
• nroff Text

Processor Tutorial

•

•

•

•

•

Table of Contents

• 1. Introduction

2. The ms Macro Package 5

Text and Commands 6

Paragraphs . 9

Section Headings 17

Title Page 19

Headers and Footers 20

Fonts 21

Special Characters 23

Footnotes 23

Displays and Keeps 24

• Other Commands 26

3. Basic Commands 27

Breaks . 28

Fill and Adjust Modes . 28

Paragraphs . 33

Centering 34

Tabs 35

Pages 35

4. Macros 37

Traps 40

Macro Arguments . 45

5. Strings . 51

• Strings Within Strings 52

nroff Text Processor Tutorial

6. Number Registers . 55 • Units of Measurement 61

Conditional Input 65

7. Environments 71

More About Fonts 76

Diversions 78

8. Command Line Options 83

Conclusion 85

9. Summary 87

Index 91

•

•
II

•

•

•

1. Introduction

nroff is the text formatting program provided by the
COHERENT™ system. Working with nroff is easy. You provide
both the text you want processed and commands to control the pro­
cessing; the command lines are interspersed among the lines of text.

This tutorial describes how to work with nroff. It assumes you are
familiar with the basic features of the COHERENT system. In par­
ticular, you should know what a command is, what a file is, and
how to create and edit a file. If you are not familiar with these
concepts, you should read the Introduction to the COHERENT
System before you read this tutorial. Other relevant COHERENT
manuals include the ed Interactive Editor Tutorial (which provides
more detailed information on the COHERENT text editor ed) and
the COHERENT Command Manual (which gives concise descrip­
tions of COHERENT commands).

The input you give to nroff may be a file you have written or you
may have nroff accept input directly from your terminal. This
choice is made when you initially call it. In either case, nroff nor­
mally prints its output on your terminal. If you simply type

nroff

then nroff accepts input from your terminal and prints its output
there·. If you create a file named script.r which you want nroff to
process, type the command line

nroff script . r

nroff processes script.r and prints its output on your terminal. The
suffix .r is often used to indicate that a file contains nroff input.
You may save the output by redirecting it to another file target:

nroff script.r >target

If your COHERENT installation provides a line printer, you can
print copies of the output on it; you might use a pipe to funnel the
output of nroff' s activity to the line printer :

nroff script .r I lpr

As you will discover in working through this tutorial, it is possible
for you to control all significant aspects of the output's appearance.
An unexpected consequence of this, though, is that since you have
ultimate control over almost everything, nroff does very few things

nroff Text Processor Tutorial

without specifically being commanded to do them . It does not
automatically leave margins at the top and bottom of pages; it does
not automatically number pages; it does not automatically format
paragraphs. You must use predefined or create your own sets, of
nroff commands, called macros, to produce these features if you
want them. In a sense, when you work with the basic nroff com­
mand, the script you write for nroff to process is a program that
tells nroff what to do with your text .

An nroff macro package called ms provides predefined ways of for­
matting paragraphs, producing header and footer areas (the areas at
the top and bottom of pages, respectively), and so on. Using the
macro package is easy. The command

nroff -ms

accepts input from your terminal and prints output there;

nroff - ms script .r

processes the file script.r and prints the output on your terminal;

nroff -ms script . r >target

redirects the output to another file; and

nroff - ms script .r I lpr

prints the output produced from processing script.r on the line
printer.

Using nroff with the ms macros is easier than using the nroff itself,
since many output format design decisions have already been made.
The mechanics of creating an acceptable input script for nroff - ms
are no different than they are for the basic program. Working with
the macro package is a good way to gain confidence in working
with nroff commands.

The only way to learn about nroff is to use it. You should try all
the examples in this tutorial, as well as altering them and examining
the resulting output. You should also create your own examples.
Don't hesitate to experiment; you can often learn more from
analyzing why something unexpected happens than you can from
simply copying an example that works as expected.

2

•

•

•

•

•

•

nroff Text Processor Tutorial

Section I of this tutorial describes using nroff with the ms macro
package. It should be sufficient for the needs of many users. Sec­
tions 2 through 6 give more detail about how nroff actually works
with the input text to produce its output. Section 7 describes com­
mand line options available when calling nroff. A final Summary
gives a brief overview of nroff commands .

3

nroff Text Processor Tutorial

•

•

•
4

•

•

•

nroff Text Processor Tutorial

2. The ms Macro Package

nroff is the text formatting program for the COHERENT system.
Its input consists of text lines with interspersed command lines to
control the processing. Its single most outstanding feature is its
flexibility: the user has the ability to control line length, page offset,
page length, paragraph format, beginning and end of page format,
and so on. When you create your input for nroff, you are really
writing a program telling it what to do with your text.

Fortunately, another feature of nroff makes it easier to learn to
prepare input for it. A sequence of basic commands can be given a
new command name; the sequence is called a macro. Whenever
you want the sequence performed, you merely insert a reference to
the macro. For example, you might group together the commands
to format a paragraph under the name PP. Rather than retype the
same sequence of commands each time you want to begin a para­
graph, all you need to do is to insert the command line .PP before
the start of a paragraph.

If you use nroff without the ms macros, you must devise your own
ways to implement paragraph formatting and numbering pages.
nroff does not do such things for you automatically. However, if
you use it in the form nroff - ms, then nroff automatically includes
the manuscript of macros described in this section with your text.
These macros take care of setting line length and page length,
numbering pages, formatting paragraphs, and so on. You do not
need to know which basic commands are used in the macros; you
only need to know the names of the macros and what they do, so
that you may use them appropriately.

The only disadvantage of using the ms macro package is the very
fact that it makes many formatting decisions automatically for you;
you give up much of nroff's flexibility. But this is a small price to
pay for the convenience of the ms commands. to use nroff in its
basic form. Also, learning to use the ms package first is a good
way to become accustomed to preparing input for nroff, so the
features of the basic program will not seem so alien if you eventu­
ally choose to work with them .

Section 5 of this tutorial describes the internal operation of macros
in detail. However, you do not need to understand this in order to
use the ms macro package . In general, it is not advisable to try to

5

nroff Text Processor Tutorial

alter the macros in an existing package such as the ms macros. If
you are sufficiently well acquainted with nroff, it is probably better
to write your own macro package than to tamper with an existing
one.

Text and Commands

nroff input includes both text and commands. The commands con­
trol the processing of the text. nroff distinguishes between text and
commands by looking at the first non-space character of each input
line. If the character is a period '.' or an apostrophe '", the line is
a command; otherwise, it is text.

To become accustomed to using nroff, enter some text into a file .
Create a file script.r containing the following text , or containing
your own text if you prefer :

London . Mi chaelmas Term lately over ,
and the Lord Chancellor sitting in
Lincoln ' s Inn Hall . Implacable November weather .
As much mud i n the str eets, as i f the wat ers
had but newl y retired from the face of the
earth, and i t would not be wonderful to meet
a Megal osaurus , forty feet long or so , waddl i ng
l ike an el ephantine l izard up Holborn Hi ll .

This file contains no commands ; every line is a text line. Process
the file with the command

nr off script . r

If you are working at a CRT terminal, pipe the output into scat so
that it will not rush past you:

nroff scri pt . r I scat

The result of processing the above text with nroff will look like
this:

6

•

•

•

•

•

•

nroff Text Processor Tutorial

London . Michaelmas Term lately over, and the
Lord Chancellor sitting in Lincoln ' s Inn Hall .
Implacable November weather . As much mud in the
streets, as if the waters had but newly retired
from the face of the earth , and it would not be
wonderful to meet a Megalosaurus, forty feet long
or so , waddling like an elephantine lizard up
Holborn Hill .

When you try this example, the spacing will be a little different;
spacing for examples in thi s tutorial is adjusted to indent the output
within the rest of the tutorial text. You should notice several things
about the output. nroff automatically adjusts the spacing between
words to keep a strict right margin, even though the input text con­
tains a ragged right margin. Each output line contains 65 charac­
ters and each output page contains 66 lines. This is called
justification.

Now try processing script.r again, this time with the ms macro
package . Type:

nroff - ms script . r

or

nroff - ms script . r I scat

By examining the output, you will see that nroff again adjusts the
spacing to keep a strict right margin . nroff indents each output line
with 10 leading spaces, followed by 65 characters. Each output
page contains 66 lines, but nroff - ms leaves blank lines at the top
of the page and puts the page number in a blank space at the bot­
tom of the page .

The output of nroff is really just a sequence of characters. It is
useful, though , to think of the output as being printed at ten char­
acters per inch (Pica or 10 pitch spacing) and six lines per inch.
Many output devices correspond to this spacing. With these
assumptions, each page of output from nroff - ms fits on an 8 1/2
by 11 inch page, with an inch of blank space at the top, at the bot­
tom, and on each side. Section 5 of this tutorial discusses units of
measurement in more detail.

7

nroff Text Processor Tutorial

As the example demonstrates, nroff adjusts spacing between words
to keep a strict right margin. When you type in the text, don't
worry about the right margin. You should, however, keep a strict
left margin . When nroff encounters a line of text that begins with
blank spaces, it prints out the line it is currently processing and
then assembles another line beginning with the blank spaces. This
is called breaking the line.

In addition, you should not hyphenate words, with the start of a
word on one line and the remainder on the following line. If you
do, nroff treats the parts of the word as two separate "words" (the
first ending with the hyphen character), rather than joining them as
you intend.

If you have a line of text beginning with a period or an apostrophe,
nroff normally interprets it as a command line. To prevent this,
place the symbols '\&' at the beginning of the line before the
period or apostrophe .

In the remainder of this tutorial, you will learn how to use com­
mands in input text to change the appearance of the output. You
can make the output lines longer or shorter or change the page for­
mat, by using the appropriate commands.

The name of each basic nroff command consists of two lower-case
letters. Some commands include additional information on the
command line, separated from the command name by a space. For
example, sp is the command to leave vertical space between output
lines. The command line

. sp

leaves a single space, while

.sp2

leaves two spaces. The information following the command name
on the command line is called an argument or a field.

The name of each macro defined in the ms macro package usually
consists of one or two upper-case letters. For example, PP is the
name of the macro that begins a new paragraph. The remainder of
this section describes some ms macros in detail.

8

•

•

•

•

•

•

nroff Text Processor Tutorial

Paragraphs

Every time you want to begin a new paragraph , use the paragraph
command PP; that is, place the command line .PP in the text. For
example,

. PP
It is a truth universally acknowledged,
that a single man in possession of a good fortune,
must be in want of a wife .
. PP
However little known the feelings or views of such
a man may be on first entering a neighborhood, the
t r uth is so well fixed in the minds of the surrounding
fam i lies, that he is considered as the rightful
property of some one or the other of their daughters .

When you process this text with nroff - ms , the result will look like
the following:

It is a truth universally acknowledged, that
a single man in possession of a good fortune ,
must be i n want of a wife .

However little known the feelings or views
of such a man may be on first entering a neigh­
borhood, the truth is so well fixed in the minds
of the surrounding families, that he is con­
sidered as the rightful property of some one or
the other of their daughters .

As the output shows, the PP command inserts a blank line before
beginning a new paragraph and indents the fir st line of the new
paragraph by fi ve spaces .

The ms macro package provides another paragraph fo rmat in addi­
tion to PP. The IP command creates an indented paragraph.
nroff indents only the first line of each paragraph created by a PP
command , but it indents every line in an indented paragraph . The
command line

. IP

9

nroff Text Processor Tutorial

skips a line and then begins every line in the following paragraph
with an indent of five spaces. For example ,

. IP
Thi s is an indented paragraph.
All the l i nes are indented by
the same amount .
. PP
Th i s is a normal paragraph .
nr off indents the first line
but does not indent the following l i nes .

gives the output

This is an indented paragraph . All the
l i nes are indented by the same amount .

Th is is a normal paragraph . nroff indents
the first line but does not indent the follow i ng
lines .

Several important variants to the basic .IP command line are avai l­
able. You can add two additional arguments to the command line;
each argument should be preceded by a space . nroff interprets the
first argument after the IP as a tag to the paragraph . It interprets
the second argument as the amount of indentation you want. For
example,

produces

. IP A. 8
This is the first line of text .
nroff indents the following lines by the same
amount as the first .
The indent is eight spaces .
The paragraph includes a tag in the i ndent .

A. This is the first line of text . nroff
i ndents the following lines by the same
amount as the f i rst. The indent i s e i ght
spaces . The paragraph includes a tag in
the i ndent .

•

•

•

•

•

•

nroff Text Processor Tutorial

You should make sure the indent leaves enough spaces for the tag .
If the tag contains blank spaces, enclose it in double quotes:

produces

.IP "King Lear:" 16
Is man no more than this?
Consider him well .
Thou owest the worm no silk,
the beast no hide,
the sheep no wool,
the cat no perfume ...
Unaccomodated man is no more
but such a poor, bare, forked
animal as thou art .

King Lear: Is man no more than this? Con­
sider him well . Thou owest the
worm no silk, the beast no hide,
the sheep no wool, the cat no
perfume . . . Unaccomodated man is
no more but such a poor, bare ,
forked animal as thou art .

As this example shows, this form of the IP command might be use­
ful to format the script for a play.

If you do not want a tag but merely wish to set the indent to some­
thing other than the automatic five spaces, then use a pair of double
quotes with nothing between them for the first field:

. IP "" 8

If you forget the quotes, you will not get what you expect; nroff
interprets 8 as a tag and uses the normal indent of five spaces .

Once you set the amount of indentation, the new indent stays in
effect until you change it again. For example, if you format a para­
graph with

. IP "" 8

and follow it with another paragraph beginning with .IP, nroff also
indents the second paragraph by eight spaces. The indent remains

11

nroff Text Processor Tutorial

in effect until you explicitly change it, for example by beginning a
paragraph with .IP "" 6 (which resets the indent to six spaces) .

Normally, nroff measures the paragraph indentation from the left
margin. Another variation of IP makes it possible to measure the
indentation of a new indented paragraph from the le ft-hand edge of
a previous indented paragraph, thus producing a relative indent .
To do this, enclose the new paragraph between the commands RS
and RE (for relative indent start and relative indent end). For
example,

produces

12

. IP
I began to nod drowsily over the dim page;
my eye wandered from manuscript to print.
I saw a red ornamented title --
.RS
.IP
Seventy Times Seven, and the First of the
Seventy- First. A Pious Discourse delivered
by the Reverend Jabes Branderham, in the
Chapel of Gimmerden Sough .
. RE
. IP
And while I was, half consciously, worrying
my brain to guess what Jabes Branderham would
make of his subject, I sank back in bed, and
fell asleep .

•

•

•

•

•

•

nroff Text Processor Tutorial

I began to nod drowsily over the dim page ;
my eye wandered from manuscript to print . I
saw a red ornamented title

Seventy Times Seven , and the First of
the Seventy- First. A Pious Discourse
delivered by the Reverend Jabes Bran~
derham , in the Chapel of Gimmerden
Sough .

And while I was , half consciously , worrying
my brain to guess what Jabes Branderham
would make of his subject, I sank back in
bed, and fell asleep .

You can include any number of indented paragraphs between RS
and RE; also, you may specify tags and different indents just as for
ordinary indented paragraphs. You may even nest RS and RE pairs
inside each other to produce multiple relative indents . Just
remember that an RS must always be balanced by an RE. The fol­
lowing Hollywood scenario uses relative indents for levels of nested
flashbacks .

13

nroff Text Processor Tutorial

.IP
In England during World War II, a captain tells the
story of his Free French bomber squadron .
. RS
.IP
In the early days of the war, a French ship picks up
five men adrift in a small boat. One tells of their
life on Devil's Island .
• RS
.IP
A convict tells others of his past .
• RS
.IP
Publication of anti - Nazi material leads to arrest on
false charges .
. RE
.IP
The convicts escape to help France in the war .
. RE
. IP
When France surrenders, the crew overpowers pro-Vichy
officers and heads for England instead of Marseilles .
. RE
.IP
The captain concludes his story as the bombers return
from a mission.

This produces the following output.

14

•

•

•

•

•

•

nroff Text Processor Tutorial

In England during World War II, a captain
tells the story of his Free French bomber
squadron.

In the early days of the
ship picks up f i ve men
small boat . One tells of
Devil ' s Island .

war , a French
adrift in a

their life on

A convict tells others of his
past .

Publication of anti - Nazi
material leads to arrest on
false charges.

The convicts escape to help France
in the war .

When France surrenders , the crew over­
powers pro- Vichy officers and heads for
England instead of Marseilles .

The captain concludes his story as the bomb­
ers return from a mission .

If you build up successive layers of relative indentation with several
RS commands, each RE peels away the current layer of indentation
and places you in the previous one. To return to an even earlier
level, your input must include the appropriate number of RE com­
mands before you begin another paragraph.

A third type of paragraph is the quoted paragraph; this sets off a
quotation from the surrounding text. It produces a paragraph
which is indented both on the right side and on the left side. To
produce such a paragraph, precede it with the QS command and
follow it with the QE command. To break the quote into different
sections, insert a blank line in the text before each line that you
want to begin a new section. For example, try the following exam­
ple .

15

nroff Text Processor Tutorial

Form of Tender of Rescue from Strange Young
Gentleman to Strange Young Lady at a Fire .
. QS
Although through the fiat of a cruel fate, I have
been debarred the gracious privilege of your
acquaintance, permit me, Miss [here insert name,
if known], the inestimable honor of offering you
the aid of a true and loyal arm against the fiery
doom which now o ' ershadows you with its crimson
wing. [This form to be memorized, and practiced
in private .]
.QE
Should she accept, the young gentleman should offer
his arm - bowing, and observing "Permit me" -
and so escort her to the fire escape and deposit
her in it.

This produces the output:

16

Form of Tender of Rescue from Strange Young
Gentleman to Strange Young Lady at a Fire .

Although through the fiat of a cruel
fate, I have been debarred the gracious
privilege of your acquaintance, permit
me, Miss [here insert name, if known],
the inestimable honor of offering you
the aid of a true and loyal arm against
the fiery doom which now o'ershadows
you with its crimson wing . [This form
to be memorized, and practiced in
private.]

Should she accept, the young gentleman should of­
fer his arm - bowing, and observing "Permit me" -
and so escort her to the fire escape and deposit
her in it.

•

•

•

•

•

•

nroff Text Processor Tutorial

Section Headings

The section heading command SH prints a heading or title. For
example:

.SH
Section Headings

The heading may be more than one line long; consequently, you
should follow a section heading by a PP or IP command. nroff
leaves a blank line before the heading and prints the heading flush
with the left margin in boldface type, as described below in the sec­
tion on Fonts.

The numbered heading command NH produces consecutively num­
bered section headings. For example:

. NH
Guess What's Coming to Dinner?

, . NH
Guess Why I Won't be There ?

produces

1. Guess What's Coming to Dinner?

2 . Guess Why I Won't be There?

if these are the first two NH commands in the input.

You can produce numbering for subsection headings by entering a
number from 2 to 5 on the NH command line . The number indi­
cates the level of section headings; NH 2 riumbers subsection head­
ings, NH 3 numbers subsubsection headings, and so on. For exam­
ple:

17

nroff Text Processor Tutorial

produces

. NH
Guess What's Coming to Dinner?
. NH 2
Guess What it Looks Like?
.NH 3
Teeth Like That Might Frighten the Children!
. NH 2
What Does it Eat?
.NH
Guess Why I Won ' t be There?

1. Guess What's Coming to Dinner?

1.1 Guess What it Looks Like?

1.1.1 Teeth Like That Might Frighten the Children!

1. 2 What Does it Eat?

2 . Guess Why I Won't be There?

The number on the NH command line is not the number that
appears in front of the heading; instead, the number controls how
many "parts" the number that appears contains. For example, NH
3 produces a three-part number like 2.5.3, while NH 4 produces a
four-part number like 7.4.5.2.

You can reset the entire numbering scheme by using the command
NH O; for example,

.NH 0
Nancy and Ron ' s Favorite Recipes

produces

1. Nancy and Ron's Favorite Recipes

with numbering starting at I.

18

•

•

•

•

•

•

nroff Text Processor Tutorial

Title Page

If you want your output to begin with a ti tle page, begin the input
with the following .

. TL
Title of document (may be more than one line)
. AU
Name(s) of author(s) (may be more than one line)
.AI
Institution(s) of author(s)
. AB
Abstract (line length 5. 5 inches)
. AE

The TL command indicates the title, the AU command indicates
the author , the AI command indicates the author's institution , and
the AB command precedes the abstract . The AE command , for
abstract end , marks the end of the abstract. If you do not want
some of these headings to appear , simply omit the relevant com­
mand lines. The actual text of the document should begin immedi­
ately following the AE command line. You must begin the text
with a command such as PP or SH.

The following is a typical example of a title page:

. TL
Doctor Smith Meets the Green Lady
. AU
P. R. Saba
. AI
The Psychedelic Haberdashers' Club
. AB
Driven frantic by the metallic sheen and
hi gh- pitched whine of the Green Lady ' s siren song,
Doctor Smith prepares to abandon the safety of the
spaceship and risk all on an interstellar fl i ng .
. AE
. PP
(Text of the first paragraph begins here . . .)

If you try this example, you see in the output that the text begins
on the same page as the title information. You may or may not

19

nroff Text Processor Tutorial

want this to happen. If you do not, one solution is to insert two
additional commands between the AE command and the first PP
(or whatever your first formatting command might be):

.PP

.bp

The PP followed by the begin page command bp puts a dummy
paragraph on the title page and then begins a new page. The rea­
son bp alone will not work lies in the construction of the title page
macros; the dummy paragraph forces nroff to print title page infor­
mation before beginning a new page.

Headers and Footers

The header macro controls the format of the top of each page. It
automatically skips an inch of space. The footer macro controls
the format of the bottom of each page. It reserves a one inch verti­
cal block of space at the bottom, blank except for the page number
(roughly in the center of the block).

It is easy to print a title in either or both of the header and footer
areas in the following way. Each title is a three-part title. nroff
prints the first part on the left-hand side of the page, the second
part in the middle, and the third part on the right-hand side of the
page. The parts of the header title are:

LT: left- hand part
CT: center part
RT: right- hand part

The parts of the footer title are:

LF: left- hand part
CF: center part
RF: right-hand part

These parts are called strings. Section 4 of thi,s tutorial describes
strings in detail. Normally, each of these strings is empty, except
for CF, which gives the current page number. Therefore, the
header macro prints nothing, while the footer macro prints the page
number in the center of the block of space at the bottom of each
page. To define one of these strings, do the following:

20

•

•

•

•

•

•

nroff Text Processor Tutorial

.ds LT "nroff Text Processor Tutorial "

After you define LT in this fashion, nroff prints nroff Text Proces­
sor Tutorial at the top of each page on the left-hand side. If you
want the date to appear on the right-hand side at the top, use:

. ds RT "9/10/82"

You can use the same procedure to define the strings in the footer
title. If you want something other than the page number to appear
in the position allocated to CF, use the ds command to redefine CF.
If you do not want anything to appear there, use

. ds CF""

Wherever you want the current page number to appear in the
header or footer, use the symbol '% ' . For example, if you want
the page number to appear in the upper right -hand corner of each
page, use

. ds RT "Page%"

The resulting numberings look like 'Page 7', 'Page 10', and so on .

Fonts

Most nroff output consists of normal characters, called Roman. In
addition, nroff lets you emphasize words with boldface and italic
characters. Each of the three type styles-Roman, boldface and
italic-is called a font, in keeping with typesetting terminology.

nroff represents each boldface and italic character by a special
three-character output sequence. It represents a boldface character
c by the character 'c', followed by the backspace character < ctrl­
H >, followed by another 'c' . It represents an italic character c by
the underbar character ' ', followed by the backspace character
< ctrl-H >, followed by 'c'.

Because of these special representations, the appearance of nroff
boldface and italic font s depends on the device on which you see
the output. On a CRT terminal , the < ctrl-H > backspaces the cur­
sor, and the third character of each sequence replaces the first;
therefore , boldface and italic characters look the same as Roman
characters. On a hard-copy terminal, boldface characters are

21

nroff Text Processor Tutorial

double-struck and italic characters are underlined. On a printer,
the appearance depends on the characteri stics of the printer. Many
COHERENT installations provide a Jilter or a printer driver to
print boldface and italic character sequences appropriately on cer­
tain devices .

The ms macro package includes three commands for easy printing
in specific fonts: the boldface command B, the italic command I,
and the Roman command R. To print a single word in boldface,
do the following :

The last word is printed in
. B boldface .

Likewise for italics:

The last word is printed in
. I i talics .

In these examples, you print a single word in a different font. You
can print several words in a different font by enclosing the words in
double quotes on the command line :

This sentence ends with
.B •three bold words . •

You can also switch font s by using one of the font commands with
nothing following it on the command line. For example ,

or

.B
This entire sentence is printed in boldface .
. R

. I
This entire sentence is printed in italics .
• R

In these examples, the Roman font command R is necessary to
return to the normal font after completing the boldface or italic
text.

On rare occasions, you might want different parts of one word to
be in different font s. You cannot use the ms macros to produce
mixed-font words directl y. However, Section 6 below gives

22

•

•

•

•

•

•

nroff Text Processor Tutorial

additional information about nroff fonts. As explained in that sec­
tion, the input

This manual describes \ fJnroff \ fl's powerful features .

produces the output

This manual describes nroff's powerful features.

in which nroff is boldface but the following apostrophe and 's' are
Roman.

Special Characters

A few characters have special meaning to nroff . You should be
aware of these characters if you want nroff to process your text
properly.

As mentioned earlier, the period ' .' and apostrophe ' '' characters
indicate nroff command lines. Each is a special character if it
occurs as the first non-space character on an input line. If you
want to use a period or an apostrophe at the start of an input line,
you must precede it with a backslash and ampersand '\&'. Neither
period nor apostrophe is a special character unless it is the first
non-space character on a line.

The most important special character for nroff is the backslash '\ '.
It changes the meaning of the following character or characters. To
include a backslash in your nroff output , you must precede it with
another backslash; that is, use '\ \ ' in your input to get ' \ ' in your
output. Later sections of this tutorial describe other special uses
for backslash.

Footnotes

You can place footnotes between the footnote start command FS
and the footnote end command FE, as in the following example .

• FS
The text of a footnote like this is collected and
printed at the bottom of the page . Line length is
slightly shorter than normal for a footnote .
. FE

23

nroff Text Processor Tutorial

Your text should include each footnote at the point in your text
where the reference to it occurs; nroff sees to it that the footnote
appears at the bottom of the page. For example:

Text preceding the appearance of the footnote ...
The President, Mr. Wally Wiggin, is a real dufus.*
.FS
*dufus: cretin, mezzo cullello, etc .
. FE
Normal text resumes again here ...

The definition of dufus appears at the bottom of the page.

Displays and Keeps

A display is a portion of text that you wish to appear in the output
exactly as it appears in the input, such as a graph or a table. If you
do not give nroff instructions to the contrary, it will alter the spac­
ings between elements in your display, thus destroying its appear­
ance. Therefore, display commands are available to tell nroff not
to alter spacings between elements. Also, nroff makes certain not
to split your display between two pages.

Enclose the text of your display between the display start command
OS and the display end command DE.

.DS
The text of the display goes here,
exactly as you want it to
appear in the output .
. DE

There are three variants to the basic OS command.

.OS C

.OS B

24

The display start centered command centers each line of
your display. Since nroff centers each line individually,
both right and left margins are ragged.

The display start block-centered command considers the
entire display at once and centers it. You can think of
this as simply shifting the display to the right or to the
left by an appropriate amount.

•

•

•

•

•

•

.DS I

nroff Text Processor Tutorial

The display start indented command indents the entire
display by 1/2 inch.

If your display is longer than one page, do not use DS or any of its
variants. Instead, begin the display with one of the following .

. CD The centered display command centers each line of the
display .

. BD The block-centered display command considers the entire
display as a block and centers it.

.LD The left display command performs no indenting or center­
ing, but simply begins each line at the left margin .

.ID The indented display command indents each line by 1/2
inch.

If you begin the display with one of these three commands, do not
end the display with DE; simply use IP or SH or whatever com­
mand is needed at that point. You can also end the display with
PP and then continue .

You must be conscious of one important fact when you use display
commands. The length of normal output lines is 6.5 inches. If the
display contains lines longer than this, nroff simply prints them as
they are, since that is what it does in a display. Consequently, long
lines may extend into the right margin . If a line is too long to fit
on one output line, nroff extends it as far as possible to the right
and then continues it on another line. The visual effect can be quite
unpleasant. The only restriction on what you can safely put in a
display, then, is that lines should be shorter than 6.5 inches. If you
are using an indented display, lines should be shorter than 6 inches.

The idea behind the keep is similar to that of the display: you put
text between the keep start command KS and the keep end com­
mand KE when you do not want it split across a page boundary. If
you put a block of text between these commands that turns out to
be longer than a page in length, it begins on a new page but neces­
sarily spills over at some point onto another page.

The major difference between the keep and the display is that nor­
mal processing occurs in the keep: nroff adjusts spacings between
words, performs hyphenation, and so on, just as it normally does.

25

nroff Text Processor Tutorial

Other Commands

Several basic nroff commartds are safe to use in conjunction with
the ms macro package. The command sp N skips N lines on the
output page; for example, sp 4 skips 4 lines. The begin page com­
mand bp does just that: when nroff encounters the command, it
stops printing on the current page (no matter how far down the
page it is) and begins a new page.

Another command is the break command br. To understand what
this command does, you need to understand a bit about how nroff
assembles output lines. Imagine that nroff has a row of slots 6.5
inches long; nroff fills each slot with words and blank spaces. nroff
takes a word at a time from the input and tries to add it into the
row of slots. When it grabs a word that does not fit, it either
rejects it entirely (for the moment) or hyphenates it and takes part
of it. Then it adjusts spacing between words to completely fill out
the row of slots. Finally, nroff prints the line.

If you interpose the command br at some point in your input text,
nroff prints whatever words it has collected at that point, whether
or not they form a complete line. The break command is actually
incorporated into many of the ms macros, such as PP and IP; this
explains why the last line of a paragraph is often shorter than a
normal line of output.

The remaining sections of this tutorial provide more information
about these basic commands and about other nroff commands .

26

•

•

•

•

•

•

nroff Text Processor Tutorial

3. Basic Commands

Your most elementary concern about the appearance of your pro­
cessed text is the position of the text on the output page. This
involves control of line length, left and right margins, page offset
(how far from the left edge of the page each line begins), page
length, and so on. Control of these formatting functions is quite
easy with the appropriate nroff commands.

The line length command II controls the line length, while the page
offset command po controls the page offset. If you are writing an
nroff script, you should include these commands before the begin­
ning of your text, so nroff puts them into effect immediately. For
example, you could demand a line length of 3 inches and a page
offset of 2 inches:

.11 Ji \" set line length

. po 21 \" set page offset
He bounded up the stairs two at a time .
At the top of the first flight he
grabbed the railing to catapult
himself around the corner of the landing .
He nearly hurtled right into her room .
The door was open ; she was standing there totally .. .

nroff ignores comments following the symbols '\ "' in the input;
comments are for the benefit of someone who reads your nroff
script. Judiciously placed comments can make a complicated script
much easier to understand.

You may have noticed the specification of the line length and page
offset in inches in this example. As noted in Section I of this
tutorial, nroff output is actually just a sequence of characters, but
it is often convenient to think of the output as being "printed" at
ten characters per inch (Pica or IO pitch spacing) and six lines per
inch. The specifications in inches make this assumption. The line
length specification

11 Ji

produces output lines containing 30 characters each; on many out­
put devices, the output lines are indeed 3 inches long. Section 5
below discusses nroff units of measurement in detail.

27

nroff Text Processor Tutorial

Breaks

It is important for you to understand how nroff constructs finished
lines of output. Suppose you tell nroff you want output lines 5
inches long. nroff takes a word at a time from the input and
attempts to add it to the buffer.

What happens when the line is almost full, with room for part of
the next word but not for the whole word? Unless you specify oth­
erwise, nroff tries to maintain strict right and left margins. It
adjusts the number of blank spaces between words and may
hyphenate the next word, so the sequence of characters and blank
spaces in its buffer is exactly as long as you want.

You know now that nroff normally gathers words in its buffer and
adjusts spacing until the buffer is full. The break command br tells
nroff to print whatever is in the buffer, even if it is not a complete
line. When nroff encounters the break command, it might still be
looking fo'r words to fill tr e buffer. The break forces nroff to print
the buffer without adjusting the spacing between words, so the end
of the line probably will not be flush with the right hand margin .
You should experiment by inserting a br or two in the text of a
sample script to see what happens.

The idea of a break might seem strange at first, but you are no
doubt familiar with a simple example: the end of a paragraph. You
do not want the start of a new paragraph to be on the same line as
the end of the previous paragraph. You want to print the end of
the previous paragraph whether or not it fills a complete line. And
you want to begin the new paragraph on a new line. As you will
learn later, some nroff commands cause breaks automatically; you
should be aware of this when you use them.

Fill and Adjust Modes

Two basic terms describe how nroff processes your input to create
its output: filling and adjusting or justifying. Unless you
specifically tell it not to, nroff operates in fill mode and adjust
mode.

The fill command fi tells nroff to use fill mode; the no fill com­
mand nf tells it to use no-fill mode . Similarly, the adjust command
ad tells nroff to use adjust mode, while the no adjust command na
tells it to use no-adjust mode.

28

•

•

•

•

•

•

nroff Text Processor Tutorial

As mentioned above, nroff is initially in both fill mode and adjust
mode, so it is not necessary to begin your script with fi and ad if
you want filling and adjusting. These commands are necessary to
restore the modes after you change them with the nf and na com­
mands.

If you use nf to turn off fill mode, nroff no longer tries to fill lines
to a fixed line length. It prints each line of input text exactly as
received . However, if you use a large page offset, a sufficiently long
line of text could reach the right-hand edge of the page when nroff
prints it. If the input line cannot fit on one line, nroff continues
printing it on the next line with no page offset.

In adjust mode, nroff adjusts the spacing between words to fill lines
of text, as described above. When nroff is in no-fill mode, it is
automatically in no-adjust mode: with no fixed line length, there is
no need to adjust spacing. Moral: you can fill without adjusting
but you cannot adjust without filling.

If you request filling but no adjusting, nroff fills its output line with
input but does not adjust spacing between words; it does not try to
keep an even right margin . Since each output line must fit into the
buffer, it is either shorter than the line length you specify or exactly
as long.

The ad command includes several options. If you use the command
ad without an argument, nroff keeps strict left and right margins.
nroff uses this mode by default. ad I keeps the left margin only; ad
r keeps the right margin only; ad b or ad n keeps both margins.
Finally, ad c centers output lines while keeping their lengths less
than or equal to the specified length.

You should remember that nroff ignores adjust requests if you are
in no-fill mode. If nroff is in fill mode and you request any variety
of adjustment, it adjusts accordingly until you give either a no-fill
or a no-adjust command. If you give a no-fill command, only a fill
command restores adjustment; no plea for a different kind of
adjustment works in no-fill mode . If you give a no-adjust com­
mand, only a request for some type of adjustment restores adjust
mode .

As an example, enter the following script and process it with nroff .
Edit the text if you wish, but keep the same sequence of commands
and try to understand how each command affects the output.

29

nroff Text Processor Tutorial

30

A typical night in the bag house . A Doors album
was playing so loudly that the speaker covers
were trying to leap away to safety.
The dying sun, weakened by its flight through the
five foot weeds outside , spent itself in etching
di m jungle scenes on the living room walls .
. sp
.na \" no adjust
Steve tapped his foot as he stirred the huge
vat of chili that seethed on the stove . Whole
onions occasionally bobbed to the surface and,
like bizarre bolus - shaped whales, gave off jets
of steam before sinking back down into the brine .
. sp
.ad r \ "right- adjust
Steve dumped the last half of the can of
cayenne pepper i nto the pot and sat down
to finish reading his Heavy Metal.
A vague desire was forming
in his mind .. . but for what?
Then he knew . He went to the freezer,
shoved aside the bags of scraps and fat
from last Sunday ' s pork roast, and pulled
out the transuranium strawberry cake .
He got the hack saw and sawed off a slice .
. sp
. nf \ "no- fill
Ratfink sauntered into the kitchen and began
rubbing his left cheek against Steve ' s leg .

"Hello cat . "
Steve leaned back against the wall
and nearly glued himself to the piece of french
toast that Paul had stuck there .
. Sp
.fi \ "fill
The sickening yowls of a cat in fear for its
l i fe r ent the air. The monster Fluff scuttled
across the bag room floor as fast as his
considerable flab and hundreds of scattered grocery
bags would permit . Paul followed close behind ,

•

•

•

•

•

•

nroff Text Processor Tutorial

armed with his favorite weapon: a squirt gun .
Only panic made Fluff ' s desperate bid
for a window sill successful.
He cowered there and emitted feeble little bleats
as blast after blast of cold water pelted his fur .

When you process this input with nroff, your output should look
like this:

31

nroff Text Processor Tutorial

32

A typical night in the bag house . A Doors album
was playing so loudly that the speaker covers
were trying to leap away to safety . The 0ying
sun, weakened by its flight through the five foot
weeds outside, spent itself in etching dim jungle
scenes on the living room walls .

Steve tapped his foot as he stirred the huge vat
of chili that seethed on the stove . Whole onions
occasionally bobbed to the surface and, like
bizarre bolus- shaped whales, gave off jets of
steam before s i nking back down into the brine.

Steve dumped the last half of the can of cayenne
pepper into the pot and sat down to finish

reading his Heavy Metal . A vague desire was for­
ming in his mind ... but for what? Then he knew .
He went to the freezer , shoved aside the bags of

scraps and fat from last Sunday ' s pork roast, and
pulled out the transuranium strawberry cake . He

got the hack saw and sawed off a slice .

Ratf i nk sauntered into the kitchen and began
rubbing hi s left cheek against Steve ' s leg .

"Hello cat . "
Steve leaned back against the wall
and nearly glued himself to the piece of french
toast that Paul had stuck there .

The sickening yowls of a cat in fear for its life
rent the air . The monster Fluff scuttled across

the bag room floor as fast as his considerable
flab and hundreds of scattered grocery bags would

permit . Paul followed close behind, armed with
his favorite weapon : a squirt gun . Only panic

made Fluff's desperate bid for a window sill suc­
cessful . He cowered there and emitted feeble

little bleats as blast after blast of cold water
pelted his fur .

•

•

•

•

•

•

nroff Text Processor Tutorial

Since the beginning of the input text contains no fill or adjust
specification, by default nroff fills and adjusts the first paragraph.
After the na command, it fills but does not adjust the second para­
graph. After the ad r command, it fills and right adjusts the third
paragraph. After the nf command, it neither fills nor adjusts the
fourth paragraph. Finally, after the fi command, it fills the fifth
paragraph and uses the ad r adjust option which was in effect previ­
ously.

Sometimes nroff is not able to adjust in adjust mode. For example,
suppose you specify a one-inch line length. A seven-letter or eight­
letter word takes up the greater portion of a line. Your text could
include a long word followed by a word which cannot fit on a line
with the long word. Rather than printing a line longer than you
specified, nroff begins a new line with the second word. The right
margin is uneven, as though adjustment were not taking place.

Paragraphs

What happens if you copy text from several pages of a book into a
file without adding any formatting commands and then process the
file with nroff? There is no page offset; in the absence of any
specification, nroff assumes a page offset of zero, so processed lines
begin at the left margin. The processed lines are 6.5 inches long;
this is the default value nroff assumes.

More interesting things happen with paragraphs. Suppose you skip
one line between paragraphs and begin each paragraph with an
indent of five spaces. A blank line in the input text causes a break
(as discussed earlier) and then causes nroff to print a blank line.
The last line of each paragraph is not adjusted and probably not
flush with the right hand margin. There is a blank line before the
next paragraph.

Initial blank spaces in a line of input also cause a break. In this
example, the breaks caused by initial blank spaces at the beginning
of each paragraph really do nothing, since the preceding blank line
forces out the last line of the preceding paragraph. nroff always
considers initial blank spaces in a line significant and preserves them
in the output.

Copy the following example and then run it through nroff:

33

nroff Text Processor Tutorial

Her e i s a l i ttle text so you can see
whether nroff will i gnore the in i t i al
i ndentation

in th i s ver y very long sentence .
Here is a little bit mor e text .

And here is someth i ng to mimi c
the beginning of a new paragraph .

The output looks like this :

Here i s a little text so you can see whether
nroff wi l l i gnore the i ni t i al i ndentation

i n this very ve r y long sentence . Her e is
a l i ttle bit more text .

And here is someth i ng to mimic the beginning
of a new paragraph .

Instead of leaving a blank line in the text , you could use the space
command sp 1, which causes a break and inserts one blank line in
the output. Similarly, sp 5 causes a break and inserts 5 blank lines
in the output. Edit the example and replace the blank line by the
command line

. sp 1

to see that it has the same effect. You can also use the command
sp; nroff assumes you want one space if you omit the argument.

Most nroff input consists of many paragraphs containing text. You
probably want each paragraph to have the same format in the out­
put. Rather than formatting each paragraph explicitly as in this
example, you can use the macro facilit y of nroff to define a
sequence of commands to format a paragraph . Macros are the sub­
ject of the next section of this tutorial.

Centering

The center command ce centers a line or several lines of text. For
example, you can center a two-line heading as follows:

34

•

•

•

•

•

•

nroff Text Processor Tutorial

. ce 2
Heading Pri nted
In Center of Page

If you use the ce command with no argument, nroff assumes a
default argument of 1 and centers the next line of input.

Tabs
If your nroff input includes tables of information , you may find it
convenient to use tabs to separate items in a line of the table. nroff
recognizes the <tab> character < ctrl-i > and expands tabs into
spaces . If you use tabs to format a table , remember to use no-fill
mode; otherwise, nroff tries to fill and adjust your output lines .

By default, nroff uses tab stops set eight characters apart on its out­
put line, at positions 8, 16, 24 , and so on . You can use the tab
command ta to change the positions of the tab stops. For example,

. ta 10 20 30 40 50 60

sets tab stops ten characters apart rather than eight.

You can use the tab character command tc to change the character
nroff prints between its current position and the next tab stop . For
example,

. ta 9 19 29 39

. tc *

.nf
<tab>l<tab>2<tab>J<tab>4

produces the output

*********1*********2*********3*********4

Pages
The begin page command bp causes a break and forces nroff to the
next output page. By default, nroff assumes a page length of 11
inches (66 lines). You can change the page length with the page
length command pl. For example,

. pl 2i

specifies a two-inch page length.

35

nroff Text Processor Tutorial

What about the format of a page? Does nroff automatically keep
top and bottom page margins, number pages, or do anything simi­
lar? The answer, sadly, is no. nroff just keeps track of the current
output page number and the current line number on the current
output page.

Offhand, this does not seem to do much good, since you do not
know beforehand the effects of filling and adjustment on your
input. You might wonder whether you could have nroff execute a
set of commands whenever it reaches a certain position on the page.
This would solve the problem of producing top and bottom margins
and would not require you to know where to place the commands.
In fact you can, by using traps. The next section of this tutorial
describes traps and how to use them to format a page .

36

•

•

•

•

•

•

nroff Text Processor Tutorial

4. Macros

To become familiar with the idea of a macro, consider the problem
of formatting paragraphs. nroff preserves blank lines and initial
indents, so one way you could force nroff to break your text into
paragraphs would be to format your input yourself: put a blank line
after the last line of each paragraph and then indent the first line of
the next paragraph.

Another way to achieve the same effect would be to put the three
commands

.br

. sp

. ti 5

\ " break
\ " skip a line
\ " indent next line 5 spaces

between the end of each paragraph and the start of the next para­
graph. You should recognize the first two commands: br causes a
break , so nroff prints the last line of the previous paragraph even
though it might not be a complete line; sp skips a line before the
next paragraph begins. The third command is the temporary
indent command ti; the number indicates how many spaces to
indent the next output line. Since this command indents the first
line of the paragraph, you do not need to indent the line i"n your
file. For example :

37

nroff Text Processor Tutorial

. 11 Ji

. po J i

. ti 5
John and
Flori da
.br
. sp
.ti 5

\" line length
\ " page offset
\" indent next line

Li zzie Wi lson moved to Stuart,
from Boston five years ago .

\" break
\ " skip a line
\" indent next line

They now l i ve i n a trailer surrounded
by a cute little wh i te pi cket fence .
Lizzie spends her time tending the tiny
gar den she has planted behi nd the trailer .
A plast i c pink flam i ngo stalks
the gr avel patch between the two
halves of the garden .
. br
. sp
. ti 5
John s i ts in the sun , his eyes shielded
by the vi sor of hi s Red Sox cap,
playi ng wi th hi s f i shing lures .

Suppose your file is very long, with hundreds of paragraphs. Every
time you want to begin a paragraph , you need to include the same
set of commands in the text. It would save considerable agony if
you could create a name for this set of commands. Then you
could simply put the name in your text whenever you want nroff to
perform the commands, rather than repeating the commands again
and again.

As you probably have guessed by now, you can do just that; the set
of commands is called a macro. Here is the John and Lizzie story
again, this time with a paragraph macro called PP that takes care
of formatting each paragraph .

38

•

•

•

•

•

•

nroff Text Processor Tutorial

. 11 Ji

. po Ji

. de PP

.br

. sp

. ti 5

\ " line length
\ " page offset
\ " paragraph macro

\ " end of macro definition
. PP
John and Lizzie Wilson moved to Stuart ,
Florida from Boston five years ago .
. PP
They now live in a trailer surrounded
by a cute little white picket fence .
Li zz i e spends her time tending the tiny
garden she has planted beh i nd the trai ler .
A plastic pink flamingo stalks
the gravel patch between the two halves
of the garden .
. PP
John sits in the sun , his eyes shielded
by the visor of his Red Sox cap,
play i ng with his fishing lures .

Before you can use a macro, you must define it. The definition
associates the macro name with the definition you supply. The
define command de defines a macro; the name which follows the de
specifies the macro name. The macro name may be either one or
two characters long. The above example defines the macro PP:

. de PP \ " paragraph macro

Each nroff command you have seen previously consists of a single
command line. The de command itself is also a single command
line, but you must fo llow it with other lines which contain the
definition of the macro . The definition ends with a line containing
two periods, " .. " . The command lines between the de command
and the two periods are sometimes called the body of the macro .
You cannot nest one macro definition inside another.

You use a macro by calling it like any nroff command: you precede
its name with a period or an apostrophe on a command line. When

39

nroff Text Processor Tutorial

you call a macro, it has precisely the same effect as placing the
body of the macro at that point in the text. It is much easier to
include the one-line invocation of the macro each time you need it
rather than to repeat the set of commands each time. Each time
you want nroff to make a new paragraph, you simply place the
command line

.PP

between the line that ends a paragraph and the line that begins the
next paragraph.

One of the most important things to remember about macros is that
you define them yourself using basic nroff commands. A macro
may contain whatever basic commands you care to put in it; the
commands you use depend completely upon what you want the
macro to do.

Macros may contain text as well as commands. For example, if
you have a block of text repeated many times throughout your
script which you want to format differently from the rest of the
text, you could create a macro that is essentially a mini-script con­
taining the text and the commands to format it. Whenever you
want the text to appear in the output, you merely call the macro in
your input. The point again is the generality of macros; you create
them to suit your needs.

Traps

Now consider the problem of formatting the beginning and ending
of each page of output. You could define what are traditionally
called header and footer macros containing the commands you
want performed at the top and bottom of each page. But you can­
not possibly know where to call these macros in the input text, since
you cannot know the vertical position of a given line on the output
page before processing it with nroff. You can solve this problem
by the use of traps.

nroff keeps track of its vertical position on each output page. You
can set a trap for nroff to execute a specified macro at a given vert­
ical position on every page. When a line of output reaches or
extends past that position on the page, nroff automatically executes
the commands in the macro before any more processing takes place.

40

•

•

•

•

•

•

nroff Text Processor Tutorial

The when command wh sets a trap for a macro, specifying the
name of the macro and the vertical position of the trap. For exam­
ple, you probably want nroff to call your header macro hd (what­
ever commands it might contain) at the very top of each page. The
command

.wh O hd \" set header t r ap

sets a trap for the macro hd at vertical position O (the very top of
the page) of every output page. To set a trap for your footer
macro fo (whatever commands it might contain) one inch from the
bottom of each page, use the command

. wh -li fo \" set footer trap

The negative number tells nroff to measure distance from the bot­
tom of the page rather than from the top; the i is an abbreviation
for inches. nroff recognizes various units of measurement, as
described in more detail in Section 5 below. It is safe to always
include the abbreviation for the unit , as in this example; if you
leave the unit indicator off of a measurement in a command, nroff
might not measure in the units you expect. For example, if you
write wh -1 fo , nroff interprets the unit of measurement to be the
height of one line of print, just as with the sp command. The
abbreviation for this unit of vertical measurement is v.

Suppose you want to design the output page by defining the header
and footer macros. A simple header macro just skips an inch of
space at the top of each page ; a simple footer macro forces print­
ing to stop an inch from the bottom of each page and prints the
page number. nroff does not print page numbers automatically,
but it does automatically keep track of what output page it is on.
It stores the page number internally in a register you can access
with the symbol 'OJo ' . Section 5 below gives more information
about registers and how to use them.

A simple footer macro that prints the page number is:

. de fo \ " footer macro
' sp 4v \ " sk i p four l i nes (no break)
. tl I I - % - I I \" print page number
'bp \" new page

41

nroff Text Processor Tutorial

There are several points of interest raised by this macro .

First, notice that some commands are preceded with an apostrophe
rather than with a period . This supresses the break these com­
mands normally cause. This is desirable, because nroff takes a
word at a time from the input text and places it in the output line
until a word does not fit. It then either hyphenates the word or
leaves it out of the line entirely; in either case, it adjusts the spac­
ings between words in the line and prints the line. nroff still has
part or all of the last word left to begin filling the buffer. If the
output line triggers a trap for a macro, nroff executes the com­
mands in the macro before it accepts any more input text. It is still
holding the portion of the word that did not fit into the output line.
If any of the commands in the macro cause a break, nroff prints
the next word on a new output line.

You might run into problems, then, if you naively define your
header macro as follows:

.de hd

.Sp 1i
\" header macro
\ " skip an inch (break)

You want this to leave a blank space of one inch at the top of each
page. But the sp command causes a break, so if a word were left
over from producing the last line on the preceding page, nroff
would print it at the very top of the next page. The visual effect
would be quite unpleasant.

But if you use 'sp instead of .sp in the macro, nroff suppresses the
break and does not print the partial word until after it performs the
macro commands. Likewise for the footer macro; you do not want
anything unplanned to be printed in the blank space at the bottom
of the page. You should always be conscious of these considera­
tions when you use commands that cause breaks.

Second, new item in the example is the title command ti, which
prints a three-part title. A three-part title contains a left part
(aligned to the left margin of the page), a center part (centered),
and a right part (aligned to the right margin). The command name
ti is followed by a field containing four single quote characters .
nroff prints the characters you supply between the first two quotes
as the left part of the title line, what you supply between the second
and third quotes as the center part, and what you supply between

42

•

•

•

•

•

•

nroff Text Processor Tutorial

the third and fourth quotes as the right part of the three-part title.
If you do not want nroff to print anything in one of these posi­
tions, simply put nothing between the appropriate pair of quotes.
In the above example, the ti command tells nroff to print nothing
on the ends of the title line and the page number in the center. If
you want the quote character to appear in a part of the title, pre­
cede it with the backslash character '\ '.

The length of the title line is independent of the length of normal
output lines, so you must set it with the length of title command It
unless you want nroff to use the default title length of 6.5 inches.
For example, to set the length of the title to five inches, use the
command

.lt 5i

In light of all you now know, you should give the John and Lizzie
story the treatment it truly deserves .

43

nroff Text Processor Tutorial

. 11 Ji \ " set line length

. po 2i

.pl Ji

.wh 0 hd \ " header trap

.wh - li fo \ " footer trap

.de hd \ " header
isp 1i

. de fo \ " footer
isp 2
. tl 1 1 - % - I I

ibp

.de pp \ " paragraph macro

. sp 1

. ti 5

.PP
John and Lizzie Wilson moved to Stuart,
Florida from Boston five years ago .
. PP
They now live in a ' trailer surrounded
by a cute little white picket fence .
Li zzie spends her time tending the tiny
garden she has planted behind the trailer.
A plastic pink flamingo stalks
the gravel patch between the two halves
of the garden .
. PP
John sits in the sun , hi s eyes shielded
by the visor of his Red Sox cap,
playi ng with his fishing lures.

As a point of technique, you should always set header and footer
traps early in your input script. This is because nroff moves past
vertical position O on the first page of output as soon as it
encounters either the first command that causes a break or the first
portion of ordinary text to process. If the header trap is not set,
nroff will not print the header on the first page.

44

•

•

•

•

•

•

nroff Text Processor Tutorial

Macro Arguments

Suppose you want to format a cake recipe with nroff. The first
part of the recipe lists the ingredients:

six tons of flour
five pounds of chocolate
four ounces of gravel
seven gallons of buttermilk
one pound of baking soda

Each of these lines has the same format: amount, unit of measure­
ment, and ingredient. You can create a macro (call it re for recipe)
that captures the format of these lines and contains three "slots";
the slots are for the amount, unit of measurement , and ingredient.
Each time you use the macro, you indicate what you want to go
into each slot and nroff substitutes it for you .

. de re
\\$1 \\$2 of \\$3

.re six tons flour

.re five pounds chocolate

.re four ounces gravel

.re seven gallons buttermilk

.re one pound "baking soda"

You defined macros in previous examples, but this example is the
first time you have written a macro which takes arguments. When
you call a macro which takes arguments, you give the arguments on
the same command line as the macro name. A macro may have up
to nine arguments following it; they are denoted by \$1, \$2, . .. ,
\$9. The first field following the macro name on the line invoking
the macro is called \$1, the second is called \$2, and so on.

If you want to use a string of characters which includes blank
spaces as an argument, you must enclose the string inside double
quotes, as with the words " baking soda" in the example above. If
you forget to include the double quotes, nroff distributes the por­
tions of the string separated by blanks to different arguments .

Do not try to use arguments in a macro called by a trap. Macros
called by traps do not accept arguments. This should seem

45

nroff Text Processor Tutorial

reasonable: how can you specify the arguments if you do not con­
trol when the macro is called?

If you examined the above example carefully, you probably noticed
that the definition of re includes double backslashes rather than sin­
gle to identify each macro argument:

\\$1 \\$2 of \\$3

Within the definition of the macro, you should use \ \$1 and so on
rather than \$1 wherever you want nroff to substitute the argument
you provide when you call the macro.

The reason you should not use \$1 in the definition of a macro is
confusing at first, but worth taking the time to understand in detail.
nroff processes the definition of a macro when the macro is defined.
During the processing, it expands embedded macro calls and
strings; the next section of this tutorial describes strings. Subse­
quently, nroff refers to the processed definition each time you call
the macro. You want the argument names \ $1, \ $2, and so on to
be found in the macro body after the initial reading of the macro
definition rather than before the initial reading. You do not want
nroff to substitute for arguments at the time of definition of the
macro (when there is nothing to substitute for them) but rather to
substitute for them each time you call the macro.

This is what the double backslash accomplishes. When nroff reads
\ \ $1 in the macro definition, it translates it into \ $1 rather than
attempting to substitute for it. When you call the macro, nroff
finds \ $1 in the processed macro body and substitutes the argument
from the command line.

If you were to use \$1 somewhere in the definition of a macro,
nroff would try to substitute the value of argument I for it. But
you supply the values for arguments when you call the macro, not
when you define it. The point of having arguments is to allow you
to substitute different things for the arguments each time you call
the macro. Since nroff cannot find a value for the argument at the
time of definition, it substitutes nothing for it.

If the time of definition and of a call to a macro are confusing you,
think of the paragraph macro in the John and Lizzie story .
Towards the very beginning of the script, you define the paragraph
macro with the command

46

•

•

•

•

•

•

nroff Text Processor Tutorial

. de PP

followed by the macro body. Later, whenever you want a para­
graph in the text , you use the command PP; each is a call to the
macro .

As a final example, consider a simple paragraph macro using an
argument. The output format might seem silly, but the example
illustrates the point about double backslashes. The paragraphs pro­
duced by this macro look like this:

first paragraph :

text of paragraph .. .
more text of paragraph .. .

second paragraph:

text of paragraph . . .
more text of paragraph .. .

third paragraph:

text of paragraph .. .
more text of paragraph .. .

You supply the number (such as first or second) which identifies
each paragraph as an argument to the macro . You can define the
macro as follows .

. de NP

. sp
\\$1 paragraph:

. sp

. ti 0 . 5i

After nroff processes this definition , it has the following processed
definition for NP:

. sp
\ $1 paragraph:

. sp

. ti 0 . 5i

47

nroff Text Processor Tutorial

nroff uses this sequence of commands each time you call the
macro. Notice the argument \$1 in the processed definition, wait- •
ing to be filled by the argument you provide on the NP command
line. For example ,

.NP f i rst

produces the tag, as desired .

f i rst paragraph:

Now change the definition of NP to the following:

.de NP

. sp
\ $1 par agr aph :

. sp

. t i 0.5 i

When it processes the definition, nroff does not find any argument
corresponding to \ $1 , so it simply replaces \ $1 with the empty
string (the string which contains no characters). Therefore, nroff
remembers the following commands as the processed definition of
NP:

. sp
paragraph :

. sp

.ti 0.5 i

Then NP tags every paragraph as follows:

48

•

•

nroff Text Processor Tutorial

• paragraph:

text of paragraph . . .
more text of paragraph .. .

paragraph:

text of paragraph .. .
more text of paragraph .. .

paragraph :

text of paragraph .. .
more text of paragraph . . .

which is not the output you want.

•

•
49

nroff Text Processor Tutorial

•

•

•
50

•

•

•

nroff Text Processor Tutorial

5. Strings

Suppose you are wntmg a script for nroff and, to relieve the
tedium, decide to occasionally punctuate the text with a rousing cry
of "FOOD! FOOD! FOOD!". If you plan to include this interjec­
tion more than a few times in your script, you can take advantage
of another labor-saving device similar to a macro, called a string.
You can use a string name as an abbreviation for a long string of
characters you use frequently. Just like a macro, a string is a name
which nroff associates with a definition you supply. Wherever you
put the name in your text, nroff prints the definition. Whereas
macros refer to sets of commands you define, strings refer to strings
of characters you define.

You define a string with the define string command ds:

.ds FD "FOOD ! FOOD ! FOOD !"

The first field after the ds gives the name of the string, in this case
FD. Like a macro name, a string name may be either one or two
characters. The second field after the ds gives the definition of the
string, in this case

"FOOD! FOOD ! FOOD !."

As in this example, you should enclose the definition in quote
marks if it contains spaces.

You should be careful whenever you define a macro or a string. If
you already have a macro or a string named X and you define a
new macro or string named X, nroff forgets the previous meaning
of X.

Once you have defined a string, you can insert a reference to it any­
where in your text. The string itself appears in the output text
wherever a reference to it appears in the input text. You refer to
the string FD in the following fashion:

*(FD

Use the left parenthesis '(' only when the name of the string is two
characters long. If the string name is only a single character, such
as S, refer to it as follows:

*S

51

nroff Text Processor Tutorial

As an example, try the following nroff script:

. 11 Ji

.po 2i

.ds FD "FOOD ! FOOD ! FOOD !"

. ds H "HALLELUJAH !"
There i s \ *(FD a dead frog on my terminal .
He enjoys \ *(FD very much (\ *H \ *H) .

nroff adjusts the spacings between words in a string but does not
hyphenate any word in a string. If you use a very short line length,
say two inches, and define a string which includes a three-inch long
word, that word would not be hyphenated but would extend past
the right-hand margin.

You cannot include a newline character in a string. However, you
can spread the definition of a string out over more than one line
with the aid of "concealed" newlines (preceded by the backslash
character ' \ '). nroff ignores each concealed newline. For example,
add the following string to the previous example:

. ds pr "PRAISE \
THE LORD !"

In fact , nroff ignores concealed newlines anywhere in its input.

Strings Within Strings
It is possible to define a string that has embedded within it a refer­
ence to another string . Whenever you refer to the bigger string in
your text , nroff substitutes the definition of the smaller string for
any reference to the smaller string . When you embed strings,
though, you should use two backslashes to refer to the embedded
string. The reasons for this are similar to the reasons for using two
backslashes when you refer to an argument within a macro : nroff
processes the string definition when it occurs in the input text and
then processes it again each time you refer to the string. If you
define a string similar to:

. ds S "Th i s string \ *x has embedded \ *y strings"

the danger is that at the time of definition of S you might not have
defined x or y . If this is the case, nroff simply ignores the refer-

52

•

•

•

•

•

•

nroff Text Processor Tutorial

ences in S to x and y; more precisely, it replaces each reference by
the empty string (the string which contains no characters).

If you define S as follows:

.ds S "This string \\•x has embedded \\1y strings"

then nroff does not try to substitute for x and y when it first reads
the definition of S. Instead, it simply translates \ \ *x into \ *x and
\ \ *y into \ *y. When you put the reference \ *S in your text,
nroff fetches the definition of S, sees the references to strings x and
y, and substitutes the definitions for the references.

To help understand this better, try the following three scripts. The
first script contains proper references to embedded strings (using
double backslashes); it works as expected .

. ds S "strings \\•x, strings \\1y, strings \\•z"

.ds x "here"

. ds y "there"

.ds z "everywhere"
\•s

The second script contains embedded references using only single
backslashes. Since the embedded strings are defined after the larger
string, they are not available when nroff defines the larger string,
and so the references are ignored .

. ds S "strings \ tx, strings \ 1y, strings \ •z"

.ds x "here"

. ds y "there"

. ds z "everywhere"
\•s

The third script again contains embedded references using single
backslashes. This time the embedded strings are defined before the
larger string and are available when the larger string is defined.

. ds X "here"

.ds y "there"

. ds z "everywhere"

.ds s "strings \ •x, strings \ 1y, strings \ •z"
\•s

53

nroff Text Processor Tutorial

To avoid unnecessary worry, you should always play it safe and use
double backslashes to refer to embedded strings.

54

•

•

•

•

•

•

nroff Text Processor Tutorial

6. Number Registers

You learned in previous sections that nroff keeps track of output
page numbers while printing its output. You made use of this fact
when you created a footer macro that printed page numbers. nroff
also keeps track of other housekeeping information, such as the
current line length, page offset, page length, and vertical position of
the last output line . It keeps this information in storage locations
called number registers.

You can use the name of a number register to refer to the number
stored in it. When you place a reference to a number register in
your text, nroff substitutes whatever number is currently in the
register.

Number register names are either one or two characters long, just
like macro and string names. You can have a number register with
the same name as a string or a macro without confusing nroff; you
might recall that you may not have a macro and a string with the
same name. However, you might get confused; nroff scripts are
usually easier to understand if you keep all macro names, string
names and register names distinct.

A difference between number registers, macros and strings is that
nroff itself does not define any macros or strings (although the ms
macro package does), but it does automatically define and update
quite a few number registers. You can use these predefined number
registers in much the same way you use registers you define your­
self, except that you cannot change their values.

To define a number register, you need to specify the register name
and the initial value for the register. The number register com­
mand nr looks like this:

. nr X 5

Here X is the name of the register and S is the initial value to store
in it. To refer to number register X in your text, use \ nX; if the
name is two characters long, say xy, use \ n(xy. This system of
reference is exactly like that for referencing strings, except for the
use of the letter n instead of the asterisk *. When nroff sees a
reference to number register X, it automatically substitutes the
value stored in X. As you will see shortly, nroff can do arithmetic,

55

nroff Text Processor Tutorial

and learning to use number registers is an important part of learn­
ing to take advantage of nroff's arithmetic abilities.

A reference to a number register may occur anywhere a number
would normally occur. For example, if you set register X to 5 as
above, you can set the line length to five inches as follows:

.11 \nXi

This command is essentially the same as

.11 5i

if the current value of register X is 5.

A familiar problem (with a familiar solution) arises when you refer
to a number register inside a macro or a string definition. If you
use just one backslash, nroff substitutes the value in the register for
the reference when it processes the definition of the macro or string.
If you have not yet defined the number register in your script, nroff
automatically substitutes O for the reference . If you want the refer­
ence to survive the initial processing of the definition so substitution
takes place when you call the macro or string, use a double
backslash, such as \ \ nX or \ \ n(xy.

Deferring evaluation of a register reference by using a double
backslash is particularly important if you change the value of the
register throughout your script and want the current value to appear
in the macro or string each time you call it. If you use a single
backslash to refer to the number register, substitution takes place at
the time of definition of the macro or string . The processed macro
or string body includes a fixed number instead of a reference to a
number register, and each time you call it nroff uses the same
number. The fact that you keep changing the value in the number
register is irrelevant to nroff, since it no longer sees the reference to
the register in the processed macro or string body.

Try the following examples. Make sure you understand why nroff
prints what it does in each case. The first example defines a st ring
with a register reference preceded by a single backslash.

56

•

•

•

•

•

•

nroff Text Processor Tutorial

.ds S "Here is a number \nx"

.nr x 55
\ *S
\nx

The second example is similar, but the register is defined before the
string.

.nr y 56

. ds T "Here is a number \ny"
*T
\ny

The third example uses a double backslash for the register refer­
ence.

.ds U "Here is a number \\nz"

. nr z 57
*U
. nr z 58
*U

The final example uses a single backslash again .

. nr w 59

.ds V "Here is a number \ nw"
\ *V
.nr w 60
\ *V

The last example illustrates the danger of using a single backslash
to refer to a number register within a string definition. You define
w before you define V, so the value for w is available when nroff
reads the definition of V . nroff substitutes the value when it reads
the definition; the reference to w is no longer there. You then
change the value of w, but as you see in the next call of V, the
change does not affect the number that appears in V. In contrast to
this, notice in the third example that the double backslash in the
definition of U causes the reference to z to survive the definition of
U. Whenever you change the value of z and then call U, nroff sub­
stitutes the new value of z for the reference to z in U.

57

nroff Text Processor Tutorial

You can also use the nr command to increase or decrease the value
in a number register. For example, suppose you initially store the
value 5 in X:

.nr X 5

You can change the value of X to 9 by adding 4, as follows:

.nr X +4

You can then change the value of X to 7 by subtracting 2:

.nr X -2

A plus or minus sign before a number on the nr command line tells
nroff to add or subtract the given amount from the value in the
register.

Since a negative number is always preceded by a minus sign while a
positive number usually is not preceded by a plus sign, you can use
nr to set a register to a positive value in a way that cannot be imi­
tated for negative values. For example, suppose you again start out
with a value of 5 in X:

. nr X 5

If you immediately follow this with

.nr X 7

then nroff stores 7 in X. The second nr command does not incre­
ment the value of X by 7 to produce 12; instead, it wipes out the
previous value of 5 and replaces it by the value 7. The command
line to increment X by 7 is

.nr X +7

If you again start with a value of 5 in X and want to change the
value to - 4, you cannot use the fo llowing command line:

.nr X -4

nroff interprets this as a command to decrease the current value of
X by 4, which is not what you intend. This command places the
value I in X, since 5 - 4 = I. If X initially has a value of 5 and you
want to change the va lue to - 4, you could use the command

58

•

•

•

•

•

•

nroff Text Processor Tutorial

.nr X -9

You can also increment or decrement the value of a number register
without using the nr command. If number register x currently has
the value 10, the reference \ n + x increments the value in x by I tci
11 and substitutes the new value for the reference. The value in x
becomes 11; nroff replaces the next reference \ nx by 11, while
another reference \ n + x increments the value in x to 12 and
replaces the reference by 12. Similarly, if number register xy
currently has the value 15, the reference \ n + (xy increments the
value in xy to 16 and replaces the reference by 16.

There is a similar way to decrement the value in a register. The
reference \ n - x decreases the current value in x by I and substi­
tutes the new value for the reference. Likewise, the reference
\ n - (xy decreases the current value in xy by I and substitutes the
new value for the reference.

You can change the size of the increment or decrement by means of
another option to the nr command. If you define x with

.nr x 1 5

then nroff sets the value of x to I and sets the increment value for x
to 5. The next reference \ n + x increments the value in x from I to
6 (the '+' now causes nroff to add 5 to the current value of x
rather than adding I} and substitutes 6 for the reference. In the
same manner, \ n - x subtracts 5 from the current value of x and
substitutes the new value for the reference. This is convenient if
you plan to repeatedly increment or decrement x by the same fixed
amount. If you wish to change the size of the increment, simply
redefine x with another nr command, specifying the new initial
value as well as the new increment value. If you define a number
register but do not specify an increment value, nroff assumes the
increment value to be I.

The following example of a macro illustrates a typical use of a
number register and incrementing .

59

nroff Text Processor Tutorial

.nr b 1

. ds x "Here's Bachelorette No. \\nb"

.de B

.br
*x \\$1!!!!!!
.nr b \\n+b

.B "Polly Underground"

.B "Lascivia Servant"

.B "Lips La Roux"

The output produced by this example is:

Here ' s Bachelorette No. 1 Polly Underground!!!!!!
Here's Bachelorette No . 2 Lascivia Servant!!!!!!
Here's Bachelorette No. J Lips La Roux!!!!!!

A reference to a number register may appear any place a number
can normally appear. For example:

. nr x \ ny \ nz

sets register x to the value of register y and sets the increment for x
to the value of register z.

As mentioned before, nroff can evaluate arithmetic expressions. It
understands and evaluates properly formed arithmetic expressions
involving numbers, references to number registers, the arithmetic
operators'+','-','*','/','%', and parentheses. The first four
operators represent addition, subtraction, multiplication and divi­
sion. The '%' is the "modulus" or "remainder" operator: the
value of 7%3 is 1, which is the remainder when 7 is divided by 3.

One word of caution: nroff evaluates expressions from left to right
without any preference for performing some operations before oth­
ers. For example,

.nr x 5+4*J/9

stores 3 in x. nroff does not perform the multiplication and divi­
sion before the addition, as you might expect.

Another important fact is that number registers hold only integers .
If you write

60

•

•

•

•

•

•

nroff Text Processor Tutorial

.nr x J.6
nroff truncates the value 3.6 and stores 3 in x. Also, an assignment
such as

.nr x J.9*J.9
stores 9 in x; nroff truncates each factor before it performs the
multiplication. The assignment

.nr x 0.4*8

stores 0 in x rather than 3; truncation occurs before nroff performs
the multiplication rather than after.

A final word of caution: when you use numbers with commands
other than nr, the results may not be what you expect. nroff
understands several different units of measurement and converts
between units automatically. The next section explains units and
conversion in detail.

Units of Measurement

As mentioned above, nroff maintains many number registers during
processing. For example, it stores the current page length in the
register .I (notice that the period '.' is actually part of the name of
this register). If you set the line length to 5 inches with the com­
mand

.11 5i

nroff stores the length in register .I automatically. If you print the
value in register .I with a reference such as \ n(.1, you find the value
is 600. What does this mean?

Many nroff commands require specification of lengths or measure­
ments as arguments. You are already familiar with many of these
commands: for example, II, po, pl, It, and so on. nroff accepts
various units of measurement, but for purposes of calculation, it
converts each into a basic unit called a machine unit, abbreviated
u. The length of a machine unit is 1/ 120 of an inch. Since one
inch is 120 machine units, the length of a 5 inch line is 5* 120 = 600
machine units.

The conversion table for units of measurement is as follows:

61

nroff Text Processor Tutorial

inch: Ii 120u
vertical line space: Iv 20u
centimeter: le 47u
em: Im= 12u
en: In = 12u
pica: IP 20u
point: Ip = Ju

Most of these are traditional typesetting terms.

As noted briefly in Section I of thi s tutorial , nroff output actually
consists of a sequence of characters. It is useful, though, to think
of the output as being "printed" at ten characters per inch (Pica or
10 pitch spacing) and six lines per inch . Many output devices
correspond to this spacing. With these assumptions, 5i corresponds
to 5 inches of printed output.

For each command, nroff assumes a default unit if you do not
specify a unit on the number you supply with the command. For
example, the default unit for II and po is m, while the default unit
for sp is v. If you type

. 11 5

nroff interprets it not as 5 inches or 5 centimeters but as 5m, which
it converts to 5* 12 = 60 machine units (60u) .

nroff always assumes a unit specification as part of each number
and automatically converts each number and its unit specification
into machine units. If you append an explicit unit specification to
the number, nroff uses it; if you do not, nroff uses the default unit
for the command.

For example, suppose you write the following commands:

. nr x 2i

.11 \ nx

What line length results? The first command stores the number
2* 120 = 240 in register x. The second command is therefore the
same as

. . 11 240

But the default unit for II ism. Since Im is 12u, nroff sets the line
length to 12*240 = 2880 machine units. If you intended a line

62

•

•

•

•

•

•

nroff Text Processor Tutorial

length of 2 inches to result from the above commands, you will be
unpleasantly surprised, since 2i = 240u. Instead, you should write:

.nr x 2i

.11 \ nxu

By including the u in the II command, you prevent multiplication by
the scale factor of 12 as in the first example.

The point bears repeating. nroff converts every number given to a
command as an argument into machine units; if you do not want
the number to change, you must append au to it, unless the default
unit for the specific command is u already. Otherwise, nroff multi­
plies by a conversion factor.

Incidentally, the default unit for the number register command nr is
u; this explains why numbers without unit specifications do not
change in value when you assign them to registers. Since the
default unit for the nr command is u, nroff does not multiply the
numbers by any conversion factor.

You should think of the unit specification as a part of a number.
Since nroff accepts so many different unit s of measurement, a
number without a unit specificat ion is ambiguous. What does '5'
mean? 5 inches? Centimeters? Ems? nroff must know what unit of
measurement you are using.

Thinking of the unit specification as a part of a number helps
explain potentially mystifying behavior like the following. As men­
tioned before, number registers store only integers and nroff trun­
cates each number in an arithmetic expression to an integer before
evaluating the expression. Therefore, the following stores O in
register x:

.nr x 0.4*9

But now try the following:

. nr x 0 .4i
\ nx

This does not store O in x like the previous command; it stores
0.4*120=48 in x. The 0.4 is not truncated to O here! Truncation
occurs after conversion to machine units, so nroff truncates 0.4u in
the first example. But the number in the second example is given in

63

nroff Text Processor Tutorial

inches i instead of machine units u. nroff converts it to u before
truncating to get an integer.

As another example, the following stores I in x:

.nr x O.Oli

nroff converts 0.01 inches to 0.01 *120 = I.2u and then truncates 1.2
to I.

The following command illustrates that nroff understands each
number in an arithmetic expression to have an attached unit
specification, whether you supply one or not.

.11 2*8

Recall that nroff stores the current line length in the register .I; if
you type

\ n(. 1

you find 2304 in a register .I. nroff interprets the 2 as 2m and the 8
as 8m, since the default unit for II is m. Then it converts each to
machine units and multiplies to give the result (2* I 2)*(8* 12) = 2304 .

Consider one final example illustrating the unusual consequences of
seemingly innocent assignments. Suppose you set the page offset as
follows:

. po 8/J

nroff stores the current page offset in register .o; to see what
number it stores there, type

\ n(. o

You see that the page offset is 2. Since the default unit for po is m,
the calculation is: (8* 12)/ (3* 12) = 8/ 3, which nroff truncates to 2.
2u is only I / 60 of an inch. This is not a physically reasonable
value for most typewriter-like devices, so a page offset of O charac­
ters results. On the other hand,

.po 8/Ju

produces a page offset of approximately 1/ 4 of an inch.

64

•

•

•

•

•

•

nroff Text Processor Tutorial

Conditional Input

Now that you understand number registers, you can use them in
conjunction with powerful conditional commands to create more
elaborate nroff scripts. Consider again the problem of creating
header and footer macros. In the section on macros, you con­
structed macros which skipped space at the top of the page and
printed the page number at the bottom of each page.

Suppose you are formatting a paper that has a title. You want to
print the page number on page I at the bottom of the page and to
print the rest of the page numbers at the top of the page. Both the
header and the footer need some kind of conditional mechanism in
order to perform differently on the first page than on subsequent
pages.

On page I, the header should skip to where the title will be printed;
on other pages, the header should print the page number. On page
I, the footer should print the page number; on other pages, the
footer should leave a block of blank space at the bottom of the
page .

To execute commands conditionally, use the if / else commands ie
and el .

65

nroff Text Processor Tutorial

. de hd \" def i ne header

.ie \\n%=1 .A

.el .B

. de A \ " f i rst header opt i on

. sp 11. oi

. de B \ " second option
isp 2v
. tl 1 1 - % - I I

isp 11. oi

. de fo \" def i ne footer

.ie \\n%=1 .c

. el .D

. de C \ " first footer option
isp l-4v
. tl I I_ % - 11

ibp

. de D \ " second option
ibp

As you can see, the ie and el commands always occur as a pair.
The ie command line consists of three parts: first the ie, then a con­
dition which nroff tests, followed by a command for nroff to per­
form if the condition is true. In the example, you wanted the com­
mands in various macros performed; you could have written the
commands out rather than putting them in another macro, as
described below. If the condition on the ie command line is not
true, nroff performs the command on the el line instead of the
command on the ie line.

Each conditional in the example invokes a macro on the command
line. Actually , the conditional can specify input text rather than
the command after the condition. If you want to execute several
commands or include several text lines conditionally, enclose the
lines with the special sequences ' \ {' and ' \ } '.

66

•

•

•

•

•

•

nroff Text Processor Tutorial

You should notice one other new element in the construction of
these macros. Some of the sp commands have a vertical bar
immediately in front of the measurement; for example,

.sp 11.oi
Normally, when nroff processes a command like sp 4, it moves
down four vertical spaces on the output page. The number 4 is in a
sense a relative measurement, relative to where nroff happens to be
on the output page when it receives the request. The vertical bar
tells nroff that the following measurement is an absolute measure­
ment either from the top of the page (if positive) or from the bot­
tom of the page (if negative). Therefore,

.sp ILOi

tells nroff to move to one inch from the top of the page;

.sp l(-4v)

tells it to move to four vertical spaces from the bottom of the page.

The closely related if command if has a command line formed
exactly like ie . Unlike ie, which must always be used with el, if
commands may be used singly. If the condition on the if command
line is true, nroff performs the command following the condition; if
the condition is false, it ignores the command.

This section ends with two rather substantial examples incorporat­
ing most of what you have done so far. To illustrate the use of
conditionals, the first example begins each even paragraph of output
with the phrase Even Paragraph: and begins each odd paragraph
with the phrase Odd Paragraph: .

67

nroff Text Processor Tutorial

68

.wh O hd

. wh I Ji fo

.nr eo 1

.po 2i

.pl 4i

.lt 4i

\ " set traps; basic formatting

.de hd \ " header
'sp l(li- lv)
.tl ' 1 *(ws' '
'sp IL5i

.de fo \ " footer
'sp I (Ji+Jv)
. tl I I - % - I I

'bp

.ds ws "A Wondrous Story"

. de PP \ " paragraph macro

.ie \\n(eo=O .EP

. el .OP

. de EP \ " even paragraph

.br

.nr eo 1

.sp lv

.11 4i

.lt 4i
*e
. sp lv

.ds e "Even Paragraph:"

. de OP \ " odd paragraph

.br

.nr eo 0

.sp lv

.11 Ji

.lt Ji
*o

. ds o "Odd Paragraph:"

•

•

•

•

•

•

.PP
text ...
. PP
text ...
. PP
text ...
. PP
text ...

nroff Text Processor Tutorial

This example uses the "even/ odd" register eo to determine whether
you are beginning an even or an odd paragraph. To distinguish
between even and odd paragraphs, it uses a line length of 4 inches
for even paragraphs and a line length of 3 inches for odd para­
graphs. It changes the title length with each paragraph, so nroff
centers the page number with respect to whichever kind of para­
graph happens to occur at the bottom of a page.

The final example illustrates a loop constructed with the if/ else
commands. The first paragraph is 6 inches long with a page offset
of O; each succeeding paragraph is I inch shorter with a page offset
I inch larger . The line length of the sixth paragraph is I inch; the
next paragraph renews the cycle with a 6-inch line length .

69

nroff Text Processor Tutorial

. nr PO O 1

. de PP

. ie \\n(P0=6 . A

.el .B

. de A

.br

. nr PO 0

.nr LL 6-\\n(PO

.11 \\n(LLi

. po \\n(POi

. nr PO \ \ n+ (PO

. sp

. de B

.br

.nr LL 6-\\n(PO

. 11 \\n(LLi

.po \\n(POi

. nr PO \\n+ (PO

. sp

You should try this example with at least seven paragraphs of input
to see that the "loop" really works as advertised.

70

•

•

•

•

•

•

nroff Text Processor Tutorial

7. Environments

By now you should be familiar with the basic nroff commands.
The commands control the environment in which nroff processes
your input text. The basic features of the environment include line
length, fill and adjust modes, indentation, and so on.

nroff actually provides you with three independent environments,
labelled 0, I, and 2. In each of the three, you may set parameters
like line length, filling, adjustment, and indentation as you wish.
You can call a different environment with the ev command; the
parameters you select for the new environment control text process­
ing until you change the parameters in the new environment or turn
over processing to another environment.

Not all nroff parameters change when you switch to a new environ­
ment. For example, different environments do not have indepen­
dent page offsets; the po command affects all environments.
Parameters that may be set to different values in different environ­
ments are environmental parameters; parameters that cannot be
switched according to environment, like page offset, are global
parameters. Macro and string definitions are global.

When you first call nroff, you are by default in environment 0. In
all the examples thus far, everything happened in environment 0.
The following example illustrates how to switch back and forth
between environments. Invoke nroff from your terminal and type
in the example so you see the output as you go along .

71

nroff Text Processor Tutorial

.po 1i

. 11 4i

. de PP

. sp

. t i 0 . 5i

.PP
text . ..
. ev 1
.11 Ji
.ls 2
. PP
text ...
.ev
.PP
.ev 1
.PP
text ...
. ev

\ " set global page offset
\" set par amete r s i n ev 0
\" paragraph macro

\ " set parameters i n ev 1

\" return to ev 0

\" back to ev 1

\ " re tur n to ev 0

The first II command sets a line length of 4 inches in environment 0.
After defining the paragraph macro PP and an initial paragraph in
environment 0, you switch to environment 1 with the command

.ev 1

You now enter a new environment, as if you just entered nroff in
environment 0. If you do not explicitly set environmental parame­
ters like line length, nroff automatically uses default values for
them. nroff assigns the same default values in environments I and
2 as in environment 0.

You set the line length in environment I to 3 inches with the output
text double-spaced. The leave space command

. l s 2

leaves 2- I= I blank lines between each output line. Thus, para­
graphs processed in environment 0 have 4-inch single-spaced lines,
while paragraphs processed in environment I have 3-inch double­
spaced lines.

72

•

•

•

•

•

•

nroff Text Processor Tutorial

In the example, you use the command line

.ev

without any number after the ev to leave environment 1. This
leaves environment 1 and restores ("pops") previous environment
0. The next time you pass to environment I, you do not need to set
the line length to 3 inches again; the value stays in effect in environ­
ment I until you specifically change it. The same is true of all
environmental parameters.

To understand how nroff switches between environments, imagine
you have a set of plates, each marked with either a 0, a I, or a 2.
You have as many plates of each type as you wish. You stack the
plates on a table; the top plate represents your current environment.
Start with a 0 plate on the table to represent the initial environment
when you enter nroff.

Switching to environment I with an ev 1 command corresponds to
placing a I plate on top of the 0 plate. After you do so, you can
change the stack of two plates by placing a new plate on top of the
stack or by removing the top plate from the stack. The former
corresponds to calling a new environment, while the latter
corresponds to restoring the previous environment with the com­
mand line ev.

Since you have as many plates of each type as you wish, you can
call environment 1, then call environment 2, then restore environ­
ment 1, then call environment 0, and so on; that is, you can stack a
1 plate, then stack a 2 plate, then remove the 2 plate, then stack a 0
plate... The command ev N, where N is 0, I, or 2, puts a plate on
the stack; the command ev removes the top plate from the stack.

To illustrate this, add the following lines to the previous example.
You might want to draw a picture of the stack of environments and
keep track of how the ev commands add or remove "plates".
Since the line lengths are different in each environment, it should be
easy to tell in which environment nroff processes each paragraph .

73

nroff Text Processor Tutorial

. ev 2 \" environment 2

. 11 5i \ " set parameters there

.in 1i

.PP \" paragraph in ev 2
text ...
. ev 0 \" go to ev 0
.PP
text . ..
. ev 1 \ " go to ev 1
.PP
text ...
.ev 2 \ " go to ev 2
.PP
text ...
. ev 0 \ " go to ev 0
.PP
text ...
. ev \ " return to ev 2
. ev \" return to ev 1
. PP
text ...
. ev \ " return to ev 0
. ev \ " return to ev 2
.PP
text ...

In Section 2, you learned that nroff uses a buffer to assemble words
from its input into output lines. Actually, each environment has its
own buffer. Switching to a new environment does not cause a
break. Suppose you are currently in environment 1 with an
unfinished line in the buffer. When you give the command ev 2, the
unfinished line remains undisturbed in the environment 1 buffer
until you return to environment I . Text you process in the mean­
time in environment 2 or in environment O has no effect on the par­
tial line in the environment I buffer, since nroff assembles text pro­
cessed in other environments in different buffers.

In the following example, you process some text in environment 0
and then switch to environment 2. Any partial line collected in
environment O when you switch to environment 2 waits patiently in

74

•

•

•

•

•

•

nroff Text Processor Tutorial

the buffer until you return to environment O and issue the break
command to flush the buffer. You then return to environment 2
and flush any partially filled line left when you restored environ­
ment 0 .

. 11 Ji

.po 2i
text for ev 0 ...
.ev 2
text for ev 2 ...
.ev
.br \" flush buffer 0
.ev 2
.br \" flush buffer 2

A common use of environment switching is for the creation of
header and footer macros. As the following example suggests, the
length of title set by the It command is an environmental parame­
ter. The example constructs header and footer macros which print
strings of asterisks in the margins above and below the text.

75

nroff Text Processor Tutorial

.wh O hd

. wh l2.5i fo

.de hd

.ev 1

.lt 5i
'sp Jv
. tl I**** I I**** I
'sp 2v
.ev

.de fo
'sp 2
.ev 1
.tl '****'%'****'
.ev
'bp

.11 4i

.pl Ji

. in 1i

.po 2i

.de PP

.sp 1

. ti 1. 5i

.PP
text ...

The following section explains why header and footer macros often
use a different environment.

More About Fonts

As described in some detail in Section I, nroff output includes
representations for boldface and italic characters, in addition to
normal Roman characters. The visual appearance of boldface and
italic characters depends on the device you use to "print" your
nroff output.

If you want a single word or a short phrase to appear in boldface,
enclose the word or phrase between \ f3 and \fl:

76

•

•

•

•

•

•

nroff Text Processor Tutorial

The last word of this sentence is in \ fJboldface \ fl .

The sequence \ f3 tells nroff to print in boldface, while the
sequence \ fl tells nroff to return to the Roman font. Similarly for
italics:

An entire phrase \ f2appears in italics\ fl.

To print more than a few words in a different font, you should use
the font command ft:

. ft I
Here is text you want to
appear in i talics ...
. ft ' R

The initial ft I switches to italic font, while the concluding ft R
returns to Roman font. As you might suspect, the command ft B
switches to boldface.

You have two additional options when you use the ft command .
The command ft P returns to the previous font. You can use ft P
within a macro or a string to return to the previous output font,
even though you may not be sure which font was previously in
effect. You can also use the sequence \ fP to return to the previous
font. The ft command without an argument tells nroff to return to
the Roman font.

In scripts with frequent font changes, you should switch to a new
environment for header and footer macros, Suppose you have a
header macro that prints a title and date and a footer macro that
prints page numbers . If the header and footer macros contain no
font specifications, they usually print in Roman. If they use the
main environment, a problem like the following could arise. Sup­
pose the input includes a block of boldface or italic text which hap­
pens to extend across more than one page. The text trips the footer
trap while in a different font, so nroff prints the header and footer
in a different font. The unpleasant effect is that sometimes nroff
prints the header and footer in Roman, sometimes in boldface , and
sometimes in italics .

To avoid this problem, take advantage of the fact that the current
font is an environmental parameter . Pass to a new environment for

77

nroff Text Processor Tutorial

the header and footer and set the font as you wish; every time each
macro is called, it prints in the same font.

Diversions

Suppose you use nroff to format a chapter of a book. The chapter
includes footnotes at various places in the text that you want nroff
to collect and print at the end of the chapter. You want to enter
each footnote at the point in the input text where the reference to it
occurs, but you do not want it to appear there in the output. You
want to store the processed text of the footnote somewhere until
you tell nroff to print it.

The major question is: if you do not want nroff to print the text of
a note when it processes it, where do you store the text until you
want it to appear? nroff provides a diversion mechanism to handle
this problem: you can divert text to temporary storage in a macro.
Diverted text does not appear in the output when nroff processes it.
It is stored in a macro, so it appears in the output when you invoke
the macro.

Diversion normally involves passing to a new environment to pro­
cess the footnote without causing a break in the main environment.
When the text of the note ends, nroff returns to the main environ­
ment, again without causing a break, so processing continues just as
if the text of the note had not been in the input.

Before you attempt to construct a footnote macro, consider the fol ­
lowing simple example. It illustrates the basic features of diversion.
The net effect of the example is to in terchange the two paragraphs ,
so nroff prints the second before the first.

78

. di X \" divert follow i ng to macro X

.sp
t ext of f irst paragraph ,
printed last ...
. br \ " send last l i ne of paragraph to X
. di \" end diversion
. sp
t ext of second par agraph ,
printed f irst ...
. X \" pri nt the paragraph di vert ed to X

•

•

•

•

•

•

nroff Text Processor Tutorial

The new command here is the divert command di. The command
di X tells nroff to divert the following text to macro X and the
matching di with no argument marks the end of the diversion.

The break is necessary before the end of the diversion because nroff
diverts processed text into the macro. Without the break, nroff
would not divert any partially filled line in its buffer to X; the last
few words of diverted text might not form a complete line in the
buffer, so nroff might not divert them. But if you cause a break
before you end the diversion, nroff also diverts the last words.

Edit the previous example by deleting the .br before the end of the
diversion and try it to see what happens. nroff prints any trailing
words that were not diverted at the beginning of its output. The
trailing words are left in the buffer, so nroff prints them when it
encounters the sp command preceding the text of the second para­
graph.

The next example illustrates a similar point.

.br
wordl
.d i X
Put your
lines of
.br
.di
.x

own

\ " clear buffer
\ " put 'wordl' in buffer
\ " divert to X

text here .
\ " divert last line
\ " end diversion
\ " print text in X

Here nroff diverts wordl to X along with the text between di X and
di. Why did this happen? The command di X does not cause a
break. Since you do not pass to a new environment in this example
before you divert, nroff forms the diversion text in the same buffer
in which it stored wordl. You do not cause a break, so nroff
appends the diverted text to word I.

To make sure nroff diverts only text between di X and di to X, you
should do one of the following. If you want to process the diverted
text in the current environment, empty the buffer by causing a
break with the br command before you start the diversion. If you
switch to a new environment before starting the diversion, you
probably want to flush the buffer for the new environment before
you start processing diverted text.

79

nroff Text Processor Tutorial

Diverting processed text to a macro which is already defined des­
troys the previous definition of the macro. In some cases, such as
the footnote example, you want instead to append information to
the same macro. The divert and append variation da of the diver­
sion construction allows you to do so .

. 11 Ji

. po 2i

.de PP

.br

.sp 1

. ti 0.5i

.di X

.PP
text of paragraph 1
.br
.di
.x
. da X
.PP

\" see what is in X
\" add another paragraph to X

text of paragraph 2
.br
.di
.x \" see what is in X

In this example, you first divert a single paragraph to the macro X.
The text nroff stores in X is the processed paragraph. In other
words, the command line .PP is not stored in X; its output is.
When you invoke X with the command line .X, nroff uses the pro­
cessed text in X as input. To nroff, there is no difference between
processed text and unprocessed text as input: it processes the con­
tents of X in the current environment, just like any other text.
nroff processes diverted text twice: first when it stores the text in
the macro, then again when you invoke the macro .

The fact that nroff processes diverted text twice can cause problems
if you are not careful. Fortunately, nothing strange happens in the
example above. You store a processed paragraph with three-inch
long lines in X. When you invoke X, the line length is three inches.
Since each line in X is already exactly three inches long, nothing

80

•

•

•

•

•

•

nroff Text Processor Tutorial

happens to it when reprocessed; the layout of the output paragraph
is unchanged.

But now consider the following example:

.11 Ji

.po 2i

.de PP

.sp 1

.ti 0.5i

.di X

.ev 2

.11 4i

.PP
text
.br
.ev
.di

A pargraph processed in environment O in this example has three­
inch lines; you want your diverted paragraph to have four-inch
lines. If you print the diverted paragraph with the command line
.X, what happens? nroff does not print four-inch lines. Repro­
cessing takes place in environment 0, with a three-inch line length,
so the output paragraph has three-inch lines, contrary to your
wishes.

There are two ways to prevent such disasters. If you want to
invoke X in the main environment, use no-fill mode:

.nf

.x

.fi

\ " no- f i ll mode

\" back to f i ll mode

In no-fill mode, nroff outputs lines of input exactly as it receives
them, so it keeps four-inch lines four inches long and does not
change the format of the diverted text.

Another alternative is to return to environment 2 and then invoke
X; again, the format of the diverted paragraph does not change,
since the line length in environment 2 is four inches.

81

nroff Text Processor Tutorial

. ev 2

. x

. ev

\ " switch to env . 2

\ " restore original env i ronment

The footnote example which follows does not print notes at the bot­
tom of each page, but rather prints all at the end of the chapter. In
the processed text , the footnote number appears in square brackets
at the point you refer to it.

. de FN
[\ \ n+(fn] \ " footnote reference in
. ev 1 \ " environment 1
. da Z \ " append footnote to z
.sp
\\n(fn . \\$2 , \\ f2 \\$1\\ fl,

\\$3, \\$4 .
\ " flush diversion buffer
\ " end diversion

main environment

. br

. di

. ev \ " restore original environment

Note that requests to change font s are preceded by double
backslashes, since they are inside a macro. The change to italic
prints the first macro argument , which should be the ti tle of the
work , in italics. Register fn contains the number of the last foot­
note; you should initialize it with the command

.nr fn O 1

In your input text , each footnote looks like this:

. FN "The Single Man ' s Guide to Husbandry"\
"Gomez Adams" "Plutonian Press" "1956"

When you print the diversion Z at the end of the chapter, each
footnote has the format

82

8 . Gomez Adams , The Single Man 's Guide to Husbandry,
Plutonian Press, 1956.

•

•

•

•

•

•

nroff Text Processor Tutorial

8. Command Line Options

In the previous sections, you learned how to control nroff by
including commands in the input along with the text. You can also
supply information in another way: on the COHERENT command
line you type to call nroff. Unlike the commands discussed above,
this information is not part of the input. This section provides
more details on options available when calling nroff.

You already know about some simple nroff command lines. For
example, the command

nroff

accepts input from the terminal (sometimes called the standard
input) and prints output on the terminal (the standard output).
Type < ctrl-D > (that is, hold down the ctrl key and type D) to exit
from nroff if it is reading input from your terminal.

The command line

nroff script. r

takes input from the file script.r instead of your terminal, while

nroff -ms script.r

processes script.r with the ms macro package. You can also
redirect nroff output to another file target:

nroff - ms script.r >target

The general form of the nroff command line is:

nroff / option ... J [file ... J
This means that the command line consists of the name nroff, fol­
lowed by zero or more options, followed by zero or more files.
nroff processes each given file and prints the result on the standard
output (the terminal, unless redirected). If no file argument is
given, as in the first example above, nroff reads from the standard
input (the terminal, unless redirected).

Each option on the command line must begin with the character
' - ' to distinguish it from a file specification. Using nroff with the
ms macro package is one example of using an option. In general,
the - m option takes the form

83

nroff Text Processor Tutorial

-mname

which means the option consists of the characters - m immediately
followed by a name. This tells nroff to process the macro package
found in the COHERENT file

/ usr/ lib/ tmac.name

For example, the ms macro package discussed in Section 1 is in the
file /usr/lib/tmac.s, while the man macro package used for the man
command and to process the COHERENT Command Manual and
COHERENT System Manual is in the file / usr/ lib/ tmac.an.

The - i option tells nroff to read input from the standard input
after processing each given file. This allows you to supply addi­
tional input interactively from your terminal.

The - x option tells nroff not to move to the bottom of the last
output page when done. This is especially useful if you want to see
the output on the screen of a CRT terminal.

The - nN option sets the page number of the first output page to
the given number N, rather than starting at page 1. This is useful
for processing large documents with input text in several files which
nroff processes separately.

The - raN option sets the value of number register a to the given
number N. Here a stands for a single character which identifies a
number register. This option lets you initialize number registers
when you invoke nroff. Section 5 gives more information about
using number registers.

The COHERENT system provides many useful features which can
be helpful while you are using nroff. In particular, you can use a
number of special characters . The stop-output and start-output
characters, usually < ctrl-S > and < ctrl-Q >, stop and restart out­
put on your terminal. The interrupt character, ususally DEL, inter­
rupts program execution; you can use it to stop an nroff command
if you typed the command line incorrectly. The kill character, usu­
ally < ctrl- \ >, also terminates program execution. Some
COHERENT systems use different characters than those mentioned
above; consult the COHERENT Command Manual or the Intro­
duction to the COHERENT System for details.

84

•

•

•

•

•

•

nroff Text Processor Tutorial

Conclusion

This concludes the nroff tutorial. By now you should understand
enough about nroff to create macros on your own and to under­
stand the macros in the ms package . The summary in the following
section provides a brief description of the most important nroff
commands discussed in this tutorial.

85

nroff Text Processor Tutorial

•

•

•
86

nroff Text Processor Tutorial

• 9. Summary

Macros defined in the ms macro package :

. AB Abstract begin

. AE Abstract end

. AI Author ' s institution

. AU Author

.B Boldface

. BD Block- centred display

. CD Centred display

. DE Display end

.DS Di splay start

. FE Footnote end

. FS Footnote start

. I Italic

. ID Indented display

. IP Indented paragraph

. KE Keep end

• . KS Keep start
. LD Left display
. NH Numbered heading
. PP Paragraph
.QE Quoted paragraph end
. QS Quoted paragraph start
. R Roman
. RE Relative indent end
. RS Relative indent start
.SH Subheading
.TL Title

•
87

nroff Text Processor Tutorial

Basic nroff commands: • . ad Adjust
.bp Begin page
. br Break
. ce Center
.da Divert and append
. de Define macro
.di Divert
. ds Define string
.el Else
. ev Environment
. fi Fill
. ft Font
. ie If/else
. if If
. in Indent
. 11 Line length
. ls Leave spaces
. lt Length of title • .na No adjust
.nf No fill
. nr Number register
.pl Page length
.pn Page number
. po Page offset
. sp Spaces
. ta Tab set
. tc Tab character
. ti Temporary indent
. tl Title
.vs Vertical space
. wh When (set trap)

•
88

• Number

Special

•

•

nroff Text Processor Tutorial

registers:

. i Indent

. 1 Line length

. o Page offset

.p Page length
% Page number

character sequences:

\\
\ $1
\ "
\ *s
\ *(st
\ nx
\ n(xy
\<newline>
\{
\}
\ fX

Backslash character
Macro argument 1
Comment
String s
String st
Number register x
Number register xy
Embedded newline , ignored
Start of conditional commands
End of conditional commands
Font (X is B, I, P, R)

89

nroff Text Processor Tutorial

•

•

•
90

•

•

•

OJo: 21, 41
(quote)' . ds L ' (quote)

' (quote): 23
- i: 84
-m: 83
- n: 84
- r : 84
-x: 84
. (dot): 23
.. (dot dot): 39
.I: 61
/ usr / lib/ tmac: 83
\: 23
\ II If

27":
\ $: 45
\&: 23
\ *: 51
\ *(: 51
\ n(.o: 64
\n + (xy: 59
\n+ x: 59
\ \ $: 46
\fl: 76
\f3: 76
\fB: 22
\fR: 22
\ \n(xy: 56
\ \nX : 56
{: 66
I: 67
}: 66

AB: 19
ad: 28, 29, 33
adjust: 28
AE: 19

nroff Text Processor Tutorial

Index

Al: 19
AU: 19

B: 22
backslash: 23

double: 46, 56
BD: 25
begin page: 26, 35
block-centered display: 24, 25
boldface: 21
bp: 20, 26, 35
br: 26, 28, 37
break: 26, 28, 33
breaking: 8

CD: 25
ce : 34
center: 34
centered display: 24-25
characters

special: 23
command: 6, 8

argument: 8
conditional: 65
fill: 28
line: 6
names: 8
summary: 87

commands: 5
comments: 27
conditional input: 65
CT: 20

da : 80
daughters: 9
DE: 24
de: 39

91

nroff Text Processor Tutorial

define: 51
defining

macro: 39
definition

processing: 48
di: 78-79
display indented: 24
display: 24

block-centered: 24-25
centered: 24-25
ending a: 25
indented: 25
left: 25

diversion: 78
DS 8 : 24
DSC: 24
DS I: 24
ds: 20, 51
DS: 24
dufus: 24

el: 65
else: 65
ev: 71
expression: 60

FE: 23
fi: 28, 33
fill: 26, 28
fo: 41
fonts: 21
footer: 20, 40-41
footnote: 23
forking

animal: II
FS: 23
ft: 77

hd: 41
header : 20, 40
heading numbered: 17
headings

92

section: 17
subsection: 17

hyphenate: 8

I: 22
ID: 25
ie: 65
if: 67
if/else: 65
indentation

relative: 12
indented display: 25
indented

display: 24
input

from terminal:
invoking nroff: 83
IP: 9, 11, 12, 17
italic: 21

justify: 7, 28

KE: 25
keep: 24-25
KS: 25

LD: 25
left display: 25
line

length: 27
II: 27, 61
Is: 72
LT: 20
It: 43, 75

macro: 2, 5, 37
arguments: 45
definition: 39, 45
name: 8
summary: 87

margin
right: 7-8

margins: 28
measurement : 61

absolute: 67
units: 41, 61-62

•

•

•

nroff Text Processor Tutorial

ms: 2 sp: 8, 26, 34, 37

• space
na : 28, 33 vertical: 8
new page: 26 specification: 27
nf: 28 stack
NH: 17 environment: 73
no-fill: 29 string: 20, 51
nr: 55, 58 within strings: 52
nroff: I
numbered head ing: 17 ta: 35

tabs: 35
page number: 21 tag on paragraph: 10
page tc: 35

break: 26, 35 terminal input:
offset: 27 text: 6

paragraph tag: 10 ti: 37
paragraph: 5, 9, 33 title: 19-20

indented: 9 TL: 19
quoted: 15 ti: 42

pl : 35 traps: 36, 40, 44

• po: 27, 64, 71
PP: 5, 9, 17, 19, 38 unit

default: 62
QE: 15 units: 61
QS: 15
quoted paragraph : 15 weather: 6

wh: 41
R : 22
RE: 12, 13, 15
red: 12
register

number: 55
relative indent: 12
right margin: 7
Roman: 21
RS : 12, 13, 15
RT: 20

section heading: 17
SH: 17, 19
silk: II • skip lines: 26

93

nroff Text Processor Tutorial

•

•

•
94

•

•

•

nroff Text Processor Tutorial

User Reaction Report

To keep this manual and COHERENT free of bugs and facilitate future
improvements, we would appreciate receiving your reactions. Please fill in
the appropriate sections below and mail to us. Thank you.

Mark Williams Company
1430 W. Wrightwood Avenue

Chicago, IL 60614

Name:

Company:

Address:

Phone: Date:

Version and hardware used:

Did you find any errors in the manual?

Can you suggest any improvements to the manual?

Did you find any bugs in the software?

Can you suggest improvements or enhancements to the software?

Additional comments: (Please use other side.)

95

•

•

•

