
• sh Shell Command

Language Tutorial

•

•

•

•

•

Table of Contents

• 1. Introduction 1

2. Getting started with the shell 3

Simple Commands 3

Constructing shell commands 4

Commands in a file 5

Executable files . 5

Dot-read commands 6

Background commands 6

3. Substitution in commands 9

File name substitution 9

Special characters . 13

• Redirection . 14

Output redirection 14

Input redirection 15

Standard error redirection 16

Pipes 17

4. Parameter substitution . 19

Shell variable substitution 22

Command substitution . 27

Special shell variables 28

5. Basic shell programming 31

Values returned by commands 31

test-condition testing . 32

• Conditional command processing 34

Control flow 36

sh Shell Command Language Tutorial

6. Advanced shell programming 47 • Conditional substitution 47

Arithmetic operations 48

Interrupt handling 50

Shell invocation arguments 50

Conclusion . 52

Index 53

User Reaction Report 55

•

•
ii

•

•

•

1. Introduction

The commands that you give the COHERENT operating system are
interpreted and acted upon by a special COHERENT program
called the shell. The shell provides a flexible and powerful com
mand language that handles simple and complex commands alike,
and can be used to do actual programming.

If you have not used the COHERENT operating system before, the
best place to start is with the Introduction to the COHERENT Sys
tem. It will show you how to log in to the COHERENT system
and introduce you to basic concepts. You should understand the
material in the first five sections of the Introduction to the
COHERENT System before you read this tutorial, since this
tutorial assumes that you are familiar with the COHERENT file
system structure and some basic COHERENT commands. Other
useful documents are COHERENT Command Manual and
COHERENT System Manual which describe the use of each com
mand available in the COHERENT system in detail.

A related document with which you should familiarize yourself is
the ed Interactive Editor Tutorial. This editor helps you prepare
and change files containing programs, documents, or data .

sh Shell Command Language Tutorial

•

•

•
2

•

•

•

sh Shell Command Language Tutorial

2. Getting started with the shell

This section illustrates some basic COHERENT system commands
and how the shell can be used to execute them. First, you must log
in to the COHERENT system. If you do not know how, you
should read the Introduction to the COHERENT System before
proceeding with this manual.

Simple Commands

Once you have logged in, you will see a prompt. This prompt is
often a dollar sign, '$', although it may be a different character on
your system, and, as you will see below, it can be changed. The
prompt indicates that the shell is waiting for you to enter a com
mand. Give the computer something to do and see what happens.
Type:

le <RETURN>

<RETURN> means the carriage return or enter key. Note that
you must hit <RETURN> at the end of each line that you type to
the shell. From here on in this tutorial, it will be assumed that
each line ends with a < RETURN > .
le tells the system to list the files in your current directory. You
should remember this command from the Introduction to the
COHERENT System . The shell, also known as a command
language interpreter, first interprets the command or series of com
mands, and then executes them. When the shell has finished listing
your files it will issue the '$' to prompt you for a new command.

Continue with this example by creating a file called fileOl, and put
these lines into it:

This is a test
of some simple commands.

(If you do not remember how to create a file, reread the Introduc
tion to the COHERENT System, or study the ed Interactive Editor
Tutorial.)

Now, print the contents of the file at your screen. Type:

3

sh Shell Command Language Tutorial

cat fileOl

cat (short for concatenate) is being used here to display a file. cat
takes fileOl as a parameter or argument.

The cat command can take more than one argument. To illustrate
this, create a second file called file02. In it, type the sentence:

This is a second file.

Now, join (concatenate) these two files. Type:

cat fileOl file02

The response at your terminal is:

This is a test
of some simple commands.
This is a second file.

cat printed both files on your terminal in the order they were listed
and without breaks. cat will accept any number of files you want
to give it.

Constructing shell commands

Simple commands may be combined on one line by separating them
with semicolons. Rather than typing the sequence of commands:

who
du
mail

it is handier for you to use this form:

who; du; mail

•

•

In both of these examples, du will not begin execution until who is •
finished, and mail will not begin until du is done.

4

•

•

sh Shell Command Language Tutorlal

Commands in a file

Many of the commands that you use in COHERENT are programs,
such as ed. Others, like the man command, are just files containing
other commands to be executed by the shell.

It is often useful to put commands into a file. You might have a
frequently used set of commands or a set of complex commands
that you would like to abbreviate.

For example, assume that every morning you want to: check the
amount of disk space your home directory is using and the amount
of disk space still available; list the user currently on the system,
sorted in alphabetical order; and, finally, read your mail. It is easy
to do all this with just one command. Create a file called good.am
with the following commands:

du
df
who sort
mail

To execute these commands, you need only say:

sh good.am

sh calls the shell to read commands from whatever file is given on
the command line, in this case good.am. You have just created a
command file, also known as a shell script. Any commands that
you issue from your terminal can be incorporated into a command
file.

Executable files

If you use this command frequently, you can save typing sh each
time if you make the file directly executable. To make a command
file executable, use the chmod (change mode) command. Type:

chmod +x good.am

• Now, all you do is type:

5

sh Shell Command Language Tutorial

good.am

and your mornings will be off to a good start! You can also have
this (or any other command) run automatically when you log in
see the section on the .profile below. If you edit a file, ed will let
you change it and the file's executable status will be maintained.

Notice that the commands used in a command file may be other
command files. To see how this works, create a file called
second.sh (the .sh suffix is sometimes used to indicate a shell script)
as illustrated below:

good.am
le

Then use sh to execute your latest file:

sh second.sh

sh will first execute good.am and then will list your files.

Dot-read commands

Similar to sh is the '.' (dot) command. '.' works much like sh and
uses less active memory, although it will not take parameters
(described below). The shell executes commands in a file directly
when you use '.'; when you use sh, the system creates another shell,
sometimes called a subshe/1, to execute these commands. For more
information, see the Introduction to the COHERENT System.

Background commands

Shell commands are normally executed sequentially. If a command
ends with the character '&', the shell will begin executing the com
mand immediately, in background. This leaves you and your ter
minal free to continue with other tasks. For example, if you want
to sort a large file /etc/passwd, but need to continue with other
tasks while the sort is taking place, you could type:

sort /etc/passwd >stuff.sorted &

6

•

•

•

•

•

•

sh Shell Command Language Tutorial

The > is a redirection symbol, discussed below. When you run a
command with '&', the shell responds by typing the process id of
the command, then will give you a prompt so you can issue further
commands. Thus, the response from the system to the above com
mand will be:

474
$

except that the number will almost certainly differ.

In the COHERENT system, each running command or program is
assigned a process id when it begins executing. Normally, there is
no need to be concerned about these numbers. But when you run
background commands, the shell tells you the id of the background
process so that you can keep track of its execution. This can be
useful if you start a command, realize there is an error, and have to
stop or kill it and start over.

The command

ps

tells you about the processes you are currently running. If you
have no background commands, the response on your terminal will
resemble:

TTY PID
JO: 362 -sh
JO: 399 ps

The TTY column shows the number that COHERENT has inter
nally assigned to your terminal, and is the same number displayed
by who. The PID column shows the process id. The third column
shows the name of the program or command executing. The char
acters - sh in the third column means the shell. Since the process
id number is sequentially assigned by the system to each process,
the numbers you get will differ .

Once you have started a background command, the ps command
will show you the process id for it. In this example, you can see

7

sh Shell Command Language Tutorial

the sort running in background and the ps command that you
issued.

TTY PIO
JO: 362 -sh
JO: 474 sort /etc/passwd
JO: 495 ps

If you want, you can wait for background commands to finish by
issuing the command:

wait

The shell will then accept no further commands until all of your
background commands are finished. If you have no background
commands running, there will be no wait.

Note that the background processes are still connected to your ter
minal. If the background command produces output on standard
output or standard error (see below) the output will appear on your
terminal, even though you are working on another command. See
the section 3 on redirection for what to do about this.

The '&' should not be overused, especially on heavily loaded sys
tems. If users on the system send off a large number of background
commands, system response will deteriorate noticably.

8

•

•

•

•

•

•

sh Shell Command Language Tutorial

3. Substitution in commands

The command files described in previous sections were sent directly
to the COHERENT shell without change. However, you can
greatly enhance the flexibility and power of COHERENT com
mands through the use of parameters, special characters, and
redirection.

First, for many COHERENT commands, you can give a list of one
or more file names to be acted on.

Second, you can give a command file parameters, much like param
eters that are passed to a Pascal, Algol, or C function or procedure.
With parameters you can target the action of a command file when
you call it.

Third, the output of one command can be inserted into another
command line. The pipe symbol, 'I' is one form of this kind of
substitution, and there are several others as well.

File name substitution

File names are some of the most common command parameters.
For example,

cat file01

and

ed file01

use the file name fileOl as parameters.

By using special shell characters called wi/dcards, you can substitute
file names in commands using the wildcard characters in patterns.
The character '•' will match any string of characters in file names
in the current directory. Thus,

echo*

will list all the file names in the current directory, since echo takes
its arguments, expands them fully, then writes them out to the ter
minal. The command

9

sh Shell Command Language Tutorial

echo f*

will give all file names that begin with the letter f, including a file
simply called f. And this command:

echo a*z

will list all names that begin with a and end with z, again, including
a file called az.

Note that you can use ••• in conjunction with other characters, so
that you can define your pattern more strictly.

To illustrate this, suppose you have three files called file, fileOl, and
file02. Call the echo command as follows:

echo file*

This will produce the output:

file fileOl file02

Thus, by using a single •, you can substitute several file names into
a command. In other words, the command:

echo file*

is here equivalent to:

echo file fileOl file02

And similarly, the usage

cat file*

is equivalent to

cat file fileOl file02

assuming that these files are in the current directory.

•

•

•

•

•

•

sh Shell Command Language Tutorial

When several file names are substituted by the shell in this manner,
they will be inserted in the order of the numeric values of the
ASCII characters substituted for-essentially alphabetically.

If there are no file names that match the pattern, the special charac
ters are not translated, but passed to the command exactly as typed.
The following commands should be executed with caution, as they
can remove files that you may want to keep. Type:

rm file*
echo file*

The first command will remove all files whose names begin with
file, and is therefore equivalent, for the example above, to:

rm file fileOl file02

The echo command that follows will reply:

file*

because there are no file names beginning with file, as they were
just removed.

Another wildcard character, '?', will match any single letter.
Create four files called file, filel, file2, and file33; then issue the
command:

echo file?

The reply will be:

filel file2

file? will not match file33 since there are two characters after file,
nor will it match file, since the pattern requires one character fol
lowing the letters file.

The bracket characters '[' and ']' can be used to indicate a choice
of single characters for a match. When you type this command:

11

sh Shell Command Language Tutorial

echo file[12]

the reply is:

filel file2

To match a range of characters, separate the beginning and end of
the range with a hyphen. For example:

echo [a-m]*

will list all file names beginning with a lower-case letter from the
first half of the alphabet. You can define a range of numbers just
as easily:

echo *[1-3)

will match filel, file2 and file33.

The character '/' defines components in file pathnames, and is not
matched by ••• or '?', but must be matched explicitly. Therefore,
to list all subdirectories of /usr with a .profile file, type:

echo /usr/*/.profile

The asterisk will match all the subdirectories of /usr. Or, to list all
files in the subdirectory notes, type:

echo notes/*

The special characters discussed in this section can appear anywhere
in a command or a command file where a file name can appear. A
file name with a leading ' .' will not be matched by '•', nor will a
'?' substitute for a '.'.

The single quote or apostrophe character, ''', is used to enclose

•

•

command arguments when you want to prevent the shell from •
matching special characters within the quotes. You should note
that two single quote characters is not the same as the double quote
character, '"' .

12

•

•

•

sh Shell Command Language Tutorial

grep, from the ed command g/regular expession/p, is a program
that searchs its input for lines containing a given pattern. To use
grep to print the lines in fileOl that contain a pattern beginning
with q and ending with X, type:

grep 'q*X' fileOl

The asterisk enclosed in single quotes so that it is passed to grep as
a parameter and not processed by the shell.

Special characters

If you are familiar with ed, you know that there are certain charac
ters that have special meaning to ed and must be used in certain
ways. The shell also treats some characters specially. These special
characters, sometimes referred to as metacharacters, are:

*?[JI;{}()$
= : I I fl < > << >>

Some of these special characters have already been presented; the
function of the rest will be explained later in this tutorial. If you
want to use one of these special characters but not have the shell
treat it specially, then precede the character with a backslash, '\ ',
or enclose it in single quotes (not double quotes). For example:

grep 'test*' temp

will pass the word test* to the grep command, not all the file names
beginning with test.

Additionally, the shell treats the following words in a special way
when they appear in a command line:

break do
case done
continue elif

else
esac
fi

for
if
in

then
until
while

These are shell keywords. They are all commands specific to the
shell, and as such are reserved. You could not, for example, use
one of them as the name of a command file.

13

sh Shell Command Language Tutorial

Redirection

Most of the COHERENT system's commands and programs accept •
input from your keyboard and put the output onto your terminal.
This is done through two files called standard input and standard
output respectively. The third file standard error is used to report
errors. These system files are automatically opened by the shell
when it is first invoked. Any of these three files can be redirected
to files or devices other than your terminal. This allows you, for
example, to output a file to a printer or even append one file to
another, simply by redirecting it. Much of the COHERENT
system's power stems from this simple-to-use tool.

Output redirection

There are several different types of redirection, all using one or
another of these symbols: '< ', '> ', and 'I'. First look at output
redirection. Type:

cat fileOl file02 >fileOJ

cat joins together the two files that have been used up till now,
creating a third file named file03. If you already have a file named
file03, its contents would be erased and overwritten by the new file.

When you are redirecting a file, the '> ' and the target file name
can be placed anywhere on the command line. For example, these
two commands produce the same result as the command above:

cat >fileOJ fileOl file02
cat fileOl >fileOJ file02

It seems to be more natural if the command is written with the
> file03 at the end and this is the standard practice. Note that

cat file02 fileOl >fileOJ

•

is not equivalent to the last example, since it reverses the order of
the input files.

The ' > ' tells the shell to overwrite the contents of an existing file •
or else create a new file. Using '>' to join two files necessarily

14

•

•

•

sh Shell Command Language Tutorial

creates a third file. Appending a file to an existing file can be done
more elegantly with another redirection command, '> > '. To see
how this command works, type in the following:

le >filel
who >>filel

The first command will overwrite filel with a list of the files in your
current directory. The next command will append the current users
to the end of filel. And if you type:

cat filel

you will get the names of the files in your directory, followed by a
list of users.

Input redirection

The cat command writes a file to standard output. If you do not
give it an input file, cat reads the standard input file. Type:

cat
This is a test of cat.
<ctrl-D>

With the cat command using standard input, you signal the end of
the input with < ctrl-D > . As you recall, this means holding down
the ctrl key while simultaneously striking the D key. After you hit
< ctrl-D > , your input will be printed back onto your terminal.

You can also enter something at your terminal and redirect it to a
file without using an editor. Try:

cat >filel
Line number one
Line number two
<ctrl-D>

Now use the

15

sh Shell Command Language Tutorial

cat filel

command to verify that your text went into the file.

To use the cat command to write standard input to a file without
having to put < ctrl-D > at the end, use the '< <' form of input
redirection. Type:

cat >filel << .
This is a test
of redirection symbols.

This command does two things: it redirects standard input into
filel, and the '< <' symbol tells the shell to keep accepting input
from the keyboard until it comes across a token -in this case the
',

Note that the ending token must be placed on a line all by itself;
the period at the end of the second line did not stop the input
redirection. The token can be almost anything; a period is often
used because it has the same function in mail and ed. You could
use, say, stop or EOF. The only things you cannot use are shell
reserved words or symbols which have special meaning to the shell,
such as an asterisk.

It is also possible to redirect standard input using '< '. For exam
ple, the command:

mail fred < gossip

will mail the file gossip to fred.

Standard error redirection

If you enter

cat filel

and filel does not exist, you will get the message

16

•

•

•

•

•

•

sh Shell Command Language Tutorial

cat: filel: no such file or directory

displayed on your screen. This message is not written to the stan
dard output file, but rather to the standard error file. This is done
so that error messages will not interfere with command output.

Just as you can redirect standard input and output, you can also
redirect standard error, using the 2 > symbol. The 2 is a file
descriptor, which is used by the COHERENT system to keep track
of all open files. Standard error has a file descriptor of 2, standard
input has a file descriptor of 0, and standard output has a file
descriptor of 1. To redirect standard error, write a command of
the form:

cat file4 2>temp

If the cat command cannot find file4, it will write the error message
in the file temp, instead of on your screen .

A frequently used applications of the redirection of standard error
is with the file /dev/null. /dev/null is a file that is always empty,
even if you write into it. Thus, the command

cat filel 2>/dev/null

will throw away all error messages.

Pipes

Up until now, all the forms of redirection discussed have involved
files. However, a very useful feature of COHERENT is the linking
of input and output oi" commands in process. This type of redirec
tion is done with a pipe: 'I '. The pipe directs the output of one
command to be the input of another. The string of commands is
called a pipeline. For example, if you want to list the COHERENT
commands in /bin and /usr/bin, sort them, and look at the output
one screenful at a time; you can write:

17

sh Shell Command Language Tutorial

ls /bin /usr/bin >templ
sort templ >temp2
scat temp2

You will be left with the files tempt and temp2 cluttering up your
directory, and you will have to remove them:

rm temp[12]

On the other hand, if you use pipes, you can simplify this to:

ls /bin /usr/bin I sort I scat

The list of files will be sent as input to the sort command, giving an
alphabetic list of the files. When you pipe that list to scat -a
command that writes output to the terminal, a screenful at a time
the sorted list will be printed on your screen.

As you can see, the pipe symbol elegantly avoids the complications
of having to create and then remove temporary files created during
intervening steps in a series of commands.

It is useful to note that redirection is based on two simple concepts.
First, that the COHERENT system sees all files as simply a string
of bytes; and second, that most programs act like filter in that they
take input, do an operation on it, and produce output. Thus, pro
gram input can come from a terminal, a file, or from another pro
gram; and the output can go to the terminal, another file, or
another program; without the program itself being concerned with
the details of where its input came from or where the output is
going.

When you combine this flexibility with effective commands and util
ities, the result is power in a friendly environment.

18

•

•

•

•

•

•

sh Shell Command Language Tutorial

4. Parameter substitution

Each shell script can have up to nine positional parameters labeled
$1 through $9 with $0 being the command name itself.

Recall that parameters to a command follow the command itself
and are separated by spaces or tabs. An example of a command
reference with two parameters is:

show first second

where first and second are the positional parameters.

Create the executable shell script show containing the following
commands and parameters:

cat $1
cat $2
diff $1 $2

Recall that you must type chmod + x show to make show execut
able. The $1 and $2 refer to the first and second parameters,
respectively. Create a file and call it first:

linel
line two
line 3

Then, create another file, called second:

line 1
line 2
line 3

Then issue the show command:

show first second

Because the shell substitutes first for $1 and second for $2, this has
the same effect as typing:

19

sh Shell Command Language Tutorial

cat first
cat second
diff first second

If you issue a command with fewer than the number of parameters
referenced in the command, the shell will substitute an empty, or
null, string in place of each missing parameter. For example, if
you only give the parameter first to the show command, like this:

show first

then the shell will only substitute the first parameter:

cat first
cat
diff first

The empty string has been substituted for $2.

The example above shows the parameter references separated from
each other by a space. Note that for positional parameters it is not
necessary to distinguish the parameters, since a positional parameter
can only be one digit. To illustrate, build an executable command
file and name it pos:

echo $167

Then call the command file with:

pos five

And the result will be:

five67

If pos is

echo $1 67

20

•

•

•

•

•

•

sh Shell Command Language Tutorial

then the output from the command

pos five

would be:

five 67

Note the space.

There are also two special variables that you can use to let a shell
script use all the positional parameters. The first is '$*'. For
example, build the file prt to contain:

cat$*

A script containing this command will cat every file given in the
positional parameters. If you type:

prt fileOl file02 fileOJ file04 filezz

the script will cat all of the files onto your screen.

The variable '$@' resembles '$*' except that it passes all the param
eters as one variable. If the shell script seek contained:

grep "fjjj' addr. list

then you could type:

seek Fred Flintstone

and the seek command would use grep to search for the entire
string "Fred Flintstone" in the file addr.list . This is because the
first argument to grep

Fred Flintstone

is the pattern that grep looks for in the files listed in the remaining
arguments, in this case addr.list.

21

sh Shell Command Language Tutorial

If seek was written as

grep "$*" addr . list

using '$•' instead of '$@', then the command

seek Fred Flintstone

would look for the string "Fred" in the files Flintstone and
addr.list. This is because grep has three arguments Fred, Flintstone
and addr .list. Since Flintstone is a separate (second) argument,
grep treats it as a filename.

Another important special variable is '$#', which gives the number
of positional parameters passed to the command. To see how '$#'
is used, see the next example. There are several other predefined
special variables, discussed later.

Shell variable substitution

In addition to positional parameters, the shell provides variables.
The variable name can be constructed from letters, numbers, and
the underscore character '_'. Here are some sample names:

high_tension
a
directory
DATEl

Variable names cannot be single digits, and cannot start with digits,
because the shell will treat the leading digit as a positional parame
ter. Upper case letters and lower case letters are treated as being
different in shell variable names.

Values are given to variables by an assignment statement:

a=welcome

•

•

Note that there can be no space before or after the equals sign. •
You can inspect parameter values with the echo command:

22

•

•

•

sh Shell Command Language Tutorial

echo $a

The '$' is a special character that signals the shell that you want the
value of the variable indicated. You must not forget the '$' when
referring to the value; this is true for shell variables and positional
parameters.

To avoid problems with special characters when you are assigning
values, enclose the value to be assigned in single quotes. For exam
ple:

phrase='several words long'

allows the use of embedded blanks in the string.

A handy use for variables is to hold a long string that you expect to
type repeatedly in a command. If you are editing files in a direc
tory called /usr/wisdom/source/widget, you can abbreviate the
pathname by assigning it to the variable pw. Type:

pw='/usr/wisdom/source/widget'

Then you can simply replace the complete pathname with:

$pw

You can also use a shell variable as a parameter to a command.
These can be used instead of positional parameters and are called
keyword parameters. Create an executable command file, show2
resembling show above:

cat $one
cat $two
diff $one $two

Then, to use show2, issue the following command:

one=first two=second show2

23

sh Shell Command Language Tutorial

It is important to note that there are no semicolons separating the
parts of this command.

The above command is equivalent to:

cat first
cat second
diff first second

In this case, the assignment of keyword parameters does not affect
the variable after the command is executed. For example, if you
type:

one=ordinal
one=first two=second show2
echo 'value of one is ' $one

the echo command will produce:

value of one is ordinal

Variable names or keyword parameters immediately followed by
other text will not be properly recognized. To illustrate, make a
shell script, show3, containing:

echo $onetwo three

Calling show3 by entering:

one=careful
. showJ

will not give you

carefultwo three

but rather

three

24

•

•

•

•

•

•

sh Shell Command Language Tutorial

This is because the variable Sonetwo has not been defined. The
shell does not recognize that you want the variable one because it is
joined to the word two. To prevent this, enclose the name of the
variable in braces, as follows:

echo ${one}two three

and you will now get

carefultwo three

The braces delimit the variable name from a following string.

Variables not set on a command line are not normally accessible to
the command. To illustrate, build an executable parameter display
command file named pars:

echo 1 $1
echo 2 $2
echo pl $pl
echo p2 $p2

pars can be used to show the behavior of parameters. First the
name of the parameter is echoed, and then the value of the parame
ter is echoed (as indicated by the '$' sign). To pass positional
parameters, type:

pars ay bee

and the output will be:

1 ay
2 bee
pl
p2

To pass keyword parameters, type:

pl=start p2=begin pars

and the result will be:

25

sh Shell Command Language Tutorial

1
2
pl start
p2 begin

However, the values of pl and p2 have not been kept in your shell.
To illustrate, type:

echo $pl $p2 'to show'

To which echo will reply:

to show

thus indicating that pl and p2 are not set.

To show that variables set separately from a command are not seen
by the command, type:

pl=outsidel p2=outside2
pars

And you will get:

1
2
pl
p2

This may come as quite a surprise to you, but if you now type:

echo $pl $p2

you will get

outsidel outside2

Why does sh know the value of pl and p2 for the echo command,
but not for the command file pars? The reason is that pl and p2

26

•

•

•

•

•

•

sh Shell Command Language Tutorial

are set for your current shell, but not for any other shells. When
you use the echo command, the variables are read from your
current shell, but when you use the pars command, the shell starts
up another shell, frequently called a subshell.

This new shell does not know about the values for pl or p2 or any
other local shell variables . The subshell can its own variables and
environment-you can, for example, change directories in a
subshell-while leaving the variables and environment of the main
shell untouched.

By using the export command, however, variables can be made
available to all of your shells. The commands:

export pl p2
pl='see me' p2='hello'
pars

will receive the reply:

1
2
pl see me
p2 hello

thus indicating that after the export of pl and p2, these two vari
ables are available to all commands. A variable that has already
been exported can be changed and will still be known to all com
mands without having to be exported again.

Command substitution

By enclosing a command in backwards single quote characters,''' ,
or graves, you can substitute the output of one command into a
variable or another command.

This can be a handy way to generate parameters for a command file
from a prepared file. Assume the file listf contains a list of parame
ters. These can be passed to the command file sbow2 thus:

show2 'cat listf'

27

sh Shell Command Language Tutorial

Suppose that you want to use the name of the current directory in a •
shell script. Write

dir='pwd'

Special shell variables

The shell automatically sets certain variables to determine the
environment of the user, such as the home directory, the file for
incoming mail, which directories to search for commands, etc.

When you log in to the COHERENT system, the shell variable
HOME is set to your home or default directory name. If your user
name is martba, and users are given directories in the directory /u,
then the command:

echo $HOME

will reply:

/u/martha

The change directory command, cd, sets the working directory to
the pathname described by HOME if no parameter is given.

The shell prompt is normally '$'. If more input is needed to com
plete the command, it is '> '. To see it type:

echo 'This is a text that will continue
on the next line'

The values of these two prompts are in the variables PSI and PS2,
which can be changed if you want different prompts. For example:

PSl=' ! I

PS2=': '

•

To make these take effect each time you log in, put these in your •
. profile file.

28

•

•

•

sh Shell Command Language Tutorial

The shell variable PATH contains a list of directories that the shell
searches to find commands. The contents of PATH is shown when
you type:

echo $PATH

PATH is typically:

:/bin:/usr/bin

The directories are separated by colons, and a null string means the
current directory. In this example, the shell will first look in the
current directory, then in /bin then in /usr/bin. You can set
PATH so that it will also search a bin directory of your own for
commands. To do this, put the following line in your .profile:

export PATH=$PATH:$HOME/bin

This takes the value of the default PATH variable and adds the
name of the HOME/bin to the end. If your user name is albert
and your home directory is in /u, then the value of $PATH will
become

:/bin:/usr/bin:/u/albert/bin

Another variable commonly set in .profile is MAIL. For the user
henry, this would likely be set by:

export MAIL=/usr/spool/mail/henry

This file is used to store incoming mail messages.

The .profile can also be used to run commands when you log in.
For example, if you had the shell script good.am mentioned above,
in your .profile, it would be run automatically as part of your login
procedure.

The features mentioned in this section increase the flexibility of the
shell, allowing for more generalized commands. This, combined
with the shell programming techniques explained in the following

29

sh Shell Command Language Tutorial

sections, mean that you can tailor the COHERENT shell to suit
your needs.

30

•

•

•

•

•

•

sh Shell Command Language Tutorial

S. Basic shell I?rogramming

This section shows how you can write commands that act differently
under different circumstances.

Values returned by commands

Most COHERENT commands return a value called the exit status
indicating success or failure. You can examine this value by typing
the command

echo$?

which tells you the value returned by the last command executed.
The value zero indicates success or truth, while a non-zero value
indicates failure or falsehood. Commands that return a failure
value usually also give an error message.

Create a file called testl with the contents

This is a test file

Be sure there is no file named test2. Now type

rm test2; echo$?; cat testl; echo$?

You will get

rm: test2: no such file or directory
1
This is a test file.
0

The 'l' in the second line means that the cat command failed, while
the 'O' in the last line means that cat succeeded. You can use the
exit value of a command to determine what your shell script will do
next.

The exit status of a shell command can be set by using the exit
command. The format of the command is simple:

exit n

31

sh Shell Command Language Tutorial

where n is an optional number giving the value of the exit status .
If n is omitted, then the exit status will be unchanged from the exit
status of the last command executed.

test-condition testing

The test command's only task is to return an exit status. You can
use it to test for the existance and mode of files and the equality or
inequality of strings and numbers.

To determine if a file exists, use the command

test -f <file>

where <file> is the name of the file you want. It will return a
true value (0) if <file> exists and is not a directory, and a false
value (1) otherwise. To see the value returned by a command type:

echo$?

To check if file is a directory, use this command form:

test -d <file>

Strings and numbers can also be examined by test, which is useful
when parameter substitution is used. To illustrate, create a shell
script test.ed containing:

test $1 = $2
echo 'test 1 & 2 for equal:'$?
test $1 != $2
echo 'test 1 & 2 for not equal:' $?

Be sure that the ' = ' in the test command is preceded by and fol
lowed with a space, since it is a parameter.

test.ed will test two strings for equality, using the relational opera
tors. Create filel and put in it:

32

•

•

•

•

•

•

sh Shell Command Language Tutorial

line one
line two
line three

and create file2 with:

line one
two is different
line three

Now try out the command file test.ed. Type:

test.ed filel file2
test.ed filel filel

The first line will produce:

test 1 & 2 for equal: 1
test 1 & 2 for not equal: 0

and the second line will produce:

test 1 & 2 for equal: 0
test 1 & 2 for not equal: 1

test.ed could also be written as

[$1 = $2]

The line

echo 'test 1 & 2 for equal:' $?
[$1 != $2]
echo 'test 1 & 2 for not equal:' $?

[$1 = $2 J

is equivalent to

33

sh Shell Command Language Tutorlal

test $1 = $2

The '[' and ']' are usually used with if (see below). You must
preceed and follow each of the '[' and ']' with a space, a tab, or a
newline.

The comparisons available with the test command are:

sl = s2
sl ! = s2
nl -eq n2
nl -ne n2
nl -gt n2
nl -ge n2
nl -It n2
nl -le n2

string sl is equal to string s2
string s 1 is not equal to string s2
number nl is equal to number n2
number nl is not equal to number n2
number nl is greater than number n2
number nl is greater than or equal to n2

number nl is less than number n2
number nl is less than or equal to n2

The expressions given above can also be used in conjunction with
the following logical operators:

! exp NOT - negates the logical value of exp
expl -a exp2 AND - true if both expressions true
expl -o exp2 OR - true if either expression true

These expressions can also be grouped using parentheses, which
must be enclosed in double quotation marks. For example,

test"(" sl = s2 -a s1 = sJ ")" -o "(" s1 != s4 ")"

will return O if string sl is the same as string s2 and string s3 or
string sl is not the same as string s4.

Conditional command processing

Now use the two files, filel and file2, to do a comparison:

cmp -s filel file2
echo$?

34

•

•

•

•

•

•

sh Shell Command Language Tutorial

cmp -s compares two files and returns an exit status of O if their
contents are the same or an exit status of 1 if the files are not the
same. The value of '$?' will be 1 since the files are not the same.
The shell can use the exit status to determine what command should
be executed next by using the symbols'\\' and'&&:.

cmp -s filel file2 I I cat file2

The characters '11' signify that the following command should be
executed if and only if the first command returns a false (non-zero)
value, which it will in this example.

The symbol '&&' will execute the following command only if the
preceding command returns a true (0) value. This sequence of com
mands:

cp filel fileJ
cmp -s filel fileJ && rm fileJ

will remove file3 if the compare command indicates no differences .
Since the cmp command is preceded by a copy command, filel and
file3 have no differences, and file3 will be removed.

In general, the commands preceding the'&&' or '\I' operators may
be other commands separated by ';', '&&' or '\\'. Look at this
series of commands:

cmdl; cmd2 & cmdJ; cmd4 I\ cmd5 && cmd6

The above sequence of commands will be executed in the order
cmdl, cmd2 which will execute simultaneously with cmd3 since it is
a background command as indicated by the '&', then cmd4 and
cmdS if cmd4 fails, and, if cmdS executes successfully, lastly cmd6.

To describe what happens in the command line above, the system
will:

35

sh Shell Command Language Tutorial

execute cmdl
execute cmd2 in background
execute cmd3
execute cmd4
if cmd4 failed, execute cmdS
if cmdS succeeded, execute cmd6

Control flow

The shell is a programming language. It provides the conditional
and looping constructs for, if, while, until, and case.

The for construct can be used to process a set of commands once
for each of a list of items. A common use is to provide a list of
iterative values for parameters.

To illustrate the use of for, type the following commands:

for i in a b c
do

echo $i
done

The commands within the for structure (and the while and until)
must be set off by the word do at the beginning and the word done
at the end. The items a, b, and c form a list of values to be taken
on by the index variable i. The command echo will be executed
with i set to each value in the list in turn. The output will be:

a
b
C

Notice that after you type the line containing for, the shell will
prompt with the value of PS2 to remind you that there is more
input to be typed in. After you type the line containing done, the
for command will be executed and the prompt will revert to PSl .
The for command is most often used within a shell script.

36

•

•

•

•

•

•

sh Shell Command Language Tutorial

The list of values for the index variable can be left off, in which
case the list is presumed to be all the parameters in the command
line. To illustrate, create this shell script and call it fortest:

for i
do

echo $i
echo '---'

done

Notice that there are two commands to be repeated for each value
of i. Call fortest:

fortest 1 2 J 4 test

and the result will be:

1

2

3

4

test

The for command can also be used on a single command line:

for i in 1 2 J 4 test;do;echo $i;echo '---';done

This produces the same results as fortest.

Conditional command processing is provided with the if shell com
mand. if will test the result of a command and conditionally exe
cute other commands based upon that result. if can be used in
place of '&.&' and '11 '. Instead of:

cmp -s filel file2 && cat file2

37

sh Shell Command Language Tutorial

you can use:

if cmp -s filel file2
then cat file2
fi

with the same result. Note that the if command will prompt you
for further input until it receives the fi just as the for command
prompted you for input until it received a done. The command
line:

cat file2

is executed only if the cmp command returns a zero or true value.

To use the if statement to get the same result as:

cmp -s filel fileJ I I rm fileJ

you will need to use the else statement as well:

if cmp -s filel fileJ
then
else rm fileJ
fi

The commands between else and fi will be executed if the result of
the command following the if is false or non-zero. Notice that the
then part of the if command is empty.

Another form of the if statement will allow you to test several con
ditions with one if statement, and act on the one that is true. You
do this using the elif:

38

•

•

•

•

•

•

sh Shell Command Language Tutorial

if command]
then action]
elif command2
then action2
elif command3
then action3

else action4
fi

The items labeled command and action are commands.

First, command] is executed. If the return is true, action] is per
formed. If the exit code from command] is non-zero, then com
mand2 is executed. If its result is true, then action2 is performed.
This process continues until one of the commands returns a true
result. If none of the command returns is true, then action4 fol
lowing the else is executed.

To illustrate, create a shell script that takes a file name and, if it is
a directory, lists the contents of the directory, or if it is a file that
has something in it, or it is a file of zero length will list its name, or
else will give a message. The command

test -d name

returns a value of true if name is a directory,

test -r name

returns a value of true if name is an existing file on non-zero
length, and

test -f name

returns a value of true if name is an existing file. Create the fol
lowing executable command file and name it filecbeck:

39

sh Shell Command Language Tutorial

if test -d $1
then ls $1
elif test -r $1
then cat $1
elif test -f $1
then echo $1
else echo '$1 is not a file or a directory'
fl

In order to use the if statement to compare two strings, you must
use the test command. To illustrate, create the following command
file, listdir, which performs different commands depending upon the
parameters it is given:

if test $1 = a
then ls -1 $2
elif test $1 = b
then le $2
elif test $1 = c
tqen pwd
else echo "unknown parameter: $1"
fi

Now, when you type:

listdir a

it is the equivalent of

ls -1

And when you type:

listdir b

it is the equivalent of

le

40

•

•

•

•

•

•

sh Shell Command Language Tutorial

The test command checks to see if parameter $1 is equal to a, b, c,
or is unrecognized; and then the if command executes the appropri
ate command.

while is another looping or repetitive shell statement. The com
mands:

while command]
do

command2
done

will first perform command]. If its result is true, then command2
is executed, and command] is again executed. This process repeats
until the return from command] is no longer true.

Note that the value of command] is only tested at the beginning of
each loop of the while statement. Consequently, if the value of
command] is false inside the while loop, but is true at the end of
the loop, then the while loop will continue to execute .

An example of how the while command can be used is the follow
ing script, movepairs, which renames (using the mv command) files:

if test$# -lt 2
then echo "usage: movepairs filel file2 .•. "

echo "move filel to file2, file 3 to file4,
exit 1

fi
while test $2 ! = ""
do

done

mv $1 $2
shift
shift

if test $1 != ""
then echo "movepairs: odd number of arguments"

exit 1
fi

"" is used to denote the null string.

"

41

sh Shell Command Language Tutorial

The first thing movepairs does is check to see that there are at least
2 arguments. If there is not, movepairs prints out its usage instruc
tions, then exits with a non-zero return. Printing a usage message
is often done, especially if the script is to be used by others.

The error message about the improper number of parameters starts
with the name of the command, and the parameter $0 is often used
to give it. This is a standard practice, so as to let you know where
the error occurred-it might happen, for example, in the middle of
a pipeline. Note that the error message

echo "movepairs: odd number of arguments"

begins with the name of the command movepairs, so that a user
knows what command found an error. You can also use the shell
parameter $0 to tell the name of the command (unless a shift has
been done):

echo $0: odd number of arguments

The shift command shifts positional arguments to the left; that is,
the value of $1 is discarded, the value of $2 is put in $1, the value
of $3 is put in $2, and so on. The highest numbered positional
parameter is unset; that is, if $3 was the highest positional parame
ter, there is no longer a value assigned to $3.

until resembles while. The commands

until command]
do

command2
done

will first do command] but will only execute command2 as long as
the return from command] is false. The loop will terminate when
command] returns true. To illustrate, create the shell script
splitfile as:

42

•

•

•

•

•

•

sh Shell Command Language Tutorial

until test$# -eq 0
do

echo $1
shift

done

If splitfile is called with:

splitfile four score and seven years ago

it would print

four
score
and
seven
years
ago

and then stop.

The true and false commands perform the obvious functions of
exiting with O (true) and 1 (false) status. true is often used with
while to set up an unconditional loop.

It is helpful to be able to control loops from inside the loop rather
than just at the top. The break and continue commands were taken
from the C programming language: break stops execution of a for,
while, or until loop; continue goes to the next iteration of the loop.
These commands must be between a pair of do and done state
ments, or else the shell will ignore them.

To show the use of break and continue, write a shell script called
cmpfiles to compare a set of files with a standard file called stdfile.
cmpfiles will quit looking after it finds the first match for stdfile,
and will print the name of the matching file. If cmpfiles finds no
file matching stdfile, it will print

matching file is none

43

sh Shell Command Language Tutorial

If one of the files is non-existant or unreadable, cmpfiles will go on
to the next file.

filename='none'
for i
do

done

if test! -r $i
then continue
fi
if cmp -s $i stdfile
then filename=$i

break
fi

echo "matching file is $filename"

The case statement resembles the if statement in that it offers a mul
tiple decision. The case statement checks the value of a shell vari
able, and performs the commands called for when it finds a match
for that variable. Just as the if construct must be closed by a fi
statement, a case must be closed by an esac.

To illustrate, create a shell script named listdirl that gives a choice
of listing your directory in different ways:

case $1 in
a) ls -1 $2;;
b) le $2;;
c) pwd;;
*) echo unknown parameter $1;;

esac

listdirl performs the same function as the command file listdir in an
earlier example. listdir uses the if and test commands to make the
same choices as the case command does in listdirl. The effect of
the command:

listdirl b

is equivalent to:

44

•

•

•

•

•

•

sh Shell Command Language Tutorial

le

while this command:

listdirl a file

is the same as:

ls -1 file

Each choice within the case statement is a string followed by ')'.
For example:

b)

indicates the choice for $1 having the value b.

The first choice which matches has its command executed, then the
case construct is exited.

The strings selecting the choices may be patterns. The '*)' choice
signifies that a match is made on any string. Notice that this resem
bles the use of ••• to substitute any filename. If one of the other
choices is matched first, then the '•• choice will not be executed. It
is generally a good programming practice to include '*)' as the last
choice in a case statement, to catch bad data.

In a case statement, an expression of the form:

[1-9])

will match any digit from 1 through 9.

A list of alternative choices may be presented by separating the
choices with vertical bars:

Notice that each command or command list in the case choices
must be terminated by the double character ';;', except for the last

45

sh Shell Command Language Tutorial

one, where it is optional. If you would like no action to be taken •
in one choice, just follow the ')' by ';;'. Thus

d);;

would do nothing if the selection was 'd'.

These control structures make the shell into a true computer
language, capable of being used for structured programming .

46

•

•

•

•

•

sh Shell Command Language Tutorial

6. Advanced shell programming

There are additional features to make the shell more powerful and
serviceable.

Conditional substitution

As you have seen in previous sections, the shell provides variables
or parameters to give more flexibility to shell programming. You
can change the value of these parameters; for example, by substitut
ing a standard value if the parameter is undefined. To do so, use
conditional substitution to set values for parameters:

${parameter-word} If parameter is set, then substitute its value;

${parameter= word}

otherwise substitute word.

If parameter is not set, then set the value of
parameter to word. This is not applicable to
positional parameters.

${parameter?word} If parameter is set, then substitute its value;
otherwise, print word and exit from the shell.
If word is omitted, then a standard message is
printed.

${parameter+ word}
If parameter is set, then substitute word; oth
erwise, substitute nothing.

As an example of the use of conditional substitution, create the
shell script pslax, which reports on processes by the ps command.
If your user name is mimi and you usually just want to know about
processes on the system which are owned by you, but sometimes
you want to know about other users' processes, write:

ps -lax J grep ${!-henry}

If you do not give pslax a positional parameter, it will write some
thing like

47

sh Shell Command Language Tutorial

20: 22 1 henry 32K 1 \,I -sh
20: 24 22 henry 35K 1 \,I pslax
20: 25 24 henry 35K 1 \,I pslax
20: 26 25 henry 25K 1 R ps -lax
20: 27 25 henry 10k 1 S 037312 grep henry

if you give pslax a user's name as a parameter, it will report on that
user.

Arithmetic operations

The expr command lets you do arithmetic and logical operations on
integers and also has some pattern matching capabilities. It evalu
ates an expression, and writes the result on standard output.

One thing you should be careful about when using expr is that some
of the operators used by expr have meaning to the shell:

*?[]!;{}()$
= ; I I II < > << >>

These characters must be escaped using the backslash character,
'\ '., if the expr command is not within single quotes. These char
acters must be within double quotes if the expression is inside back
quotes. Thus, you should write

sum='expr a"*" b'

if you wanted to multiply a by b using expr.

Another use for expr is the control of loops. For example, consider
the following shell script, lprmany, which will let you print multiple
copies of the same file:

48

•

•

•

•

•

•

sh Shell Command Language Tutorial

if test$# -lt 2
then echo "usage: lprmany n file II

exit 1

copies=$!
shift
while test $# -gt 0
do

i=l
while test $i -le $copies
do

lpr $1
i='expr $i + 1 1

done
shift

done ·

Note the nested while loops. Here, expr is used to add one to the
current value of i, thus setting a loop which executes lpr copies
times for each file.

Another way of controlling loops is with the from command. This
takes the form

from start to stop [by increment]

where start, stop, and increment are integers. The by increment
may be omitted if the increment is 1. As an example of how from
is used, the main loop of lprmany could be rewritten as:

49

sh Shell Command Language Tutorlal

copies=$1
shift
while test $# -gt 0
do

for i in 'from 1 to $copies'
do

lpr $1
done
shift

done

Interrupt handling

Signals may be sent to a process from another process, from the
shell, from the terminal, or from COHERENT. You can have the
process stop at the signal, ignore the signal or execute a command.
Not all signals can be ignored. To do this, you use the trap com
mand.

trap tells the current shell to execute a specified command when it
gets one of a list of signals. If the command is the null string, then
the signal will be ignored. If no signal is specified, then the com
mand is executed when the process exits. For a complete list of sig
nals, see signal in the COHERENT System Manual.

If you have a shell procedure which creates temporary files, all of
which have the string tmp as the first characters of their names and
you want to make sure these files are removed in case of an exit
(not really a signal, but a trap treated as 0), a hangup (signal 1), an
interrupt (signal 2), or a termination (signal 5); you put into your
script the line:

trap 'rm tmp*' 0 1 2 5

Shell invocation arguments

There are several parameters you can use when invoking the sh
command itself. These parameters are:

50

•

•

•

•

•

•

sh Shell Command Language Tutorial

-c string
Read shell commands from string. Use double quotes to
enclose the string if there are any spaces in it.

- e Exit from the shell on any error, if the shell is not interactive.
- i Make the shell interactive, and prompt for input. In a shell

script, ignore interrupt (signal 2) and termination signals (sig
nal 5).

- k Export keyword arguments.

- n Read and expand commands, but do not execute them. Use-

-s

-t

-u

-v

-x

ful in checking the shell syntax.

Read commands from standard input, and write shell output
to standard error. This is what the shell does by default.

Read and execute one command rather then the entire file,
then exit.

If a shell variable has no value, treat it as an error. Ordi
narily, the shell will substitute a null string .
Print on standard error shell input lines as they are read.

Print command and its arguments to standard error as they
are executed. This parameter is very useful in debugging shell
scripts.
Cancel the - x and - v parameters. This is used if you have
a long shell script and only want debugging information about
part of it. This is used in conjunction with the set command
described below.

Thus, if you have a shell script called mvmount that you want to
check to make sure it does what you want, invoke it with

sh -x mvrnount

If you want to change the shell invocation flags, use the set com
mand. For example, if you want to make a shell script interactive,
instead of having to call it using sh -i all the time, put the line

set -i

in the file.

51

sh Shell Command Language Tutorial

To see what the current shell options are, type

echo$-

The set command can also be used to assign values to positional
parameters. For example, the command

date

writes the date to standard output:

Thu Feb 7 16:30:27 1985 CST

Writing the commands

set 'date'
echo $1

will give

Thu

Conclusion

You will probably find that you use the shell more than anything
else the COHERENT system has to offer, with the possible excep
tion of a text editor. The COHERENT system has many useful
programs and utilities, each one of which is designed to do one job
well. The shell is a convenient way of binding these components to
work together in an efficient manner. Often, you can write a shell
script more easily than you can write a C program. This ease and
power is one of the main reasons the COHERENT system is so pro
ductive.

52

•

•

•

•

•

•

$: 3
$#: 22
$*: 21
$-: 52
$0: 19
$?: 31
$@: 21
${}: 47
&: 6
&&: 35
': 12
0: 36
*: 9

and leading . : 12
and/: 12

*): 45
.: 6
•• : 29
.profile: 28
/: 12
2>: 16
;: 4
;;: 45
<: 16
< <: 16
<RETURN>: 3
>: 14
> >: 14
?: 11

and/: 12
[: 32
[]: 11
]: 32
\: 13
{: 24
I: 9
11: 35

sh Shell Command Language Tutorial

Index

background process: 6
bin: 29
break: 43

case: 44
cat: 3
cd: 28
cbmod: 5
cmp: 34
command

background: 6
file: 5
parameters: 9
reserved: 13
substitution: 27
values: 31

conditional substitution: 47
continue: 43

date: 52
dev/null: 17
do: 36
done: 36

echo: 9
elif: 38
else:
esac: 44
exit: 31
exit status: 31
export: 27
expr: 48

false: 43
fi:
file descriptor:
file names: 9
filter: 18
for: 36

53

sh Shell Command Language Tutorial

from: 49

grep: 13

HOME: 28

if: 37
input redirection: 15

keyword parameters: 23
keywords: 13
kill: 7

le: 3
Jog in: 3

MAIL: 29
mv: 41

output redirection: 14

parameters: 9
all: 21
positional: 19

PATH: 29
pattern: 9
pipe: 9
process id: 6
prompt: 3

$: 28
>: 28

ps: 7
PSI: 28
PS2: 28

redirection: 14
of standard error: 16
of standard input: 15
of standard output: 14
with pipe: 17

return values: 31
rm: 11

scat: 17
script: 5
set: 42
sh options: 50

54

shell: 3
shell script: 5
shift: 42
signal: 50
standard error: 14

redirection: 16
standard input: 14

redirection: 15
standard output: 14

redirection: 14
subshell: 6

test: 32
then: 38
token: 16
trap: 50
true: 43

unset: 42
until : 42
usr/bin: 29

variable substitution: 22

wait: 8
while: 41
wildcards: 9

•

•

•

•

•

•

sh Shell Command Language Tutorial

User Reaction Report

To keep this manual and COHERENT free of bugs and facilitate future
improvements, we would appreciate receiving your reactions. Please fill in
the appropriate sections below and mail to us. Thank you.

Mark Williams Company
1430 W. Wrightwood Avenue

Chicago, IL 60614

Name:

Company:

Address:

Phone: Date:

Version and hardware used:

Did you find any errors in the manual?

Can you suggest any improvements to the manual?

Did you find any bugs in the software?

Can you suggest improvements or enhancements to the software?

Additional comments: (Please use other side.)

55

•

•

•

