
• yacc Parser

Generator Tutorial

•

•

•

•

•

Table of Contents

• 1. Introduction 1

2. Examples 3

Phrases and parentheses 3

Simple expression processing 5

Summary 8

3. Background 9

LR parsing . 9

Input specification 9

Parser operation 9

Summary 10

4. Form of yacc programs 11

Rules 11 • Definitions 11

User code 12

Summary 12

5. Rules . . 13

General form of rules 13

Suggested style 14

Summary 16

6. Actions 17

Basic action statements 17

Action values . . 17

Structured values 22

Summary 23 •

yacc Parser Generator Tutorial

7. Handling ambiguities 25 • How yacc reacts 26

Additional control 27

Precedence . 28

8. Error handling 31

Summary 32

9. Summary 33

Helpful hints 33

Example . 36

Index .. 45

User Reaction Report 47

•

•
ii

•

•

•

1. Introduction

The first high-level programming language compiler took a very
long time to write. Since that time, much has been learned about
how to design languages and how to translate programs in high
level languages into machine instructions. With what is known
today, a compiler can be written in one-tenth of the time it used to
take.

Much of this improvement is due to the use of more powerful
software development methods. Additionally, much more is known
about the mathematical properties of computer programming
languages. Software tools that apply this mathematical knowledge
have played a large part in this improvement.

The COHERENT system provides two tools to simplify the genera
tion of compilers. These tools are the lexical analyzer generator lex
and the parser generator yacc. This document is a tutorial for yacc.

Although initially intended for the development of programming
language compilers, lex and yacc have proven their utility in other,
simpler, tasks. Together or separately they are simple enough to
use that they can be easily applied to simple tasks. Examples of
very simple languages are included in this tutorial.

yacc accepts a free-form description of a programming language
and associated parsing actions and generates a C program to parse
the language. Using a left-to-right bottom-up technique, errors in
the input are detected as soon as theoretically possible. yacc gen
erates parsers that handle certain grammatical ambiguities properly.

This manual presumes that you are familiar with computer language
parsing and formal methods of description of languages. Since
yacc generates its programs in C and uses many of C's syntactic
conventions, it will be helpful if you have a working knowledge of
C. Related documents include Introduction to The COHERENT
System and lex Lexical Generator Tutorial .

yacc Parser Generator Tutorial

•

•

•
2

•

•

•

yacc Parser Generator Tutorlal

2. Examples

This introductory section presents a few small examples that you
can experiment with to get a feel of how to use yacc. As you type
these in, change parts of the example to experiment with new ideas.

Phrases and parentheses
The first example recognizes a language made up of single charac
ters, parentheses, and period. These characters are used to form
sentences. Sentences are made up of strings of letters and groups
of letters enclosed in parentheses. The groups can also include
other groups.

The simplest "sentence" in the language is

a.

A sentence made up of only a group is

(ab) .

A sentence with a group inside of a group is

ab(cd(ef)).

Enter following yacc grammar into the file paren.y. Note that the
lexical analyzer routine yylex is included in the yacc input file.
Note also that, as in C, comments are strings placed between the
characters /* and * / .

3

yacc Parser Generator Tutorial

4

/* Tokens (terminals) are all caps*/
%token LPAREN RPAREN OTHER PERIOD
%%
run

sent

group

phrase

others

%%

sent /* Input can be a single*/
run sent/* sentence or several*/

phrase PERIOD
{printf ("sentence\n");}

LPAREN phrase RPAREN
{printf ("group\n");}

/*empty*/
others
group
others group

OTHER /* letters and other chars*/
others OTHER

#include <stdio.h>
#include <ctype.h>
I*
* Called by the parser to get a token
*I

yylex () {
int c;
C = O;

}

while (c == 0) {

}

c = getchar();
if (c == '·')return (PERIOD);
else if (c == 1 (1) return (LPAREN);
else if (c == 1) 1) return (RPAREN);
else if (c == EOF) return (EOF);
else if(! isalpha(c)) c = O;

return (OTHER);

•

•

•

•

•

•

yacc Parser Generator Tutorial

To generate and compile the parser described by this input, issue
the commands

yacc paren.y
cc y.tab.c -ly -o paren

Demonstrate the parser with:

paren
a
a.
abc(def).
aaa(bbb(ccc)).
(a) .

The result of this test will be

sentence
group
sentence
group
group
sentence
group
sentence

Simple expression processing

The next example illustrates a small language that includes two
types of statements. The first resembles a procedure call, and the
second is an expression. Procedure names are upper-case letters,
and variables in expressions are lower-case letters.

The input shown generates a parser that identifies the procedure
being called, or the arithmetic expression being calculated. The lex
ical input routine is independently generated by lex. Enter the fol
lowing program into the file calc.y:

5

yacc Parser Generator Tutorial

%token VARIABLE PROCEDURE
%%
prog

stmnt

stat

expr

stmnt
prog stmnt

stat
stat 1 \n 1

error 1 \n'

PROCEDURE ';'
{printf ("PROCEDURE is %c\n", $1);}

expr ';'
{printf ("Expression\n");}

expr '-' expr
{printf
("Subtract %c from %c giving E\n",
$3, $1);
$$ = 'E';
}

VARIABLE
{$$ = $1;}

Enter the lexical analyzer part of the program into the file calc.lex:

6

•

•

•

•

•

yacc Parser Generator Tutorial

%{
#include "y. tab .h"
%}
%%
[A-ZJ {

yylval = yytext [OJ;
return PROCEDURE;
}

[a-zJ {
yylval = yytext [OJ;
return VARIABLE;
}

\n return (I \n I) j
return (yytext [OJ);

Generate the programs and compile them by typing

yacc calc.y
lex calc.lex
cc y.tab.c lex.yy.c -ly -11 -o calc

The following messages will appear on your console:

1 S/R conflict
y.tab.c:
lex.yy.c:

To test the generated program, type

calc
A;B;
C;
a-b-c;
a-b-c-d-e;
<ctrl-II>

• The result will be

7

yacc Parser Generator Tutorial

PROCEDURE is A
PROCEDURE is· B
PROCEDURE is C
Subtract c from b giving E
Subtract E from a giving E
Expression
Subtract e from d giving E
Subtract E from c giving E
Subtract E from b giving E
Subtract E from a giving E
Expression

Summary

Two examples are given in this section that you can try out, even if
you have never used yacc before. You only need to type them in
exactly as shown to test them.

8

•

•

•

•

•

•

yacc Parser Generator Tutorlal

3. Background

This section discusses some of the background of yacc, and how
parsers generated by yacc operate.

LR parsing

The parser generated by yacc is of the class of parsers commonly
known as a "bottom up" parser. More specifically, yacc generates
parsers that read LALR(l) languages. LR parsers scan the input in
a left-to-right fashion. Unfortunately, LR parsers for interesting
languages are unpractically large.
A class of parsers called LALR parsers have been derived from LR
parsers. LALR(k) parsers use a Look Ahead technique whereby the
next k elements of the input stream are used to help decide on
reductions. LALR(l) parsers are small enough to be practical, and
are easy to generate and fast to use.

Input specification

To use yacc, you will specify the grammar in BNF, or Backus-Naur
Form. The languages recognized by yacc generated parsers are rich
and compare favorably with modern programming languages. The
time required to generate the parser from the input grammar is very
small-less than the time required to compile the generated parsers.
In addition to generating the parser to recognize the input language,
yacc provides the capability to include compiler actions within the
grammar rules that are executed as the constructs are recognized.
This greatly simplifies the entire compiler writing task. When used
in combination with lex, yacc can make the process of writing a
recognizer for a simple language an afternoon's task.

Parser operation
yacc generates a compilable C program that consists of a routine
named yyparse, and the information about the grammar encoded
into tables. Routines in the yacc library are also used.
The basic data structure used by the parser is a stack, or push down
list. At any time during the parse, the stack contains information
describing the state of the parse. The state of the parse is related to
parts of grammar rules already recognized in the input to the
parser.

9

yacc Parser Generator Tutorial

At each step of the parse, the parser can take one of four actions.

The first action is to shift. Information about the input symbol or •
nonterminal is pushed onto the stack, along with the state of the
parser.

The second type of action is to reduce. This occurs when a gram
mar rule is completely recognized. Items describing the component
parts of the rule are removed from the stack, and the new state is
pushed onto the stack. Thus, the stack is reduced, and the symbols
corresponding to the grammar rule are reduced to the left part of
the rule.

Third, the parser can execute an error action. If the current input
symbol is incorrect for the state of the stack, it is not proper for the
parser either to shift or reduce. As a minimum, this state will
result in an error message being issued, usually

Syntax error

yacc provides capabilities for using this error state to recover grace
fully from errors in the input.

Finally, the parser can accept the input. This means that the start
symbol, such as program, has been properly recognized and that
the entire input has been accepted.

Later sections discuss how you can have the parser describe its pars
ing actions step-by-step.

Summary

This section discusses some of the background of yacc generated
parsers, and outlines the operation of the parser. This information
can be useful to you in using yacc.

10

•

•

•

•

•

yacc Parser Generator Tutorial

4. Form of yacc programs

There are up to three sections of the specification of the language
given to yacc. The sections are separated by the special symbol
0/o 0/o.

The first section contains declarations. The second section contains
the rules of the grammar. User-written routines that are to be part
of the generated program can be included in the third section.

Rules

The grammar rules describing the language are entered in a variant
of BNF. The two following rules illustrate the definition of an
expression:

exp
exp

VARIABLE;
exp '-' exp;

Action statements enclosed in braces { } specify the semantics of
the language and are embedded within the rules. More information
about how rules are built is given in section 5.

Definitions

The first section in a yacc specification is the definitions section.

This section includes information about the elements used in the
yacc specification. Additional items are user-defined C statements,
such as include statements, that are referenced by other statements
in the generated program.

Each token, such as VARIABLE in the second example in section
2, must be predefined in a token statement in the definitions section:

%token VARIABLE

Tokens are also called terminals. Only nonterminals appear as the
left part of a rule, and terminals can only appear on the right side
of a rule. This helps yacc distinguish terminals from nonterminals.
Other types of statements that assist in ambiguity resolution appear
here, and will be discussed in later sections.

11

yacc Parser Generator Tutorial

Each grammar that yacc generates a parser for must have a start
symbol. Once the start symbol has been recognized by the parser, •
its input is recognized and accepted. For a programming language
grammar, this nonterminal represents the entire program.

The start symbol should be declared in the definitions section as:

%start program

If no start symbol is declared, it is taken to be the left side of the
first rule in the rules section.

User code

Action statements may require other routines, such as common
code-generating routines, or symbol table building routines. Such
user code can be included in the generated parser after the rules sec
tion and a %% delimiter.

Summary

There are three sections to a yacc specification. The outline of yacc •
specifications is:

definitions
%%
rules
%%
user code

If there are no definitions or user code, the input can be abbrevi
ated to

%%
rules

Following sections discuss definitions and rules in detail.

12

•

•

•

•

yacc Parser Generator Tutorial

5. Rules

Rules describe how programming language constructs are put
together. For any given language, there can be many configurations
of rules describing the language. This gives you a freedom of
choice to write the rules for clarity and readability.

Rules consist of a left part and a right part. The left part is said to
produce the right part. Or, the right part is said to reduce to the
left part.

In addition to describing the grammar of the language, rules can
include parser actions to be performed at the time that the rule is
reduced.

General form of rules

Blanks and tabs are ignored within rules (except in the action
parts). Comments can be enclosed in /* and */. The left part of
the rule is followed by a colon. Next are the elements of the right
part, followed by a semicolon .

Rules that have the same left part may be grouped together with the
left part omitted and a vertical bar signifying "or".

Part of the expression grammar from section 2

exp
exp

can be written as

exp

VARIABLE;
exp '-' exp;

VARIABLE;
exp 1

-
1 exp;

Note that these are equivalent to the BNF:

<exp> -
<exp> -

VARIABLE
<exp> - <exp>

The rules can also contain C programming language statements that
are the compiler actions themselves. These actions are enclosed in
braces { and } and are executed by the generated parser when the

13

yacc Parser Generator Tutorial

grammar rule has been recognized. More will be said about actions
in the following section. •

Suggested style

Rules can be written completely free form for yacc. The rules for
the expression grammar above can as well be written

exp:VARIABLElexp'-'exp;

but is certainly less readable.

There are two styles in common use. The first of these is used
throughout this manual.

First, start the left part at the beginning of the line, follow it with a
tab, then a colon. The right part should be on the same line, also
preceded by a tab.

Second, group all rules with the same left part together, and use the
vertical bar aligned under the colon for all but the first rule in the
group.

Place action items on a separate line following the associated rule,
preceded by three tabs.

Finally, the terminating semicolon is lined up with the colon and
vertical bar by preceding it with a single tab. The outline of this
style is:

left rightl right2
{ actionl}

rightJ right4
{action2}

This style is compact and works well for languages whose rules and
actions together are simple.

For somewhat more extensive languages, or for additional flexibility

•

in adding statements to the action part, use the following •
modification of the style.

14

•

•

•

yacc Parser Generator Tutorial

left rightl right2 {
actionl
}

rightJ right4 {
action2
}

For specifications that have larger rules or more complex actions,
another style is recommended.

As in the previously suggested style, rules with the same left part
should be grouped together, and the vertical bar should be used.
The left part should be immediately followed by a colon, and
appear by itself on the line.

The right parts of the rule are then indented one or more tabs as
necessary to make the rule and actions readable.

The vertical bar indicating an alternative right part for the rule, and
the semicolon signalling the end of the rule, should be at the begin
ning of the line.

The outline for this style is

left:
rightl right2 {

actionl
}

rightJ right4 {
action2
}

Since the input to yacc can be entirely free form, there is no restric
tion on how to write your rules. You may decide to adopt a
modified version of these styles, but if you use a consistent style
throughout, it will make your job easier .

15

yacc Parser Generator Tutorial

Summary

Specification of the rules of your yacc grammar is the central part •
of the yacc specification. This section gives the rules for writing
rules, and suggests two styles of writing them that will improve
readability.

•

•
16

•

•

•

yacc Parser Generator Tutorial

6. Actions

In addition to generating a parser to recognize a specific language,
yacc also provides you with the convenience of including parsing
action statements. With this feature, you can include C language
action statements that will be performed when specified constructs
are recognized.

Basic action statements

The first example in section two illustrates action statements that
simply print information on the terminal as productions are recog
nized. Consider the production for sent and group from that exam
ple.

sent phrase PERIOD
{printf ("sentence\n");}

group LPAREN phrase RPAREN
{printf ("group\n");}

The actions here are print statements that signal when a production
has been recognized. Even if your actions will be more complex,
using printf statements in this way can help verify your grammar
early in the development process.

Action values

If the specification is for the grammar of a programming language,
the actions will normally interface to symbol table routines, and
code generators, or intermediate form emitters.

yacc provides the capability for rules to assume a value to help keep
track of intermediate results in rules. These values can contain
symbol table information, code generation information, or other
semantic information.

To set a value for a rule, simply use a statement of the form

$$ = <value>;

17

yacc Parser Generator Tutorial

within an action statement. The symbol $$ is the value of the pro-
duction. This value can be used by other rules that use this rule as •
a non-terminal part.

The second example in section two illustrates the use of the value of
productions. Examining the production for expr, we have

expr expr '-' expr {
printf

("Subtract %c from %c giving E\n",
$3, $1);

$$ = 'E';
}

VARIABLE
{$$ = $1;}

The first rule's action statement sets the value of the production
expr to 'E':

$$ = 'E';

The value of a rule is significant in that it can be used in produc
tions including that rule as a nonterminal part.

An example is given in the first rule above. The printf statement
contains references to the items $1 and $3. yacc interprets these
symbols to mean the value of elements one and three of the right
side, respectively. That is to say, $1 refers to the value of the first
expr in the right side of the first rule, and $3 refers to the second
expr.

To illustrate, the elements of the right side are numbered, for the
purposes of values, beginning at one for the leftmost element of the
right side:

expr expr '-' expr
$1 $2 $3

In this example, $2 is not referenced.

18

•

•

•

•

•

yacc Parser Generator Tutorial

The value for the tokens is provided by the lexical analyzer. The
second rule for expr uses this to get the value of the token
VARIABLE. The value represented by $1 is provided by the lexical
analyzer in the statement

yylval = yytext [OJ;

To give another example, here is a simple calculator language that
does arithemtic on single-digit numbers and prints the results out.
Enter the following grammar into the file digit.y:

19

yacc Parser Generator Tutorial

%token DIGIT
%%
session

calcn

expr

term

calcn
session calcn

expr 1 \n 1 /* print results*/
{printf ("%d\n", $1);}

term '+' term
{$$ = $1 + $3;}

term '-' term
{$$ = $1 - $3;}

DIGIT
{$$ = $1;}

%%
#include <stdio.h>

•

yylex () { •
int c;
C = O;

}

while (c == 0) {/*ignore control chars and space*/
c = getchar();

}

if (c <= 0) return (c) /* could be EOF */;
if (c == 1 \n 1

) return (c); /* set c to ignore*/
if ((C <= I 9 I) && (C >= IO I)) {

}

yylval = c - '0';
return (DIGIT);

if (c <= ' ') c = O;

return (c);

This creates the yacc specification file. To turn it into a program,
type

yacc digit.y
cc y.tab.c -ly -o digit

20

•

•

•

•

yacc Parser Generator Tutorial

The following tests digit:

1+2
2+2
8+9

digit will reply:

3
4
17

This program is essentially an interpreter-results are calculated as
numbers are typed in. When you type in

1+1

the parser recognizes the construct

term '+' term

and executes the statement that adds two numbers together. The
two numbers each in turn came from the construct

term DIGIT

and the value of the digit came from yylex. When the statement
calcn is recognized, the value is printed as the result.

Thus, the calculations are performed at the time that the constructs
are recognized. If a compiler is being generated, the actions would
likely build some form of intermediate code, or expression tree, as
in:

expr term'+' term
{$$=tree (plus, $1, $3);}

21

yacc Parser Generator Tutorial

Structured values

All the examples thus far have shown action values as simple int
types. This is not sufficient for a large interpreter or compiler,
since at different points in the language, the value can represent
constant values, pointers to code generation trees, or symbol table
information.
To solve this problem, yacc will define the $$ and $0 values as a
union of several types. This is done in the definitions section with
the union statement:

%union {

}

int cval;
struct tree t tree;
struct sytp_t sytp;

This says that action values can be a constant value cval, a code
tree pointer tree, or a symbol table pointer sytp.
So that the correct types are used in assignments and calculations in
actions in the generated C program, each token whose value will be
used is declared with the appropriate type:

%token <tree> AB
%token <cval> CONST

Additionally, the rules themselves can have a type declaration, since
they also can pass action values. Their type is declared in the
%type statement:

%type <sytp> variable

This declares the nonterminal variable to reference the sytp field of
the value union.

The values referenced in the action statements do not need to be
qualified (unless they are referencing a field of one of the union ele-

•

•

ments). yacc generates the necessary qualification for the references •
based upon the type information provided in the type and token
statements.

22

•

•

•

yacc Parser Generator Tutorial

Keep in mind that productions that do not have explicit actions will
default to an action of

$$ = $1

which might cause a type clash when compiling the generated
parser. This is more likely to arise during debugging when you
have defined the types, but have not put in the actions.

For an illustration of the practical applications of OJounion, see the
example in section 9.

Summary

This section has presented yacc actions and how they carry out the
semantics of the grammar. Rule values and a simple calculator
program are presented to illustrate the use of actions .

23

yacc Parser Generator Tutorial

•

•

•
24

•

•

•

yacc Parser Generator Tutorial

7. Handling ambiguities

The ideal grammar for a language is readable and unambiguous. If
the grammar is easy to understand, the users of the language will
benefit most from the use of it. If the language is unambiguous,
the parser generator will parse the programs in the correct way.

However, many common programming language constructs are
ambiguous. An example of an if is

stmnt if stmnt -
others

if stmnt IF cond THEN stmnt
IF cond THEN stmnt ELSE stmnt

Consider a program that contains a statement

if a> b then if c < d then a= d else b = c;

The parser does not know by the grammar specification which
iLstmnt the else belongs with. At the point of the else, the parser
could correctly recognize it as part of the first if or the second if.
The indentations illustrate the interpretation of the ambiguity asso
ciating the else with the first if.

if a> b then
if c < d then

a= d;
else

b = c;

Associating it with the second if:

if a> b then
if C < d then

a= d;
else

b = c;

25

yacc Parser Generator Tutorial

One solution to this ambiguity is to modify the language and
rewrite the grammar. Some programming languages (including the
COHERENT shell) have a closing element to the if statement, such
as fi. The grammar for this language is

stmnt

if stmnt

if stmnt
others
IF cond THEN stmnt FI
IF cond THEN stmnt ELSE stmnt FI

Another ambiguity arises from a grammar for common binary
arithmetic expressions. The following sample specifies binary sub
traction:

exp

For the program fragment

a - b - c

TERM
exp '-' exp

the parser can correctly interpret the expression as

(a - b) - c

or as

a - (b - c)

While for the if example, the language can be reasonably modified
to remove the ambiguity, it is unreasonable in the case of expres
sions. The grammar can be rewritten for exp but it is less con
venient.

How yacc reacts

Since certain ambiguities are common, such as the ones detailed
above, yacc automatically handles some of them.

26

•

•

•

•

•

•

yacc Parser Generator Tutorial

The ambiguity exemplified by the if then else grammar is called a
shift-reduce conflict. The parser generator can either choose to
shift, meaning to add more elements to the parse stack, or to
reduce, meaning to generate the smaller production. In the terms
of if, the shift would match the else with the first then. Alterna
tively, the reduce choice will match the else with the latest (right
most) unmatched then.

Unless otherwise specified, yacc resolves shift-reduce conflicts in
favor of the shift. This means that the if ambiguity will be resolved
in favor of matching the else with the rightmost unmatched then.
Similarly, the expression

a - b - c

will be interpreted as

a - (b - c)

Additional control

yacc provides tools to help resolve some of these ambiguities.
When yacc detects shift-reduce conflicts, it consults the precedence
and associativity of the rule and the input symbol to make a deci
sion.

For the case of binary operators, you can define the associativity of
each of the operators by use of the defining words left and right.
These appear in the definition section with token. Any symbol
appearing in left or right.

The usual interpretation of

a - b - c

is

(a - b) - c

which is called left associative. However, the shift/reduce conflict
inherent in

27

yacc Parser Generator Tutorial

exp '-' exp

is resolved in favor of the reduce, or in a right-associative manner:

a - (b - c)

To signal yacc that you want the left-associative interpretation,
enter the grammar as:

%left '+' ' - '
%token TERM
%%
expr TERM

expr ' -' expr
expr '+' expr

•

Some operators, such as assignment require right associativity. The •
statement

a:= b + c

is to be interpreted as

a := (b + c)

The %right keyword tells yacc that the following terminal is to
right associate.

Precedence

Most arithmetic operators are left associative. For example, with
the grammar

28

•

•

•

•

yacc Parser Generator Tutorial

%right=
%left 1_ I '+' '*' '!'
%%
expr expr 1_ I expr

expr '*' expr
expr '+' expr
expr '!' expr
expr '=' expr

The expression

a = b + c * d - e

based on associativity alone will be evaluated

a= (((b + c) * d) - e)

which is not according to custom. We normally think of* as hav
ing higher precedence than + or - , meaning that it is evaluated
before other operators with the same associativity. The evaluation
preferred is

a= (b + (c * d) - e)

To generate a parser with this evaluation, use several lines of left,
one line for each level of precedence. Each line containing %left
describes tokens of the same precedence. The precedence increases
with each line. Thus, to get the common notion of arithmetic prec
edence, use a grammar of

29

yacc Parser Generator Tutorial

%right=
%left 1_ I '+'
%left '*' 'I'
%%
expr expr 1_ I expr

expr '* I expr
expr '+' expr
expr 'I' expr
expr '=' expr

This method of OJoleft and OJorigbt gives tokens a precedence and an
associativity. This can eliminate ambiguities where these operators
are involved. But what about the precedence of rules or nontermi
nals?

To specify the precedence of rules, the OJoprec keyword at the end
of the rule sets the precedence of the rule to the token following the
keyword. To add unary minus to the grammar above, and to give
it the precedence of multiply, use OJoprec * at the end of the unary
rule.

%right=
%left '-' '+'
%%
expr

'*' '/'

expr , _, expr
expr '* I expr
expr '+' expr
expr '/' expr
expr '=' expr ,_, expr %prec *

•

•

If associativity is not specified, yacc will report the number of
shift/reduce conflicts. When associativity is specified with OJoleft,
OJoright or OJononassoc, this is considered to reduce the number of
conflicts, and thus the number of conflicts reported will not include •
the count of these.

30

•

•

•

yacc Parser Generator Tutorial

8. Error handling

Parsers generated by yacc are designed to parse correct programs.
If an input program contains errors, the LALR(l) parser will detect
the error as soon as is theoretically possible. The error is identified,
and the programmer can correct the error and recompile.

However, in most programming environments, it is unacceptable to
stop compiling after the detection of a single error. yacc parsers
attempt to go on so that the programmer may find as many errors
as possible.

When an error is detected, the parser looks for a special token in
the input grammar named error. If none is found, the parser sim
ply exits after issuing the message

Syntax error

If the special token error is present in the input grammar error
recovery is modified. Upon detection of an error the parser
removes items from the stack until error is a legal input token, and
processes any action associated with this rule. error is the looka
head token at this point.

Processing is resumed with the token causing the error as the looka
head token. However, the parser attempts to resynchronize by
reading and processing three more tokens before resuming normal
processing. If any of these three are in error, they are deleted and
no error message is given. Three tokens must be read without error
before the parser leaves the error state.

A good place to put the error token is at a statement level. For
example, the calc.y example in chapter 2 defines a statement as

stmnt stat
stat 1 \n 1

error 1 \n 1

Thus, any error on a line will cause the rest of the line to be
ignored.

31

yacc Parser Generator Tutorial

There is still a chance for trouble, however. If the next line con- •
tains an error in the first two tokens, they will be deleted with no
error message and parsing will resume somewhere in the middle of
the line. To give a truly fresh start at the beginning of the line, the
function yyerrok will cause the parser to immediately resume nor-
mal processing. Thus, an improved grammar is

stmnt stat
stat 1 \n 1

error 1 \n 1

{yyerrok;}

will cause normal processing to begin with the start of the next line.

Summary

Error recovery is a complex issue. This section covers only what
the parser can do in recovering from syntax errors. Semantic error
recovery, such as retracting emitted code, or correcting symbol
table entries, is even more complex, and is not discussed here.

yacc reserves a special token error to aid in resynchronizing the
parse. After an error is detected, the stack is readjusted, and pro
cessing cautiously resumes while three error-free tokens are pro
cessed. yyerrok will cause normal processing to resume immedi
ately. The token causing the error is retained as the lookahead
token unless YYCLEARIN is executed.

32

•

•

•

•

•

yacc Parser Generator Tutorial

9. Summary

yacc is an efficient and easy to use program to help automate the
input phase of programs that benefit by strict checking of complex
input. Such programs include compilers and interactive command
language processors.

yacc generates an LALR(l) parser given the grammar specifying the
structure of the input. A simple lexical analyser routine can be
hand-constructed to fit in among the rules, or you can use the
COHERENT command lex to generate a lexical analyzer that will
fit with the parser.

As the structured input is analyzed and verified, you assign meaning
to the input by writing semantic actions as part of the gramatical
rules describing the structure of the input.

yacc parsers are capable of handling certain ambiguities, such as
that inherent in typical if then else constructs. This simplifies the
construction of many common grammars.

yacc provides a few simple tools to aid in error recovery. However,
the area of error recovery is complex and must be approached with
caution.

Helpful hints

Until you have mastered yacc, the best way to build your program
is to do it a piece at a time. For example, if you are writing a Pas
cal compiler, you might start with the grammar

%token PROG BEG END OTHER
program PROG tokens BEG END ' '

tokens OTHER
tokens OTHER

And with a simple lexical analyzer of:

33

yacc Parser Generator Tutorial

PROGRAM
BEGIN
END

return (PROG);
return (BEG);
return (END);
return (yytext [OJ);

With the generated program, you can easily test the grammar by
feeding it simple programs. Then add items to both the lexical
analyzer and yacc grammar.

With this approach, you can see the parser working, and if it
behaves differently than you expect, you can more easily pinpoint
the cause.

If you have difficulty understanding what actions your parser is tak
ing, yacc will produce for you a complete description of the gen
erated parser. To use this, you should be familiar with the way
LALR(l) parsers work.

To get this verbose output, specify the - v option on the command
line. The result will appear in the file y.output.

Additionally, you can have the parser give you a token-by-token
description of its actions as it is doing them by specifying the debug
option - d. This also generates the y.output file which will be help
ful in reading the debug output. The debug code is generated when
the - d option is used, but is not activated unless the YYDEBUG
identifier is defined. Include some code in the definitions section

%{

%}
define YYDEBUG

to activate it. Your parser can turn on and off the debugging at
execution time by setting the variable yydebug (1 for on, 0 for off).

A frequent cause of grammar conflicts is the empty statement. You
should use it with caution. Note that empty statements are gen
erated by yacc when you specify actions in the middle of a rule
rather than at the end. Consider

34

•

•

•

•

•

•

yacc Parser Generator Tutorlal

def DEFINE {defstart();}
identifier {defid ($2);}

yacc generates an additional rule:

$def

def

/*empty*/
{defstart();}

DEFINE $def identifier {defid ($2);}

The resulting empty statement can cause parser conflicts if there are
similar rules, and the empty statement is not sufficient to distinguish
between them .

35

yacc Parser Generator Tutorial

Example

This tutorial will close with a larger example that incorporates most •
of the features of yacc presented in this tutorial. You can enter it
as shown, and modify it to improve its operation.

Designed for interactive input, this example will calculate the great
circle path and bearing from one point on the globe to another.

Each pair of points is input on a single line. The coordinates of the
origin and destination are preceeded by the keywords FROM and
TO respectively, and can appear in either order. Longitude and
latitude are followed by the letters E or W, and N and S respec
tively. Lower-case may also be used for these letters.

The numeric part of the coordinates may be entered in degrees,
minutes and optional seconds, or in fractional degrees. The sym
bols -, o and d specify degrees, since the raised circle customarily
used for degrees is not available on most terminals. A single quote
' follows the minutes, and a double quote " follows seconds.

To illustrate the use of the program nav, calculate the great circle
distance and initial heading from Charlestown, Indiana to Charles- •
town, Australia:

from J8d27'n 85d40'w to 151d42'e J2d58's;

The result will be:

From lat J8.450 long 85.667 To lat -32.967 long -151.700
Distance 80J0.62J, Init course is 258.417

Note that the coordinates are echoed in decimal degrees. To exit
the program, type < ctrl-D >.
Enter the following yacc specification file into the nav.y :

36

•

•

•

•

yacc Parser Generator Tutorial

%{
#include "11.h"
#define YYTNAMES

double fromlat, fromlon, tolat, tolon;
extern calcpath();

%}
%union {

double dgs;
long dgsi;
struct 11 wh;
}

%token NEWLINE FROM TO CIRCLE QUOTE
%token DQUOTE SEP SEMI COMMA
%token NSYM SSYM WSYM ESYM
%token <dgs> FNUM
%token <dgsi> NUM
%type <dgs> degrees long lat deg
%type <wh> where from to
%%
prob single

prob single

single sing {
calcpath();
}

error NEWLINE {
yyerrok; YYCLEARIN;
printf ("Enter line again. \n");

sing

}

from SEP to SEMI NEWLINE {
fromlat = $1.lat;
fromlon = $1.lon;
tolat = $J.lat;
tolon = $J.lon;
}

to SEP from SEMI NEWLINE {
to lat = $1. lat;
tolon = $1. lon;
fromlat = $J.lat;

37

yacc Parser Generator Tutorial

fromlon = $3.lon;
} • to SEMI NEWLINE {
tolat = $1.lat;
tolon = $1.lon;
}

from FROM SEP where {
$$ = $3;
}

to TO SEP where {
$$ = $3;
}

where lat SEP long {
$$.lat= $1;
$$.lon = $3;
} • long SEP lat {
$$.lon = $1;
$$.lat= $3;
}

lat degrees NSYM {
$$ = $1;
}

degrees SSYM {
$$ = - $1;
}

long degrees WSYM {
$$ = $1;
}

degrees ESYM {
$$ = - $1;
}

degrees FNUM /*e.g . 128 .3 *I { • $$ = $1;

38

•

•

•

%%

yacc Parser Generator Tutorial

}
NUM CIRCLE NUM QUOTE/* deg min*/ {

$$=$1 + $3/60.0;
}

NUM CIRCLE NUM QUOTE NUM DQUOTE
/* and seconds*/ {
$$=$1 + $3/60.0 + $5/3600.0;
}

NUM CIRCLE NUM QUOTE FNUM DQUOTE {
$$=$1 + $3/60.0 + $5/3600.0;
}

#include <stdio.b>
yyerror (s)
char *s;
{

}

struct yytname *Pi
fprintf (stderr, "%s ", s);
for (p = yytnames; p -> tn name != NULL; ++)

if (p->tn val== yychar) {
fprintf (stderr, "at %s", p->tn_name);
break;

}
fprintf (stderr, "\n");

Both the lexical analyzer and the parser will need the following
header file 11.h:

struct 11 {
double lat;
double lon;

} ;

To turn yacc file nav .y into a program, type

39

yacc Parser Generator Tutorial

yacc -hdr nav.tab.h -d -v nav.y
mv y.tab.c nav.y.c

The grammar is straightforward. The types used in the actions
require a union, since integer degrees, floating point degrees, and
pairs of floating point degrees are used as action values. The lexical
analyzer recognizes integer and floating point numbers, and passes
the value through yylval. The rule for degrees combines different
style degree representations to a single double precision number.

The N, S, E, and W symbols convert a location to a signed
representation. S and E result in negative degrees, N and W as
positive.

The rule for where converts the single-numbered latitude and longi
tude into a double number of < wh > type. Note that it can pro
cess the coordinates in either order.

The rule single handles the destination and origin in either order. It

•

takes the pairs of coordinates from from and to and stores them in •
the global variables that the calculation routine uses. The error
token will halt error recovery at the end of the line, so that in case
of error the user can reenter the correct line. If many great circles
are being computed from the same origin, you need to enter only
the destination after the first time.

And once a single set of coordinates has been recognized, the great
circle is calculated by the function calcpath.

The error routine yyerror accepts an error message from the parser,
and examines the table of tokens to find the name of the token
where the error is detected. If it is found, it is printed. In order to
get these token names in the program, the symbol YYTNAMES
must be defined.

40

•

•

•

•

yacc Parser Generator Tutorial

The following is the lexical analyzer. Enter it into the file nav .I.

%{
#include
#include
%}

%%
[nN]
[sSJ
[eE]
[wW]
ol "A" Id
\"
\•
\n
from
FROM
to
TO
[0-9]+

"11.h"
"nav.tab.h"

int integer;
double real;

return (NSYM);
return (SSYM);
return (ESYM);
return (WSYM);
return (CIRCLE);
return (DQUOTE);
return (QUOTE);
return (NEWLINE);
return (FROM);
return (FROM);
return (TO);
return (TO);
{
sscanf (yytext, "%d", &integer);
yylval.dgsi = (long) integer;
return (NUM);
}

[0-9]+"."([0-9]+)? {

,
[\t]

sscanf (yytext, "%f", &real);
yylval.dgs = (double) real;
return (FNUM);
}
return (COMMA);
return (SEMI);
return (SEP);
{
printf ("Illegal character [%s]\n",

yytext);
return (yytext [OJ);
}

41

yacc Parser Generator Tutorial

The lexical analyzer partitions the input into tokens expected by the
parser. For the symbols in the grammar, it returns the token type.
It also recognizes integer and floating point numbers, and converts
them to integers.

Note that the ll.b file is required even though there is no explicit
reference to its contents. This is needed because the %union in
nav.y generates the header file nav.tab.b referring to the II struc
ture.

Turn lex file nav .I into program by typing:

lex nav.l
mv lex.yy.c nav . l.c

Finally, the great circle calculation routine is to be entered into the
file navcalc.c.

42

•

•

•

•

•

•

yacc Parser Generator Tutorial

#include <stdio.h>
#include <math.h>
I*
* Given latitude and longitude of start and finish,
* calculate the great circle path.
*I

extern double fromlon, fromlat, tolon, tolat;
calcpath ()
{

}

double rad= PI/ 180.0;
double initcourse, arg, dist, d60;
double rfromlat, rfromlon, rtolat, rtolon;

printf ("From lat %.Jf long %.Jf ",
fromlat, fromlon);

printf ("To lat %.Jf long %.Jf\n",
tolat, tolon);

rfromlat = fromlat * rad;
rfromlon = fromlon * rad;
rtolat = tolat * rad;
rtolon = tolon * rad;

d60 = acos (

) ;

sin (rfromlat) * sin (rtolat) +
cos (rfromlat) * cos (rtolat) *

cos (rfromlon - rtolon)

dist= 60 * d60 / rad;

arg = (sin (rtolat) - cos (d60) * sin (rfromlat))
I
(sin (d60) * cos (rfromlat));

initcourse = acos (arg) / rad;
if (sin (rfromlon - rtolon) < 0)

initcourse = J60 - initcourse;

printf ("Distance %.Jf, !nit course is %.Jf\n\n",
dist, initcourse);

43

yacc Parser Generator Tutorial

And now compile all three programs together.

cc nav.y.c nav.l.c navcalc.c -ly -lrn -11 -f -o nav •

The standard formula is used to calculate great circle path and
bearing. Note that there are several limitations that are not
checked for here, such as diametrically opposite points on the globe
have no unique great circle path between them. Additionally, nei
ther of the points should be at either of the poles. These checks
can be added if you wish to use the nav program as a general rather
than a tutorial tool.

44

•

•

•

•

•

OJoOJo: 11
OJoleft:
OJononassoc: 30
OJoprec: -30
OJorigbt: 28
OJotoken: 22
OJounion: 23

accept action: 10
action

accept: 10
default: 23
error: 10
reduce: 10
shift: 10

action statements: 12
actions: 14
ambiguity: 25

default handling: 26
resolution: 27

associative
left:
right: 28

associativity: 27

Backus-Naur Form: 9
BNF: 9

comments
in rules: 13

default
action: 23

definition section: 11
definitions section: 11

error
recovery: 31
token: 31

yacc Parser Generator Tutorial

Index

error action: 10

LALR: 9
left-to-right parsing: 9
library

yacc: 9
LR parsing: 9

nonassociative: 30
nonterminals: 11

parse actions: 10
precedence:
production: 13
push down list: 9

reduce: 10
reduction: 13
right: 30
rule

actions: 17
format: 14
sections: 13
style: 14
type: 22
values:

rule format: 13
rules

precedence: 30
rules section: 11

section
definition: 11
rules: 11

shift: 10
shift-reduce conflicts: 27
stack: 9
start symbol: 10

task
afternoon: 9

45

yacc Parser Generator Tutorial

terminals: 11
token

definition: 22
error: 31
value: 19

token definition: 11
type

of nonterminal: 22
of rule: 22

user code: 12

value
of rule:
of tokens: 19
qualification: 22

values
structured: 22

yyerrok: 32
yyparse: 9
yacc library: 9

46

•

•

•

•

•

•

yacc Parser Generator Tutorial

User Reaction Report

To keep this manual and COHERENT free of bugs and facilitate future
improvements, we would appreciate receiving your reactions. Please fill in
the appropriate sections below and mail to us. Thank you.

Mark Williams Company
1430 W. Wrightwood Avenue

Chicago, IL 60614

Name:

Company:

Address:

Phone: Date:

Version and hardware used:

Did you find any errors in the manual?

Can you suggest any improvements to the manual?

Did you find any bugs in the software?

Can you suggest improvements or enhancements to the software?

Additional comments: (Please use other side.)

47

•

•

•

