
• as Assembler

Reference Manual

•

•

•

•

•

Table of Contents

• I. Introduction 1

2. Invocation 3

3. Lexical Conventions . 5

3.1. Identifiers 5

3.2. Constants 5

3.3. Blanks and Tabs 6

3.4. Comments 6

4. Location Counters and Program Sections 7

4.1. The Current Location 8

5. Expressions 9

5.1. Types 9

• 5.2. Operators 10

5.3. Type Propagation . 10

6. Statements 11

6.1. Labels . 11

6.2. Null statements 11

6.3. Assignment statements . 11

6.4. Keyword statements 11

6.4.1. Section change 12

6.4.2. .byte 12

6.4.3. .word 12

6.4.4. .long 13

6.4.5. .ascii string . 13

• 6.4.6. Alignment Directives 13

COHERENT Assembler Reference Manual

6.4.7. .blkb .blkw .blkl 13 • 6.4.8. .globl 13

6.4.9. . title string 14

6.4.10. .page 14

6.5. Machine Instructions 14

7. Diagnostics . 15

Appendix A: The Digital Equipment Corporation 17
PDP-11 Assembler

A .1 Predefined Symbols 17

A.2 Address Descriptors . 17

A.3 Assembly Directives 18

A.4 Machine Instructions 18

Appendix B: The Intel iAPX-86 Assembler 23 • B.1 Predefined Symbols 23

B.2 Address Descriptors 23

B.3 Assembly Directives 24

B.4 Machine Instructions 24

Appendix C: The Zilog Z-8000 Assembler 32

C.1 Predefined Symbo1,s 32

C.2 Address Descriptors 34

C.3 Assembly Directives 34

C.4 Machine Instructions 35

Appendix D: The Motorola MC68000 Assembler 42

D.1 Predefined Symbols 42

D.2 Address Descriptors 43

D.3 Assembly Directives 44 •
ii

COHERENT Assembler Reference Manual

• D.4 Machine Instructions 44

D.4.1 ABCD Type 44

D.4.2 ADD Type . 45

D.4.3 ADDA Type 45

D.4.4 ADDI Type 46

D.4.5 ADDQ Type 48

D.4.6 AND Type. 48

D.4.7 ANDI Type 49

D.4.8 ASL Type 49

D.4.9 BCHG Type 50

D.4.10 CHK Type . 51

D.4.11 JMP Type . 51

• D.4.12 MOVE Type 51

D.4.13 MOVEM Type 52

D.4.14 MOVEP Type 52

D.4.15 Miscellaneous Instructions 53

Index 57

User Reaction Report 59

•
iii

•

•

•

•

•

•

1. Introduction

The COHERENT™ assemblers are multipass assemblers intended
for use as targets by some of the COHERENT compilers and for
writing small assembly language subroutines. Since they are not
intended to be used for full scale assembly language programming,
they lack many of the more elaborate facilities of full fledged
assemblers; for example, there are no facilities for conditional com
pilation or user defined macros. However, they do attempt to
optimize span dependent instructions (for example, branches) on
machines where this is useful and reasonable.

In general, the COHERENT assemblers use the same syntax for
address expressions and machine instructions as the assemblers sup
plied by the manufacturers of the machines. However, all
COHERENT assemblers use the same set of assembly directives to
make remembering them easier and to make a greater part of the
COHERENT compilers machine independent.

COHERENT Assembler Reference Manual

•

•

•
2

•

•

•

COHERENT Assembler Reference Manual

2. Invocation

All assemblers are invoked from the shell as follows:

as [-glx] [-o file] file [file . ..]

By convention, the command as always invokes the native assem
bler for the host machine. Cross assemblers use the same command
line syntax, but have a command name constructed by concatenat
ing the name of the target machine and the string as. For example,
an assembler for the IBM 370 would be called 370as.

The named files are concatenated and the resulting object code is
written to the file specified by the - o option, or to file I.out if no
- o option is given. This file is made executable if there are no
undefined symbols.

The optional - g argument causes all symbols which are undefined
at the end of the first pass to be given the type undefined external.

The optional - I option causes the assembler to generate a listing.
The listing is written to the standard output, where it may be easily
redirected into a file or through a pipe to lpr.

The optional - x argument causes all non global symbols that begin
with the character ' L' to be stripped from the symbol table of the
object file. This option is used by the C compiler to speed up the
loading of C generated object files .

3

COHERENT Assembler Reference Manual

•

•

•
4

•

•

•

COHERENT Assembler Reference Manual

3. Lexical Conventions

Assembler tokens consist of identifiers (also known as symbols or
names), constants, and operators.

3.1. Identifiers

An identifier consists of a sequence of alphanumeric characters
(including the period '.' and the underscore '_') the first of which
may not be numeric. Only the first sixteen characters of the name
are significant; the remainder are quietly thrown away. Upper and
lower case are considered different. The machine instructions,
assembly directives and frequently used built-in symbols are in
lower case. On some machines less often used built-in symbols may
have upper case names to prevent clashes between them and the
programmer's labels.

3.2. Constants

The C compiler and the COHERENT assemblers use the same syn
tax for constants. A sequence of digits not beginning with a '0' is a
decimal constant. A sequence of digits beginning with a '0' is an
octal constant. A sequence of digits beginning with a 'Ox' is a hex
adecimal constant. The letters 'a' through 'f' (and 'A' through 'F')
have decimal values IO through 15 respectively.

A character constant consists of a single quote ('' ') followed by any
ASCII character (except the newline). The constant's value is the
ASCII code for the character right justified in the machine word.

The following multicharacter escape sequences are acceptable in a
character constant to represent newline and other special characters.

\b Backspace
\f Form Feed
\n Newline
\r Carriage Return
\t Tab
\nnn Octal value

(0010)
(0014)
(0012)
(0015)
(0011)
(Onnn)

5

COHERENT Assembler Reference Manual

3.3. Blanks and Tabs

Blanks and tabs may be used freely between tokens, but may not
appear within identifiers. A blank or a tab is required to separate
adjacent tokens not otherwise separated.

3.4. Comments

Comments are introduced by a slash ' / ' and continue until the next
newline character. All characters in comments are ignored by the
assembler.

6

•

•

•

•

•

•

COHERENT Assembler Reference Manual

4. Location Counters and Program Sections

The assemblers permit the division of programs into a number of
program sections. Each section corresponds (roughly) to a func
tional area of the address space.

There are seven program sections, subdivided into three groups.
The instruction group holds the instructions (code) of a program.
The data group holds the data (both initialized and uninitialized) of
a program. Finally, the symbol table group (consisting of a single
program section) contains tables used by high level debuggers.
These tables are not read into memory when the program is exe
cuted.

The code and data groups each contain three program sections.
The shared sections (SHRI, SHRD) hold the portion of the program
which may be shared among all users of the program. If possible
this section will be loaded write protected. The private sections
(PRVI, PRVD) hold the portion of the image that must not be
shared, either because it is impure or because there is some complex
reason why it must be writable. The third sections (BSSI, BSSD)
are like the private sections in that they are impure, but differ in
that they are uninitialized, and do not need to occupy any space in
the output file. The operating system will allocate the required
blocks of cleared (zeroed) memory for the BSS sections when the
program is run.

Every program section contains a location counter. This counter is
the high water mark of the information (code or data) assembled
into the section.

At the beginning of the assembly all location counters are set to
zero. At the end of pass two (when the sizes of all program sec
tions are known) the location counters are adjusted so that all pro
gram sections occupy a single block of addresses beginning at loca
tion 0. Enough information is retained so that this adjustment can
be unraveled by the linkage editor; however, this adjustment makes
the output of the assembler immediately executable.

The private data actually contains two location counters. The
second location counter (STRN) is a special one used by the
COHERENT compilers to allocate memory for strings. It appears
in the assembler output as an extension of the private data section.

7

COHERENT Assembler Reference Manual

4.1. The Current Location

The special symbol '.' represents the current location counter. Its
value is the offset into the current program section of the start of
the statement in which it appears. It may be assigned to, with the
restrictions that the assignment must not either change the program
section or cause the value to decrease.

8

•

•

•

•

•

•

COHERENT Assembler Reference Manual

5. Expressions

An expression is a sequence of symbols representing a value and a
program section. Expressions are made up of identifiers, constants,
operators and brackets. All binary operators have equal precedence
and are executed in a strict left to right order (unless altered by
brackets).

5.1. Types

Every expression has a type determined by its operands. The types
are:

Undefined

Absolute

Register

Relocatable

Upon first encounter a symbol is undefined. A
symbol may also become undefined if it is assigned
the value of an undefined expression. It is an
error to assemble an undefined expression in pass
2. Pass 1 allows assembly of undefined expres
sions, but phase errors may result if undefined
expressions are used in certain contexts (i.e., in a
.BLKW or .BLKB) .

An absolute symbol is one defined ultimately from
a constant or from the difference of two relocat
able values.

Register symbols are used to refer to the registers
of the target machine. They are special to allow
the assembler to distinguish register addressing
from normal memory addressing. The predefined
register symbols (if any exist) are different for
every machine. The appendix for the specific tar
get machine lists the names and values of any
predefined register symbols.

All other user symbols are relocatable symbols in
some program section. Each program section is a
different relocatable type.

Each keyword in the assembler has a secret type which identifies it
internally. However, all of these secret types are converted to abso
lute in expressions. Thus any keyword may be used in an expres
sion to obtain the basic value of the keyword. The basic value of a
machine operation is (usually) the opcode with any operand specific

9

COHERENT Assembler Reference Manual

bits set to zero. The basic value of an assembler directive is, in
general, uninteresting.

S.2. Operators

The following characters are interpreted as operators in expressions.

'+'
t _ I

'*'
t _ I

'-,
I~,
I I I

Addition
Subtraction
Multiplication
Unary negation
Unary complement
Type transfer
Segment construction

Expressions may be grouped by means of square brackets (' [' and
']'); parentheses are reserved for use in address mode descriptions.

S.3. Type Propagation

When operands are combined in expressions the resulting type is a
function of both the operator and the types of the operands. The
'*', '-, and unary ' - ' operators can only manipulate absolute
operands and always yield an absolute result.

The ' + ' operator allows the addition of two absolute operands
(yielding an absolute result) and the addition of an absolute to a
relocatable operand (yielding a result with the same type as the relo
catable operand).

The binary ' - ' operator allows two operands of the same type,
including relocatable, to be subtracted (yielding an absolute result)
and an absolute to be subtracted from a relocatable (yielding a
result with the same type as the relocatable operand).

The binary ' -, operator yields a result with the value of its left
operand and the type of its right operand. It may be used to create
expressions (usually intended to be used in an assignment statement)
with any desired type.

•

•

•

•

•

•

COHERENT Assembler Reference Manual

6. Statements

A program consists of a sequence of statement separated by new
lines or by semicolons. There are three kinds of statements: null
statements, assignment statements and keyword statements.

6.1. Labels

Any statement may be preceded by any number of labels.

A name label consists of an identifier followed by a colon (':').
The program section and value of the label are set to that of the
current location counter. It is an error for the value of a label to
change during an assembly. This most often happens when an
undefined symbol is used to control a location counter adjustment.

A temporary label consists of a digit ('O' to '9') followed by a colon
(':'). Such a label defines temporary symbols of the form 'xf' and
'xb', where 'x' is the digit of the label. References of the form 'xf'
refer to the first temporary label 'x:' forward from the reference;
those of the form 'xb' refer to the first temporary label 'x:' back
ward from the reference. Such labels conserve symbol table space
in the assembler.

6.2. Null statements

A null statement is just an empty line (which may have labels and
be followed by a comment). Null statements are ignored by the
assembler. Common examples of null statements are an empty line
and a line consisting of only a label.

6.3. Assignment statements

An assignment statement consists of an identifier followed by an
equal sign ' = ' and an expression. The value and program section
of the identifier are set to that of the expression. Any symbol
defined by an assignment statement may be redefined, either by
another assignment statement or by a label.

6.4. Keyword statements

Most assembler statements are keyword statements. All of the
machine operations and assembler directives are of this type.

11

COHERENT Assembler Reference Manual

A keyword statement begins with one of the assembler's predefined •
keywords, followed by any operands required by that keyword.

6.4.1. Section change

These assembler directives change the current program section to
the named section:

.shri

.prvi

.bssi

.shrd

.prvd

.bssd

. strn

.symt

The current location counter is set to the high water mark of code
or data in the section.

6.4.2 .. byte
The expressions in the comma separated list are truncated to the
target machine's byte size (usually eight bits) and are assembled into
successive bytes:

.byte expression [, expression J ...

6.4.3 .. word

The expressions in the comma separated list are truncated to the
target machine's word size (or the shorter of the two integer sizes if
the assembler supports long integers) and the resulting data is
assembled into successive words:

.word expression [, expression J •••

12

•

•

•

•

•

COHERENT Assembler Reference Manual

6.4.4 . .long

The expressions in the comma separated list are evaluated and the
resulting data is assembled into successive long integers:

.long expression [, expression] ...

This assembler directive is only implemented on some machines.

6.4.5 .. ascii string

The first non-whitespace character after the keyword is taken as a
delimiter. Successive characters from the string are assembled into
successive bytes until another instance of this delimiter is encoun
tered. It is an error for a newline to be encountered before reach
ing the final delimiter. The multi character escape sequences
described in section 3.2 may be used in the string to represent new
lines and other special characters.

6.4.6. Alignment Directives

Some target machines have alignment requirements. Such machines
will provide a number of alignment directives. The details of the
alignment directives for a specific machine may be found in the
appendix covering that machine.

6.4.7 .. blkb .blkw .blkl

These statements assemble blocks of bytes, words or longs that are
filled with zeros:

.blkb expression

.blkw expression

.blkl expression

The size of the block is expression bytes, words or longs. The .blkl
directive is only implemented on some machines.

6.4.8 .. globl

The identifiers in the comma separated list are marked as global:

.globl identifier [, identifier] ...

13

COHERENT Assembler Reference Manual

If they are defined in the current assembly they may be referenced •
by other object modules; if they are undefined they must be
resolved by the linker before execution.

6.4.9 .. title string

The argument string appears on the top of every page in the assem
bly listing. This directive also causes the listing to skip to a new
page.

6.4.10 .. page

This assembly directive causes the assembly listing to skip to the top
of a new page; a form feed character is inserted into the file and the
page position is reset so that a new title line is generated.

6.5. Machine Instructions

The syntax of machine instructions and their associated addressing
expressions is different on every machine. The details for a specific
machine can be found in the appropriate appendix.

In general, the syntax of machine instructions and address expres
sions is the same as that used by the machine manufacturer. Some
times this is changed if the syntax is extraordinarily baroque or if
the characters chosen by the manufacturer for some part of the
address syntax are difficult to enter given the default COHERENT
typing conventions.

14

•

•

•

•

•

COHERENT Assembler Reference Manual

7. Diagnostics

All errors are reported on the standard error stream as a single
character error code tagged with a line number. If there is a sym
bol associated with the error code (for example, if a symbol is
undefined) then the symbol's name is also reported.

If more than one input file appears on the command line error mes
sages are tagged with the name of the source file.
Errors are reported on the listing file in the traditional fashion, as
single character error flags at the extreme left side of the listing. If
a listing is generated the total number of errors is displayed on the
standard error stream at the end of assembly. This is useful since
in most cases the listing will be disappearing into a file or down a
pipe.

a Addressing error. Generated by just about any kind of
operand/instruction mismatch or address field semantic error.

b Byte alignment. The offending instruction or assembly direc
tive cannot be assembled at the current location because of
some sort of alignment problem. For example, on the PDP-
11 (whose instructions must be on even addresses) this error is
given if you attempt to assemble any type of instruction on an
odd addresses ('. ' is odd).

e Expression syntax. Some kind of syntax error has occured in
an expression.

m Multiple definition. The offending line is involved in the mul
tiple definition of a label. The label name is displayed.

n Number syntax. Some kind of syntax error has been
discovered while reading in a numeric constant.

p Phase error. The value of a label has changed during the
assembly. The name of the troublesome label is displayed.

q Questionable syntax. The assembler has no idea how to parse
the offending line, so it has just given up.

r Relocation error. An attempt has been made to create or use
an expression in a way that the linker cannot resolve .

15

COHERENT Assembler Reference Manual

u

16

Undefined symbol. A symbol is used but never defined. The
undefined symbol's name is displayed. •

•

•

•

•

•

COHERENT A:.sembler Reference Manual

Appendix A: The Digital Equipment Corporation PDP-11 Assembler

The assembler for the Digital Equipment Corporation's PDP-11
family of computers is quite similar to the PAL-11 and MACR0-11
assemblers. Some details of address syntax have been changed,
since the default typing conventions of COHERENT make typing
PAL-11 or MACR0-11 address expressions difficult.

A.1 Predefined Symbols
The following symbols are predefined. The type of the symbol is
set to 'register'.

rO
r2
r4
sp

000000 rl
000002 rJ
000004 r5
000006 pc

000001
000003
000005
000007

A.2 Address Descriptors

The following syntax is used for general source and destination
address descriptors.

In the examples the symbol 'r' refers to a register and the symbol
'e' to an expression.

r
(r)
(r)+
*(r)+
-(r)
*-(r)
e(r)
*e(r)
e
$e

Register
Register deferred
Autoincrement
Autoincrement deferred
Autodecrement
Autodecrement deferred
Index
Index deferred
Direct (PC relative)
Immediate (PC autoincrement)

17

COHERENT Assembler Reference Manual

A.3 Assembly Directives

The .long and .blkl assembler directives are not supported by the •
PDP-11 assembler.

The .even and .odd directives are provided to force the current
location counter to an even or odd location respectively (by emit
ting a O byte if necessary).

A.4 Machine Instructions

The following machine instructions are defined . The examples illus
trate the general syntax of the operands. Combinations that are
syntactically valid may be forbidden for semantic reasons.

In the examples 's' and 'd' refer to general source and destination
addresses, 'e' refers to an expression and 'r' refers to a register.

There is no facility for generating code for the commercial instruc
tion set (CIS) feature of the new PDP-11 processors.

•

•

COHERENT Assembler Reference Manual

• absd d 170600
absf d 170600
ade d 005500
adeb d 105500
add s,d 060000
addd s,r 172000
addf s,r 172000
ash s,r 072000
ashe s,r 073000
asl d 006300
aslb d 106300
asr d 006200
asrb d 106200
bee e 103000
bes e 103400
beq e 001400
bge e 002000
bgt e 003000

• bhi e 101000
bhis e 103000
bie s,d 040000
bieb s,d 140000
bis s,d 050000
bisb s,d 150000
bit s,d 030000
bitb s,d 130000
ble e 003400
blo e 103400
blos e 101400
blt e 002400
bmi e 100400
bne e 001000
bpl e 100000
bpt 000003
br e 000400
bve e 102000
bvs e 102400 • efee 170000
ele 000241
eln 000250

19

COHERENT Assembler Reference Manual

clr d 005000
clrb d 105000 • clv 000242
clz 000244
cmp s,d 020000
cmpb s,d 120000
cmpd s,r 173400
cmpf s,r 173400
com d 005100
comb d 105100
dee d 005300
decb d 105300
div s,r 071000
divd s,r 174400
divf s,r 174400
emt e 104000
halt 000000
inc d 005200
incb d 105200
iot 000004 • jmp d 000100
jsr r,d 004000
ldcdf s,r 177400
ldcfd s,r 177400
ldcid s,r 177000
ldcif s,r 177000
ldcld s,r 177000
ldclf s,r 177000
ldd s,r 172400
ldexp s,r 176400
ldf s,r 172400
ldfps s 170100
mark e 006400
mfpd d 106500
mfpi d 006500
mfps d 106700
modd s,r 171400
modf s,r 171400 • mov s,d 010000
movb s,d 110000

20

COHERENT Assembler Reference Manual

mtpd d 106600

• mtpi d 006600
mtps d 106400
mul s,r 070000
muld s,r 171000
mulf s,r 171000
neg d 005400
negb d 105400
negd d 170700
negf d 170700
nop 000240
reset 000005
rol d 006100
rolb d 106100
ror d 006000
rorb d 106000
rti 000002
rts r 000200
rtt 000006 • sbc d 005600
sbcb d 105600
sec 000261
sen 000270
setd 170011
setf 170001
Seti 170002
setl 170012
sev 000262
sez 000264
sob r,e 077000
spl e 000230
stcdf r,d 176000
stcdi r,d 175400
stcdl r,d 175400
stcfd r,d 176000
stcfi r,d 175400
Stefl r,d 175400

• std r,d 174000
stexp r,d 175000
stf r,d 174000

21

COHERENT Assembler Reference Manual

stfps d 170200
stst d 170300 • sub s,d 160000
subd s,r 173000
subf s,r 173000
swab d 000300
sxt d 006700
trap e 104400
tst d 005700
tstb d 105700
tstd d 170500
tstf d 170500
wait 000001
xor r,d 074000

•

•
22

•

•

•

COHERENT Assembler Reference Manual

Appendix B: The Intel iAPX-86 Assembler

The assembler for the Intel iAPX-86 bears little resemblance to the
Intel supplied assembler (ASM-86). Just about everything is
different: the assembler directives, the syntax of address expressions,
and so on.

B.1 Predefined Symbols

The following symbols are predefined. The type of the symbol is
set to agree with the symbol's use.

ax 0000 ex 0001
dx 0002 bx 0003
sp 0004 bp 0005
si 0006 di 0007
al 0000 cl 0001
dl 0002 bl 0003
ah 0004 ch 0005
dh 0006 bh 0007
es 0000 cs 0001
ss 0002 ds 0003

All of these symbols are names for the machine registers. Their
types are set to internal values that permit the assembler to deter
mine the actual bit pattern for a machine instruction and to check
for incorrect register usage (for example, a byte register used as the
destination of a word instruction).

B.2 Address Descriptors

The following syntax is used for general source and destination
address descriptors.

In the examples the symbol 'r' refers to a register and the symbol
'e' to an expression .

23

COHERENT Assembler Reference Manual

r
e
(r)
e(r)
(r,r)
e(r,r)
$e

Register
Direct address
Indexing, no displacement
Indexing with displacement
Double indexing, no displacement
Double indexing with displacement
Immediate

A direct address is interpreted as either a direct address or a PC
relative displacement, depending on the requirements of the instruc
tion.

If an address descriptor indicates an indexing mode and the base
expression is of type absolute, the assembler uses the shortest dis
placement length (zero, one or two bytes) that can hold the
expression's value. Relocatable base expressions, whose values can
not be completely determined until the program is loaded, are
always assigned two byte displacements.

Any address descriptor may be modified by a segment escape prefix.
A segment escape prefix consists of a segment register name fol
lowed by a colon ':'. The escape causes the assembler to output a
segment override prefix using the specified segment register as an
operand.

B.3 Assembly Directives

The .long and .blkl assembler directives are not supported by the
iAPX-86 assembler.

The .even and .odd directives are provided to force the current
location counter to an even or odd location respectively (by emit
ting a O byte if necessary).

B.4 Machine Instructions

The following machine instructions are defined. The examples illus
trate the general syntax of the operands. Combinations that are
syntactically valid may be forbidden for semantic reasons.

In the examples 'a' refers to a general address, 'd' refers to a direct
address, 'e' refers to any expression, 'm' refers to a memory

24

•

•

•

•

•

•

COHERENT Assembler Reference Manual

address (not an immediate), 'p' refers to a port address, '$e' refers
to an immediate expression, and 'ax', 'al', 'cl' and 'dx' refer to the
named registers.

Some machine operations that are handled by special syntax in
ASM-86 (such as the 'lock' prefix and the repeat prefixes) are
treated as ordinary one byte machine operations. The assembler
makes no attempt to prevent the generation of incorrect sequences
of these prefix bytes.

Although all of the machine operations haye types and values asso
ciated with them, in most cases the values have been chosen to
assist the assembler in formatting the machine instructions. Their
values should not be used by programs, since they may not be con
stant across different versions of the assembler .

25

COHERENT Assembler Reference Manual

aaa • aad
arun
aas
adcb r,a
adc r,a
adcb a,r
adc a,r
adcb a,$e
adc a,$e
andb r,a
and r,a
andb a,r
and a,r
andb a,$e
and a,$e
call d
cbw • clc
cld
cli
cmc
cmpb r,a
cmp r,a
cmpb a,r
cmp a,r
cmpb a,$e
cmp a,$e
cmpsb
cmps
cwd
daa
das
dee a
div m
esc a
hlt • icall a (Indirect)
idiv m
ijmp a (Indirect)

26

COHERENT Assembler Reference Manual

imul m • inb al,p
in ax,p
inb al,dx
in ax,dx
inc a
int e
into
iret
ja d
jae d
jb d
jc d
jbe d
jcxz d
je d
jg d
jge d
jl d • jle d

.jmp d
jna d
jnae d
jnc d
jnb d
jnbe d
jne d
jng d
jnge d
jnl d
jnle d
jno d
jnp d
jns d
jnz d
jo d
jp d

• jpe d
jpo d
js d

27

COHERENT Assembler Reference Manual

jz d
lahf • lds r,a
lea r,a
les r,a
lock
lodsb
lods
loop d
loope d
loopne d
loopnz d
loopz d
movb r,a
mov r,a
movb a,r
mov a,r
movb a,$e
mov a,$e • movsb
movs
mul m
neg a
nop
notb a
not a
orb r,a
or r,a
orb a,r
or a,r
orb a,$e
or a,$e
outb p,al
out p,ax
outb dx,al
out dx,ax
pop m
popf • push m
pushf

28

COHERENT Assembler Reference Manual

• relb a,$1
relb a,el
rel a,$1
rel a,el
rerb a,$1
rerb a,el
rer a,$1
rer a,el
rep
repz
repe
repne
repnz
ret
ret e
rolb a,$1
rolb a,el
rol a,$1

• rol a,el
rorb a,$1
rorb a,el
ror a,$1
ror a,el
sahf
salb a,$1
salb a,el
sal a,$1
sal a,el
shlb a,$1
shlb a,el
shl a,$1
shl a,el
sarb a,$1
sarb a,el
sar a,$1
sar a,el

• sbbb r,a
sbb r,a
sbbb a,r
sbb a,r

29

COHERENT Assembler Reference Manual

sbbb a,$e
sbb a,$e • scasb
seas
shlb a,$1
shlb a,cl
shl a,$1
shl a,cl
shrb a,$1
shrb a,cl
shr a,$1
shr a,cl
stc
std
sti
stosb
stos
subb r,a
sub r,a • subb a,r
sub a,r
subb a,$e
sub a,$e
testb r,a
test r,a
testb a,$e
test a,$e
wait
xcall d,d (Intersegment)
xchgb r,a
xchg r,a
xicall a (Intersegment, indirect)
xijmp a (Intersegment, indirect)
xjmp d,d (Intersegment)
xlat
xorb r,a
xor r,a
xorb a,r • xor a,r
xorb a,$e

30

•

•

•

COHERENT Assembler Reference Manual

xor
xret
xret

a,$e
(Intersegment)

e (Intersegment)

31

COHERENT Assembler Reference Manual

Appendix C: The Zilog Z-8000 Assembler

The assembler for the Zilog Z-8000 microprocessor uses the same
machine opcodes and register names as the assembler supplied by
the manufacturer. However, the assembler directives are different,
and the structured programming features are not supported.

C.1 Predefined Symbols

The following symbols are predefined. The type of the symbol is
set to agree with the symbol's use.

32

•

•

•

COHERENT Assembler Reference Manual

• rh0 0000 rq12 oooc
r0 0000 rl5 000D
rr0 0000 r13 000D
rq0 0000 rl6 000E
rhl 0001 r14 000E
rl 0001 rr14 000E
rh2 0002 rl7 000F
r2 0002 r15 000F
rr2 0002 un 0008
rh3 0003 z 0006
r3 0003 nz 000E
rh4 0004 C 0007
r4 0004 nc 000F
rr4 0004 pl 000D
rq4 0004 mi 0005
rh5 0005 ne 000E
r5 0005 eq 0006

• rh6 0006 ov 0004
r6 0006 nov oooc
rr6 0006 pe 0004
rh7 0007 po oooc
r7 0007 ge 0009
rl0 0008 lt 0001
r8 0008 gt 000A
rr8 0008 le 0002
rq8 0008 uge 000F
rll 0009 ult 0007
r9 0009 ugt 000B
rl2 000A ule 0003
rl0 000A NVI 0001
rrl0 000A VI 0002
rl3 000B C 0080
rll 000B z 0040
rl4 oooc s 0020
r12 oooc p 0010
rr12 oooc V 0010 • FLAGS 0001 FCW 0002
REFRESH 0003 PSAP 0005
NSP 0007

33

COHERENT Assembler Reference Manual

Most of these symbols are the register names, and have type 'regis- •
ter'. The assembler makes no attempt to distinguish between byte,
word, long and quad registers. It will accept machine instructions
that use the wrong type of register in a register field; the bit pattern
used in the instruction is the value of the built in symbol.

The names of the flags and of the control registers are in upper case
to reduce clashes between them and the programmer's labels .

C.2 Address Descriptors

The following syntax is used for general source and destination
address descriptors. The syntax is the same as that used by the
Zilog assembler, except that the character '$' is used instead of '#'
to specify immediate mode.

In the examples the symbol 'r' refers to any register and the symbol
'e' to any expression.

r R Register
@' IR Indirect register
(r) IR Indirect register
$e IM Immediate
e DA Direct
e(r) X Indexed
r(r) BX Based index
r(e) BA Based

Note that on Z8002 there is no syntax for the based (BA) address
ing mode. This mode is identical to the indexed addressing mode
on the unsegmented processor.

The assembler understands most of the quirks of the Z-8000 binary
representation and attempts to always do something reasonable.
For example, it duplicates the value of an immediate mode (IM)
address into both halves of the immediate word on byte instruc
tions .

•

C.3 Assembly Directives

The Z-8000 assembler supports the .long and .blkl assembly direc- •
tives.

34

•

•

•

COHERENT Assembler Reference Manual

The .even and .odd directives are provided to force the current
location counter to an even or odd location respectively (by emit
ting a O byte if necessary).

C.4 Machine Instructions

The following machine instructions are defined. The operands have
the illustrated syntax.

In the examples 'r' refers to a register, 'a' refers to general source
destination address description, 'cc' refers to a condition code
name, 'name' refers to a flag name, 'd' refers to a direct address,
'im' refers to an immediate address and 'n' refers to an absolute
expression.

The examples illustrate the general syntax of the operands. Combi
nations that are syntactically valid may be forbidden for semantic
reasons. For example, the instruction "ldk rl ,#0100" is syntacti
cally legal, but is not accepted because the immediate is out of the
legal range for the instruction .

35

COHERENT Assembler Reference Manual

adc r,r B500
adcb r,r B400 • add r,a 0100
addb r,a 0000
addl r,a 1600
and r,a 0700
andb r,a 0600
bit a,$n 2700
bit a,r 2700
bitb a,$n 2600
bitb a,r 2600
call a lF00
calr d D000
clr a 0D08
clrb a 0C08
com a 0D00
comb a ocoo
comflg name 8D05
cp r,a 0B00
cpb r,a 0A00 • cpd (r),(r),r,cc BB08
cpdb (r),(r),r,cc BA08
cpdr (r),(r),r,cc BB0C
cpdrb (r),(r),r,cc BA0C
cpi (r),(r),r,cc BB00
cpib (r),(r),r,cc BA00
cpir (r),(r),r,cc BB04
cpirb (r),(r),r,cc BA04
cpl r,a 1000
cpsd (r),(r),r,cc BB0A
cpsdb (r),(r),r,cc BA0A
cpsdr (r),(r),r,cc BB0E
cpsdrb (r),(r),r,cc BA0E
cpsi (r),(r),r,cc BB02
cpsib (r),(r),r,cc BA02
cpsir (r),(r),r,cc BB06
cpsirb (r),(r),r,cc BA06
dab r B000 • dee a,$n 2B00
decb a,$n 2A0O

36

COHERENT Assembler Reference Manual

di name 7COJ • div r,a !BOO
divl r,a lAOO
djnz r,d F080
dbjnz r,d FOOO
ei name 7C07
ex r,a 2D00
exb r,a 2COO
exts r BlOA
extsb r BlOO
extsl r B107
halt 7AOO
in r, (r) JDOO
in r,d JDOO
inb r, (r) JCOO
inb r,d JCOO
inc a,$n 2900
incb a,$n 2800
ind (r), (r) ,r JB08 • indb (r),(r),r JA08
indbr (r), (r) ,r JA08
indr (r),(r),r JB08
ini (r),(r),r JBOO
inib (r), (r) ,r JAOO
inirb (r),(r),r JAOO
inir (r),(r),r JBOO
iret 7BOO
jp cc,a lEOO
jr cc,d EOOO
ld a,im 2100
ld a,r 2100
ld r,a 2100
lda r,a 0000
ldar r,d 0000
ldb a,im 2000
ldb a,r 2000
ldb r,a 2000 • ldctl ctlr,r 7000
ldctl r,ctlr 7D00
ldctlb ctlr,r 8COO

37

COHERENT Assembler Reference Manual

ldctlb r,ctlr 8COO
ldd (r),(r),r BB09 • lddb (r), (r) ,r BA09
lddr (r),(r),r BB09
lddrb (r),(r),r BA09
ldi (r),(r),r BBOl
ldib (r),(r),r BAOl
ldir (r), (r) ,r BBOl
ldirb (r), (r) ,r BAOl
ldk r,$n BDOO
ldl a,r 1400
ldl r,a 1400
ldm a,r,$n 0000
ldm r,a,$n 0000
ldps a 3900
ldr d,r 3100
ldr r,d 3100
ldrb d,r 3000
ldrb r,d 3000 • ldrl d,r 3500
ldrl r,d 3500
mbit ?BOA
mreq r ?BOD
mres 7B09
mset 7B08
mult r,a 1900
multl r,a 1800
neg a OD02
negb a OC02
nop 8D07
or r,a 0500
orb r,a 0400
otdr (r), (r) ,r]BOA
otdrb (r), (r) ,r JADA
otir (r),(r),r JB02
otirb (r), (r) ,r JA02
out (r),r]FOO
out d,r]FOO • outb (r),r JEOO
outb d,r JEOO

38

COHERENT Assembler Reference Manual

outd (r), (r) ,r 3BOA • outdb (r), (r) ,r 3AOA
outi (r),(r),r 3B02
outib (r), (r) ,r 3A02
pop a, (r) 1700
popl a, (r) 1500
push (r),a 1300
pushl (r),a 1100
res a,$n 2300
res a,r 2300
resb a,$n 2200
resb a,r 2200
resflg name 8D03
ret 9EOO
ret cc 9EOO
rl r, im B300
rlb r, im B200
rlc r, im B308

• rlcb r,im B208
rldb r,r BEOO
rr r,im B304
rrb r,im B204
rrc r,im B30C
rrcb r,im B20C
rrdb r,r BCOO
sbc r,r B700
sbcb r,r B600
SC n ?FOO
sda r,r 330B
sdab r,r 320B
sdal r,r 330F
sdl r,r 3303
sdlb r,r 3203
sdll r,r 3307
set a,$n 2500
set a,r 2500
setb a,$n 2400 • setb a,r 2400
setflg name 8D01
sin r,d 3B05

39

COHERENT Assembler Reference Manual

•

sinb r,d JA05
sind (r),(r),r JB09 • sindb (r), (r) ,r JA09
sindr (r), (r) ,r JB09
sindrb (r),(r),r JA09
sini (r),(r),r 3B01
sinib (r), (r) ,r JAOl
sinir (r),(r),r 3B01
sinirb (r), (r) ,r JAOl
sla r,im B309
slab r,im B209
slal r,im BJOD
sll r,im B301
sllb r,im B201
slll r, im B305
sotdr (r), (r) ,r JBOB
sotdrb (r), (r) ,r JAOB
sotir (r),(r),r 3B03
sotirb (r),(r),r JAOJ • sout d,r 3B07
soutb d,r JA07
soutd (r),(r),r JBOB
soutdb (r), (r) ,r JAOB
souti (r), (r) ,r JBOJ
soutib (r),(r),r JAOJ
sra r,im BJ09
srab r, im B209
sral r,im BJOD
srl r,im B301
srlb r, im B201
srll r,im B305
sub r,a 0300
subb r,a 0200
subl r,a 1200
sys n ?FOO
tee ee,r AFOO
teeb ee,r AEOO
test a OD04 • testb a OC04
testl a 1C08

40

COHERENT Assembler Reference Manual

• trdb (r),(r),r B808
trdrb (r), (r) ,r BB0C
trib (r), (r) ,r B800
trirb (r), (r) ,r B804
trtdb (r), (r) ,r BB0A
trtdrb (r), (r) ,r BB0E
trtib (r),(r),r B802
trtirb (r),(r),r B806
tset a 0D06
tsetb a 0C06
xor r,a 0900
xorb r,a 0800

•

•
41

COHERENT Assembler Reference Manual

Appendix D: The Motorola MC68000 Assembler

The assembler for the Motorola MC68000 microprocessor uses a
subset of the machine opcodes and register names provided by the
manufacturer's assembler. The names which are unsupported are in
all cases longer synonyms for names which are supported. Assem
bler directives, statement syntax, and expression syntax are
different.

D.1 Predefined Symbols

The following register names are predefined.

usp
ccr
sr
dO
dl
d2
d3
d4
d5
d6
d7
aO
al
a2
a3
a4
a5
a6
a7

OOFD
OOFE
DOFF
0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
OOOA
OOOB
oooc
000D
OOOE
OOOF

sp
pc
dO.l
dl.l
d2.l
d3.l
d4.l
d5.l
d6.l
d7.l
aO.l
al.l
a2.l
a3.l
a4.l
a5.l
a6.l
a7.l
sp.l

OOOF
0010
0800
1800
2800
3800
4800
5800
6800
7800
8800
9800
A800
B800
C800
D800
E800
F800
F800

All of these symbols have type 'register' although none are general
purpose registers legal in all contexts. The values assigned to ccr,
sr, usp, pc and the '.1' registers are for internal use.

42

•

•

•

•

•

•

COHERENT Assembler Reference Manual

D.2 Address Descriptors

The following syntax is used for general source and destination
address descriptors. The syntax is a subset of that used by
Motorola assemblers, except that the character '$' is used to specify
immediate mode, and that the suffix ':s' appended to an absolute
address forces absolute short addressing.

In the examples the symbols 'a', 'd', and 'r' refer to address, data,
and any register, and the symbol 'e' refers to any expression.

d Data register direct
a Address register direct
(a) Address register indirect
(a)+ Address register postincrement
-(a) Address register predecrement
e(a) Address register displacement
e(a,r) Address register short index
e(a,r.l) Address register long index
e:s Absolute short address
e Absolute long address
e(pc) Program counter displacement
e(pc,r) Program counter short index
e(pc,r.l) Progra~ counter long index
$e Immediate data

Unsupported address constructions are synonyms for constructions
listed above.

The addressing modes are classified into four categories which are
used in the instruction listings to distinguish allowed addresses.

Data addresses are all addresses except address registers.

Memory addresses are all addresses except data and
address registers.

Control addresses are all memory addresses except
address register predecrement and address register pos
tincrement.

Alterable addresses are all addresses except program

43

COHERENT Assembler Reference Manual

counter displacement, program counter index, and
immediate.

Failure to observe category restrictions will generate address errors.

D.3 Assembly Directives

The MC68000 assembler supports the .long and .blkl assembly
directives.

The .even and .odd directives are provided to force the current
location counter to an even or odd location respectively (by emit
ting a 'O' byte if necessary).

D.4 Machine Instructions

The following machine instructions are defined. For the most part
they form a subset of the instructions provided by Motorola assem
blers which elirpinates long synonyms such as 'bsr .l' or 'add. w'.
The conditions 'hs' and 'lo' are provided as synonyms for 'cc' and
'cs'. Register list syntax for 'movem' is not supported.

In the examples 'an', 'dn', and 'rn' refer to address, data, and
either registers, 'ea' refers to general effective addresses, 'l' refers to
direct addresses, 'e' refers to a general expression, and 'n' refers to
an absolute expression.

Many syntactically correct instructions may prove to be semantic
errors because of restrictions of effective addresses to data, alter
able, memory, or control categories. Contrary to appearances, no
MC68000 instruction operates on all addressing modes; some modes
are always forbidden. These restrictions are noted at the end of
each instruction description in the MC68000 User's Manual. In the
following listing instructions have been classified according to their
allowed addressing modes. Each classification is named by the lexi
cographically first instruction in the class.

D.4.1 ABCD Type

The following instructions accept only two kinds of operands: data
register direct and address register predecrement. The BCD instruc
tions operate on byte size operands only.

44

•

•

•

•

••

•

COHERENT Assembler Reference Manual

abed dn,dn
abed -(an),-(an)

abed ClOO
addx D140
addx.b D100
addx.l D180
sbed 8100
subx 9140
subx.b 9100
subx.l 9180

D.4.2 ADD Type

The following instructions take a data register source to a memory
alterable destination or any source to a data register destination. If
the operation size is byte, then address register direct sources are
forbidden.

add dn,ea
add ea,dn

add D040
add.b D000
add.l D080
sub 9040
sub.b 9000
sub.l 9080

D.4.3 ADDA Type

The following instructions accept any source effective address. The
'cmp' instruction cannot combine byte operations with address
register sources .

45

COHERENT Assembler Reference Manual

adda ea,an D0C0
adda.l ea,an DlC0
cmp ea,dn B040
cmp.b ea,dn B000
cmp.l ea,dn B080
cmpa ea,an B0C0
cmpa.l ea,an BlC0
movea ea,an 3040
movea.l ea,an 2040
suba ea,an 90C0
suba.l ea,an 91C0

D.4.4 ADDI Type

The following instructions require a data-alterable destination
effective address. The nbcd, set according to condition, and tas
instructions are implicitly byte sized.

46

•

•

•

COHERENT Assembler Reference Manual

• addi $n,ea 0640
addi.b $n,ea 0600
addi.l $n,ea 0680
clr ea 4240
clr . b ea 4200
clr.l ea 4280
cmpi $n,ea 0C40
cmpi.b $n,ea ocoo
cmpi.l $n,ea 0C80
eor dn,ea B140
eor.b dn,ea Bl00
eor.l dn,ea B180
nbcd ea 4800
neg ea 4440
neg.b ea 4400
neg.l ea 4480
negx ea 4040
negx.b ea 4000 • negx.l ea 4080
not ea 4640
not.b ea 4600
not.l ea 4680
sec ea 54C0
scs ea 55C0
seq ea 57C0
sf ea 51C0
sge ea 5CC0
sgt ea 5EC0
shi ea 52C0
shs ea 54C0
sle ea 5FC0
slo ea 55C0
sls ea 5JC0
slt ea 5DC0
smi ea 5BC0
sne ea 56C0 • spl ea 5AC0
st ea 50C0
subi $n,ea 0440
subi.b $n,ea 0400

47

COHERENT Assembler Reference Manual

subi.l $n,ea 0480
SVC ea 58CO
svs ea 59CO
tas ea 4ACO
tst ea 4A40
tst.b ea 4AOO
tst.l ea 4A80

D.4.5 ADDQ Type

The following instructions take an immediate source operand in the
range I to 8 and an alterable effective address destination operand.
If the operation size is byte, then address register direct destinations
are forbidden.

addq
addq.b
addq.l
subq
subq.b
subq.l

$n,ea
$n,ea
$n,ea
$n,ea
$n,ea
$n,ea

5040
5000
5080
5140
5100
5180

D.4.6 AND Type

The following instructions take two forms : data register direct
source to memory-alterable destinations, and data source effective
address to a data register direct destination.

and dn,ea
and ea,dn

and C040
and.b cooo
and.l COBO
or 8040
or.b 8000
or . l 8080

48

•

•

•

•

•

•

COHERENT Assembler Reference Manual

D.4.7 ANDI Type

The following instructions combine an immediate source operand
with either a data-alterable effective address destination operand or
the status register. The whole status register or only the low byte is
selected depending on whether the operation size is word or byte.

andi $n,ea
andi $n,sr

andi 0240
andi.b 0200
andi.l 0280
eori 0A40
eori.b 0A00
eori.l 0A80
ori 0040
ori.b 0000
ori.l 0080

D.4.8 ASL Type

The shift instructions come in three flavors: immediate shift count
of data register, data register shift count of data register, and shift
by one of a word at a memory-alterable effective address. The
memory shift opcode is formed from the opcodes given by setting
bits 6 - 7, and by moving bits 3 - 4 to positions 9 - 10 .

49

COHERENT Assembler Reference Manual

asl $n,dn
asl dn,dn
asl ea

asl E140
asl.b ElOO
asl.l E180
asr E040
asr.b EOOO
asr.l E080
lsl E148
lsl. b E108
1s1.1 E188
lsr E048
lsr.b E008
lsr.l E088
rol E158
rol.b E118
rol.l E198
ror E058
ror.b E018
ror.l E098
roxl E150
roxl.b EllO
roxl.l E190
roxr E050
roxr.b EOlO
roxr.l E090

D.4.9 BCHG Type

The bit instructions take an immediate or data register source
operand and a data-alterable destination effective address. The
operation size is implicitly long for data register destinations and
implicitly byte for other destinations.

50

•

•

•

•

•

•

COHERENT Assembler Reference Manual

bchg
bchg

$n,ea
dn,ea

bchg 0140
bclr 0180
bset OlCO
btst 0100

D.4.10 CHK Type

The following instructions take a data source effective address and a
data register destination. Source and destination are implicitly
word sized for chk, muls, and mulu. Source is word sized and des
tination is long for divs and divu.

chk
divs
divu
muls
mulu

ea,dn
ea,dn
ea,dn
ea,dn
ea,dn

4180
81CO
80CO
ClCO
coco

D.4.11 JMP Type

The following instructions require control effective addresses.

jmp ea 4ECO
jsr ea 4E80
lea ea,an 41CO
pea ea 4840

D.4.12 MOVE Type

Move instructions take any source effective address to data-alterable
destination effective addresses, but byte moves from address regis
ters are forbidden. When the destination is the condition code or
status register the source must be a data effective address and the
instruction size is implicitly byte or word respectively. When the
status register is the source the destination must be a data-alterable

51

COHERENT Assembler Reference Manual

effective address. When the user stack pointer is an operand the
other operand is an address register and the instruction size is impli
citly long.

move ea,ea 3000
move.b ea,ea 1000
move.l ea,ea 2000
move ea,ccr 44CO
move ea,sr 46CO
move sr,ea 40CO
move an,usp 4E60
move usp,an 4E68

D.4.13 MOVEM Type

Movem instructions take two forms: an immediate register mask
source with a control or predecrement destination; or a control or
postincrement source with an immediate register mask destination .
The bit ordering in register masks is the programmer's responsibil
ity.

movem $n,ea 4880
movem ea,$n 4C80
movem.l $n,ea 48CO
movem.l ea,$n 4CCO

D.4.14 MOVEP Type

The move peripheral instruction uses data register and address regis
ter indirect with displacement operands.

movep e(an),dn 0108
movep dn,e(an) 0188
movep.l e(an),dn 0148
movep.l dn,e(an) 01C8

52

•

•

•

•

•

•

COHERENT Assembler Reference Manual

D.4.15 Miscellaneous Instructions

The remaining instructions have operand syntax which is self expla
natory .

53

COHERENT Assembler Reference Manual

bee 1 6400 • bee.s 1 6400
bes 1 6500
bes.s 1 6500
beq 1 6700
beq.s 1 6700
bge 1 6C00
bge.s 1 6C00
bgt 1 6E00
bgt.s 1 6E00
bhi 1 6200
bhi.s 1 6200
bhs 1 6400
bhs.s 1 6400
ble 1 6F00
ble.s 1 6F00
blo 1 6500
blo.s 1 6500
bls 1 6300 • bls.s 1 6300
blt 1 6D00
blt.s 1 6D00
bmi 1 6B00
bmi.s 1 6B00
bne 1 6600
bne.s 1 6600
bpl 1 6A00
bpl.s 1 6A00
bra 1 6000
bra.s 1 6000
bsr 1 6100
bsr.s 1 6100
bve 1 6800
bve.s 1 6800
bvs 1 6900
bvs.s 1 6900
cmpm (an)+,(an)+ B148 • empm.b (an)+, (an)+ B108
empm.l (an)+,(an)+ B188
dbee dn,l 54C8

54

COHERENT Assembler Reference Manual

• dbcs dn,l 55C8
dbeq dn,l 57C8
dbf dn,l 51C8
dbge dn,l 5CC8
dbgt dn,l 5EC8
dbhi dn,l 52C8
dbhs dn,l 54C8
dble dn,l 5FC8
dblo dn,l 55C8
dbls dn,l 5JC8
dblt dn,l 5DC8
dbmi dn,l 5BC8
dbne dn,l 56C8
dbpl dn,l 5AC8
dbra dn,l 50C8
dbt dn,l 50C8
dbvc dn,l 58C8
dbvs dn,l 59C8

• exg rn,rn ClO0
ext dn 4880
ext.l dn 48C0
link an,$n 4E50
moveq $n,dn 7000
nop 4E71
reset 4E70
rte 4E73
rtr 4E77
rts 4E75
stop $n 4E72
swap dn 4840
trap $n 4E40
trapv 4E76
unlk an 4E58

•
55

COHERENT Assembler Reference Manual

•

•

•
56

COHERENT Assembler Reference Manual

Index •
-g: 3 diagnostics: 15
-1: 3

15 -o: 3 e error:

-x: 3 errors: 15

.ascii: 13 expression type: 9

.blkb: 13 iAPX-86: 23

.blkl: 13, 18, 24, 34 identifier: 5

.blkw: 13 JMP Type: 51 .byte: 12

.even: 18, 24, 35 labels: 11

.globl: 13 listing: 3

.long: 13, 18, 24, 34 location counter: 7

.odd: 18, 24, 35 15
14

m error: .page: machine instructions: 14
.title: 14 MC68000: 42 • .word: 12 miscellaneous: 53
a error: 15 MOVE Type: 51
ABCD Type: 44 MOVEM Type: 52
absolute: 9 MOVEP Type: 52
ADD Type: 45 n error: 15 ADDA Type: 45 native assembler: 3
ADDI Type: 46 null statement: 11
ADDQ Type: 48
AND Type: 48 operators: 5
ANDI Type: 49 p error: 15 ASL Type: 49 PDP-11: 17
b error: 15 private sections: 7
BCHG Type: 50 program sections: 7
blanks: 6

q error: 15
character 15 special: 5 r error:

register: 9 CHK Type: 51 relocatable: 9
comments: 6
constant: 5 shared sections: 7 • constants: 5 special: 5

57

COHERENT Assembler Reference Manual

statement: 11
assignment: 11

symbol
definition: 11

tabs: 6
The Intel iAPX-86 Assembler: 23
The Zilog Z-8000 Assembler: 32
tokens: 5
type propagation: 10

undefined: 9
uninitialized sections: 7

Z-8000: 32

58

•

•

•

•

•

•

COHERENT Assembler Reference Manual

User Reaction Report

To keep this manual and COHERENT free of bugs and facilitate future
improvements, we would appreciate receiving your reactions. Please fill in
the appropriate sections below and mail to us. Thank you.

Mark Williams Company
1430 W. Wrightwood Avenue

Chicago, IL 60614

Name:

Company:

Address:

Phone: Date:

Version and hardware used:

Did you find any errors in the manual?

Can you suggest any improvements to the manual?

Did you find any bugs in the software?

Can you suggest improvements or enhancements to the software?

Additional comments: (Please use other side.)

59

•

•

•

