
• COHERENT

System Manual

•

•

•

•

•

COHERENT System Manual

Table of Contents

• Introduction dir.b jO read
dup kill scanf

Conventions ecvt l.out.b setbuf
Device Drivers end 13tol setjmp
File Formats environ link setuid
libc Library errno lock signal
libm Library exec log signame
Maintenance exit lpd sin
STDIO Library fclose lseek sinb
System Calls ferror malloc sleep

fflusb man sload
abort fileno mem stat
abs floor mknod stime
access fopen mktemp string
acct fork mount swab
acct.b fread mp swap
alarm frexp ms sync
ar.b fseek mtab.b sysgen

• as ftime mtype system
ascii fwrite nlist tape
assert getc null times
atof getenv open ttyname
boottime getgrent passwd ttys
brk getlogin pause umask
canon.b getpass perror ungetc
cbdir getpid pipe unlink
cbmod getpw pnmatcb update
cbown getpwent popen utime
cbroot gets printf utmp.b
close getty profil wait
core getuid ptrace write
creat getw putc
cron getwd puts Index
crypt group putw
ct bypot qsort User Reaction
ctime init rand Report

• ctype ioctl

•

•

•

•

•

•

COHERENT System Manual

Introduction

This manual contains a concise description of each facility available
to a programmer in the COHERENT™ operating system. It is a
reference work rather than a tutorial; its descriptions use terminol
ogy unfamiliar to the beginner. The Introduction to the
COHERENT System is the document a novice should read first.

The companion volume to this manual is the COHERENT Com
mand Manual, which describes each command available to a
COHERENT system user. The descriptions in this manual often
refer to commands described in the COHERENT Command
Manual. It should be used in conjunction with this manual.

Almost all programming on the COHERENT system is written in
the C programming language. A familiarity with C is essential to
understanding most of the information in this manual. The basic C
reference work is The C Programming Language, by Kernighan and
Ritchie (Prentice-Hall, 1978). Section as provides a brief summary
of assembly language calling sequences.

This manual consists of many sections, ordered alphabetically .
Each section describes a single feature or a few related features.
New material is inserted into this manual as new features become
available on the system.

The features described in this manual fall into several distinct
categories, as indicated by the heading of each section. The head
ings are: Convention, Device Driver, File Format, Jibe Library,
libm Library, Maintenance, STDIO Library, and System Call. Sec
tions immediately following this introduction list which sections fall
under each heading.

A comprehensive Index makes it easy to find any information
desired. It lists the name of each feature included in this manual as
well as describing the function of each feature .

For most programmers, the most useful information in this manual
is in the sections describing libraries. The standard 1/0 library
(STDIO) provides simple but powerful buffered input and output
facilities . The standard C library (libc) provides routines to per
form common tasks which are not part of the C language itself,
such as string manipulation. The mathematics library Oibm) pro
vides mathematical functions, such as trigonometric functions. The
cc command loads the libc library automatically when it compiles a

COHERENT System Manual

Introduction

C program. Programs using the STDIO library should #include •
< stdio.b > . Programs using the libm library should #include
< math.b > and should use the - Im option to the cc or Id com-
mand to obtain the mathematics library.

Programmers who require access to the primitive building blocks of
the COHERENT system will find the descriptions of system calls
useful. Most programmers should use the libraries rather than
using system calls directly.

Convention sections describe COHERENT system conventions,'
such as the ASCII character set.

Device driver sections describe specific COHERENT devices. File
format sections describe the format of specific COHERENT files or
file types. This specialized information is useful primarily for pro
grammers involved in system development or modification.

The maintenance sections describe commands generally used by the
system administrator rather than by most users. Unlike the mainte-
nance commands described in the COHERENT Command Manual, •
the commands in this manual are usually executed only during sys-
tem startup. The COHERENT Administrator's Guide gives addi-
tional maintenance information.

The USAGE lines of each section describe how a feature is used.
For file formats, the USAGE names the appropriate header file.
For maintenance commands, it describes commands in the format
of the COHERENT Command Manual. For library routines and
system calls, the USAGE describes the C calling sequence of each
routine. Boldface type indicates characters which are literally part
of the calling sequence. Italic type indicates parts of the calling
sequence which are actually replaced by other text when the routine
is invoked. The call

acct(" /usr/adm/acct");
is an example of the USAGE of the system call acct, with the char
acter string "/usr/adm/acct" as the file argument.

Many sections include a FILES subsection describing the names of
files used. References to header files such as <stdio.h> are
enclosed in angle brackets to indicate that the header file resides in
the include directory, which is usually /usr/include. •

•

•

•

COHERENT System Manual

Introduction

Most sections include cross references in a SEE ALSO subsection.
Many refer to other sections of this manual. Others refer to the
COHERENT Command Manual, which provides detailed informa
tion on COHERENT commands. Some refer to separate related
documents.

The COHERENT system is available on a wide variety of comput
ers. In almost all cases, the operation of the features described in
this manual is identical on different machines; the system looks the
same, regardless of which processor it actually uses. However,
because of hardware limitations, a few features may not be imple
mented on some systems. A few sections of this manual note that
the features described do not exist on all COHERENT systems.

The information in this manual is also available online, through the
man command, on most COHERENT systems. For example,

man abort
prints the section of this manual describing the abort system call.

COHERENT System Manual

Conventions

The following sections of this manual describe system conventions,
indicated with the heading "Convention".

as
ascii
environ
man
ms

•

•

•

•

•

•

COHERENT System Manual

Device Drivers

The following sections of this manual describe device drivers, indi
cated with the heading "Device Driver" .

ct
mem
null
tape

Most device drivers handle a particular hardware device. mknod
creates a special file to provice access to the driver; device special
files generally reside in directory /dev. sload and suload load and
unload a device driver. ioctl controls device-dependent characteris
tics of a driver.

Because of hardware restrictions, the COHERENT system does not
support loadable device drivers on systems based on the 8086 or
8088 processors (such as the IBM Personal Computer). The /drv
directory and the sload and suload calls do not exist on such sys
tems .

COHERENT System Manual

File Formats

The following sections of this manual describe file formats, indi- •
cated with the heading "File Format".

acct.h
ar.h
canon.h
core
dir.h
group
l.out.h
mtab.h
passwd
ttys
utmp.h

•

•

•

•

•

COHERENT System Manual

Ube Library

The following sections of this manual describe parts of the Jibe
library, indicated with the heading "libc Library".

abort
abs
assert
atof
crypt
ctime
ctype
ecvt
end
exit
frexp
getenv
getgrent
getlogin
getpass
getpw
getpwent
getwd
13tol
malloc
mktemp
mtype
nlist
perror
pnmatcb
qsort
rand
setjmp
signame
sleep
string
swab
system
ttyname

COHERENT System Manual

llbc Library

The cc command loads the libc library automatically when it com
piles a C program. The libc library resides in the archive file
/lib/libc.a. •

•

•

•

•

•

COHERENT System Manual

libm Library

The following sections of this manual describe parts of the libm
library, indicated with the heading "libm Library".

floor
hypot
jO
log
sin
sinh

Programs using the libm library should #include < math.h > , and
the cc or Id command should use the - Im option to obtain the
library. The libm library resides in the archive file /lib/libm.a.

When an error occurs, these routines set the external variable errno
to either EDOM (argument out of domain of function) or
ERANGE (returned value too large for floating point representation
of the machine). The math.h header file defines these values, and
section errno describes errors in detail. The actual returned value
may be a very large number or may be indistinguishable from nor
mal returned values.

Section mp of this manual describes the libmp library for multiple
precision arithmetic. Programs using the libmp library should
#include < mprec.h > , and the cc or Id command should use the
- Imp option to obtain the library. The libmp library resides in the
archive file /usr/lib/libmp.a .

COHERENT System Manual

Maintenance

The following sections of this manual provide system maintenance •
information, indicated with the heading "Maintenance".

cron
getty
init
lpd
swap
sysgen
update

These sections are of particular interest to the system administrator.
The COHERENT Command Manual and the COHERENT
Administrator's Guide give additional information on system
maintenance.

•

•

•

•

•

COHERENT System Manual

STDIO Library

The following sections of this manual describe parts of the standard
1/0 library STDIO, indicated with the heading "STDIO Library".

fclose
ferror
fflush
fileno
fopen
fread
fseek
fwrite
getc
gets
getw
popen
printf
putc
puts
putw
scanf
setbuf
ungetc

Programs using the STDIO library should #include < stdio.h >.
These routines perform efficient buffered 1/0 operations. A
buffered file is called a stream, and has type FILE *. When an
error occurs, these routines generally return the value NULL for a
pointer or EOF for an int. NULL and EOF are defined in the
stdio.h header file. stdio.h also defines the standard input, standard
output, and standard error streams, called stdio, stdout and stderr .

COHERENT System Manual

System Calls

The following sections of this manual describe system calls, indi- •
cated with the heading "System Call".

access
acct
alarm
brk
chdir
chmod
chown
chroot
close
creat
dup
errno
exec
exit
fork
ftime
getpid
getuid
ioctl
kill
link
lock
lseek
mknod
mount
open
pause
pipe
profit
ptrace
read
setuid
signal
sload
stat
stime
sync

•

•

•

•

•

COHERENT System Manual

System Calls

times
umask
unlink
utime
wait
write

When an error occurs in a system call, the call normally returns - 1
and sets the external variable errno to a code identifying the error.
Section errno describes error numbers .

COHERENT System Manual

•

•

•

•

•

•

abort abort

Ube Library

NAME
abort - terminate process with core dump

USAGE
abort()

DESCRIPTION
abort terminates a process with a core dump, creating a file called
core. It is normally invoked in situations that "should not hap
pen" in a program. For example, the memory allocator malloc
invokes abort when it discovers a corrupt storage arena.

Where possible, abort executes a machine instruction which causes
the processor to trap. Implementation on specific machines is
described below. If the signal associated with the trap is caught or
ignored, the dump will not be produced.

FILES
core

SEE ALSO
exit, malloc, signal
COHERENT Command Manual: db

DIAGNOSTICS
On the PDP-I 1, abort executes an IOT instruction; "IOT trap
core dumped" is printed.

On the Zilog Z8000, abort executes a halt instruction; "privileged
instruction-core dumped" is printed.

On the Intel 8086, abort executes an invalid system call; "bad sys
tem call-core dumped" is printed .

System

abs abs

llbc Library

NAME
abs - absolute value of an integer

USAGE
abs(n)
int n;

DESCRIPTION
abs returns the absolute value of the integer n.

SEE ALSO
floor

NOTES
On two's complement machines, abs of the most negative integer is
itself.

System

•

•

•

•

•

•

access

System Call

NAME
access - test access to a file

USAGE
#include < access.h >

access(file, how)
char *file;
int how;

DESCRIPTION

access

access tests whether the given file may be accessed in a particular
way, without actually performing an open, creat, or exec call. The
how argument specifies types of accessibility to be tested. The
parameters AREAD, A WRITE, AEXEC, and AAPPND test access
for reading, writing, execution, and appending, respectively. The
header file access.b defines these values, which may be logically
combined to produce the how argument. If how is 0, access tests
only the existence of file and the ability to search all directories
leading to it.

access uses the real user id and real group id (rather than the
effective user id and effective group id), so set user id programs can
use it.

For directories, the above permissions are interpreted differently.
For example, directories can never be explicitly opened for writing,
but write permission on a directory as indicated by access means the
ability to create or unlink files in the directory. The parameters
ALIST, ADEL, ASRCH, and ACREAT test access for listing a
directory, deleting a directory entry, searching a directory, and
creating a directory entry, respectively.

FILES
<access.h>

SEE ALSO
creat, exec, open, stat

DIAGNOSTICS
access returns O if file exists and is accessible as requested. It
returns - 1 if file does not exist or is inaccessible under the given
modes.

System

acct acct

System Call

NAME
acct - enable/ disable process accounting

USAGE
acct(file)
char *file;

DESCRIPTION
acct enables or disables process accounting. A nonnull file argu
ment enables accounting; the specified file must exist. When
enabled, the system appends a raw accounting data record in the
format described by acct.h to file as each process terminates.

A file argument of NULL disables process accounting.

acct is restricted to the superuser.

SEE ALSO
acct.h, exit, times
COHERENT Command Manual: ac, sa

DIAGNOSTICS
Successful calls return the value 0. acct returns - 1 for errors, such
as nonexistent file or invocation by a user other than the superuser.

NOTES
The system writes accounting records for a process only when it
exits. Processes that never terminate and processes running at the
time of a system crash do not produce accounting information .

System

•

•

•

•

•

•

acct.h acct.h

File Format

NAME
acct.b - process accounting file format

USAGE
#include < acct.b >
DESCRIPTION
After acct enables process accounting, the system writes raw process
accounting information into an accounting file as each process ter
minates. Each entry in the accounting file, normally
/usr/adm/acct, has the following form, as defined in the acct.b
header file:

struct acct {
char ac_comm[l0];
comp_t ac_utime;
comp_t ac_stime;
comp_t ac_etime;
time_t ac_btime;
short ac_uid;
short ac_gid;
short ac_mem;
comp_t ac_io;
dev_t ac_tty;
char ac_flag;

};

/* Bits from ac_flag */
#define AF0RK 01 /* has done fork, but not exec*/
#define ASU 02 /* has used superuser privileges*/

Every time a process does an exec call, the contents of ac_comm
are replaced with the first 10 characters of the file name. The fields
ac_utime and ac_stime represent CPU time used in the user pro
gram and in the system, respectively. ac_etime represents the
elapsed time since the process started running, while ac_btime is the
time the process started. The effective user id and group id are
ac_uid and ac_gid. ac__mem gives the average memory usage of the
process. acjo gives the number of blocks of input-output. ac_tty
gives the controlling typewriter device major and minor numbers.

System

acct.h acct.h

File Format

For some of the above times, the acct structure uses the special
representation comp_t, defined in the types.h header file. It is a
floating point representation with 3 bits of base 8 exponent and 13
bits of fraction, so it fits in a short integer.

FILES
<acct.h>
/usr/adm/acct

SEE ALSO
acct
COHERENT Command Manual: accton, sa

System

•

•

•

•

•

•

alarm alarm

System Call

NAME
alarm - set a timer

USAGE
alarm(n)
unsigned n;

DESCRIPTION
alarm sets a timer associated with the requesting process to go off in
n seconds. After n seconds, the system sends the signal SIGALRM
to the process. An argument of O turns off the alarm timer.

By default, the receipt of the SIGALRM signal terminates the pro
cess. However, it may be caught or ignored by using signal.
Because of scheduling variation and the one second granularity, the
action of alarm is only predictable to within one second.

alarm is useful for such things as timeouts. For example, the login
process on a dial-in port might hang up the line after a sufficient
elapsed time with no user response.

alarm returns the previous alarm value, which represents the time
remaining from the previous call. Time remaining is superseded by
the new alarm value.

SEE ALSO
signal, sleep

System

ar.h ar.h

File Format

NAME
ar .h - archive file format

USAGE
#include < ar .h >
DESCRIPTION
An archive is a single file built from a number of constituent files
and maintained by the ar command. Usually an archive is a library
of object files used by the Id command.

All archives start with a magic number ARMAG, which identifies
the file as an archive. The members of the archive follow the magic
number, each preceded by an ar.Jtdr structure, as defined in the
ar.h header file:

#define DIRSIZ 14
#define ARMAG 0177535

/* from <dir.h> */
/* magic number*/

struct ar_hdr {
char
time_t
short
short
short
size_t

} ;

ar__narne[DIRSIZ];/* member name*/
ar_date; /* time inserted*/
ar_gid; /* group owner*/
ar_uid; /* user owner*/
ar_mode; /* file mode*/
ar_size; /* file size*/

The structure at the head of each member is immediately followed
by ar....size bytes, which are the data of the file .

To enhance the performance of Id, the ranlib command provides a
random library facility. ranlib produces archives which contain a
special entry named __ .SYMDEF at the beginning. The header file
ar.h contains structure definitions and other information describing
the format of its tables.

All integer members of the structure (everything but the ar_name)
are in canonical form to ease portability. See canon.b for more
information.

FILES
<ar.h>

System

•

•

•

•

•

•

ar.h

SEE ALSO
canon.b

File Format

COHERENT Command Manual: ar, Id, ranlib

ar.h

System

as as

Convention

NAME
as - assembly language calling sequences

USAGE
as /usr /include/sys.s file ...

DESCRIPTION
The descriptions of routines in this manual use the C language.
The following C call and corresponding assembly language illustrate
the assembly language calling sequence for a C routine.

struct item {
int x._type;
char *x._name[8];

} items[JO];

n = fread((char *)items, sizeof(items[OJ), JO, fp);

Assembly language for the PDP-I I:

mov $fp_ , -(sp)
mov $30, -(sp)
mov $10, -(sp)
mov $items_, -(sp)
jsr pc, fread_
add $8, sp
mov rO, n...

Assembly language for the 28002:

push (r15), fp_
push (r15), $JO
push (r15), $10
push (r15), $items_
call fread_
inc r15, $8
ld n..., rl

System

•

•

•

•

•

•

as

Convention

Assembly language for the 28001:

pushl (rr14), fp_
push (rr14), $30
push (rr14), $34
ldl rrO, $items_
pushl (rr14), rrO
calr freact_
inc r15, $12
ld IL, rl

Assembly language for the (small model) i8086:

push fp_
mov ax,$30
push ax
mov
push
mov
push
call
add
mov

ax,$10
ax
ax,$items_
ax
fread_
sp, $8
IL, ax

as

For more detailed information, such as passing and returning long
and double types to routines, the user should consult the assembler
output of the C compiler (obtained with the - S option to the cc
command).

It is recommended that assembly language programs call routines
from the C library, rather than coding system calls directly. For
those who need to know, the format of a system call conforms
exactly to the C function calling conventions for a particular
machine. The include file < sys.s > gives the system call numbers,
and may be included with source files to the assembler.

On the PDP-11, system calls are implemented as trap instructions.
The arguments are at the correct place on the stack after the C
compiler has pushed them for the interface routine. The system
ignores the pushed pc for the call of the routine. Following the C
calling conventions, the return value is in rO for an int and the rO-rl
pair for a long. The location ermo is at the top of the stack

System

as as

Convention

segment, at virtual address 0177776. For example, the interface
routine for the write system call is:

write_:
sys 4
rts pc

On the Zilog Z8001 and Z8002 processors, system calls conform to
C calling conventions, with the arguments on the stack and the
return value in rt for an int and in rrO for a long. The location of
errno is 0xFFFE, on the stack. For example, the interface routine
for the write system call is:

write_:
sys 4
ret

For the Intel 8086 and 8088 processors, as well as the IBM Personal
Computer, the calling sequences for the system calls is as for C,
with arguments on the stack. The return value is in register ax for
an int and in the pair dx-ax for a long. The location of errno is
0x0002. For example, the interface routine for the write system call
is:

write_:

FILES
<sys.s>

sys 4
ret

SEE ALSO
COHERENT Command Manual: as, cc

System

•

•

•

•

•

•

ascll ascll

Convention

NAME
ascii - ASCII character table

DESCRIPTION
The file /usr/pub/ascii gives a table of codes in the ISO 7-bit
(ASCII) character set. For each character the following table gives
numeric values in octal, decimal and hexadecimal, followed by the
conventional symbolic name (2 or 3 upper-case letters) or graphic
representation of the character .

System

ascll ascll

Convention

000 000 00 NUL 040 032 20 SP 100 064 40@ 140 096 60 • 001 001 01 SOH 041 OJJ 21 ! 101 065 41 A 141 097 61 a
002 002 02 STX 042 OJ4 22" 102 066 42 B 142 098 62 b
003 003 03 ETX 043 035 23 # 103 067 4J C 14J 099 6J C

004 004 04 EQT 044 OJ6 24 $ 104 068 44 D 144 100 64 d
005 005 05 ENQ 045 037 25 % 105 069 45 E 145 101 65 e
006 006 06 ACK 046 038 26 ~ 106 070 46 F 146 102 66 f
007 007 07 BEL 047 039 27 107 071 47 G 147 103 67 g
010 008 08 BS 050 040 28 (110 072 48 H 150 104 68 h
011 009 09 HT 051 041 29) 111 073 49 I 151 105 69 i
012 010 OA LF 052 042 2A * 112 074 4A J 152 106 6A j
OlJ 011 OB VT 053 043 2B + 113 075 4B K 153 107 6B k
014 012 QC FF 054 044 2C, 114 076 4C L 154 108 6C 1
015 013 OD CR 055 045 2D - 115 077 4D M 155 109 6D m
016 014 OE SO 056 046 2E . 116 078 4E N 156 110 6E n
017 015 OF SI 057 047 2F / 117 079 4F 0 157 111 6F o
020 016 10 DLE 060 048 JO 0 120 080 50 P 160 112 70 p
021 017 11 DCl 061 049 Jl 1 121 081 51 Q 161 113 71 q
022 018 12 DC2 062 050 32 2 122 082 52 R 162 114 72 r • 023 019 13 DCJ 063 051 33 3 123 083 53 S 163 115 73 s
024 020 14 DC4 064 052 J4 4 124 084 54 T 164 116 74 t
025 021 15 NAK 065 053 35 5 125 085 55 U 165 117 75 u
026 022 16 SYN 066 054 J6 6 126 086 56 V 166 118 76 V

027 023 17 ETB 067 055 37 7 127 087 57 W 167 119 77 w
030 024 18 CAN 070 056 38 8 lJO 088 58 X 170 120 78 X

OJl 025 19 EM 071 057 39 9 131 089 59 Y 171 121 79 y
032 026 1A SUB 072 058 JA : 132 090 5A Z 172 122 7A z
033 027 1B ESC 073 059 JB ; lJJ 091 5B [173 123 7B {
034 028 lC FS 074 060 JC< 134 092 5C \ 174 124 7C I
035 029 1D GS 075 061 JD= 135 093 5D l 175 125 7D l
036 030 1E RS 076 062 JE > 136 094 5E 176 126 7E
037 031 lF US 077 063 JF ? 137 095 5F 177 127 7F DEL

FILES
/usr/pub/ascii

•
System

•

•

•

assert

Ube Library

NAME
assert - check assertion at runtime

USAGE
#include < assert.b >
assert(condition)

DESCRIPTION

assert

assert checks the validity of the given condition, as a debugging
aid. If the condition is false (0), assert prints an error message and
the program exits. assert is usually used to detect situations in a
program that should "never happen".

The - DNDEBUG argument to cc disables all checking of asser
tions.

Assertions may also be made at compile time, during the pre
processing phase, by the #assert condition directive. If condition
(an expression involving constants of the form acceptable to #if) is
false (0), cc prints a diagnostic during compilation .

FILES
<assert.h>

SEE ALSO
exit
COHERENT Command Manual: cc

DIAGNOSTICS
assert prints

file: line: assert(condition) failed

when condition is not true at line number line of source file file.
Because assert is a macro using printf, it expands into an illegal C
statement if the condition includes double quotes ("") .

System

atof

Ube Library

NAME
atof, atoi, atol - convert strings to numbers

USAGE
double
atof(string)
char *string;

int
atoi(string)
char *string;

long
atol(string)
char *string;

DESCRIPTION

atof

These routines convert the argument string to binary representations
of numbers of various types. In all cases, leading blanks and tabs
are ignored. Each stops scanning when it encounters any inap
propriate character and returns the resulting number.

atoi and atol each read an integer number and return a result of
type int or long, respectively. The string may contain an optional
leading sign and any number of decimal digits.

atof reads a floating point number and returns a result of type dou
ble. The string may contain an optional leading sign, any number
of decimal digits, and possibly one decimal point. It may be ter
minated by an optional exponent given by an 'e' or 'E', an optional
sign, and any number of decimal digits.

SEE ALSO
printf, scanf

NOTES
No overflow checks are performed.

System

•

•

•

•

•

•

boottlme boottlme

Maintenance

NAME
boottime - time of last system boot

DESCRIPTION
/etc/boottime is an empty file maintained by the init process and
the date command. The modification time of boottime is the time
of the last system boot. The modification time of a file is accessible
with the command 'ls - I' or the stat or fstat system call.

FILES
/ etc/boottime

SEE ALSO
init
COHERENT Command Manual: date, mount

DIAGNOSTICS
Commands which depend on /etc/boottime may malfunction if the
date is not set correctly. For instance, the mount command
depends on the relative modification times of /etc/boottime and
/etc/mtab to detect whether the mount table has been invalidated
by a system boot. If the date is set sufficiently far into the past, the
mount table may appear to be valid when in fact it is not.

System

brk brk

System Call

NAME
brk, sbrk - change size of data area

USAGE
brk(addr)
char *addr;

char*
sbrk(incr)
int incr;

DESCRIPTION
The break is the lowest address above the data area of a process.
brk sets the break to the given addr, possibly rounding up by some
machine-dependent factor. brk returns O on success, - 1 on failure.

sbrk changes the break by incr bytes (possibly rounding up) and
returns the start of the new data area. sbrk returns NULL in case
of error.

SEE ALSO
end, exec, malloc

DIAGNOSTICS
sbrk returns - 1 if the request fails. Both routines set ermo to
ENOMEM if the request fails.

System

•

•

•

•

•

•

canon.h

File Format

NAME
canon.h - portable layout of binary data

USAGE
#include < canon.h >
#include < types.h >

canshort(s)
shorts;

canint(1)
int i;

canlong(/)
long/;

canvaddr(v)
vaddr_t v;

cansize(s)
size_t s;

candaddr(d)
daddr_t d;

cantime(t)
time_t t;

candev(d)
dev_t d;

canino(1)
ino_t i;

DESCRIPTION

canon.h

The layout of binary data varies among machines. For example,
the byte order of a 16-bit word on the PDP-11 is lo-byte.hi-byte,
while the byte order on the Z8000 is hi-byte.lo-byte.

System

canon.h canon.h

File Format

To ensure portability of file systems across machines with differing •
byte order, the COHERENT system uses a canonical layout of
binary data. Data not in primary memory (e.g. on disk or tape or
communications line) must conform to this canonical layout. To
insulate programs from the details of the difference between
'natural' and canonical layout, the COHERENT system provides
procedures to convert between layouts.

Each procedure takes a single I-value of the indicated type and con
verts it in place; there is no return value. The argument should not
have side-effects. Each procedure is its own inverse. Several pro
cedures are targeted specifically for elements of file systems.

The file formats currently containing canonical binary data and the
commands (see the COHERENT Command Manual) dealing with
them are:

format
ar.h
dir.h
l.out.h

commands
ar, Id, ranlib
Is, tar
as, cc, db, Id, nm, size, strip

Any program which manipulates binary data on files should per
form canonical conversion immediately upon input and immediately
before output. The following fragment of code from df should be
instructive.

System

•

•

•

•

•

canon.h

#include <Stdio.h>
#include <canon.h>
#include <filsys.h>
char superb[BSIZE];

df(fs)
char *fs;
{

File Format

register struct filsys *sbp = superb;
FILE *fp;
daddr_t nfree;

if ((fp = fopen(fs, "r")) = NULL) {
perror(fs);
return (1);

}
fseek(fp, (long)BSIZE, O);

canon.h

if (fread(superb, sizeof superb, 1, fp) != 1) {
fprintf(stderr, "%s: read error\n", fs);
return (1);

}

}
candaddr(sbp->s_tfree);
candaddr(sbp->s_fsize);
canshort(sbp->s_isize);
nfree = sbp->s_tfree;
if (nfree > sbp->s_fsize-sbp->s_isize

fprintf(stderr, "%s: bad free
return (1);

}
printf("%s: %D\n", fs, nfree);
fclose (fp) ;
return (0);

11 nfree < 0) {
count\n", fs);

System

canon.h

FILES
<canon.h>

SEE ALSO
ar.h, dir.h, l.out.h

File Format

canon.h

•

•

•
System

•

•

•

chdlr chdlr

System Call

NAME
chdir - change working directory

USAGE
chdir(directory)
char *directory;

DESCRIPTION
The working directory (or current directory) is the directory from
which file name searching begins if a pathname does not begin with
'/'. By convention, the working directory has the name '.'. chdir
changes the working directory to the directory specified.

SEE ALSO
chroot
COHERENT Command Manual: cd

DIAGNOSTICS
chdir returns O for successful calls. It returns - 1 on errors, such as
directory nonexistent, not a directory, or not searchable .

System

chmod

System Call

NAME
cbmod - change file protection modes

USAGE
#include < sys/stat.b >

cbmod(fi/e, mode)
char *file;
int mode;

DESCRIPTION

chmod

cbmod sets the mode bits of the given file. The mode bits include
protection bits, the set user id bit, the set group id bit and the
sticky bit.

The mode argument is constructed from the logical OR of the fol
lowing, which are defined symbolically in the stat.b header file:

04000
02000
01000
00400
00200
00100
00040
00020
00010
00004
00002
00001

set user id
set group id
save text (sticky bit)
read permission for owner
write permission for owner
execute permission for owner
read permission for members of owner's group
write permission for members of owner's group
execute permission for members of owner's group
read permission for other users
write permission for other users
execute permission for other users

For directories, some protection bits have a different meaning: write
permission means files may be created and removed, while execute
permission means the directory may be searched.

The save text bit, or sticky bit, is a flag to the system when it exe
cutes a shared form of a load module. After the system runs the
program, it leaves shared segments on the swap storage device to
facilitate faster subsequent reinvocation of the program. The set-

•

•

ting of this bit is restricted to the superuser (to control depletion of •
swap space which might result from overuse).

System

•

•

•

chmod chmod

System Call

Only the owner of a file or the superuser may change its mode .

FILES
<sys/stat.h>

SEE ALSO
creat, stat
COHERENT Command Manual: chmod

DIAGNOSTICS
chmod returns - 1 for errors, such as file being nonexistent or the
invoker being neither the owner nor superuser .

System

chown

System Call

NAME
chown - change ownership of a file

USAGE
chown(file, uid, gid)
char *file;
short uid, gid;

DESCRIPTION

chown

chown changes the owner of file to user id uid and group id gid.

To change only the user id without changing the group id, stat
should be used to determine the value of gid to pass to chown.

Because granting the ordinary user the ability to change the owner
ship of files might circumvent file space quotas or accounting based
upon file ownership, chown is restricted to the superuser.

SEE ALSO
chmod, passwd, stat
COHERENT Command Manual: chown

DIAGNOSTICS
chown returns - I for errors, such as nonexistent file or the caller
not being the superuser.

System

•

•

•

•

•

•

chroot chroot

System Call

NAME
chroot - change process's root directory

USAGE
chroot(directory)
char *directory;

DESCRIPTION
The root directory is the directory from which file name searches
commence when a pathname begins with '/'. chroot changes the
root directory to directory for the requesting process and all of its
children.

Because of security problems, chroot is restricted to the superuser.
It is sometimes useful for a system administrator; for example, to
test a new system environment which resides on a mounted file sys
tem.

SEE ALSO
chdir, fork

DIAGNOSTICS
chroot returns O for a successful call. It returns - 1 on errors, such
as the caller not being the superuser or the directory being nonex
istent or not a directory .

System

close close

System Call

NAME
close - close a file

USAGE
close(fd)
int/d;

DESCRIPTION
close closes a file identified by the file descriptor f d, as returned by
creat, dup, open, or pipe. close frees the associated file descriptor.
Since each process has a limited number of open files, programs
processing many files should close files when possible. Closing a file
may have side effects, especially with device files.

The system closes all open files automatically when a process exits.

SEE ALSO
creat, dup, exit, fclose, fflush, open, pipe

DIAGNOSTICS
close returns - 1 if an error occurs, such as a bad file descriptor.
Otherwise, it returns 0.

System

•

•

•

•

•

•

core core

File Format

NAME
core - core dump file format

USAGE
#include < sys/uproc.h >
DESCRIPTION
When a process terminates abnormally because of a process fault or
because it receives an asynchronous signal from another process,
the system tries to write a memory dump of the process into a file
called core. This file contains an image of the process code and
data segments and the system description segment for the process.
The following list gives the segment types and the symbolic names
of their locations in the file:

SIUSERP user process description segment
SISTACK user stack segment
SISTEXT shared text segment
SIPTEXT private text segment
SISDATA shared data segment
SIPDATA private data segment

Dumps do not necessarily contain all of the above segments. Nei
ther shared text nor shared data segments are dumped. They are
write protected in memory and the load module running when the
dump occurred contains shared segment data.

The best way for a program (such as a debugger) to read the core
file is to first read the user process description segment, which is
always at the front and has a fixed size. It should be read into an
area of UPASIZE bytes, but referenced with structured type
UPROC (somewhat smaller than UPASIZE because of the system
stack, which contains the user registers and other information in
fixed places).

The sr_segl member of the UPROC structure is a list of segment
reference descriptors which contain the virtual address and length of
each segment, corresponding exactly to its size in the dump.
NUSEG segments are possible; flag SRFDUMP in the srJlag field
indicates a segment was dumped. Using the above method, the
entire file may be used to reference program data and code at the
time of the dump.

System

core core

File Format

Other information found in the user process structure may be per
tinent; the header file sys/uproc.b contains more information.

FILES
core
< sys/uproc.h >
SEE ALSO
l.out.h, signal
COHERENT Command Manual: db, kill, wait

DIAGNOSTICS
COHERENT will not write core if it already exists as a non
ordinary file or if there is more than one link to it. The 0200 bit in
the status returned to the parent process by wait indicates a success
ful dump.

System

•

•

•

•

•

•

creat creat

System Call

NAME
creat - create/truncate a file

USAGE
#include < sys/stat.h >
creat(fi/e, mode)
char *file;
int mode;

DESCRIPTION
creat creates a new file or truncates an existing file. It returns a file
descriptor which identifies file for subsequent system calls.

If file existed previously, its previous contents are lost. In this case,
creat ignores the specified mode; the mode of the file remains
unchanged.

If file did not exist previously, creat uses the mode argument to
determine the mode of the new file. For a full definition of file
modes, see chmod or the header file stat.h. creat masks the mode
argument with the current umask, so it is common practice to
create files with the maximal mode desirable.

FILES
<sys/stat.h>

SEE ALSO
chmod, mknod, open, stat, umask
COHERENT Command Manual: sh

DIAGNOSTICS
If the call is successful, creat returns a file descriptor. It returns
- 1 if it could not create the file, typically for reasons such as pro
tection violations or insufficient file system resources .

System

cron cron

Maintenance

NAME
cron - execute commands periodically

USAGE
/etc/cron&

DESCRIPTION
cron is a daemon which executes commands at preset times. The
commands and their scheduled execution times are kept in the file
/usr /lib/ crontab.

Once each minute cron searches through crontab. For each com
mand stored there, cron compares the current time with the
scheduled execution time and executes the command if the times
match. When it finishes the search, cron sleeps until the next
minute. Since it never exits, cron should be executed only once
(customarily by /etc/re).

crontab consists of lines separated by newlines. Each line consists
of fields separated by white space (tabs or blanks). The first five
fields describe the scheduled execution time of the command. In
order, they represent:

minute (0- 59),
hour (0- 23),
day of the month (1-31),
month of the year (1-12), and
day of the week (0-6, 0 meaning Sunday).

Each field may contain a single integer in the appropriate range, a
pair of integers separated by a ' - ' (meaning all integers between
the two, inclusive), an asterisk ••• (meaning all legal values), or a
comma-separated list of the above forms. The remainder of the
line gives the command to be executed at the given time.

cron recognizes three special characters and escape sequences in
crontab. If a command contains the percent character '%', cron
executes only the portion up to the first '%' as a command and
passes the remainder to the command as its standard input. cron
translates any percent characters in the remainder to newlines. The
special interpretation of '%' can be prevented by preceding it with
a backslash, '\ % '. Finally, cron removes the sequence '\ newline'
from the text before passing it to the shell sh; this can be used to
make an entry in crontab more readable.

System

•

•

•

•

•

•

cron cron

Maintenance

cron is designed for commands that need to be executed regularly.
One-shot commands should be handled by the at command.

FILES
/usr/lib/crontab for stored commands

SEE ALSO
init
COHERENT Command Manual: at
COHERENT Administrator's Guide

System

crypt crypt

llbc Library

NAME
crypt, encrypt, setkey - encryption/decryption using DES algo
rithm

USAGE
char*
crypt(key, extra)
char *key, *extra;

encrypt(bits, flag)
char *bits;
int flag;

setkey(key)
char *key;

DESCRIPTION
These routines implement a variant on the encoding scheme defined
by the National Bureau of Standards Data Encryption Standard
(DES). crypt produces encrypted passwords which are verified by
comparing the encrypted clear text against an original encryption.
To prevent brute force methods from violating security, some inter
nal tables are modified so that current hardware implementations of
DES will not be compatible with the result of crypt.

The key argument to crypt is an ASCII string containing the user's
password. The extra argument is a string of two additional charac
ters, stored in the password file with the encrypted password. The
extra characters are used to modify the DES algorithm, as described
above. Each character must come from an alphabet of 64 symbols,
consisting of upper-case and lower-case letters, digits, period '.' and
slash '/'. crypt returns a string using the same 64 character alpha
bet as the extra argument. Its first two characters are the extra
argument and the rest is the encrypted password.

setkey and encrypt provide a more direct access to DES encryption
software for other uses. setkey takes an array of 64 characters.
These characters are binary values (0 or 1) which define a 64-bit
key. As in the DES standard, only the first 7 of every 8 bits are
significant to the key. Once the key has been defined, encrypt
encodes or decodes a string of 8 bytes, or 64 bits, at a time. The
bits argument is an array of characters each containing one bit, as

System

•

•

•

•

•

•

crypt crypt

llbc Library

for setkey. encrypt transforms the array of bits into the encrypted
or decrypted result. The flag argument specifies the direction; 0
means encryption, anything else means decryption.

SEE ALSO
getpass
COHERENT Command Manual: login, passwd

NOTES
The encrypted result returned by crypt is static and is overwritten
by each invocation .

System

ct ct

Device Driver

NAME
ct - controlling terminal driver

DESCRIPTION
For each process, the controlling terminal driver /dev/tty is an
interface to the appropriate terminal driver. COHERENT passes
any input-output call (e.g. close, ioctl, open, or write) on this spe
cial file directly to the controlling terminal device for the requesting
process.

Normally, the controlling terminal is the default standard input,
output, and error device. This is not the case for daemon processes
started by the initial process.

FILES
/dev/tty

SEE ALSO
init

DIAGNOSTICS

•

When a call finds no valid controlling terminal for a process, it •
returns a value of - 1 and sets errno to ENXIO.

•
System

•

•

•

ctlme ctlme

llbc Library

NAME
asctime, ctime, gmtime, localtime, settz, timezone, tzname - time
and date conversion

USAGE
#include < time.h >
#include < types.h >

char*
asctime(tmp)
struct tm *tmp;

char*
ctime(timep)
time_t * timep;

struct tm *
gmtime(timep)
time_t *timep;

struct tm *
localtime(timep)
time_t * timep;

void
settz()

long
timezone

char*
tzname[2)[16]

DESCRIPTION
The internal form of COHERENT time is a long integer containing
the number of seconds since Midnight, January 1, 1970. These rou
tines convert this format to more accessible forms.

ctime takes a pointer to the internal time time_t (as defined in
< types.h >) and returns a fixed-length string in the form

System

ctlme ctlme

llbc Library

"Thu Mar 14 11:12:14 1982\n"

localtime and gmtime convert the time to a more intermediate
form. Each returns a pointer to a tm structure, as defined in
time.h:

struct tm {
int t11Lsec; /* Second (0-59) */
int tl!Lmin; /* Minute (0-59) */
int tl!Lhour; /* Hour (0-23) *I
int tl!Lmday; /* Day of month (1-31) */
int tl!Lmon ; /* Month of year (0-11) */
int tm....year; /* Year-1900 */
int t11Lwday; /* Weekday (Sunday=0) */
int tm....yday; /* Day of year (0-365) */
int t11Lisdst; /* Daylight Saving Time*/

};

gmtime returns Greenwich Mean Time (GMT), while localtime
returns the local time (possibly including daylight saving time
conversion), as indicated by ftime. The daylight saving time flag
indicates whether daylight saving time is in effect, not simply
whether it will be in effect during some part of the year.

asctime returns an ASCII string containing the time and date for
the structure referenced by tmp. In fact, ctime is implemented as a
call to localtime followed by a call to asctime.

settz searches for the environmental parameter TIMEZONE which
specifies local time zone information in the format specified below.
If TIMEZONE is set, settz initializes timezone and tzname accord
ingly.

timezone is an external variable containing the number of seconds
to be subtracted from GMT to obtain local standard time.
tzname[0] and tzname[l] are external character arrays which con
tain the names of the local standard time zone and the local day
light saving time zone, respectively. If TIMEZONE is not set,
timezone defaults to 0, tzname[0] defaults to "GMT", and
tzname[l] defaults to the empty string.

System

•

•

•

•

•

•

ctlme ctlme

Ube Library

The environmental parameter TIMEZONE contains colon-separated
fields which specify the local time zone. It must contain at least
two fields, giving the name of the local standard time zone and its
offset from GMT in minutes. Offsets are positive for time zones
west of Greenwich and negative for time zones east of Greenwich.

If a third field appears in TIMEZONE, it gives the name of the
local daylight saving time zone. The absence of this field indicates
that no daylight saving time correction should be made. If
TIMEZONE contains no additional fields, the changes between
standard time and daylight saving time occur at the times currently
legislated in the United States: 2AM standard time on the last Sun
day in April and 2AM daylight saving time on the last Sunday in
October.

If a fourth and fifth field are present in TIMEZONE, they specify
the dates on which daylight saving time begins and ends. Each con
sists of three numbers separated by periods. The third number
specifies a month of the year, numbering January as 1. The second
number specifies a day of the week, numbering Sunday as 1. The
first number specifies which occurence of the weekday in the month
marks the change, counting positive occurences from the beginning
of the month and negative occurences from the the end of the
month.

If a sixth and seventh field are present in TIMEZONE, they specify
the hour of the day at which daylight saving time begins and ends
and the number of minutes of adjustment.

For example, possible TIMEZONE settings for Central Standard
Time are:

TIMEZONE=CST:J60
TIMEZONE=CST:J60:CDT
TIMEZONE=CST:J60:CDT:-1.1.4:-1.1.10
TIMEZONE=CST:J60:CDT:-1.1.4:-1.1.10:2:60

The first setting provides conversions to standard time only, a con
vention used by many farmers. The last three settings provide
conversions to daylight time and specify the default conversion rules
in increasing detail.

System

ctlme

FILES
<time.h>

llbc Library

< types.b > for definition of time_t

SEE ALSO
ftime
COHERENT Command Manual: date

NOTES

ctlme

The return values of most of these routines are pointers to statically
allocated data areas and are overwritten by successive calls.

System

•

•

•

•

•

•

ctype ctype

llbc Library

NAME
isalnum, isalpha, isascii, iscntrl, isdigit, islower, isprint, ispunct,
isspace, isupper, tolower, toupper - character type checks and
conversions

USAGE
#include < ctype.b >
isalnum(c)

DESCRIPTION
The ctype type checking macros return a logical value indicating
whether the argument is of a particular character type. The macro
isascii determines whether its integer argument falls within the range
of ASCII codes. The other macros assume that isascii(c) is true or
that c is EOF.
isalnum(c) c is alphanumeric (0-9, A-Z, or a-z)
isalpba(c) c is a letter (A-Z or a-z)
isascii(c) c is an ASCII character (0 < = c < 0200)
iscntrl(c) c is a control character or delete
isdigit(c) c is a digit (0-9)
islower(c) c is a lower-case letter (a-z)
isprint(c) c is a printable character (neither delete nor control)
ispunct(c) c is a punctuation character (neither alphanumeric nor

control)
isspace(c) c is a space, tab, newline, carriage return, or formfeed
isupper(c) c is an upper-case letter (A-Z)
The ctype conversion macros perform case conversion. Each
assumes that isalpha(c) is true.
tolower(c) returns c converted to a lower-case letter
toupper(c) returns c converted to an upper-case letter

FILES
<ctype.h>

SEE ALSO
ascii

System

dlr.h dlr.h

File Format

NAME
dir.h - directory format

USAGE
#include < dir .h >
DESCRIPTION
A COHERENT directory is exactly like an ordinary file, except that
a user process may write on it only through system calls such as
creat, link, mknod, or unlink. The system distinguishes directories
from other types of files by the mode word SJFDIR in the i-node
(see stat).

Every directory is an array of entries of the following structure, as
defined in the dir.h header file:

#define DIRSIZ 14

struct direct {
ino_t d_ino;
char d_name[DIRSIZ];

} ;

/* i-nurnber */
/*name*/

Any entry in which d_ino has value O is unused.

The mkdir command creates a directory, with the convention that
its first two entries are '.' and ' .. '. The name '.' is self
referential-a link to the directory itself. The name ' • .' is a link to
the parent directory. Since the root directory has no parent, its ' . .'
is a link to itself.

The d_ino entry of the directory structure is stored in the file system
in canonical form, as described in canon.h.

FILES
<dir.h>

SEE ALSO
canon.h, stat
COHERENT Command Manual: mkdir

System

•

•

•

•

•

•

dup

System Call

NAME
dup, dup2 - duplicate a file descriptor

USAGE
dup(/d)
intfd;

dup2(/d, newjd)
intfd, newfd;

DESCRIPTION

dup

dup creates a duplicate copy of an existing file descriptor f d and
returns the duplicate descriptor. The returned value is the smallest
file descriptor not already in use by the calling process. The new
file descriptor is just a reference to the old one, so seek position and
other attributes remain common between them.

dup2 allows the requesting process to specify a new file descriptor
newfd, rather than having the system pick one. If newfd is already
open, the system closes it before assigning it to the new file. dup2
returns the duplicate descriptor.

dup2 is implemented by turning on the 01()() bit of the fd argument
to the dup system call.

SEE ALSO
creat, fopen, fork, open, pipe
COHERENT Command Manual: sh

DIAGNOSTICS
Both calls return - 1 when an error occurs, such as a bad old file
descriptor or no file descriptor available .

System

ecvt

Ube Library

NAME
ecvt, fcvt, gcvt - convert floating point numbers to strings

USAGE
char*
ecvt(d, w, dp, signp)
doubled;
int w, *dp, *signp;

char*
fcvt(d, w, dp, signp)
doubled;
int w, *dp, *signp;

char*
gcvt(d, w, buffer)
doubled;
int w;
char *buffer;

DESCRIPTION

ecvt

These routines convert floating point numbers to ASCII strings.

ecvt converts d into a null-terminated string of decimal digits w
characters wide, rounding the last digit, and returns a pointer to the
result. On return, dp points to an integer indicating the location of
the decimal point relative to the beginning of the string; to the right
if positive, to the left if negative. signp points to an integer indicat
ing the sign of d; zero if positive, nonzero if negative.

The arguments to fcvt have the same meaning, but it converts to
FORTRAN F-format.

ecvt and fcvt perform conversions into ·static string buffers which
are overwritten by each execution. gcvt uses the given buff er
instead; it should be large enough to hold the result. If possible,
gcvt mimics fcvt; otherwise, it mimics ecvt. gcvt returns buffer.

SEE ALSO
frexp, printf

System

•

•

•

•

•

•

end

Ube Library

NAME
edata, end, etext - loader-defined symbols

USAGE
extern int edata;
extern int end;
extern int etext;

DESCRIPTION

end

The loader Id defines the values of edata, end and etext when it
binds a program for execution. end is the location after the unini
tialized data segment. edata is the location after the shared and
private data segments. etext is the location after the shared and
private text (code) segments. The values are just addresses; the
locations to which they point contain no known value, and may be
illegal memory locations for the program.

The storage allocator malloc uses these addresses to determine
where the free memory arena should start. The values do not
change while the program is running. When a program begins exe
cution, sbrk returns the same value as end.

SEE ALSO
brk, malloc
COHERENT Command Manual: Id

System

environ environ

Convention

NAME
environ - process environment

USAGE
extern char **environ;

DESCRIPTION
environ is an array of strings, called the environment of a process .
By convention, each string has the form

name= value

Normally, each process inherits the environment of its parent pro
cess. The shell sh and various forms of exec can change the
environment. The shell adds the name and value of each shell vari
able marked for export to the environment of subsequent com
mands. The shell adds assignments given on the same line as a
command to the environment of the command, without affecting
subsequent commands.

SEE ALSO
exec, getenv
COHERENT Command Manual: sh

System

•

•

•

•

•

•

errno errno

System Call

NAME
errno - system call error returns

USAGE
#include < errno.h >
extern int errno;

DESCRIPTION
When an error occurs in a system call, the call normally returns - 1
to signify failure. In addition, the call sets the external variable
errno to a value which identifies the error. Successful calls do not
reset errno to zero.

The following table gives symbolic error names from the header file
errno.h, error numbers, and error messages printed by perror.

0
The value of ermo is 0 before any error has occured.

EPERM 1 not the owner or superuser
Someone other than the owner of a file or the superuser
attempted to modify it (with chmod, for example). This
error also occurs when a user other than the superuser
requests a privileged system facility, such as setting the time
with stime.

ENOENT 2 no such file or directory

ESRCH

EINTR

EIO

A referenced file does not exist, or part of the directory
structure leading to the file does not exist or is inaccessible.

3 no such process
A process id specified to kill or ptrace does not exist,
perhaps because it has already terminated or has been
killed.

4 interrupted system call
A signal was caught while a system call was suspended,
awaiting the completion of an external event (such as a
read from a typewriter device).

5 1/0 error
A physical 1/ 0 error occurred on a device driver. This
could be a tape error, a CRC error on a disk, or a framing
error on a synchronous HDLC link.

System

errno errno

System Call

ENXIO 6 no such device or address •
A specified minor device is invalid or the unit is powered
off. This error might also indicate that a block number
given to a minor device is out of range. suload returns this
error code if the driver was not loaded.

E2BIG 7 argument list too long
The number of bytes of arguments passed in an exec is too
large.

ENOEXEC 8 exec format error
The file given to exec or load is not a valid load module
(probably because it does not have the magic number at the
beginning), even though its mode indicates that it is execut
able.

EBADF 9 bad file descriptor
A file descriptor passed to a system call is not open or is
inappropriate to the call. For example, a file descriptor
opened only for reading may not be accessed for writing.

ECHILD 10 no children •
A process issued a wait call when it had no outstanding
children.

EAGAIN 11 no more processes
The system cannot create any more processes, either
because it is out of table space or because the invoking pro
cess has reached its process quota.

ENOMEM 12 not enough memory
The system cannot accomodate the memory size requested
(by exec or brk, for example).

EACCES 13 permission denied
The user is denied access to a file.

· EF A ULT 14 bad address
An address in a system call does not lie in the user's
address space. Normally, this generates a SIGSYS signal,
which terminates the process.

ENOTBLK 15 block device required •
The mount and umount calls require block devices as argu-
ments.

System

•

•

•

errno errno

System Call

EBUSY 16 mount device busy
The special file passed to mount is already mounted, or the
file system given to umount has open files or active working
directories.

EEXIST 17 file exists
An attempt was made to link to a file that already exists.

EXDEV 18 cross-device link
A link to a file must be on the same logical device as the
file.

ENODEV 19 no such device
An unsuitable 1/0 call was made to a device. ioctl requests
to the wrong type of device or attempts to read a line
printer are examples.

ENOTDIR 20 not a directory
A component in a pathname exists but is not a directory, or
a chdir or chroot argument is not a directory .

EISDIR 21 is a directory
Directories cannot be opened for writing.

EINV AL 22 invalid argument
An argument to a system call is out of range, e.g. a bad
signal number to kill or umount of a device that is not
mounted.

ENFILE 23 file table overflow
A table inside the COHERENT system has run out of
space, preventing further open calls and related requests.

EMFILE 24 too many open files
A process is limited to 20 open files at any time.

ENOTTY 25 not a tty
An ioctl call was made to a file which is not a terminal dev
ice .

System

errno errno

System Call

ETXTBSY 26 text file busy •
The text segment of a shared load module is unwritable.
Therefore, an attempt to execute it while it is being written
or an attempt to open it for writing while it is being execut-
ed will fail.

EFBIG 27 file too large
The block mapping algorithm for files fails above
1082201088 bytes.

ENOSPC 28 no space left on device
Indicates an attempt to write on a file when no free blocks
remain available on the associated device. This error may
also indicate that a device is out of i-nodes, so a file cannot
be created.

ESPIPE 29 illegal seek
It is illegal to lseek on a pipe.

EROFS 30 read-only file system
Indicates an attempt to write on a file system mounted
read-only (e.g. with creat or unlink).

EMLINK 31 too many links
A new link to a file cannot be created, because the link
count would exceed 32767.

EPIPE 32 broken pipe
A write occurred on a pipe for which there are no readers.
This condition is accompanied by the signal SIGPIPE, so
the error will only be seen if the signal is ignored or caught.

EDOM 33 math library domain error
An argument to a mathematical routine falls outside the
domain of the function.

ERANGE 34 math library result too large
The result of a mathematical function is too large to be
represented.

System

•

•

•

•

•

errno errno

System Call

EKSPACE 35 out of kernel space
No more space is available for tables inside the
COHERENT system. Table space is dynamically allocated
from a fixed area of memory; it may be possible to increase
the size of the area by reconfiguring the system.

ENOLOAD 36 driver not loaded
Not used.

EBADFMT 37 bad exec format
An attempt was made to exec a file on the wrong type of
processor.

EDATTN 38 device needs attention
The device being referenced needs operator attention. For
example, a tape might need a write ring, or a line printer
might need paper.

EDBUSY 39 device busy
The indicated device is busy. For load, this implies that the
given major device number is already in use .

FILES
<errno.h>

SEE ALSO
perror, signal

System

exec

System Call

NAME
exec - execute a load module

USAGE
execl(file, argl, ... , argn, NULL)
char *file, *argl, ... , *argn;

execle(file, argl, ... , argn, NULL, env)
char *file, *argl, ... , *argn, *env[J;

execlp(file, argl, ... , argn, NULL)
char *file, *argl, ... , *argn;

execv(file, argv)
char *file, *argv[J;

execve(file, argv, env)
char *file, *argv[J, *env[J;

execvp(file, argv)
char *file, *argv[J;

extern char **environ;

DESCRIPTION

exec

The various forms of exec allow a process to execute another exe
cutable file (load module, as described in l.out.h). The code, data
and stack of file replace those of the requesting process. The new
stack contains the command arguments and its environment, in the
format given below. Execution starts at the entry point of file.

During a successful exec, the system deactivates profiling and resets
any caught signals to SIGJ}FL.

Every process has a real user id, an effective user id, a real group
id, and an effective group id, as described in getuid. For most load
modules, exec does not change any of these. Howev~r, if the file is
marked with the set user id or set group id bit (see stat), exec sets

•

•

the effective user id (effective group id) of the process to the user id •
(group id) of the file owner. In effect, this changes the file access
privilege level from that of the real id to that of the effective id.

System

•

•

•

exec exec

System Call

The file owner should be careful to limit its abilities, to avoid
compromising file security.

exec initializes the new stack of the process to contain a list of
strings which are command arguments. execl, execle and execlp
specify arguments individually, as a NULL-terminated list of arg
parameters. execv, execve and execvp specify arguments as a single
NULL-terminated array argv of parameters.

The main routine of a C program is invoked in the following way:

main(argc, argv, env)
int argc;
char *argv[J, *env[J;

argc is the number of command arguments passed through exec,
and argv is an array of the actual argument strings. env is an array
of strings which constitute the process environment. By conven
tion, these strings are of the form variable= value, as described in
environ. Typically, each variable is an exported shell variable with
the given value.

execl and execv simply pass the old environment, referenced by the
external pointer environ. execle and execve pass a new environment
env explicitly. execlp and execvp search for file in each of the
directories indicated by the shell variable SPATH, in the same way
that the shell searches for a command. These calls will execute a
shell command file.

FILES
/bin/sh to execute command files

SEE ALSO
environ, fork, ioctl, signal, stat
COHERENT Command Manual: sh

DIAGNOSTICS
None of the routines returns if successful. Each returns - I for
errors, such as file nonexistent, not accessible with execute permis
sion, having a bad format, or too large to fit in memory .

System

exit

System Call, llbc Library

NAME
exit - terminate a process

USAGE
libc Library:

void
exit(status)
int status;

System Call:
void
_exit(status)
int status;

DESCRIPTION

exit

exit is the normal method of terminating the execution of a process.
The given status information is passed to the parent process. By
convention, an exit status of O indicates success. If the parent pro
cess issued a wait call, it is notified of the termination and is passed
the least significant 8 bits of status. As exit never returns, it is
always successful.

The routine exit from the standard C library libc does extra termi
nation cleanup, such as flushing buffered files and closing open files.
If this is undesirable, the routine _exit, which is simply the system
call, may be used instead. The system call exits directly, without
performing cleanup.

SEE ALSO
close, wait

System

•

•

•

•

•

•

fclose fclose

STDIO Library

NAME
fclose - close stream

USAGE
#include < stdio.h >

fclose(fp)
FILE *fp;

DESCRIPTION
fclose closes the stream f p. It calls fflusb on the given fp, releases
any allocated buffer and calls close to complete the closing of the
stream.

exit calls fclose for each open stream.

FILES
<stdio.b>

SEE ALSO
close, exit, fflusb, fopen

DIAGNOSTICS
fclose returns EOF on error .

System

terror

STDIO Library

NAME
clearerr, feof, ferror - stream status

USAGE
#include < stdio.h >

clearerr(f p)
FILE *fp;

feof(fp)
FILE *fp;

ferror(fp)
FILE *fp;

DESCRIPTION

terror

Each of these calls is a macro which tests or resets the status of the
argument stream fp.

•

ferror returns nonzero if an error has occurred on the argument
stream fp. For buffered writes, fflush should be called before fer- •
ror, in case an error occurs on the last block written. Any error
condition persists until the stream is closed, unless clearerr is called
to clear it.

feof returns nonzero when an input stream reaches end of file and 0
otherwise. One use is to distinguish a value of - 1 returned by
getw from an EOF.

FILES
<stdio.h>

SEE ALSO
ermo, getw

System

•

•

•

•

fflush

STDIO Library

NAME
fflusb - flush stream output buffer

USAGE
#include < stdio.b >

fflusb(fp)
FILE *fp;

DESCRIPTION

fflush

fflusb writes out any buffered output data associated with the given
stream fp. fclose calls fflusb; there is no need for the user program
to call it directly under ordinary conditions.

FILES
<stdio.h>

SEE ALSO
fclose, setbuf, write

DIAGNOSTICS
fflusb returns EOF if the write fails .

System

flleno flleno

STDIO Library

NAME
fileno - get file descriptor

USAGE
#include < stdio.h >

fileno(fp)
FILE *fp;

DESCRIPTION
fileno returns the file descriptor associated with the stream fp. This
file descriptor is the integer returned by the open or creat call,
which some routine such as fopen used in creating the stream.

FILES
<stdio.h>

SEE ALSO
fopen, open

System

•

•

•

•

•

•

floor floor

llbm Library

NAME
ceil, fabs, floor - ceiling, absolute value, and floor functions

USAGE
#include < math.h >

double
ceil(z)
double z;

double
fabs(z)
double z;

double
floor(z)
double z;

DESCRIPTION
ceil returns the smallest integer greater than or equal to its argu
ment z.
fabs implements the absolute value function, returning z if z is zero
or positive and - z if z is negative.

floor returns the largest integer less than or equal to its argument z.
The math.b header file contains declarations for each of these rou
tines.

FILES
<matb.h>

SEE ALSO
abs

System

fopen

STDIO Library

NAME
fdopen, fopen, freopen - open stream for standard 1/0

USAGE
#include < stdio.h >

FILE*
fdopen(f d, type)
int/d;
char *type;

FILE*
fopen(name, type)
char *name, *type;

FILE*
freopen(name, type, f p)
char *name, *type;
FILE *fp;

DESCRIPTION

fopen

fopen allocates and initializes a FILE structure, or stream. It calls
open or creat with name and returns a pointer to the structure for
subsequent use by other STDIO library routines. type is a string
containing a subset of the characters rwab (for read, write, append,
binary) to indicate the desired mode:

r read; error if file inaccessible
w write; truncate if found, create if not
a append; no truncation, create if not found
rw read and write; error if file inaccessible
wr write and read; truncate if found, create if not
ar append and read; no truncation, create if not found

In addition, the type strings r + , w + and a + are synonymous with
rw, wr and ar, respectively.

Appending the character b to the string indicates that the file con
tains binary data rather than text. This has no effect under
COHERENT, but provides compatibility with other operating sys
tems.

System

•

•

•

•

•

•

fopen fopen

STDIO Library

freopen differs from fopen only in that fp specifies the stream to be
used; any stream previously associated with fp is closed by fclose.
freopen is usually used to change the meaning of stdio or stdout.

fdopen allocates and returns a file structure for the file descriptor
fd, as obtained from open, creat, dup or pipe. The type is ignored.

FILES
<stdio.h>

SEE ALSO
creat, dup, fclose, open, pipe

DIAGNOSTICS
Each function returns NULL if it cannot allocate a FILE structure,
if the type is nonsense, or if the open or creat fails. The current
limit is 20 allocated FILE structures, including stdio, stdout and
stderr .

System

fork fork

System Call

NAME
fork - create a new process

USAGE
fork()

DESCRIPTION
In the COHERENT system, many processes may be active simul
taneously. fork creates a new process, which is just a duplicate of
the requesting process. In practice the new process often issues an
exec call to invoke a new program.

The process issuing a fork call is called the parent process, and the
new process is called the child process. fork returns the process id
of the newly-created child to the parent process, and returns O to
the child process. The parent may issue a wait to suspend execution
until the child terminates.

Parts of the environment of a process exactly duplicated by a fork
call are: open files and their seek positions; current working and
root directories; the file creation mask; the values of all signals; the
alarm clock setting; and code, data, and stack segments.

The system normally makes a fresh copy of the code, data, and
stack segments for the child process. One advantage of shared text
processes is that copying the code segment is avoided. It is write
protected, and therefore may be shared.

SEE ALSO
alarm, exec, exit, umask, wait
COHERENT Command Manual: sh

DIAGNOSTICS
fork returns - 1 on failure, which usually involves insufficient sys
tem resources . On successful calls, fork returns O to the child and
the process id of the child to the parent.

System

•

•

•

•

•

•

tread

NAME
fread - read from stream

USAGE
#include < stdio.h >

fread(buffer, size, n, fp)
char *buffer;
unsigned size, n ;
FILE *fp;

DESCRIPTION

tread

STDIO Library

fread reads n items of size bytes each from the stream fp into the
memory location buff er. fread returns the actual number of items
read.

FILES
<stdio.b>

SEE ALSO
getc, gets, getw, read, scanf

DIAGNOSTICS
fread returns O on end of file or error .

System

frexp

Ube Library

NAME
frellp, ldexp, modf - separate mantissa and fraction

USAGE
double
frexp(rea/, ep)
double real;
int *ep;

double
ldexp(m, e)
double m;
int e;

double
modf(real, ip)
double real, *ip;

DESCRIPTION

frexp

These routines break floating point (double) numbers into mantissa
and exponent parts.

frexp returns the mantissa m of its real argument, such that O < =
m < 1, and stores the binary exponent e in location ep. These
numbers satisfy the equation real = m • 2-e.

Conversely, ldexp combines the given mantissa m with the binary
exponent e to return a floating point value real, which also satisfies
the above equation.

modf is the floating point modulus function. It returns the frac
tional part of its real argument, which is a value f in the range 0
< = f < 1. It also stores the integral part in the double location
referenced by ip. These numbers satisfy the equation real = f +
*ip.

SEE ALSO
atof, ecvt

System

•

•

•

•

•

•

fseek

STDIO Library

NAME
fseek, ftell, rewind - seek on stream

USAGE
#include < stdio.b >

fseek(fp, where, how)
FILE *fp;
long where;
int how;

long
ftell(fp)
FILE *fp;

rewind(fp)
FILE *fp;

DESCRIPTION

fseek

fseek changes the location where the next read or write operation
will occur on stream fp. It is the STDIO analogue of lseek. fseek
handles any effects of the seek on the internal buffering strategies of
the system.

The where and how arguments specify the desired seek position.
where indicates the new seek position in the file, measured from the
start of the file if how is 0, from the current seek position if how is
1, or from the end of the file if how is 2.

Sparse files may be created by seeking beyond the current size of
the file and writing. Any resultant holes occupy no disk space.

rewind resets the file pointer to the beginning of stream fp; it is just
a synonym for fseek(fp, OL, 0).

ftell returns the current position of the seek pointer. Like fseek, it
takes into account any buffering associated with the stream fp. The
return value of ftell may be used directly as the input parameter
where to fseek .

FILES
<stdio.b>

System

fseek

SEE ALSO
lseek

DIAGNOSTICS

fseek

STDIO Library

For any error, such as seeking on a pipe, fseek returns -1; other
wise it returns 0.

System

•

•

•

•

•

•

ftlme ftlme

System Call

NAME
ftime, time - get the current time

USAGE
#include < sys/timeb.h >
ftime(tbp)
struct timeb *tbp;

time_t
time(tp)
time_t *tp;

DESCRIPTION
ftime fills the structure pointed to by argument tbp with the internal
COHERENT representation of the current time. The structure
timeb is defined in the sys/timeb.h header file, as follows:

struct timeb {

} ;

time_t time;
unsigned short millitm;
short
short

timezone;
dstflag;

The member time is the number of seconds since midnight GMT of
January I, 1970. The member millitm is a count of milliseconds.
The members timezone and dstflag are obsolete.

time is a simpler version. If its pointer argument tp is NULL, it
returns the value of the time member of timeb, which gives the
current time. If tp is not NULL, time also places the time in the
time_t variable to which tp points.

FILES
< sys/timeb.h >
SEE ALSO
ctime, stime
COHERENT Command Manual : date

NOTES
Earlier releases of COHERENT used timeb members timezone and
dstflag for time zone and daylight savings time information. ctime
describes how this information is handled now.

System

fwrlte

NAME
fwrite - write to stream

USAGE
#include < stdio.b >

fwrite(buf fer, size, n, fp)
char *buffer;
unsigned size, n ;
FILE *fp;

DESCRIPTION

fwrlte

STDIO Library

fwrite writes n items of size bytes each from buff er to stream fp. It
returns the number of items written.

FILES
<stdio.h>

SEE ALSO
printf, putc, puts, putw, write

DIAGNOSTICS
fwrite returns the number of items actually written; if an error
occurs, the return value will not be the same as n.

System

•

•

•

•

•

•

getc getc

STDIO Library

NAME
fgetc, getc, getcbar - read character from stream

USAGE
#include < stdio.h >

int
fgetc(fp)
FILE *fp;

int
getc(fp)
FILE *fp;

int
getcbar()

DESCRIPTION
getc is a macro which reads a character from the stream f p .
getcbar is a macro which expands to getc(stdin), so it reads a char
acter from the standard input. fgetc is a function with body getc,
for the truly parsimonious.

FILES
<stdio.h>

SEE ALSO
fread, gets, getw, ungetc

DIAGNOSTICS
fgetc, getc and getcbar each return EOF at end of file or on read
error.

NOTES
Since getc is a macro, arguments with side effects will probably not
work as expected .

System

getenv

llbc Library

NAME
getenv - get environmental variable

USAGE
char*
getenv(variable)
char *variable;

DESCRIPTION

getenv

The shell sh and other programs may set or read certain variables in
the process environment. This provides a method for conveying
user-specific information to commands. The conventional variables
stored in the environment are listed in environ.

The environment consists of an array of strings, each having the
form variable= value. When called with the string variable, getenv
returns the string value. When variable is not found, it returns
NULL.

SEE ALSO
environ, exec
COHERENT Command Manual: sh

System

•

•

•

•

•

•

getgrent getgrent

Ube Library

NAME
endgrent, getgrent, getgrgid, getgrnam, setgrent - get group file
information

USAGE
#include < grp.h >

endgrent()

struct group *
getgrent();

struct group *
getgrgid(gid)
int gid;

struct group *
getgrnam(gname)
char * gname;

setgrent()

DESCRIPTION
These routines search the file /etc/group, which contains informa
tion about the name and members of valid user groups. The
returned structure group, which is defined in the grp.b header file, is
as follows:

struct group {
char *gr_name; I* Group name*/
char *gr_passwd; I* Group password*/
int gr_gid; I* Numeric group id*/
char **gr_JJlem; I* Group members*/

};

For detailed descriptions of the above fields, consult group.

Each getgrent call returns the next entry from /etc/group. The get
grgid call attempts to find the first entry with a numerical group id
of gid. Similarly, getgrnam looks for a group with name gname .

System

getgrent getgrent

llbc Library

setgrent rewinds the group file, which allows restarting the search at •
the beginning for repeated group searches. A call to endgrent
closes the group file.

The routines in getpwent provide similar information for the pass
word file /etc/passwd.

FILES
/etc/group
<grp.b>

SEE ALSO
getlogin, getpwent, group

DIAGNOSTICS
The routines return NULL for any error or at end of file.

NOTES
All structures and information returned are in static areas internal
to these routines. Therefore, information from a previous call is
overwritten by each subsequent call.

System

•

•

•

•

•

getlogln getlogln

llbc Library

NAME
getlogin - get login name

USAGE
char*
getlogin()

DESCRIPTION
The name corresponding to the current user id is not always the
same as the name under which a user logged into the COHERENT
system. For example, the user may have issued a su command, or
there may be several login names associated with a user id. getlogin
returns the login name found in the file /etc/utmp.

In cases where getlogin fails to produce a result, getpwuid
(described in getpwent) is normally used to determine the user name
for a process.

FILES
/etc/utmp login names

SEE ALSO
getpwent, getuid, ttyname, utmp.h
COHERENT Command Manual: su, who

DIAGNOSTICS
getlogin returns NULL if the login name cannot be determined.

NOTES
getlogin stores the returned name in a static area which is destroyed
by subsequent calls .

System

getpass getpass

llbc Library

NAME
getpass - get password with prompting

USAGE
char*
getpass(prompt)
char *prompt;

DESCRIPTION
getpass first prints the prompt. Then it disables echoing of input
characters on the terminal device (either the file /dev/tty or the
standard input), reads a password from it, and restores echoing on
the terminal. It returns the given password.

FILES
/dev/tty

SEE ALSO
crypt
COHERENT Command Manual: login, passwd, su

NOTES
The password is stored in a static location which is overwritten by
successive calls.

System

•

•

•

•

•

•

getpld getpld

System Call

NAME
getpid - get process id

USAGE
getpid()

DESCRIPTION
Every process has a unique number, called its process id. fork
returns the process id of a created child process to the parent pro
cess.

getpid returns the process id of the requesting process. Typically a
process uses getpid to pass its process id to another process which
wants to send it a signal, or to generate a unique temporary file
name.

SEE ALSO
fork, kill, mktemp

System

getpw getpw

llbc Library

NAME
getpw - search password file

USAGE
getpw(uid, line)
short uid;
char *line;

DESCRIPTION
getpw searches the password file /etc/passwd for the first entry with
numerical user id uid. If found, line receives the corresponding line
from the password file.

FILES
/etc/passwd

SEE ALSO
getpwent, getuid, passwd

DIAGNOSTICS
getpw returns a nonzero value on error.

System

•

•

•

•

•

getpwent getpwent

llbc Library

NAME
endpwent, getpwent, getpwnam, getpwuid, setpwent - get pass
word file information

USAGE
#include < pwd.h >

endpwent()

struct passwd *
getpwent()

struct passwd *
getpwnam(uname)
char *uname;

struct passwd *
getpwuid(uid)
int uid;

setpwent()

DESCRIPTION
These routines search the file /etc/passwd, which contains informa
tion about every user of the system. The returned structure passwd,
which is defined in the pwd.h header file, is as follows:

struct passwd {
char *pw_name; I* login user name*/
char *pw_passwd; I* login password*/
int pw_uid; I* login user id*/
int pw_gid; I* login group id*/
int pw_quota; I* file quota (unused) */
char *pw_comment; I* comments (unused)*/
char *pw_gecos; I* (unused) */
char *pw_dir; I* working directory*/
char *pw_shell; I* initial program*/

};

• For detailed descriptions of the above fields, consult passwd.

System

getpwent getpwent

llbc Library

Each getpwent call returns the next entry from /etc/passwd. The •
getpwuid call attempts to find the first entry with a numerical user
id of uid. Similarly, getpwnam looks for an entry with user name
uname.

setpwent rewinds the password file, which allows restarting the
search at the beginning for repeated searches. A call to endpwent
closes the password file .

The routines in getgrent provide similar information for the group
file /etc/group.

FILES
/etc/passwd
<pwd.b>

SEE ALSO
getgrent, getlogin, passwd

DIAGNOSTICS
The routines return NULL for any error or on end of file.

NOTES
All structures and information returned are in static areas internal
to these routines. Therefore, information from a previous call is
overwritten by each subsequent call.

System

•

•

•

•

•

gets

STDIO Library

NAME
fgets, gets - read line from stream

USAGE
#include < stdio.h >

char*
fgets(s, n, f p)
char *s;
int n;
FILE *fp;

char*
gets(s)
char *s;

DESCRIPTION

gets

gets reads characters from the standard input into string s up to the
next newline or end of file. It discards the newline (if any) and
appends a trailing null character. gets returns the argument s.

fgets reads characters from the stream f p into string s until n - 1
characters have been read or up to the next newline or end of file.
fgets retains the newline (if any) and appends a trailing null charac
ter. fgets returns the argument s.

FILES
<stdio.h>

SEE ALSO
getc, puts

DIAGNOSTICS
Both functions return NULL if end of file occurs before any char
acters are read or if an error occurs.

NOTES
gets deletes newlines, in the name of backward compatibility .

System

getty getty

Maintenance

NAME
getty - terminal initialization

USAGE
/etc/getty type

DESCRIPTION
The initialization process init invokes getty for each terminal indi
cated in the file /etc/ttys. getty tries to read a user name from the
terminal which is the standard input, adapting its mode settings
accordingly. Then getty invokes login with the name read. This
process may set delays, upper to lower case mapping, speed, and
whether the terminal normally uses carriage return or linefeed to
terminate input.

If the terminal baud rate is wrong, the login message printed by
getty will appear garbled. If the specified type indicates variable
speeds, as described below, hitting BREAK will try the next speed.

init passes the second character in a line of the /etc/ttys file as the

•

type argument to getty. type conveys information about the termi- •
nal port. An upper-case letter in the range A to S specifies a hard-
wired baud rate, as indicated in < sgtty .h > . Other characters
specify a range of speeds suitable to a dial-in modem. The follow-
ing characters are recognized:

0

1
2
3

4
5
A
B
C
D
E
F
G

Cycles through speeds 300, 1200, 150, and 110 baud, in
that order; a good default for dial-in ports.
Teletype model 33, fixed at 110 baud.
Teletype model 37, fixed at 150 baud.
9600 baud with delays (e.g. Tektronix 4104).
Cycles between 1200 and 300 baud; used with 212
modems.
DECwriter (LA36) with delays.
Like 3, but starts at 300 baud.
50 baud.
75 baud.
110 baud.
134 baud.
150 baud.
200 baud.
300 baud.

System

•

•

•

•

getty

H
I
J
K
L
M
N
0
p
Q
R
s

600 baud.
1200 baud.
1800 baud.
2000 baud.
2400 baud.
3600 baud.
4800 baud.
7200 baud.
9600 baud.
19200 baud.
EXTA
EXTB

FILES
/etc/ttys
<sgtty:h>

SEE ALSO
init, ioctl, ttys

Maintenance

COHERENT Command Manual: login, stty

getty

System

getuld getuld

System Call

NAME
getegid, geteuid, getgid, getuid - get user and group id

USAGE
getegid()

geteuid()

getgid()

getuid()

DESCRIPTION
Every process has two different versions of its user id, called the
real user id and the effective user id. The user ids determine eligi
bility to access files or employ system privileges. Normally these
two ids are identical. However, for a set user id load module (see
exec), the real user id is that of the user, while the effective user id
is that of the load module owner. This distinction allows system
programs to use files which· are protected from the user who invokes
the program.

getuid returns the real user id, while geteuid returns the effective
user id. setuid sets the effective user id to the real user id.

getgid and getegid are analogous calls for the group id, returning
the real and effective group ids, respectively.

SEE ALSO
access, exec, setuid
COHERENT Command Manual: login

System

•

•

•

•

•

•

getw getw

STDIO Library

NAME
fgetw, getw - read integer from stream

USAGE
#include < stdio.b >

fgetw(fp)
FILE *fp;

getw(fp)
FILE *fp;

DESCRIPTION
The macro getw reads a word (an int) from the stream fp. fgetw
has the same effect, but is a function rather than a macro.

FILES
<stdio.h>

SEE ALSO
ferror, fread, getc, gets, ungetc

DIAGNOSTICS
Both routines return the value EOF on errors. A call to feof or fer
ror may be necessary to distinguish this value from a valid data
item.

NOTES
Because getw is a macro, arguments with side effects will probably
not work as expected .

System

getwd getwd

llbc Library

NAME
getwd - get current working directory name

USAGE
char*
getwd()

DESCRIPTION
The current working directory is the directory from which file name
searches commence when a pathname does not begin with '/'.
getwd returns the name of the current working directory. It is use
ful for processes which need to generate full pathnames for files,
such as spoolers and daemons.

If the invoker does not have permission to search all levels of direc
tory hierarchy above the current directory, getwd will not be able to
obtain the directory name.

SEE ALSO
cbdir
COHERENT Command Manual: pwd

DIAGNOSTICS
getwd returns NULL if the current directory cannot be found.

NOTES
The return value points at a static area which is limited in size to
400 characters. getwd will fail if the current directory name is
longer.

There is some chance that the working directory will not be restored
to its initial value if getwd fails.

System

•

•

•

•

•

•

group group

File Format

NAME
group - group file format

DESCRIPTION
The group file /etc/group describes user groups for file access pur
poses. The file contains the information to map any ASCII group
name to the corresponding numerical group id, and vice versa. It
also contains the ASCII names of the members of each group. The
newgrp command uses this information.

Each group entry consists of a single line. Each line consists of
four colon-separated ASCII fields:

groupJ1ame :password :group_number :member [,member] ...

Passwords are encrypted with crypt, so the group file is generally
readable.

FILES
/etc/group

SEE ALSO
crypt, getgrent, passwd
COHERENT Command Manual: chgrp, newgrp, passwd

NOTES
At present the group password field cannot be set directly (no com
mand similar to passwd exists for groups). One alternative is to set
the password in the /etc/passwd file for a user with the passwd
command, and then transcribe the password into the group file
manually .

System

hypot hypot

llbm Library

NAME
cabs, bypot - complex absolute value function

USAGE
#include < matb.h >

double
cabs(z)
struct { double r, i; } z;

double
hypot(r, i)
doubler, i;

DESCRIPTION
cabs computes the absolute value (or modulus) of its complex argu
ment z. The absolute value of a complex number is the length of
the hypotenuse of a right triangle with sides given by the real part r
and the imaginary part i. The result is the square root of the sum
of the squares of the parts.

hypot computes the same value, but with r and i passed as separate
parameters.

FILES
<math.b>

SEE ALSO
abs, floor, log

DIAGNOSTICS
The functions return a very large number and set errno to
ERANGE when the correct result would overflow.

System

•

•

•

•

•

•

lnlt lnlt

Maintenance

NAME
init, re - system initialization

USAGE
/etc/init

/etc/re

DESCRIPTION
The COHERENT boot procedure executes init as process 1 to per
form initialization. init opens the console terminal /dev/console
and invokes a shell sh on it with HOME set to /etc. The shell exe
cutes /etc/profile and /etc/.profile if present. The system then
runs in single user mode and accepts commands from the console.

When the console terminates the shell, normally by typing < ctrt
D > , init brings up the system in multiuser mode. It executes the
shell command file /etc/re, which performs standard bookkeeping
and maintenance chores. Typically it mounts standard file systems,
removes temporary files, and invokes cron and update. If desired,
it may load device drivers, enable swapping with swap, and enable
process accounting with accton.

Next init opens terminals as specified in the file /etc/ttys. It
invokes getty to read a user name and perform a login on each ter
minal.

When a user shell terminates, init updates the system accounting
information in /etc/utmp and /usr/adm/wtmp. Then it reopens
the appropriate terminal and invokes getty, as above.

init rescans the /etc/ttys file for terminal changes if it receives the
SIGQUIT signal. The command "kill - 3 1" sends SIGQUIT to
the init process. init then invokes getty as necessary.

init returns the system to single user mode if it receives the
SIGHUP signal. The command "kill -1 l" sends SIGHUP to the
init process.

FILES
/dev/console
/dev/tty??
/etc/re
/etc/ttys

console terminal
terminal devices
initialization command file
active terminals

System

lnlt

/etc/utmp
/usr/adm/wtmp

SEE ALSO
getty, ttys

Maintenance

logged in users
login accounting data

COHERENT Command Manual: kill, login, sh

lnlt

•

•

•
System

•

•

•

Ioctl

System Call

NAME
ioctl, gtty, stty - device-dependent control

USAGE
#include < sgtty .h >

ioctl(/d, command, info)
int fd, command;
char *info;

gtty(/d, sgp)
intfd;
struct sgttyb * sgp;

stty(f d, sgp)
intfd;
struct sgttyb * sgp;

DESCRIPTION

Ioctl

ioctl provides direct interaction with a device driver. Possible uses
include setting or retrieving parameters for devices (line printers,
communications lines, terminals) and non-standard spacing opera
tions for tape drives.

ioctl acts upon a block special file or a character special file associ
ated with an already open file descriptor fd. The command argu
ment gives the specific request. A system header file defines sym
bolic command parameters for each device type. For example,
sgtty.h defines commands for terminals and mtioctl.h defines com
mands for magnetic tape drives. Using the symbolic command
definitions from the header files promotes device independence
within each device type. Section Device Drivers at the beginning of
this manual lists other sections which give details about specific dev
ices.

The info argument passes a buffer of information (defined by struc
tures in the appropriate header files) to the driver. For any com
mand not needing additional information, this argument should be
NULL.

System

Ioctl Ioctl

System Call

stty and gtty are shorthand notations for ioctl calls with a command •
argument of TIOCSETP and TIOCGETP, respectively. These rou-
tines set and get attributes of a terminal.

FILES
<sgtty.h>
< mtioctl.h >
SEE ALSO
exec, open, read, write
COHERENT Command Manual: stty

DIAGNOSTICS
ioctl returns - 1 on errors, such as a bad file descriptor. Since the
call is device dependent, almost any other error could be returned.

NOTES
The type of the info argument to ioctl is declared as char * mainly
for portability reasons. In most cases, the actual argument type
will be something like struct sgttyb *, depending on the particular
device and command. The actual argument should be cast to type •
char * to ensure cross-machine portability.

•
System

•

•

•

JO JO

llbm Library

NAME
jO, jl, jn - Bessel functions of first kind

USAGE
#include < math.h >

double
jO(z)
double z;

double
jl(z)
double z;

double
jn(n, z)
int n;
double z;

DESCRIPTION
jO, jl and jn take an argument z and compute the Bessel function
of the first kind for order 0, order I, and arbitrary order, respec
tively. For jn, the argument n is the integral order of the function.

FILES
<math.h>

NOTES
Bessel functions of the second kind yO, yl and yn are not yet imple
mented. Hankel functions hO, bl and hn (Bessel functions of the
third kind) might also be useful but are not implemented .

System

kill

System Call

NAME
kill - send a signal to a process

USAGE
#include < signal.b >

kill(pid, signal)
int pid, signal;

DESCRIPTION

kill

kill provides a method of asynchronously signalling a process with
one of a pre-defined set of signals, as described in signal. kill sends
the given signal to the process with the specified pid.

•

There are two special cases for specifying which processes will
receive the signal. If pid is 0, kill signals all other processes in the
same process group (see tty) as the invoker. Usually this group is
all processes affiliated with a particular terminal. If pid is - I, kill
signals all other processes except process I (the initialization pro
cess). Use of this case is restricted to the superuser.

The caller may send any signal to processes which have the same •
effective user id. The caller may send SIGHUP, SIGINT,
SIGQUIT or SIGTERM to processes which have the same real user
id. A process running as the superuser may send any signal to any
process. A process sending a signal to itself (suicide) is allowed.

The signal has been sent when the call returns. However, it may be
some time before the recipient sees it, owing to scheduling delays.

FILES
<signal.h>

SEE ALSO
ptrace, signal, wait
COHERENT Command Manual: kill

DIAGNOSTICS
kill is successful and returns O if the conditions above have been
met: whether the recipient ignores the signal is irrelevant.

System

•

•

•

•

l.out.h l.out.h

File Format

NAME
l.out.b - object file format

USAGE
#include < l.out.b >
DESCRIPTION
This section describes the format for the output of compilers,
assemblers, and the loader. Assembler output is an unbound
object; it must be bound with any required libraries (leaving no
unresolved symbols) to produce an executable object file, or load
module. An exec call can then execute the load module directly.

The load module begins with a header, which gives global informa
tion and size information about each segment. Segments of the size
indicated follow the header in a fixed order. The l.out.b header file
defines the header structure for the Z8000 and M68000:

struct ldheader {
short Lmagic;
short Lflag;
short Lmachine;
short Ltbase;
size_t Lssize[NI.SEG];
long Lentry;

};

for the 8086 and 8088 processors and PDP-11:

struct ldheader {
int Lmagic;
int Lflag;
int Lmachine;
vaddr._t Lentry;
size_t Lssize[NI.SEGJ;

};

Lmagic is the magic number which identifies a load module; it
always contains L_MAGIC. Lflag contains flags indicating the
type of the object. Lmacbine is the processor identifier, as defined
in the mtype.b header file. Ltbase is the start of the text segment.
Lentry contains the machine address where execution of the module
commences. Lssize gives the size of each segment.

System

l.out.h

FILES
I.out
<l.out.h>
<mtype.h>

SEE ALSO
core, exec, mtype

File Format

default load module name

machine identifiers

COHERENT Command Manual: as, cc, Id, nm

NOTES

l.out.h

In the early releases of COHERENT the header structure was
defined only as it shown above for 8086; it was changed to handle
32-bit addresses. In the future, the header structure defined above
for Z8000 and M68000 machines will be implemented on 8086 and
8088 systems as well.

System

•

•

•

•

•

•

13tol 13tol

Ube Library

NAME
13tol, lto13 - convert long integer to/from file system block
number

USAGE
13tol(lp, l3p, n)
long *Ip;
char *l3p;
unsigned n;

ltol3(13p, Ip, n)
char *l3p;
long *Ip;
unsigned n;

DESCRIPTION
To conserve space inside i-nodes in COHERENT file systems, the
system stores block addresses in three bytes. Programs which refer
ence or maintain file systems use these routines to convert between
the three byte representation and long numbers .

13tol converts n 3-byte block addresses at location l3p to an array of
long integers at location Ip. ltol3 converts n long integers at Ip to
the more compact form at l3p .

SEE ALSO
canon.h

System

link link

System Call

NAME
link - create a link

USAGE
link(old, new)
char * old, *new;

DESCRIPTION
A link to a file is another name for the file. All attributes of the
file appear identical among all links.

link creates a link called new to an existing file named old.

For administrative reasons, it is an error for users other than the
superuser to create a link to a directory. Such links can make the
file system no longer tree structured unless carefully controlled, pos
ing problems for commands such as find.

SEE ALSO
unlink
COHERENT Command Manual: find, In

•

DIAGNOSTICS •
link returns O when successful. It returns - 1 on errors, such as:
old 'does not exist, new already exists, attempt to link across file sys-
tems, no permission to create new in the target directory.

NOTES
Because each mounted file system is a completely separate and self
contained entity, links between different mounted file systems fail.

System

•

•

•

•

lock lock

System Call

NAME
lock - prevent process from swapping

USAGE
lock(//ag)
int flag;

DESCRIPTION
Normally a process may be swapped in and out of memory by the
COHERENT system. However, locking a process in memory is
sometimes required to guarantee real-time response.

With a nonzero flag, lock prevents the calling process from swap
ping (unless swapping is required to increase its memory size).
With a zero flag, lock unlocks the process.

This call is restricted to the superuser. Processes doing raw 1/0 are
automatically locked into memory for the duration of the 1/0
operation.

SEE ALSO
swap
COHERENT Command Manual: ps

DIAGNOSTICS
lock returns O if it performs the indicated action and - 1 otherwise.
An error occurs if the caller is not the superuser.

NOTES
The existence of several locked processes may cause memory frag
mentation. Therefore, all locked processes should be created just
after the system is booted, if possible. In general, lock should be
avoided if any alternative exists .

System

log log

llbm Library

NAME
exp, log, loglO, pow, sqrt - logarithmic and exponential functicns

USAGE
#include < math.b >

double
exp(z)
double z;

double
log(z)
double z;

double
loglO(z)
double z;

double
pow(z, x)
double z, x;

double
sqrt(z)
double z;

DESCRIPTION
exp returns the exponential of z, or e -z.

log returns the natural (base e or Napierian) logarithm of z. loglO
returns the common (base 10) logarithm of z .
pow returns z raised to the power x, or z -x.
sqrt returns the square root of z.
FILES
<matb.b>

SEE ALSO
bypot, sin, sinb

System

•

•

•

•

•

•

log log

llbm Library

DIAGNOSTICS
exp and pow indicate overflow by an ermo of ERANGE and a huge
returned value. A domain error in log (z less than or equal to 0), in
pow (x negative and not an integer, or both z and x 0), or in sqrt (z
negative) sets ermo to EDOM and returns 0 .

System

lpd lpd

Maintenance

NAME
lpd - line printer spooler daemon

USAGE
/usr/lib/lpd

DESCRIPTION
lpd is a daemon program that runs in the background and prints
listings queued by the lpr command. It is run automatically by lpr.
If there is no printing to do, or if another daemon is already run
ning (indicated by the dpid file), lpd exits immediately. Otherwise,
it searches the spool directory for control files of listings to print.
These control files contain the names of files to print, the user
name, banners, and files to be removed upon completion.

lpd does not print listings in any particular order. There is no
prioritization of printing, neither by size nor by requester.

The lpskip command terminates or restarts the current line printer
listing.

FILES
/dev/lp
/usr/spool/lpd
/usr / spool/lpd/ cf*
/usr /spool/lpd/ df*
/usr /spool/I pd/ dpid

SEE ALSO
init

printer
spool directory
control files
data files
lock and process id

COHERENT Command Manual: lpr, lpskip

System

•

•

•

•

•

•

lseek

System Call

NAME
lseek - set read/write position

USAGE
long
lseek(fd, where, how)
intfd, how;
long where;

DESCRIPTION

lseek

lseek changes the location where the next read or write operation
will occur on the file identified by file descriptor f d. A read or
write will happen at the current seek position, and will advance the
seek position by the number of bytes successfully transferred.

The where and how arguments specify the desired seek position.
where indicates the new seek position in the file, measured from the
beginning of the file if how is 0, from the current seek position if
how is 1, or from the end of the file if how is 2. A successful)seek
call returns the new seek position .

Sparse files may be created by seeking beyond the current size of
the file and writing. Any resultant holes occupy no disk space.

SEE ALSO
fseek, open, read, write

DIAGNOSTICS
)seek returns (long) - 1 on error, such as seeking on a pipe or seek
ing to a negative position.

NOTES
lseek is permitted on character special files, but drivers do not gen
erally implement it. As a result, seeking a terminal will not gen
erate an error but will have no discernible effect.

System

malloc

llbc Library

NAME
calloc, free, malloc, realloc - memory allocator

USAGE
char*
calloc(count, size)
unsigned count, size;

free(ptr)
char *ptr;

char*
malloc(size)
unsigned size;

char*
realloc(ptr, size)
char *ptr;
unsigned size;

DESCRIPTION

malloc

These routines manage an arena, an area of memory divided into
used and unused blocks. malloc selects an unused block of at least
size bytes using a circular first fit algorithm, marks as much of it as
needed as used, and returns a pointer to it. malloc extends the
arena when necessary (if possible).

free marks the block indicated by ptr as unused and coalesces it
with contiguous free blocks. It issues a diagnostic and calls abort if
ptr points to a bad block (not obtained from malloc, or overwritten
beyond its boundaries).

calloc calls malloc to obtain a block large enough to contain count
items of size bytes each. calloc initializes the block to zeroes and
returns a pointer to it.

•

•

realloc returns a block with the new size and with the same contents
as the old block indicated by ptr up to the smaller of the old and
new sizes. realloc tries to return the same block (truncated or
extended); if size is smaller than the size of the old block, realloc •
will always return the same ptr.

System

•

•

•

malloc

SEE ALSO
abort

DIAGNOSTICS

malloc

llbc Library

malloc, calloc and realloc all return NULL if insufficient memory is
available to satify the request. malloc prints a message and calls
abort if it discovers that the arena has been corrupted (usually by
storing past the bounds of an allocated block).

NOTES
The ptr argument to realloc must have been obtained from malloc.
If realloc fails and returns NULL, the old block will have been
freed .

System

man man

Convention

NAME
man - manual macro package

USAGE
nroff - man file ...

DESCRIPTION
The nroff macro package man formats manual pages in the style of
the COHERENT Command Manual and the COHERENT System
Manual. It includes the following macros:

.B Boldface font

.BI Bold/italic alternating fonts

.BR Bold/Roman alternating fonts

.CO COHERENT

.DE Display end

.DS Display start

.DT Default tabs

.HE Help end

.HP Hanging paragraph

.HS Help start
• I Italic font
.IB Italic/bold alternating fonts
.IP Indented paragraph
.IR Italic/Roman alternating fonts
.LP Paragraph
.PD Paragraph distance
.PP Paragraph
.RB Roman/bold alternating fonts
.RE Relative indent end
.RI Roman/italic alternating fonts
.RS Relative indent start
.SH Sub header
.SM Smaller size
.TH Header
. TP Tagged paragraph

FILES
/usr/lib/tmac.an
/usr/man/* /*

macro package
manual files

System

•

•

•

•

•

•

man

SEE ALSO
ms

Convention

COHERENT Command Manual: help, man, nroff
nroff Text Processor Tutorial

man

System

mem mem

Device Driver

NAME
mem - physical memory file

DESCRIPTION
The special file /dev/mem allows the physical memory of the host
computer to be read and written just like an ordinary file. The
location where 1/0 will occur can be positioned to any valid byte
address by the)seek call.

Commands may examine or change addresses in physical memory.
Addresses to use when changing the system itself normally are
obtained from the system load module (/coherent) name list, so
that they always reflect the currently running version of the system.

FILES
/dev/mem

SEE ALSO
core,)seek
COHERENT Command Manual: ps

DIAGNOSTICS
On an error, such as nonexistent memory location, - 1 is returned .

System

•

•

•

•

•

•

mknod

System Call

NAME
mknod - create a special file

USAGE
#include < sys/stat.h >

mknod(file, mode, dev)
char *file;
int mode;
dev_t dev;

DESCRIPTION

mknod

mknod creates a file, which may be an ordinary file, a directory or
a special file. The mode argument works in the same way as for
creat, except that all bits of the mode are significant.

The dev argument specifies the first block address of the i-node for
the new file. When creating a directory, dev should be 0. When
creating a block or character special file, dev should hold the major
and minor device numbers. The makedev(major, minor) macro
from the stat.h header file is available to construct the dev argu
ment.

mknod is restricted to the superuser.

FILES
< sys/stat.h >
SEE ALSO
creat, stat, umask
COHERENT Command Manual: mkdir, mknod

DIAGNOSTICS
mknod returns O if successful. It returns - 1 on errors, such as file
already existing or the caller not being the superuser .

System

mktemp mktemp

Ube Library

NAME
mktemp - generate temporary file name

USAGE
char*
mktemp(pattern)
char *pattern;

DESCRIPTION
mktemp facilitates the generation of a file name which no other
process will use, for purposes such as intermediate data files or files
in a spool directory. The pattern argument should consist of a
string with six X's at the end. mktemp replaces these X's by the
five digit process id of the requesting process and a letter that is
changed for each subsequent call. mktemp returns pattern.

As an example, the call:

mktemp("/tmp/sortXXXXXX");

might return the name "/tmp/sort01234a". It is normal practice to

•

place temporary files in the directory /tmp. The start of the file •
name identifies the originator of the file.

SEE ALSO
getpid

•
System

•

•

•

mount

System Call

NAME
mount, umount - mount/unmount file system

USAGE
mount(filesystem, directory, flag)
char *filesystem, *directory;
short flag; ·

umount(filesystem)
char *filesystem;

DESCRIPTION

mount

The existing file system hierarchy may be augmented by grafting
another file system onto it with mount. It may be pruned with
umount.

mount grafts the file system living on the device filesystem onto the
hierarchy at location directory. This directory loses its identity for
the duration of the mount, becoming instead the root directory of
the newly-mounted file system. filesystem must be the pathname of
a block special file which holds a COHERENT file system structure .
If the flag argument is nonzero, the file system is mounted read
only. No write operations will be allowed. The system will not
update information such as access times. This mode is useful for
eliminating write operations where too expensive or inappropriate
(e.g. magnetic tape), or where special care is needed (e.g. a precious
backup).
umount undoes a previous mount. The pathname filesystem must
be a block special file containing an already mounted file system.
FILES
/dev/*
SEE ALSO
init, sload, sync
COHERENT Command Manual: load, mount, uload, umount
DIAGNOSTICS
The routines return zero if successful. A return value of - 1 indi
cates an error. mount errors can occur if filesystem does not exist
or is not marked executable, if directory does not exist, or if the
system has insufficient resources to mount an additional file system.
umount will fail if filesystem is not currently mounted.

System

mp mp

llbmp Library

NAME
mp - multiple precision arithmetic library • USAGE
#include < mprec.h >

void gcd(a, b, c)
int ispos(a)
mint* itom(n)
void madd(a, b, c)
int mcmp(a, b)
void mcopy(a, b)
void mdiv(a, b, q, r)
void min(a)
void minit(a)
void mintfr(a)
void mitom(n, a)
void mneg(a, b)
void mout(a)
void msqrt(a, b, r)
void msub(a, b, c)
int mtoi(a) • char* mtos(a)
void mult(a, b, c)
void mvfree(a)
void pow(a, b, m, c)
void rpow(a, b, c)
void sdiv(a, n, q, ip)
void spow(a, n, b)
void smult(a, n, c)
void xgcd(a, b, r, s, g)
int zerop(a)

int n, *ip;
mint *a, *b, *c, *g, *m, *q, *r, *s;

extern int ibase, obase;
extern mint *mzero, *mone, *mminint, *mmaxint; •

System

•

•

•

mp mp

llbmp Library

DESCRIPTION
The functions in the libmp library enable the user to perform multi
ple precision arithmetic. The data structure they manipulate is
called a mint, for multiple precision integer, defined in mprec.h:

typedef struct {
unsigned len;
char *val;

} mint;

However, users should not depend on the details of this structure,
since on some machines a different representation may be more
efficient. Using the listed functions is always safe.

In all cases except xgcd below, none of the mint arguments need be
distinct. The description uses a slight notational abuse: frequently a
pointer to a mint, a for example, is used to denote the value of the
mint pointed to by a . The meaning should be clear from the con
text.

itom creates a new mint, initializes it to the signed integer value n,
and returns a pointer to it. Storage used by a mint created with
itom may be reclaimed using mintfr.

A mint that already exists may be reinitialized by mitom, which sets
a to the value n. If the mint was declared as a global or automatic
variable, it must be conditioned before first use by minit, which
prevents garbage values in the mint structure from causing chaos.
A mint conditioned by minit has no value; however, it may be used
to receive the result of an operation. For mints automatic to a
function, mvfree should be used before the function is exited to free
the storage used by the val field of the mint structure. Otherwise,
this storage will never be reclaimed.

madd, msub and molt set c to the sum, difference or product of a
and b. mdiv divides a by b and places the quotient and remainder
in q and r. b must not be zero. The results of the operation are
defined by the conditions

1. a = q • b + r,
2. the sign of r = the sign of q,
3. the absolute value of r < the absolute value of b.

System

mp mp

llbmp Library

smult is like mult, except the second argument is an integer in the •
range 0 < = n < = 127. sdiv is like mdiv, except the second argu-
ment is an integer in the range 1 < = n < = 128, and the
remainder argument points to an int instead of a mint.

pow sets c to a raised to the b power reduced modulo m . rpow sets
c to a raised to the b power. spow is like rpow, except the
exponent is an integer. In no case may the exponent be negative.

mcopy sets b equal to a. mneg sets b equal to negative a.

msqrt sets b to the integral portion of the positive square root of a;
r is set to the remainder. a must not be negative. The result of the
operation is defined by the condition

a = b • b + r.

gcd sets c to the greatest common divisor of a and b. xgcd is an
extended gcd routine that sets g to the greatest common divisor of a
and b, and sets r and s so the relation

g=a•r+b*s
holds. For xgcd, r, s and g must all be distinct.

mints may be compared with mcmp, which returns a signed integer
less than, equal to, or greater than zero according to whether a is
less than, equal to, or greater than b. ispos returns true (nonzero)
if a is not negative, false (zero) if a is negative. zerop returns true
if a is zero, false otherwise.

mtoi returns an integer equal to the value of a. a should be in the
allowable range for a signed integer.

The external integers ibase and obase govern the 1/0 and ASCII
conversion routines. Allowable bases run from 2 to 16. Permissi
ble digits are 0- 9 and A - F (lower case a - f are not allowed).
min reads a mint in base ibase from the standard input and sets a
to that value. Leading blanks and an optional leading minus sign
are allowed; the number is terminated by the first non-legal digit.
mout outputs a on the standard output in base obase. mtos per
forms the same conversion as mout, but the result is placed in a
character string instead of being output; a pointer to the string is
returned. The string is actually allocated by malloc, and may be
freed by free.

System

•

•

•

•

•

mp mp

llbmp Library

mzero and mone point to mints with values O and 1. mminint and
mmaxint point to mints containing the minimum and maximum
values that will fit in a signed integer. These constants should never
be used as the result of an operation.

All the necessary declarations for these constants and for the library
functions are contained in the header file mprec.h. They need not
be repeated.

To link mp modules with an executable object, use the argument
- Imp with the cc or Id command.

FILES
<mprec.h>
/usr/lib/libmp.a

SEE ALSO
Iibm Library, malloc
COHERENT Command Manual: be, de

DIAGNOSTICS
On any error, such as division by zero, running out of space or tak
ing the square root of a negative number, an appropriate message is
printed on the standard error stream and the program exits with a
nonzero status .

System

ms ms

Convention

NAME
ms - manuscript macro package

USAGE
nroff - ms file ...

DESCRIPTION
The nroff macro package ms formats manuscripts. The nroff Text
Processor Tutorial describes the ms macros in detail. ms includes
the following macros:

.AB

.AE

.AI

.AU

.B

.BD

.BT

.BX

.CD

. co

.DA

.DE

.DM

.DS

.FE

.FS

.I

.ID

.II

.IP

.IV

.KE

.KF

.KS

.LD

.LG

.LP

. ND

.NH

.NL

Abstract begin
Abstract end
Author's institution
Author
Boldface font
Block-centered display
Bottom title
Draw a box
Centered display
COHERENT
Date
Display end
Display monospace
Display start
Footnote end
Footnote start
Italic font
Indented display
Index invisible
Indented paragraph
Index visible
Keep end
Start floating keep
Keep start
Left display
Larger size
Left paragraph
New (or no) date
Numbered heading
Normal size

System

•

•

•

•

•

•

ms

Convention

.PP Paragraph

.PT Page title

.QE Quoted paragraph end

.QP Quoted paragraph

.QS Quoted paragraph start

.R Roman font

.RE Relative indent end

.RS Relative indent start

.SH Subheading

.SM Smaller size

. TA Set tabs in ens

.TL Title

.UL Underline

FILES
/usr /lib/tmac.s

SEE ALSO
man
COHERENT Command Manual: nroff
nroff Text Processor Tutorial

ms

System

mtab.h mtab.h

File Format

NAME
mtab.b - currently mounted file systems

USAGE
#include < mtab.b >
DESCRIPTION
The file /etc/mtab contains an entry for each file system mounted
by the mount command. This does not include the root file system,
which is already mounted when the system boots.

Both the mount and umount commands use the following structure,
defined in the mtab.b header file. It contains the name of each spe
cial file mounted, the directory upon which it is mounted, and any
flags passed to mount (such as read only).

#define MNAMSIZ 32
struct mtab {

};

FILES
/etc/mtab
<mtab.h>

SEE ALSO

char
char
int

mt_name[MNAMSIZ];
mt_special[MNAMSIZ];
mt_flag;

COHERENT Command Manual: mount, umount

System

•

•

•

•

•

•

mtype mtype

llbc Library

NAME
mtype - return symbolic machine type

USAGE
#include < mtype.h >

char*
mtype(type)
int type;

DESCRIPTION
mtype takes an integer machine type and returns an ASCII string
containing the symbolic name of the machine. The header file
mtype.h defines the possible machine types. For example,

mtype(M._PDPll)

returns the string "PDP-11".

FILES
<mtype.h>

SEE ALSO
l.out.h
COHERENT Command Manual: Id

DIAGNOSTICS
mtype returns NULL to indicate a bad machine type .

System

nllst nllst

llbc Library

NAME
nlist - symbol table lookup

USAGE
#include < l.out.h >

nlist(fi/e, nip)
char *file;
struct nlist *nip;

DESCRIPTION
nlist searches the name list (symbol table) of the load module
specified by file for each symbol in the array to which nip points.
For example, the ps command uses this routine on the system load
module (/coherent) to obtain the addresses of system tables in
memory (/dev/mem).

The nip argument points to an array of nlist structures, terminated
by a structure with the null string 1111 as its 1L11ame member. The
l.out.h header file defines nlist as follows:

#define NCPLN 16

struct nlist {
char n_name[NCPLNJ;
int n_type;
unsigned n_value;

} ;

The caller should set the IL.Dame entry; nlist will fill in the other
entries. nlist sets both n_type and n_value to zero if the symbol is
not found .

FILES
<l.out.h>

SEE ALSO
l.out.h
COHERENT Command Manual: nm, strip

DIAGNOSTICS
If file is not a load module or has had its symbol table stripped, all
returned n_type and n_value entries will be 0.

System

•

•

•

•

•

•

null null

Device Driver

NAME
null - discard data

DESCRIPTION
All data written to the special file /dev/null is thrown away (sent to
the "bit bucket"). This is useful, for example, to test a program's
side effects while ignoring its output.

A read from file /dev/null returns end of file (0 bytes of data). The
shell sh uses /dev/null as input to background processes.

FILES
/dev/null

SEE ALSO
COHERENT Command Manual: sh

System

open

NAME
open - open a file

USAGE
open(file, type)
char *file;
int type;

DESCRIPTION

open

System Call

open prepares a file for 1/0. When successful, open returns a file
descriptor (a small positive integer), which identifies the open file to
subsequent read, write or close calls.

The type argument can be O for reading, 1 for writing, or 2 for
both reading and writing. After a file is opened, 1/0 will occur at
the start, or byte 0.

SEE ALSO
close, creat, fopen, read, write

DIAGNOSTICS
open returns - 1 if the file is nonexistent, if the caller lacks permis
sion, or if some system resource is exhausted.

System

•

•

•

•

•

•

passwd passwd

File Format

NAME
passwd - password file format

DESCRIPTION
The password file /etc/passwd describes the user name, password,
user id, group id, initial working directory and initial program for
each user of the COHERENT system. The login and passwd com
mands use this information.

Each entry consists of a single line. Each line consists of seven
colon-separated ASCII fields:

user_name:password:uid:gid::dir:sh

The user _name gives the login name of the user. The optional pass
word gives the encrypted password of the user. The uid and gid
fields give the numerical user id and group id of the user. The fifth
field is unused. The dir gives the initial $HOME directory for the
user. The sh gives the pathname of the initial program for the user;
if omitted, the command line interpreter /bin/sh is assumed .

Passwords are encrypted with crypt, so the passwd file is generally
readable.

FILES
/etc/passwd

SEE ALSO
crypt, getpwent, group
COHERENT Command Manual: chgrp, login, newgrp, passwd

System

pause pause

System Call

NAME
pause - wait for signal

USAGE
pause()

DESCRIPTION
pause suspends execution until the process receives a signal. Signals
could come from kill, from alarm, or from the controlling terminal.

SEE ALSO
alarm, kill, signal, sleep

System

•

•

•

•

•

•

perror

libc Library

NAME
perror - system call error messages

USAGE
#include < errno.h >

perror(string)
char *string;

extern int sys_nerr;
extern char *sys_errlist[J;

DESCRIPTION

perror

perror prints an error message on the standard error output (file
descriptor 2). The message consists of the argument string, fol
lowed by a brief description of the last system call which failed.
The external variable errno contains the last error number. Nor
mally, string is the name of the command that failed or a file name.

The external array sys_errlist gives the list of messages used by per
ror. The external sys_nerr gives the number of messages in the list.

FILES
<errno.h>

SEE ALSO
errno

System

pipe pipe

System Call

NAME
pipe - create a pipe

USAGE
pipe(fd)
intfd[2];

DESCRIPTION
A pipe is an interprocess communication mechanism. pipe creates a
pipe, typically to construct pipelines in the shell sh. pipe fills in
jd[O) and jd[l] with read and write file descriptors, respectively.

The file descriptors allow the transfer of data from one or more
writers to one or more readers. Pipes are buffered to 5120 bytes.
If more than 5120 bytes are written into the pipe, the write call will
not return until the reader has removed sufficient data for the write
to complete. If a read occurs on an empty pipe, its completion
awaits the writing of data.

When all writing processes close their write file descriptors, the

•

reader receives an end of file indication. A write on a pipe with no •
remaining readers generates a SIGPIPE signal to the caller.

pipe is generally called just before fork. Once the parent and child
processes are created, the unused file descriptors should be closed in
each process.

SEE ALSO
close, read, signal, write
COHERENT Command Manual: sh

DIAGNOSTICS
pipe returns O on successful calls, or - I if it could not create the
pipe.

System

•

•

•

•

pnmatch

libc Library

NAME
pnmatch - string pattern matching

USAGE
int
pnmatch(string, pattern, flag)
char *string, *pattern;
int flag;

DESCRIPTION

pnmatch

pnmatch matches patterns, which are a simplified form of regular
expressions. The shell sh uses patterns for file name expansion and
case statement expressions.

pnmatch returns 1 if the given pattern matches the given string. It
returns O if the pattern does not match the string.

Each character in pattern must exactly match a character in string,
except for metacharacters, which have a special meaning in the pat
tern. The metacharacter '?' matches any one character. The meta
character '*' matches a string containing any number of any charac
ters, including the null string (containing no characters). A set of
characters enclosed between '[' and ']' matches any one character
of the set. Sets of characters may include ranges, such as '[a- z]'
for lower-case letters. A backslash (' \ ') before a metacharacter
removes its special meaning.

The flag argument must be either O or 1. When flag is 0, the pat
tern must match the string exactly. When flag is 1, the pattern can
match any part of the string. In this case, additional metacharac
ters ,-, and '$' match the beginning and end of the string, respec
tively.

SEE ALSO
COHERENT Command Manual: grep, learn, sh

NOTES
flag must be O or 1 for predictable results .

System

popen

STDIO Library

NAME
pclose, popen - establish stream between processes

USAGE
#include < stdio.h >

pclose(fp)
FILE *fp;

FILE*
popen(command, how)
char *command, *how;

DESCRIPTION

popen

popen is similar to fopen, except that the opened object is a com
mand line to the shell sh rather than a file. popen creates a pipe.
The caller can read the standard output of the command when how
is "r", or write to the standard input of the command when how is
"w" . popen returns a stream which may be read or written .

pclose closes a stream opened by popen, awaiting the completion of
the child process and performing other cleanup. It returns the exit
status of the command.

FILES
<stdio.h>

SEE ALSO
fclose, fopen, pipe, system, wait
COHERENT Command Manual: sh

DIAGNOSTICS
popen returns NULL if the link to the command could not be esta
blished.

pclose returns - I if Jp was not created by a previous popen call.
Otherwise, pclose returns the exit status of the command, in the
format described in wait: exit status in the high byte, signal infor
mation in the low byte.

System

•

•

•

•

•

•

printf

STDIO Library

NAME
fprintf, printf, sprintf - formatted output

USAGE
#include < stdio.h >

fprintf(fp, format [, arg J ...)
FILE *fp;
char *format;

printf(f ormat [, arg J ...)
char *format;

sprintf(string, format [, arg J ...)
char *string, *format;

DESCRIPTION

printf

Each of these routines uses the format string to specify a format for
output conversion of each remaining arg. fprintf writes characters
to the given stream fp, while printf writes to the standard output.
sprintf puts its output into the given string and appends a null char
acter (' \ O') .

Each routine reads characters one at a time from the format string.
Each copies any character other than a conversion specification to
the output directly. The '%' character identifies the start of a
conversion specification. Each conversion uses one or more of the
remaining arg arguments. It is essential for users to ensure type
matching between the arguments and the conversion specifications .

Output modifiers and the desired conversion type may follow the
'%' character. The following modifiers, in this order, may precede
the conversion type:

1) An optional minus sign ' - ' indicates left justification
(rather than the default right justification) of the output
field.

2) An optional string of digits gives the width of the output
field. Normally, the field is padded with spaces to the field
width, on the left unless the above minus sign is specified.
If the field width begins with 'O', padding is with '0' char
acters rather than spaces . If the width specification is an

System

prlntf prlntf

STDIO Library

asterisk '•', the routine uses the next arg as an integer giv
ing the width.

3) An optional period '.' followed by a string of digits indi
cates the precision. For floating point (e, f and g) conver
sions, the precision is the number of digits printed after the
decimal point. For string (s) conversions, the precision is
the maximum number of characters used from the string.
If the precision specification is an asterisk '*', the routine
uses the next arg as an integer giving the precision.

4) The letter 'I' before any integer conversion (d, o, x, or u)
indicates that the argument is a long rather than an int.
Capitalizing the conversion type has the same effect.

The routines recognize the following conversion types:

OJo Output a '%' character. No arguments are processed.

C

d

D

Convert the int argument to a character.

Convert the int argument to signed decimal.

Convert the long argument to signed decimal.

e Convert the float or double argument to exponential form.
The format is d.ddddddesdd, where there is always one
digit before the decimal point and as many as the precision
after it (default: six). The exponent sign s may be either
'+'or'-'.

f Convert the float or double argument to a representation
with an optional leading minus sign ' - ', at least one
decimal digit, a decimal point ('. '), and optional decimal
digits after the decimal point. The number of digits after
the decimal point is the precision (default: six).

g Convert the float or double argument to whichever of the
formats d, e, or f loses no significant precision and takes
the least space.

0

0

r

Convert the int argument to unsigned octal.

Convert the long argument to unsigned octal.

The next argument points to an array of new arguments
that may be used recursively. The first argument of the list

System

•

•

•

•

•

•

prlntf prlntf

STDIO Library

is a char * containing a new format string. When the list is
exhausted, the routine continues from where it left off in
the original format string.

s Output the string to which the char * argument points.
Reaching either the end of the string, indicated by a null
character, or the specified precision will terminate output.
If no precision is given, only the end of the string will ter
minate.

u Convert the int argument to unsigned decimal.

U Convert the long argument to unsigned decimal.

x Convert the int argument to unsigned hexadecimal.

X Convert the long argument to unsigned hexadecimal.

Examples
The following examples show the use of printf for integer, string,
and floating point conversions, respectively:

printf("%d %u %06x\n", 0123456, 0123456, 0123456);
printf("%-7.5s %7.5s %.5s\n", "random", "random", "random");
printf("%g %7.2g %e %f\n", 23.546, 23.546, 23 ,546, 23.546);

In the output from these examples, an underscore character '-'
replaces each space character, for increased clarity:

-22738_42798_00A72E
rando rando rando
23.546000- 23.55_2.354600e+01_23.546000

FILES
<stdio.h>

SEE ALSO
ecvt, putc, puts, scanf

NOTES
The output string passed to sprintf must be large enough to hold all
output characters .

System

profil

System Call

NAME
profil - profile process execution

USAGE
profil(buffer, size, base, scale)
short *buffer;
int size, base;
unsigned scale;

DESCRIPTION

profil

profil causes the execution of a program to produce a histogram of
program counter (pc) locations, as sampled by the system clock
handler (up to HZ times per second). The process can profile
activity in one area of the process code segment, starting at location
base. profil sets up size/sizeof(short) counters starting at location
buffer, each associated with a segment of memory called a bin.
The system increments a counter when it finds the pc in the
corresponding bin. The scale determines bin size; it is the recipro
cal of the number of bytes per bin, represented as a fixed-point
number with assumed binary point to the left of bit 16. The
counter incremented is

c = (pc - base)*(scale/2) I 2 -16

If pc < base or c > = size/sizeof(short), the system increments no
counter.

profil turns off profiling if scale is 0. If scale is 2, it profiles the
entire code segment and increments the single counter each clock
tick. If scale is 0177777 ((unsigned)65535), there is essentially one
counter for each pc location.

SEE ALSO
COHERENT Command Manual: prof, time

DIAGNOSTICS
profil returns - 1 and disables profiling if arguments are invalid .

System

•

•

•

•

•

•

ptrace

System Call

NAME
ptrace - trace process execution

USAGE
#include < signal.h >

ptrace(command, pid, location, value)
int command, pid;
int *location;
int value;

DESCRIPTION

ptrace

ptrace provides a parent process with pnm1t1ves to monitor and
alter the execution of a child process. These primitives typically are
used by a debugger such as db, which needs to examine and change
memory, plant breakpoints, and single-step the child process being
debugged.

Once a child process indicates it wishes to be traced, its parent
issues various commands to control the child. pid identifies the
affected process. The parent may issue a command only when the
child process is in a stopped state, which occurs when the child
encounters a signal. A special return value of 0177 from wait
informs the parent that the child has entered the stopped state. The
parent may then examine or change the child process memory space
or restart the process at any point.

When the child process issues an exec, the child stops with signal
SIGTRAP to enable the parent to plant breakpoints. The set user
id and set group id modes are ineffective when a traced process per
forms an exec.

The following list describes each available command. A command
ignores any arguments not mentioned.

0 This is the only command the child process may issue. It tells
the system that the child wishes to be traced. Parent and child
must agree that tracing should occur to achieve the desired
effect. Only the command argument is significant.

1,2 The int at location is the return value. Command 1 signifies
that location is in the instruction space, while command 2
signifies data space. Often these two spaces are equivalent.

System

ptrace ptrace

System Call

3 The return value is the int of the process description, as defined
in sys/uproc.h . This call may be used to obtain values such as
hardware register contents and segment allocation information.

4,5 Modify the child process's memory by changing the int at loca
tion to value. Command 4 means instruction space and com
mand 5 means data space. Shared segments may be written
only if no other executing process is using them.

6 Modify the int at location in the process description area, as
with command 3. The permissible values for location are res
tricted to such things as hardware registers and bits of machine
status registers which the user may safely change.

7 This command restarts the stopped child process after it
encounters a signal. The process resumes execution at loca
tion, or from where the process was stopped if location is
(int *)1. value gives a signal number that the process receives
as it restarts. This is normally the number of the signal which
caused the process to stop, fetched from the process description
area by a 3 command. If value is 0, the effect of the signal is
ignored.

8 Force the child process to exit.

9 Like command 7, except that the child stops again with signal
SIGTRAP as soon as practicable after the execution of at least
one instruction. The actual hardware method used to imple
ment this command varies from machine to machine, explain
ing the imprecise nature of its definition. This call may pro
vide part of the basis for breakpoints .

FILES
<signal.h>
< sys/uproc.h >
SEE ALSO
exec, signal, wait
COHERENT Command Manual: db

DIAGNOSTICS

•

•

ptrace returns - I if pid is not the process id of an eligible child •
process or if some other argument is invalid or out of bounds.
Some commands may return an arbitrary data value, in which case

System

•

•

•

ptrace ptrace

System Call

errno should be checked to distinguish a return value of - 1 from
an error return.

NOTES
There is no way to specify which signals should not stop the pro
cess .

System

putc

STDIO Library

NAME
fputc, putc, putchar - write character to stream

USAGE
#include < stdio.h >

int
fputc(c, fp)
char c;
FILE *fp;

int
putc(c, fp)
char c;
FILE *fp;

int
putchar(c)
char c;

DESCRIPTION

putc

putc is a macro that writes a single character c onto file stream f p,
returning that character upon success. putchar is a macro expand
ing to putc(c, stdout), so it writes a single character onto the stan
dard output.

fputc is a genuine function, whose body is putc.

FILES
<stdio.h>

SEE ALSO
fwrite, getc, printf, puts, putw

DIAGNOSTICS
These functions return EOF on write errors .

NOTES
Because putc and putchar are macros, side effects in arguments may
not work as expected.

System

•

•

•

•

•

•

puts

STDIO Library

NAME
fputs, puts - write string to stream

USAGE
#include < stdio.h >

fputs(string, fp)
char *string;
FILE *fp;

puts(string)
char *string;

DESCRIPTION

puts

puts appends a newline character to its string argument and writes
the result on the standard output.

fputs writes string on the stream given by fp. Unlike puts, it does
not append a newline character.

FILES
<stdio.h>

SEE ALSO
fwrite, gets, printf, putc

NOTES
For historical reasons, fputs outputs the string unchanged, while
puts appends a newline .

System

putw putw

STDIO Library

NAME
fputw, putw - write integer to stream

USAGE
#include < stdio.h >

fputw(word, fp)
int word;
FILE *fp;

putw(word, fp)
int word;
FILE *fp;

DESCRIPTION
The macro putw writes word (an int) to the stream fp. It returns
the value written. fputw has the same effect, but is a function
rather than a macro.

FILES
<stdio.h>

SEE ALSO
ferror, fwrite, putc, puts

DIAGNOSTICS
Both routines return the value EOF on errors. A call to ferror may
be necessary to distinguish this value from a valid data item.

NOTES
Because putw is a macro, side effects in arguments may not work as
expected.

System

•

•

•

•

•

•

qsort

llbc library

NAME
qsort, shellsort - in-memory sorting

USAGE
qsort(data, nitems, size, comp)
char *data;
int nitems, size;
int (*comp)();

shellsort(data, nitems, size, comp)
char *data;
int nit ems, size;
int (*comp)();

DESCRIPTION

qsort

qsort and shellsort are generalized algorithms for sorting arrays of
data in memory. The sort command sorts arrays of data too large
to fit into memory. qsort is C. A. R. Hoare's Quicksort algorithm,
and is preferable for most applications. shellsort is Shell's method,
and has an identical calling sequence .

Each routine sorts a sequential array of memory called data,
divided up into nitems parts of size bytes each. Each routine com
pares pairs of items and exchanges them as required.

The user-supplied routine to which comp points performs the com
parison. It is called repeatedly, as follows:

(*comp)(pl, p2)
char *pl;
char *p2;

Here pl and p2 are each arrays of size bytes. In practice, they are
usually pointers to structures and size is the sizeof the structure.
The comparison routine must return a negative, zero, or positive
result depending on whether pl is less than, equal to, or greater
than p2, respectively.

SEE ALSO
COHERENT Command Manual: sort
Donald Knuth, The Art of Computer Programming, Vol. 3: Sort
ing and Searching, Addison-Wesley, 1971, pp. 84 ff., 114 ff.

System

rand rand

llbc Library

NAME
rand, srand - random number generator

USAGE
rand()

srand(seed)
int seed;

DESCRIPTION
rand is a linear congruential pseudo-random number generator. It
returns integers in the range O to 2 ~15 - l, and purportedly has a
period of 2-32. srand initializes ("seeds") the sequence of pseudo
random numbers. Unequal values of seed initialize different
sequences.

SEE ALSO
Donald Knuth, The Art of Computer Programming, Vol. 2: Semi
numerical Algorithms, 2nd ed., Addison-Wesley, 1981.

System

•

•

•

•

•

•

read

NAME
read - read from a file

USAGE
read(f d, bufp, nb)
intfd;
char *bufp;
int nb;

DESCRIPTION

read

System Call

read tries to read up to nb bytes of data from the file given by file
descriptor fd into the data segment at address bufp. The amount
of data actually read may be smaller than requested if the read
pointer hits end of file, or if the file is a device with certain proper
ties (e.g. a terminal).

For block devices and regular files, the read occurs at the current
seek position in the file, which was set by the last read or lseek call.
read advances the seek pointer by the number of characters actually
read .

SEE ALSO
lseek, open, write

DIAGNOSTICS
read returns the number of bytes read for successful calls; thus,
zero bytes signals end of file. It returns - 1 if an error occurs; bad
file descriptor, bad bufp address, and physical read error are among
the possibilities .

System

scant

STDIO Library

NAME
fscanf, scanf, sscanf - formatted input

USAGE
#include < stdio.h >

fscanf(fp, format [, arg J ...)
FILE *fp;
char *format;

scanf(f ormat [, arg J ...)
char *format;

sscanf(string, format [, arg J ...)
char *string;
char *format;

DESCRIPTION

scant

Each of these routines uses the format string to specify a format for
input conversion. Each converted input item is assigned through
the next specified arg, which must be a pointer. fscanf reads input
from the stream fp, while scanf reads from the standard input.
sscanf reads from the given string.

Each routine takes characters one at a time from the format string.
White space characters in the format are ignored. Other characters
except '%' match non-white space characters in the input. The '%'
character identifies the start of a conversion specification. Each
conversion may use one or more of the remaining arg arguments.
It is essential for users to ensure type matching between the argu
ments and the conversion specifications.

Each routine terminates when it encounters the end of the format
string or when the input does not match a specification. Each
returns the number of successful assignments.

After the '%' character, there may be characters indicating the
width of the input field and the conversion type. A field is delim
ited by white space (space, tab, newline) or by the given field width,
if any. Newlines are white space, so the input can include more
than one line. The following modifiers, in this order, may precede
the conversion type:

System

•

•

•

scanf scanf

STDIO Library

• 1) An optional '*', indicating that the next input field should
be skipped (rather than assigned to the next arg).

•

•

2) An optional string of decimal digits, specifying a maximum
field width.

3) An I, specifying that the next input item is a long object
rather than an int object. Capitalizing the conversion char
acter has the same effect.

The routines recognize the following conversion types:

C

d

D

e

E

f

F

0

0

s

X

X

[string]

Assign the next input character to the next arg, which
should be of type char *. This conversion does not skip
white space characters in the input.

Assign the decimal integer from the next input field to the
next arg, which should be of type int *.
Assign the decimal integer from the next input field to the
next arg, which should be of type long * .
Assign the floating point number from the next input field
to the next arg, which should be of type float *.
Assign the floating point number from the next input field
to the next arg, which should be of type double *.
Same as e or double *.
Same as E.

Assign the octal integer from the next input field to the
next arg, which should be of type int *.
Assign the octal integer from the next input field to the
next arg, which should be of type long *.
Assign the string from the next input field to the next arg,
which should be of type char *.
Assign the hexadecimal integer from the next input field to
the next arg, which should be of type int *.
Assign the hexadecimal integer from the next input field to
the next arg, which should be of type long *.
Assign characters from the input until the first character
not in the given string to the next arg, which should be of

System

scanf scanf

STDIO Library

type char *. This conversion does not skip white space •
characters in the input.

[string) Assign characters from the input until the first character in
the given string to the next arg, which should be of type
char *. This conversion does not skip white space charac
ters in the input.

FILES
<stdio.h>

SEE ALSO
getc, printf

System

•

•

•

•

•

setbuf

STDIO Library

NAME
setbuf - enable/ disable stream buffering

USAGE
#include < stdio.h >

setbuf(fp, buffer)
FILE *fp;
char *buffer;

DESCRIPTION

setbuf

The standard 1/0 library STDIO automatically buffers all reading
and writing on streams, except the standard error stream. The sys
tem uses malloc to allocate the buffer, a char array of BUFSIZ
characters in length. Because it may be desirable to use a different
allocation strategy or to buffer an output stream unconditionally,
the system provides the setbuf routine.

The arguments to setbuf are a stream pointer fp and a buff er to be
associated with the stream. The call should be issued after the
stream has been opened but before any input or output request has
been issued.

Passing a buff er pointer of NULL disables implicit buffering on a
stream.

FILES
<stdio.h>

SEE ALSO
fopen, malloc, ttyname

System

setjmp

llbc Library

NAME
longjmp, setjmp - non-local goto

USAGE
#include < setjmp.h >

longjmp(env, rval)
jmp_buf env;
int rval;

setjmp(env)
jmp_buf env;

DESCRIPTION

setjmp

The function call is. the only mechanism the C language provides
for transferring control between separately compiled modules. This
mechanism is inadequate for some purposes, such as handling unex
pected errors or interrupts at lower levels of a program. The
COHERENT system therefore includes the setjmp and longjmp
routines to implement a non-local goto facility.

setjmp saves its environment in env and returns value 0. longjmp
restores the environment saved by a previous setjmp and returns
value rval to the caller of setjmp, as if the setjmp call had just
returned (again). longjmp must not restore the environment of a
routine which has already returned.

The type declaration for jmp_buf is in the setjmp.h header file.
The environment saved includes the program counter, stack pointer
and stack frame. The routines do not affect any other variables of
a program.

FILES
<setjmp.h>

SEE ALSO
signal

System

•

•

•

•

•

•

setuld setuld

System Call

NAME
setgid, setuid - set group id and user id

USAGE
setgid(id)

setuid(id)

DESCRIPTION
setuid sets the real user id and the effective user id of the calling
process to the given id. Similarly, setgid sets the group id. These
calls can be used to turn off set user id and set group id privileges
(see exec).

The call is allowed if the real id of the calling process matches id or
is the superuser.

SEE ALSO
exec, getuid, login

DIAGNOSTICS
Each call returns O on success, or - 1 on failure .

System

signal

System Call

NAME
signal - specify disposition of a signal

USAGE
#include < signal.h >
#include < msig.h >

int (*signal(signum, action))(J
int signum;
int (*action)();

DESCRIPTION

signal

A process can receive a signal, or interrupt, from a hardware excep
tion, from terminal input, or from a kill call made by a process. A
hardware exception might be an illegal instruction code or a bad
machine address, caught by the segmentation hardware. A terminal
interrupt character, described in detail in tty, generates a process
interrupt (and in one case a core dump file for debugging purposes).

•

When a process receives a signal, it performs an appropriate action.
The default action SIGJ>FL causes the process to terminate. sig- •
nal specifies a new action for signal number signum, and returns a
pointer to the previous action. action points to a function which
will handle the signal, in the manner of a hardware interrupt
handler. The action SIGJGN causes a signal to be ignored. SIG-
KILL can be neither caught nor ignored.

With the exception of SI GILL and SIGTRAP, caught signals are
reset to the default action SIGJ)FL. To catch a signal again, the
specified action must reissue the signal call.

The following list gives machine independent signals by symbolic
name (defined in the signal.h or msig.h header file), numeric value,
and description. Signals marked by '*' produce a core dump if the
action is SIGJ)FL.

SIGHUP I hangup
SIGINT 2 interrupt
SIGQUIT 3* quit
SIGALRM 4 alarm clock
SIGTERM 5 termination
SIGREST 6 restart indication

System

•

•

•

•

signal signal

System Call

SIGSYS 7* bad system call argument
SIGPIPE 8 write on closed pipe
SIG KILL 9 kill
SIGTRAP 10* breakpoint
SIGSEGV 11 * segmentation violation

The following signals are specific to the PDP-11 version of the sys
tem:
SIGILL
SIGIOT
SIGEMT
SIGFPE
SIGBUS

12*
13*
14*
15*
16*

illegal instruction
IOT instruction
EMT instruction
floating point exception
bus error

The following signals are specific to the Zilog Z8002 version of the
system:
SIGUNI 12* unimplemented instruction
SIGPRV 13* privileged instruction
SIGNVI 14* non-vectored interrupt
SIGPAR 15* parity error

The following signals are specific to the Zilog ZSOOJ version of the
system:
SIGEPA 12* extended processor trap
SIGPRV 13* privileged instruction
SIGNVI 14* non-vectored interrupt
SIGNMI 15* non-maskable interrupt (not in all versions)

The following signals are specific to the Intel 8086 or 8088 version
of the system:
SIGDIVE
SIGOVFL

12*
13*

divide error
overflow

A signal may be caught during a system call which has not yet
returned. In this case, the system call appears to fail, with errno set
to EINTR. If desired, such an interrupted system call may be reis
sued. System calls which may be interrupted in this way include
pause, read on a device such as a terminal, write on a pipe, and
wait .

FILES
<msig.h>
<signal.h>

System

signal

SEE ALSO
kill, ptrace

System Call

COHERENT Command Manual: sh

DIAGNOSTICS

signal

signal returns a pointer to the previous action on success. It returns
(int) - 1 for invalid signum .

System

•

•

•

•

•

•

slgname

llbc Library

NAME
signame - signal meanings

USAGE
#include < signal.h >

extern char *signame[NSIG + 1];

DESCRIPTION

slgname

When a program terminates abnormally, its parent process receives
a byte of termination information from the wait call. This byte
contains a signal number, as defined in the signal.h header file. For
example, SIGINT indicates an interrupt from the terminal.

The signame array, indexed by signal number, contains strings
which give the meaning of each signal. Thus, signame[SIGINT] is
the string "interrupt". For portability reasons, all programs which
wait on child processes (such as the shell sh) should use signame.

FILES
<signal.h>

SEE ALSO
signal, wait
COHERENT Command Manual: sh

System

sin

libm Library

NAME
acos, asin, atan, atan2, cos, sin, tan - trigonometric functions

USAGE
#include < math.b >

double
acos(arg)
double arg;

double
asin(arg)
double arg;

double
atan(arg)
double arg;

double
atan2(num, den)
double num, den;

double
cos(radian)
double radian;

double
sin(radian)
double radian;

double
tan(radian)
double radian;

DESCRIPTION

sin

The trigonometric functions are sin, cos, and tan. The argument
radian should be in radian measure.

•

•

The inverse trigonometric functions are asin, acos, and atan. The •
argument of asin or acos should be in the range [-1., 1.), while the
argument of atan may be any real number. The result is in the

System

•

•

•

sin sin

llbm Library

range [- pi/2, pi/2) for asin, in the range [O, pi] for acos, and in
the range [- pi/2, pi/2] for atan.

The atan2 function returns atan of the quotient of its arguments,
num/ den, with the result in the range [- pi , pi). The sine of the
result will have the same sign as num, and the cosine of the result
will have the same sign as den .

FILES
<math.h>

SEE ALSO
sinh

DIAGNOSTICS
Out of range arguments set errno to EDOM and return 0. tan
returns a very large number where it is singular and sets errno to
ERANGE.

System

slnh slnh

libm Library

NAME
cosh, sinh, tanh - hyperbolic functions

USAGE
#include < math.h >

double
cosh(z)
double z;

double
sinh(z)
double z;

double
tanh(z)
double z;

DESCRIPTION
sinh, cosh, and tanh compute the hyperbolic sine, hyperbolic
cosine, and hyperbolic tangent, respectively. In each case, the argu
ment z is in radian measure.

FILES
<math.h>

SEE ALSO
log, sin

DIAGNOSTICS
Both sinh and cosh set errno to ERANGE and return a huge value
with the same sign as the actual result when overflow occurs .

System

•

•

•

•

•

•

sleep sleep

llbc Library

NAME
sleep - suspend execution

USAGE
sleep(seconds)
unsigned seconds;

DESCRIPTION
sleep suspends execution of the calling process for at least the
number of seconds specified. The system resumes processing at the
next whole-second interval after the specified time has elapsed.

sleep uses the alarm and pause system calls. Any alarm pending
during the sleep interval is executed properly, after which the sleep
continues for the remaining time.

SEE ALSO
alarm, pause, signal

System

sload

System Call

NAME
sload, suload - load/unload device driver

USAGE
#include < con.h >

sload(major, file, conp)
int major;
char *file;
CON *conp;

suload(major)
int major;

DESCRIPTION

sload

The COHERENT system accesses all devices through drivers resid
ing in the system. Except for the root device, drivers must be expli
citly loaded before use; this operation does not involve re-booting.

•

sload loads the driver given by file as device number major. This •
number uniquely identifies the driver to the system. The conp argu-
ment is a reference to a CON structure, as defined in the con.h
header file. It describes standard entry points and gives other infor-
mation on the driver. Normally the major and conp parameters are
obtained from the driver load module; this is the method used by
the load command.

file must be in the correct format. Usually, it is created using the
....: k option to the Id command.

suload unloads the driver identified by major, which was previously
loaded by a sload call.

Both calls are restricted to the superuser.

FILES
<con.h>
/drv/*

SEE ALSO
init, l.out.h
COHERENT Command Manual: Id, load, uload

System

•

•

•

•

sload sload

System Call

DIAGNOSTICS
The routines return O upon successful loading or unloading of the
appropriate driver, or - l on errors. sload errors include file
nonexistent, parameter (such as major) out of range, driver already
loaded for major, or file not a file containing a proper driver.
suload fails if the driver major is not loaded.

NOTES
Because of hardware restrictions, the COHERENT system does not
support loadable device drivers on systems based on the 8086 or
8088 processors (such as the IBM Personal Computer). The /drv
directory and the sload and suload system calls do not exist on such
systems .

System

stat

System Call

NAME
fstat, stat - find file attributes

USAGE
#include < sys/stat.h >

fstat(f d, statp)
intfd;
struct stat * statp;

stat(file, statp)
char *file;
struct stat * statp;

DESCRIPTION

stat

stat and fstat each return a structure containing attributes of a file,
including protection information, file type, and file size. stat takes
a pathname given by file, while fstat takes a file descriptor fd.

•

stat and fstat also take a pointer statp to a stat structure, as
described in the stat.h header file. The following summarizes the •
structure and defines the permission and file type bits.

struct stat {

} ;

dev_t st_dev;
int_t st_ino;
unsigned short st_rnode;
short st_nlink;
short st_uid;
short st_gid;
dev_t st_rdev;
size_t st_size;
time_t st_atime;
time_t st_rntime;
time_t st_ctime;

•
System

•

•

•

stat

#define S_IFMT 0170000
#define S_IFREG 0100000
#define S_IFDIR 0040000
#define S_IFCHR 0020000
#define S_IFBLK 0060000
#define S_ISUID 0004000
#define S_ISGID 0002000
#define S_ISVTX 0001000
#define S_IREAD 0000400
#define S_IWRITE 000200
#define S_IEXEC 0000100

System Call

/* file types*/
/* ordinary file*/
/*directory*/
/* character special*/
/* block special*/
/* set user id*/
/* set group id*/
/* save text bit*/
/* owner read permission*/

stat

/* owner write permission*/
/* owner execute permission*/

The sLdev and sUno entries together form a unique description of
the file. The former is the device on which the file and its i-node
reside, while the latter is the index number of the file. The sLmode
entry gives the permission bits, as outlined above. The sLnlink
entry gives the number of links to the file. The user id and group
id of the owner are sLuid and sLgid, respectively. The sLrdev
entry, valid only for special files, holds the major and minor
numbers for the file.

The sL.size entry gives the size of the file in bytes. For a pipe, the
size is the number of bytes waiting to be read from the pipe.

Three entries for each file give the last occurrences of various events
in the file's history. The sLatime entry gives the last access (read
or write). The sLmtime entry gives the last modification (write for
files, create or delete entry for directories). The sLctime entry gives
the last change to the attributes (not including times and size).

FILES
< sys/stat.h >
SEE ALSO
chmod, chown, open
COHERENT Command Manual : ls

DIAGNOSTICS
The routines return - 1 if the file is not found or if the statp
pointer is invalid.

System

stlme stlme

System Call

NAME
stime - set the time

USAGE
#include < sys/types.h >

stime(timep)
time_t * timep;

DESCRIPTION
stime sets the system time. The timep argument is a pointer to a
time_t (actually a long) which contains the number of seconds since
midnight GMT of January 1, 1970.

stime is restricted to the superuser.

FILES
< sys/types.h >
SEE ALSO
ctime, ftime, stat, utime
COHERENT Command Manual: date

DIAGNOSTICS
stime returns -1 on error, 0 otherwise.

System

•

•

•

•

•

•

string string

libc Library

NAME
index, rindex, strcat, strcmp, strcpy, strlen, stmcat, stmcmp,
stmcpy - string manipulation

USAGE
char*
index(string, c)
char *string;
char c;

char*
rindex(string, c)
char *string;
char c;

char*
strcat(string 1, string2)
char *string], *string2;

strcmp(stringl, string2)
char *string], *string2;

char*
strcpy(string 1, string2)
char *string], *string2;

strlen(string)
char *string;

char*
strncat(string 1, string2, n)
char *string], *string2;
unsigned n;

strncmp(stringl, string2, n)
char * string 1, * string2;
unsigned n;

char*
strncpy(string 1, string2, n)
char *string], *string2;
unsigned n;

System

string string

libc Library

DESCRIPTION
These routines act on strings, which are arrays of characters, usu
ally terminated. by a null character (' \ O'). Their implementations
may exploit special machine features, so use of these routines is
encouraged.

strcmp compares string 1 and string2 lexicographically. It returns 0
if the strings are the same, - 1 if string] is less than string2, and 1
otherwise. This routine is compatible with the ordering routine
desired by qsort. strncmp operates exactly like strcmp, except that
a maximum of n characters are significant in the comparison.
Comparison always ends at a null character.

strcpy copies the contents of string2, up to a null byte, to string] .
The order of the arguments is reminiscent of an assignment state
ment. strncpy acts similarly, but copies exactly n characters to
string]. If string2 is shorter than n characters in length, it pads
string] with null bytes. If string2 is longer than n characters, the
result may not be null-terminated. Both routines return the result
string].

strcat copies all characters in string2 to the end of string]. It
returns string], which is the concatenation of the argument strings.
stmcat copies up to n characters from string2 to the end of string],
stopping if it encounters a null character.

strlen returns the length of string in bytes, not including the null
terminator. This may be useful in determining how much storage
to allocate for a string.

index scans the given string for the first occurrence of character c.
If it is found, index returns a pointer to it. If it is not found, index
returns NULL ((char *)0). rindex works similarly, but searches for
the last occurrence of c in string.

System

•

•

•

•

•

•

swab

NAME
swab - swap byte pairs

USAGE
swab(src, dest, nb)
char *src, *dest;
unsigned nb;

DESCRIPTION

swab

libc Library

The ordering of bytes within a word is different on various
machines. This may cause portability problems when moving
binary data between machines.

swab interchanges each pair of bytes in array src of length nb and
places the result into the array dest. The length nb should be an
even number.

While swab is not a general solution to the portability problem, it
may be useful for certain applications . In general COHERENT
solves the portability problem by using canonical form, as desc'ribed
in canon.h .

SEE ALSO
canon.h
COHERENT Command Manual: dd

System

swap swap

Maintenance

NAME
swap - enable swapping

USAGE
/etc/swap&

DESCRIPTION
The swapping code for COHERENT is a kernel process rather than
being a fixed part of the operating system. This enables the system
administrator to enable swapping only if and when desired.

The swapping code determines which processes or segments should
be moved from memory to disk and which should be returned from
disk to memory. Reasonable requests (either explicit or implicit) to
COHERENT for more memory might fail when swapping is not
enabled.

The swapper should be invoked from the shell sh as a background
process. The file /etc/re should invoke the swapper if swapping is
always desired.

FILES
/etc/swap swapper load module

SEE ALSO
exec, init, lock

System

•

•

•

•

•

•

sync sync

System Call

NAME
sync - flush system buffers

USAGE
sync()

DESCRIPTION
To improve system performance, the COHERENT system often
changes a copy of part of a file system in a buffer in memory,
rather than performing the time-consuming disk access required.
sync writes all file system data which is in memory to the disk.
This data includes cached write blocks, changed i-nodes, and super
blocks for each mounted file system. This writes the current time
on each mounted file system, as the time is contained in the super
block.

Programs which need to examine a mounted file system issue a sync
call to ensure that the file system is current and consistent. sync
should also be issued immediately before rebooting the machine, to
assure the integrity of mounted file systems .

SEE ALSO
update
COHERENT Command Manual: sync

System

sysgen sysgen

Maintenance

NAME
sysgen - system generation

DESCRIPTION
This procedure generates a bootable file system on an installation's
root device, typically a disk. The distribution medium is industry
standard half inch 9-track magnetic tape, at 800 or 1600 BPI. A
source distribution tape contains two files, each terminated by a
tape mark. The first file consists of 512-byte records, and the
second is a dump of the source file system. On a binary distribu
tion tape the second file is absent.

The first step is to boot the tape: read record 0 into memory loca
tion 0 and execute it. This produces the prompt ' > '. A sample
session of prompts and responses follows; responses are in bold face
and must be typed in lower case.

>coherent
Coherent(222K, 2222)
/etc/load /drv/rl
/etc/mkfs /dev/rrlO /gen/rlproto
restor rf /gen/rldump /dev/rrlO

If there are any messages, something is probably wrong. Other
wise, the disk is ready for use. The following is a table of root dev
ices currently supported:

RL0I
RL02
RK05
RM02

/dev/rl
/dev/rl
/drv/rk
/drv/rm

/dev/rrl0
/dev/rrlO
/dev/rrk0
/dev/rrmOO

/gen/rlproto /gen/rldump
/gen/rlproto /gen/rldump
/gen/rkproto /gen/rkdump
/gen/rmproto /gen/rmdump

To boot the disk, read sector 0 to memory location 0 and execute
it. Respond to the '>' prompt with coherent. The '#' prompt
should appear to indicate the single-user mode of COHERENT
under the command interpreter (or shell) sh.

The following is an octal bootstrap for a PDP-I I using a TMI I
controller at 800 BPI. This code must be keyed in above location
01000. For 1600 BPI distributions, change 060003 to 000003 .

System

•

•

•

•

•

•

sysgen

Maintenance

012700 172526 mov $TMCMA, r0
005010 clr (r0)
012740 177000 mov $-01000, -(r0)
012740 060003 mov $060003, -(r0)
105710 1: tstb (r0)
100376 bpl lb
005007 clr pc

SEE ALSO
tape
COHERENT Command Manual: load, mkfs, restor
COHERENT Administrator's Guide

NOTES
The DEC bootstrap ROM cannot be used to boot the tape .

sysgen

System

system system

libc Library

NAME
system - pass a command line to the shell

USAGE
system(command)
char *command;

DESCRIPTION
system duplicates the action of the shell sh for a one line command .
The command string is passed directly to the shell. The requesting
process waits for the completion of the command and returns its
exit status.

system may be used by commands such as ed, which can pass com
mands to the COHERENT shell in addition to processing normal
interactive requests.

FILES
/bin/sh

SEE ALSO

•

exec, fork, popen, wait •
COHERENT Command Manual: sh

DIAGNOSTICS
system returns the exit status of the child process, in the format
described in wait: exit status in the high byte, signal information in
the low byte. 0 normally means success, while nonzero normally
means failure . This, however, depends on the command. If the
shell is not executable, system returns a special code of 0177 .

System

•

•

•

•

tape tape

Device Driver

NAME
tape - magnetic tape devices

DESCRIPTION
This section gives a general explanation of COHERENT's use of
industry-standard half inch 9-track magnetic tape. Exceptions or
additional information may be found in sections of this manual
describing particular devices.

A tape volume contains files, each consisting of one or more
records and terminated by a tape mark. Two tape marks terminate
the last file . Tape records may vary in length, but cannot exceed
2-16 bytes (2-15 is more practical).

Like other block-oriented devices, tape units may be accessed
through the system's cooked interface or through the raw interface.
On a cooked device , seeking to any byte offset and reading in any
number of bytes is possible. It is not possible to read beyond the
tape mark at the end of the current file . All records in the file must
be 512 bytes in length, except the last. Write requests must be
made in increments of 512 bytes, except the last. A cooked tape
may be mounted like a disk, but only as a read-only file system.

A raw device bypasses the buffer cache, so 1/0 occurs directly to or
from the user's buffer. One write request generates one tape
record, and one read request returns exactly one record. The
number of bytes read may be less than expected . If the tape mark
is read, a count of O is returned, but the system positions the tape
at the start of the next tape file. Seeking on a raw device is
ignored, and mounting is not allowed.

A unit cannot be opened if it is off-line or already in use. If the
write ring is absent, the unit cannot be opened for writing. Closing
the device has varying effects, depending on the minor device
opened and whether the device was opened for reading or writing.
In the case of reading, the tape is rewound; if the no-rewind option
was specified, the tape advances to the next file. In the case of
writing, two tape marks are written at the current position and the
tape is rewound; if the no-rewind option was specified, two tape
marks are written and the tape is positioned between them. Note
that when a device opened for writing is closed, the tape volume
ends at the current position; data beyond this point is undefined.

System

tape tape

Device Driver

The following device options exist, selected by prefixes to the device
name:

h Read or write data at high density. The exact density
depends on the drive model, but 1600 BPI (high) and 800
BPI (low) are typical .

n Do not rewind on close.

r The device is raw.

Hard errors may occur during tape operation. They include: detec
tion of the end-of-tape (EOT) reflector, reading an unexpectedly
long record, or seeking a cooked tape into a tape mark. After an
error, no further operations may be performed on the unit until the
program closes the device and the operator rewinds the tape. Soft
parity errors may arise due to dirt, bad tape or misaligned heads.
On writes, the driver attempts to place the record further along the
tape. On reads, the driver simply rescans the record. After several
failures, the driver announces a hard error.

•

Most utilities use generic device names, which are links to the •
actual device files appropriate for the site.

FILES
/dev/mt
/dev/rmt
/dev/rnhtmO

DIAGNOSTICS

generic cooked tape device
generic raw tape device
raw no-rewind 1600 BPI TMll, unit 0

Drivers may report errors to the console.

System

•

•

•

•

times times

System Call

NAME
times - obtain process execution times

USAGE
#include < sys/times.h >
#include < sys/ const.h >

times(tbp)
struct tbuffer *tbp;

DESCRIPTION
times fills in the structure addressed by its tbp argument with CPU
time information about the current process and its children. The
tbuffer structure may be obtained from the sys/times.h header file.

struct tbuffer {
long tb_utime;
long tb_stime;
long tb_cut ime;
long tb_cs t ime;

};

/* process user time*/
/* process system time*/
/* childrens' user times*/
/* childrens' system times*/

All of the times are measured in basic machine cycles, or HZ,
which may be obtained from the sys/const.h header file. On a
PDP-I I in North America, HZ is 60.

The childrens' times include the sum of the times of all terminated
child processes of the current process and of all of their children.
The user time represents execution time of user code, while system
time represents system overhead such as executing system calls, pro
cessing signals, and other monitoring functions.

FILES
< sys/times.h >
< sys/ const.h >
SEE ALSO
acct, ftime
COHERENT Command Manual: time

System

ttyname

libc Library

NAME
isatty, ttyname, ttyslot - terminal identification

USAGE
isatty(/d)
intfd;

char*
ttyname(/d)
intfd;

ttyslot()

DESCRIPTION

ttyname

Given a file descriptor fd attached to a terminal, ttyname returns
the complete pathname of the special file (normally found in the
directory /dev).

ttyslot returns the number of the line in the file /etc/ttys which
describes the controlling terminal (see ttys).

isatty returns I if the file descriptor fd is attached to a terminal, and
0 otherwise.

FILES
/dev/*
/etc/ttys

SEE ALSO
ioctl

terminal special files
login terminals

COHERENT Command Manual: tty

DIAGNOSTICS
ttyname returns NULL if it cannot find a special file corresponding
tofd.

A return value of O from ttyslot indicates an error.

NOTES
The string returned by ttyname is contained in a static area, and is
overwritten by each subsequent call.

System

•

•

•

•

•

•

ttys ttys

File Format

NAME
ttys - active terminal ports

DESCRIPTION
The file /etc/ttys describes the terminals in the COHERENT system
and which should have a login process. The init process reads this
file when bringing up the system in multi-user mode.

/etc/ttys contains one line for each terminal. If the first character
of this line is 'l ', logins are enabled; 'O' indicates an inactive port.
The next character is 'l' if the port is a local line, and 'r' if it is a
remote terminal. The third character is passed to /etc/getty to give
speed and other information about the terminal port. The
remainder of the line is the name of the special file for the terminal,
normally found in the directory /dev.

FILES
/etc/ttys

SEE ALSO
getty, init
COHERENT Command Manual: login

System

umask umask

System Call

NAME
umask - set file creation mask

USAGE
umask(mask)
int mask;

DESCRIPTION
umask allows a process to restrict the mode of files it creates.
Commands that create files should specify the maximum reasonable
mode. A parent (e.g. the shell sh) usually calls umask to restrict
access to files created by subsequent commands.

The mask argument should be constructed from any of the permis
sion bits found in cbmod (the low-order 9 bits). When a file is
created with creat or mknod, the bits specified by mask are zeroed
in the mode argument; thus bits set in mask specify permissions
which will be denied.

umask returns the old value of the file creation mask.

SEE ALSO
creat, mknod
COHERENT Command Manual: sh, umask

System

•

•

•

•

•

•

ungetc ungetc

STDIO Library

NAME
ungetc - return character to input stream

USAGE
#include < stdio.h >

ungetc(c, fp)
int c;
FILE *fp;

DESCRIPTION
ungetc returns the character c to the stream fp. This character can
then be read by a subsequent getc, getw, or fread call. Exactly one
character at a time may be pushed back on any stream. A call to
fseek will nullify the effects of ungetc.

FILES
<stdio.h>

SEE ALSO
fseek, getc, setbuf

DIAGNOSTICS
ungetc normally returns c; it returns EOF if the character cannot be
pushed back .

System

unlink unlink

System Call

NAME
unlink - remove a file

USAGE
unlink(/i/e)
char *file;

DESCRIPTION
unlink removes the directory entry for the given file. If file is the
last link, unlink frees the i-node and data blocks. Deallocation is
delayed if the file is open. Other links to the file remain intact.

SEE ALSO
link
COHERENT Command Manual: In, rm, rmdir

DIAGNOSTICS
unlink returns O on successful calls. It returns - 1 if file does not
exist, if the user does not have write and search permission in the
directory containing file, or if file is a directory and the invoker is
not superuser.

System

•

•

•

•

•

•

update update

Maintenance

NAME
update - update file systems periodically

USAGE
/etc/update&

DESCRIPTION
update periodically performs sync to write all file system data which
is in memory to the disk. It never exits.

The initialization command file /etc/re normally executes update.
It should not be executed directly.

SEE ALSO
init, sync
COHERENT Command Manual: sync

System

utlme utlme

System Call

NAME
utime - change file access and modification times

USAGE
#include < sys/types.h >

utime(file, times)
char *file;
time_t times[2);

DESCRIPTION
utime sets the access and modification times associated with the
given file to times obtained from times[O] and times[l], respec
tively. The time of last change to the attributes is set to the time of
the utime call.

This call must be made by the owner of file or by the superuser.

FILES
< sys/types.h >
SEE ALSO
stat
COHERENT Command Manual: restor

DIAGNOSTICS
utime returns - 1 on errors, such as file nonexistent or invoker not
th';! owner.

System

•

•

•

•

•

•

utmp.h utmp.h

File Format

NAME
utmp.h - login accounting information

USAGE
#include < utmp.h >
DESCRIPTION
The file /etc/utmp contains a utmp entry for every user currently
logged into the COHERENT system. The utmp structure is defined
in the utmp.h header file.

#define DIRSIZ 14

struct utmp {
char
char
time_t

} ;

ut_line[8]; /* terminal name*/
ut_name[DIRSIZ];/* user name*/
ut_time; /* time of login*/

If either the user name or terminal name is cleared, the entry is
unused. The uUine entry is the name of the special file for the
user's terminal, normally in the directory /dev. The uLtime entry
gives the date and time the user logged into COHERENT.

The file /usr/adm/wtmp maintains a record of all logins and
logouts, and may be summarized by the ac command. login and
init write entries into the wtmp file; neither creates the file, so login
accounting is disabled unless /usr/adm/wtmp exists.

Entries in the wtmp file are identical to those in the utmp file. A
null string in the uLname field indicates a logout. Three special
terminal names may be found in the wtmp file. When the system is
booted, the init process writes a uUine entry of ,-, . When the time
is changed with the date command, date writes an entry giving the
old date ('I') and an entry giving the new date ('} '). This allows ac
to adjust connect times appropriately.

FILES
<utmp.h>
/etc/utmp
/usr/adm/wtmp

System

utmp.h

SEE ALSO
init

File Format

COHERENT Command Manual: ac, date, login, who

utmp.h

•

•

•
System

•

•

•

wait wait

System Call

NAME
wait - await completion of child process

USAGE
wait(statp)
int *statp;

DESCRIPTION
wait suspends execution of the invoking process until a child pro
cess (created with fork) terminates. If there are no outstanding
child processes, wait returns an error indication.

The return value of a successful wait is the process id of the ter
minated child process. In addition, wait fills in the integer pointed
to by the statp argument with exit status information about the
completed process. If statp is NULL, wait discards the exit status
information.

wait fills in the low byte of the status information word .with the
termination status of the child process. Termination may be
because of a signal, because of an exit call, or because of stopped
execution during ptrace. Termination with exit, which is normal
completion, gives status 0. Other terminations give signal values as
status, as defined in signal. The 0200 bit of the status code indi
cates that a core dump was produced. A status of 0177 indicates
that the process is waiting for further ptrace actions .

The high byte of the returned status is the low byte of the argument
to the exit system call.

If a parent process does not remain in existence long enough to wait
on a child process, the child process is adopted by process 1 (the
initialization process).

SEE ALSO
exit, fork, ptrace, signal
COHERENT Command Manual: sh

DIAGNOSTICS
wait returns the process id of the terminating child. If there are no
children or if an interrupt occurs, it returns - 1 .

System

write

NAME
write - write to a file

USAGE
write(f d, bufp, nb)
intfd;
char *bufp;
int nb;

DESCRIPTION

write

System Call

write writes nb bytes of data starting from address bufp to the file
associated with file descriptor f d.

For block devices and regular files, data is written at the current
write position, set either by the last write or by an lseek call . write
advances the position by the number of characters written.

SEE ALSO
open, read

DIAGNOSTICS
write returns a value of - 1 if an error occurred before the write
operation commenced, such as a bad file descriptor fd or invalid
bufp pointer. Otherwise, it returns the number of bytes actually
written. It should be considered an error if this number is not the
same as nb.

System

•

•

•

•

•

•

Index

/bin/sh
/dev
/ dev / console .
/dev/lp ..
/dev/mem
/dev/mt
/dev/null.
/dev/rmt .
/dev/tty
/drv ...
/ etc/boottime
/etc/cron ..
/etc/getty
/etc/group .
/etc/init ..
/etc/mtab
/etc/passwd
/etc/re ..
/etc/swap
/etc/ttys ..
/etc/update
/etc/utmp
/lib/libc.a
/lib/libm.a .
/tmp
/usr/adm/acct .
/usr / adm/wtmp
/usr/include ..
/usr /lib/ crontab
/usr/lib/libmp.a .
/usr/lib/lpd . . .
/usr /lib/tmac.s
/usr/lib/tman.an
/usr/man
/usr/pub/ascii
/usr/spool ..

Index

exec, system
Device Drivers

. init

. lpd
mem
tape
null
tape
.. ct
sload

boottime
. . cron
.. getty

getgrent, group
. init
..... mtab.h

getpw, getpwent, passwd
. init
......... . swap
getty, init, ttyname, ttys
........ update
getlogin, init, utmp.h

Jibe Library
libm Library
. . mktemp
. . . acct.h
init, utmp.h
Introduction

cron
mp

. lpd
ms

man
man
ascii

. lpd

System

Index

<access.h>
<acct.h>
<ar.h> ..
<assert.h>
<canon.h>
<con.h>
<ctype.h>
<dir.h> ..
<errno.h>
<grp.h>
<l.out.h>.
<math.h>
<mprec.h>
<mtab.h>
< mtioctl.h >
<mtype.h> .
<pwd.h> ..
< setjmp.h > .
<sgtty.h> .
<signal.h>
<stdio.h>
<sys.s> ..
< sys/ const.h >
< sys/stat.h >
< sys/timeb.h >
< sys/times.h >
< sys/types.h >
< sys/uproc.h >
<time.h> .
<utmp.h>

exit

abort .
Abort process
abs
Absolute value .
access
Access

Index

access
acct.h

ar.h
. assert

canon.h
sload

.. ctype

. . dir.h
errno, perror
. . getgrent
l.out.h, nlist
libm Library

.. mp
... mtab.h
. . . . ioctl

l.out.h, mtype
getpwent

. ... setjmp

. ioctl
kill, ptrace, signal, signame

STDIO Library
. as
. times
. chmod, creat, mknod, stat

.... ftime

.... times
stime, utime

. . core

. . ctime
utmp.h

. exit

abort
abort
. abs

. abs, floor, hypot
. access

access, chmod, stat, umask

System

•

•

•

Index Index

• Access time stat, utime
access.h access
Accounting:

Disable acct
Enable . acct
File format acct.h
Login utmp.h
Process acct, acct.h

acct acct
acct.h acct.h
acos sin
Active terminals . ttys
adm/acct. acct.h
adm/wtmp . init, utmp.h
alarm. alarm
Alarm alarm
Allocate memory malloc
ar.h ar.h • Arccosine function . sin
Archive file format . ar.h
Arcsine function . sin
Arctangent function sin
Arena malloc
Arithmetic libm Library, mp
as as
ascii .. ascii
ASCII character set ascii, ctype
asctime. . . . ctime
asin .. sin
Assembly language . as
assert .. . assert
assert.h. . assert
Assertion . . assert
atan sin
atan2. sin
atof atof • atoi. atof
atol. atof
Attributes chmod, stat

System

Index

Await child process
Await signal

Baud rate
Bessel functions
bin/sh
Bit bucket .. .
Block number conversion
Block special file . .
Boot time
Bootable file system
boottime
Break
brk
Buffer cache flush
Buffer flush
Buffered 1/0 .
Byte ordering
Byte pairs

C library .
cabs ...
Cache flush
Call
Calling sequence .
calloc
canon.b
Canonical form
Case conversion
Catch signal
ceil .. .
Ceiling .. .
Change:

Data area size
File access times .
File ownership .
File protection .
Root directory .
Time

Index

wait
. 'lause

getty
jO

exec, system
null

. . 13tol

. mknod
boottime

sysgen
boottime

brk, end, malloc
. brk

. . sync, update

..... fflusb
STDIO Library

swab
.... swab

libc Library
.... bypot
sync, update

System Calls, as
as

malloc
canon.b
canon.b
. ctype

signal
floor
floor

brk, malloc
. utime
cbown
cbmod
chroot
. stime

System

•

•

•

•

•

•

Index

Working directory .
Character:

ASCII ..
Class
Conversion
Read
Set
Special file .
Unread
Write ..

chdir
Check assertion
Child process
chmod
chown .. .
chroot .. .
Clear error .
clearerr.
close ...
Close:

File
Group file
Password file
Stream .

Command:
Execute
Execute periodically .
Interpreter . .
Line

Common logarithm
Compare strings . .
Complex absolute value
con.h
Concatenate strings
console
const.h
Control device . . .
Control line printer
Control transfer . .

Index

chdir

ascii
ctype
ctype

getc
ascii, ctype

mknod
ungetc

putc
. chdir
. assert

fork, wait
chmod
chown
chroot
ferror
ferror
close

close
getgrent

getpwent
fclose

system
cron

passwd
system
.. log
. string
. hypot
. sload
. string

. init
times
ioctl

. lpd
setjmp

System

Index Index

Controlling terminal . ct • Conventions Conventions
Conversion:

Block number IJtol
Case . ctype
Character ctype
Date . . ctime
Floating point ecvt, frexp
Formatted ecvt, printf, scanf
Input .. . scanf
Long. . . IJtol
Output. . ecvt, printf
String atof
Time. . ctime

Copy string . string
core core
Core dump. abort, core
cos . .. sin • cosh· sinh
Cosine function sin, sinh
CPU time times
creat .. creat
Create:

File creat
Link link
New process fork
Pipe pipe
Process fork
Special file . mknod
Stream .. . fopen
Temporary file name mktemp

Creation mask umask
cron cron
crontab. cron
crypt . crypt
ct. .. ct
ctime . . . ctime • ctype.h . ctype
Current directory . chdir

©@ [}{] ~lIB~OOu System

Index Index

• Current time ftime

Data area size brk, end, malloc
Data layout canon.h
Date conversion . ctime
Daylight saving time . . ctime
Decryption crypt
Delete file ... unlink
DES encryption . crypt
dev Device Drivers
dev / console . init
dev/lp .. . lpd
dev/mem. mem
dev/mt. tape
dev/null null
dev/rmt tape
dev/tty . . . ct
Device Device Drivers • Control ioctl

Controlling terminal ct
Create special file mknod
Load driver sload
Magnetic tape tape
Memory mem
Null . .. null
Tape ... tape
Terminal . . . ct
Unload driver sload

Device-dependent control ioctl
dir.h dir.h
Directory:

Change cbdir
Current getwd
Format dir.h
Initial passwd
Root .. chroot

• Working . getwd
Disable buffering . setbuf
Disable process accounting acct

System

Index

Discard data
Document processing
Driver

Control
Controlling terminal .
Load
Magnetic tape
Memory
Null .. .
Tape .. .
Terminal.
Unload

drv
Dump
dup . .
dup2 .
Duplicate file descriptor

ecvt
edata
Effective group id
Effective user id
Enable buffering .
Enable process accounting .
Enable swapping .
encrypt . ..
Encryption .
end
End of file .
End of program segments
endgrent .. .
endpwent . . .
environ
Environment .
EOF ...
Erase file .
errno ..
errno.b .
Error ..

Index

null
... man, ms
Device Drivers

ioctl
. . ct
sload
tape

mem
null
tape

. . ct
sload
sload
core

. dup

. dup

. dup

ecvt
. end

getuid, setuid
getuid, setuid

setbuf
acct

swap
crypt
crypt
. end

. STDIO Library, ferror
. .. end

. . . getgrent

. .. getpwent

. environ, exec
environ, exec, getenv

. STDIO Library, ferror
. ... unlink
. errno
. errno, perror

errno, ferror

System

•

•

•

Index Index

• Error message . errno, perror
etc/cron cron
etc/getty getty
etc/group getgrent, group
etc/init init
etc/mtab mtab.b
etc/passwd . getpw, getpwent, passwd
etc/re init
etc/swap swap
etc/ttys .. getty, init, ttyname, ttys
etc/update update
etc/utmp . getlogin, init, utmp.b
etext . end
execl . exec
execle exec
execlp exec
Execute command line . system
Execute commands periodically cron • Execute load module . exec
Execution:

Profile . . profil
Suspend sleep
Times . times
Trace ptrace

execv . exec
execve exec
execvp exec
exit .. . exit
Exit from process . exit
Exit status . exit
exp log
Exponent frexp
Exponential function log

fabs floor
fclose . fclose • fcvt .. ecvt
fdopen . fopen
feof (error

System

Index Index

ferror ferror • fflusb fflusb
fgetc getc
fgets gets
fgetw. getw
FILE. STDIO Library
File:

Access access
Access time . utime
Attributes . stat
Close ... close
Core dump core
Create ... creat
Creation mask . umask
Descriptor dup, fileno, open
Dump core
Format . . File Formats
Group . getgrent, group • Mode cbmod, stat
Modification time . utime
Mount mtab.b
Number ... fileno
Object format l.out.h
Open open
Ownership . chown
Password getpw, getpwent, passwd
Protection chmod, stat
Read read
Size stat
Terminal. getty, ttys
Test access . access
Truncate . creat
Type. . stat
Write .. write

File format:
Accounting acct.h
Archive .. ar.h • Canonical canon.h
Core dump .. core

©@[}:{]~~~OO'IT' System

•

•

•

Index

Directory ..
Group
Load module
Object module .
Password ..
Transportable

File system:
Block number
Generate bootable .
Mount ..
Mounted.
Read-only
Unmount
Update ..

fileno
Find character in string
Find file attributes .
Find pattern
Floating point output conversion
Floating point representation
floor
Floor
Flush stream buffer
Flush system buffers
fopen . .
fork
Format

Accounting file
Archive file
Canonical
Core dump
Directory
Group file
Load module
Object module .
Password file

Formatted input .
Formatted output
fprintf

Index

dir.b
group

l.out.b
l.out.b
passwd

canon.b

13tol
sysgen
mount

mtab.b
mount
mount

sync, update
fileno

.. string

. .. stat
pnmatcb

ecvt
frexp
floor
floor

fflusb
sync, update
.... fopen
. ... fork
File Formats

acct.b
.. ar.b
canon.b

core
dir.b

group
l.out.b
l.out.b
passwd
. scanf

. ecvt, printf

.... printf

System

Index Index

fputc . putc • fputs . puts
fputw putw
Fraction frexp
fread .. fread
free . .. malloc
Free memory . brk, end, malloc
freopen. . fopen
frexp . frexp
fscanf scanf
fseek fseek
fstat . stat
ftell fseek
ftime. ftime
fwrite fwrite

gcd mp
gcvt ecvt
Generate bootable file system sysgen • Generate random number . . rand
Generate temporary file name mktemp
Get:

Current directory ... getwd
Environmental variable getenv
File descriptor . fileno
Group id. getuid
Password getpass
Process id getpid
User id . . getuid
Working directory . getwd

getc getc
getchar . getc
getegid . = getuid
getenv getenv
geteuid . = getuid
getgid = getuid
getgrent getgrent • getgrgid getgrent
getgmam. getgrent

@@0{]~00~007]' System

Index Index

• getlogin getlogin
getpass . getpass
getpid getpid
getpw getpw
getpwent getpwent
getpwnam getpwent
getpwuid getpwent
gets . . gets
getty . .. getty
getuid = getuid
getw getw
getwd getwd
gmtime. . ctime
Goto .. setjmp
group getgrent, group
Group file getgrent, group
Group id . getuid, passwd, setuid
Group name getgrent

• grp.b. getgrent
gtty ioctl

Handle signal signal
Hyperbolic functions sinb
bypot. . bypot

ibase . . . mp
ID .. getpid, getuid, setuid
Identify terminal . ttyname
Ignore signal . . . signal
In-memory sorting . . . qsort
Inactive terminals ... ttys
include . Introduction
index string
init init
Initial program . passwd
Initial working directory . passwd

• Initialization init
Initialize terminal getty
Input format . . . scanf

System

Index Index

Input password getpass • Integer:
Read . . . getw
Write .. putw

Interchange byte pairs swab
Interrupt process . . . kill
Inverse trigonometric functions sin
Involution . log
ioctl .. ioctl
isalnum ctype
isalpha ctype
isascii ctype
isatty . ttyname
iscntrl ctype
isdigit ctype
islower ctype
ispos . . mp
isprint ctype
ispunct ctype • isspace . ctype
isupper . ciype
itom mp

jO. jO
jl. jO
jn jO
Jump intermodule setjmp

kill kill
Kill process kill

I.out J.out.b
J.out.b J.out.h, nlist
13tol 13tol
ldexp . . frexp
Length of string . string
lib/ crontab . cron • lib/Jibe.a . libc Library
lib/libm.a libm Library

System

•

•

•

Index

lib/lpd
libc . .
libm
libmp.
Library:

libc
libm
libmp
Standard 1/0

Line printer
link . ..
Link ..
Linkage
Listings
Load device driver .
Load module:

Execute ..
Format ...
Symbol lookup

Loader defined symbols
Local time
localtime
lock
Lock process in memory .
log
loglO
Logarithmic functions
Login accounting
Login name ..
Long conversion
Long jump . . .
longjmp .. .
Look up symbol
Ip . . .
lpd ..
lpskip
lseek
ltol3

Index

..... lpd
libc Library

libm Library
. mp

libc Library
libm Library
..... mp

STDIO Library
..... lpd

link
link, unlink

as
. lpd
sload

exec
l.out.h

nlist
. end

. clime

. ctime
lock
lock

log
log
log

utmp.h
getlogin, passwd

13tol
setjmp
setjmp

nlist
. lpd
. lpd
. lpd
lseek
13tol

System

Index

Machine language
Machine type
Macro packages
madd. . . .
Magnetic tape devices
Maintenance .
Major number
Make:

Link .
Pipe
Special file .
Temporary file name

malloc
Mantissa . . .
Manual macro package
Manuscript macro package
Mask.
Match pattern
math.h .
Mathematical functions
mcmp
mcopy ..
mdiv
Meanings of signals
mem
Memory device
Memory management
min ...
minit .
Minor number
mintfr
mitom
mknod .
mktemp
mmaxint
mminint
mneg.
Mode.
modf.

Index

as
mtype

man, ms
mp

tape
Maintenance

mknod, sload

link
pipe

mknod
mktemp

malloc
frexp
man

.. ms
umask

pnmatch
libm Library
libm Library

mp
. . mp

mp
signame

mem
mem

brk, malloc
. . mp

mp
mknod, sload

.. mp
mp

mknod
mktemp

mp
.. mp

mp
chmod, stat

. frexp

System

•

•

•

•

•

•

Index

Modification time
Modulus
mone . . .
mount . .
Mount file
Mount file system
Mounted file systems .
mout . .
mprec.h
msqrt.
msub.
mt ..
mtab .
mtab.h .
mtioctl.h
mtoi
mtos ..
mtype
mtype.h
mult ..
Multiple precision arithmetic
Multiuser mode
mvfree
mzero

Name
Name list lookup
Names of signals .
Napierian logarithm
Natural logarithm
nlist
Non-local goto .
null
NULL . . .
Null device .

obase

Index

stat, utime
. hypot
. . mp
mount

mtab.h
mount

mtab.h
mp
mp
mp
mp

tape
mtab.h
mtab.h

ioctl
.. mp
. . mp
mtype

l.out.h, mtype
mp
mp
init
mp
mp

getlogin
. . nlist
signame

log
. . log

nlist
setjmp

null
STDIO Library

null

. mp

System

Index Index

Object module: • Execute exec
File format .. l.out.h
Symbol lookup nlist

open open
Open:

File open
Interprocess stream popen
Stream fopen

Output buffer flush fflusb
Output format . . . ecvt, printf
Output to stream fwrite
Ownership .. chown

Parent process fork
Pass command line system
passwd .. getpw, getpwent, passwd
Password:

File getpw, getpwent, passwd • Input . getpass
Pattern matching pnmatch
pause. . pause
pclose popen
perror perror
Physical memory . mem
pipe .. pipe
Pipe .. pipe
pnmatcb pnmatcb
popen popen
Portable data layout . canon.h, swab
Ports ttys
Position in file lseek
Position in stream .. fseek
pow log, mp
Power function log
Precision mp
Prevent swapping lock • Print error message perror
Printer lpd

©@OO~OO~OO'TI' System

Index Index

• printf printf
Process:

Abort . abort
Accounting acct, acct.h
Await pause, wait
Create fork
Environment . . environ, exec
Establish stream . popen
Execution profile . profil
Execution times . times
Execution trace ptrace
ID getpid
Kill kill
Prevent swapping lock
Profile . . profil
Signal kill, signal
Suspend pause, sleep, wait

• Times . times
Trace ptrace

Processor type mtype
profil profil
Profile process execution . . profil
Program segment end .. end
Protect file chmod
Protection chmod, crypt, stat
Pseudorandom number rand
ptrace .. ptrace
pub/ascii . ascii
putc .. putc
putcbar. putc
puts puts
putw . putw
pwd.h getpwent

qsort . qsort

• Quicksort qsort

System

Index

rand ...
Random number .
re . .
read ..
Read ..

Character
File ..
Formatted
Integer .
Line
Memory
Position
Stream.
Word

Read-only file system
Real group id
Real time
Real user id
realloc
Reallocate memory
Regular expression .
Remove file
Reset stream .
Restrict file access
Return character to stream
rewind
Rewind group file
Rewind password file
rindex ..
rmt.
Root directory
rpow
Runtime condition check

sbrk
scanf
Schedule command execution
sdiv
Search for character . . .

Index

rand
rand

. init
read
read
getc
read

scanf
getw
gets

mem
fseek, lseek

. fread
getw

. . mount
getuid, setuid

ftime, stime
getuid, setuid

malloc
malloc

pnmatch
unlink

. fseek
umask
ungetc

. fseek
getgrent

getpwent
. string

tape
chroot

. . mp

. assert

. brk
scanf
cron

mp
. string

System

•

•

•

Index Index

• Search password file getpw
Search symbol table nlist
Seed rand
Seek position . fseek,)seek
Segment end . end
Send signal kill
Set:

Alarm timer alarm
Group id .. setuid
Seek position fseek, lseek
Time .. . stime
Timer alarm
User id. setuid

setbuf setbuf
setgid .. setuid
setgrent getgrent
setjmp setjmp

• setjmp.h setjmp
setkey .. crypt
setpwent getpwent
settz . ctime
setuid setuid
sgtty.h ioctl
sh .. exec, system
Shell . passwd, system
Shell's sort qsort
shellsort ... qsort
Signal ... kill, signal
signal . .. signal

Await .. pause
Meaning. signame
Process ... kill

signal.h kill, ptrace, signal, signame
signame ... signame
sin sin
Sine function . sin, sinh

• Single user mode init
sinh sinh
Size of data area . brk, end, malloc

System

Index Index

Sleep . sleep • sleep . sleep
sload . sload
smult. . mp
Sorting . qsort
Special file . mknod, mount
Specify signal disposition signal
Speed getty
spool .. lpd
Spooler. . lpd
spow . . mp
sprintf . printf
sqrt log
Square root .. log
srand rand
sscanf scanf
Standard C library . libc Library
Standard error . STDIO Library
Standard 1/0 STDIO Library • Standard input . STDIO Library
Standard output STDIO Library
stat stat
stat.h. . chmod, creat, mknod, stat
Status exit
stderr. STDIO Library
stdio . STDIO Library
stdio.h STDIO Library
stdout STDIO Library
slime . . slime
strcat string
strcmp string
strcpy string
Stream STDIO Library

Between processes . popen
Buffering setbuf
Character read . getc
Character write putc • Close fclose
Disable buffering setbuf

© @ [}{] ~ ffil ~ 00 'TI' System

Index Index

• Enable buffering . setbuf
Errors ferror
Flush . . . fflush
Input fread
Integer read getw
Integer write . . putw
Interprocess popen
Open .. . fopen
Output. fwrite
Position fseek
Read .. fread
Read character getc
Read integer . getw
Read line gets
Read word .. getw
Reset fseek
Return character . ungetc

• Seek fseek
Status ferror
String write ... puts
Unread character ungetc

· Word write . . . putw
Write fwrite
Write character putc
Write integer putw
Write string puts
Write word putw

String:
Length string
Manipulation functions . string
Pattern matching pnmatch
Write puts

strlen .. . string
strncat . . string
strncmp . string

• strncpy . . string
stty . .. ioctl
suload . sload
Suspend execution pause, sleep, wait

©@G=O~~~OO'TI' System

Index Index

swab swab • swap swap
Swap byte pairs swab
Swapping ... lock, swap
Symbol table lookup . nlist
Symbolic machine type mtype
sync sync
Sync system buffers sync
sys.s as
sys/const.h . times
sys/stat.h . chmod, creat, mknod, stat
sys/timeb.h ftime
sys/times.b times
sys/types.b . stime, utime
sys/uproc.h core
sys_errlist perror
sys_nerr perror
sysgen . . sysgen • system .. system
System boot time boottime
System call System Calls
System call error . . ermo, perror
System generation sysgen
System initialization init

tan sin
Tangent function sin, sinh
tanh sinh
tape tape
Tape devices tape
Temporary file name . mktemp
Terminal ct, getty, ttys

Active ttys
Baud rate getyy
Control ioctl
Controlling ... ct • File getty, ttys
Identification ttyname
Inactive ttys

©@ [M] ~OO~lm'TI' System

•

•

•

Index

Ports
Speed .. .

Terminate process
Test file access
time ...
Time:

Boot
Conversion
Daylight saving
Execution
Local
Of day.
Real ..
Set ...
System boot
Zone.

time.b
timeb.h.
Timer
times ..
times.b .
timezone
TIMEZONE
tmac.an
tmac.s
tmp ..
tolower .
toupper
Trace process execution
Transfer control . . .
Transportable data layout
Trigonometric functions
Truncate file
tty ...
ttyname
ttys . . .
ttyslot
Type check.
types.h ...

Index

. ... ttys

. .. getty
abort, exit

access
.. ftime

boottime
. ctime
. ctime
. times
. ctime

ftime
. ftime
. stime

boottime
. ctime
. ctime
. ftime

alarm
. times
. times
. ctime
. ctime

man
.. ms

mktemp
. ctype
. ctype
ptrace

setjmp
canon.h, swab

sin, sinh
.. creat
.. . . ct
ttyname

getty, init, ttyname, ttys
. . ttyname
. ... ctype
stime, utime

System

Index

tzname .

umask
umount
ungetc
unlink
Unlink file
Unload device driver .
Unlock process
Unmount file system .
Unread character
update
Update file systems
uproc.h
User group .
User id ...
User name .
usr / adm/ acct
usr/adm/wtmp .
usr/include ...
usr /lib/ crontab
usr/lib/libmp.a
usr/lib/lpd . . .
usr/lib/tmac.an
usr/lib/tmac.s
usr/man ...
usr/pub/ascii
usr/spool.
utime ..
utmp ..
utmp.h .

wait . .
Wait for child process
Word:

Read .. .
Write .. .

Working directory
write

Index

. ctime

umask
mount
ungetc
unlink
unlink

. sload
lock

mount
ungetc
update

sync, update
.... core

getgrent, group
getuid, passwd, setuid

getlogin, passwd
. . . acct.h
init, utmp.h
Introduction

cron
. mp
. lpd
man

ms
man
ascii

. lpd
. utime

getlogin, init, utmp.h
utmp.h

wait
wait

getw
putw

chdir, getwd
. ... write

System

•

•

•

Index Index

• Write write
Character putc
File . . write
Formatted . ecvt, printf
Integer putw
Memory mem
Position fseek, lseek
Stream. fwrite
String puts
System buffers . sync
Word putw

wtmp. init, utmp.h

xgcd mp

zerop. mp

•

•
System

•

•

•

•

•

•

COHERENT System Manual

User Reaction Report

To keep this manual and COHERENT free of bugs and facilitate future
improvements, we would appreciate receiving your reactions. Please fill in
the appropriate sections below and mail to us . Thank you.

Mark Williams Company
1430 W. Wrightwood Avenue

Chicago, IL 60614

Name:

Company:

Address:

Phone: Date:

Version and hardware used:

Did you find any errors in the manual?

Can you suggest any improvements to the manual?

Did you find any bugs in the software?

Can you suggest improvements or enhancements to the software?

Additional comments: (Please use other side.)

•

•

•

