# S-IOO MPA USER MANUAL 

San Mateo, CA
[415] 573-7359

# S-100 MPA INSTRUCTION MANUAL - PRELIMINARY 

## INTRODUCTIUR

THIS INSTRUCTION MANUAL IS DIUIDEU INTG MANY SEPERATE PARTS• THEY ARE:

INTRODUCTION
ASSEMBLY INSTRUCTIONS
OPTION SELECTION
INSTALLATION THEORY OF OPERATION
PARTS LIST
DRAWINGS
IF YOU PURCHASED YOUR S-10D MPA ASSEMBLED AND TESTED SKIP THE ASSEMBLY INSTRUCTIONS AND PKOCEED DIRECTLY TO THE OPTION SELECTION SECTION. IF YOU PURCHASED THE S-10D MPA AS A KIT, PROCEEL TO THE ASSEMBLY INSTRUCTIONS.

ASSEMLLY INSTRUCIONS

1. BEFORE ASSEMBLING THIS KIT, READ THE ENTIRE SECTION FIRST! WE WILL ASSUME THAT YOU HAUE ALL THE NECESSARY TOOLS TO SUCCESSFULLY ASSEMBLE THIS KIT. THE NECESSARY TOOLS HRE:

NEEDLE-NOSE PLIERS
WIRE CUTTERS AND STRIPPERS
A GOOD PHILLIPS SCREWDRIUEF
25 WATT SOLDERING IRON - NOTE: DO NOT UNDER ANY CIRCUMSTANCES USE A SOLDERING IRON RATED ABOVE 40 WATTS!! WE HAVE FOUND THE WELLER WP-25 IRON TO BE AN EXCELLENT CHOICE.
ROSIN CORE SOLDER - SOLDEF IS PROVIDED WITH THIS KIT. BE SURE TO USE IT OR ANY HIGH QUALITY ROSIN CORE SOLDER. DO NOT USE ACID CORE SOLDER. USE OF ACID COFE SULDER WILL NOT ONLY IMMEDIATELY VOID YOUR WARRANTY, BUT IT WILL RUIN YOUR KIT!
2. WE WILL ALSO ASSUME THAT YOU KNOW HOW TO SOLDER WELL AND AEE GENERALLY FAMILIAR WITH STANDARD TERMINOLOGY. WE WILL ALSO fSSUME THAT YOU KNOW A RESISTOR FROM A CAPACITOR ETC., AND THAT YOU CAN TELL ONE IC FROM ANOTHEF.

ALTHOUGH THIS IS BY NO MEANS A DIFFICULT KIT TO ASSEMBLE, IT IS ALSO DEFINITELY NOT SUITABLE FOR A BEGINNER'S FIRST PROJECT. CAREFULLY FEAD THE ASSEMBLY INSTRUCTIONS AND IF YOU DOUBT YUUR ABILITY TO ASSEMBLE THIS KIT WITHOUT PROBLEMS, WE STRONGLY SUGGEST YOU RETURN THIS KIT AND EKCHANGE IT FOR AN ASSEMBLED UNIT. TO THOSE WHO ARE EXPERIENCED AT PUTTING THINGS TOGETHER THIS MAY SOUND A BIT INSULTING, BUT VE WANT EUERYBODY TO HAVE A WORKING SYSTEM THE FIRST TIME.
3. BEGIN BY EXAMINING THE S-IOC NPA BOARD. YOU WILL NOTICE THAT ONE SIDE HAS A COMPONENT PLACEMENT LEGEIVD SILK-SCREENED ONTO IT. THIS WE SHALi CALL THE COMPONENT SIDE. THE REVERSE SIDE. UILL BE REFERFED TO AS THE SOLDEF SIDE OF THE BOARD. ALL COMPONENTS ARE INSERTED FROM THE COMPONENT SIDE AND SOLDERED ON THE SOLDER SIDE.

ALSO PROVIDED WITH THE S-:00 NPH IS A SMALL BOARD WITH
NO SOLDER MASK (THE GREEN GOUP) OR LEGEND ON IT. HOWEVER YOU WILL NOTICE THAT IT HAS FOIL "THACES" ON ONE SIDE ONLY•. THIS IS THE SOLDER SIDE OF THAT BOARD. OBUIOUSLY THE OTHEK SIDE IS THE COMPONENT SIDE. THIS IS CALLED THE TRANSISTION BOARD.

CHECK THE PAFTS LIST TO SEE IF ANY ARL AISSIWG. IF THEKE BAPFEN TO BE ANY MISSINU, HEPORT THL LISCREFANOY TO US OR YUUR DEALEF IMMEDIATELY. YOUE DEALEF CHM USUALLY PFUUIUE YOU VITH REPLACEAENT paETS FASTEF THAN NE CAN AT THE FaCTOFY.
 BEGIN BY INSTALLING THE IC SOCKETS. THASEE SIZES OF SOCKLTS ARE PROVIDED WITH YOUR S-IDO MPAKIT - 2 E FIN, 10 PINAND 14 JIN. TAKE A LOOK AT FIGURE 1 WHILE EXAMINING AN IC SOCHAT NOTE HOW PIN ONE OF THE SOCKLT IS UESIUNATEL. WHEN INSTALLING ALL SOCKETS MAKE SURE THAT THEIR FIA OME dESIGNATION FOIHTS UPWARD. HERE'S HON TO INSTALL A SOCKET: INSENT THE SOCKET GTOK THE COMFONENT SIDE GF THE BOARD UNTIL IT'S PLASTIC SODY IS FLUSH WITH THE BOARE. WiILE HOLDINJ THE SOCRET IN fLACL, INUE:ZT TAE BOARD AND BENE TWU LEADS ON OPPUSITE CORNLFS OUTWARD aT A 45

- DEGREE ANSLE TO HOLD THE SUCKET IN PLfOE. SET TAE BUARD CORPONENT SIDE DOWN ON YOUF: WURA TABLE GND THEN SOLEEK TAE OTKEE TNO LEADS ON OFPUSITE CORNERS TO PEFMANEMTLY FIX THE SUURET IN PLACE. IF FOF SOME REASON THE SOCYET IS NOT FLUSE OITH THE BOAFD, NON IS THE TIME TO REPOSISTION IT. DO THIS BY REHEATING THE SOLDERED LEAD WHILE APFLYING PRESSURE TO THE SOCXET FIGA THE COMPONENT SIDE. REFEAT FOR THE OTHER LIHD. THEN FEBEND THE OTHER TWO LEADS (BENT EARLIER) TO THEIE ORI AIMEL UPEIGHT POSISTION AND SOLDER GLL OF THE FEGhindNG LEhDS THERE ARE OTHER METHOLS OF SULZ2.IA S SOCRETS IN PLACE, AND IF YOU KNOW OF ONE THE YOU LIRE EETTEK FEEL FREL TO USE IT - AS LONG AS IT BOFKS SATISFPCTOHILY! SOLDEA IN THE 2 Q PIH SOORETS FIAST. THLSE AHE AT
IC LOCATIONS $12,13,23,24$ hive 25.
NEXT DO THE 1 E PIN SOCRETS. THESE ARE LOCATED AT
IC LOCATIONS $4,5,9,10,11,22$ AME 26 . $\quad$ EE CríEFUL NOT
TO INSTALL SOCKETS IU THE TMU SFAEE LOURTIUNS UUST ABOVE IC4 AND JUST TO THE RIGHT GF ICIG.

LASTLY INSTALL THE 14 PIN SUCAETS. THESE mbe LOCATED AT IC LOCATIONS $1,2,6,7,8,14,15,16,18,19,61,27$ ALi 2 28 A AGIN BE CAREFUL TO AVOID THE SPAKE IC LOCATIUNS.
6. NEYT INSTALL TKE RESISTOFS. DO THIS BY BENDING THE RESISTOR LEADS AT RIGHT hNGLES TO THE RESISTOE AND INSEKTINU THE RESISTOF LEADS THROUGA THEIF PROPAK NOUNTIVG HOLES P PLLL THE RESISTOR FLUSH TO THE BOARD EY GRASPING THE LEADS ON THE SOLDEF SIDE. BE SUEE TO BEND THE LEADS TO THE FROPEK SPACIGU FOR THOSE WITH LEAD EEMDEYS (EECOMENDED KIGHLY) ALL THE ALSISTOKS ON THE S-100 MPA AFE 4 INCHES SPGCING.

ONCE THE BESISTOR IS FULLEL FLUSH TO THE BOARD, SOLDER
IT'S LEADS ON THE SOLDEA SIDE AND THEN TRIM THEM AS CLOSE TO THE BOARD AS POSSIBLE.

YOU MAY UISH TO INSEET TEN UR SO RESISTORS AT ONE TINE AND THEN SOLDER THEN ALL AT ONCL. THIS IS PEEFECTLY OK.

MOST OF THE RESISTUES ON THE S-IQD MPA ARE $1 K$ OHMS
(BPOWN/ELACK/RED). INSTALL THESE FIRST.
IK FESISTORS (EROWDABLACK/RED) $\because O$ IN LOCATIONS BI
 THROUGH 536.

THE REAADINH AESISTORS mEE ASSORTEL VGLULS AND
HFE INSTALLED IN MCGODDADUE AITH THE FOLLOWING ThDLE:
Page 2

| R* | VALUE | COLOR CODE |
| :--- | :--- | :--- |
| R14 | $20 K$ | RED/BLACK/ORANGE |
| R17 | $1.5 K$ | BROWN/GREEN/RED |
| R18 | $7.5 K$ | UIOLET/GREEN/RED |
| R19 | $3.9 K$ | ORANGE/WHITE/RED |
| R20 | 750 OHMS | VIOLET/GREEN/BROWN |
| R21 | 470 OHMS | YELLOW/UIOLET/BROWN |
| R22 | $6.8 K$ | BLUE/GRAY/RED |
| R28 | 750 OHMS | VIOLET/GREEN/BROWN |
| R31 | $1000 H M S$ | BROWN/BLACK/BROWN |
| R37 | 270 OHMS | RED/VIOLET/EROWN |
| R38 | 180 OHMS | BROWN/GRAY/BROWN |
| R39 | $10 K$ | BROWN/BLACK/ORANGE |

NOTE THAT RID IS NOT INSTALLED UNLESS YOU HAVE THE STAND ALONE OPTION, IN WHICH CASE IT WILL BE INSTALLED LATER.
7. NEXT WE WILL INSTALL THE ZENER DIODE D3. IT IS A

IN75IA AND IT GOES IN THE LOWER LEFT-HAND CORNER OF THE BOARD. LOOK AT THE DIODE AND NOTE THE BAND AT ONE END. WHEN INSTALLING THE DIODE MAKE SURE THIS BAND IS TOWARD THE KIGHT. A SIMILAR BAND IS SHOWN ON THE COMFONENT LEGEND.

THE DIODE IASTALLS VERY SIMILAK TO A RESISTOR. SOLDER THE DIODE AND TRIM IT'S LEADS AS CLOSE TO THE BOARD AS POSSIBLE.
8. NEXT ARE THE CAPACITORS. THERE ARE THREE TYPES OF CAPACITORS INCLUDED WITH YOUR S-1QO MPA. THESE ARE DISC CERAMIC, DISC SILVER MICA. AND TANTALUM ELECTROLYTICS. WE WILL INSTALL EACH TYPE SEPERATELY.

FIRST LOCATE THE 36 PF SILUER MICA DISC CAPACITOR. THIS CAPACITOR IS DISTINGUISHED BY IT'S DEEP BROWN, SHINY CERAMIC CASE. THERE IS ONLY ONE OF THESE IN THE ENTIRE KIT.

INSTALL THIS CAPACITOR IN LOCATION C8. NOTE THAT THERE IS
NO VALUE SHOWIV ON THE LEGEND. DON'T WORKY, IT'S 36 PF . C 8 IS LOGATED TO THE RIGHT OF IC5.

INSERT THE LEADS THROUGH THE PROPER HOLES AND PULL THE CAPACITOR SO THAT IT'S CASE BOTTOM IS FLUSH WITH THE BOARD. BEND THE LEADS AT 45 DEGREE ANGLES TO THE BOARD TO HOLD THE CAPACITOR IN PLACE. THEN SOLDER AND THIM THE LEADS AS CLOSE TO THE BOARD AS POSSIBLE.

IN A SIMILAR MANNER INSTALL THE CERAMIC DISC CAPACITORS.
THE MAJORITY OF THESE ARE .047 MF . THESE CAN BE MARKED EITHER - 047 OR 473. INSTALL THESE AT LOCATIONS C2,C6. AND C12 THROUGH C22. THE REST OF THE CERAMIC DISC CAPACITORS ARE ASSORTED VALUES AND ARE INSTALLED ACCORDING TO THE FOLLOWING TABLE:

| C\# | Value | MARKINGS |  |
| :--- | :--- | :--- | :--- |
| C3 |  |  |  |
| C4 | .0047 mfd | .0047 or 472 | NOTE: THE LEGEND IS MARKED |
| C5 | .0047 mfd | .0047 or 472 | .005 FOR THESE TWO CAPACITORS |
| C7 | .047 mfd | .047 or 473 | NOTE: LEGEND MARKFD 100 |
| C10 | .1 mfd | .1 |  |
| C11 | .1 mfd | .1 |  |

FINALLY INSTALL THE THREE DIPPED TANTALUI ELECTROLYTIC CAPACITORS. NOTE.THAT THESE DEVICES ARE POLAKITY SENSITIVE. THE POSITIVE LEAD WILL BE DESIGNATED EITHER WITH A ' +' OR WITH A COLORED DOT. BE SURE TO IGSTALL THE + END IN THE HOLE MARKED + ON THE COMPONENT LEGEND.

THESE THREE CAPACITORS ARE $1 \emptyset \mathrm{MF}$ AND ABE LOCATED AT C23, C24, AND C25. C23 AND C24 ARE NEAR THE BOTTOM LEFT-HAND CORNER OF THE BOARD AND ARE INSTALLED WITH THE + LEAD TOWARDS THE RIGHT. C25 IS NEAR THE BOTTOM RIGHT-MAND CORNER OF THE BOARD AND IS INSTALLED WITH THE + LEAD TOWARDS TAE LEFT. NOTE - C23 IS ERRONEOUSLY MARKED '1' ON THE LEGEND. SOLDER THE LEADS AND TRIM AS CLOSE TO THE BOARD AS POSSIBLE. DOUBLE CHECK THE POLARITY!!!
9. NEXT WE WILL INSTALL ICI7 AND IT'S HEATSINK. IC 17 IS A DEVICE WITH THREE LEADS AND A MOUNTING TAB. IT IS A 7805 REGULATOR. IT MAY ALSO EE MAKKED LM34UT. 5 OR SIMILAR. HOLDING IC 17 IN POSISTION AT THE LOWEF LEFT-HAND CORNER OF THE BOARD, OBSERVE HOW IT'S LEADS NUST BE BENT IN ORDER TO MOUNT IT. BEND THE LEADS ACCORDINGLY. CHECK TO MAKE SURE THEY ARE BENT OK.

NOW POSISTION THE HEATSINK SO THAT IT LINES UP WITH THE MOUNTING HOLE HOLDING IT IN PLACE, INSTALL ICI7 SO That THE HEATSINK IS SANDWICHED BETWEEN THE BOAKD AND THE MOUNTING TAG OF ICI7. INSTALL THE SCREW FROH THE BACK/SOLDER SIDE OF THE BOARD THROUGH THE BOARD, HEATSINK AND THE MOUNTING TAB. INSTALL THE LOCKWASHER ONTO THE SCREW AND THEN THE INUT. TIGHTEN THE WHOLE ASSEMBLY DOWN SECURELY.

NOW INUERT THE BOARD AND SOLDEE THE LEADS OF ICI7 AND TRIM THEM OFF AS CLOSE TO THE BOARD AS POSSIBLE.
10. NEXT WE WILL INSTALL THE TRANSISTOA. IT IS A 2N3904 AND IS LOCATED NEAR THE LOWER RIGHT-HAND CORNER OF THE BOARD. NOTE THAT IT'S SHAPE IS SIMILAR TO THE SHAPE ON THE COMPONENT LEGEND. ORIENT THE TRANSISTOR SO THAT IT'S SAAPE MATCHES THAT ON THE LEGEND AND INSERT IT'S THREE LEADS INTO THE HOLES THAT THEY WOULD NATURALLY FIT INTO. PUSH THE TKANSISTOR DOWNWARDS UNTIL IT'S ABOUT $1 / 4$ INCH ABOVE THE BOARD AND BEND IT'S LEADS ON THE SOLDER SIDE TO HOLD IT IN PLACE. INVERT THE BOARD ARD SOLDER THE LEADS. TRIM AS CLOSE TO THE BOARD AS POSSIBLE.
11. NEXT INSTALL THE 8 POSISTION DIP SWITCH IN THE UPPEF LEFT-HAND CORNER OF THE BOARD. ORIENT IT SO THAT THE NUMBEFS ON THE SWITCH ARE AT THE TOP AND THE ON ARROW' POINTS UPWARD. THE DIP SWITCH IS INSTALLED SIMILAR TO AN IC SOCKET. SOLDEA ALL THE LEADS.
12. FINALLY INSTALL TiE 5D PIN EIGHT ANGLE CABLE HEADER• THIS GOES APPROXIMATELY IA THE MIDDLE OF THE BOARD AT THE TOP. NOTICE THAT THE HEADER HAS STRAIGHT PINS AND BENT PINS E INSERT THE BENT PINS, FROM THE COMPONENT SIDE, INTO THE HOLES IN THE BOARD SO THAT THE STRAIGHT PINS POINT TOWARDS THE TOP OF THE BOARD. MAKE SUPE THAT THE HEADEP. IS FIRMLY SEATED, INVERT THE BOARD AND SOLDER ALL 50 PINS. TAKE CARE NOT TO CREATE SOLDER BRIDGES BETWEEN THEM.
13. ALL THAT REMAINS IS TO PLUG THE IC'S IN THEIR SOCKETS. NOTE THE END NOTCH OR SIMILAR DESIGNATION FOR PIN ONE ON EACH IC. WHEN PLUGGING THE IC'S IN THEIR SUCKETS, MAKE DOUBLY SURE THAT PIN ONE GOES IN THE UPPEF LEFT OF EACH SOCKET:!

THE IC'S ARE INSTALLED ACCORDING TO THE FOLLOWING TABLE:

ICI
IC 2 IC4 IC 5 IC 6 IC 7 IC 8 IC9 IC10 IC1! IC 12 IC1 3 IC14 IC15 IC 16 IC 18 IC19 1020 IC21 1022 IC23 1024 1025 1 C 26
1027 1028

DESIGNATION
74LS 136
74LS 136
74LS 193
XR-215
74 LS 74
74 LS 20
74 LSO 8
74148 OF 74LS 148
74LS:57
74LS 157
811597 O-: 811595
$81 L 597$
74 L 508
74 L 508
74 LSO 4
74 LS 74
74 LSO 2
74LSDD
74 LSD 4
74367 OR 8097 OR $8 T 97$
$81 L 597$ J下 $81 L 595$
81L597
81L597 UR B1LS95
74367 OH 8097 OFS 8797
742502
741574

THIS COMPLETES ASSEIBLY OF YOUR S-100 MPA KIT.

```
NUTE: DUE TO CUNPONENT AVMALAEILITY YOUN S-10R MPA WAY BE SUPPLIED
        &ITH &1LS95'S SUBSTITUTED FUS 81LS97'S FOK IC'S 12, 23 & 25.
        DO BOT SUSSTITUTE TriEM FOR IC'S 13 0n 24!!!!!!!!
        AGAIN - &ILS95'S GAN SU IN IC LUUATIUNS 12, 23 & C'S ONLY!!!!
```

1. THIS IS THE SMALL PC BOARD THAT HAS A $40 / 80$ PIN CONNECTOR TACK-SOLDERED TO IT - NOTE THAT THIS CONNECTOR IS ONLY TACKED ON - BE CAREFUL NOT TO STRESS IT OR IT MAY BE DAMAGED.

THE FUNCTION OF THIS BOARD IS TO ADAFT THE $48 / 80$ PIN CONNECTOR WHICH PLUGS ONTO THE MEMORY EXPANSION CONNECTOR ON THE PET TO THE 50 PIN FLAT-CABLE HEADER. WL DID THIS 50 YOU WOULDN'T HAVE TO STRIP, SEPERATE AND SOLDER 5E INDIUIDUAL CONLECTIONS.
2. IF YOU EXAMINE THIS BOARD YOU WILL NOTICE THAT ONLY ONE SIDE HAS FOIL 'TRACES' ON IT. THIS IS THE SOLDEF SIDE AND OBUIOUSLY THE OTHER SIDE IS THE COMPONENT SIUE.
3. THE 40/80 PIN CONNECTOF HAS hLFERLY EEEG THCK-SOLDERED IN PLACE FOR YOUF CONVENIENCE. SET THE BURED COMPONENT SIDE DOWN ON YOUR WORK TABLE AND FINISE SOLUERIMG THE LEADS OF TME CONNECTOA TO THE FINGERS ON THE PC BOARD IN A NMWUEH SIMILAR TO WHAT HAS ALREADY BEEN DONE. TGKE CGEE NCT TO CPEATE SOLDEE BRIDGES EETWEEN THE PINS.
4. LOCATE THE EEMAINING 5 E PIN EIGHT ANGLE HEADER• NOTICE THAT IT HAS BOTH STRAIGHT PINS AND BENT PINS E INSERT THE BENT PINS, FROM THE COMPONENT SIDE, THFOUGH THE HOLES IN THE BOARD SO THAT THE STRAIGHT PINS POINT AWAY FHOM THE $40 / 80$ PIN CONNECTOR. INUERT THE BOARD AND SOLDER ALL 5 Q OF THE PINS TAKING CARE NOT to create solder bridges between them.
5. FIND TWO LENGTHS OF RESISTOR LEAD YOU TRIMMED OFF DURING ASSEMBLY OF THE MAIN BOARD. INSERT ONE OF THE LEADS THROUGH ONE OF THE HOLES MARKED 'G' AT EITHER END Ó AT LEAST $3 / 4$ OF AN INCH PROTRUDES FROM THE CONPONENT SIDE. SOLDER THE LEAD IN PLACE. TRIVI OFF ANY EXCESS UN THE SOLDER SIDE. AFTER IT HAS COOLED, BEND THE LEAD UVER TOWARDS THE UNCONNECTED PINS OF THE $40 / 80$ PIN CONNECTOR UNTIL IT TOUCHES THE ONE ON THE END. SOLDER THE WIRE LEAD AND THE CONNECTOR PIN TOGETHER AND TRIM ANY EXCESS AWAY. REPEAT THE PROCEEDURE FOR THE OTHER END OF THE BOARD.

THIS COMPLETES ASSEMBLY OF YOUR TEANSISTION BOARD.

VERY CAREFULLY INSPECT THIS BOARD FOR SOLDER BRIDGES AND SHORTS!!
These are most likely to occur between the pins of the right angle header where traces pass through the pins.

1. Once you have completed assembly of the S-100 MPA you will need to install some extra components to get the S-100 MPA to function as a stand alone CPU board. These extra components are contalined in their own seperate bag and should consist of a 6502 chip, a 40 pin socket, a 10 pf capacitor, a 330 K resistor (orange/ orange/yellow), a 1 Mhz crystal and two 1 N914 diodes.
2. Begin by installing the 40 pin $1 C$ socket. It goes in the space marked IC 3. Note that it's pin 1 designation goes toward the left side of the board. Invert the board and solder all the pins taking care not to create solder bridges between them.
3. Next install the 330 K resistor (orange/orange/yellow) in the posistion marked R10. Invert the board and solder both leads and trim them off as close to the board as possible.
4. Next install the two 1 N914 diodes in the posistions marked D1 and D2. Note that these are polarity sensitive! Make sure the banded end on the diode matches the band on the component legend. (D1 band towards the left and D2 band towards the right.) Invert the board and solder the leads, then trim.
5. Install the 10 pf capacitor in the location marked Cl. Invert the board, solder and trim.
6. Lastly install the 1 Mhz crystal. Posistion the crystal over the large pad just to the left of the IC3 socket so that the crystal's leads point upward. Note where they must be bent to go through the two holes at the top of the pad. Bend the leads accordingly. Insert the crystal's leads through the holes and push the crystal downwards until it lies flush to the board. Using a spare piece of component lead, strap the crystal down to the pad by soldering a $U$ shaped lead over the crystal into the two holes at the left and right sides of the pad.
7. Plug the 6502 ic into the socket at 103 . Note that this is a MOS device and is static sensitive! When performing this operation avold as much movement as possible and wear all cotton clothing. Be sure to orient the 6502 so that it's pin one designation is at the left.
8. The last thing to do is to remove 107 (74LS20) and 109 (74148). Carefully remove them from their sockets and save them in a safe place. Next, using spare piece of component lead, istall a jumper between the two pads labeled clock. These are located just above 1c26. Note that if you wish to go back to the PET/S-100 configuraion it will be necessary to remove this jumper and to reinstall $1 C^{\prime} s 7$ and 9 and to remove the 6502,1C3.

## OPTION SELECTION

1. There are only a few options that need to be selected on the S-100 MPA. One is for the $1 / 0$ address page select. One is If you have a 4 K PET. The last is the address mirror enable.
2. The $1 / 0$ address select is done via the DIP switch in the upper left-hand corner of the 5-100 MPA. Since the 6502 processor does not have any $1 / 0$ instructions, it must use memory locations as $1 / 0$ addresses. The 8080 processor however has 256 unique $1 / 0$ addresses. To simulate the 8080 type $1 / 0$, the $5-100 \mathrm{MPA}$ decodes 1256 byte block of memory and makes it look like 8080 1/0 addresses to the s-100 Rus. The DiP switch selects which 256 byte block is decoded.

The highest address decoded from the PET by the S-100 MPA is BFFF hex. The highest 256 byte block is therefore BFOO hex. This is the block that we reccommend you choose for the $1 / 0$ page. Any software we may provide in the future will assume this block.

To set the DIP switch for the 'standard' block, all that is needed is to set all the switches to the up posistion (on) except switch \#2. This is also marked with a 6 on the component legend but is switch \#2 on the switch itself.

If you wish to set up for a differrent block, then the switches would represent the 8 highest address lines with switch \#1 (marked 7 on the legend) representing Al5 and switch \#8 (marked 0 on the legend) representing A8. The on posistion is a 1 for that address line and the off posistion is a 0 . So if you wanted block A9 for example, you would set switches $1,3,5$ and 8 on and switches 2,4,6 and 7 off.

Note that for use with the PET only address blocks 9 through B are available due to the PET design.
3. If you have a 4 K PET you will need to install a jumper at the place marked $4 k$ on the $S-100$ MPA circuit board. This is located just above $1 C 8$. If you have an 8 K PET, nothing need be done.
4. The normal $80801 / 0$ address mode is to put it's unique 8 bit $1 / 0$ address out onto the lower 8 address lines and the same address on the upper 8 address lines. The $\mathrm{S}-100$ incorporates an address mirror circuit to simulate the $8080 \mathrm{l} / 0$ instruction more faithfully.

If for some reason you do not desire this address mirror to be active, you can defeat it by cutting the trace on the solder side of the board betwwen AM and ON and installing a jumper between AM and OFF. The location of this jumper is just above 1 Cg .

This completes the option selections of your S-100 MPA.

NOTE:BE SURE THAT THE POWER TO THE PET AND TO YOUR MAINFRAME ARE BOTH OFF BEFORE PROCEEDING!!!!!

1. First make sure you have a proper mainframe to use with the S-100 MPA. This means either a chassis, power supply and motherboard package such as an IMSAI, Vector Graphics, TEI, or Integrand or similar. Alternatively you can have a motherboard and power supply of your own design, but be sure it works and you know what you are doing. In any case be sure to verify that your system is operating properly before proceeding.
2. Now you must decide whether or not you want your system to have DMA (Direct Memory Access) and wait state capability. If you do, you will need to install two jumpers inside the PET computer. Proceed immediately to the section on modifying the PET. If you don't need wait states and DMA - most users probably don't - then you do not need to modify your PET. Anyway, you can do it any time in the future you wish.
3. Begin by attatching the ribbon cable to the Transistion Board. If you examine the cable you will notice that it has a red stripe down one side. This identifies pin one of the cable assembly. Holding the Transistion Board so that the solder side is facing downwards and the right angle header is on the top, plug the ribbon cable onto the header so that the cable exits it's socket downward. This should posistion the red stripe nearest the "1" on the solder side of the board. Make sure that all the pins mate and that you have not skewed the connector by any pin posistions.
4. Next plug the Transistion Board assembly onto the Memory Expansion connector on the right side of the PET. Make sure the solder side of the transistion board faces down. This should leave the red stripe on the ribbon cable facing towards the front of the PET. .
5. Plug the S-100 MPA into the front slot of your chassis or motherboard. It helps to have the chassis assembly sitting just to the right of the PET.

Then plug the remaining end of the ribbon cable onto the right angle header at the top of the S-100 MPA board. The cable stripe should be on the same side as the arrow silk-screened onto the board. Again check to make sure that all the pins mate and that you have not skewed the connector by any pin posistions.
6.

This completes installation of your S-100 MPA. All that remains is to apply power to the chassis and then to the PET, of course after installing any memory boards or peripherals into your S-100 mainframe. Note: unless you have a RESET switch on your mainframe ( recommended) always power-up the mainframe first, then the PET. Otherwise the PET won't know what's out there.

1. You should be at this section if you desire your PET/S-100 system to have DMA and wait states. If you do not need these functions then you don't need to modify your PET.
2. Begin by opening up the PET chassis. Do this by removing the 4 large phillips head screws located under the upper chassis lip of the PET near the front. We suggest you use a good quality Phillips head screwdriver to do this. If you use an inferior screwdriver you may strip the screws, ruining the serviceability of your PET.

Once you have the four screws removed, open up the PET and prop it up using the "dip-stick" attatched to the left side of the upper chassis.
3. Examine Figure 2 in the Drawings section of this manual. Note the approximate posistions of the Keyboard connector. Tape Deck connector, Power Supply connector and CRT connector.

Taking careful notes on paper of the orientation of each of these connectors (use the individual wire colors as a gulde) carefully remove the connectors from the PET PC board by gently pulling them upward.
4. Again examining Figure 2, note that the PET PC board is secured by three nylon mounting pins, two sheet metal screws and one machine screw.

Using a good quality Phillips head screwdriver, remove the two sheet metal screws and the one machine screw. Put them in a safe place where they won't get lost. While removing the screws, note the differences between them. It will be necessary to put them back in the proper places later.

Next, while providing a gentle upward pressure to the PC board, push in the tab on the nylon mounting pin so that the PC board is freed. Repeat for the other two mounting pins. Your PC board should now simply lift out of the chassis.
5. Turn the PET PC board upside down and orient it as in

Figure 3. Using the figure as a guide, find the pins of the 65021 C and the pins of the 10 k (brown/black/orange) resistor.

Using the figure as a guide, install the two jumpers shown using \#28 hook-up wire. Do this by first putting some extra solder on the connection points. Be sure not to create solder bridges between the traces. Also apply a small amount of solder to the very tip of the memory expansion connector fingers where it is shown on the figure (pins 31 and 32).

Then, using the wire, measure the distance between the hook-up points plus a little slack and cut the wire to the proper length. Strip about $1 / 8$ th of an inch of insulation from either end of the wire and solder it in place. Take extreme precaution not to create solder bridges between anything. Repeat this procedure for the other jumper.
6.

Reinstall the PET PC board into it's chassis by posistioning it over the nylon mounting pins and gently pressing downward on the board until it snaps in place.

Then reinstall the two sheet metal screws and the one machine screw in their proper places. Be sure not to interchange the machine screw with a sheet metal screw or vice versa! Also be careful not to over-tighten these screws.

Finally, using your notes and figure 2 as a guide, reinstall the cables that you removed in step 3. Re extremely careful not to skew any of the connectors by any posistions especially the power supply connector!

Double check that your cables are correctly reinstalied.
Lower the cover and reinstall the four screws that secure the cover. Be careful not to over-tighten these screws.

This completes the modification of your PET Computer.

The S-100 MPA has two basic functions. 1. A PET to S-100 bus adapter and 2. A 6502 CPU board for the $S-100$ bus. In this section we will describe how it performs both those functions. First we will deal with the PET to $S-100$ bus configuration.

A bit of background on the PET is in order. The PET's memory expansion bus consists of mainly the basic processor signals - the bidjrectional data bus, the address bus and the miscellaneous CPU control lines like $R / W, I R Q$ and 2 . (referring to a 6502 hardware manual will be helpful in understanding the function of these lines.)

Although the basic processor signals are brought out to the memory expansion bus, there are a few important exceptions.

The address bus normally consists of 16 bits, however the PET only brings out the lower twelve bits. The upper four bits are decoded inside the PET to 16 "address selects" (using a 74154) one for each $4 k$ byte page of memory. of the 16 possible selects only 10 are brought out to the epansion bus. This is Commodore's way of "protecting" those pages from user use.

The R/W iline is gated by several things inside the PET so it is not really normal.

RDY and SYisC are not brought out to the bus (nor are they used internally), but RDY is necessary for DMA and wait states. We have you modify your PET to bring these llnes out if you want DMA and wait states. SYNC is Just a status signal. but while you're in there we have you bring it out too.

A chart of the memory expansion bus and how it translates to the 50 conductor ribbon cable system used by the MPA is In the appendix. Now that we understand what comes out of the PET we can begin the explanation of what the $3-100 \mathrm{MPA}$ does with those signals.

First we'll begin with the clock section. 02 from the PET is running at 1 Mhz. In order to maintain lEEE specs for the $S-100$ bus, $\varnothing 1$ and $\varnothing 2$ on the $S-100$ bus have to run at 4 Mhz , not 1 Mhz . This is because the 6502 does an equivalent amount of work at 1 Mhz compared to an 8080 or $Z-80$ at 4 Mhz . Therefore the clock had to be "dummied up" to make the 6502 look like an 8080 on the bus.

IC5, an XR-215 is a high frequency phase-locked-100p (PLL) with a free running frequency determined by C 8 to be 8 Mhz . One of the inputs to the PLL is $\quad 22$ from the PET at 1 Mhz . The output of the PLL is not TTL compatible so it goes through one section of lci5. an AND gate wired as a schmitt trigger with R2I and R22. The output of the schmitt trigger goes to $1 C 4$ a 74 LSI 334 bit binary counter. This divides the 8 Mhz input to $4,2,1$, and .5 Mhz . The 1 Mhz output (pin 6) feeds the other input to the PLL. The PLL then "locks" itself to the 02 signal from the PET. This configuration is known as a frequency synthesizer because we are synthesizing an 8 Mhz signal from a 1 Mhz signal. All the resultant frequencies are then "phase locked" to the PET's D2.

The 4 Mhz output from 104 is buffered and becomes the $S-100 \quad 02$. It is gated with 8 Mhz through a section of 1 C 27 , buffered and this becomes $\quad 1$.

The $S-100$ bus always wants to see 2 Mhz at pin 49 (CLOCK) regardless of the processor speed and the 2 Mhz counter output provides this function.

Next we'll describe the address bus. The first task is to take the decoded upper address bits (SEL lines) and re-encode them. This is accomplished by $1 c^{\prime} \mathrm{s} 7,8$ and 9 . IC8 a 741488 ine to 3 line encoder does the bulk of the work. Basically when any input goes low a corresponding bit pattern is generated at the three outputs. Also, the EO line (pin 15) goes high when any input is active. This 1 C only encodes three out of the four lines we need so $1 C^{\prime}$ s 7 and 9 help it out. The output of 1 C 7 becomes A15. It is normally low but if SEL. A or B goes low then the output will go high. SELG, A and B also go through sections of $1 C 9$ to select the proper three bit pattern for A12.13 and 14 and also trigger the enable output (EO). The EO line then tells us when any SEL line is active, and therefore we can distinguish between internal and external PET operations. This is necessary in later circuitry. Now we have are four re-encoded address bits, A12-15.

Before the 16 address lines get to the S-100 bus however, they must go throygh some further processing. The 8080 and $Z 80$ decode 256 addresses for $1 / 0$ instructions. The 6502 has no such internal decode, but uses memory locations for $1 / 0$ addresses. In order to simulate 8080 type $1 / 0$ we use a brock of 256 bytes of memory addresses and convert them to $1 / 0$ addresses. There are 256 possible 256 byte blocks in the memory map. $1 C^{\prime} s 1$ and 2 form an 8 bit comparator that compares the upper 8 address lines to the setting on the dip switch. When they are equal (actually the complement of equal) the output of the array will go high. This signal then tells us when we are doing an $1 / 0$ instruction - actually a read or write to a location in the specified block.

During an $1 / 0$ instruction the 8080 outputs the port address on the lower 8 address $l$ lines and also on the upper 8 lines. The upper 8 address lines in the $5-100 \mathrm{MPA}$ are routed through 1 C 's 10 and 11 , 74LS157's. These are quad 2 input multiplexers with a select line (pin 1) telling the output to follow either the $A$ or $B$ input. Normally the select line is low allowing the upper 8 address lines to proceed to the output. However during an $1 / 0$ instruction the seiect line will go high selecting the lower 8 address lines as input. This "mirrors" the lower 8 bits in the upper 8 bits to the bus simulating 8080 type 1/0. This feature can be disabled by permanently grounding the select line by cutting the trace connecting AM to $O N$ and installing a jumper from $A!$ to OFF.

The thus processed 16 bit address bus is then buffered by IC's 12 and 23 and goes out to the $s-100$ bus. The buffers can be tristated by the ADR DISABLE line.
dext we will discuss the data bus. The 6502 and PET both have a bidirectional data bus. This means that data can flow both ways on the same lines. The $s-100$ bus has a seperate bus for data outputted from the CPU (DO bus) and data inputted to the CPU (DI bus). IC's 13 and 24 are used to buffer these busses. When the PET or 6502 is writing data, the DO buffers are turned on and the DI buffers are tri-stated. The converse is obvious. The signal that controls the buffer states a function of $R / W$ and the $E O$ line described in the address section. The PET R/W line is "anded" with PET 02 by a section of 1020 after being inverted by a section of IC16. That output is then "anded" with the EO signal. This becomes the PDBIN signal and it goes high during a processor read. This is then inverted by a section of IC19 and applied to the tri-state controls of the DI buffers.

This turns them on during a read and off during a write. The same signal is then re-inverted by a section of $1 C 20$ and applied to the tri-state controls of the DO buffers. This turns them off during a read and on during a write. If DO DISABLE is low, the DO buffers will always be disabled.

Now let's examine the Comand Control bus logic. First is PSYNC. This signal on the 8080 signifies the begining of a machine cycle. This happens only once for every three to five cycles on an 8080. The 6502 however does an equivalent amount of work in only one cycle. Therefore every cycle is a machine cycle - except during a wait cycle or a DMA cycle. IC's 28,27 and 15 generate the PSYiN signal at precisely the right time related to the $\mathrm{S}-100$ bus 02 . PSYidC will be inhibited by either a PHLDA (signifying DMA) or PWAIT(signifying a wait cycle). These two signals are "ored" by a section of IC27 *and applied to the reset input of 1028 .

XRDY and PRDY are the two wait request signals to the CPU. They are "anded" together by a section of 1020 . The resulting output is applied to the clock input of $1 / 2$ of 1 Cl 18 . When either RDY is asserted a one is clocked into 1018 . This goes through a section of IC19 and into the PET or 6502. This stops the processor if it is in a read cycle. On the next rising edge of PET 2 this signal is clocked into the second section of 1 Cl 18 . The output becomes the PWAIT signal. This signal "unsets" 106 and on the second rising edge of PET 82 clocks a zero into it. The output then resets the entire network and it is then ready for the next RDY request.

The PHOLD signal requests a DMA from the processor. It is inverted by a section of $1 C 19$ and is applied to the $D$ input of a section of ICG. When PET 2 rises it is transferred to the $Q$ output. This signal then goes through another section of 1 C19 and then to the RDY line of the 6502. This is also "anded" with $R / W$ in a section of $1 C 15$ and applied to the $D$ input of a section of 1028 . On the next PET 2 rising edge it is clocked to the $Q$ output and this is the PHLDA signal signifying that the 6502 has stopped and is ready for a DMA.

The PDBIN signal generation was described earlier in the data bus section.

PWR is the signal which says the CPU is writing. It is a function of PET 22, R/W and the EO line. Basically, PWR is low (active) when PET 2 is high, $R / W$ is low and the EO line is high, meaning it's a write to the $5-100$ bus.

PINTE is not synthesized by the $\mathrm{S}-100 \mathrm{MPA}$ but it is tied high through a section of 1022 and then to the bus.

The entire Command Control bus word is bufferred by 1 C22 and can be tri-stated by the CC DISABLE signal.

The last section is the status word. SM1 is an 8080 signal signifying an OP Code fetch cycle. The 6502 SYNC signal is exactly the same thing, so it will do nicely as SM1.

The SOUT signal signifies a write to an $1 / 0$ port. This is a function of the $1 / 0$ address comparator (described under the address line section) output and R/W. A section of 1014 "ands" the two signals and the output is SOUT.

The SINP signal is the opposite of. SOUT so it is a function of an $1 / 0$ request and the opposite state of the R/W line. 1014 also provides this function.

SWO is exactly the same signal as PWR except that it is not gated by PET 2 .

SMEMR signifies a memory read cycle. The $1 / 0$ request signal is inverted and "anded" with $R / W$ making the output high when it's not an $1 / 0$ request and it is a read. IC14 does the job here too.

SINTA, SHLTA, and SSTACK are not implemented by the $\mathrm{S}-100 \mathrm{MPA}$ but they are tied low through 1625 and applied to the bus.

The entire status word is buffered through 1025 and may be tri-stated by the STATUS DISABLE line.

For use as a stand-alone 6502 CPU, the 6502 chip replaces the PET signals as far as operation of the logic is concerned. No address re-encoding is required so $106 s 7$ and 9 are removed or the jumpers labeled Al2- Al5 are cut. The clock components are installed along with the CLOCK jumper. This replaces the PET clock.

The $S-100$ bus reset line is "anded" with the POC line and applied to the 6502 reset line. This insures a clean power-on reset. The 6502 will do a normal jump to it's reset vectors in high memory so you must have the starting address of your routines stored in ROM or PROM up there.


## Parts List

uty.
1
2
2
3
1
3
2
1
2
1
2
5
1
1

1
1

26
1
1
1
1
2
1
1
1
1
1
1
1
2
15
2
3
14
7
5

Description
IC, 74 LSO 0
1C, 74 LSO2
IC, 74LS04
IC, 74 LSO8
1C, 74 LS 20
1C. 74 LS 74
1C, 74 LS136
IC. 74148 or 74 LS148
1C, 74 LS157
1C, 74 LS193
1C, 74367 or 8097 or 8 T97
1C, 81LS97
1C. XR 215-36
1C, 7805 or LM340T-5

Transistor, 2:N3904
Zener Diode, 1N751A

Resistor, $1 k$ (brn/blk/red)
Resistor, 100 ohms (brn/blk/brn)
Resistor, 180 ohms (brn/gray/brn)
Resistor, 270 ohms (red/violet/brn)
Resistor, 470 ohms (yellow/violet/brn)
Resistor, 750 ohms (violet/grn/brn)
Resistor, 1.5K (brn/grn/red)
Resistor, 3.9 K (ong/wht/red)
Resistor, 6.8K (blue/gray/red)
Resistor, 7.5k (violet/grn/red)
Resistor, lok (brn/blk/orng)
Resistor, 20 K (red/blk/orng)
Capacitor, Silver Mica, 36 pf
Capacitor, Disc, . 0047 mfd
Capacitor, Disc, . 047 mfd
Capacitor, Disc, . 1 mfd
Capacitor, Dipped Tantalum, 10 mfd
1 C Sockets, 14 pin
IC Sockets, 16 pin
IC Sockets, 20 pin
Dip Switch, 8 posistion
Heatsink
Set of hardware - screw, nut and lockwasher
50 conductor ribbon cable
40/80 pin PC Edge connector
50 pin right angle cable headers
S-100 MPA Main PC Board
Transistion PC Board
Instruction Manual
Warranty Form
Hank of Solder



FIGURE 2.




