
• be Calculator

Language Tutorial

•

•

•

•

•

Table of Contents

• 1. Introduction 1

2. Entry and exit 3

Example of simple use . 3

Summary 4

3. Simple statements 7

Summary 10

4. Numbers with fractions 11

The scale of numbers 11

Addition and subtraction 11

Scale during multiplication 12

Setting the scale of results 12

• Scale for divisions . 13

What is the current scale? 14

Summary 14

5. The if statement 15

Using the if statement 15

Comparisons . 15

Grouped statements 16

Many statements per line . 17

Summary 18

6. The while statement 19

Example of while usage 19

Abbreviations in the while statement 20

• Summary 21

be Calculator Language Tutorial

7. The for statement 23

Example of use . 23 • Three parts of the for statement 23

Similarities between the for and while statements 24

Summary 25

8. Functions in be 27

Example of function use 27

Functions using other functions 28

Functions that call themselves 29

The auto statement 29

Summary 31

9. Programs in a file 33

Using a program from a file 33

Using libraries 34 • The be library 35

Summary 35

Index 37

•
ii

•

•

•

1. Introduction

This is a tutorial for be, the COHERENT™ System calculator
language. If you have not used be before, you can start here. If
you are familiar with be, you may wish to use this manual for
reference.

The be command provides a desk calculator language with high­
precision calculation capability. The number of digits in numbers is
automatically adjusted to contain enough digits to correctly
represent the number. It is like having a powerful calculator at
your fingertips .

be Calculator Language Tutorial

•

•

•
2

•

•

•

be Calculator Language Tutorial

2. Entry and exit

The COHERENT calculator couldn't be easier to use. Whenever
you want to invoke be, all you do is type out its name (be),
remembering to conclude with a stroke of the carriage return key.
And when you are finished using the calculator and wish to exit
from be, all you do is type the word 'quit'. (Alternatively, you can
type < Ctrl-D >; be will exit and return control to the COHERENT
shell.)

Example of simple use

Calculations in be are performed by typing in formulas as you
would naturally write them. The example below shows you how to
call up be, how to add 2 + 2, and then how to exit:

be
2 + 2
quit

To which be will reply:

. 4

be is an arbitrary precision calculator: the number of positions car­
ried by be depends upon the calculation requirements, and is
automatically expanded by be . Thus it will never overflow. The
number of digits carried is limited only by the amount of available
computer memory. For example, try this calculation:

2A500

This prints the value of 2 raised to the 500th power. (The 'A' char­
acter signifies the power operation.)

You have probably already noticed one nice thing about this calcu­
lator: you don't have to include a print statement as part of your
command because be automatically prints out the results onto your
terminal screen. When be sees any expression, like "2 + 2" or
"3777", it outputs the result.

be provides the common operators for add, subtract, multiply and
divide. These are illustrated by the following commands:

3

be Calculator Language Tutorial

7 + 5
7 - 5
7 * 5
7 I 5

Also provided by be is the remainder operator, 'OJo'. To get a sense
of how it works, type:

7 % 5
5 % 7

The response to the first will be 2, and to the second, 5. (The
power operator 'A' has already been illustrated.)

You can also enter numbers with fractional parts. Type the follow­
ing to illustrate:

9.999 * 9.999

And the reply will be:

99.980

You can save temporary calculations or repeated constants in vari­
ables. The following example shows you first how to define vari­
ables, and second how to use them:

a= 1.1
b = 2.2
a * b
a
b

Variable names can be longer than one letter. The basic calcula­
tions in the above examples show only part of what be can do. The
following section describes simple statements-the assignment of
variables and abbreviations-that will allow you to streamline
increasingly complex calculations.

Summary

To call up be, type 'be'; to exit after finishing your calculations,
type 'quit' (or < Ctrl-D). Remember that calculations are entered
literally, just as you would write them out on paper. be provides

4

•

•

•

•

•

•

be Calculator Language Tutorial

the common operators for the basic arithmetic functions (+ - *
/), as well as the remainder operator, '0/o', and the power operator,
'~ '. Variables were also introduced .

5

be Calculator Language Tutorial

•

•

•
6

•

•

•

be Calculator Language Tutorial

3. Simple statements

While you can use be as a simple calculator for calculating
numbers, you can take advantage of its greater power by using vari­
ables. Variables, as we noted in the previous section, store parts of
calculations or constants that you will use repeatedly in calcula­
tions. Variable names are simply "words" that you make up.
Here are some examples of possible variable names:

a
b
t otaltaxesdue
ratio

To use variables, simply give them a value, use them in a calcula­
tion in place of a number, or print them out. Type in the following
example:

X = 9.999
X

X * X

X = X * X
X

Note that an assignment does not print a value, unlike normal
expressions. For example, this example first assigns 'the value 9.999
to the variable x, and prints it out. Then, the value of x multiplied
by x is printed out. Next, x is given a new value and printed out.
The result printed at your terminal will be:

9.999
99.980
99.980

When performing calculations, either with hand-held calculators,
with programming languages like C, or with be, the following cal­
culation is frequently used:

X = X + 1

be has a shorthand for this that reduces the amount of typing neces­
sary to write this common phrase, thus decreasing the likelihood of
error. The above expression can be written in shorthand as:

7

be Calculator Language Tutorlal

X += 1

What it means is: "add one to x". Type in the following example
to see how it works.

X = 1
X * X
X += 1
X * X
X += 1

Similarly, be provides an abbreviation for:

X = X - 2

The form is familiar:

X -= 2

The number following the - = or + = can be replaced by a vari­
able or even another calculation. When you type:

i = 4
X = 48
X -= i
X

then be will respond:

44
Alternatively, if you type:

i = 4
X = 48
x-=i*i
X

then be will respond:

32

•

•

Similar abbreviations are provided for multiplication, division, •
remaindering, and exponentiation. Here is a summary of this class
of operation.

8

•

•

•

be Calculator Language Tutorial

a += 2 /* replace a with a plus 2 */
b += a /* replace b with b plus a */
b -= a /* replace b with b minus a * /
c *= b /* replace c with c multiplied by b */
c /= a /* replace c with c divided by a */
c %= b /* replace c with remainder of c divided by b */
d A= 3 /*replaced with d raised to the Jrd power */

There is an operator which, when used in an expression, increments
a variable by one: '+ + '. When you type:

a = 1
++a

then be will reply:

2

To use this operator in an expression, combine it with a variable
anywhere that a variable would normally be used. In this example:

b = 1
a= 3
b = ++a
a
b

the reply will be:

4
4

The ' + + ' operator can also be put before a name. The resulting
value in the expression will be the value of the name before it is
incremented. However, after the expression is evaluated, the name
will have an incremented value. The following example shows the
use of the ' + +' operator both before and after a name:

9

be Calculator Language Tutorial

a = 1
b = 1
a++
++b
a
b

The result printed by be is:

1
2
2
2

Operators are used in this manner:

a= 1
b = 2
c =a+++ ++b

Similar to the ' + + ' operator is the ' - - ' operator. It behaves the
same way, except that rather than adding one, it subtracts one.

Summary

This section went into variables with more depth; it also showed
how to use abbreviations for useful operations involving arithmetic
functions, remaindering, and exponentiation. You will find the use
of variables and operators convenient in equations where basic for­
mulas are used repeatedly. Simple statements can also be combined
with the more complex statements, described in Sections 5 to 8,
governing operations specifically required to make decisions for
you.

10

•

•

•

•

•

•

be Calculator Language Tutorlal

4. Numbers with fractions

The examples presented in earlier sections use whole numbers or
integers. However, be is capable of using numbers with fractional
parts. This section discusses the use of fractional numbers in be
and their precision under different operations.

The scale of numbers

The number of digits to the left of the decimal point carried by be
depends upon the requirements of the calculation. If you calculate
a large number, as in:

2~500

the result will contain as many digits as necessary.

The number of digits to the right of a decimal point is called the
scale of the number. Scale depends on the operation producing the
number of digits and a variable called scale that will be described
shortly.

To illustrate simple uses of numbers with fractions, type:

a= .01
b = 0.99
a+b

and be will reply:

1.00

Addition and subtraction

be will dynamically adjust the number of digits in the calculation.
It deals similarly with fractional numbers. To the following exam­
ple:

a= 0.01
b = 0.001
a+ b

be will reply:

.011

In addition and subtraction, the scale of the result will be the larger

11

be Calculator Language Tutorlal

of the scales of the two numbers involved. Results are not trun­
cated in addition or subtraction operations.

Scale during multiplication

Other arithmetic operations act differently with numbers containing
fractions. In the multiplication of two numbers, the scale of the
result will be at least equal to the higher of the scales of the two
numbers. For example, the input:

1.1 * 1.11

will result in:

1.22

Setting the scale of results

To retain more fractional digits for better accuracy, be provides the
built-in variable, scale. The following example illustrates this:

scale= 3
1.1 * 1.11

The result from this example is:

1.221

If the value of scale is greater than the sum of the scales of the two
numbers involved, the result will have a scale equal to this sum.
For this example:

scale = 10
1.1 * 1.11

the result will still be:

1.221

If the variable scale is less than the larger of the scales of the two
numbers, then the result will have a scale equal to the larger of the
scales of the operands. The following example illustrates this point:

scale= 4
1.11 * 2.222

The result from this is:

12

•

•

•

•

•

•

be Calculator Language Tutorial

2.4664

Thus, the scales of the numbers are 2 and 3. The largest scale is 3,
so the result of a multiplication will have a scale of at least 3, no
matter what scale is set to. Also, the sum of the scales is 5, so the
result will never have more than 5 digits to the right of the decimal
point. In this example, scale has been set to a number between 3
and 5, namely 4. Therefore, the result has a scale of 4.

Scale for divisions

For division and remaindering, the scale of the result is determined
only by the value of the variable scale. This is illustrated in the
example below:

scale = 1.3
14 / 1.3
14 % 1.3

To which be will reply:

1.07692.307692.30
.0000000000010

For non-whole numbers, as well as for integers, the definition of
remainder is chosen so that the relationship:

dividend= (divisor* quotient)+ remainder

is true.

The scale of a result from exponentiation is done as if repeated
multiplications were performed. That is, for this example:

5.992 A 5

the scale is chosen as if you typed:

n = 5.992
n * n * n * n * n

13

be Calculator Language Tutorial

What is the current scale?

The variable scale is just like other variables. You can assign
values to it, as above. Because it is like regular variables, you can
also use it in operations, as in this example:

scale= scale+ 1

You can also print its value:

scale

The value of scale is zero until you explicitly change it.

Summary

For addition and subtraction involving fractions, the scale is
automatically set according to the number that has the greatest
number of decimal points. For multiplication, you can retain more
fractional digits for better accuracy, by setting a current value for
the built-in variable, scale. And for division and remaindering, the
scale of the result is determined solely by the current value of scale.

scale is like other variables in that you can assign values to it; you
can also print out its value for reference. And its versatility is
increased by its ability to take on any value you specify.

14

•

•

•

•

•

•

be Calculator Language Tutorlal

5. The if statement

The statements shown so far have been either assignment state­
ments, giving a new value to a variable; or an expression, which
prints out the resultant value. Several other kinds of statements are
available. These statements give you power to write programs that
make decisions and perform iterative computations.

Using the if statement

To see the if statement in operation, type in the following example:

X = J
if (x < 5) X

if (x > 5) -x

The reply will be:

3

If the input is:

X = 6
if (X < 5) X

if (x > 5) -x

be will reply:

-6

The part of the if statement in parentheses, such as (x > 5), deter­
mines whether or not be executes the statement following it, such as
- x. If the expression is false, the following statement will not be
executed. If the expression is true, the following statement will be
executed.

Comparisons

The decision expression in an if statement is enclosed in
parentheses. The decision can be based upon a comparison of two
operands, or numbers. The kinds of comparisons that can be done
are:

15

be Calculator Language Tutorial

!=
<=
<
>=
>

first operand equal to second
first operand not equal to second
first operand less than or equal to second
first operand less than second
first operand greater than or equal to second
first operand greater than second

The kinds of statements that can be in the if statement include the
simple statements already shown. You can also include an if state­
ment, as well as the while, do, and for statements, which will be
discussed in later sections. The following example illustrates the
use of an if statement within an if statement:

a= 2
b = 6
if (a>+ 2) if (b > a) a+ b

Grouped statements

•

More than one statement can be put after the expression part of the •
if statement by the use of the grouping braces: '{' and '}'. This
can be useful if you want to perform several calculations based on
the result of an if statement comparison. The following example
will print the value of a and b if the value of b is less than the
value of a:

a = 1
b = .99
if (a> b) {

}

a
b

The result produced by be is:

1
.99

Any statement may be included in the statements enclosed by the •
group braces. This is illustrated in the following example:

16

•

•

•

be Calculator Language Tutorial

a = 1
b = .99
if (a> b) {

a
b
if ((a+ b) >= 2) a+ b

}

Many statements per line

Until now, each statement in be has been on its own line; you have
effectively been concluding each statement by hitting the carriage
return key. This includes the group braces '{' and '}', which must
be alone on a line.

You can place several statements on one line if you separate them
with semicolons. If you do this, remember that the semicolon
rather than the carriage return is separating the statements. The
following example illustrates the use of the semicolon:

a= l;b = 2;c = 3
a;b;c

be will reply:

1
2

3

You can use this in combination with the group braces:

a= l;b = 2;c = 3
if ((a +b) >= c) {

a; b; c; a + b; }

The reply from be is:

1
2
3
3

17

be Calculator Language Tutorial

This example can be compressed even further by putting all of the
if statement on one line:

a= l;b = 2;c = 3
if ((a + b) >= c) { a; b; c; a + b; }

You do not need to follow the '}' with a semicolon.

Summary

The if statement brings the decision-making function of be into
play. be will make comparisons between, and respond to, hypotheti­
cal situations automatically when the if statement is used. Group
braces allow you to carry out various calculations based on one if
statement, and semicolons eliminate the need for successive carriage
returns. These symbols, and the simple statements and operators
described above, may also be used with the while and for state­
ments discussed in the following sections.

18

•

•

•

•

•

•

be Calculator Language Tutorial

6. The while statement

The while statement is used to repeat calculations. This is useful in
successive approximation calculations.

Example of while usage

The following example of the while loop prints the numbers one
through ten:

i = 1
while (i <= 10) {

i
i = i + 1

}

The reply from be will be:

1
2

3
4
5
6
7
8
9
10

The statement:

i = i + 1

adds I to the variable i. The expression:

(i <= 10)

compares i to 10. If i is less than or equal to 10, the while loop
executes one more cycle. If i is more than 10, the loop is not exe­
cuted again.

The comparison expression for the while loop is checked before the
loop is entered for the first time. If the comparison fails, the loop
is not executed at all. Otherwise the processing will repeat as long
as the comparison is true. The following statements will not print
any numbers:

19

be Calculator Language Tutorial

i = 0
while (i > 1) i
quit

Abbreviations in the while statement

If we recall the assignment statements from the previous section,
the while counting-to-ten example can be shortened to:

i = 1
while (i <= 10) {

i
i += 1

}

The result remains the same-a list of numbers from one to ten.

Another abbreviation of the example uses the ' + + ' operator. The
variable i is incremented, then tested in the while expression, simpli­
fying the entire example to:

i = 0
while (++i <= 10) i

Notice that the while expression increments the value of i before it
is used or compared, so before the while is executed, i is set to
zero. Thus, the first value compared, then printed, is one.

Finally, the example calculation can be shortened to one line. If a
variable in be is used before it is initialized, it will have the value of
zero. For example:

zip

will print:

0

And using this in our counting-to-ten example yields:

while (++i <= 10) i

20 ©@ [}{] ~ OO~OOu

•

•

•

•

•

•

be Calculator Language Tutorlal

Summary

The while statement, like the if statement, requires be to selectively
carry out operations based on a comparison expression set by the
user. Again, abbreviations increase the efficiency of the while state­
ment; assignment statements within the while statement can be
shortened considerably by the inclusion of group braces and special
operators .

21

be Calculator Language Tutorial

•

•

•
22

•

•

•

be Calculator Language Tutorial

7. The for statement

Like the while statement, the for statement controls the repetition
of other be statements. The for statement is useful if you can write
a formula for the number of cycles of computation that you need.

Example of use

The previous section demonstrated how to print the numbers from
one to ten using a while statement. The same task can be per­
formed with a for statement.

for (i=l; i <= 10; ++i) i

Three parts of the for statement

The for statement is more complex than the while statement.

There are three parts to the for statement's controlling expressions.

The first part, which in the one-to-ten example is:

i = 1

is a statement that is performed once, and sets up the initial condi­
tions required by the rest of the statements in the range of the for.

The second part,

i <= 10 \

is a test to determine whether or not more '~rations should be per­
formed. This test is performed before the iterations of the for
statement. If the test fails, no more iterations are performed.

The third and final part:

++i

is performed at the end of each iteration. This part is sometimes
called the increment part.

The following example of the for statement adds the squares of the
numbers one through ten, prints each square, and prints the sum at
the end.

23

be Calculator Language Tutorlal

sum= 0
for (n=l; n <= 10; ++n) {

sq= n * n
sq
sum += sq

}
sum

The result produced is:

1
4
9
16
25
36
49
64
81
100
385

Similarities between the for and while statements

To illustrate the similarity between the for statement and the
simpler while statement, the same example is written using the while
rather than the for:

sum= 0
n = 1
while (n <= 10) {

sq= n * n
sq

}
sum

sum+= sq
++n

You will notice one difference when you enter this example. In the
while version of the example, the

24

•

•

•

•

•

•

be Calculator Language Tutorlal

++n

will print out the new value of n, whereas in the for example, the
value will not be printed.

Summary

Although the for statement is more complicated than the while
statement, the three parts of its controlling expressions-a statement
that sets up the initial conditions required by the rest of the state­
ments; a test determining if more iterations are required; and the
increment part-are straightforward and allow you to define a
specific range of actions for be to undertake .

25

be Calculator Language Tutorial

•

•

•
26

•
be Calculator Language Tutorial

8. Functions in be

Functions are a way to express repeatedly-used calculations in short­
hand. This section shows you how to define and use functions for
your be calculations.

Example of function use

The following example defines a function that calculates the area of
a circle from its radius.

scale= 5
pi= J.14159
define area (radius) {

r2 =radius* radius
return (pi* r2);

}
area (1.00);
area (2.00);
area (56);

• The results will be:

•

J.14159
12.566]6
9852.02624

the define keyword tells be that you are defining a function. The
name of the function follows. Then, in parentheses, come the
parameters of the function. In this example, the only parameter, or
argument, of the function is radius. Most functions have argu­
ments, but they are not mandatory.

The return statement defines the value of the function. In the area
example, the expression:

area (1.00)

references the function area. be then performs the calculation
described by your definition of the function area. The number:

1.00

is substituted wherever the parameter radius is shown.

27

be Calculator Language Tutorial

The statement:

r2 =radius* radius

is then executed, yielding this result:

1.00

Then, the statement:

return (pi* r2)

calculates the area and returns the value of it. The statement:

area (1.00)

then has the value calculated in the return statement.

Functions using other functions

Functions in be perform calculations using the same expressions as
the rest of the be program. This includes the use of functions. The
area program can be written using another function, sq, to calculate
the square of a number:

scale= 5
pi= J.14159
define sq (number) {

return (number* number)
}

define area (radius) {
return (sq (radius)* pi)
}

area (1.00);
area (2.00);
area (56);

Again, the results will be identical:

28

J.14159
12.566)6
9852.02624

•

•

•

•

•

•

be Calculator Language Tutorial

Functions that call themselves

Npt only can functions call other functions and perform regular cal­
culations, a function can use itself in calculations. An example of
this is the Fibonacci calculation.

define fib (f) {

}

if (f=-=0) return (0)
if (f==l) return (1)
if (f > 1) return (fib (f-1) + fib (f-2))

fib (5)
fib (20)

Fibonacci numbers are defined in the following way. Fibonacci
number zero is zero; similarly, Fibonacci number · one is one. Any
other Fibonacci number is defined as the sum of the two previous
Fibonacci numbers. Fibonacci numbers are defined only for non­
negative integers.

The defined function fib follows this definition by returning zero if
the number requested is zero and one if the argument is one. If the
number is neither of these then the function calls itself to calculate
the previous two numbers of the series and adds them together.

The auto statement

Many functions that call other functions including themselves may
require variables that are not changeable by the rest of the pro­
gram. This is signalled to be by the auto statement:

auto varl, var2

This declares varl and var2 as local to the function containing
them.

To illustrate the use of auto, the following be program calculates
the factorial of a number:

29

be Calculator Language Tutorial

define factorial (number) {
auto value, i

}

value= 1
for (i = 1; i <= number; ++i) value lE= i
return (value)

value= 3
factorial (value)
i = 99
factorial (20)
value
i

The result printed on your terminal will be:

6
2432902008176640000
3
99

The first number, 6, results from:

factorial (value)

The second number is from :

factorial (20)

The last two numbers are from value and i, and are included to
demonstrate that the variables in the function factorial appearing in
this statement:

auto value, i

are separate from the variables of the same name in the rest of the
program.

If the function calls itself, as the fib example does above, any vari­
able names noted in the auto statement are handled separately for
each call of the function .

30

•

•

•

•

•

•

be Calculator Language Tutorlal

Summary

Functions are a way to express repeatedly-used calculations in short­
hand, for example calculating the area of a circle from its radius.
First you define your function, then you list your parameters, in
parentheses. Most functions have arguments, but they are not man­
datory. To get the value of the function, you must use the return
statement.

Functions in be can use the same expressions as the rest of the be
program. Consequently, functions can use other functions . And a
function can also call itself.

Defining functions for , be can be an involved process, especially
when calculations call for the use of functions within functions. The
COHERENT system will, however, store be programs for you. Sec­
tion 9 outlines methods for the storage and subsequent use of func­
tions in files .

31

be Calculator Language Tutorial

•

•

•
32

•

•

•

be Calculator Language Tutorial

9. Programs in a file

Since be programs can be quite complex, the COHERENT system
provides for keeping them in files. This lets you build a library of
be programs and functions that can easily be called up.

Using a program from a file

To illustrate the use of programs stored in a file, the following
example creates a file with ed containing the definition of the func­
tion fib:

ed
a
be
define fib (f) {

}

if (f==O) return (0)
if (f==l) return (1)
if (f > 1) return (fib (f-1) + fib (f-2))

w fib.be
q

To use a be program that has been stored in a file, enter the file
name on the be command line, like this:

be fib.be

The function definition will be read in by be and ready for your
use. To use the function, simply type the function name with
parameters.

So, if you type:

be fib.be
fib (6)
quit

be will reply:

8

33

be Calculator Language Tutorial

Using libraries

You can enter several useful programs in their own files and call
them into be at the same time. The following example creates
another function that calculates the sum of the squares of integers
up to a given number:

ed
define sumsq (number) {

auto i, sum

}

sum= 0
for (i = number; i > 0; --i) sum+= i A 2
return (sum)

w sumsq.bc
q

Now, you can use the sumsq function to print the sum of the
squares for each number from one to ten:

be sumsq.bc
for (i = 1; i <= 10; ++i) sumsq (i)
quit

The result will be:

1
5
14
30
55
91
140
204
285
385
quit

•

•

You can use the two functions stored in a file to print the difference •
between the sum of the squares of numbers, and the Fibonacci
number:

34

•

•

•

be Calculator Language Tutorlal

be fib.be sumsq.bc
for (i = 1; i <= 10; ++i) sumsq (i) - fib (i)
quit

The result of this questionable computation is:

0
4
12
27
50
83
127
183
251
330

The be library

An extended library is provided with be. The functions provided
include trigonometric functions, such as sin; the exponential func­
tions exp and In; and the variable pi, which is defined to 100 digits.

To use the library, invoke the be command with the - I option.
The following example computes the sine of an angle of one third
radian with scale set to twenty:

be -1
scale= 20
sin (1/3)
quit

The result is:

.32719469679615224418

Summary

The storage of programs within files and files within libraries allows
powerful processes to operate through designated file names on a
single command line. be retains the definitions of the functions you
create and reads them in according to a given file name. Obviously
the efficiency and power of be is increased in proportion to the

35

be Calculator Language Tutorial

accretion of commands within your be library. The extended library •
provided also carries a number of intricate functions that can be
invoked with previously set file names.

•

•
36

•

•

•

<Ctrl-D>: 3

abbreviation
division: 8
exponentiation: 8
multiplication: 8
remaindering: 8

arbitrary precision calculator: 3
assignment: 7
auto statement: 29

be
how to exit: 3
how to invoke: 3

common operators: 3

define keyword: 27
dynamic adjustment: 11

expression
abbreviation: 7
value before incrementa-

tion: 9

factodal: 29
Fibonacci calculation: 29
Fibonacci number: 34
for statement: 23

increment part: 23
similarity to while state­

ment: 24
the three parts: 23

fractions: 4, 11
function

calling itself: 29
defining: 27
parameters: 27
return statement: 27

be Calculator Language Tutorlal

Index

functions: 27
using other functions: 28

grouped statements: 16
grouping braces: 16

if statement: 15
use: 15

if statement
all on one line: 18
using comparisons: 15
within an if statement: 16

library: 35
usage: 35

operator
usage: 10

power operator: 3
precision: 11
programs

use from a file: 33

quit: 3

remainder operator: 4

scale: 11-13
scale: 11
scale: 11

assigning values: 14
current scale: 14
during multiplication: 12
for division: 13
from exponentiation: 13
printing its value: 14
setting the scale of results: 12
use in operations: 14

37

be Calculator Language Tutorial

semicolon
separating statements: 17

variable
incrementing by one: 9
name: 7
use: 7

variables: 4, 7
define: 4
use: 4

while statement: 19
abbreviations: 20

38

•

•

•

•

•

•

be Calculator Language Tutorlal

User Reaction Report

To keep this manual and COHERENT free of bugs and facilitate future
improvements, we would appreciate receiving your reactions. Please fill in
the appropriate sections below and mail to us. Thank you.

Mark Williams Company
1430 W. Wrightwood Avenue

Chicago, IL 60614

Name:

Company:

Address:

Phone: Date:

Version and hardware used:

Did you find any errors in the manual?

Can you suggest any improvements to the manual?

Did you find any bugs in the software?

Can you suggest improvements or enhancements to the software?

Additional comments: (Please use other side.)

39

•

•

•

