
• learn

User's Manual

r

•

•

•

•

•

Table of Contents

• 1. Introduction

Introduction to learn

How to use this manual

Documentation conventions 1

2. Using the learn utility 3

Introduction 3

Entering the learn program . 3

Entering the name of the subject 4

Reading the introduction to the subject 4

Following the instructions within the script 4

Changing learn subjects 5

• 3. Writing learn scripts . 7

Introduction to learn script writing 7

Planning the script path 8

Writing the lesson text . 14

Constructing the lesson 15

Creating a file 16

Printing instructions . 17

Allowing the student to answer 18

Evaluating the student's actual work 19

Evaluating the results of the student's work 21

Recording the student's performance 21

Giving the student another lesson 22

• The learn directory structure 23

Creating the directory for the new subject 23

Starting the subject with lesson LO 23

learn User's Guide

The learn program commands 24 • create file 25

#print 25

#print file 25

Terminating a command 26

#end 26

Giving the student control 26

#user 26

Capturing the student ' s work 26

#copyin 26

#uncopyin 26

Capturing the student's results 27

#copyout 27 • #uncopyout 27

Processing the lesson in the shell 27

#pipe 27

#unpipe 28

Testing the student 28

#cmp filel file2 28

#match pattern 28

#bad pattern 28

#succeed 29

#fail . 29

#negate 29

Recording the results 29

#log file 29 • Giving the student another lesson 29

ii

•

•

•

#next

4. Debugging learn scripts

Examining the lesson file .

Verifying the command syntax

Verifying that necessary files are available

Verifying that the next lesson exists

Index

learn User's Gulde

29

31

31

31

31

32

33

iii

learn User's Manual

•

•

•
iv

•

•

•

1. Introduction

Introduction to learn

The learn utility is a computer-aided instruction program for the
COHERENT operating system. The purpose of learn is to train
prospective users how to interact with the COHERENT operating
system.

By following the learn lessons, the student gains "hands on"
experience using the COHERENT operating system. learn provides
step-by-step instructions for the student to follow, and it performs
periodic evaluations of the student's performance.

Because learn is a COHERENT operating system utility, any
COHERENT command can be used in conjunction with the learn
commands. This structure enables the student to try out
COHERENT commands within the learn framework.

How to use this manual

This manual explains how to select and use lessons on the learn util
ity as well as how to create new learn lessons .

Section 2 is for users who plan to learn COHERENT through the
learn utility. This section includes procedures for logging in,
accessing the learn utility, and reading learn scripts.

Section 3 steps the novice script writer through the planning and
writing of a script, including how to evaluate the progress of stu
dent users. It also provides a synopsis of special learn commands.

Section 4 provides the script writer with some basic debugging tech
niques.

Documentation conventions

The examples in this manual are in a "query and response" style:
they contain both specific terms that the user must enter into the
computer, and the learn program responses to user input. When
the manual lists these specific terms and phrases, referred to as
"literals", they will be presented in boldface.

Control characters are letters that are used in conjunction with a
special command key. For ease of identification, they are always
shown enclosed in angle brackets, e.g. < ctrl-D >. When you are

learn User's Gulde

instructed to enter a control character, hold down the CTRL key on
your keyboard, while simultaneously typing the indicated letter.

You should not substitute uppercase letters for lowercase letters,
and vice versa, when entering information into the learn utility
because COHERENT distinguishes between uppercase and lower
case. If you do mix up the cases, you will be giving the computer
the wrong command.

2

•

•

•

•

•

•

learn User's Gulde

2. Using the learn utility

Introduction

To use the learn utility, you need to have access to a terminal con
nected to a computer that has COHERENT installed. Ask your
system administrator for a log in name and a password. Your
administrator can help you to log into the system the first time; for
future reference, use the instructions in this section.

Entering the learn program

To enter the learn program, type learn. Do not forget to press the
carriage return key called < RETURN > . You will need to do this
at the end of each line you type. The learn program begins.

After you enter learn, the computer gives you some introductory
information about learn. Figure 2-1 shows the learn introduction
introduction you will see.

Learn provides computer-aided instruction
about various facilities that are available
in COHERENT, allowing you to answer
questions after trying out these commands
in a situation that simulates the normal
COHERENT user interface.
Currently, sample scripts named "editor"
and "filesample" demonstrate some of the
features of learn.
As new scripts are available, you may use
them by typing their subject name.

Enter subject?

Figure 2-1: Introduction to learn .

3

learn User's Guide

Entering the name of the subject

As you can see in Figure 2-1, the system requests you to enter the
name of the subject you want to study.

Currently, there are sample scripts under the subjects of editor and
Ji/esample. To try one of these scripts, type in either editor or
filesample. As other scripts are implemented, the introduction to
learn will reflect the new study courses.

Reading the introduction to the subject

After you have entered the name of the subject you wish to study,
the system presents an introduction to the subject at your terminal.
Read the introduction to ensure that the script describes the infor
mation you want to study. Then carefully follow the instructions
listed.

If you do not wish to continue with the subject, enter bye when the
'$' prompt appears. The computer responds "Good bye" to
acknowledge your request to leave learn.

You can type bye anytime the computer is waiting for a response.
Typing bye returns you to the shell of the operating system, where
you can reenter learn to study another subject or log off
COHERENT.

Following the instructions within the script

As you progress through learn scripts, follow instructions closely to
gain the maximum benefit from the lessons provided. Each lesson
consists of instructions, experimentation, and evaluation. This
combination of COHERENT system resources increases your
proficiency as you progress through the learn program.

When you give one or more incorrect answers while studying a les
son, learn gives you a choice of repeating the lesson or trying an
alternate lesson. If you fail a lesson, do not be discouraged; try the
lesson again, or type bye, log off, and try again later.

At the end of each accurately completed lesson, the learn program
automatically presents an appropriate follow-up lesson until you
have mastered a subject. If you wish not to continue in the subject
at this time, enter bye when the '$' prompt next appears.

4

•

•

•

•

•

•

learn User's Gulde

Changing learn subjects

To select another subject, simply complete the following three
steps:

1. Type "bye" to exit the current subject.
2. Type "learn" to present the topics for study.
J. Type the name of the new subject.

You now can follow the lessons in the new subject.

5

learn User's Manual

•

•

•
6

•

•

•

learn User's Gulde

3. Writing learn scripts

Introduction to learn script writing

In this section, you will learn the basic skills you need to write
scripts for the learn utility. Throughout this section, examples
using segments of a sample learn course illustrate a way that
courses may be presented to the learn student.

The purpose of learn is to direct the student to understand and use
COHERENT commands. The student begins with simple scripts
and progresses to expert proficiency, simply by following the logical
structure of the course. At critical points during the course, the
student's record is measured to direct the student to easier or more
advanced lessons .

Many sequences or tracks of lessons may be provided to allow for
the speed and ability of various students. A three-track course
could be structured as follows:

Track a Track b Track c

2.1 2.1 2.1
2.2
2.3 2.3
2.4
2.5 2.5 2.5
2.6 2.6
2.7
2.8 2.8
2.9
3.0 3.0 3.0

Table 3-1: A three-track course.

The student's performance during Lessons 1.0 through 1.9 deter
mines the track which the student begins to follow from Lesson 2.1
to Lesson 3.0 .

The student is not locked into a particular track. A student who
starts out poorly could perform the new material well and be
shifted to a faster track. Conversely, someone who progresses

7

learn User's Guide

easily through preliminary lessons but has trouble with more
difficult material can be directed to a slower track.

Planning the script path

As the learn script writer, you must decide which skills are prere
quisite to other skills and then develop the curriculum to take
advantage of the student's previous experience.

It may be a good idea to chart out the material for the entire sub
ject course before planning even the first lesson. This preparation
enables you to determine if a course is too long to be completed
during a normal learn session, if too much information will be
covered, or if the topics of the course are too diverse.

In setting up a course, you can use three different types of questions
to teach your students:

- Yes or no
- Simple answer
- Open-ended

Yes-or-no and simple-answer questions should dominate the slower
tracks of a subject; use the open-ended question to give students
problems that use the knowledge they gained in the easier lessons.
Based on Track a in figure 3-1, the example below shows how the
three question types can be used.

Question
Concept
yes or no
yes or no
simple answer
open-ended

Lesson
2.1
2.2
2.3
2.4
2.5

The yes-or-no question is the simplest type to answer. Using this
type of question early in the course emphasizes for the student how
easy it is to use the learn program.

In Figure 3-1, you see a sample yes-or-no question from the sample
learn course, filesample.

8

•

•

•

•

•

•

learn User's Gulde

#print
Have you read the instructions since beginning
the learn program? Type "yes" or "no".
#user
#match yes
#fail
To make the most of your learn training,
you must read all instructions. Here are
the first instructions again:
#log/usr/learn/log/who-reads
#next
Oa 0
1.02 1

Figure J-1: Lesson 1.01.

The elements of Lesson 1.01 are:

A print command
Text to be printed
A command to give the user a chance to respond
A command to match the user's response
A conditional print command
Text to be printed upon failure of the lesson
A command to record the results of the lesson
in a specified file
A command to direct the program to the
appropriate follow-up lesson
Lesson numbers for possible follow-up lessons

All of the commands in this lesson are learn commands. The learn
commands begin with the '#'. The #print command prints the sub
sequent lines up to the next learn command at the student's termi
nal. The #print command in this lesson gives the student instruc
tions to complete the lesson .

The #user command turns control over to the student. At this
point, the student may use any COHERENT command. The learn

9

learn User's Guide

program regains control when the student enters yes, no, answer, or
ready.

The #match command checks short answers against the correct
answer to evaluate the performance of the student. In this case, the
correct answer is yes.

The #fail command is a conditional print command. The subse
quent lines (up to the next learn command) are printed only when
the student enters an incorrect answer .

The #log command tells the program to record the results of the
lesson in a log file. In this case, the script writer is keeping track of
how many students read the instructions during their first learn ses
sion. The results are stored in a special file called who-reads.

The next command directs the program to the next appropriate les
son for the student to try, based on performance of the previous
lesson. The two lines after #next indicate the possible options. If
the student's score is closer to 0, Lesson 0a will be given next.
When the student's score is closer to 1 than 0, Lesson 1.02 is
selected.

With the simple-answer question, you are moving the student one
rung up the difficulty ladder. By answering this type of question,
the student exhibits skills that you can evaluate more subjectively.
In a way, you are even grading the typing ability of the student.

Figure 3-2 shows a sample simple-answer question from the learn
filesample course.

10

•

•

•

•

•

•

learn User's Gulde

#print
What key or keys must you press to
transmit a response to the computer?
Type "answer [name]" where [name] is
the key or group of keys you enter.
#user
#match [R,r]eturn
#match RETURN
#fail
Here is a hint:
You do not type this answer; you would
press the key with this name.
Try again.
If you get the answer wrong next time,
type "bye" and reread your manual.
#succeed
You have completed the prerequisites.
#log /usr/learn/log/return
#next
1.02 0
1.02a 1
1.1 2

Figure 3-2: Lesson 1.02.

Like Lesson 1.01, this lesson uses the #print command and prints
the subsequent lines, then gives the user control to answer the les
son. In addition, the student has three possible correct answers to
match and receives a printed message upon successful completion of
the lesson.

Within the text after the #print command, the script writer tells the
students to preface their answers with the word answer. Typing
answer is necessary because the answer is more than yes or no.
answer tells the learn program that it now controls the script again.

The #match command is used twice in Lesson 1.02 to include a
greater number of correct answers. The first #match command
passes the student to the next lesson if either return or Return is
entered . The second #match command passes the students to the

11

learn User's Gulde

next lesson when they enter RETURN. Therefore, three answers
are acceptable to the script writer for this lesson.

The #succeed command is a conditional print command that causes
the subsequent lines to be printed when the student enters a correct
answer.

Notice that learn directs the student to one of three possible next
lessons after evaluation of the lesson. The current lesson is
repeated if the student has an accrued score of O; this lesson will
continually be presented until the student enters a correct answer.

Because the student can score one point for each lesson of the two
lessons presented, the student can have a perfect score of 2. When
the score is 2, Lesson 1.1 is next presented.

If the student had difficulty with 1.02, Lesson 1.02a is next.

The open-ended question is the most difficult of the questions for
students. It also provides results that give you the most subjective
evaluation of the student.

The open-ended question requires that the student assess the exer
cise and make a complete answer. Students may make several
attempts at the answer before entering their final response.

Figure 3-3 shows an elementary open-ended question.

12

•

•

•

•

•

•

learn User's Guide

#create .eval
This is my first file on COHERENT.
#print

In this exercise, you will use "cat" to print
the file you created in Lesson 1.1.

To use "cat" to print a file, type "cat
filename", where "filename" is the name of the
file you want printed. If you are not sure of
the name of the file, you may type "le" to see
a list of the existing files before you select
the file for printing.

\.lhen you are finished, type "ready" to let me
evaluate your work.
#copyout
#user
#uncopyout
tail -1 .ocopy >rest
#cmp rest .eval
#log
#next
4 2
1.3 4

Figure 3-3: Lesson 1.1.

Lesson 1.1 introduces four new learn commands: #create file,
#copyout , #uncopyout , and #cmp [fileP] [file2] . In addition, one
COHERENT command is used .

The #create .eval statement creates the file .eval in the temporary
play subdirectory of the learn directory. This file will contain the
subsequent lines of text in the lesson. The file .eval is the correct
answer to this exercise .

When circumstances require that the student type in an answer that
is longer than one line, he must follow a certain protocol. By
invoking the #user command, control passes temporarily from the

13

learn User's Gulde

script to the student. When the student is finished keying in his
response, he must cue the learn program that program control is
returned to the script. He does this by typing ready.

The #copyout and #uncopyout commands must be used together
like book-ends-to obtain the desired results from your lessons.
When these commands are used on either side of the #user com
mand, anything sent by the computer to the student's terminal is
copied to the file .ocopy. When the student finishes the exercise,
you may manipulate the contents of .ocopy to evaluate the
student's work.

The command

tail -1 .ocopy >rest

finds the last line of .ocopy and copies it into the file named rest.
Since the student can type any COHERENT command, many
different lines may appear in .ocopy. For example, some students
may forget the name of the file they created in the previous lesson
and use the le command to refresh their memories. If this happens,
a line of file names will appear in .ocopy. Therefore, script writers
use this command to copy the last line of the computer output to a
separate file for evaluation.

The command

#cmp rest .eval

completes a line-by-line comparison of the two files named, to ver
ify that the student's work is correct. The results of this command
determine whether the student passes or fails the lesson.

Writing the lesson text

To best use the "repetition and reinforcement" method of instruc
tion, write scripts using language that is easy to understand. Use
simple wording. Achieving this goal may mean that, in an early
lesson, you only partially define a concept.

For example, in Figure 3-4, the lesson tells the student that there
are several uses of command cat but explains only one.

14

•

•

•

•

•

•

learn User's Gulde

One of the mos t frequently used file commands
is "cat". The "cat" command can be used
to create, print, and combine files . In this
exercise, you will create a file using the
"cat" command. When the"$" prompt appears,
type the following lines:

cat >firstfile
This is my first file on COHERENT.
<CTRL-D>

When you are finished, type "ready" t o let me
evaluate your work.
$

Figure J-4: Lesson 1.1 as the student sees it.

Constructing the lesson

The structure of the learn program gives you the ability to test the
student on using the facilities of the COHERENT operating system,
grade the student's progress, and plan future lessons.

Here is the basic structure of a script, which the learn program
reads and processes a line at a time:

Command

#create file

#print file

#user

Description

A command to create a file whose con
tents are the correct answer(s) to the les
son.

A command to print instructions to the
student.

A command to give the user control to
enter an answer for the lesson. (The
script regains control when the user
enters yes, no, answer, or ready.)

15

learn User's Gulde

#match pattern

#bad pattern

#cmp Ji/el file2

#log

#next

A command to test the student's work .

A command to test the student's work.

A command to test the student's work.

A command to post the results in the
log file.

A command to give a new lesson if the
student passes the present one, and to
repeat the present lesson if the student
fails.

The learn program interprets the learn script for the student. learn
reads each line of the script and, where necessary, prints it for the
student to act upon .

The script is made of a combination of the nineteen learn com
mands, as well as COHERENT commands that the script writer
selects .

Because learn is a COHERENT utility, any COHERENT com
mand is valid in a learn script. Specialized learn commands that
perform COHERENT operations are available to lower overhead
within the program. Later in this section is an explanation of each
of the specialized learn commands.

Each learn lesson is constructed of the elements listed above. In
the following sections, you will learn how to construct the lesson
using those elements.

Creating a file
Creating a file is useful in two ways: storing correct responses for
comparison with student responses; and saving instructions or other
information that you want to print repeatedly in one or several
scripts.

When the lesson you are writing requires that you create one of
these files, you can use the #create file command. This command is
executed by the program while the program is printing the instruc
tions to the student.

learn stores in the new file all the text in the script following the
#create command, until this process is completed by invoking the

16

•

•

•

•

•

•

learn User's Gulde

next command that begins with '#'. To use the #create file com
mand, follow the format described below.

cat 11.1
#create .test
This is a test. This is only a test.
If this were a real emergency, this would not
be a test.
#user
<CTRL-D>

Figure 3-5: Example of the #create file command
with a sample file.

To create and execute this example, use the cd command to access
the pieces directory. Type:

cd /usr/learn/lib/pieces

Use the cat command to create the file LI. l as shown in Figure 3-5.
When you have finished typing the example, you can execute it by
entering the learn subject, pieces. Because the lesson does not print
text, you may not know whether the '$' prompt is the shell prompt
in the play area of learn or the shell prompt of the pieces directory.
Type le to see what files are in the current directory. If the file . test
(which was created by the lesson you just wrote) is in the directory,
print it using cat. If .test is not present, you are not in the user
area of learn and should type learn and pieces again to try the les
son.

After you have created any files you need for evaluating the
student's response, you can enter the instructions that learn is to
print for the student.

Printing instructions

As shown in Figure 3-6, the instructions are printed using the #print
command. The #print command, like the #create file command,
occupies a line by itself. When a file name is specified, the file is
printed. When no file is specified, any text that follows the #print

17

learn User's Guide

command is printed or displayed at the student's terminal, up to the
next command beginning with#.

Figure 3-6 is created by typing the following lines:

Command

ed Ll.1

Description

Puts file LI. I into the editor.

a

#print . test

Appends (writes new lines) to the end of the file.

New test line.

w

q

Ends append function.

Writes new file contents to LI .1.

Quits the editor.

To execute the lesson as it exists now, enter the learn subject,
pieces. When the '$' prompt appears, type ready to give control to
the learn program; then watch what happens.

#create .test
This is a test.
This is only a test.
If this were a real emergency, this woul d not
be a test.
#user
#print .test

Figure J-6: Example of #print command.

Your next step is to prepare learn for rece1vmg the student's
response and to capture that response for evaluation .

Allowing the student to answer

To instruct learn to expect a response, use the #user command.
This command occupies a line by itself and requires no argument.

After executing the #user command, the learn program reads the
student's response. If the student enters one of these four
responses: yes, no, answer, or ready, learn continues processing the
script.

18

•

•

•

•

•

•

learn User's Gulde

You can now expand the sample lesson to include a respond section
for the student. Figure 3-7 is a further expansion of the example
lesson. To create this lesson, use the remove command rm to elim
inate the current lesson and then recreate it, or you can enter the
editor and add, delete, and change lines to update the lesson.

#create .test
This is a test. This is only a test.
If this were a real emergency, this would not
be a test.
#print
Type "cat . test" and see what happens. Type
"ready" when the"$" prompt reappears.
#user
#print
Did you see a two-line message? Answer "yes" or "no".
#user
#match yes
#log

Figure 3-7: Example of #match method of
evaluating the student's yes-or-no response.

When the desired response of the student is other than yes or no,
you need a way to capture the response for comparison with the
correct answer.

Evaluating the student's actual work

In evaluating the student, you can choose between evaluating the
actual work of the student or the results of the student's work.

Several commands are available to help you evaluate the student's
actual work. To evaluate short answers, you can use the #match
pattern command. The #match pattern command compares the last
line of the student's input with the designated pattern. (As with
many commands, there is a default case; in this instance, if you do
not specify a pattern, any response will match .)

You also can set up a filter to capture frequently entered wrong
answers by using #bad pattern. The purpose of this filter is to
enable the computer to give the student hints for entering answers

19

learn User's Guide

that the computer can accept. For example, the answer "maybe"
could cue the computer to come up with a helpful prompt, such as:
"just answer with a yes or a no". When the student's answer
matches the bad pattern, you can enter your hints as prompts on
the following lines, up to the next learn command.

For longer answers (like those in response to open-ended questions),
you must first capture the actual work of the student by using the
#copyin command before the #user command and the #uncopyin
command after #user. This bracket of commands traps everything
the user types at the terminal and copies it at the file .copy. After
the student finishes the example or answers the question, the script
can compare the student's work with a file you created at the begin
ning of the script.

To make the sample lesson a lesson that compares the student's
response to a predetermined correct answer, enter the editor and
modify the file to include the contents shown in Figure 3-8. Notice
the new file you are creating, and the files being compared.

20

#create .eval
cat .test
ready
#create .test
This is a test. This is only a test.
If this were a real emergency, this would not
be a test.
#print
Type "cat .test" and see what happens. Type
"ready" when the"$" prompt appears.
#copyin
#user
#uncopyin
#cmp .copy .eval
#log

Figure 3-8: The use of #copyin and #cmp in evaluating
the student's work.

•

•

•

•

•

•

learn User's Gulde

To compare the student's work in .copy with the file you created at
the beginning of the script, use the #cmp Ji/el file2 command. In
the example above, the line is:

#cmp . copy . eval

Remove file Ll.1 when you are finished testing your scripts by typ
ing:

rm /usr/learn/lib/pieces/11.1

Evaluating the results of the student's work

To capture the results of the student's work, use the bracket of
commands #copyout and #uncopyout around #user. This set of
commands traps anything that the computer prints at the student's
terminal and copies it into the file .ocopy for comparison with the
correct answer. This lists not only the commands used by the stu
dent, but also the output of each command (e.g. if he asked for a
list of his files, that list is also captured.) Results-oriented educators
prefer this method of evaluation.

Recording the student's performance

Now that the student's work has been captured and compared with
your correct answer, you can log the results in the log file. The log
file is a file in the directory /usr/learn/log. It has the same name as
the subject for which the logging is done. Ordinarily, this file is
created by the learn program the first time the #log command is
used in a subject. The contents of the log file are:

- The number of the lesson
- The name of the user
- The word "right" or "wrong" describing the

student's response
- The accumulated score, called speed=n
- The day, date, and time of lesson completion

21

learn User's Gulde

Each lesson's record is appended to the log file specified by the
script writer. This enables the script writer to examine the results
of the lessons over as long a period as is necessary to evaluate the
effectiveness of the course.

You can record the completion records of special lessons in a
separate log file . This file can contain the log for one or several les
sons, and can be located in any directory.

To create the log file, use the #log command to have the log infor
mation put into the subject log file, and use the #log file command
to send the information to a special file; file must be the absolute
file name, as in /usr/learn/log/test.

To log the results of the lesson in a file that is not the default sub
ject log file, enter #log file on a line following the line on which the
results were tested. For example:

#log /usr/learn/log/spotcheck

logs the results of the lesson in the file named spotcheck instead of
the log file with the subject's name.

Giving the student another lesson

You may now give the student a new lesson based on sufficient abil
ity to complete the previous lesson. By using the #next command,
you can test the results of the lesson against the prerequisites for
the next lesson. Based on these results, learn then presents the stu
dent with the next lesson.

After testing the student, you can establish multiple paths for the
student with the #next command. The student's score is incre
mented by I for each correct answer and decremented by 4 for each
incorrect answer. The score is always between O and 10, inclusive.

Figure 3-9 shows the uses of the #next command. The first use tests
for accuracy early in the session, and the second tests for the accu
mulated score later in the session.

22

•

•

•

•

•

•

learn User"s Guide

#next
1.1 0
1.2 1

A
Figure 3-9:

#next
4.2a 10
4.2b 6
4.2c 2

B

(A) Early next lesson options.
(B) Later next lesson options.

The learn directory structure

Now that you have formulated the lessons you want learn students
to try, you may enter the lessons into the COHERENT operating
system.

Creating the directory for the new subject

Before you can start executing learn scripts, you must first make a
directory to contain your lesson files . This is the only directory you
must make to have an operating learn course. The log directory or
the play directory are created when a #log or #user command,
respectively, is interpreted by the learn program.

To make this directory, first use the cd command to change to
directory /usr/learn/lib. Once you are in the lib directory, you can
make the directory for your subject. The name you use here will be
the subject that the student types when asked, Enter subject?.

To make a directory for the subject cat, enter the following:

mkdir cat

The next time you list the contents of the lib directory, there will
also be a subdirectory named cat.

Starting the subject with lesson LO

The learn program looks for Lesson LO to start each subject.
Therefore, you must create a file called LO in each subject's direc-

23

learn User's Guide

tory. LO may contain a complete introduction to the subject, or
merely a statement to direct the program to the first lesson.

Figure 3-10 shows an example of a full introduction in file LO.

#print
Welcome to the exercises on files. This
segment of your training concentrates on
creating, printing, modifying, and removing
files from COHERENT.

Before exploring files, we will test you for
prerequisite skills.

If you wish to leave learn to come back later,
type "bye" after the 11 $ 11 prompt appears.

#next
1.01

Figure 3-10: Lesson LO of the filesample subject.

The LO file of the editor subject is very brief. The text of this
script is shown in Figure 3-11.

#next
1.1

Figure 3-11: Lesson LO of the editor subject.

The learn program commands

This section describes the 19 commands that are part of the learn
utility. Each learn command begins with the # character. Every
line that follows a learn command is interpreted as being part of
that command. Another learn command or a COHERENT com
mand causes one operation to stop and another to begin.

24

•

•

•

•

•

•

learn User's Gulde

create file

This command creates file, and writes the lines between this com
mand and the next learn command in file . For example:

#create text
Text
for
file
#print

Use this command to create and initialize working files and refer
ence data for the lesson.

#print

This command prints or displays the lines between this command
and the next learn command at the student's terminal. Use this
command to print instructions and explanations for the student.
For example:

#print
Now is
the time
for all
#user

#print file

This command prints the contents of file at the student's terminal.
This command is useful when the text the student is to see is
repeated within the script or from one script to another. Put the
text to be repeated into file using the #create file command. Then
print the contents of file whenever necessary .

25

learn User's Guide

Terminating a command

#end

This is a null command that serves as a terminator for another
learn command when nothing else is appropriate.

Giving the student control

#user

This command gives control to the student. Each line that the stu
dent types is executed as any COHERENT command would be.
The learn program regains control when the student enters yes, no,
answer [answer], or ready. The student may also terminate the les
son at this time by entering bye.

Capturing the student's work

#copyin

This command opens a file called .copy to receive anything the stu
dent types, holding it for comparison with a control file. To use
this command to catch the student's work, #copyin must precede
the #user command.

#uncopyin

This command terminates the #copyin command. For the student's
work to be captured into the file .copy, this command must follow
the #user command. Example:

26

#copyin
#user
#uncopyin

•

•

•

•

•

•

learn User's Gulde

Capturing the student's results

#copyout

This command opens a file called .ocopy. This file captures the
material that the system prints at the student's terminal for com
parison with a control file. To use #copyout, it must precede the
#user command.

#uncopyout

This command terminates the #copyout bracket. #uncopyout must
follow the #user command. Example:

#copyout
#user
#uncopyout

Processing the lesson in the shell

#pipe

The pipe command allows you access to the COHERENT shell
while remaining in learn. A subshell is set up: your script state
ments are passed to the COHERENT shell in a stream instead of
individually. For example, if a learn lesson is trying to teach you
how the editor works, you can get "hands on" experience. By util
izing the #pipe, you are moved temporarily to the editor, allowed to
manipulate and edit as much text as you want, and then, by stop
ping the #pipe command (with #unpipe), brought safely back to the
learn lesson you started from.

When you want to evaluate a student's work, the #pipe command
must be inside the #copyin or #copyout brackets. Figure 3-12
shows a possible series of commands that includes #pipe .

27

learn User's Gulde

#copyout
#pipe
ed
#user
q
#unpipe
#uncopyout

Figure 3-12: Automatic entry and exit (quit) of editor
with results copied into .ocopy.

#unpipe

This command terminates the #pipe command, and also must be
within the #copyin or #copyout brackets.

Testing the student

#cmp Ji/el file2

This command compares the contents of filel with the contents of
file2. Use this command to compare .copy or .ocopy with your
control file. You may also use this command with only one argu
ment to compare a student-generated file with the lines after #cmp,
up to the next learn command.

#match pattern

This command compares the last line of student input with the
specified pattern. The special characters '*', '?', '[...]', and '\'
perform the same functions in learn as in file name expansion in the
shell. After a correct match, any lines that are not learn commands
are printed for the student.

#bad pattern

This command is the opposite of the #match command. Use this
command to check for specific wrong answers and then print hints
to help the student pass the lesson.

28

•

•

•

•

•

•

learn User's Gulde

#succeed

This command allows a congratulatory prompt to be printed at the
student's terminal, upon correct completion of a lesson. The
correctness of the complete lesson is determined as the result of
invoking one of the following commands: #match, #bad, or #cmp.

#fail

This command allows a negative prompt to be printed at the
student's terminal, as a consequence of an incorrectly completed
lesson. As above, the lesson is evaluated by one of the following
commands: #match, #bad, or #cmp.

#negate

This command reverses the success and failure states of a lesson.
The main use is for lessons that direct the student to send a com
mand to the shell. If the student matches the wrong answer, but
the student's response is correct, the status must be reversed .

After the student has finished the lesson and returned control to the
script, the script writer may use COHERENT commands such as
tail - n and grep to help evaluate the success or failure of the les
son.

Recording the results

#log file

This command writes a log entry about the lesson into the specified
file. You must use the absolute file name for this command to
work. If no argument is included, the log entry is written in the
logging file named for the subject (/usr/learn/log/subjectname).

Giving the student another lesson

#next

The lines that follow this command direct the learn program to pro
vide follow-up lessons for the student based on the performance of
the student on the current lesson.

29

learn User's Manual

•

•

•
30

•

•

•

learn User's Gulde

4. Debugging learn scripts

From time to time while testing your learn scripts, you may find
that the script does not work as you expected. This section pro
vides guidelines for making the nonoperating script an operating
script.

Examining the lesson file

The information you need first is a listing of the commands in the
script. Print this listing by using one of the COHERENT com
mands, or by entering the editor and printing:

1,$p

Now that you can see the script that learn is reading, you can begin
to solve the problem .

Verifying the command syntax

Perhaps the easiest check you can perform is to analyze the use of
#copyin and #uncopyin, #copyout and #uncopyout, and #pipe and
#unpipe.

After verifying that all the open brackets that occur before the
#user command have terminators after #user, you can check to see
that any files mentioned in the script actually exist, and are accessi
ble to the learn program.

Verifying that necessary files are available

If learn cannot find a file specified by a particular script, the student
will receive an error message when the script tries to open or locate
the file. To see what files exist in the directory
/usr/learn/play/_/, use the le command when the '$' prompt
appears during the problem lesson. If the file that the lesson
requires is not in the play directory, make sure that the absolute file
name is given for each file learn is to print or compare during the
lesson, or create the file (this puts it in the play directory) at the
beginning of the script.

31

learn User's Guide

If learn still encounters errors when trying to open a file, you may
need to check earlier scripts within the subject to see if the file
should have been created there.

Verifying that the next lesson exists

When the lesson you write contains the #next command, the learn
program will return the following error message if the requested les
son is missing:

learn: script error--lesson 'N.N' not found

A quick fix for this bug is to create a lesson with the name referred
to in the #next statement. Write the #end command into the new
file. When you are ready to write the lesson, replace #end with that
lesson.

32

•

•

•

•

•

•

#: 16, 18, 24
#bad: 19, 28-29
#cmp: 13-14, 16, 20-21 , 28-29
#copyin: 20, 26-28, 31
#copyout: 13-14, 21, 27-28, 31
#create: 13, 15-17, 25
#end: 26, 32
#fail: 10, 29
#log: 10, 16, 21-23, 29
#match: 10-11 , 15, 19, 28-29
#negate: 29
#next: 16, 22, 29, 32
#pipe: 27-28, 31
#print: 11, 15, 17-18, 25
#succeed: 12, 28
#uncopyin: 20, 26, 31
#uncopyout: 13-14, 21, 27, 31
#unpipe: 27-28, 31

Index

#user: 13-15, 18, 20-21, 23, 26-27,
31

bye: 4
change subjects: 5
follow-up lesson: 4
learn introduction: 3
leaving learn: 4
log in: 3
next: 10
question: 8

open-ended: 12
simple answer: 10
yes or no: 8

repeat a lesson: 4
scripts: 4, 16

writing: 7

learn User's Gulde

33

learn User's Manual

•

•

•
34

•

•

•

learn User's Manual

User Reaction Report

To keep this manual and COHERENT free of bugs and facilitate future
improvements, we would appreciate receiving your reactions. Please fill in
the appropriate sections below and mail to us. Thank you.

Mark Williams Company
1430 W. Wrightwood Avenue

Chicago, IL 60614

Name:

Company:

Address:

Phone: Date:

Version and hardware used:

Did you find any errors in the manual?

Can you suggest any improvements to the manual?

Did you find any bugs in the software?

Can you suggest improvements or enhancements to the software?

Additional comments: (Please use other side.)

35

•

•

•

