
• lex Lexical

Generator Tutorial

•

•

•

•

•

Table of Contents

• 1. Introduction 1

2. How to use lex 3

Translating strings 3

Remove blanks from input 4

Trimming blanks 4

Summary 5

3. lex specification form 7

Simple form 7

Rules in lex 7

Statements in lex 8

Groups of statements 10

• Using the same action 12

Summary 13

4. Patterns 15

Simple patterns 15

Classes of characters 16

Repetition 18

Choices and grouping 21

Matching non-graphic characters 21

Summary 22

5. More patterns 23

Line context 23

Context matching 23

• Macro abbreviations . 25

Context-start rules 27

Separate contexts 28

lex Lexical Generator Tutorial

Summary 30

6. More about writing actions . 31 • ECHO. 31

Processing overlapping strings 32

yylex 33

Header section 34

Additional routines 35

Summary 35

7. Using lex with yacc 37

Index 39

User Reaction Report 41

•

•
ii

•

•

•

1. Introduction

Many computer applications involve reading text strings. While
machine readable information is often used to communicate
between programs, man-machine interfaces usually involve strings
of alphanumeric information.

For some forms of textual input, a programmer can easily design a
program that will process such input. However, such programs can
be implemented much more quickly by using a software tool that
will automatically construct a program to process the data.

The COHERENT command lex is such a tool. lex is a tool that
accepts expressions describing the input to the program, and pro
duces a program that will process the input. lex is a lexical scanner
program generator.

This document tells you how to use lex. Many simple examples are
presented to illustrate how to use the various features of lex, and
how to use the generated program in conjunction with other tools
provided with COHERENT, notably the parser generator yacc.

Readers of this document are presumed to be familiar with the C
programming language and the use of the COHERENT system .
Related documents include Introduction to the COHERENT System
and yacc Parser Generator Tutorial .

lex Lexical Generator Tutorial

•

•

•
2

•

•

•

lex Lexical Generator Tutorial

2. How to use lex
lex is used to generate lexical scanners for compilers, to do statisti
cal analysis of text, and to generate COHERENT filters for many
diverse tasks.
This section gives examples of how to use lex. Later sections dis
cuss the concepts used in these examples in detail.

Translating strings
The first example shows how a lex program can match an input
string and output a different string. Strings not recognized by the
program will be output unchanged. Enter the following program
into the file rmv.lex.

%%
remove able printf ("removable");

This creates the lex specification. Pass this specification through
lex, and it will produce a program named lex.yy .c:

lex rmv.lex

This produces a C program, which you can compile by typing

cc lex.yy.c -11 -o rmv

The executable program rmv is now ready to use. To illustrate its
use, type

rmv
Is this file removeable?
<ctrl-D>

And rmv will reply

Is this file removable?

Note that the generated program reads from standard input and
writes to standard output.

3

lex Lexlcal Generator Tutorlal

Remove blanks from input

The next example will delete all blanks and tabs in the input. Put •
the following lex program into nosp.lex:

%%
[\t]+ ;

Generate and compile the program:

lex nosp.lex
cc lex.yy.c -11 -o nosp

Here is how to use the program:

nosp
This may be hard to read after processing.
<ctrl-D>

The reply will be

Thismaybehardtoreadafterprocessing.

Trimming blanks

The previous example can be rewritten to remove strings of blanks
or tabs and replace them with one space. Create onesp.lex contain
ing:

%%
[\t]+ printf (" ");

Generate and compile this with

lex onesp.lex
cc lex.yy.c -11 -o onesp

Now test the program by typing

4

•

•

•

•

•

lex Lexical Generator Tutorial

onesp
This should be easier to read.
<ctrl-D>

Note that the words in this input are separated by two spaces. The
output produced by onesp is

This should be easier to read.

Summary
This section shows you the basics of using lex. All the steps neces
sary to write, generate, compile, and test simple lex programs are
shown .

5

lex Lexical Generator Tutorial

•

•

•
6

•

•

•

lex Lexical Generator Tutorial

3. lex specification form

This section discusses the form of the lex specification.

Simple form

The examples shown in the previous section use the simplest form
of a lex program. The text of the example rmv .lex was

%%
removeable

The symbol

%%

printf ("removable");

is used to divide sections of the lex specification. Not all
specifications need to be present, but at least one OJoOJo will appear
in a correct lex program.

This symbol separates lex definitions from rules. With nothing
before the OJoOJo, there are no definitions. Rules follow the OJoOJo .
No definitions are needed in the simplest of lex specifications.

Rules in lex

The format of a lex rule is simple. There are two parts to every
rule. Again referring to the rmv example:

remove able printf ("removable");

The first part begins at the beginning of the line and ends with a
space or tab. In the example rule, the first part is

removeable

This part is called the pattern .

The second part follows the space or tab, and is called the action .
The action in this example is

printf (11 removable");

7

lex Lexical Generator Tutorial

When the pattern specified by the rule is found in the input, the
corresponding action is performed.

Thus, this rule detects every appearance of removeable and outputs
the correct spelling.

The generated program tries each rule's pattern in turn, and per
forms the associated action if and only if the pattern matches.
Actions often output some modification of the input that matched
the pattern. Actions may also do nothing for certain patterns. To
illustrate this, create the lex specification in erase.lex

%%
erase

Then compile the generated program with

lex erase.lex
cc lex.yy.c -11 -o erase

•

This program copies all its input to its output, except for any •
appearance of the string erase. Type the commands

erase
Have you erased the blackboard?
<ctrl-D>

and the program will reply

Have you d the blackboard?

If there are any patterns in the file that do not match any of the
patterns in the rules, that pattern is simply output unchanged. Usu
ally, you will want to write rules to cover all cases.

Statements in lex

As noted in the previous sections, lex is a program generator. It
reads the specifications that you prepare for it, and produces a C
program that is used in conjunction with the lex library. Many of •
the actions in the rules you specify, for example

8

•

•

•

lex Lexlcal Generator Tutorlal

printf ("removable");

are themselves C statements. These statements are included in the
resulting program along with other statements provided by lex
necessary for the program to operate.

Other statements can be included if the program needs them by
placing them in appropriate places. The following example counts
the number of tokens, or strings of non-blank characters. Enter
the following program into the file count.lex

int count;
%%
[- \t\nJ+
[\t\nJ+
%%
yywrap ()
{

count+-+;

printf ("Number of tokens:%d0, count);
return (1);

}

There are two places that statements other than rule actions are
placed. The first non-rule statement is in the definition section,
which precedes the rule section delimiter 0/o 0/o:

int count;

This C statement declares count to be an integer variable. Notice
that it is preceded by a tab. A tab or a space indicates to lex that
an input line is not a rule.

The second kind of non-rule statement follows the second 0/o 0/o del
imiter marking the end of the rules. Anything following the second
delimiter will be treated as source statements and placed at the end
of the program.

This example has included a routine named yywrap. This is a rou
tine that lex programs call at then end of processing. This is the
routine that prints the count of the tokens in the input.

9

lex Lexlcal Generator Tutorlal

Compile the program by typing

lex count.lex
cc lex.yy.c -11 -o count

Run the program by typing

count <count.lex

which will count the tokens in the count.lex file itself. The result
will be:

Number of tokens:21

If you do not include a routine named yywrap, lex will use a stan
dard one.

Groups of statements

•

In previous examples, the C statement as the action part of the rule •
is a single statement. In many lex applications, you will need to use
more than one statement per rule.

To do so, enclose the statements in the braces { } . The following
example illustrates grouping. This lex specification will generate a
program to total numbers found in the input and print the total
whenever the asterisk character '*' is input. Enter the following
program into nsum.lex.

10

int number, sum;
%%
[0-9]+ {

"*"

sscanf (yytext, "%d", &number);
sum += number;
printf ("%s", yytext);
}
{
printf ("%s", yytext);
printf ("%d" 1 sum);
sum= O;
} •

•

•

•

lex Lexical Generator Tutorial

To run the generated nsum program, enter a sample data file by
typing

cat >numbers
one two three
1 2 3 4 * 1 2 3 5 *
*
done
<ctrl-rt>

This builds a sample data file . Run the program by typing

nsum <numbers

The reply will be

one two three
1 2 3 4 *10 1 2 3 5 *11
*O
done

The statements following the

[0-9]+

and

*

patterns are enclosed in braces, since each action triggers several
statements. The first of these,

[0-9]+ {
sscanf (yytext, "%d", &number);
sum += number;
printf ("%s", yytext);
}

11

lex Lexical Generator Tutorial

The pattern looks for strings of digits . For each such string, the
sscanf converts the string of digits to a number and saves it in the •
variable number. The second rule

"*" {
printf ("%s", yytext);
printf ("%d", sum) ;
sum = O;
}

specifies that upon detection of * in the input, the total sum of the
numbers is to be printed and the total is reset. In both of these
rules, the statement

printf ("%s", yytext);

prints the number or * so that the output shows the input as well as
the total.

The variable yytext is defined by lex, and aiways contains the string •
matched by the rule.

If the input is neither a number or an asterisk, it is echoed by
default, since no rule will explicitly match it.

Using the same action

To make it easier to write actions, lex allows you to write an action
performed by several rules only one time. To abbreviate rules
represented symbolically by

pl actionl
p2 actionl

abbreviate by using the vertical bar operator

pl
p2 actionl

The vertical bar means "use the action from the rule that follows". •

12

•

•

•

lex Lexical Generator Tutorial

Summary

Each lex specification, or program, has a specific form. Each pro
gram must have at least a definitions and rules section, and may
also have a program section. Each rule has a pattern part and an
action part. Actions may be made up of one or more C statements .

13

lex Lexical Generator Tutorial

•

•

•
14

•

•

•

lex Lexical Generator Tutorial

4. Patterns

The first part of each rule in the lex rules section is a pattern that
matches parts of the input. This section describes how these pat
terns, sometimes called regular expressions, are constructed. If you
are familiar with ed and how its patterns work, this will be familiar
to you.

Simple patterns

The simplest kind of pattern is a string of characters that match
themselves. An illustration of this was presented in the previous
section:

%%
removeable printf ("removable");

This regular expression will match all occurrences of removeable
that appear in the input text.

Certain characters have special meaning to lex patterns. To match
a special character, you must quote it. For example, * has special
meaning. In order to match the asterisk as a text character, as in
the lex program nsum.lex in the previous section, surround it by
quotes:

"*"

Another way to quote characters is with the backslash character
'\'.

The following characters each have special meaning and must be
quoted to be matched as text characters:

II \ () < > { } % * + ? [] - I $ • I

However, within " the \ still has its meaning, so to match the
string \ *, use the regular expression

15

lex Lexlcal Generator Tutorial

"\ '*"
Also, to match a quote character, use

\"

Classes of characters

The power of patterns comes from special characters that match
more than one character.

The period or dot matches any character except newline. The fol
lowing regular expression matches any pair of characters beginning
with J:

J.

The following example outputs in square brackets any sequence of

•

five characters ending with a blank. Enter the following program •
into the file five.lex

%%
II If

Compile the program:

lex five.lex

printf ("[%s]", yytext);

cc lex.yy.c -11 -o five

Test it with

five
how well does this work?
no match
<ctrl-D>

The result is

16

•

•

•

•

lex Lexical Generator Tutorial

how[well]does[this]work?
no match

The second line of the input does not have any matches. Since the
dot pattern character does not match the end-of-line character, all
five characters preceding the blank must be on the same line.

Another way to match many characters, but selectively, is with the
character class operation. The selection of characters to be
matched is enclosed in square brackets. Any one of the characters
listed there will match one character of the input. For example,

[0123456789]

will match any single decimal digit of the input. Characters may be
in any order within the brackets. Thus

[0246813579]

is equivalent to the example above.

To simplify specifying for character classes, you can specify ranges
of characters. The beginning and end of the range is separated by a
hyphen. To match all decimal digits as above, use

[0-9]

To match all alphabetic characters , type

[a-zA-Z]

The special character - when used after the opening bracket '['
signifies that any character except those enclosed are to be matched.
The following example finds all two digit numbers not followed by
a period or alphabetic character and prints them surrounded by {
and } . Enter the program twodig.lex

%%
[0-9] [0-9] [-\ .a-zA-Z] printf ("{%s}", yytext);

17

lex Lexical Generator Tutorial

Process and compile by typing:

lex twodig.lex
cc lex.yy.c -11 -o twodig

Run the program by typing:

twodig
12. 12 12a 112 b
<ctrl-D>

The result will be

12. {12 }12a 1 {12 }b

Repetition

Each character in patterns shown so far will match one character at

•

a time. Many interesting input patterns involve repetitions of char- •
acters.

To match more than one instance of a character, follow it with the
pattern operator + . The summation example in nsum.lex shown
earlier recognized strings of input numbers and added them to a
total. Here is the segment of the program that recognizes numbers:

[0-9]+ {

The pattern

[0-9]+

sscanf (yytext, "%d", &number);
sum +number;
printf ("%s", yytext);
}

matches a string of one or more digits.

The operator * will match zero or more characters of a specified •
type. The following example (enter it into file star.lex) deletes all
characters between square brackets:

18

•

•

•

lex Lexical Generator Tutorlal

%%
\[.•\] printf ("[]");

Then, type the following lines to generate and compile the program:

lex star.lex
cc lex.yy.c -11 -o star

test the program

star
[This should dissappear]
[what happens with two] of them [on a line?]
<ctrl-D>

The brackets are preceded by a backslash since they have special
meaning in regular expressions. The result from this example is:

[]
[]

In looking at the example input, you might have expected the out
put to be

[]
[] of them[]

The reason that the latter result is not produced is that lex gen
erated recognizers find the longest match if several matches are pos
sible. Therefore, the first [was matched, then all characters up to
and including the second] were matched.

When writing a pattern that matches many characters, you should
be aware of this possibility and account for it.

To change the program to match the first], rewrite it as follows:

%%
\[[-\]JI\] printf ("[]");

19

lex Lexlcal Generator Tutorial

The regular expression now matches a string of all characters except
a], when that string is enclosed in square brackets.

The '?' character is used to signal that the previous character or
regular expression is optional. In other words, '?' signals zero or
one instance of a character or regular expression. A text processor
might recognize words as strings of alphabetic characters optionally
followed by a period. This example (enter into file word.Jex) will
do this and output recognized words enclosed in parentheses:

%%
[a-zA-ZJ+\.? · printf ("(%s)", yytext);

Generate and compile the program with

lex word.lex
cc lex.yy.c -11 -o word

Test the program with

word
These are words.
Question mark not included?
<ctrl-D>

The result is

(These) (are) (words.)
(Question) (mark) (not) (included)?

The question mark, like the * and + operators, can also follow
another specification of a pattern. If you wanted to include other
sentence termfoators as the last character of a word, the pattern is
written:

[a-zA-Z]+[.? ! ,J?

The characters

• ? ! '

20

•

•

•

•

•

•

lex Lexical Generator Tutorlal

are optional .

The plus and asterisk repetition operators may match many charac
ters. If you want to match a specific number of characters or pat
terns, follow the patterns with the repetition within braces { and }:

[0-9]{3}

matches a string of exactly three digits.

You can also specify a range of counts. To match from seven to
nine occurrances of lower-case alphabetic characters, use

[a-zJ{7,9}

Choices and grouping

You can indicate alternate choices of characters or regular expres
sions by separating them in the regular expression with a vertical
bar operator I- To match either three decimal digits or the charac
ter a, use

co-9]{3} I a

Parentheses help to group parts of the pattern separated by the
vertical bar:

(abc) I (def)

This pattern will match the string abc or the string def.

Matching non-graphic characters

Non-special graphic characters in patterns match themselves. Most
non-graphic characters, such as space, tab, and control characters
cannot be matched directly. lex provides special sequences to
match control characters. The following example (enter it into
deblank.lex) removes tabs and blanks from the beginning and end
of input lines:

21

lex Lexical Generator Tutorial

%%
[\tJ+\n
\n[\t]+

printf ("\n");
printf ("\n");

Generate and compile the program

lex deblank.lex
cc lex.yy.c -11 -o deblank

Test the program by typing

deblank
begins with no space or tab

begins with tab
begins with three spaces

<ctrl-D>

The result will be

begins with no space or tab
begins with tab
begins with three spaces

The special regular expression \ t represents tab, and \ n represents
newline. Notice that this is the same expression used in C strings,
as in the printf statement.

To match the backspace character, use \b. Form feed is matched
by \f. To match an arbitrary character with a known octal value,
use three octal digits after the backslash; for example,

\007

Summary

•

•

This section discusses patterns for rules. Simple patterns match
specified characters one by one. Character classes match any char- •
acter at a given position. Repetition of patterns can be specified for
matching.

22

•

•

•

lex Lexical Generator Tutorial

S. More patterns

This section discusses more advanced capabilities of patterns.

Line context

Like ed, lex patterns can include characters representing beginning
and end of line. To match a line containing exactly five alphabetic
characters,

~[a-zA-ZJ{5}$

The character - matches the beginning of the line, and $ matches
the end of the line.

Context matching

The slash character '/' is used to show that a following context is
necessary to match a string. For example, to match the string
match only if it is immediately followed with the string ing, enter
the following lex program into match.lex:

%%
match/ing printf ("{%s}", yytext);

Generate and compile the program:

lex match.lex
cc lex.yy.c -11 -o match

Test it with

match
Will this match?
This is a matching test.
<Ctrl-D>

The result will be

Will this match?
This is a {match}ing test.

23

lex Lexical Generator Tutorial

Notice that the string before the slash is matched. The part follow- •
ing the slash is not matched, even though the string must be there
in order for the first part to be matched. Thus, the regular expres-
sion following the slash is susceptible to further matching. To illus-
trate, the following example is a variant of match.lex to be entered
into matcb2.lex

%%
match/ing
ing

printf ("{%s}", yytext);
printf ("ed");

Generate and compile with

lex match2.lex
cc lex.yy.c -11 -o match2

Test the program with

match2
Will this match?
This is a matching test.
You must now sing for your supper.
<ctrl-D>

The result will be

Will this match?
This is a {match}ed test.
You must now sed for your supper.

The context following the / can be a general regular expression. To
match the whole part of a number with decimal fractions, enter the
following into wbolept.lex

%%
11

-
11 ?[0-9]+/"."[0-9]+ printf ("(%s)", yytext);

Generate and compile the program with:

24

•

•

•

•

•

lex Lexical Generator Tutorial

lex wholept.lex
cc lex.yy.c -11 -o wholept

Test the program with

wholept
123 12345 1234.567
<ctrl-D>

The result will be

123 12345 (1234).567

The part of the regular expression

,, -"?

matches an optional leading minus sign. Then,

[0-9]+

matches a string of length at least one of decimal digits. Then, the
following context must match the regular expression

"."[0-9]+

matches the fractional part of the number. For numbers that
match, the whole part of the number is printed enclosed in
parentheses.

Macro abbreviations

To assist you in writing regular expressions, lex provides a macro
facility that can substantially simplify writing complex regular
expressions.

A macro is a named body of text. The appearance of the name of
the macro is replaced by the text of the macro .

To illustrate, the following example (enter into file float.lex) recog
nizes integer and floating point constants according to the C

25

lex Lexical Generator Tutorial

format.

d [0-9]+
e [Ee][+-J?[0-9]+
%%
{d}\.
{d}\.{d}
\.{d}
{d}\.{e}
\.{d}{e}
{d}\.{d}{e}
{d}{e} printf ("F:[%s]", yytext);

The macro e translates to a pattern that matches a string of digits at
least one digit long. The macro d matches the exponent part.
These two are invoked in the manner of

{ d}

within a pattern. Generate and compile the program by typing

lex float. lex
cc lex.yy.c -11 -o float

Now, run the program:

float
1 1. 1.2 1.e4 1e4
.1e4 e4 .1. 0 1.2eJ
<ctrl-D>

The result will be

26

1 F:[1.J F:[1.2] F:[1.e4] F:[1e4]
F:[.1e4] e4 F:[.1]. 0 F:[1.2eJJ

•

•

•

•

•

•

lex Lexical Generator Tutorlal

Context-start rules

Many lex tasks require processing that depends upon context. lex
provides the ability to condition processing upon previously pro
cessed input. This is done by start conditions.

Start conditions are named in the definitions section by

%S narnel narne2

where namel and name2 are names of start conditions. These start
conditions are used by prefixing a pattern with the start condition
name enclosed in angle brackets:

<narnel>

An example of use of context conditions is to use one start condi
tion for the scanning of comments in a Pascal-like language. The
start condition is set by the lex statement BEGIN when the begin
ning bracket of the comment is found. The comment is scanned
for strings beginning with $ to signal compiler operation. Enter the
following into comment.lex:

Compile:

%S CMNT
%%
<CMNT>\$[ler]
<CMNT>(\}J
<CMNT>\}
\{

lex comment.lex

printf ("Option is %s.\n", yytext);

BEGIN O;
BEGIN CMNT;

cc lex.yy.c -11 -o comment

Test the program with

27

lex Lexical Generator Tutorial

comment
{This is a comment}
{This comment has options $1 $e $r}
program
information
<Ctrl-D>

and the result will be

Option is $1.
Option is $e.
Option is $r.
program
information

The context start condition is named following BEGIN in the action
part of the rule. To return to the normal condition, use O as the
context name.

Separate contexts

If the context-dependent processing is more complex than that
shown in the example above, it will be more convenient to use
separate contexts. lex provides the capability to define separate
contexts.

The names of the contexts are defined in the definitions sections fol
lowing any start conditions definitions:

%C name name ...

The lex function yyswitcb is used to switch to a new context.

The body of the context's rules is preceded in the rules section by

%C name

•

•

As an illustration, the following example (enter it into pre.lex) is •
part of a program that will recognize the preprocessor statements in
a C program.

28

•

•

•

lex Lexical Generator Tutorial

%C PRE
%%
-# yyswitch (PRE);
[-#\n]+ printf (11 [%s] 11

, yytext);
%C PRE
include.+
define.+

.+

I
{
printf(11 {%s} 11

, yytext);
yyswitch(O);
}
{
printf ("{??%s} 11

, yytext);
yyswitch (O);
}

A # in column one signals the beginning of a preprocessor state
ment. Upon recognition of this condition, this program uses
yyswitch to activate the context PRE .

Within this separate context, individual rules recognize different
preprocessor statements. Only two are included in this example.
Each of the rules prints the preprocessor line enclosed in braces { } .
Additionally, the rules switch back to the original (and unnamed)
context by the statement

yyswitch (O);

Compile and test this program:

lex pre.lex
cc lex.yy.c -11 -o pre
pre <lex.yy.c

This will process the generated C program.

This example uses yyswitch to return to the original context at the
end of each rule in the secondary context. Some applications will
require a return to the context that was previously in force. To
assist in this, yyswitch returns the value of the previous context.

29

lex Lexical Generator Tutorial

To modify the example to switch to the previous context, add a
statement to the definitions section declaring a variable to hold the •
previous context:

int prev;

Then, when switching, save the current context:

prev = yyswitch (NEW);

To switch back, use:

yyswitch (prev);

Summary

Advanced matching elements are discussed in this section. You can
specify a match at the beginning and end of input lines. You may
require a following context for a match. Macros provide a means
of abbreviating elements of patterns. lex can qualify some patterns •
based on a start context, or process entirely separate contexts .

•
30

•

•

•

lex Lexical Generator Tutorlal

6. More about writing actions

This section discusses predeffned lex actions and how to use them as
well as other lex routines useful in writing actions.

ECHO

Many lex actions simply output the matched pattern:

[0-9]+ printf (11 %s 11
, yytext);

This form has been used in the examples (enter it into double.lex)
because many examples output additional material, such as enclos
ing braces to illustrate the matched token.

lex provides a simpler way to echo the exact token matched:

[0-9]+ ECHO;

The following example will echo all strings of digits twice, and
everyting else once:

%%
[0-9]+
(0-9]+

{ECHO; ECHO;}
ECHO;

Generate and compile the program with

lex doubl e.lex
cc lex.yy . c -11 -o double

Test the program with:

double
abcdef 123 1234
<ctrl-D>

The reply will be:

abcdef 123123 12341234

31

lex Lexical Generator Tutorial

Processing overlapping strings

lex processing illustrated to this point is restricted to programs
whose rules recognize distinct strings. That is, once any character
of a string is matched by a regular expression, it cannot be matched
by another.

Some applications require the matching of strings by more than one
rule, or the matching of overlapping strings. The lex action word
REJECT provides this capability. When the word REJECT
appears in a rule, other rules have a chance to match the string.
Keep in mind that lex programs will give precedence to the longest
string that matches a regular expression.

The following example determines the number of letter pairs, or
digrams, in its input. The input is presumed to be lower-case
letters. Enter the following into digram.lex

int digram (128] (128];
%%
[a-z][a-z]

\n
%%
yywrap ()
{

int il, i2;

{
digram [yytext (OJ] [yytext [1]]++;
REJECT;
}

for (il = 'a'; i1 <= 'z'; il++)

}

for (i2 = 'a'; i2 <= 'z'; i2++)
if (digram [il] [i2] I= 0)

printf ("%d\t%c%c\n",
digram [il] [i2J, 11, 12);

Generate and compile the program with

lex digram.lex
cc lex.yy.c -11 -o digram

32

•

•

•

•

•

•

lex Lexical Generator Tutorial

Given an input of

digram
this is a test of digrams.
<ctrl-D>

the result will be:

1 am
1 di
1 es
1 gr
1 hi
1 ig
2 is
1 ms
1 of
1 ra
1 st
1 te
1 th

yylex

The actions you provide for the rules in your lex program are
placed in a C routine named yylex.

If you add variable declarations in the definitions section before the
first 0/o % , yylex can access them, as in the digram.lex example
above. Declarations local to yylex can also be provided, if you
place the declarations after the rules section delimiter and before
the first rule. The declaration must have a space or tab preceding
it. The following is a different version of digram.lex called
digram2.lex using such a declaration .

33

lex Lexlcal Generator Tutorlal

int digram [128J [128J;

int to,
[a-zJ[a-zJ

tl;
{
to= yytext
tl = yytext
digram [tOJ
REJECT;
}

[OJ;
[lJ;
[tlJ;

%%
yywrap ()
{

}

int il, i2;
for (il = 'a'; i1 <= 'z'; il++)

for (i2 = 'a'; i2 <= 'z'; i2++)
if (digram [ilJ [i2J != 0)

printf ("%d\t%c%c\n",
digram [HJ [i2J, il,

Header section

i2);

Additional code can be inserted at the beginning of the generated
program by including such code in the definitions section. An
example of this presented earlier called count.lex demonstrated this:

int count;
%%
[- \t\nJ+
[\t\nJ+
%%
yywrap ()
{

count++;

printf ("Number of tokens:%d\n", count);
return (1);

}

The code to be included must be preceded by a blank or tab.

34

•

•

•

•

•

•

lex Lexical Generator Tutorial

However, if it is necessary to insert include or other C preprocessor
statements at the beginning of the program, a different technique
must be used. This stems from the fact that the preprocessor state
ments must begin at the beginning of the line, and the blank or tab
precludes this.

The alternative method to add code to the beginning is as follows:

%{

%}
code ...

where the 0/o symbols are at the beginning of the line.

Additional routines

If other routines are needed by your version of yywrap or any of
the rules that you write, code for them is included after a second
0/o 0/o. This is where yywrap was shown in digram.lex. If you wish
to provide your own version of input or output, it must be defined
here.

Summary

This section discussed topics concerning actions, such as ECHO,
which echoed the matched input unchanged. Overlapping strings
can be matched if REJECT is used to "back up" the input. The
actions you write are placed in the yylex function, and you can add
declarations to the program that are either local to yylex or global
to the program .

35

lex Lexical Generator Tutorial

•

•

•
36

•

•

•

lex Lexical Generator Tutorial

7. Using lex with yacc

Although many applications are handled by lex alone, it is often
used in conjunction with yacc. Typical uses include programming
language compilers which have parts generated by lex and yacc.

Like lex, yacc is a program generator. Its programs recognize input
structured according to a grammar fed to the yacc program genera
tor. Rather than input individual characters, yacc generated pro
grams are more likely to input tokens. Tokens are, in the context
of programming languages, variable names and special characters.
lex is especially suited for partitioning text input into tokens.

A yacc generated program expects a token number as input from
the routine yylex. Each unique token type is assigned a number by
yacc and a symbolic constant is defined for each token. The yacc
generated program expects yylex to return these numbers as the
value.

To access these predefined constant definitions for token types with
your generated lex program, include the generated lex source in the
yacc specification .

To illustrate putting lex and yacc generated programs together, the
following program processes very simple input. Create yacclex.yy
to contain

%token beginning midtok ending
%start simplistic
%%
simplistic

middle
middle
%%

beginning middle ending
{printf ("recognized"); };

midtok;
middle midtok;

When yacc generates the source, it produces a file y.tab.h that con
tains the token name definitions. The lex specification that is to
interface to a yacc program (enter into yacclex.lex) refers to that:

37

lex Lexical Generator Tutorial

%{
#include "y.tab.h"
%}
%%
11
(" return (beginning);

")" return (ending);
[a-zA-ZJ return (midtok);

The symbolic definition of the token names are beginning, ending
and midtok.

Generate the programs and compile and link the result with:

yacc yacclex.yy
lex yacclex.lex
cc y.tab.c lex.yy.c -ly -11 -o yacclex

To demonstrate the combined program, type:

yacclex
(abcdef)

The result will be

recognized

38

•

•

•

•

•

•

$: 23
. (dot): 16
OJoOJo: 7
%S: 27
%{ %}: 35
(and): 21
*: 18
+: 18
/: 24
//: 23
< >: 27
?: 20

abbreviations: 25
action: 7
alternatives: 21
angle brackets: 27

BEGIN action: 27
beginning of line$: 23
braces: 10

in patterns: 21

character classes: 17
context

separate: 28
start: 27
switch: 29

context match:

definitions: 7
definitions section: 33
dot: 16

ECHO: 31
end of line: 23
exception: 17

grouping-0: 21

lex Lexlcal Generator Tutorlal

Index

header section: 34

lex specification: 3

macro:
match

exception: 17
in context:
longest: 19
non-graphic characters: 21
optional: 20

non-graphic character: 21
non-graphic characters: 22

optional match: 20

pattern: 7
Patterns: 15
patterns: 16
program generator:

regular expressions: 15
REJECT: 32
repetion

zero or more: 18
repetition: 18

specific count: 21
repetitions

zero or more: 10
zero or one: 20

rule parts of: 7
rules: 7

context start: 27
with same action: 12

section
header: 34

sections
definitions: 33

39

lex Lexical Generator Tutorial

start condition: 27
statements: 8
statements multiple: 10

tokens: 37

yacc: 37
yylex: 33
yyswitcb:
yytext: 12
yywrap: 9-10

40

•

•

•

•

•

•

lex Lexlcal Generator Tutorlal

User Reaction Report

To keep this manual and COHERENT free of bugs and facilitate future
improvements, we would appreciate receiving your reactions. Please fill in
the appropriate sections below and mail to us. Thank you.

Mark Williams Company
1430 W. Wrightwood Avenue

Chicago, IL 60614

Name:

Company:

Address:

Phone: Date:

Version and hardware used:

Did you find any errors in the manual?

Can you suggest any improvements to the manual?

Did you find any bugs in the software?

Can you suggest improvements or enhancements to the software?

Additional comments: (Please use other side.)

41

•

•

•

