
• awk

User's Manual

•

•

•

•

•

Table of Contents

• 1. Introduction 1

2. Using awk 3

Program Structure 3

Records and Fields 3

Command Line Arguments . 7

3. Printing with awk . 9

Printing Individual Fields 9

Changing the Output Field and Record Separators 9

Printing Predefined Variables 10

Redirecting Output 10

Formatting Output 11

• Piping Output 12

4. awk pattern scanning 13

Special Patterns: BEGIN and END 13

Patterns 14

Arithmetic Relational Expressions . 15

Boolean Combinations of Expressions 17

Pattern Ranges 17

5. Specifying awk actions . 19

Functions 19

Assignment of Variables 21

Field Variables 22

String Concatenation 23

Arrays . 24 • Control Statements 25

if (condition) else 25

awk User's Manual

while (condition) 26

for 26 • break 26

continue 27

next . 27

exit 27

Index 29

•

•
II

•

•

•

1. Introduction

awk is a general-purpose pattern scanning language within the
COHERENT operating system. awk performs pattern matching,
string manipulation, record processing, and report generation.

The syntax for awk is simple. It uses only one kind of statement,
consisting of one or both of two elements: a pattern and an action.
Patterns select the data to be processed, and actions specify the
function to be performed on the selected data.

This manual explains how to write programs for processing input
with awk. Including this introduction, there are five sections in this
manual.

Section 2 explains how to use the awk interpreter and how to create
an awk program. In addition, the section discusses the principles of
data selection and the structure of command line arguments.

Section 3 describes the basic function of printing and the
specification of input and output field and record separators.

Section 4 explains the pattern scanning capabilities of awk.

Section 5 describes the actions awk performs in addition to print
ing, such as assigning variables, defining arrays, and controlling the
flow of data.

For further information, about related COHERENT commands, see
the COHERENT Command Manual. If you are not familiar with
the operation of COHERENT, see the Introduction to the
COHERENT System .

awk User's Manual

•

•

•
2

•

•

•

awk User's Manual

2. Using awk

Like many other COHERENT utilities, awk is a filter. awk reads
input from the standard input (entered from your terminal or from
a file you specify), processes each input line according to a specified
awk program, and writes output to the standard output. This sec
tion explains the structure of an awk program and the syntax of
awk command lines.

Program Structure

The basic element of an awk program is a statement in the form:

patte r n {act i on}

A program may contain as many sets of patterns and actions as
you need to accomplish your purposes.

awk checks each line of input with the patterns specified for a
match, one pattern at a time . Each time the line matches a pat
tern, awk performs the corresponding action. After awk has com
pared the line with each pattern in the program, awk tests the next
input line against the patterns.

An awk program may specify an action without a pattern. When
awk processes an action which has no pattern, each input line
matches. Therefore, awk performs the action on every line of the
input.

An awk program may also specify a pattern without an action. In
this case, when an input line matches the pattern, awk copies (or
prints) the line to the standard output.

One of the special patterns that awk recognizes is the word
FILENAME. This pattern causes awk to print the name of the file
that it is currently using as a source for data. Other special
pattern s are discussed below.

Records and Fields

awk divides its input into separate records, and subdivides each
record into separate fields. Records are separated by a character
called the input record separator (RS), and fields are separated by
the input field separator (FS).

3

awk User's Manual

The default input record separator is the newline character, so awk
normally regards each input line as a separate record. Because the
default input field separator is either the space or the tab character,
white space normally separates fields.

In addition to input record and field separators, awk provides out
put record and field separators (ORS and OFS) which it prints
between output records and fields. The default output record
separator is the newline character; awk normally prints each output
record as a separate line . The default output field separator is the
space character.

To process input with a record separator other than the newline
character, use the special BEGIN pattern (fully described in Section
4) with an action assigning the desired record separator to the vari
able RS. For example,

BEGIN {RS =":"}

changes the record separator to a colon. You may specify any one
character as the record separator. Specifying the null string
(RS= "") makes two consecutive newlines the record separator. If
you include more than one character within double quotes, awk
ignores all characters after the first one.

To change the output record separator, assign the desired character
to the variable ORS. The output record separator may be a single
character or a string. For example, the following program assigns
the string ***record end*** to ORS:

BEGIN {ORS = "***record end***" }

The variable NR gives you the number of the current record. In
the following program, awk prints this number at the beginning of
each record to make editing easier:

{print NR, $0}

Here is a program that prints the total number of records in the
input file.

END {print NR}

4

•

•

•

•

•

•

awk User's Manual

awk can also use the record number in relational expressions. To
select a particular record for printing (for example, line 6), use the
following program:

NR == 6 {print $0}

which tells awk to print the whole record when the number of the
record is equivalent to 6.

Each record is subdivided into fields. Within the record, you may
refer to each field separately by the name $n, where n is the field
number. For example, the fourth field is called $4. The entire
current record is called $0.
Like records, fields have a default separator. For fields, the default
separator is white space for both input and output fields (usually
spaces or tabs; newlines can separate fields when RS is null).

You may change the field separator (variable FS) in two ways. The
first way is to specify the change within the awk program, as fol
lows:

BEGIN {FS = ":"}
The sample statement changes the field separator to a colon . When
you specify several characters within quotes, each character
becomes a field separator, and all separators have equal precedence.
For example, you can specify commas, colons, and periods to
separate fields. In the following program, awk looks for any of
these separators, and breaks the record into fields at each
occurrence of each character:

BEGIN {FS = ", :."}

The second method of changing the field separator is to use a com
mand line argument. The command line method enables you to
declare the field separator at the time you invoke awk. For more
information, see "Command Line Arguments" below. To show
how changing the input field separator affects the ouput, consider
the following record from the file "now":

Now i s the time for all good men

and the awk statement :

{print $1,$2 }

5

awk User's Manual

When the input field separator is the default, the result of the awk
program is:

Now i s

When using the same statement but setting FS
the following :

Nows the t

"i", awk prints

As the input field separator, "i " is not printed ; however, in its
place a blank separates the two output fi elds. The first field consists
of uppercase "N" , lowercase "o" and "w" , and a space. The
second field consists of the ' 's' ', a space, the word ' 'the'' , and the
" t" of time.

When you use an input field separator other than the default, the
printed output can look confusing, as in the example above. How
ever, you can change the output field separator by assigning a char
acter or string to the variable OFS .

To indicate where fields are divided when the output is printed , you
can assign a character such as * to OFS as follows:

BEGIN {0FS = "* "}
{FS = "i" ; print $1, $2}

This program prints the following:

Now *s the t

Notice that a semicolon (;) separates two statements on the same
line. For more information about the use of the semicolon, see
"Printing with awk" in Section 3.

The variable NF contains the number of fields in the current record.
In the following program, awk prints the number of fields at the
beginning of each output record, telling you the number of elements
in the record:

{pri nt NF,$0}

awk can also use the variable NF in relational expressions. For
example, to print all records with JO or more fields, you could use
this program:

NF>= 10 {print $0}

6

•

•

•

•

•

•

awk User's Manual

Command Line Arguments

As with any COHERENT program or command, you invoke awk
by typing the lowercase letters awk. To process files with awk, you
must include some additional elements on the command line, called
arguments.

The complete form for the awk command line is:

awk [-y] [-Fe][-/ progfile] [prog] [file]] [file2]

Each of the command line arguments is explained below.

The - y option enables you to name patterns in lowercase charac
ters, which awk matches to both uppercase and lowercase characters
in the input file. This option is similar to its counterpart in the
COHERENT regular expression pattern-matching utility, grep.

The following programs show how the - y option works on the file
named the, which contains the following two lines:

The time is right.
Now is the time .

Command

awk -y ' /the/' the

awk '/the/' the

Output

The time is right.
Now is the time.

Now is the time .

The -Fe option is the command line version of FS = "c" , an
assignment like the one described earlier in "Records and Fields".
This option changes the input field separator from the default
(white space) to the character c. You may include any characters
you want awk to use as field separators after the - F flag .

The - f progfi/e option enables you to use a file progfile containing
awk commands as an awk program. The option flag (- f) must
precede the name of the file to be used as a program.

If you do not use the - f progfile option, you must use the prog
option. This option specifies the awk program on the command
line. When writing a command-line awk program, use a single quo
tation mark before the first statement (pattern , action, or both);

7

awk User's Manual

then enter the subsequent lines of the program. After the last state
ment of the program, type another single quotation mark followed
by the file or files to be processed. Note that COHERENT prompts
you to enter more information by displaying the ' > ' at the begin
ning of each line until you enter the closing single quote and new
line character.

The following program is an awk command-line program. It prints
a heading before awk reads the input file " test", and then prints
the entire file with each line preceded by its line number.

$ awk ' BEGIN {pri nt "sample output file" }
> {print NR, $0}' test

The Ji/el Jile2 . . . option enables you to process existing files.
When you want to process more than one file , separate the file
names with white space. If you do not specify a file name in the
command line, awk takes input from the standard input.

The following program prints the files testl and test2. Each line is
preceded by its record number.

$ awk '{ print NR, $0}' test l test2

8

•

•

•

•

•

•

awk User's Manual

3. Printing with awk

Printing is an awk action. In fact, it is the action most often used,
because it is the simplest to use. The following short awk program
prints its entire input:

{print}

When you specify awk actions, you may include several actions
within one set of braces; however, each action must be separated
from the others by semicolons (;) or newlines.

Printing Individual Fields

Using awk, you can print output fields in a different order from the
input fields.

You can print fields in any order you desire. For example, you can
print the second and third fields in reverse order:

{print $3,$2}

When this program processes the input file now containing the sam
ple record used in Section 2, the printed result is:

the is

Because the field names are separated by a comma, awk insert s an
output field separator between the fields when printing them.

If you do not separate field names by commas in the print state
ment, awk concatenates the fields when printing them. For exam
ple, the following program prints the second and third fields:

{print $2 $3}

The result is:

isthe

Changing the Output Field and Record Separators

You may change the output field separator by assigning your
desired separator to the variable OFS. To use the same field
separator for the entire input, make the assignment before the first
print statement. For example, to make the colon your output field
separator, use a statement like this:

9

awk User's Manual

{OFS=":" ; print $2 , $3,$4 }

Which means that you will receive this output:

is:the:time

To change the separator for the first line only, use the statement:

NR =={1 OFS=" :"; print $2,$3,$4}

To change the output record separator from the default newline,
assign required separator to the variable ORS in the same manner.

Printing Predefined Variables

As discussed in Section 2, you can print either or both of the NF
(number of fields) or NR (number of records) predefined variables.
To print a predefined variable, simply name it in the print state
ment. For example, to include the NF variable before the other
output in the previous example, edit the program to read as fol
lows:

{OFS,,;, 11
:

11
; print NF,$2,$3,$4}

The output resulting from this statement is:

8 :is : the : time

You can specify the NR variable in the same way. When you add
the name of the variable to the desired place in the list of fields to
be printed, awk prints the record number in that place in the out
put.

Redirecting Output

In addition to printing to the standard output, you also may
redirect output to a file or files of your choosing. This ability to
direct output to any file enables you to extract information from a
given file and construct new documents .

Suppose you have a file named accounts with accounting informa
tion stored in it. The first column of the file contains payroll infor
mation, the second column shows income for the year, and the
third column reports accounts payable information. You are to
make an income report for the year containing text and tables.

•

•

•

•

•

•

awk User's Manual

To extract the income information from the accounts file and put it
into a separate file named income, you can use the following awk
program:

{print $2 > "income"}

With this program, awk creates the file income if it does not
already exist, and enters the second column of the accounts file as
the contents of the new file. If a file named income already exists,
awk replaces the current contents of the file with the second column
of the accounts file.

If you need the first two columns for two separate reports, you can
redirect both columns to separate files using one statement.

{print $2 > "income"; print $1 > "payroll"}

You can specify a maximum of IO files for output.

If text for your report is already contained in the file report, you
can append the second column of the accounts file to the end of
your report using this awk program:

{print $2 >> "report"}

Appending enables you to complete your report without retyping a
column of numbers that exists in another file.

Formatting Output

When you use awk to process a column of text or numbers as in the
example above, you may want to specify a consistent format for the
output. The statement for formatting a column of numbers follows
this pattern:

{printf "format", expression}

where format is prescribed by the format control characters and
separators defined below. expression specifies the fields for awk to
print.

The following table shows the names and meanings of the most fre
quently used awk format control characters. To be recognized as
format control characters by awk, these characters must be pre
ceded by the percent sign '07o' and a number in the form of n or
n.m.

11

awk User's Manual

Format Control Characters

%nd
%n.mf
%n.ms

Meaning

Decimal number
Floating point number
String of characters or digits

When you call the printf function through awk to format the out
put, you must specify the output separators you want to use.

Output Separator Character

\n
\t
\f
\r
\"

Meaning

Newline
Tab
Form feed
Carriage return
Quotation mark

For example, if you wish to print a column of numbers with up to
9 places to the left of the decimal and 2 to the right (for a total of
12 places, including the decimal), and you want a new entry for
each line, use a format like this:

{printf "%12.2s\n", $2}

Piping Output

You can pipe the output of your awk program to another process.
The pipe connects the standard output of awk to the standard input
of another process, program, or utility.

For example, you can pipe output to the mail utility with the fol
lowing program, which mails the output to name:

{print I "mail name"}

The pipe operator is the vertical bar character between the print
and mail commands in this statement.

12

•

•

•

•

•

•

awk User's Manual

4. awk pattern scanning

The previous section described prmtmg in terms of fields. Fields
are generally the best way to select single elements from columnar
input files. In addition to names of fields, the awk interpreter is
capable of scanning records for the following:

- Two special patterns: BEGIN and END
- Regular expressions
- Arithmetic relational expressions
- Boolean combinations of expressions
- Pattern ranges

Special Patterns: BEGIN and END

BEGIN is a special pattern which matches the beinning of the
input, before awk processes any of the input. As mentioned in Sec
tion 2, BEGIN is the best place to set the field and record separa
tors if you want the same separators for the entire input. BEGIN is
also a good place to perform the action of assigning values to vari
ables when the values are known.

Actions that require awk to compare input with the variable NR
may not produce the results you expect from a BEGIN pattern,
because all BEGIN processing is finished before NR = 1. Also, awk
does not permit field references in BEGIN or END statements.

END is a special pattern which matches the end of awk input. The
END pattern enables you to request an action to occur when all
processing is finished. A common use of END is printing the value
of variables. For example:

END {print NR}

tells awk to print the value of NR after processing is finished, giving
the total number of records processed. When you reach the END
pattern, you may not return for further processing.

You may make awk into a calculator by using END with no action.
At the end of the input, you may enter any arithmetic equation or
awk function and have the result automatically printed on the stan
dard output. When you are finished using awk as a calculator, type
<ctrl-D>.

13

awk User's Manual

Patterns

You can enclose strings of characters m slashes '/ ' for awk to
match, as ed (the COHERENT text editor) and grep (the
COHERENT text pattern matching command) do. For example ,
take this pattern:

/ted/

When a statement contains this expression , awk prints every record
with the string ted , whether ted occurs as a word or as part of a
word . For example:

i nter ested
busted
tedious

In addition to specific strings , you can scan for classes and types of
characters. To do so, enclose the characters within brackets, and
place the bracketed characters between the slashes. For example, to
specify a range of lowercase letters, enclose the range of letters
within brackets:

/[a-z]/

You can specify ranges of uppercase letters or numerals the same
way.

In addition, you can use the following special characters for further
flexibility:

Char acter

[]
()

I
+
?

*

Meani ng

Class of characters
Grouping subexpressions
Alternatives among expressions
One or mor e occurrences of the expression
Zero or one occurrences of the expression
Zero , one , or more occurrences of the

expression
Any non- newline character

When adding one of the special characters to a pattern , enclose the
special character as well as the rest of the pattern within slashes.

14

•

•

•

•

•

•

awk User's Manual

To search for a string that contains one of the special characters,
you must precede the character with a backslash. For example, if
you are looking for the string "today?", use the following pattern:

/ today\? /

When you need to find an expression in a particular field, not just
anywhere in the record, you can use one of these operators:

Character Meaning
Contains
Does not contain

For example, if you need to find the characters jam in the fourth
field of the input, you can use the following statement:

$4-/[Jj]am/

This statement prints all lines where the fourth field contains Jam
or jam. The statement also prints lines where the fourth field con
tains words like James, jammed, and pajamas. To prevent the awk
program from selecting lines with characters other than separators
on either side of the required expression, use the following special
characters:

Character

$

Meaning
Beginning of the record or field
End of the record or field

With these characters, you can be still more specific about which
field or record you want printed. For example, to allow James to
be printed, but not pajamas, use the following statement:

$4-/"[Jj]am/

To allow only Jam or jam, use this statement:

$4-;"[Jj]am$/

Arithmetic Relational Expressions

An awk pattern may consist of relational expressions using the fol
lowing operators :

15

awk User's Manual

Operator
<
<=

!=
>=
>

Meaning
Less than
Less than or equal to
Equivalent
Not equivalent
Greater than or equal to
Greater than

With these operators, you may select fields according to their rela
tion to one another. For example, if you want to print the first
field only when it does not equal the second field, use this state
ment:

$1 != $2 {print $1}

You also can establish relationships among records. If you want to
print no more than the first ten records , use the following state
ment:

NR <= 10

Because this example specifies no action, the statement prints all the
records whose record number is 10 or less.

Relational tests default to string comparison if either operand is
nonnumeric. Thus, if one operand is numeric and the other is a
string, awk makes a string comparison. The following example
shows how awk compares one field to part of the alphabet:

$1 <= "C"

This statement selects all lines beginning with an ASCII value less
than or equal to that of "C" (octal 103).

When you compare fields that have numeric values to one another,
awk performs a numeric comparison. Consider the comparison in
this example:

$2 < $1 + 100 {print $2}

This statement causes field 2 to be printed only when the value of
field 2 does not exceed the value of field 1 by 100. If field 2 is
alphabetic, it always matches in this comparison because strings
evaluate to 0 in numeric comparisons.

16

•

•

•

•

•

•

awk User's Manual

Boolean Combinations of Expressions

awk tests logical combinations of expresssions in its pattern
scanning process . Use the following operators for combining
expressions.

Operator
11
&&

Meaning
Or
And
Not

The following example tests for records that begin field 1 with a
character that is less than u, greater than or equal to t, and begin
field 1 with a string other than the.

The effect of this pattern is to select records that have a t as the
first character in field 1 but do not begin field 1 with the letters the.

Pattern Ranges

awk may cause an action to be performed on all records between
two specified patterns. For example, to print all records between
the patterns April 10 and April 19 inclusive, enclose the strings in
slashes and separate them with a comma; then indicate the print
action, as follows:

/April 1O/ , /April 19/ {print}

You also may specify a range of record numbers using a statement
such as this:

NR == 5, NR == 17 {pri nt}

This statement specifies that records 5 through 17 of the input are
to be printed .

17

awk User's Manual

•

•

•
18

•

•

•

awk User's Manual

5. Specifying awk actions

This section describes awk actions other than printing actions. In
addition to printing, awk is capable of:

- Performing functions
- Assigning variables
- Using fields as variables
- Concatenating strings
- Defining arrays
- Using control statements

Functions

awk includes functions that enable you to perform specific calcula
tions with input information. You may assign these functions to
any variable and use them in patterns. The following list shows the
functions and their definitions; an argument can be any expression.

Function

length
length(argument)
sqrt(argument)
exp(argument)
log(argument)
int(argument)
abs(argu;nent)
substr(str, beg, fen)

index(sJ,s2)

sprintf(f,el,e2)

split(str, array,Js)

Meaning

Returns the length of the current record
Returns the length of argument
Returns the square root of argument
Returns e to the power of argument
Returns the natural logarithm of argument
Returns the integer part of argument
Returns the absolute value of argument
Returns the substring of str that is /en
characters long beginning at position beg
Returns the position of s2 within
sl, or O if s2 does not occur in sl
Returns strings e I and e2 in the
printf format f
Divides str into fields associated with
array (an array is a collection of fields
listed under a single name) that are sepa
rated by fs or the default field
separator

The length, sqrt, exp, log, int , abs, and index functions are self
explanatory.

19

awk User's Manual

When substr (str,beg,ten) occurs in a statement, awk scans the argu- •
ment string str for the position beg within the string. When awk
finds beg, it prints a substring ten characters long starting at beg.
If ten is not included in the argument, the substring includes every-
thing from beg to the end of the record .

The sprintf (j,et,e2) function enables you to format expressions el
and e2 according to format specification f. The following example
demonstrates the operation of the sprintf (j,el,e2) function.

$ awk 'x = sprintf(.%7.2s•,$1)
> {print $1}
> END {print x}'

When you run this sample program, awk accepts input data from
the keyboard of the terminal. The first line of the program begins
the awk program and sets variable x so that it contains five blank
spaces and the first two characters of the first input field. The
second line causes awk to print the first field as it was received.
The third line ends the program by printing x, the formatted ver
sion of the first input field.

If you enter the word chicago as the first input field for this pro
gram, awk prints :

chicago
ch

The split (str,array,fs) function divides fields into subfields, break
ing str into elements of array separated by fs, or white space when
fs is not specified. In the following example, awk splits the first
field of the record into subfields. If the record has a single colon in
the first field, awk splits the field into two subfields. These subfields
become the first and second fields of the array named time (see
"Arrays" later in this section).

{split ($1,time,•: •) }

At this point, you may manipulate the information stored in the
array time or simply print the subfields.

20

•

•

•

•

•

awk User's Manual

Assignment of Variables

In addition to the intrinsic variables, such as NR which contains the
number of the current input record, and FILENAME which con
tains the name of the current file, you may assign other variables as
described below.

Variables in awk may be string or numeric variables, depending on
the context. By default, variables are set to the null string (numeric
value 0) on start-up of the awk program. To set the variable x to
the numeric value I, you can use the following assignment state
ment:

X = 1

To set x to the string ted, use the following statement:

x = "ted"

When the context demands it, awk converts strings to numbers or
numbers to strings. For example, the statement:

X = "J 11

assigns to x the string 3. When an expression contains an arith
metic operator such as the ' - ', awk interprets the expression as
numeric. (Alphabetic strings evaluate to 0.) Therefore,

X = "J" - "1"

assigns the value 2 to variable x.

When the operator is included within the quotes, awk treats the
operator as a character in the string. In the following example,

X = "3 - 1"

assigns the string

"3 - 1"

to x.
You also can perform numeric calculations on fields. For example,
you can calculate the sum of the fourth field in the following
manner:

21

awk User's Manual

{sum += $4}
END {pr int sum}

The following table includes all the available operators for awk.

Operator Mean i ng

+ Addition
Subtaction

* Multiplicat i on
I Division
% Modulo di vision
++ Increment

Decrement
+= Add and assign value

Subtract and assign value
*= Mult i ply and ass i gn value
/= Divide and ass i gn value
%= Divide modulo and ass i gn value

You may use any of these operators in awk expressions.

Field Variables

In awk, fields may receive assignments, be used in arithmetic , and
be manipulated in string operations. The following awk statements
show some of the available uses of fields as variables.

22

•

•

•

•

•

•

Statement

{$1 = NF; print}

{$1 = $3 - $2; print $0}

{if (length ($2) > 11)
$2 = "large field "

print
}

awk User's Manual

Meaning

The first field is assigned the
number of fields in the record ;
the resulting record is printed .

The value of field 2 is sub
tracted from the value of field
J and assigned to field 1; the
resulting record is printed .

If the length of field 2 is
greater than the numeric value
11, the statement assigns the
string "large field" to the
field, and then prints the
record .

{print $i, $(i+l) , $(i+n)} Using numeric expressions to
refer to fields, this statement
prints fields i, i+l , and i+n .

String Concatenation

As mentioned in Section 3, you may concatenate strings by omitting
comma separators in pnntmg actions. The following example
shows a print statement that concatenates the first two fields by
inserting a new connecting string:

{print $1" telephones" $2}

If $1 contains " Tom" and $2 contains " John", this statement
prints :

Tom telephones John

23

awk User's Manual

Arrays

In awk programs, arrays are collections of values labelled with the
name of the array. Each element has at least one named index.
The array is implicitly declared because awk creates the array when
you name it. Also, you can name the individual indices with any
legal string or numeric value.

Because the indices for any array may have any value, the ordering
of array elements is arbitrary. However, when you use numeric
index names exclusively, awk follows an ascending numeric
sequence.

You should specify the array element using an identifier followed by
the array index, an arbitrary expression enclosed in brackets ([]).
For example, consider an array called surname. This example uses
array indices named tom, van, and gordon. The following action
assigns a value to each of these indices:

BEGIN {surname ["tom"]= "jones"
surname ["van"]= "johnson"
surname ["gordon"J = "smith"}

You can print the contents of the array by naming the array in a
print statement. awk also enables you to print the name of the
index by associating another variable with the index, using a special
form of the for statement. This form of for is:

for (index in array)

To retrieve the index names of the array surname, you may use the
following statement:

END {for (person in surname)
print person, surname[person]}

This statement yields the following output:

tom jones
van johnson
gordon smith

In addition to being a generic term for the indices in the array sur
name, awk creates an array of names called person, to which you
can make further associations as needed.

24

•

•

•

•

•

•

awk User's Manual

To store the number of occurrences of a pattern , you may use the
associative array capabilities of awk . For example, if you want to
determine the number of occurrences of mark and test, and print
the number next to its respective word, you can use the following
program:

/[Mm]ark/
/[Tt] es t /
END

{n["mark"]++}
{n["test"J++}
{for (word i nn)

pr int word , n[word] }

With each occurrence of Mark or mark, awk increments the vari
able n["mark") . (awk automatically initializes n["mark"J and
n["test"] to O at the start of execution.) After awk processes the last
line of the input, the program prints each word and the number of
occurrences of that word as stored in n[word].

Control Statements

awk has seven defined control statements. The following section
explains the statements and gives examples of their use.

if (condition) else

If the condition within the parentheses is true , the statement fol
lowing the if is executed. If there is a clear alternative, the else pre
cedes the action to be performed when the condition is false. The
else is optional. If awk does not perform the action of the if state
ment and there is no else statement , awk continues with the next
statement. Example :

{
if (NR % 2 == 1)

pr i nt "odd- numbered r ecord"
else

pr i nt "even- numbered record"

25

awk User's Manual

while (condition)

While the condition within the parentheses is true , the statement
following while is executed. Example:

{
i = 1

while (i <= NF) {
print $i
i++

for

The for statement enables you to execute actions a specified number
of times. This statement may contain an initialization portion, a
Boolean test, and an incremental counter. The initialization por
tion sets the initial value of the count variable, which awk changes
each t ime it performs the action. The Boolean test defines the con
ditions under which awk should continue the action. The incremen
tal counter specifies how awk is to alter the count variable each
tirr_e it performs the action . Example :

{
for (i = 1; i<= NF ; i++)

print $i

break

The break statement immediately interrupts a while or for execu
tion. Example:

26

{
for (i in numbers) {

if (numbers [i] == "stop")
break
print i, numbers [i]
}

•

•

•

•

•

•

awk User's Manual

continue

The continue statement immediately begins the next iteration of the
while or for statement. Example:

$r /Smith/ {
for (i = 2; i <= NF ; i++){

if ($i < 100)
continue

sum += $1
}

next

The next statement causes processing to skip to the next record for
comparison with all the patterns , beginning with the first , and in
order. Example:

NR % 2 == 1{

}

pr i nt "odd- numbered record"
next

{ print "even- numbered record"
}

exit

The exit statement forces the awk program to skip any remaining
input and to execute the actions at the END patterns. Example:

sum>= 1000 {ex i t}
{sum += $4}

END {pri nt NR , sum}

27

awk User's Manual

•

•

•
28

•

•

•

$0: 5
$n: 5
-f: 7
-Fe: 7
-y: 7
;: 6

abs: 19
action: I, 3
arrays: 24
asignment: 21

BEGIN: 13
break action: 26

comma: 9
concatenate

strings: 23
concatenate fields: 9
continue action: 27

END: 13
exit action: 27
exp: I 9

field
concatenation: 9

field separator: 5
default: 4
output: 9

field variables: 22
fields

number of: 6
FILENAME: 3, 21
filter: 3
for action: 26
FS: 3, 5-6

awk User's Manual

Index

if action: 25
index: 19
index

string: 24
int: 19

length : 19
log: 19

matching: 3

next action: 27
NF: 6, IO
NR: 4, IO, 13, 21

OFS: 4, 6, 9
ORS: 4
output

pipe: 12
output formatting: 11
output redirection : 10-11

pattern: 1-3
ranges: 17
special: 3

pipe output: 12
printf: I 1-12
program structure: 3

ranges
pattern: 17
record: 17

record
ranges : 17

record number: 4
record separator: 3

default : 4
output: 4

29

awk User's Manual

relational expressions: 15
relational operators

arithmetic: 16
boolean : 17

RS: 3-4

split : 19-20
sprintf: 19-20
sqrt: 19
string

concatenation: 23
substr: 19-20

variable
conversion: 21
numeric: 21
string: 21

variables : 21
field: 22

while action: 26

30

•

•

•

•

•

•

awk User's Manual

User Reaction Report

To keep this manual and COHERENT free of bugs and facilitate future
improvements, we would appreciate receiving your reactions. Please fill in
the appropriate sections below and mail to us . Thank you.

Mark Williams Company
1430 W. Wrightwood Avenue

Chicago, IL 60614

Name:

Company:

Address:

Phone: Date:

Version and hardware used:

Did you find any errors in the manual?

Can you suggest any improvements to the manual?

Did you find any bugs in the software?

Can you suggest improvements or enhancements to the software?

Additional comments: (Please use other side.)

31

•

•

•

