
• ed Interactive

Editor Tutorial

•

•

•

•

•

Table of Contents

• 1. Introduction

Why you might need an editor

Learning to use the editor 1

Do the examples 2

Experiment on your own . 2

Interactive editing proficiency . 2

2. General topics 3

Files 4

ed and files . 4

Text and commands 5

Creating a file 5

• Changing an existing file 6

Components of a file 7

Working on lines 7

Referring to lines 7

Line number ranges 8

Error messages 8

Summary 8

3. Basic editing techniques 9

Creating a new file 9

Changing a file 11

Printing lines . 13

Abbreviating line numbers 14

• How many lines 15

Removing lines 16

Abandoning changes 17

ed Interactive Editor Tutorial

Changing text within a line . 18

Undoing substitutions 21 • Ranges of substitution 23

Summary 23

4. Intermediate editing 25

Relative line numbers 25

Changing lines 27

Moving blocks of text 28

Copying blocks of text . 30

String searches 31

Remembered search arguments 34

Uses of special characters 34

Global commands . 35 • Joining lines 36

Splitting lines . 37

Marking lines . 38

Searching in reverse direction . 40

Summary 41

5. Expert editing 43

File processing commands 43

Patterns 45

Matching any character 45

Matching many of one character 46

Beginning and ending of lines 47

Replacing matched part 48

Replacing parts of matched string 48 • Listing funny lines 52

ii

•

•

•

ed Interactive Editor Tutorial

6.

Keeping track of current line

When current line is changed

More about global commands

Issuing COHERENT commands within ed

Summary

Command summary .

Line specifiers

Commands ..

Pattern elements

Options

Index . ..

52

53

55

56

57

59

59

60

62

63

65

lll

ed Interactive Editor Tutorial

•

•

•
iv

•

•

•

I. Introduction

This is a User's Guide for the COHERENT interactive editor ed. It
describes in elementary terms the facilities that the editor provides .

This guide is intended for two types of readers: those who want a
tutorial introduction to ed and those who want to use specific sec
tions as a reference.

Sections two through five cover the use of ed.

Section six gives a summary description of each ed command and
its effects.

A related manual is the Introduction to the COHERENT System,
which covers the basics of using COHERENT and introduces many
useful programs.

Why you might need an editor

A significant feature of computers is the capacity to store, retrieve,
and operate upon information. The kinds of information that can
be stored by a computer running the COHERENT system are
many: programs, computer commands and instructions, data for
programs, financial information, electronic mail, natural language
text (e. g. French, English) destined for a manuscript or book, or
even notes to yourself.

ed is a COHERENT program that is designed to enter and change
many kinds of computer-based information interactively . You will
use ed to change computer programs and natural language
manuscripts, command files, and electronic mail messages.

ed is designed to be as easy to use as possible, requiring httle train
ing to get started. The fundamental commands are simple, but
have enough flexibility to perform complex tasks.

Learning to use the editor
Much care has been taken in the design and implementation of the
editors and the writing of this manual. Practice on your part will
help you learn quickly. The goal of this manual is to help you
become proficient with ed as easily as possible.

This manual is designed to help you in the process of learning to
use the editor. If there is someone learning with you, it is helpful
for you to exchange notes while learning. Better yet, if there is
someone who is an expert in ed whom you can talk to, it will help
you gain familiarity more quickly.

ed Interactive Editor Tutorial

Do the examples

The following sections will have many examples illustrating each
topic of discussion. These examples are designed to assist you in
understanding exactly how each command and feature will work.

Hopefully you have access to a COHERENT computer system. If
you do, it is strongly recommended that you type in each example
presented in the following sections as you encounter them in the
text. Even if you understand the concept presented, performing the
example will reinforce the lesson, and will help you feel comfort
able using ed sooner.

If you do not have a COHERENT system available, take notes on
the examples, showing what the results of each command would be.
Then, when you do have access to a COHERENT system, go
through the text and do the examples. You might find, to your
surprise, that something new is revealed to you, even though you
clearly understand the topic being presented.

Experiment on your own

In addition to reading the text and doing the examples as you
encounter them in the text, feel no inhibition about trying a slightly
different command than that presented in the example, and branch
ing out on your own. Try things that you suspect might work, but
are not shown as examples. Also try things that are a part of a
project that you will be doing with ed on the computer, or that you
are familiar with from previous experience.

Trying things out on your own is a good way for you to understand
the editor in your own terms.

Interactive editing proficiency

As you grow in familiarity with ed, strive for an automatic use of
commands-so that you do not have to look up each command, or
laboriously think through the command you are about to type.
Some commands, of course, are quite complicated, and require
thought, but the commands that are used 90% of the time are sim
ple. As you use ed more and more, the commands will come to
you automatically. This proficiency will be helped by practice while
you are learning ed. Learn to let your fingers do the thinking.

2

•

•

•

•

•

•

ed Interactive Editor Tutorial

2. General topics

This section discusses the general ideas behind ed, and defines some
basic terms. The topics discussed here will be referred to
throughout the remainder of this User's Guide, and will be familiar
to an ed expert.

To help illustrate the di scuss ion to follow, log into your
COHERENT system and enter the following commands:

ed
a
this is a sample
ed session

w test
q

This example calls ed, then uses the a command to add lines to the
text kept in memory . The period signals the end of the additions.
The w command writes the lines of text to file test, and the com
mand q tells cd to return to the COHERENT system. You will
notice that after you type the w command, ed will respond with

28

which is the number of characters in the file.

Thus, to enter ed, simply type

ed

and to exit, type

q

You can also exit by typing <ctrl-O> which is typed by holding
the control key on your keyboard, then striking the D key. Notice
that you are issuing two different kinds of commands in the above
example. The command ed is a COHERENT command, while the
rest are commands to the editor. After ed is given the q command,
it exits, and following commands are processed by COHERENT .

3

ed Interactive Editor Tutorial

Files

Sets of information stored by a computer ark called Jiles. In some
ways, computer files resemble files in a typical office filing cabinet.
All information in the computer is stored in files.

Each file has a name, which is used to refer to the file in
COHERENT commands. The computer stores each individual file
as a separate entity. The names of files are stored in a directory.

Each file name must be unique within a directory. Directories are
discussed in more detail in the section on advanced editing. File
names may be up to fourteen (14) characters in length. The charac
ters that make up file names may be the upper case and lower case
alphabet, numeric digits, and a few punctuation characters such as
period and hyphens. The hyphen should not be the first character
in a name , since many COHERENT programs treat file names
beginning with hyphen incorrectly.

The COHERENT system has commands that create, destroy, list,
copy and, with ed, enter and change files. For example, use the cat
command to list the contents of the file named text created in the
above example on your terminal:

cat text

ed and files

ed, like many of the other programs in the COHERENT system,
deals with one file at a time.

You have control over the name of the file being created or
changed. ed can create files, add to files, and change files previ
ously created.

ed deals with files made up of lines. Lines contain upper and lower
case alphabetic characters, the digits O through 9, and punctuation
characters.

There are types of files that do not fit into this category. Such files
contain computer instructions , or special program data. These are
called binary files. The files ed deals with are called ASCII files .

4

•

•

•

•

•

•

ed Interactive Editor Tutorial

Text and commands

As you use ed to create or change files, you will type both input
text and controlling commands to the editor.

ed needs to be told what to do . You will use commands to order
ed to do what you want it to do. ed has about two dozen com
mands, giving it power and flexib ili ty.

The commands are almost always one letter and can be thought of
as shorthand. Although the commands may seem over-abbreviated
at first, they are easy to learn. You will appreciate the terseness of
the commands once you begin to use ed regularly.

Each command to ed (and to COHERENT as well) is ended by
striking the <RETURN> key. This key is present on all termi
nals. However, the labeling of the key may vary. It may be called
newline, linefeed, enter, or eol, and is larger than any key on the
keyboard except for the space bar. This key will be called the
<RETURN> key in the remainder of this document.

The contents of a file is called text. The directions that you give ed
are called commands. You will also enter text to fill and change
the file. The commands tell ed what to do with the text.

Creating a file

ed operates upon one file at a time. ed will create a file with a
name you supply and fill it with information.

The example shown in section two above created a file. Here is
another example of file creation-twoline:

ed
a
Two line Example ,
thank you .

w twoline
q

The letter a tells ed to add lines to the file. The file in this example
is initially empty. The w command writes the lines you have added
to file twoline. The command q tell s the editor that you are

5

ed Interactive Editor Tutorial

finished, whereupon it returns to COHERENT. You can use the
COHERENT command cat to list the new fi le:

cat twoline

the reply will be:

Two line Example,
thank you .

Each individual command used here will be explained in detail in

later sections.

Changing an existing file

Let's presume a manuscript file that you have created needs a few
spelling corrections. ed will readily assist you in making the
changes. Simply specify the name of the file when you issue the
COHERENT command:

ed filename

where filename stands for the name of the file that you wish to
change. To add another line to the example:

ed twoline
$a
This is the third line of the file .

w
q

Listing the program with cat gives:

Two line Example,
thank you.
This is the third line of the file .

The command $a tells ed to add lines at the end of the file.

The process of changing material in a file is frequently referred to
as updating, or editing.

In your use of ed, you will issue commands to change, remove, and
add to information in the file.

6

•

•

•

•

•

•

ed Interactive Editor Tutorial

Adding information to a file is similar to creating a file. Informa
tion can be included in the current file from an already existing file.

Correcting the spelling of a misspelled word is easy with ed .
Groups of words in an English manuscript may be rearranged.

Larger portions of text, such as a paragraph, may be moved or
copied to a different spot in the manuscript.

Components of a file

Files that ed creates or edits are made up of ASCII characters.
Commands also consist of ASCII characters, but some punctuation
characters are sign ificant to ed when used in commands .

Characters in the file are grouped into lines. A line is defined as a
group of characters followed by an end-of-line character, which is
not visible. ed operates upon the line as the basic unit of informa
tion; it is therefore a line-oriented editor. When yo u type out a file
on your terminal , each line in the file will be shown on your termi
nal as one line .

Working on lines

ed knows each line in the file by it s line number. The fir st line is
known by the number I , and successive lines by successive numbers .
If your file has ten lines, the last line is known as number ten .

The commands for ed are based upon lines . When you add
material to a file, you will be adding lines. If you remove or
change items, you will do so to groups of lines.

The commands that you give to ed will be typed on a line of the
screen. No part of any command that you issue will be acted upon
until the line is completed. The processing will occur when you hit
the <RETURN> key.

Referring to lines

As mentioned above, ed keeps track of the number of each line in
the file you are editing. ed also remembers the line you most
recently worked on. This can help shorten the commands you type,
as well as reduce the need to remember numbers of lines. The line
most recently worked on is called the current line . This phrase will
be used in the following sec tions, and is frequently used by

7

ed Interactive Editor Tutorial

experienced ed users. There is a shorthand symbol used in ed com
mands for the current line. It is the period '.' or dot.

Another shorthand symbol used in ed commands is $ which
represents the number of the last line in the file.

Line number ranges

Many of the ed commands operate on more than one line at a time.
Groups of lines are denoted by a line number range, which is used
as a prefix to the command . Line number ranges expand the power
of ed commands.

Error messages

If you type a command toed incorrectly, ed will respond with

?

signifying that an error has been detected. Many times, this error
will be evident to you when you review the command that you just
typed.

If you do not see what the error is, you can get a moie lengthy
description by typing to ed

?

and it will reply with an error message.

Summary

This section briefly describes the basic ideas important in using ed .
The ideas will be discussed in detail and illuminated with examples
in the sections that follow.

8

•

•

•

•

•

•

ed Interactive Editor Tutorial

3. Basic editing techniques

This section discusses the elementary techniques and commands that
you will need to begin using ed . With the material presented in this
section, you will be able to perform operations needed to do most
of your editing tasks.

Again, it is recommended that you follow along with the examples
by keying them in. This will help you understand each example
better, as well as remember the technique.

Creating a new file

To begin, let us presume that you need to create an entirely new file
named first. Perhaps you only want one line in the file, and it is to
read

This is my first example

These are the steps that you will need to go through to create this
file .

The first step is to log into the system. If you do not know how to
do this, then you need someone to help you with this step; see the
Introduction to the COHERENT System. COHERENT will signal
you that is ready for commands by typing a character called a
prompt. This character is usually a $, but it may be a different
character for some installations .

The next step is to invoke the ed program. To do this, simply type

ed

Remember that you must end each line of commands or text line
with the <RETURN> key, for it will not be acted upon until you
do. Thus, the editor is invoked by typing the two characters "ed"
and a < RETURN > . Notice that these two characters must be
lower-case. If you type either of them in in upper case,
COHERENT will tell you that Ed or eD or ED is not found.
Almost all COHERENT commands are in lower case. Always be
sure the case of commands you type is correct.

ed is now ready for commands . The first command that you will
use is the a command. This tells ed to append, or add lines to the
text in memory, which will be later written to the file. Depending

9

ed Interactive Editor Tutorial

upon the size of your computer, ed will hold only a certain number
of lines of text in memory. For editing very large files, use sed,
which is described in sed Stream Editor Tutorial. ed will continue
to add lines until you type a line containing only a period. While
adding lines, ed will not recognize commands.

Following the a command, type the lines to be included, followed
by a line that contains only a single period. This special line signals
ed that you want to stop appending lines. The information that
you have typed so far is:

ed
a
This is my first example

Next, you must tell ed to write the file using a w command, and
give the file name. If you wish to store this example in a file named
first, issue the command

w first

which tells ed to write the information to the file named first.

ed will write the file and tell you how many characters were written,
in this case, 25.

Finally, to leave the editor, issue the command

q

meaning quit. The next commands you type after this will be inter
preted and acted upon by COHERENT.

Now review the example in its ent irety. First, you called ed. Then
you added lines with the a command, finishing the adding with a
line containing only a period. You wrote the file with the w com
mand, and exited from the editor using the q command. The com
plete example is:

•

•

•

•

•

•

ed Interactive Editor Tutorial

ed
a
This is my first example

w first
q

ed replied to the w command with the number of characters written
to the file. After you typed q, COHERENT prompted you for a
command again with $.

Changing a file

Now, let's say that you wish to change the file that you have just
created. You will add two more lines to the file so that the original
line will be sandwiched between the new lines. You want the file to
contain:

Example two, added last
This is my first example
Example two, added first

You will do this withed using two new commands.

Again, you start by telling the COHERENT system to run ed. But
this time, since you are changing a file, you type the name of the
file that you are changing after the characters ed:

ed first

Notice that there is a space following ed. At least one space is
required to separate the file name from ed itself. ed will remember
this file name for later use in the w command.

ed reads the file in preparation for editing, and tells you the number
of characters that it read in, again responding with 25.

After reading the file, ed automatically sets the current line to the
last line read in.

Now, add the third line shown in the second example by entering:

a
Example two, added first

11

ed Interactive Editor Tutorial

This resembles the first example. However, in that case there was
no information in the file, whereas now there is. How did ed know
where to add the lines?

The a command adds lines after the current line. And since upon
reading the file ed sets the current line to the last line read in , the a
command added the new line after the last line.

The current line can be implicitly or explicitly referred to by most
commands, so it is helpful to know where it is. In general, the
current line is left at the last line ed has processed. If you lose
track of the current line, you can ask ed to tell you where it is, as
you will see shortly.

To add the very first line to the second example, you will use yet
another command, the i, or insert command . This command is
similar to the a command, except that it inserts lines before the
current line rather than after it. Otherwise, it is used to add lines
in the same manner .

Another word about the current line. After an a command finishes,
the current line is the last line added. Thus, after the addition of
"Example two, added first" above, the (new) current line is the last
line in the file. So, if you were to immediately do the i command,
you would be adding lines just before the last line, which is not
what you want to do.

ed has flexibility built into nearly every command to specify the line
that the command is to operate upon . Now you can complete the
second example:

1i
Example two , added last

The numeral 1 before the i says to insert lines before the first line in
the file. The line number prefix is very frequently used, and is
applicable to almost every command.

Now, to finish the second example and save it back into the same
file, type:

12

w
q

•

•

•

•

•

•

ed Interactive Editor Tutorial

Notice that the file name was left off the w command. ed
remembers the file name that you started out with, and uses that
name if none is given in the w command. Therefore, the informa
tion will be written back to file first. Notice also that the previous
contents of file first are lost when you write the new file first.
Alternatively, you can type

w second

leaving the contents of first unchanged and creating a new file
called second.

In case you forget, ed will tell you what file name you started with.
Simply use the command f

f

If you used command f anytime during work on this second exam
ple, ed would reply

first

Remember to use the q command to leave ed and go back to
COHERENT.

Printing lines

As you work with a file using ed, it is most useful to print sect ions
of the file on your terminal. This can help you see what you have
done (and sometimes what you have not done) and help pinpoint
where you wish to make changes.

The print command p will print the current line unless a line
number is specified. Continuing with the example above,

ed first
p

ed replies by printing

Example two, added first

which is the last line in the file named first from the previous exam
ple.

Again, like i and a, if you want ed to print a line other than the
current one, all you need to do is to put a line number or line

13

ed Interactive Editor Tutorial

number range in front of the p command. Thus, if you want to
print the second line in the file, type

2p

and ed will reply with

This is my first example

If you wish to print the entire example file, you can specify not just
one line number but a range of line numbers to be printed. The
first and last numbers are separated by a comma. So, to print all
three lines in the second example, type:

1,Jp

and ed will respond by pnntmg all lines. This same principle
applies to other commands. The print command can also appear
after other commands such as s or d, which are discussed later in
this section.

Abbreviating line numbers

There are shorthand descriptions for certain line numbers. The last
line is frequently referenced, but since we don't always know how
many lines there are, the number of the last line can be represented
by dollar sign $. The command

1,$p

will print all lines in the file. The advantage of this shorthand is
that the command as typed will work for any file, regardless of its
size. This construct of 1,$ is used often enough that it has an
abbreviation of its own:

*P

The number of the current line can also be abbreviated by using the
period or dot in the place of a line number. To print all lines from
the beginning of the file through the current line, type

1, . p

or to print all lines from the current line through che end of the file,
type

14

•

•

•

•

•

•

ed Interactive Editor Tutorial

. ,$p

using two shorthand characters in the same cOI:nmand.

A special symbol & will print one screen of lines, which is useful if
you are using CRT. Simply type

&

which is equivalent to

. , .+22p

unless there are fewer than 23 lines between the current line and the
end of the file. In this case, it is equivalent to

. ,$p

Be aware that all forms of the p command will change the current
line to the last line printed. The command

. ,$p

will, after printing, change the current line to the last line of the
file.

How many lines

You can easily see the current line with p:

p

which is a very short way to tell ed to print the current line. On
your terminal, try the command

.p

to see what it will do and how it compares to simply using p.
You'll see that they do the same thing.

You can determine the size of your file by typing

ed will reply by typing the number of lines in the entire file .

To determine the line number of the current line, use the dot equals
command:

15

ed Interactive Editor Tutorial

ed responds with the number of the current line .

Removing lines

An old saying says that what goes up must come down. In com
puter systems, that might translate to: "that which is remembered
may also be forgotten". ed helps you forget lines the morning
after, or even sooner if you wish.

To illustrate the removal of lines, let 's create another example file
withed:

ed
a
This is the first line.
The second line is good .
However, line three is bad.
line four wishes to go away.
line 5 similarly wants to be forgotten,
as does line 6.
the next to last line stays.
as does the last line in the file.

w example]
q

This will create file example3. You can remove lines that you don't
want from this file .

To delete the lines, begin editing the file by saying

ed example]
1,$p

This also prints the file on your terminal. Now, your intent is to
delete lines three through six. First, delete line three, then print the
entire file again.

3d
1,$p

and ed will respond with

16

•

•

•

•

•

•

ed Interactive Editor Tutorial

Th i s i s the f i rst line .
The second line is good .
l i ne fou r wishes to go away .
l i ne 5 s i mi lar ly wants to be forgotten ,
as does line 6 .
tne next to last line stays .
as does the last line in the f i le .

Notice that the third line is no longer there. Line three is now what
used to be line four. Remember that the line numbers always begin
at one for the first line of the file and progress consecutively even
after the file has been changed. Thus, deleting a line will change
the line number of each line from the delet ed line to the last line in
the file.

Your deleting is not finished, however. You need to remove three
more lines. This can be done with one command:

J ,5d
1,$p

Again, p will print the contents of the file, which now are

Th i s is the fi rst line .
The second line i s good .
the next to l ast l i ne stays .
as does the l ast line in the file .

Finally, write the updated file and return to COHERENT:

w
q

This illustrates how to delete lines, both singly, and in a group.

Abandoning changes

If you should make an inadvertent deletion or two and wish to start
the edit over again from the beginning, you can do so by using the
q command in a different fashion than is shown above.

If you tell ed to q before you tell it to write the file with w, you can
abandon any changes made since beginning editing. However, to
prevent you from accidentally selecting this option, ed will respond

17

ed Interactive Editor Tutorial

with a question mark " ?" if you have made any changes to the file.
At this point, reply with a second q, and ed will then return to
COHERENT.

ed is cautious about letting you quit when you have made changes
that have not yet been written to the file by w, so it requires that
you do the q twice in this manner. Alternatively, you can avoid the
question mark prompt by typing the upper-case Q rather than
lower-case q, and ed will exit without regard to unsaved changes.

You can also exit from ed by typing the end of file key , which is
usually < ctrl-D >.
Although you are keying changes to the file as you go along, the file
is not permanently changed until you issue the w command. These
modifications are made on a copy of the file text held in memory.

Changing text within a line

If you type a line incorrectly, or later wish to rearrange some words
or symbols within it, you know enough about ed now to do so.
You only need to delete the line with d and re-enter the line with i.
Example 4 will be created with the following commands:

ed
a
Software technology today has
adbanced to the point that large
software projects unherd of in
earlier times are undertaken and

w example4
q

There are two misspelled words in this example and we will correct
each of them using different ed features .

The first method will be the direct way that you probably can anti
cipate. Give the following commands to the editor exactly as
shown:

18

•

•

•

•

•

•

ed Interactive Editor Tutorial

ed example4
2d
i
advanced to the point that large

These commands replace the second line with a new line containing
the correct spelling of the word advanced. Use the command

1,$p

to verify that the file now will contain:

Software technology today has
advanced to the point that large
software projects unherd of in
earlier times are undertaken and

The second method used to change the spelling of a word is with
the substitute command s. This command is very powerful. It is
probably the most-used command in ed .

s is more complex than commands we have discussed so far, in that
there are more elements to the command. First is the optional line
number range followed by the s. Then there are two patterns or
strings that are set off from the rest of the command and from each
other with the slash character:

s/patternl/pattern2/

In this example of the substitute command, the string pattern]
represents the word or string that you want ed to find, then change.
The string pattern2 is the word or string that is the replacement for
pattern I. Notice the three slashes separating the two patterns from
the s, from each other, and from the end of the line. These slashes
must always be present.

With this command, you can correct the second spelling error in the
fourth example:

Js/herd/heard/
p

ed will reply

19

ed Interactive Editor Tutorial

software projects unheard of i n

Notice that these two command lines can be condensed to one:

Js/ herd/ heard/p

The meaning of these commands is: on the third line of the file,
change the string herd to heard and, when finished, print the entire
line. Without the p above, ed wil l change the line as you direct,
but you will not see what the new line is. It is a good idea to print
lines that you substitute in this manner until you gain in confidence
with ed. Some ed experts always print the lines after substitution.

After these two changes, the file will look like:

Software technology today has
advanced to the point that large
sof twar e pr ojects unheard of in
earlier t i mes are unde r taken and

Although the above example is based on patterns in the s command
as words, they can be any consecutive group of characters, called
strings. Either pattern may be several words, or part of a word .
ed really doesn't know what words are, but it does know what arbi
trary strings of characters, or patterns, are.

Because ed is not strictly examining words, you should keep in
mind that it may find the wrong pattern I string on the line in ques
tion. The substitute command finds the first pattern I on the line
that matches. For example, presume that the current line in a file is

let not r a i n fall on a parade

and instead you want to say

l et not ra i n fall on the parade

you command ed:

s / a/ t he/p

and are shocked to discover that the result is

let not r the i n fall on a parade

20

•

•

•

•

•

•

ed Interactive Editor Tutorial

which is certainly worse than what you started with. A better com
mand to give ed would have been a substitute command that substi
tuted the letter a preceded and followed by a space:

s/ a/ the /p

Notice that will find only one " a " with this command.

An alternative correct way to do this is to indicate in the substitu
tion command which of several possible matches within the line is
to be substituted. In our example, it is actually the third a that we
are trying to match, so we could have used the special form of the
command

sJ/a/the/p

to get ed to select the one we wanted.

Undoing substitutions

If you did change a to the inappropriately, you can retract the sub
stitution by issuing the undo command

u

before you move on to another current line.

To illustrate this, enter this example:

ed
a
let not rain fall on a parade

w undo
q

Now, perform the substitution with

ed undo
s/a/the/p

which will result in :

let not rthein fall on a ·parade

To retract the substitution, simply type:

21

ed Interactive Editor Tutorial

u
p

to undo it, and print the result.

Note that only the last line substituted will be restored , and it must
still be the current line.

The s command finds only one occurrence of the string that you
want to change, so if there is more than one misspelling of a word
on the same line, you would need to give the command twice.

However, there is a different form of the substitute command which
will find every occurrence of the indicated string on the line . Sim
ply add the letter g for global after the third slash in the substitute
command, and every one will be found and changed :

s/patternl /pattern2/g

So, if the current line contains a phrase :

a r ose i s a rose is a rose

and we tell ed to substitute

s /a/the/g

the line will be changed to

t he rose is the rose is the rose

Again, be wary of the wrong word or part of a word inadvertently
matching the string that you want to change.

There are some special punctuation characters that the substitute
command uses in parts one and two . They will be discussed in the
advanced section of this document. However, you should be aware
of these characters and avoid them until you progress to the
advanced section , for unless used properly, they will give you
undesired results. These characters are:

['$* .\ &

These are used in ed and other COHERENT programs in forming
complex patterns.

22

•

•

•

•

•

•

ed Interactive Editor Tutorial

Ranges of substitution

Perhaps you need to change several lines that have the same
misspelling or need the same editorial change. s can do that for
you also. Simply prefix the command s with the line number range
like you would do with p. Borrowing the "rose" example again, if
the saying were typed:

a rose is
a rose is
a rose

then you could do the same change as before, but across the ent ire
file by typing

1,$s/a/the/

Notice that the g following the s command has been omitted here,
since you know that there is only one occurrence of the string that
you want to change on each line.

If some of the lines do not have the string yo u want to change in
them, ed will not object to the missi ng st ring. However, if none of
the range has the string, ed will print a ? .

Summary

This section discusses the elementary commands essential for you to
begin basic editing. Later sections will cover additional flexibility in
these commands, as well as demonstrate more powerful commands.

You can build a new file with the command sequence

ed
a
<lines to be added>

w filename
q

and edit an existing file with the command

23

ed Interactive Editor Tutorial

ed filename
<edit i ng commands and text>
w
q

To print lines of a file, you use

p {print current line}
n p {pr int line n}
m ,n p {pri nt lines m through n}

and either line number may be replaced by $ signifying last line or
period signifying the current line.

To add lines to a file, use

a {add lines after current l i ne}
n a { add lines after line n}

The command is similar, except that it adds before the indicated
line .

To remove lines from the file, use

d {delete current line}
n d { delete line n}
m , n d { delete lines m through n}

And finally, the substitute command

s/pl / p2 /
sn / pl / p2
s/pl /p2 /g
m ,n s/pl / p2 /g

{change first pl to p2 in cur . line}
{change n th pl to p2}
{change all pl to p2}
{ditto on lines m thru n}

The substitute command will give an error message if no pl is
found-that is, at least one pl must be present in the indicated
range .

24

•

•

•

•

•

•

ed Interactive Editor Tutorial

4. Intermediate editing

This section discusses more advanced command features of ed.
While section three discussed enough material to help a first-time
user become productive, thi s sect ion covers additional features that
can considerably increase editing power.

The topics covered in this section are: relative line numbering, mov
ing blocks of text, string locating, specia l characters in subst itution
and search commands, global command processing, marking lines,
and reverse searches.

Examples of each command are given.

Relative line numbers

As discussed in the previous section, most commands accept line
numbers to control their range of operation. The line number
specification may be a single number before the command, such as:

lp

which, of course, prints the first line of the file. The line number
specification may also be a range of line numbers, indicated by two
numbers separated by a comma. 1 f the file has at least ten lines in
it, the command

1,lOp

will print the first ten lines of the file.

You may specify the current line by si mpl y using dot to represent
the current line number, as in

1, .p

which will print the lines of the file up through the current line . If
you want to refer to the current line only, yo u may om it the line
number prefix altogether, as in

p

which is in every way equivalent to

. p

but is shorter.

25

ed Interactive Editor Tutorial

There is yet another level of shorthand of the print command-the
plus and minus characters. These characters can be used to indicate
offst:ts from the current line as in

.+Jp

which means to print the third line following the current line .

. -lp

means print the line preceding the current line.

This may be abbreviated further by leaving out the dot. The com
mand sequence

+p
- p

will have the cumulative effect of advancing to the next line as the
current line, printing it, then backing up to the previous line (the
original current line) as the current line and printing it.

Further, you can put several of these on one command line to move
the current line multiple lines, then print. To back up three lines
then print, say:

---p

In the absence of any other command, ed defaults to the p com
mand. Thus

is equivalent to

---p

and

5

means the same thing as

5p

There is one more abbreviation in the print command .

If ed is expecting a command from you, and you enter nothing
except a <RETURN>, ed interprets this as a command to advance

26

•

•

•

•

•

•

ed Interactive Editor Tutorial

the current line to the next line and print it. How about that for
brevity! This action is equivalent to

+
or

.+1

<RETURN> is the shortest command in ed.

All the abbreviations for line number can be used by other com
mands that expect a line number range. For example, if you want
to delete five lines centered about the current line, you could type:

.-2,.+2d

and you would get your wish.

With any of these abbreviations, as well as the specificat ion of the
actual line number itself, you may not specify a line number that is
beyond the limits of the file. Suppose the current line is the last
line in the file and you type a

+

to ed. This means advance one line then print, which cannot
occur, since there is no next line in this case. ed will respond to
improper line numbers by typing a question mark on the terminal.
Notice, however, that the current line will always be valid so long
as there is at least one line in the file. Thus, unless the file is
empty, the command

will never give an error message. This can be of comfort if you
lose your way in the file.

Changing lines

In the Basic editing section, an example of spelling correction was
solved two ways. The first way was the clumsy way of deleting a
line and retyping the entire line. Such an activity is a lot of work
to change a single letter, so the substitute command was used
instead.

27

ed Interactive Editor Tutorial

There are occasions, however, where it is handy to have the power
to change lines-as was done by deleting then inserting. ed pro
vides this power in the c command. In general terms,

m,nc
new lines
to be i nserted

will remove lines m through n, and insert new lines up to the period
in place of them.

Moving blocks of text

In a natural language manuscript, you often need to rearrange para
graphs to give better clarity. In a program, procedures may need to
be rearranged. Or, possibly you forgot where the current line was,
and inserted lines not quite where you wanted them.

ed provides a move command m that moves a block of text from
one point in the file to another.

The analogue to this operat ion in a conventional typed manuscript
is to cut out the section from the wrong place, move it to the new
place, and paste it in .

m is different from the other commands that we have discussed so
far, in that there is a line number following the m it self, as well as
the line number range that normally precedes a command. The fol
lowing line number is interpreted as the line after which the text is
to be moved. So, the general form of the move command is

b,emd

which means move lines b through e to follow line d.

To do a concrete example, build a file with the following informa
tion :

28

•

•

•

•

•

•

ed Interactive Editor Tutorial

ed
a

Th is is a paragraph of natural language
text . Due to stylistic considerat i ons , it
really should be the second paragraph .

If you can read this paragraph first ,
the text has been properly arranged, and
our move example has been successfully done .

w example5
q

The file examples is a section of a manuscript with two paragraphs
of three lines each. The purpose of this example is to move the first
paragraph to follow the second paragraph . There are at least two
ways to do this with the move command . The first is

ed example5
1,3m$
*P
Q

The result will be

If you can read this paragraph first ,
the text has been properly arranged, and
our move example has been successfully done .

This is a paragraph of natural language
text. Due to stylistic considerations, it
really should be the second paragraph .

This example moves the paragraph at lines one through three to the
end of the file ($) . The other way is to move the second paragraph
to the point before the first:

4,6m0

Notice that the destination is 0, meaning that the text is to be
moved to the point following line zero . Since there is not a line
number zero, the move command takes it to mean the beginning of
the file.

29

ed Interactive Editor Tutorial

Of course, with our small example, there are several other ways
using line number abbreviat ions and knowledge of the current line
to perform exactly the same action.

1,Jm.

say to move lines I through three of the file to the line after the
current line. Immediately after the ed command, the current line
will be the last line of the file. Thus, this form of the command has
the same effect as the previous forms.

If the destination of a move command is not specified, ed assumes
the current line. Therefore, the command

1,Jm

will also have the same effect.

In this discussion about the move command the resulting current
line in comparing the different ways of performing the task has not
been mentioned. The different methods are equivalent with respect
to the resulting order of lines after their execution, but not neces
sarily the same with respect to the new current line. The m com
mand causes line numbers in the file to be changed, although the
total number of lines in the file remains the same.

After a move command, the current line is defined to be the last
line moved. Thus, if the first paragraph is moved, the current line
after the move will be original line three, now the last line in the
file. If the second paragraph is moved, the current line a fter the
move will be the new line three.

Copying blocks of text

The transfer command t is simi lar to the move command, except
that the text is copied rather than moved. The term move when
applied to lines of text generally implies that the moved object no
longer occupies its original place.

ed adheres to this meaning when you command it to move lines of
text. The term copy however , generally means to move a copy of
an object, such as a block of text, but leave the original in place .
ed interprets the transfer t command in this fashion.

The form of the transfer command is:

30

•

•

•

•

•

•

ed Interactive Editor Tutorial

b,etd

which means to transfer the group of lines beginning with b and
ending withe (inclusive) to follow the lined.

This would be used if you have a paragraph in a manuscript that
bears repeating. The original section of text is not a ltered.

After copying lines to the destination, ed sets the current line to the
last line copied.

String searches

As if we did not have enough ways to refer to lines, there are still
more to come!

The methods discussed to this point are the simplest to understand
and to use. They involve specifying an absolute line number, a
relative line increment, or a shorthand symbol such as dot or $.

Particularly in a natural language manuscript, line numbers are a
bit arbitrary, in that there is no intuitive grasp of which line has
which number, how many lines ago a paragraph starts, and so on.

ed's solution to this is a string search or line locator capability to
locate lines, using a syntax resembling the substitute command.
The string search begins on the line following the current line, and
looks for a line matching the specified string. If a match is found
in a line ed sets the current line to that line.

If the end of the file is encountered before a match is found, the
string search continues at the beginning of the file . If there is still
no match by the time the beginning line of the search is entoun
tered, ed will issue an error message-the question mark ? .
Remember that if you answer ed after an error message with a
question mark, it will tell you in more detail what the error is.

What does a match mean? The simplest meaning is that two strings
are the same-the strings have the same characters in the same
order.

Build an example by typing the following lines:

31

ed Interactive Editor Tutorial

ed
a

This is an example that we will
use for string searching . There
i s much natural language here as well
as some genuine arbitrary strings .
890 , ;+ foxtrot
qwertyu i op ##

w example6
q

Of course, these lines can be referenced by the means already dis
cussed. However, if the file being edited contains fifteen typewrit
ten pages of information, these methods become impractical.

The string search is a method of locating a line . You can place the
string search command at any place that you would place a line
number or line number expression . To illustrate the action of the
string search , let's locate any li ne with the word or partial word fox
and print it.

ed example6
/fox/p

When you type thi s line, ed will print the line

890 , ;+ foxtrot

Also, you can print out a range of lines using the string expressions:

ed example6
/Th i s/ , /much/p

will print out the lines:

Th i s i s an example that we will
use for stri ng searching . There
i s much natural language here as well

This ability to specify str ings as targets for loca ting lines gives a
greater power to ed overall. Once you get the fee l of thi s feature,
you will begin to see the true power and flexibility of ed.

32

•

•

•

•

•

•

ed Interactive Editor Tutorial

The searches can also enter into relative line number expressions .
If you have a Pascal program file with several procedures in it, but
you find that you need to rearrange the procedures, you can com
bine the power of the move command with the string searches.

PROCEDURE A;

PROCEDURE B;

PROCEDURE C;

Presume that the section of text beginning with PROCEDURE A
needs to follow the line containing PROCEDURE B. The follow
ing move command will do the move properly:

/PROCEDURE A/ , /PROCEDURE B/-lm/PROCEDURE C/-1

This commands ed to move the section of the file beginning with
the line containing PROCEDURE A and ending just before the line
containing PROCEDURE B. This section contains procedure A.
These lines are to be moved before the line containing
PROCEDURE C.

Let's explore this in a bit more detail. Remember that the move
command is defined as

b,emd

where b indicates the first line of the text to be moved, e indicates
the last line of the text to be moved, and d indicates the line that
the moved text is to follow. Thus, b corresponds to the number of
the line containing PROCEDURE A and is the first line of the pro
cedure in question. But e corresponds to the line before (by virtue
of the - I) the PROCEDURE B begins. This line must be the last
line of the A procedure. Thus, you have found the beginning and
ending lines of procedure A.

The final string search locates the first line of subroutine C. The
move command expects the d to be the line that precedes the moved
text, and so we must subtract one from the line number of the
string PROCEDURE C.

33

ed Interactive Editor Tutorial

Thus, you can use a string search anywhere that you are allowed to
use a line number, even in a relative line number calculation.
While this example may appear a bit involved, remember that it is
but a compact way of describing how to find the beginning and end
of the desired text, as well as the location that it is to be moved to.

Practice with the string searches; if you master them well, they will
be powerful tools for you.

Remembered search arguments

As discussed earlier, line number abbreviations may take many
forms. They may be entered as ., or +, or - , and certain combi
nations of these. In some commands, no line number entered
means the current line number is to be used.

ed encourages abbreviation in the search string. If no string is
entered between the slashes in a search or substitution (or question
marks) then ed takes this to mean that it is to use the last-used
search string. A common use is found in a global substitut ion com
mand (which will be discussed in detail later in this section).

g/please remove this string/s// /p

which does not quite remove it, but replaces it by a blank . The
last-used string can be specified by a string search, a substitute com
mand, or a reverse string search (also discussed later in this sec
tion). Also, the remembered search argument may also be used in
any one of these. You can use the remembered search feature to
"walk" through the file, finding the next occurrence of a remem
bered search pattern.

Uses of special characters

As powerful as the line locator seems, there are even more powerful
features. These will be discussed in the Expert editing section
below.

However, these more powerful capabi lities depend upon certain
punctuation marks used in a special way. As you use the line loca
tor (as well as the substitute command) be aware of these following
characters:

34

•

•

•

•

•

•

ed Interactive Editor Tutorial

for they have special significance to ed when appearing in a string
search or a substitution pattern.

If you need to use one of these characters without invoking its spe
cial meaning, precede the character with a backslash '\ '. This tells
ed not to interpret the character in a special way.

For example, to find a backslash character, type the search com
mand:

; \\;

If any of these characters is to be used in another context, say
within lines that you are adding with the a command, it should not
be preceded with the backslash. Only w,e the backslash to hide the
meaning when it appears within the string search command, or
within the first part of the substitution command.

Global commands

The global commands g and v give you the capability to repeat
commands on all lines within the specified range that contain cer
tain strings. For example, to print all lines that contain the word
example:

g/example/p

The global command may be a prefix to almost any command. The
following command will delete all lines that contain three consecu
tive plus signs :

g/+++/d

while the command

g/foxtrot/ .-2,.+2p

will print the five lines surrounding any line containing the word
foxtrot.

A very common use of the global command is to perform global
substitution . The command

g/PROCEDURE/s/PROCEDURE/PROC/gp

will perform the substitution on each line that contains the string
PROCEDURE and print the resulting line.

35

ed Interactive Editor Tutorial

This may appear similar to the command

1, $s/PROCEDURE/PROC/gp

but is different in that the global command will print each of the
changed lines, while the substi tute command will print only the last
line changed . Also, the method of operation of these two com
mands is different.

A related command v performs much the same task, but will exe
cute the commands only for lines that do not contain the specified
string. Thus, to print all the lines that do not have the letter w, use

v/w/p

For more sophisticated uses of the g and v commands and how they
work, see the section on Expert editing.

Joining lines

What do you do if you inadvertent ly hit <RETURN> as you are
adding lines and need to combine the two lines?

ed
a
Look out , I seem to have hit ret
urn i n the
middle of a word and don ' t know
what to do !
w rid
q

Rather than retyping the entire line, you can use the join command
j:

will give

36

ed rid
1, 2j
1,$p

Look out, I seem to have hit return in the
middle of a word and don ' t know
what to do !

•

•

•

•

•

•

ed Interactive Editor Tutorial

If no line number is specified , j will join the current line and the
following line . If a single line number is specified, join will operate
on that and the following line .

Several lines can be joined by using the form of the command

a ,bj

where lines a through b will be joined into a single line . The com
mand

1, $j

will join all the lines in the file into a single line. Then, the com
mand .p or p will print the entire file.

Notice that the command

Jj

does the same job as the command

J , 4j

The join command generates it s own second line number if none is
specified, so that the command

n j

is equivalent to

n ,n+lj

where n is a line number. This command is the only command that
interprets a missing line number thi s way.

Splitting lines

You can split one line into two with the subst itute command . To
illustrate, suppose you typed in the following commands:

ed
a
This line wants to be two, with this second .

w split
q

37

ed Interactive Editor Tutorial

To perform the split, type

ed split
s/two, /two,\
/p
*P
wq

The line split is caused by the backslash preceding the
<RETURN>. This tells ed that the <RETURN> does not ter
minate the command, but that the <RETURN> is part of the sub
stitution. The contents of file split are now

This line wants to be two,
with this second.

Marking lines

As you are editing a manuscript or program, it is sometimes handy
to be able to leave a bookmark in the text for easy later reference .
ed provides this feature by means of the mark command k. To
mark the next line that has the word find, use:

/find/ka

where the letter a is the mark. To later print the line that has been
so marked, use:

'ap

These references may be placed anywhere that a line number is
expected.

The mark must be a single lower-case letter. Also, each mark will
be associated with one line . Marking a line with the k command
does not change the current line.

The use of marks can be especially handy in moving paragraphs
with the m command. Using marks can give you a chance to
review the sections that you will be moving before you do the
move.

Let's say that you have a manuscript with a paragraph that needs to
be moved to a different part of the document. Create the following
example:

38

•

•

•

•

•

•

ed Interactive Editor Tutorial

ed
a

This is a paragraph , first line , that
needs to be moved .
text
text
And this is the last sentence of the paragraph.

Next paragraph begins here .
text
text
text

This is the spot that we want the paragraph
to precede .

w example?
q

Now, let's place three marks to help with the move:

ed example?
/first line , /ka
/Next paragraph/kb
/is the spot/kc

This marks the first line to be moved with a, the line following the
last to be moved with b, and the paragraph's destination with c.
But you can see that the move command moves lines to the line
after the third number specified, so let's change the third mark :

'c-lkc

so that we can use c in the move command without arithmetic.
Now, print the paragraph to be moved to be sure that the marks
are correct.

'a, 'bp

ed will reply with

39

ed Interactive Editor Tutorial

This is a paragraph, first line , that
needs to be moved .
text
text
And this is the last sentence of the paragraph .

Next paragraph begins here .

You can see that we would move one line too many if we used the
marks as they are. So, let's change b also.

'b-lkb

Now, we can do the move:

' a , ' bm'c
1,$p

The file will now contain:

Next paragraph begins here.
text
text
text

This is a paragraph, first line, that
needs to be moved.
text
text
And this is the last sentence of the paragraph .

This is the spot that we want the paragraph
to precede .

Marking sections of text can increase the ease with which you solve
your complex ed problems.

Searching in reverse direction

All scanning, processing and searching has been shown going from
the beginning of the file towards the end. Sometimes it is useful to
find some word that occurs before the current line.

You can get ed to do string searching in the reverse direction by
specifying the search with question marks ? rather than slashes I.
To find the previous occurrence of the word last, use:

40

•

•

•

•

•

•

ed Interactive Editor Tutorial

?last?

This manner of searching can be useful in finding the beginning and
end of a repeat/until statement, for example. If the current line is
in the middle of a Pascal repeat/ until group, you can print the
group with the command

?repeat?; / until/ p

The reverse search is like the forward search in every way except
the direction of search. The search begins one line before the
current or specified line, and proceeds toward the beginning of the
file. If the string is not found by the time that the search reaches
the beginning of the file, the search resumes at the end of the file,
and progresses towards the starting point of the search. If the
string is not found by the time that the search reaches the original
starting point, the question mark error message is issued signifying
no match.

Also, the command

??

will use the remembered search argument.

Summary

This section covers intermediate ed topics, building on the ideas and
features presented in the basic section.

ed accepts many alternative forms of line numbers, from absolute
line numbers through the very shortest abbreviation. Those forms
are reviewed here, with descriptions enclosed in the braces { and } .

41

ed Interactive Editor Tutorial

lp
1, . p
p
.p
+

+J

{print line one}
{print from beginning of file to current line}
{print current line}
{print current line}
{advance one line; print}
{back up one line ; print}
{advance three lines; print}
{back up three lines; print}
{<RETURN> only , advance one line; print}
{print current line}

You can move blocks of text with m from one section of the file to
another. Copying blocks of text with t is similar to moving them.

ed also has more powerful ways of line location, notably string
searches. Examples show how this feature enables powerful use of
the other features of ed while freeing you from the necessity of
keeping track of all relevant line numbers.

ed treats certain characters in a special way. These characters are
introduced , and this section shows you how to avoid unwanted side
effects while using them .

Next, global string searches are introduced, along with hints on how
to increase the power of other commands when used in conjunction
with them.

Line joining, while not heavily used, can be very difficult to get
along without in circumstances where it is needed. The join com
mand is discussed , along with examples.

To make line referencing even easier , ed has a mark command k,
and the capability to refer to marked lines. Both are discussed,
along with how they might be used for more complex text manipu
lation problems.

Finally, the reverse string search feature is demonstrated.

42

•

•

•

•

•

•

ed Interactive Editor Tutorial

S. Expert editing

This section presents the most advanced ed commands.

File processing commands

The Basic editing section discussed the COHERENT commands

ed

and

ed filename

There are additional file handling commands in ed that go beyond
the power of those already discussed .

If you decide that you were editing the wrong file, or have finished
the current file with a w, you may begin editing an entirely new file
with the command:

e newfile

This forgets all the changes that you have made, if any, up to this
point since the last w command and begins all over again with
newfile .

The e command has the same effect as the COHERENT ed com
mand with a file name:

ed new

issued to COHERENT is the same as

e new

issued within ed, but the second is handier since you do not need to
exit ed then reenter to edit a new file. Note that the ed command e,
like the q command, will issue an error message if another file is
being edited and you have not stored it since your last change was
made. If you immediately repeat the command, ed will go on .even
if there are unsaved changes . If you use the command

E new

ed will edit the new file, whether or not there are unsaved changes.

The r command also reads a new file, but adds the lines from it to
the work in progress on the current file instead of destroying the

43

ed Interactive Editor Tutorial

current file. This can be handy for including one file in another
one. If you have a manuscript prefix stored in a file prefix and are
editing a new manuscript, to include the prefix at the beginning, say

Or prefix

where r reads in lines of the file after the line number specified, or
in this case, line zero, which means at the beginning of the file.
Without a line number, r reads in lines at the end of the file.

The w command writes out the entire file if no line number is
specified, but line number selection can be supplied .

1,Jw new

writes out the first three lines to file new. If the file name is omit
ted, the lines are written to the remembered file name.

The w command is unique in that it never changes the current line.
This is true regardless of what line numbers are specified in the
range for the command, or how those line numbers were developed.

The W command is similar to the w command except that W
appends lines to the end of the file, while w creates a new file, des
troying any previous contents.

The f command prints the remembered file name that was set in

ed filename

or

e filename

or

w filename

commands. But f can also be used to set the remembered name by
saying:

f newname

This form of the command will tell you what the new remembered
file name is, even though you-just typed it in.

Note that the command

w filename

44

•

•

•

•

•

•

ed Interactive Editor Tutorial

changes the remembered name only if there is current ly no remem
bered name, as does the r command .

Patterns

In earlier sections of this document, you were cautioned about cer
tain punctuation characters having special effect in search and sub
stitute commands. These characters are

[~$* .\ &

and are used to form powerful substitute and locator commands .
The combination of these special characters in an orderly way is
called a pattern, sometimes called a regular expression. Patterns
can specify a search string that can find or match a variety of
strings with a single search argument.

The idea of patterns is based upon mathematics. These patterns are
a particularly good way of describing general classes of strings.

The simplest patterns use alphabetic characters and numeric digits,
which match themselves, as in

/ab/

which finds and prints the next line containing the string ab.

Matching any character

The next simplest character to use in a pattern is the period or dot.
It will match any character except the newline character that
separates lines. Two periods in succession will match any two con
secutive characters, and so on. For example, if you have a file con
taining algebraic statements of the form

a+b
c+e
a-b
a/b
d*e

and wanted to find and print any line involving a and b (in that
order), then the search statement

/a.b/

will do the trick. The. in this example will match +, - , and/.

45

ed Interactive Editor Tutorial

Then, you ask, how do I find a string that contains a period? For
example, if you wanted to find a ll the sentences that ended with
"lost.", (that is, the word lost followed by a period) you might first
try

/lost./p

but you can see that this would match the string "lost " (the word
lost followed by a space) as well, which is not what you want.

This is where the special character backslash comes in handy . The
function of the backslash is to tell ed that the next character is to
be treated as a regular character, even if it is a special character.
Thus, to find "lost.", you need only type:

/lost \. /p

and you will not incorrectly find "lost". And, if you want to find
backslashes in your file simply say

; \\ /p

Matching many of one character

ed will help you match strings that contain any number of repeti
tions of a specific character with the *. For example, to remove
extra spaces between words in a document , type

g/##*/s//#/p

(The character # has been substituted here for the space character
to make the example more readable.) This will replace each series
of spaces by a single space.

Notice that there are two spaces before the * in the search string.
This is necessary because the * will match any length of string,
including zero. Therefore, searching for a space followed by any
number of spaces will find strings that are at least one space long.

The * matches the longest possible string of the previous character.
This will require careful attention on your part, since the string
matched by * might be longer than your required string, or even
zero in length . Either way could give you unexpected results .

If you have a line

46

•

•

•

•

•

•

ed Interactive Editor Tutorial

a+b- c

in your file and want to change it to

a+c.

type the command

s/a . *c/a+c/p

However, if the line read instead

a+b- c*d+c

and you applied the command, the result would be

a+c

since the . * will match the longest string between any a and any c.

Beginning and ending of lines

The characters " and $ will match the beginning and ending of lines
for you. Thus, you can find and print all lines that end with a
bang:

g/bang$/p

Or those that begin with a whimper:

g/"whimper /p

These two characters can help you find lines of specific length, a lso .
If you need to see all lines of exactly five characters in length , the
command

gj" $/p

will do the trick. To find and delete a ll blank lines, do

g/" *$/d

Notice this time the * will match a string of zero spaces. But this is
correct, since a blank line includes lines that have nothing in them,
as well as lines that contain only spaces .

47

ed Interactive Editor Tutorial

Replacing matched part

In many cases of substituting, you find yourself extending a word,
or adding information to the end of a phrase. This can lead to
extensive retyping of characters. The sp~cial & character can help
out.

This character is special on ly when used in the ri ght part, or pat
tern2 of the subst itut e command. It means "the string that
matched the left part". For example, to adding to the word help
in the current line, use:

s/help/&ing/

The ampersand may appear more than once in the ri ght side.

This can be more interesting if the left part has a non-trivial pat
tern. For every word in a line that is preceded by two or more
spaces, double the number of spaces before it:

s/###*/&&/gp

(Again, spaces have been replaced with # for clarity.)

Replacing parts of matched string

A more sophisticated feature similar to the ampersand helps you to
rearrange parts of a line. For example , create a file by typing

ed
a
fir s t part=second part

w eql
q

There are two special bracket symbols, \ (and \) that are used to
delineate patterns in the left part of a substitution expression .
Then, the special symbols \ 1, \ 2 and so on, will be used to insert
the delimited parts. The symbol \ (marks the beginnning of the
pattern, and \) marks the end.

To delete everything in the line except the characters to the left of
the =, type

48

•

•

•

•

•

•

ed Interactive Editor Tutorial

ed eql
s/" \ (.*\)=.* / \ 1/p
wq

In the substitute command, the " matches the beginning of the line,
then . * will match ''first part'', and =. * will match the rest of the
line. The symbol \ 1 signifies the matched characters between the
first \ ((the only one in thi s example) and \). The p prints the
result, which will be

first part

With thi s example, you can interchange parts of a line:

ed
a
first part=second part

w eql2
q

To interchange the two parts, type

ed eql2
s/\ (.*\)=\ (.*\);\ 2=\ 1;
p
wq

The result is

second part=first part

The first part of the substitut ion expression

\ (.* \)=\ (.*\)

can be thought of as being in three parts . The first part

\ (.*\)

matches all characters up to but not including the =, which are

first part

The second part

49

ed Interactive Editor Tutorial

matches the = in the line , and finall y the third part

\ (.* \)

matches all characters following the ' ' = '' , or

second part

The remainder of the substitution expression

\2=\1

which is the replacement part, rebuilds the line in interchanged
order. The symbol \2 replaces the matched string enclosed in the
second pair of \ (\) delimiters, and the symbol \ l inserts the
matched string enclosed in the first pair of \ (\).

The right side of the substitution inserts the second matched expres
sion (from \2), then inserts the = sign again, followed finally with
the first part of the line from \ 1.

This may appear involved, but can be immensely valuable in situa
tions requiring rearrangement of a large number of lines .

The next special characters for patterns that we will consider are the
bracket characters [and]. These are used to define the character
class. Inside the brackets, put a list of characters that you consider
alternatives for the match at that position in the string, and ed will
match if any one of them appears. For example, to print a line
that contains any odd digit , say:

g/[13579)/p

For even more power and flexibility, you can combine character
classes with the star. Find and print all lines that contain a nega
tive number followed by a period. Note that the number may not
contain commas:

g/- [0123456789] *\. /p

This will match lines containing the following example strings:

50

•

•

•

•

•

•

ed Interactive Editor Tutorial

-1.
-666.
-3. 7. 77

You can also match all lower case letters by listing them in brackets
also, but an abbreviation mechanism simplifies this:

g/[a-z]/p

will do the job. This can be used for the negative number example
above by:

g/-[0-9]* \. /p

Most special characters lose their original meaning within the brack
ets, but one of the special characters, caret ", gets a new meaning.
If you want to match all but a class of characters, the caret when
used immediately after the left bracket will do the job. To match a
string that begins with K and continues with any character except a
number, use

/K["0-9]/

which will match

KQ
KK
KK9

but none of the following:

K7
kKO

Other special characters may be part of a character class, and will
lose their special meaning. However, if you want to match the
right bracket, it must appear first in the list. So, to find all
occurrences of special characters in the file, type:

g/[J"\.*[&J/p

51

ed Interactive Editor Tutorial

Listing funny lines

The p command prints lines with graphic characters in them. It
will also print lines with non-graphic characters, but these will not
show on the screen. For example, a line containing the bell charac
ter < ctrl-G > will sound your terminal's bell or buzzer, but you
will not be able to tell where the bell character occurs within the
line.

The I command will behave like the p command, but if there are
non-graphic characters in the line, they will be decoded and printed
in octal preceded by a backslash. If a line containing the word bell
followed by a bell character were printed with I, the result would
appear

bell\007

Also, a backspace character < ctrl-H > is displayed as the character
- overstruck with a <, which will appear simply as < on a CRT.
Tab characters are displayed as a - overstruck with a >, which
will appear as > on a CRT. If the line being listed with I is too
long for a screen line, it is separated into two lines, with the
backslash character placed at the end of the first line to indicate the
split.

All other features of the p command apply to the I command.

Keeping track of current line

The most commonly used abbreviation in ed is the dot, or period,
standing for the number of the current line. Many commands have
the potential for changing the value of the dot, and it is useful to
you to be able to ant icipate this change when using the abbrevia
tion.

The influence of each command on the value of the dot can be
separated by classes of commands. In general, however, the simple
explanation is often true, and is always a good starting point. The
current line is the last line to be processed by the previous com
mand. We will use this definition as a first approximation, then
refine in the case of each command.

An example of the current line being changed is the substitute com
mar.d. In the example

52

•

•

•

•

•

•

ed Interactive Editor Tutorial

1, $s/flow/change/
p

the current line after the substitutions will be the last line that was
modified, and that will be the line that p will print.

The w command is an exception. The current line is never
changed, regardless of any line range selection or how these ranges
are developed.

After execution of the r command, the current line is the last of the
lines read in from the file.

The d command sets the current line to the line following the last
line deleted, unless the last line in the file was deleted, in which case
the new last line becomes the current line.

The line insertion commands i, c, and a all leave the current line as
the last line added . If no commands are added, however, the
behavior differs . For i and c, the last line is effectively backed up
one, whereas for a, it stays the same .

When current line is changed

The time of changing the current line is of importance, also. Nor
mally the current line is not changed until the command is com
pleted.

To illustrate, create a file semi by typing:

ed
a
begin
second
first
i n between
second
last

w semi
q

Now, edit the file and type all lines from first to second:

53

ed Interactive Editor Tutorial

ed semi
/first/ , /second/p
Q

This will cause an error! The reason is that the search command
begins with current line set to $, so "first" is found on line 3. But
the search for "second" also begins with the current line set at $,
and finds "second" on line two. Thus, the command translates to

J,2p

which is clearly invalid.

To do what was intended, use the semicolon ; in place of the
comma separating the two searches. This forces the current line to
be changed after the search for first rather than after the entire
command is completed. The commands

ed semi
/first/ ; /second/p
Q

are not in error and will do what is intended . The result will be

first
in between
second

The search for first still begins with the curren.t line set at $. How
ever, after first is found, the current line is set to 3, and the search
for second begins accordingly, and succeeds on line 5.

Finally, to be sure of where the current line is, you can use the p
command to show you the line. Or, you can have ed tell you the
number of the current line by typing

To give you a perspective on where you are with respect to the end
of the file, type

and ed will tell you the number of the last line in the file .

You can put any line number expression before = and it will type
the result. For example

54

•

•

•

•

•

•

ed Interactive Editor Tutorial

/next/=

will type the number of the next line containing "next" (if there is
one). This command = will never change the line number.

More about global commands

All the global commands discussed thus far have been followed by
single commands-substitute, print, and delete. You can put
several commands after a global command, however, and have each
of those commands executed for lines that match.

To change all occurrences of the word cacophonous to the word
noisy and print the three lines that follow, issue the command

g/cacophonous/s//noisy/\
.+1, .+Jp

in which the additional commands are separated by the backslash
before the <RETURN> . Several commands can be added, and
all but the last need the backslash at the end .

This will work for the line-adding commands, as well. To insert a
spelling warning before each line that contains the word occurrance,
issue the command

g/occurrance/i\
((the following line needs spelling check))\

Note that the last line of the i group can be entered without a
backslash, in which case the line containing only the period must be
omitted. This has the same effect as

g/occurrance/i\
((the following line needs spelling check))

You should not depend upon the setting of the current line in any
multiline global command. There are two reasons for this. First, if
one of the commands is a substitute, and the string is not found in
the matched line, the current line will not be changed .

Secondly, the global command operates in two phases. The first
part scans the file for lines that match the string argument. These
lines are marked internally in a manner similar to the k command

55

ed Interactive Editor Tutorial

by ed. The second phase then executes the commands on each of
the marked lines . Therefore, you cannot count on a string search
following the g to set the current line number.

Again, the v command behaves in the same way, except lines that
do not match the pattern are selected.

Caution is advised when using remembered search arguments, for a
similar reason. A search argument is remembered only if the search
has been executed. Thus, in a command of the form

g/backup/s/ /reverse/ \
s/backin /backing/

the first remembered search may use backup on some occasion, and
"backin " on others. The reason for this is that the second phase
of the g command begins with a remembered search argument of
backup. After the second line of the multiline command executes,
the remembered search argument will be "backin ". This will
remain throughout the remainder of the second g phase.

Thus, it is recommended that you avoid remembered search argu
ments when using multiline global commands.

Issuing COHERENT commands within ed

While you are using ed, you can issue COHERENT commands by
prefixing them with the ! character.

This can be very useful if you need to determine a file name while
in the middle of an edit, or if someone has sent you a message, and
you want to reply without leaving ed.

Thus, to list your directory while in ed, type:

!le

and ed will send the command to COHERENT, and echo a ! char
acter when the command is finished.

There is no limitation on the type of command that you may issue
with this feature. It is even plausible that you want to start another
ed.

56

•

•

•

•

•

•

ed Interactive Editor Tutorial

Summary

This section discusses the advanced features of ed.

The ed command e permits you to begin editing a different file
without leaving ed .

The r command reads in lines from another file, while the w com
mand writes out the entire file as changed, or selected lines from the
file.

The f command prints the remembered file name, and can also
change it.

Patterns and their uses are described in detail. The special charac
ters

[A$*.\ &

aid in pattern construction.

The character & when used in a substitute command causes the
matched string to be substituted, even if it were a complex pattern.
Also, the related symbols \ I and \ 2 replace parts of a matched
pattern delimited by \ (and \).

To help shorten your typing, ed provides a remembered search
facility.

If some lines of your file have non-graphic characters in them, the I
command will list the octal values of the non-graphic characters.

Since nearly every ed command will default to the current line to
increase your convenience, this section goes on to discuss how to
keep track of the current line, and how various commands change
it.

Then expanded use of global commands is shown. You can enter
several commands after a global command rather than just one.

You can issue COHERENT commands without leaving ed, for
example, to list your directory .

57

ed Interactive Editor Tutorial

•

•

•
58

•

•

•

ed Interactive Editor Tutorial

6. Command summary

Theed commands are summarized in this section.

Line locators, sometimes also called line numbers, are shown
enclosed in brackets. The part

[n]

indicates an optional line locator, which defaults to the current line
if left off except as noted below.

[n[,m]]

The outer brackets indicate that the range is optional. The inner
show that the ending value of the range, m, is also optional if the
beginning value of the range, n, is given. In such a case, the range
is n ,m. If the entire range is left off, the range defaults to the
current line. The letters n, m, and d will be used within braces to
signal line locators.

Notice that string search commands I I and ?? may be used wher
ever line numbers appear.

Other letters appearing within braces are optional parts of com
mands and are described with the command.

The comma in a line number range can be replaced by a semicolon.
See the section on expert editing for details.

Line specifiers

In addition to being simple integers, the n and m of line ranges can
take on symbolic forms. These forms are

[n] A decimal number n specifies the nth line of the text.

. (dot) Current line.

$ Last line.

+, - Simple arithmetic with line numbers.

[n [,m]]lpatternl I
String search to match pattern pattern] within selected
range. Result of search is line number. If no range
specified, begin with line following current line and end
with current line number after wraparound.

59

ed Interactive Editor Tutorial

[n [,m]J?patternl?
Similar to string search with / , but search in reverse di rec- •
tion.

'm

*
Number of line with mark m.

Eqivalent to 1,$.

Commands

. (dot) Print the current line. Also end of append, insert, or
change.

[n] = Type the given line number. If n is omitted, type the
number of the last line.

[n]& Print a screen of lines. Equivalent to n ,n + 22p unless n is
near the end of the file, in which case it is equivalent to
n,$p.

! line Pass the given line to the shell sh for execution.

?

[n]a

Print a brief description of the most recent error.

Append lines to file after line n. Terminate added text with
a line containing only a dot.

[n[,m]]c
Replace specified lines with lines that follow. Text ended
by a line containing only dot.

[n[,m]]d[p]
Delete specified lines. If p follows, print new current line.

e [file] Edit a new file file . Gives error if there are unsaved
changes. If error is given, reissue the e file, and then ed
will exit.

E [file]
Edit a new file file. Do not give error if there are unsaved
changes.

f [file] Set the remembered file name to file. If [file] is not
specified, type the currently remembered file name.

•

[n [,m]]g / [pattern]I commands •
Globally execute commands for each line in the specified
range. If no range is specified, all lines are searched.
Search for lines containing the pattern and internally mark

60

•

•

•

[n]i

ed Interactive Editor Tutorial

them. Then, for lines so marked, execute commands. The
commands (except for substitute) may extend over several
lines, with all but the last terminated by '\ '.

Insert lines before line n . Terminate new text with line
containing only '.' dot.

[n[,m]]j[p]
Join all lines in specified range into one line. If m is not
specified, use range n ,n + 1. With optional p, print result
ing line.

[n]k.x Mark line n with marker x (lower-case letter). This com
mand does not change the current line.

[n[,m]]I
Print selected lines, interpreting non-graphic characters.

[n [,m]]m[d]
Move selected lines of text to after line d .

ooptions
Change the given options. The options may consist of an
optional sign ' +' or ' - ', followed by one or more of the
letters cmopsv. Options are explained below.

[n[,m]][p]
Print selected lines on terminal. p can be omitted.

q Exit editor. Gives error if there are unsaved changes. If
error is given, issue another q, and then ed will exit.

Q Exit editor; give no error if unsaved changes .

[n]r [file]
Read file file into current file following specified line, or
after last line in memory if no line selected.

[n [,m]]s[k] / patternl / pattern2/ [g][p]
Within selected line number range, search for kth pattern
pattern I and, if found, replace with pattern2. If k is not
specified, search for the first. If g follows, replace all pat
tern] found within each line in range. If p follows, print
current line when done. If pattern] not specified, use
remembered search argument instead .

61

ed Interactive Editor Tutorial

[n [,m]]t[d]

[n]u[p]

Copy selected lines to the point before destination line d,
which defaults to the current line.

Undo effect of last substitute command. If optional p
specified, print undone line.

[n [,m]]v / [pattern] / commands
Globally execute commands for each line in the specified
range. If no range is specified, all lines are searched.
Search for lines that do not contain the pattern and inter
nally mark them . Then, for lines so marked, execute com
mands. The commands (except for substitute) may extend
over several lines, with all but the last terminated by '\ '.

[n [,m]]w [file]
Write selected lines to file file (defaults to current file) .
Line selection defaults to 1,$ if n and m are not specified.

[n[,m]]W [file]

wq file

As in w command, except append lines to lines already
existing in file file.

Write all lines to the current file and quit the editor.

x Encrypt / decrypt text using the system library routine crypt.
ed prompts for an encryption password and applies the
resulting key to encrypt or decrypt on each subsequent e, r,
or w command. An empty password turns off encryption.

Pattern elements

String searches and substitute commands employ special characters
used to describe patterns. The following characters appear in pat
tern] of the substitute command, and between / or ? of the search
commands.

Non-special characters within the pattern match themselves. Special
characters that make up patterns are:

62

Matches beginning of line, unless it appears immediately
after '[' , in which case it means "match any character but
the following''.

•

•

•

•

•

•

ed Interactive Editor Tutorial

$ Matches end of line .

* Matches zero or more of preceding character.

. (dot) Matches any character except newline.

[chars]
Matches any of the following chars up to]. Ranges of
letters or digits may be indicated using " - ".

[~chars]
Matches any character except one of the enclosed chars.
Ranges of letters or digits may be indicated by using ' - '.

\ Disregard special meaning of following character.

\(Beginning delimiter to define substring of pattern]; ending
delimiter is \) . Used in conjunction with \n, below.

pattern2 or the replacement part of the substitute command uses the
following special characters .

& Insert characters that were matched by pattern!.

\1,\2, ...
Replace part of matched string delimited by nth occurrence
of delimiters \(and \).

Options

The user may specify ed options on the command line, in the
environment, or with the o command . The available options are:

c Print character counts one, r, and w commands.

m Allow multiple commands per line.

o Print line counts instead of character counts on e, r, and w
commands .

p Prompt with '*' for each command.

s Match lower case letters in a pattern to both upper case and
lower case text characters.

v Print verbose versions of error messages .

The c option is normally set, and all others are normally reset.
Options may be set on the command line with a leading '+' sign.

63

ed Interactive Editor Tutorial

The ' - ' command line option resets the c option. The ' - x' com-
mand line option causes ed to encrypt and decrypt text written to •
and read from files, as with the x command.

Options may be set in the environment with an assignment, such as

ED = + CV

options may be set with the '+' prefix or reset with the ' - ' prefix .

64

•

•

•

•

•

!: 56
$: 8, II, 14-15, 29, 47, 54
&: 15, 48
' (quote): 38
*: 14, 46-47
+ : 26
-: 26
• (dot): 10, 14, 25, 45
.=: 15
/: 40
;: 54
< ctrl-D> : 3
<RETURN> : 5

as a command: 26
=: 15, 55
?: 31, 40
[: 50
\fl: 35, 46
]: 50
\(: 48, 50
\): 48, 50

a: 9, 12-13, 53
adding lines: 9
advanced commands: 43

backslash: 35

c: 28, 53
caret: 47, 51
carriage return: 5
cat: 6
changes, permanent: 18
changing lines: 18
characters

count in file: 3
special: 22, 34, 45

ed Interactive Editor Tutorial

Index

comma: 25
commands: 5
commands

advanced: 25, 43
ed: 5
global: 55

copying blocks of texts: 30
current

line: 7, 11-12, 52

d: 14, 53
decrypt: 62
deleting lines: 17
directory: 4

e: 43
encrypt: 62
error messages: 8

f: 13, 44
file: 4

ASCII: 4, 7
editing commands: 43
name: 4
name, in ed command: 11

g: 22-23, 35, 56
global substitute: 22
global

command: 35, 55

i: 13, 53
information, computer-based:
inserting lines: 12

joining lines : 36, 42

65

ed Interactive Editor Tutorial

k: 38

I: 52
line

current: 7
definition of: 7
locators: 31
number: 7
number ranges: 14
number zero: 29
numbers: 41
numbers, relative: 25
numbers, relative: 33
ranges: 8

lines: 4

m: 28, 30, 33, 42
mark: 42

lines: 38
move

o: 61

blocks of text: 28
command: 33

options: 61

p: 13-14, 17, 34, 49, 52-54
pattern: 19, 45, 48
pattern: 45
print command: 13
prompt character: 9

q: 10-11, 13, 17-18
Q: 18

r: 43, 53
regular expressions (see pat

terns): 45
removing lines: 16
reverse searching: 40

s: 19, 22-23

66

sample ed session: 3
sed : 10
semicolon: 54
special characters:. 34, 45
spliting lines: 37
substitute command: 19

t: 30, 42
text: 5
transfer: 30

u: 21
undoing substitution: 21

v: 35-36, 56

w: 10-11, 43-44, 53
wq: 62

x: 62

•

•

•

•

•

•

ed Interactive Editor Tutorial

User Reaction Report

To keep this manual and COHERENT free of bugs and facilitate future
improvements, we would appreciate receiving your reactions. Please fill in
the appropriate sections below and mail to us. Thank you.

Mark Williams Company
1430 W. Wrightwood Avenue

Chicago, IL 60614

Name:

Company:

Address:

Phone: Date:

Version and hardware used:

Did you find any errors in the manual?

Can you suggest any improvements to the manual?

Did you find any bugs in the software?

Can you suggest improvements or enhancements to the software?

Additional comments: (Please use other side.)

67

•

•

•

