar for the United States' Bicentennial year, or

cal 1981

for the year in which this document was written . For earlier dates,
beware of the change to the Gregorian calendar, since not all coun
tries changed when England did in 1752 .

59

Introduction to the COHERENT System

You can produce the calendar for a single month by specifying
month in addition to the year. To see an unusual month, type:

cal 9 1752

crypt - Secure information

COHERENT provides tools that allow you to process information
securely. The encryption program crypt will perform a secure
encryption of a file. To encode the file secrets using a key alpha
use the command:

crypt alpha <secrets >encoded

and the file will be encrypted into the file named encoded. To
decrypt the file, use the same key on the encoded file:

crypt alpha <encoded >decoded

The file decoded will contain the same information as the original
file. You can use any key-just don ' t forget what it is .

60

•

•

•

•

•

•

Introduction to the COHERENT System

7. More about COHERENT commands

COHERENT commands are read and acted upon by the shell.
This program provides a great range of commands, from the rela
tively simple ones presented in earlier examples, to complex com
mand programs involving variables and control constructs. Com
mands can return values, which enable following commands to exe
cute conditionally. These and other features enable you to con
struct command programs and save them in a script file that is easy
for you or another COHERENT user to call upon, yet performs a
complex sequence of steps.

Simple commands

The shell command language is built around simple commands.
Many have been shown in examples already, such as the command
to list your directory:

le

Several simple commands may be combined on one line by separat
ing them with semicolons:

who;du;mail

The commands are executed in sequence as if they had been typed

who
du
mail

In both of these examples, du will not begin execution until who is
finished, and mail will not begin until du is done.

Special characters

If you are familiar with ed, you know that there are certain charac
ters that have special meaning to ed and are used with care.

The shell also treats certain characters specially, and therefore if
you want to use them without their special meaning, you must pre
cede them with the backslash character \, or enclose them in
quotes.

61

Introduction to the COHERENT System

*? [JI ;{} ()
$ = : ' I II < > << >>

The function of these characters will be explained later in this sec
tion. To use one of these characters in a command, for example
'?', you will type

echo \ ?

Additionally, the shell treats certain words in a special way when
they appear as the first word of a command:

case do done el i f else esac
f i i f in t hen unt i l while

If you need to use one of these as the first word of a command and
you do not want the shell to recognize the special meaning, then
enclose the word in single quotes "' ":

'i f '

Background commands

Commands can be executed simultaneously rather than sequentially
by the shell. If a command is followed by the special character '&',
the shell will begin executing it immediately , and will prompt you
for another command. If you need to sort a large file, but want to
continue with other commands whi le the sort is taking place, you
can type:

sor t >stuff . sorted stuff .unsorted &
ed prog

and edit file prog at the same time.

When you run a command with &, the shell will type the process id
of the command started in background. Each running command or
program in the COHERENT system is ass igned a process id when it
begins executing . Normally, there is no need to be c·oncerned about
these numbers . But when you run background commands, the shell
tells you the process id of the background so that you can keep
track of its execution.

62

•

•

•

•

•

•

The command

ps

Introduction to the COHERENT System

will list the processes you are currently running. If you have no
background jobs, the response will be

TTY PID
JO: 362 -sh
JO : 399 ps

The first column shows the number that COHERENT has internally
assigned to your terminal. This is the same terminal number
printed out by who. The second column shows the process id; the
third column shows the program or command executing. The char
acters - sh in the third column means the shell. There are two
processes because the shell is running the ps command as a separate
process.

Once you have started a background command, the ps command
will show you the process entry, which will have the process id that
the shell typed out for you.

If you need the results from a background job, you can wait for it
to finish by issuing the command

wait

The shell will then accept no further commands until all your back
ground jobs are finished. If there are no background jobs, there
will be no delay.

Commands in a file

Many of the commands that you use in COHERENT are programs,
such as ed. Others, like the man command, are files containing still
more commands. You don't need to know which of the two com
mands you use.

You can build files containing commands. If you have a
frequently-used set of commands, you can include them in a file
and save on your typing .

For example, assume that you wish to periodically check the
amount of disk space that you have used, the amount of disk space
still available, and examine what users are on the system. Build a

63

Introduction to the COHERENT System

file named good.am of commands by typing the following informa
tion:

ed
a
du
df
who sort
mail

w good.am
q

To call up these commands, you need only say

sh good.am

where sh is a command that means: read commands from a file, in
this case good.am. Any commands you issue from your terminal
you can do from a command file, or script as this is called. The
command file can also be created as

du; df; wholsort; mail

and the effect will be the same.

You can make a command file directly executable by typing

chmod +x good.am

will enable you to execute the script good.am by typing

good . am

and leaving off the sh. Once you have done the chmod command,
you can still issue the commands by

sh good.am

as well as use ed to change the contents of the file.

Notice that the commands called by a script may themselves be
scripts. This is illustrated by the script second.sh.

64

•

•

•

•

•

•

Introduction to the COHERENT System

ed
a
sh good.am
le

w second.sh
q

so that issuing

sh second.sh

calls the script good.am, which calls the command le .

. profile - Login shell file

Once you are logged into the system and before you are issued your
first prompt, COHERENT checks your home directory for a file
named .profile, and if it is present, reads the commands it contains .

This enables you to have COHERENT execute commands as soon
as you log in. Check to see if your installation provides . one for
you by doing an le (be sure that your current directory is the home
directory). If the file is there, type it out by saying

cat .profile

Some of the commands may be of the form

PATH=' :/bin:/usr/bin'

This sort of command will be discussed below.

Substitutions

Scripts of the form shown above are processed by the COHERENT
shell without change.

The COHERENT shell increases the power of commands by per
forming three kinds of substitutions within commands before they
are executed.

First, special characters in commands will be replaced by file names
from the current or other directories. With this capability you can
issue a single command that will process several files.

65

Introduction to the COHERENT System

Secondly, you can give a script parameters, much like parameters
that are passed to a Pascal, Algol, or C procedure. This allows you
to target the action of the script to a specific file name specified
when you call it.

Thirdly, the output of one command can be substituted into
another command. This gives a great amount of power to your
command file usage.

The echo command will be used to illustrate the effects of these
kinds of substitutions. Remember that substitutions take place for
all commands in the same way that they do for the echo command.

File name substitution

Many command parameters are file names.

By using special shell characters, you can substitute file names in
commands . These special characters describe file name patterns for
the shell to look for in the directory . When the file names are
found, they replace the pattern .

The pattern character * will match any number of any characters in
file names . Thus,

echo*

will echo all the fil e names in the current directory, while

echo f*

will give all file names that begin with the letter f, and

echo a*z

will list all names that begin with a and end with z.

To illustrate more clearly, create two files by typing

cat >zzl
<ctrl-D>
cat >zz2
<ctrl-D>

Then the echo command

echo zz*

66

•

•

•

•

•

•

Introduction to the COHERENT System

will produce the output

zzl zz2

Thus, by using a single *, you can substitute several file names into
a command. In other words, the command

echo zz*

is equivalent to

echo zzl zz2

If there are no file names that fit the pattern, the special characters
are not changed, but left in the command exactly as you typed
them. To illustrate, type the command

rm zz*
echo zz*

The first command will remove all files whose names begin with zz,
and is therefore equivalent to

rm zzl zz2

The echo command that follows, however, will echo

zz*

because there are no files beginning with zz; they were just
removed.

Enclosing command words with the single quote character "'" will
prevent the shell from matching file names with the enclosed char
acters. In the unlikely event that you have a file whose name is

zz*

that you want to remove, use the command

rm 'zz*'

The * is enclosed in single quotes, and will therefore not be
changed by the shell.

Another special character ? will match any single letter. Create
empty files filel, file2, and file33 by typing:

67

Introduction to the COHERENT System

>filel
>file2
>file33

then the command

echo file?

will reply with

filel file2

since ? will not match 33.

The bracket characters [and] can be used to indicate a choice of
single characters in a pattern:

echo file[12]

This command will reply

filel file2

To match a range of characters, separate the beginning and end of
the range with a hyphen. The command

echo [a-m]*

will print any file name beginning with a lower case letter from the
first half of the alphabet, and is exactly equivalent to

echo [abcdefghijklm]

When such patterns find several file names, they are substituted in
this manner, they will be inserted in alphabetical order.

Since the character / is important in file pathnames, it is not
matched by * or ? in patterns. The slash must be matched expli
citly, that is, it will only be matched by a / itself. Therefore to find
all the files in the /usr directories with the name notes, type:

echo /usr/*/notes

The asterisk will match all the subdirectories of / usr that contain a
file named notes. Additionally, a leading period in a filename must
be matched explicitly. If you have a file in your current directory
with the name .profile, the command

68

•

•

•

•

•

•

Introduction to the COHERENT System

echo *file

will not match it.

These patterns can appear anywhere within a command or a com
mand file.

Parameter substitution

Each shell script can have up to nine positional parameters. This
enables you to write scripts that can be used for many cir
cumstances. Recall that command parameters follow the command
itself and are separated by tabs or spaces. An example of a com
mand reference with two parameters is:

show first second

where first and second are the parameters.

To substitute the positional parameters in the script, use the charac
ter $ followed by the decimal number of the parameter. For exam
ple, build the script show by typing

ed
a
cat $1
cat $2
diff $1 $2

w show
q
chmod +x show

The $1 and $2 refer to the first and second parameters respectively.
Create two sample files:

69

Introduction to the COHERENT System

cat >first
line 1
line two
line 3
<ctrl-D>
cat >second
line 1
line 2
line 3
<ctrl- D>

Then, issue the show command

show first second

which has the same effect as typing

cat first
cat second
diff first second

If you issue the show command with fewer than the required
number of parameters, the shell will substitute an empty string in its
place. For example, using the command with only one parameter

show first

is equivalent to

cat first
cat
diff first

where the null string has been substituted for $2 .

The example above shows the parameter references separated from
each other by a space. In some uses , you may wish to prefix a sub
stituted parameter to a name or a number. When more than one
digit follows a $, the shell picks up the first digit as the number of
the parameter. To illustrate, build a shell file pos:

70

•

•

•

•

•

•

Introduction to the COHERENT System

ed
a
echo $167

w pos
q
chmod +x pos

Then call the script with

pos five

and the result will be

five67

Shell variable substitution

In addition to positional parameters, the shell provides shell vari
ables. Variables can be assigned values, tested, and substituted in
commands .

The variable name can be constructed from letters, numbers and the
underscore character. Sample names are:

high-tension
a
directory
167

Note that keywords must not be single digits, because the shell will
treat them as positional parameters. Be aware that upper case
letters and lower case letters are treated differently in shell variable
names.

Values are given to shell variables by an assignment statement:

a:::welcome

You can inspect their value with the echo command

echo $a

The value of the variable a is substituted in the echo command,
which then appears as

71

Introduction to the COHERENT System

echo welcome

COHERENT will respond to this command by typing

welcome

Don't forget the $ when referring to the value.

Notice that the shell will be looking for special characters in any
command that it sees. This includes the space character. To avoid
problems, enclose the value to be assigned in single quotes:

phrase='several words long'

There are several uses for variables. One is to hold a long string
that you expect to type repeatedly as part of a command. If you
are editing files in a subdirectory like

/usr/wisdom/source/widget

you can abbreviate if you set a variable pw to

pw='/usr/wisdom/source/widget'

Then simply using $pw in a command

echo $pw

will substitute the long pathname.

Another use of shell variables is for keyword parameters to com
mands. These then can be used the same way that positional
p_arameters are. Create another script resembling show:

ed
a
cat $one
cat $two
diff $one $two

w show2
q
chmod +x show2

To use show2, issue

one=first two=second show2

72

•

•

•

•

•

•

Introduction to the COHERENT System

which will be equivalent in effect to

cat first
cat second
diff first second

Unlike positional parameters, keyword parameters may be several
characters in length. If you want some text immediately to follow a
keyword parameter, enclose the keyword parameter in braces.
Build a command file brace to illustrate:

ed
a
echo 'with brace:' ${a}bc
echo 'without brace:' $abc

w brace
q
chmod +x brace

Call the command file with a set:

a=567 brace

The result will be:

with brace: 567bc
without brace:

When used in this way, the keyword parameters must be assigned
before the command and on the same line as the command. In this
case, the assignment of keyword parameters does not affect the vari
able after the command is executed. For example, if you type

one=ordinal
one=first two=second show2
echo 'value of one is ' $one

the echo command will produce

value of one is ordinal

Variables set other than on the line of a command are not normally
accessible to a script. To illustrate, build a parameter display
script:

73

Introduction to the COHERENT System

ed
a
echo 1 $1 2 $2 pl $pl p2 $p2

w pars
q
chmod +x pars

This will be used to show the behavior of parameters . The parame
ters to echo without a $ will help to read the output. To pass posi
tional parameters, type

par s ay bee

and the output will be

1 ay 2 bee pl p2

To pass keyword parameters, type

pl=start p2=begin pars

and the result will be

1 2 pl star t p2 begin

To illustrate that the setting of pl and p2 did not " stick" , type

echo $pl $p2 ' to show '

and echo replies

to show

indicating that pl and p2 are not set.

Illustrating that variables set separately from a command are not
seen by the command, type

pl=outs idel p2=outside2
pars

which will reply

1 2 pl p2

•

•

By using the export command, however, such variables can be made •
available to commands . The commands

74

•

•

•

Introduction to the COHERENT System

export pl p2
pl=' see me ' p2=hello
pars

will reply

1 2 pl see me p2 hello

thus indicating that after the export of pl and p2 they are available
to other commands. Once a variable has appeared in an export
command, its value can be changed without a need to export it
again.

Command substitution

By enclosing a command in · characters, you can feed its output
into another command. For example,

echo ·1s·

will echo the output of the Is command .

This can be a handy way to generate parameters for a command
from a prepared file. Assume the file chapters contains a list of file
names of chapters.

ed
a
chl
ch2
apndxA
apndxB

w chapters
q

Create a sample script serf

75

Introduction to the COHERENT System

ed
a
for i
do cat $i
done

w serf
q
chmod +x serf

These can be passed as parameters to a script file serf by

serf 'cat chapters'

and each of the files will be processed with cat.

Special shell variables

When you log in to the COHERENT system, the shell variable
HOME is set to your home or default directory path. If your user
name is henry, then the command

echo $HOME

will reply

/usr/henry

on many systems. The change directory command cd sets the work
ing directory to the path found in HOME if no argument is given.

The shell normally prompts you with $ for commands, and with >
if more information is needed. These two prompts are taken by the
shell from the variables PSI and PS2. You can change these if you
want different prompts, for example

PSl=!
PS2=' : I

To make these have effect each time you log in, put the assignment
statements in your .profile file.

•

•

The shell variable PA TH contains a list of pathnames of directories •
containing commands. The contents of PATH shown by typing

echo $PATH

76

•

•

•

Introduction to the COHERENT System

is typically

:/bin:/usr/bin

This means that the shell will look for the command first in the
current directory, then in /bin and, if not found there, then in
/usr/bin. The pathnames are separated by ':'. This means that
there is an empty string preceding the first ':', the current directory.
Another common setting for PATH is

: .. :/bin:/usr/bin

meaning that commands are first sought in the current directory,
then in ' .. ', the parent directory to the current directory, then in
/bin, and finally in /usr/bin.

'.' - Read commands

Similar to the command sh is the . command. The command

. cfil

causes the shell to read and execute commands from cfil.

This is different from the sh command in several respects. First,
there isn't any way to pass parameters to cfil with the '.' command.
Second, the sh command executes another shell to read the com
mands, while '.' simply reads the commands directly. And finally,
all the string variables and parameters are accessible by cfil.

The command file good.am created earlier can be executed with

. good.am

and will have the same effect. Similarly, the ' ' can itself be used
within a command file:

ed
a
. good.am
le

w third.sh
q

Then, the command

77

Introduction to the COHERENT System

. third.sh

will have the same result as the command

sh third.sh

Most COHERENT commands return a value indicating success or
failure. For example, if Pascal cannot find your source file, it will
issue a diagnostic, as well as return a value. You can examine this
value by typing the command

echo$?

This will tell you the value returned by the last command executed.
Commands that return a failure value usually also type a message
indicating the error condition. The value zero indicates success or
truth, while a non-zero value indicates failure or falsehood .

You can use the value returned by commands to effect decisions
about executing other commands. To illustrate, the cmp command
with an option of - s will not print differences, but only return the
value, which is zero if the files are identical, and one if the files are
different.

test - Condition testing

For most commands the return value is a side-effect of their opera
tion. However, the test command's only task is to return a value.
Many conditions may be tested with this command.

To determine if a file exists, the command

test -f fileOl

will return true if fileOl exists and is not a directory. To check if a
file is a directory, use

test -d fileOl

Strings can also be examined by test. This is useful when parameter
substitution is used. To illustrate, build the following command:

78

•

•

•

•

•

•

Introduction to the COHERENT System

ed
a
test $1 = $2
echo 'test 1 & 2
test $1 != $2
echo 'test 1 & 2

w test . sh
q
chmod +x test.sh

for equal:' $?

for not equal: ' $?

Since it is a parameter, be sure that the "=" in the test command
is preceded and followed with a space.

This command file will test the two parameters for equality. Try
the commands

test . sh one two
test . sh one one

There are other options for the test command. To see them all,
type

man test

Conditional command processing

Type the following commands to create two files:

cat >filel
line one
line two
line three
<ctrl-D>
cat >file2
line one
two is different
line three
<ctrl-D>

Now, compare the files and print the return value:

79

Introduction to the COHERENT System

cmp -s filel file2
echo$?

This will print 1 (one) since the files are not the same. To process a
second command based on the result returned by the first, type:

cmp -s filel file2 I I cat file2

The characters 11 signify that the following command cat should be
executed if the cmp command returns a non-zero value, which it
will for this example.

The two characters && will execute the command that follows it
only if the preceding command returns a zero value. Create a third
file with the command

cp filel fileJ

and type the command

cmp -s filel fileJ && rm fileJ

It will remove file3 if the compare command cmp indicates no
differences. Since the compare command is preceded with a copy
command cp, the files filel and file3 have no differences, and file3
will be removed.

Control flow

Since the shell is a programming language, it provides conditional
and looping constructs. These are for, if, while, and case. Also, a
subshell can be executed within '(' and ')'.

The for construct can be used to process a set of commands, once
for each element in a list of items.

To illustrate the use of for, type the following commands to
COHERENT:

for i in ab c
do echo $i
done

The items a, b, and c form a list of values to be taken on by i. The
command echo will be executed with i taking on each value in the
list in turn. The result of these commands is

80

•

•

•

•

•

•

Introduction to the COHERENT System

a
b
C

Notice that after you type the line containing for, COHERENT will
prompt with a different character > (on most COHERENT sys
tems). The shell does this to remind you that there is more infor
mation to be typed in. After you type the line containing done, the
prompt will again become $.

The for command is usually used within a script file. Also, the list
of values for the index variable can be left off, in which case the list
is presumed to be the parameters to the script. To illustrate, type

The

ed
a
for i
do echo $i
echo '
done

w script.for
q
chmod +x script.for

for i

command is equivalent to

for i in $*

where $* means "all positional parameters". Notice that there are
two commands to be repeated for each value of i. Call this script
by

script.for 1 2 3 4 test

and the result will be

81

Introduction to the COHERENT System

1

2

3

4

test

Conditional command processing is provided with the if shell com
mand. The if will test the result of a command and conditionally
execute other commands based upon that result. You can rewrite
the examples above that use && and 11- Instead of

cmp -s filel file2 && cat file2

you can use

if cmp -s filel file2
then cat file2
fi

for the same result. This means that

cat file2

is executed if the cmp command returns a zero or true value.

To get the same result as given by the previously illustrated

cmp -s filel fileJ && rm fileJ

with the if statement, you will need to use the else:

if cmp -s filel fileJ
then
else rm fileJ
fi

The commands between else and fi will be executed if the result of
the command following the if is false or non-zero. Note that there
is no command following then.

82

•

•

•

•

•

•

Introduction to the COHERENT System

Another part of the if statement will allow you to test several con
ditions with one if statement and act on the one that is true. In
general terms,

if commandl
then actionl
elif command2
then action2
elif command]
then action]
else action4

The items labeled command and action are both commands or lists
of commands.

First, commandl is executed . If the result is true, actionl is per
formed.

If the result from commandl is not true, then command2 is exe
cuted . If its result is true , then action2 is performed. This process
continues so long as none of the commands return a true result. If
none of the command results are true, the action following the else
is executed .

To illustrate, create a shell script that will list on your terminal only
one of the three file name arguments. Use the command

test - f name

which will return a value of true if name is an existing non
directory file .

83

Introduction to the COHERENT System

ed
a
if test -f $1
then cat $1
elif test -f $2
then cat $2
elif test -f $3
then cat $3
else echo 'None are files'
fi

w cat.1
q
chmod +x cat.1

Another looping or repetitive shell statement is the while statement.
The commands

while commandl
do command2
done

will first perform command!. If its result is true, command2 is exe
cuted, and command! is again executed. This process continues
until the result from command! is no longer true.

The case statement resembles the if statement in that it offers a mul
tiple choice. To illustrate, create a script that gives a choice of list
ing your directory in different ways :

84

•

•

•

•

•

•

Introduction to the COHERENT System

ed
a
case $1 in

l)ls-1;;
2) ls;;
3) le;;
*) echo unknown parameter $1;;

esac

w dir
q
chmod +x dir

The words case and esac bracket the entire case statement. The
effect of the command

dir 2

is equivalent to

ls

Each choice within the case statement is indicated by a string fol
lowed by):

2)

indicates the choice for $1 having the value 2.

The strings selecting the choices may be patterns. The '*)' choice
signifies that a match should be made on any string. Notice that
this resembles the use of * to substitute any file name. An expres
sion of the form

[1-9])

in a case statement will match any digit from I through 9. A list of
alternatives may be presented by separating the choices with a verti
cal bar:

alblc) command

Notice that each command or command list in the case choice must
be terminated by the double character ;;.

85

Introduction to the COHERENT System

Summary

The shell is a command programming language which handles sim
ple commands as well as complex commands that can iterate as well
as make decisions. Three kinds of substitution are provided to
increase the power of your commands.

For more information about the shell, see sh Shell Command
Language Tutorial. For more information about commands, see
the COHERENT Command Manual.

86

•

•

•

•

•

•

Introduction to the COHERENT System

8. Creating and using programs

The COHERENT system provides a host of high-level languages.
To assist in debugging programs, symbolic debuggers are provided
for many of these languages.

The languages provided with COHERENT are:

C
assembler

Pascal will be provided in the near future.

C is a high-level language which has replaced assembly in environ
ments where it is available. Programming in C gives a dramatic
improvement in programmer productivity, with little loss in execu
tion speed relative to assembly language. The COHERENT system
has both native C compilers and cross compilers. Compilers are
available for Z8000, PDP-11, 8088, and 8086. Other versions will
be available soon.

Pascal is a high-level language, featuring strong type checking, data
record handling, and well-designed control structures. While simi
lar to C, Pascal is oriented to applications programming rather than
systems programming.

as gives you the assembler for the host machine. Assembly
language is used for those few programs that require a special
hardware access beyond what C can give. Because of the power
and flexibility of C, assembly language is now effectively dead
except for certain routines deep within the system. Assemblers for
other computer architectures are also available with the
COHERENT system. Such assemblers are called cross assemblers.

Each of the compilers reads the program source from a file. The
resulting compiled program is placed in an object file. To run a
program, you simply type the name of an object file as if it were a
command. In fact, most COHERENT commands that you will
enter are actually object programs .

87

Introduction to the COHERENT System

Basic steps in COHERENT programming

The steps that are necessary to generate a program are:

1) Edit the program source file
2) Compile the source program, correcting any errors
3) Test and debug the program
4) Run the program

If you have compilation errors in step 2, or program errors in step 3
or 4, you will return to step 1.

Use ed to build and change the source program, the cc command to
compile the source program and produce an object program, and
db to help debug the program. Although the C compiler provides a
macro facility, other languages do not. Therefore, if the source
program uses macros, you will use m4 to expand the macros.

This section will cover each of these steps and provide some exam
ple programs.

ed - Creating the program source

Details on the use of ed are covered in the ed Interactive Editor
Tutorial in detail. This section will presume basic knowledge of ed
commands and principles of operation.

For the first program, try a simple program that prints a short mes
sage on your terminal. To build the program, enter:

ed
a
main ()
{

}
printf ("COHERENT will rule the world\n");

w small. c
q

With the first line, you call the editor ed, You add lines to the (ini
tally empty) file using the a command, and signal the end of these
lines with a line containing only a period or dot. The file is then
written to file small.c with the w command. The q command exits
from ed and returns to COHERENT.

88

•

•

•

•

•

•

Introduction to the COHERENT System

The program itself begins with the special word main which defines
a function and must appear in every C program. The parentheses,
here with nothing between them, are used to enclose any parameters
that are passed to the function . They are required even if there are
no parameters. The body of the program appears between the
braces { and } .

The function printf is a standard part of the library of C programs.
It prints formatted information on the terminal. In this case it will
produce the string enclosed in the double quotes . The special char
acter string

\n

means "newline". Two lines of output to the terminal can be pro
duced by

•11ne 1\nline 2\n•

as a parameter to the printf function . This will appear in the out
put as

line 1
line 2

Many other formatting commands are available but will not be
covered here.

cc - Compiling the program

The cc is used to compile C programs . This command executes all
the parts of the C compiler and the associated linker Id. The linker
combines pieces of programs and includes necessary elements from
the library, such as printf. The linker is occasionally called from
the command line, but only for more complex problems than you
are trying here . To compile our test program, type the command

cc small . c

If there are any errors detected, the compiler will print the message
on the terminal along with the line number containing the error.
You can use this line number in ed to find and correct the error .
The command as shown will produce a program with the name
I.out. An alternative form of the compilation command

89

Introduction to the COHERENT System

cc small.c -o small

uses the - o option to name the output file small. The program can
now be used by simply typing

small

Another option - c tells cc to only compile the program and not
load it.

m4 - Macro processing

To extend the capabilities of all languages, the COHERENT system
provides a macro processor m4.

Program source for all languages is made up of character strings.
Macro processors perform string replacement, whereby a string in
the input file may be replaced by another string. m4 provides
parameter substitution, as well as testing values of currently avail
able strings, and conditional processing. m4 is unique in that you
can rearrange large sections of the input text by using the macros .

Programming simple input and output

The first example of a COHERENT program simply printed a mes
sage on the terminal. Next, write a program to copy characters
from input to output.

Using ed to create a source file named copy.c, enter the following
program:

#include <stdio.h>
/* copy file from std input to std output*/
main()
{

}

int c;
while ((c = getchar()) != _EOF)

putchar (c) ;

Then, compile it with the command

cc copy.c -o copy

90

•

•

•

•

•

•

Introduction to the COHERENT System

The include statement gives the program access to standard
input/output definitions.

The functions getchar and putchar work with the standard input
and standard output files respectively. Normally, these standard
files are assigned to the terminal. Thus, if you type the command

copy

the program will read characters from the terminal and write them
back on the terminal just as you typed them. The program will
continue to read from your terminal until you type < ctrl-D > . Try
this.

You will notice that this program seems to reply to you a line at a
time. This is because the COHERENT system holds the terminal
input until you type a <RETURN> and then passes the characters
on to the program. This is done to enable you to correct the line
using <ERASE> and <KILL> characters before the program
sees it.

Even though it is written to copy standard input to standard output,
copy can operate on disk files as well. To do so, you will use one
or both of 1/0 redirection characters: > and <.
For example, you can copy the program source onto the terminal
by saying:

copy <copy.c

which says "run program copy, taking standard input from file
copy .c and put standard output on the terminal". To make a spare
copy of the source program, we can say

copy <copy.c >copy.c.spare

To illustrate other C language statements, add some processing to
this program and give it a new name. Use the copy command to
make a new file trans.c of the source:

copy <copy.c >trans.c

The new program is called trans, short for translate .

Next, use ed to add some if statements before the call to putchar.
The complete trans program will then look like this:

91

Introduction to the COHERENT System

#include <stdio.h>
#include <ctype.h>
I*
* Translate input to lower case,
* removing punctuation
*I

main ()
{

int c;
while

}

((c = getchar ()) != EOF) {
if (isalpha (c)) {

if (isupper (c))
c = tolower (c);

}
else if (c != 1 \n 1)

C = I I;

putchar (c);

The additional if statements serve to translate all upper case charac
ters to the corresponding lower case characters, and translates non
alphabetic graphic characters to spaces. Such a program is useful
in constructing a dictionary of words from a file containing a docu
ment.

Compile this program with the command

cc trans.c -o trans

and run i! with the command

trans

It will expect input from the terminal and write the translated out
put back to the terminal. Don't forget to end the input with
< ctrl-D > . For example, if you type in

ABcdef12# ! ?ghi
<ctrl-D>

trans will type back:

92

•

•

•

•

•

•

Introduction to the COHERENT System

abcdef ghi

Notice that trans will also change the non-graphic tab character to
space.

Many programs in COHERENT will expect input from files in
addition to the standard input. ed is an example of this. This
mode of operation is easily implemented by drawing on the
resources of the standard 1/0 library, but is beyond the scope of
this introduction. Many powerful and interesting programs can be
written using these two standard files.

make - Building larger programs

All the examples of programs thus far have been self-contained. As
programs grow larger, it is usual to divide the source program up
into smaller files. This can simplify editing, speed compilation,
increase modularity, and enable the sharing of common functions
among several different programs.

Thus, in developing the larger program, you will have several
source files in your directory, possibly an include file or two, and
the object file that results from compilation. These will be used to
build the loaded program file that runs when you type its name.

To change or fix the program, you will need to edit the source pro
grams or include files in question with ed, recompile the required
source, and relink all the modules.

But, with a change that affects several modules, it can be tricky to
remember exactly which modules need recompilation, and it can be
time-consuming to recompile all modules, just to be safe .

COHERENT provides a command make that solves this problem.
make examines the time a file was last modified, and the time of
modification of files that it depends upon, and performs the neces
sary compilation or other processing. (COHERENT file system
directories contain the time that each file was created or modified.)

For example, if an object file modulel.o is the result of compiling
source program modulel.c, then if the .c file was changed or
created after the current version of modulel.o, make will force a
recompilation.

93

Introduction to the COHERENT System

Further, if modulel.c has an include file incl.h, and that file is
changed after compilation of modulel.c, then make will force a
recompilation of the source, even though the object is younger than
the source.

To fill out the example, assume that you are building a program
named mod. The program is built by the cc command out of three
files modulel.o , module2.o and module3.o with the command

cc - o mod modulel . o module2 .o moduleJ . o

and all will be compiled by commands of the form

cc - c modulel. c

which produces a file named modulel.o. Further, assume that the
following files have the indicated include files:

modulel
module2
module]

inca . h incb.h
inca. h i ncc . h
incb. h incc .h

To communicate these relationships or dependencies, create a file
named makefile with ed, with the following contents:

mod : modulel. o module2 .o moduleJ. o
cc - o mod modulel. o module2.o moduleJ .o

modulel. o: i nca .h incb .h modulel. c
cc - c module 1. c

module2 .o : inca. h i ncc .h
cc - c module2 . c

moduleJ .o : incb. h incc .h
cc - c modu l eJ . c

There are four entries in this file, each entry consisting of two lines.

The first line of each entry begins in the first position of the line
(that is, no preceding tabs or spaces) and names the file and its con
stituent parts.

The first entry on the first line is the name of the file that is being
built and is followed by a colon. The remaining names list the files
that it depends upon.

Thus, referring to the first line from the first entry above, mod is
said to depend upon modulel.o , module2.o and module3.o. This

94

•

•

•

•

•

•

Introduction to the COHERENT System

means that if any one of those files changes, mod must be regen
erated.

The second line of each entry tells how to regenerate the file. This
line is a COHERENT command and should be preceded by a tab
character. From then on it should be typed exactly as it would be
typed by hand.

Thus, if the file module2.c were changed in your directory, and you
issued the command

make

module2.c would be recompiled, changing the file module2.o, which
would automatically rebuild mod.

Similarly, if you change any of the three include files , then issue the
make command, at least two of the source files will be recompiled,
again causing mod to be rebuilt.

make determines whether or not to regenerate files by comparing
the date and time of the files involved. If one of the files were
missing, such as would be the case if you issued the command:

rm module 1. o

then this also would cause make to regenerate the file.

make can be enormously helpful in large-scale software develop
ment efforts by correctly recognizing file relationships and regen
erating dependent files where necessary.

db - Debugging the program

The first and most critical step to debugging programs is to not put
bugs in them! The method of structured analysis , design, and pro
gramming, or the method of stepwise refinement can be very
effective in substantially reducing the number of errors in a pro
gram.

One can also place print statements at strategic points throughout
the program to display logic flow and key data values. These
display statements should be designed so that they can be turned off
for normal operation without removing them from the program .

95

Introduction to the COHERENT System

On occasion, however, you may find that it is necessary to debug at
the machine level. If you must, COHERENT's db will make it
possible to do so.

db provides tools that make the machine program instructions visi
ble in the most natural notation. That is , instructions are displayed
in a fashion that resembles assembly language, numbers can be
displayed in hexadecimal, octal, or decimal as needed, and strings
of characters can be displayed in familiar graphic form. db can
also patch a program to be run again, as well as to control the exe
cution of a program with breakpoint and single step capabilities.

Briefly, to use db on a program like our sample small above, use
the command

db small

Now you can inspect and display instructions and data in the sys
tem, control execution, and even change the instructions in the pro
gram if you are bold enough.

To examine a data segment location in the program, simply type
the address of the location. db knows about symbols in the pro
gram, so if you want to examine the location corresponding to
main, type

main

and db will type out the value in hex or octal (depending upon
which is appropriate for your machine) .

You can expand the display command to print many locations at
one time, and choose the format of printout. To print five loca
tions interpreted as instructions, type

main,5?i

where the format character i follows the question mark indicating
format, and 5 is the count of locations to be printed .

Formats other than i that db understands include

96

•

•

•

•

•

•

+

b
C

d
f
i
0

0
p
s

X

X

Introduction to the COHERENT System

current address
next address
previous address
print byte in octal
print character; non-graphic characters
to be printed in octal

decimal integer
floating point
disassembled machine instruction
octal integer
long octal integer
show a symbolic address
string of characters terminated
by null character (C builds strings
enclosed in double quotes this way)

hexadecimal integer
long hexadecimal integer

For a complete list of formats, and other details about db, see the
information provided by the command

man db

Each format may be made up of several of these. The display
address will be incremented by the size of the displayed item.

Also available in db are commands. To print out the value of a
symbolic address, such as that of main, issue the command

main:=

Errors detected by db are signaled by a ? . To get more extensive
description of the most recently issued error message, type

: ?

To control execution with db, you can set breakpoints or single step
through a program, or begin execution at a specified address using
the appropriate commands. A breakpoint is set by specifying a
desired halt address, followed by :b thus:

main+4 :b

97

Introduction to the COHERENT System

To begin execution of your program under debug, use the e com
mand:

addr:e

and if you leave off addr, execution will begin at the entry point of
the program. If the program needs parameters, type them immedi
ately following the :e with no intervening space. Now, begin execu
tion with the

:e

command. When execution reaches the instruction at main+ 4, db
will print the address of the breakpoint and the disassembled
instruction .

To single step through a program from the breakpoint on, use the
command

:s

which will execute one instruction and stop, or

,5:s

to execute 5 instructions and stop. db will print the instruction to
be executed next. The alternative form of the command sc behaves
in the same way but will treat subroutine calls as one instruction.
That is, if the next instruction is a subroutine call, a

:sc

command will stop after the subroutine returns, rather than on the
first instruction of the subroutine.

To continue after a breakpoint, do

:c

You can also set a breakpoint at the return of the current routine
by:

:br

To delete breakpoints, issue

addr:d

98

•

•

•

•

•

•

To exit debug, type

:q

Introduction to the COHERENT System

Summary

Writing and testing programs is easy under the COHERENT sys
tem. You can write a program to copy files in just a few lines.
COHERENT tools help you write large programs as well.

99

Introduction to the COHERENT System

•

•

•

•

•

•

Introduction to the COHERENT System

9. A sample problem solved with COHERENT

This section outlines a representative information processing prob
lem and demonstrates a simple solution for it implemented with the
COHERENT system.

Build a dictionary

Many word processing systems used today will help check your spel
ling. Some of them do it by consulting an internal dictionary.
How might you build such a dictionary?

A very simple method of building a dictionary from the ground up
with COHERENT tools will be illustrated here. This exercise will
emphasize ease of construction.

The format of the dictionary is to be one word per line, all letters
lower case, with no punctuation characters or spaces to be included.

Of course, the input document can be expected to have capital
letters, many punctuation marks, many words on each line, and it
will certainly not be in anything resembling alphabetical order!

Thus, our problem is to transform the raw input into a dictionary .

101

Introduction to the COHERENT System

The first step is to employ the program trans shown in Section 8 .

#include <stdio.h>
#include <ctype.h>
I*
* Translate input to lower case,
* removing punctuation
*I

main()
{

int c;
while ((c = getchar ()) != EOF) {

if (isalpha (c)) {

}

if (isupper (c))
c = tolower (c);

}
else if (c != 1 \n 1)

C = I I;

putchar (c);
}

This program transforms upper case letters to lower case, and all
punctuation and some graphic characters to spaces. Only end of
line \n of the non-graphic characters remains untranslated. trans
takes its input from the standard input, and places the output upon
the standard output.

Now, we are faced with the problem of many words per line.
Another small C program word entered into file word.c will solve
this problem for us:

102

•

•

•

•

•

•

Introduction to the COHERENT System

#include <stdio.h>
I*
* Copy input to output with
* only one word per line
*I

main()

}

int c;
c = getchar ();
while (c != EOF) {

}

if (C > 1 1
) {

/* output graphic character*/
do

putchar (c);
while (((c = getchar ()) > 1 1

) &&
(c != EOF));

putchar (1 \n 1);

}
else
while (((c = getchar ()) <= ' ') &&

(c !=EOF));

Note that strings of spaces, newline, and control characters are
transformed to newlines. Thus, if a pair of words on the input line
are separated by three spaces, the output will have one newline
character between them.

Compile word with

cc word.c -o word

Test it with the input:

word
this is a test of word.
<ctrl-D>

The result will be

103

Introduction to the COHERENT System

this
is
a
test
of
word.

Use a pipe to feed the standard output of trans to word:

trans <raw.doc I word

This command will list on the terminal one word per line, entirely
in lower case and with punctuation removed.

Now, the result should be sorted in ascending order. The command
to do so is simply:

sort

The full command will now read:

trans <$1 I word I sort

Only one more item remains to be solved. Dictionaries should con
tain only unique entries. The output produced so far will contain
each word in the raw document, which means that there will be
many instances of the word "the".

To perform this final bit of processing, the COHERENT program
awk will be used to detect and eliminate duplicate lines. The awk
User's Manual describes awk in detail.

awk is a very useful program for pattern scanning and processing.
We will use only a small subset of the powerful features in awk for
this example.

awk commands have two parts. The first part is the matching cri
terion called the pattern. Each input line is checked to see if it
matches a pattern in any command in the awk program. If there is
a match, the second part of the command, the action, is performed .
The awk program that you will use to eliminate duplicates is:

$0 != prev {print; prev = $0}

Use ed to put this program into the file u.awk.

104

•

•

•

•

•

•

Introduction to the COHERENT System

Each input line to awk is presumed to be divided into fields. A
field is part of a line. Fields are separated by a field separator
character, normally a space or tab. The lines in this example have
only one field.

Fields are referred to by their position in the input line, preceded
with a $ symbol. The special field $0 signifies the entire line.

This program uses a variable prev that holds the value of the previ
ous line. Each incoming line is tested for equality with the previous
line by the pattern part of the statement. The command print out
puts the new line only if it is different. Once the line is printed, the
variable prev is set to the line just output.

The COHERENT command to call awk for the dictionary example
is

awk -f u.awk >dict.s

The - f option says use the following name on the command line
u.awk as the file name of the awk program. awk reads from the
standard input.

To test this command, use

awk -f u.awk

You can type in lines and see the results on the terminal. By doing
so, you can test the awk program.

Now all the pieces that are a solution to the problem are available.
Putting them all together in one pipe command, you have a com
mand

trans <raw.doc I word I sort I awk -f u.awk >dict.s

that will transform the raw document to a sorted dictionary. You
can feed a large text file to this command to begin building your
dictionary.

Maintaining the dictionary

Before using the dictionary, you should list it and check for extra
words that you really do not want there. If the input document
contains an example program, the resulting dictionary will contain
program variables. You should delete any of these and other
unwanted words in the dictionary.

105

Introduction to the COHERENT System

To delete or add a few new words to the dictionary, you can use ed
or sed.

Using the dictionary

You can use the dictionary to check the spelling of words in a new
document. Create a shell file named diet.sh:

ed
a
trans <$1.doc I word I sort I awk -f u.awk >$1.u

w diet.sh
q
chmod +x diet.sh

And process your new document with the command:

diet.sh new

This will build a file named new.u of unique words found in the file
new.doc.

Now, you can use the dictionary to verify words in later documents.
First, create a shell file named checksp:

ed
a
comm -13 dict.s $1.u

w checksp
q
chmod +x checksp

This command will check a file of words, such as new.u, to see if
there are any words that are not in your master dictionary file
dict.s. Now use the program comm to give you a list of words in
new .doc that were not in the dictionary. Type

checksp new

and any words from your document new .doc that were not found in
the dictionary will be listed.

106

•

•

•

•

•

•

Introduction to the COHERENT System

Summary of dictionary problem

This section has outlined how to build, maintain, and use a diction
ary list of English words with existing COHERENT programs, and
two simple, user-written C programs. The use of pipes, filters, and
1/0 redirection has been illustrated.

This method has been presented mainly for the purposes of illustra
tion. It is not necessarily the best, but it is very easily imple
mented .

107

Introduction to the COHERENT System

•

•

•
108

•

•

•

Introduction to the COHERENT System

$*: 81
$: 69, 72, 74, 76, 81, 105
OJo: 55
&&: 80
& : 62
,. 62, 67
(: 80
): 85
*) : 85
* / : 55
*: 48, 55, 66-67, 85
+ +: 55-56
+: 55
- - : 55-56
- : 55
. (dot): 27-28
.. (dot dot): 27-28, 77
.profile: 65, 76
/ (division) : 55
/ *: 55
/: 55, 68
/ bin : 40, 77
68000: 3
8086: 3, 87
8088 : 3, 87
: (colon): 77
;; (double semicolon): 85
<ERASE>: 8,51,91
<INTERRUPT> : 8
<KILL> : 8, 51, 91
<RETURN> : 7, 9, 13, 45, 91
< : 17 , 36, 91
< ctrl-D > : 9, 13, 30, 36, 43-44,

91-92
> > : 37
> : 17 , 35-36, 76, 81, 91
?: 67-68, 97

Index

@ key: 8
I: 68
\ : 61
\n : 89, 102
]: 68
": 12
'; 75

access permission : 41
arguments: 11
array

associative memory: 19
as: 87
assembly language: 20, 87
awk: 19, 104-105

background process: 63
be: 21, 54-55, 57

auto statement: 58
comment s: 55
define statement: 58
for statement: 57
formulas: 57
functions: 58
if statement : 57
name lengt h: 57
names: 55
operator, post-

incrementing: 56
operator, pre-

incrementing: 56
operator: 55
program in file : 59
return statement: 58
var iable: 55
while statement: 57

block, disk: 33

109

Introduction to the COHERENT System

brace: 73, 89
breakpoints: 97

C: 2-3, 20, 57, 87-89, 102
program linker: 89

cal: 21, 59
calendar: 59
caret: 56
case sensitivity

in commands: 37
in file names: 23
in shell variable : 71

case: 80, 84-85
cat: 4-5, 12, 17, 25, 29, 35-36, 38
cc: 88-90, 94
cd: 26-27, 76
chmod: 31-32, 64
choices

in case statements: 85
cmp: 19, 78-80, 82
cntl: 8
comm: 19, 106
commands: 11

COHERENT: 61
background: 62
case sensitivity: 37
concurrent execution: 62
conditional: 80, 82
first part: 11
in files: 63
name: 12
parameters: 46
value: 78

communication
electronic: 21

compiler
C: 89

cont: 8
control key: 8
conversion: 60
Conway, John: 3
cp: 25, 29

110

creating
files: 47

cross
assembler: 87

CRT: 7
crypt: 21, 60
ctrl key: 8
current directory: 26-28, 46

data entry: 19
data files: 18
date : 48
db: 88, 96-98
debugging: 95
default

directory: 76
permission: 32
prompt: 76

del key: 8
dependencies: 94
desk calculator: 54
device-independent 1/0: 3, 17
devices: 36
df: 33
dictionary: 101
diff: 19
directory: 15, 23

current: 26-28, 46
home: 23-27, 65, 76
parent: 15, 27, 77
removing: 33
root: 25
tree-s tructured: 5, 15
user: 16

disk: 11
block: 33
file: 15
space: 33

do: 80
document preparation: 19
dollar sign character: 10
done: 80-81

•

•

•

•

•

•

Introduction to the COHERENT System

dot command : 77
du : 33

echo: 46, 66
ed: 10-12, 20, 42, 47, 88-90
elif: 83
else: 82-83
encryption: 60
enter: 7
eol: 7
erase: 51
esac: 85
execute permission: 41
export: 74-75

failure : 78
false : 82
fi: 82
field: 105

separator: 105
file: II, 15, 23, 36

attributes: 31
concatenation: 35
copying: 29
creating empty: 67
creating: 47
creation time: 42
creation: 26
data: I 8
differences: 19
include: 93
input: 93
links: 33-34, 42
mode: 31
modification time: 93
moving: 28
name: 15, 23, 40, 42, 66
of commands: 63
output: 93
owner : 42
protection: 31
removal of: 32
size: 42
unwritable: 32

filter : 5, 17-18
for: 80-81

getchar: 91
GMT: 48
grave accent: 75
grep: 19, 47-48

hard copy output : 45
hardware: 2
help : 13, 35
high-level language: 2-3, 20
high-level

language: 87
HOME: 76
home directory: 23-27, 65

1/0 redirection: 16, 35
if: 80, 82-84
include: 91
index variable: 81
input, standard: 47
inter-program communication: 17

keyboard: 7
keyword

parameters: 72
kill : 51

I.out: 89
language

high-level: 87
le : 11, 23, 25-27, 30, 39-40

options: 40
Id: 89
library

C: 89
standard 1/0: 93

linefeed: 7
links: 33, 42
In: 33
logging in: 8-9

111

Introduction to the COHERENT System

Jogging out: 13
login: 13
lower case

in commands: 37
in file names: 23

lpr: 45
Is: 12, 23, 39-40

1 option: 32

m4: 88, 90
machine instructions: 96
macro: 88
mail : 21, 44-45

command example: 44
mail

receiving: 44
main: 89
make: 93-95
man : 13 , 35, 97
merge: 19
mesg: 42
message: 42
mkdir: 26
mode: 41
mode

field: 41
of file: 31

msg: 21, 42-43
mv: 28-29

native
assembler: 87

newline
in C strings: 89

nroff: 20

o in write command: 43
oo in write command: 43
operating system: 1-2
operator

pipe: 38
options: 11-12, 40

112

order
of matched file names: 68

output formatting: 89

parameter: 11
assigning keyword: 73
command: 46
fewer: 70
keyword: 72
name: 12
null: 70
option: 12
positional: 69, 73-74, 81
references: 70
substitution: 78, 90

parameters: 12
parent directory: 15, 77
parentheses: 89
Pascal: 20, 87
passwd: 49
password: 9, 49
PATH: 76
pathname: 24-25, 28

fully specified: 24
partially specified: 24-25

patterns: 6, 47-48, 66, 68
PDP-I I: 3, 87
performance: 4
permission

access: 41
execute: 41
read: 31, 41
standard: 32
write: 31, 41

pipe: 5, 17-18
pipe

operator: 38
power: 56
pr: 46
print: 105
printf: 89
problem

sample: 101

•

•

•

•

•

•

Introduction to the COHERENT System

process: 63
background: 63
id: 62-63

program
debugging: 95
modularity: 93
preparation: 20
source: 25

programming
structured: 95

prompt: 10, 65, 76
protection: I, 16, 31-32
PSI: 76
PS2: 76
ps: 63
putchar: 91
pwd: 28

question mark: 67
quit: 55

read permission: 31, 41
receiving mail: 44
records: 18
redirection: 35, 91
regular expressions: 47
removing

directories: 33
files: 32

report writing: 19
resource sharing: I
resources: 15
rm: 32-34
rmdir: 33
root : 24, 25
rub out key: 8

sample problem: IOI
scat: 38
script: 61, 64, 69, 76, 81, 83-84
semicolons: 61
sh: 35, 64

shell: 35, 61
shell

script: 63
sequential execution of com-

mands: 61
simple commands: 61
special characters: 66
variable: 71, 74

single quote: 67
single step: 97-98
slash: 24

in pathname: 24
software: 2
sort: 18 , 38
space: 72
special characters

shell: 61
standard

I/0: 93
input: 17, 36, 47, 91
output: 16, 35-36, 91
permission: 32

st dio: 91
st ructured

programming: 95
stty: 8, 50
subdirectory: 16
subshell: 80
substitution

in commands: 65
of parameters: 78, 90

success: 78
switches: 5
system administrator: 8

tab: 50, 93
terminal: 7, 50
test: 78, 83
testing

strings : 78
tic-tac-toe: I
time: 48-49

113

Introduction to the COHERENT System

time
elapsed command : 49
zone: 48

timesharing: 1
tree-structu red: 5

uniq : 19
units: 21, 53, 60
unwritable file: 32
upper case

in commands: 37
in fi le names : 23
translation: 92

user directory: 16
user name: 8, 16, 39
usr: 24

value from command: 78
variable

shell: 71, 74
vertical bar : 18, 85
video display: 7

wait: 63
we: 5, 17-18
while: 80, 84
who: 5, 16-18, 38-39, 47
word processing: 19
working directory: 26
write permission: 31, 41
write: 21, 43

Z8000: 3, 87

I: 11-18, 38, 85
11: 80

114

•

•

•

•

•

•

Introduction to COHERENT

User Reaction Report

To keep this manual and COHERENT free of bugs and facilitate future
improvements, we would appreciate receiving your reactions. Please fill in
the appropriate sections below and mail to us. Thank you.

Mark Williams Company
1430 W. Wrightwood Avenue

Chicago, IL 60614

Name:

Company:

Address:

Phone: Date:

Version and hardware used:

Did you find any errors in the manual?

Can you suggest any improvements to the manual?

Did you find any bugs in the software?

Can you suggest improvements or enhancements to the software?

Additional comments: (Please use other side.)

115

•

•

•

