68000
Structured
BASIC

Reference Manual

Cromemco

68000
Structured

BASIC

‘Reference Manual
October 1984 023-4083
Rev. A
CROMEMCO, Inc. Copyright © 1984
P.O. Box 7400 CROMEMCO, Inc.
280 Bernardo Avenue All Rights Reserved

Mountain View, CA 94039

This manual was produced using a Cromemeco System Three computer
running under the Cromemco Cromix Operating System. The text was
edited with the Cromemco Cromix Screen Editor. The edited text
was proofread by the Cromemco SpellMaster Program and formatted
by the Cromemco Word Processing System Formatter II.
Camera-ready copy was printed on a Cromemco 3355B printer.

The following are registered trademarks of Cromemco, Inc.

C-Net®
Cromemeo®
Cromix®
FontMaster®
SlideMaster®
SpellMaster®
System Zero®
System Two®
System Three®
WriteMaster®

The following are trademarks of Cromemco, Inc.

c-10™
CaleMaster™
DiskMaster ™
Maximizer ™
System One ™
TeleMaster™

TABLE OF CONTENTS

Chapter 1: INTRODUCTION

Chapter 2: INSTRUCTION SYNTAX

Spaces or Blank Characters
Upper Case Characters
The Basie Prompt (>>)
Commands
Statements

Line Names

Multiple Instruction Lines

Chapter 3: NUMERIC AND STRING INTERNAL MACHINE
REPRESENTATION

Integer

Short Floating Point
Long Floating Point
Hexadecimal

String

Chapter 4: CONSTANT AND STRING LITERAL FORMATS

Integer and Floating Point Constants
Hexadecimal Constants
String Literals

Chapter 5: VARIABLE REPRESENTATION

Numerie Variables
Format of Numeric Variables
Integer Variables
Short Floating Point Variables
Long Floating Point Variables
Matrices and Lists
String Variables
Format
Dimensioning String Variables
Referencing String Variables
Method 1: svar
Method 2: svar {-aexp)
Method 3: svar (aexp)
Method 4: svar (aexpl, aexp2)
Method 5: svar (aexpl, —aexp2)
Examples of Referencing Substrings

S~ Lo n

10
11
11

13

13
14
15

17

17
17
17
18
18
18
19
19
20
20
22
22
24
24
23
26

Chapter 6:

OPERATORS

Arithmetic Operators
Assignment Operator
Relatiopal Operators
Boolean Operators
And Boolean Operator
Or Boolean Operator
Xor Boolean Operator
Not Boolean Operator

Chapter 7:

PROGRAMMING EXAMPLES

The RUN or Program Execution Mode
Program Editing
Example Program
Listing to a Disk File
Reading a Program From a Disk File
Using the SAVE and LOAD commands
Statistical Analysis Program

Chapter 8:

INSTRUCTIONS FOR DEVELOPING A PROGRAM

Automatic Line Numbering

Bye

Delete Statement Lines
List Disk Files

Edit Program Lines
Find String

Change String

Enter File

List Current Program
List Variables

Load Program
Renumber Statement Lines
Run Program

Save Program

Scrateh User Area
Enable Trace Option
Disable Trace Option

Chapter 9:

Remark

DOCUMENTATION

29

29
30
32
34
34
34
35
35

37

40
42
43
44
45
46
46

49

50
o1
52
54
53
a7
58
99
61
63
64
65
68
69
70
71
72

73

73

Chapter 10: ASSIGNMENT INSTRUCTIONS 75

Let 75
Matrix Initialization 77
Chapter 11: INITIALIZATION 79
Mixed Mode Operations 79
Degree Mode 82
Dimension 83
Integer Mode 84
Integer Variable 85
Long Floating Point Mode 86
Long Variable 87
Radian Mode 88
Short Floating Point Mode 89
Short Variable ' g0
Chapter 12: CONTROL STRUCTURES a1
Continue Program Execution : 91
End Program Execution 92
For-Next Loop 93
Gosub-Return 96
Gosub-Retry 98
Goto 100
If-Then ' 102
If-Then-Else ' 104
On~Goto, On-Gosub 106
Repeat-Until Loop 107
While-Endwhile Loop 108
Stop Program Execution 110
Chapter 13: CONSOLE AND DATA INPUT/OUTPUT 111
Input (from the console) 111
Print (to the console) 114
Read Data 117
Restore Data Pointer 118

Data 119

Chapter 14: OUTPUT FORMATTING 121

Print Using 121
Digit Formatting 123
Comma (,) 124
Decimal Point (.) 125
Fixed Plus (+) and Minus (-) Signs , 125
Floating Plus (++) and Minus (~-~) Signs 126
Fixed Dollar Sign ($) 126
Floating Dollar Sign ($$) 127
Exponent Fields (1111) 127

Space 129

Tab 130

Chapter 15: INPUT AND OUTPUT TO DISK FILES AND

DEVICE DRIVES 133

How the Files are Organized 133
Records 134
Fields 134
File Pointer - 134
Sequential Files 135
Random Files 136
Internal Machine Vs. ASCII Representation 136
Differences in the Input and Output Instructions 137
Print and Input 137
Put and Get 138
Input and Output with Charaecter Strings 138
Using the Device Drivers 138
Standard Console Driver 138
$CO Console Driver 138
Disk Drivers 139
Line Printer Driver 140
Using Channels 140
Create File 141
Open File 142
Close File 144
Erase File 145
Rename File 146
Rename File 147
Print 148
Input 152
Put Record 155

Get Record 158

Chapter 16: FUNCTIONS - 163

Writing Programmer Defined Functions 164
Programmer Defined Function 164
Arithmetie Functions 166
Absolute Value 167
Binary Operations 168
Exponent 169
Fractional Portion 170
Integer Portion 171
Integer Random Number Generator 172
Logarithm 173
Maximum Value 174
Minimum Value 175
Randomize 176
Random Number Generator 177
Sign 178
Square Root : 179
Trigonometric Funetions 180
Arctangent 181
Cosine 182
Sine 183
Tangent 184
String Functions 185
ASCII Value of a Character 186
Character 187
Expand String 188
ASCII Hex Representation 189
Length of String ‘ 190
Position of Substring 191
String Equivalent 193
Value of String 194
Value of String With Error Checking 195
Time and Date Funetions 196
Set Time or Read Time 197
Set Date or Read Date 198
Chapter 17: SYSTEM AND FILE STATUS 199
Disk Drive 199
Enable Echo 200
Disable Echo 201
Enable Escape 202
Disable Escape 203
Free Space 204
1/0 Status 205
On Error Transfer Control 206
On Escape Transfer Contrel 207
Set System Parameter 208
System Parameter 210

Execute a Shell Command 213

Chapter 18: MACHINE LEVEL INSTRUCTIONS

Address of a Variable

Input From I/0 Port

Output To 1/0 Port

Peek At Memory

Poke Into Memory

Call a User Program

Type of Variable

Basic-KSAM Numeric Sorting Conversions

Chapter 19: SCOPE OF VARIABLES

Common Storage Area Method I
Common Storage Area Method 11

Defining and Accessing the Common Storage Area
Define Local Variable

Chapter 20: PROCEDURES

Using Partitions

Using Procedures

Using Libraries

Example Programs
Library Builder
Procedure Call
Procedure Definition
Procedure End
Procedure Error End
Procedure Exit
Clear Partition
Seleet Procedure Library
Use Partition
Loeck Partition
Unlock Partition

Chapter 21: PROGRAM SECURITY

Delete Remark Statements
Protect Program Lines

215

215
216
218
219

220

221
223
224

225

225
227
227
230

235

236
237
238
239
243
244
247
248
249
250
251
252
253
254
255

257

257
259

Chapter 22: BASIC-ESAM
Logical Structure
Data Set
Key Set
Header
Physical Structure
Logical Records and Keys
Unused Block Space
Keys
Primary Key
Alternate Keys
Key Length
Record Retrieval
Alternate Key Files
The Current Record Pointer (CRP)
Sample Basic-KSAM File Handling Program
Basie-KSAM Instructions
Summary of Instructions
File Instructions
Create Primary Data File
Close File
Open Primary File
Add Velume to Existing File
Sequential Access Instructions
Read Previcus Record, Primary File
Read Next Record, Primary File
Randem Access Instructions -
Read Random Record, Primary File
Read Approximate, Primary File
Update Record, Primary File
Delete Record, Primary File
Read Nth Record, Primary File
Add Record, Primary File
Load Record, Primary File
Current Record Instructions
Read Current Record, Primary File
Retrieve Primary Key, Current Record
Read Fields, Current Record
Write Fields, Current Record
Alternate Key Instructions
Create Alternate Key File
Open Alternate File
Read Primary Record by
Current Alternate Key
Read First Primary Record by
Specified Alternate Key
Read Next Primary Record by
Current Alternate Key
Verify Alternate Record
Add Record, Alternate File
Delete Record, Alternate File

261
262
262
262
262
262
263
263
263
263
264
264
264
264
267
268
270
271
273
274
2786
277
278
278
279
280
281
282
283
284
285
286
287
289
289
290
291
292
293
294
295
297

298
299
300
301

302
303

KSAMUT Utility Program
KSAMUT Prompts
ESAMUT Commands

Error Codes for KSAM Functions

Chapter 23: GLOSSARY
Chapter 24: BASIC ERROR MESSAGES

Fatal Errors
User Trappable (Non-Fatal) Errors

LIST OF APPENDICES
Appendix A: ASCII CHARACTER CODES

INDEX

304
305
306
310

315

327

327
331

337

339

Cromemeo 68000 Structured Basie Instruction Manual
1. Introduction

Chapter 1

INTRODUCTION

Basic is a friendly language that many programmers chose for developing small
and medium-sized programs. The friendliness comes from the few restrictions
placed on the programmer. For instance, when you stop program execution with
the ESCAPE key, you can display and change the values of the program's
variables, and then continue execution.

Cromemeo 68000 Structured Basic incorporates the essential features of the
Basic language and goes beyond them. During the past decade there has been
an increasing awareness of the difficulties in developing complex computer
programs. Once a program exceeds 1000 lines of program code the produetivity
of the programmer writing it falls dramatically.

The solution is to write modular programs, which inerease productivity because
no portion of the program is more than a few hundred lines long. A number of
structured languages exist which facilitate modular programming practices,
A structured language allows the programmer to create bloeks of code which
comprise the program. Structured languages also have program econtrol
statements that allow and insure that these blocks of code can operate
independently of other blocks of code. Thus standard modules can be written
that consist of many of these blocks.

Structured Basic is designed to allow these important programming practices
to be used in the very popular Basie programming language. In addition, it is
designed to provide the programmer with the most computing power per line of
code ever offered in a version of Basic. This increase in programming power is
provided to enable the programmer to quickly write programs that do more than
ever before. It also assists the programmer in writing programs that are able
to work correctly on the first try,

It is in programs of less than 10,000 lines of code that Cromemco Structured
Basic differs from other structured languages, such as Algol and Pascal. These
other languages restrict the programming practices to those appropriate for
major software undertakings that might be expected to take several years of
programming and involve many programmers working together and creating tens
of thousands of lines of program code. The interactive power of Basic and the
philosophy of its versatility and error tolerance are intentionally not
implemented in these languages to discourage poor practices for large programs.

Structured Basic extends the capability of most Basies. These extensions are
provided to enable programs to be written more quickly and make it more likely
that these programs will work on the first try. These extensions include the
following features:

Cromemco 68000 Structured Basie Instruetion Manual
1. Introduction

10.

11.

12.

13.

Variable names up to 31 characters, such as "Present'worth" and
"Interest'rate” may be used. All characters in the name are verified to
insure uniqueness.

Statement labels may be referenced in addition to line numbers. Goto
Io'driver is a valid instruction.

REPEAT, WHILE, IF-THEN-ELSE, and PROCEDURE statements of
structured languages are provided.

Module handling instructions may be used to create programs that are
swapped into memory from a Procedure Library file on disk. This automatic
loading of software modules, each with its own local variables, makes it
easy to write programs of indefinite length without regard for the computer
Random Access Memory capacity.

Extended string functions allow the insertion of strings within strings and
unambiguous conversion of strings to numeric representations.

A Keyed Sequential Access Method (KSAM) is provided to simplify and
speed up contents-oriented file accesses such as are found in data base
programming.

A line-oriented text editor is provided to facilitate programming changes.

The LVAR command is provided to enable all the variables used in the
program to be listed.

High execution speed resulting from a semicompiling design. Execution
rate is as fast for large programs as it is for small programs. This feature
is not available in most other versions of Basic.

High accuracy 14 digit arithmetic. The binary coded decimal arithmetic
used in 16K Extended Basic is essential for accounting and business
programming applications.

Extensive string handling and output formatting ecapabilities. These
Cobol-like capabilities make report and forms generation easy.

Versatile random and sequential disk access methods.

Automatically indented listings denoting loops and other control
structures.

Cromemeo 68000 Structured Basie Instruetion Manual
1. Introduction

GETTING STARTED

Before the Structured Basie program can be used, the Structured Basic
interpreter must reside in the current directory or the /bin directory.

To load the Basic program, give the following command:
sbasic68

A few seconds after you call the Basic program, the Basic sign on message will
be displayed followed by the Basic prompt (>>). Basic has now been loaded into
the computer's memory and is waiting for instructions.

All lines entered in Basic must be terminated by depressing the RETURN key.
Basie will pot respond to an instruetion, accept any input, or complete a
command unless it is terminated by a RETURN. If Basic does not seem to be
responding as you think it should, make sure that you have properly terminated
the current line (with a RETURN),

The Command or Immediate Mode
Whenever the Basic prompt (>>) is displayed, Basie is in the immediate mode.
This means that an instruction (command) can be entered and Basic will respond

immediately after the RETURN key is depressed.

Refer to chapter 7, "Progrémming Examples" for examples of simple programming
funetions you can perform.

Cromemeo 68000 Structured Basic Instruction Manual

Cromemeo 68000 Structured Basie Instruction Manual
2. Instruetion Syntax

Chapter 2

INSTRUCTION SYNTAX

The Cromemeco Structured Basic language is designed to allow the user to
structure and format a program in a wide variety of styles. This section covers
the features whieh allow this flexibility as well as those elements of Basic
syntax which do affect program operation.

SPACES OR BLANK CHARACTERS

In most cases, a space is now required after a Basic key word. The following
two instructions, for example, are not equivalent.

GOTO10
GOTO 10

Basic would consider the first, GOTO10, to be a variable name. Basie would
consider the second, GOTO 10, to be a legal instruction.

UPPER CASE CHARACTERS

Basic instructions can be entered in any combination of both upper and lower
case characters. Upon LISTing a program, Basic will convert key words and
variable names into its own format, initial character upper case, the rest lower
case. REMarks and string literals will remain exactly as entered.

THE BASIC PROMPT (>>)

When Basie is ready to accept a command or statement line, it displays a prompt
which consists of two greater than symbols (>>). The purpose of the prompt
is to indicate that Basic has finished its last task and is waiting for the user's
next instruction.

Cromemeo 68000 Structured Basie Instruction Manual
2. Instruetion Syntax

COMMANDS

A command is a Basie instruction which is executed immediately (as soon as the
carriage RETURN key is pressed). Commands have no line numbers because they
are not stored by Basic.

Cromemeo Structured Basic allows most instructions to be used as commands.
For example, Basic can be used as a calculator while it is in the command mode:

>>Print 20000/5
4000

>>Print (4000+77)/63.
64,714285714285

As can be seen, a command may be given whenever the Basic prompt (>>) is
displayed.

In this manual, the term instruction includes both commands and statements.
All instructions listed as instructions or commands may be used as commands,
while those listed as statements may not be used as commands.

STATEMENTS

A statement is a Basic program line which contains one or more instructions,
and whieh is stored for execution at a later time. Statements are not executed
until the RUN command, or some other command which will begin execution of
a program, is given. A statement line has a unique line number (within a program
or Partition) by which it can be accessed. If a second statement is entered with
the same line number as a line which already exists, the original line will be
replaced by the new line.

Cromemeco Structured Basic allows most instructions to be used as statements.
For example, one Basie program can LOAD and RUN another Basic program:

100 Run "Prog2"

Execution of this statement will cause Prog2 to be LOADed into the User Area
and execution to begin.

In this manual, the term instruction includes both statements and commands.
All instructions listed as instructions or statements may be used as statements,
while those listed as commands may not be used as statements.

Cromemeo 68000 Structured Basie Instruction Manual
2. Instruction Syntax

Line Names

A statement line may be referenced either by a line number or by an
alphanumeric line name. A line name includes from 1 to 31 characters. The
first character must be alphabetic. Each of the remaining characters may be
alphabetie, numerie, or the apostrophe (').

Label a line with a name by following the line number with an asterisk and line
name. The asterisk and name is considered an instruction which declares the
name of the line. The line may contain additional instructions separated by
colons as specified by Basic syntax.

Label names are used with GOTO and GOSUB to transfer CONTROL from one part
of a program to another. They may also be used to reference various parts of
a program for EDITing, statement RENUMBERIing, etec.

Example:

10 *Beginning

e

50 Gasub Get'data
60 Gosub Process'l9

90 Goto Beginning

300 *Get'data : Data'pointer=1

360 Return
400 *Process'l9 : Error'flag=0

®

450 Return

Multiple Instruction Lines

Cromemeo Structured Basie allows more than one instruction to be associated
with a single line number. Each pair of adjacent instructions must be separated
by a colon (:). The number of instructions which may appear on a single line
is limited only by the length of a line. For example:

10 *Start : Input Quan : If Quan<0 Then Goto Start
20 Print Sqr(Quan) : Print : Print
30 Rem Line 20 will print, then skip 2 lines

Cromemeco 68000 Structured Basie Instruetion Manual
2. Instruetion Syntax ‘

User defined functions (DEF FNs) and DATA statements must appear as a single
instruction on a line. The following instructions may appear as part of a
multi-instruction line but they must be the last instruction on the line, i.e., no

other instruction may follow on the same line.

DELETE
ENDPROC
ENTER
ERRPROC
EXITPROC
LIST
ON-GOSUB
ON-GOTO
REM

RUN

SCR

A colon may not terminate a multiple instruetion line. A colon must be followed

by another instruection.

The IF-THEN instruction is unique when followed by other instructions on the
same line. The reader is referred to the IF-THEN instruction for a further

discussion.

Cromemeo 68000 Structured Basic Instruction Manual
3. Numeric and String Internal Machine Representation

Chapter 3

NUMERIC AND STRING
INTERNAL MACHINE REPRESENTATION

Numeric and string alphanumeric information is stored by Basie in different
forms. This section explains these different formats.

INTEGER

Integers are whole numbers and in Structured Basic they must be within the
range +32767 to -32768. When stored by Basic, an integer occupies 2 bytes of
memory.

Integer numbers are stored low byte first, high byte second. If the high bit of
the high byte is a 1, then the number is negative; if it is a 0, then the number
is positive,

A positive number is stored as the binary representation of the number.

A negative number is stored as the 2's complement of the number.

Example:

The number 1234 will be represented by the hexadecimal bytes D2
04 when stored as an Integer. When the order of the bytes is
reversed (04 D2) this is the binary equivalent of the decimal number
1234.

The number -1234 will be represented by the hexadecimal bytes 2E
FB when stored as an Integer. When the order of the bytes is
reversed (FB 2E) this is the 2's complement of the binary equivalent
of the decimal number 1234, Because the high bit of the high byte
is 1, the number is negative (-1234).

SHORT FLOATING POINT

A Short Floating Point number stored by Basie occupies 4 bytes, has an accuracy
of 6 digits, and must be within the range +9.99E+62 to +9.99E-65,

Cromemeco 68000 Structured Basie Instruction Manual
3. Numerie and String Internal Machine Representation

The first byte of a Short Floating Point number contains the sign of the number
and the exponent in excess-40h (or 64 decimal) notation. If the high bit of the
first byte is a 1, then the number is negative; if it is a 0, then the number is
positive. Note that this is not the sign of the exponent but rather of the number
itself. The remaining 7 bits of the first byte contain the exponent plus 40h.
In order to find the true exponent, 40h (64 decimal) must be subtracted from
this number. »

The remaining three bytes contain the BCD (Binary Coded Decimal) mantissa
which has been normalized to a value between 0 and 1. The implicit decimal
point is located before the first byte of the mantissa. Each byte of the mantissa
can contain 2 significant digits yielding a total of 6 significant digits for a Short
Floating Point number.

Example:

The number -1.2345E+21 will be represented by the hexadecimal
bytes D6 12 34 50 when stored as a Short Floating Point number.

The first bit of the first byte is a 1 indicating that the number is
negative, The remaining 7 bits of the first byte (56h or 86 decimal)
is the exponent plus 40h. To get the true exponent 40h must be
subtracted from 56h. This leaves an exponent of 16h or 22 decimal.
This is not the exponent of the original number because the number
was normalized. In this example, normalization involved dividing
the number by 10 and adding 1 to the exponent to compensate for
the division.

The remaining three bytes are the BCD representation of the
normalized number. BCD stands for Binary Coded Decimal which
is a method of representing a decimal number in binary. Using this
method, each byte can contain two one digit decimal numbers. As
can be seen from the example, non-significant digits are zero filled.

LONG FLOATING POINT

A Long Floating Point number stored by Basic occupies eight bytes, has an
accuracy of 14 digits, and must be within the range +9.99E+62 to +9.99E-65,

The internal representation of a Long Floating Point number is similar to that
of a Short Floating Point number. The difference is that four additional bytes
are added to the mantissa for a total of seven bytes, yielding 14 significant
digits.

10

Cromemeo 68000 Structured Basic Instruction Manual
3. Numeric and String Internal Machine Representation

HEXADECIMAL

A hexadecimal number occupies two bytes and must be within the range 0h to
FFFFh.

The internal representation of a hexadecimal number is the same as that of an
Integer. Except for the binary functions, hexadecimal numbers are treated as
signed integers. (Refer to the section "Integer" at the beginning of the chapter.)

STRING

A string is an ordered list of alphanumeric information. Examples of strings
include words, sentences, parts of words, groups of letters or special
characters.

Elements of a string (characters) stored by Basic occupy 1 byte each. Each
character is represented internally as an eight bit number which is normally
considered to be the ASCII (American Standard Code for Information
Interchange) code for the character being stored. Bit number 7 (the high bit)
is a parity bit in the ASCII convention (it is normally zero in Struetured Basic)
and, although it affects string comparisons, it does not affeect the character
which is PRINTed. Only GET and CHR$ can return a string byte with the high
bit set (=1).

11

Cromemeo 68000 Structured Basie Instruction Manual

12

Cromemeo 68000 Structured Basie Instruction Manual
4, Constant and String Literal Formats

Chapter 4

CONSTANT AND STRING LITERAL FORMATS

Constants are, as the name implies, unchanging. They each have one value.

String literals are similar to constants in that they each maintain one value
which does not change.

This section covers the standard formats for constants and string literals in
Structured Basic.

INTEGER AND FLOATING POINT CONSTANTS

A constant is a number. It does not change value and is represented as it would
be in any arithmetic computation.

There are three types of constants: integer, floating point, and hexadecimal.
All constants (not specified as hexadecimal) equal to or greater than 10,000
and those containing a decimal point are always stored by Basic as floating point
numbers (either Short or Long Floating Point depending on the current mode,
but always Long if there are more than 6 significant digits). All constants {(not
specified as hexadecimal) with a value less than 10,000 and not containing a
decimal point are stored by Basic as Integer numbers.

Constants
Floating Point Integer
20000 55
3. 9985
.000376 5
12.7 458

Floating point constants (1.2, 3., 1EB, etc.) are stored according to the mode
whieh is active when they are entered. An exception is a constant with more
than 6 significant digits, which is always stored as a Long Floating Point number.
For example, if the active mode is set to Short Floating Point (refer to the
SFMODE instruction) and the following commands are given:

>>Long Long'num
>>Long'num = 1./3.

13

Cromemeo 68000 Structured Basie Instruction Manual
4. Constant and String Literal Formats

Long'num will be assigned a value of 0.33333300000000 because 1. and 3. are
SHORT (SFMODE was current when they were entered). But, under the same
circumstances, if we had said:

>>Long Long'num
>>Long'mum = 1./3.00000000

Long'num would have been assigned a value of 0.33333333333333 because
3.00000000 is forced to LONG (more than 6 significant digits).

If in the two previous examples, the current mode had been Long Floating Point,
Long'num would have received a value of 0.33333333333333 in both cases
because both 1. and 3. would have been stored as Long Floating Point numbers.

HEXADECIMAL CONSTANTS

Hexadecimal numbers are used in base 16 arithmetic. The set of digits used in
hexadecimal arithmetie is 0 through 9 and A through F.

In Cromemeco Structured Basic, hexadecimal constants are identified by leading
and trailing percent (%) signs. The trailing percent sign may be omitted when
this will not create an ambiguous expression.

Constants
Equivalent

Hexadececimal Decimal

%8000% -32768

%9000% ~28672

%FFFF% -1

%9% 9

%A% 10

%F% 15

%10% 16

%80% 128

%FF% 255

%100% 256

%TFFF% 32767

A hexadecimal number is stored in the same format as an Integer and may be used
wherever a constant is allowed.

14

Cromemeco 68000 Structured Basie Instruction Manual
4, Constant and String Literal Formats

STRING LITERALS

A string literal is a string which is enclosed between quotation marks. The
quotation marks are not part of the string itself, but are used to delimit (mark
the ends of) the string. The value of a string literal does not change.

A quotation mark can be represented within a string literal by the use of two
quotation marks, one immediately following the other.
String Literals

"This is a string literal”

"Here are imbedded ""quotation™" marks"

"{special} *+- characters are OK!"

" just spaces"”
The trailing quotation mark on a string literal is not required at the end of a

line being entered. In this case, the RETURN will terminate, but not be a part
of, the string literal.

15

Cromemeo 68000 Structured Basic Instruction Manual

16

Cromemeco 68000 Structured Basie Instruetion Manual
5. Variable Representation

Chapter 5

VARIABLE REPRESENTATION

Variables are, as the name implies, able to change or vary in value. As a program
is executed, variables may be assigned new values at any time. This section
covers the standard formats for variables in Structured Basie.

NUMERIC VARIABLES

Numeric variables may be assigned numeric values. The range and accuracy of
these variables depends on their type. Refer to the chapter on "Numeric
Internal Machine Representation" for more information. :

Format of Mumeric Variables

A variable name includes from 1 to 31 characters. The first character must
be alphabetic. Each of the remaining characters may be alphabetic, numeric,
or the apostrophe (').

Variable names may be entered in lower or upper case characters, or any
combination of the two. Basic will convert the variable name into its format
which is an initial upper case character followed by all lower case characters.

The following are examples of legal variable names:

Interest'rate

A

Al23

Namel$
Price’to'earnings'ratio
Stock'number

Integer Variables

Specific variables may be set to INTEGER by the INTEGER instruction. The
default mode for variables may be set to INTEGER if the IMODE instruction is
given before the RUN instruction. Refer to the sections covering "Integer
Internal Machine Representation", and the "INTEGER" and "IMODE™"
instructions.

17

Cromemeco 68000 Structured Basice Instruction Manual
3. Variable Representation

Short Floating Point Variables

Specific variables may be set to Short Floating Point by the SHORT instruetion.,
The default mode for variables may be set to Short Floating Point if the SFMODE
instruetion is given before the RUN instruction. Refer to the sections covering
"Short Floating Point Internal Machine Representation", and the "SHORT" and
"SFMODE" instruections.

Long Floating Point Variables

Specifie variables may be set to Long Floating Point by the LONG instruction.
Long Floating Point mode is normally the default mode. If the mode has been
changed to SFMODE or IMODE, the default mode for variables may be reset to
Long Floating Point if the LFMODE instruction is given before the RUN
instruction. Refer to the sections covering Long Floating Point Internal Machine
Representation, and the LONG and LFMODE instructions.

Matrices and Lists

A matrix is an array of numeric variables in a preseribed form. For example, the

array:
3 2 0

1 4 6

-3 4 5

is a matrix with three rows and three columns. A matrix with m rows and n
columns is written:

all al2 al3 ...aln

a2l a22 a23 ...a2n

-
L3

&

aml am2 am3 ...amn

The individual entries in the matrix are called elements or cells. For example
the quantity aij in the above matrix is the element in row i and column j.
Subseripts used to indicate elements always denote the row first and the column
second. Cromemco Basic permits the user to define one, two, or three
dimensional matrices. A two (i.e., Mij) or three (i.e., Mijk) dimensional matrix
is commonly called a table. A one dimensional matrix, a matrix with n columns
but only one row, is commonly called a list. For example, the matrix:

18

Cromemeo 68000 Structured Basie Instruetion Manual
5. Variable Representation

3, -1, 5, -8

is a list (or a matrix) with one row and four columns.

A matrix may be defined to be composed of Long or Short Floating Point or
Integer variables,

A matrix is named in the same manner as a numeric variable. A specific element
of a matrix is accessed by the matrix name followed by 1, 2, or 3 indices enclosed
in parentheses. These indices may be numeric expressions, variables, or
constants.

Singly DIMensioned matricies are implieitly DIMensioned as 10, Larger singly
DIMensioned as well as 2 and 3 DIMensional matrices must be explieitly
DIMensioned by the DIMension, INTEGER, LONG, or SHORT instruction.

An element of a matrix may be used anywhere a numeric variable is allowed.

STRING VARIABLES

String variables may be assigned alphanumeric values, This includes all letters
(both upper and lower case), numbers, and all printable and non-printable
characters. Refer to the section on String Internal Machine Representation for
more information.

Format

A string variable name includes from 1 to 31 characters. The first character
must be alphabetic. Each of the remaining characters may be alphabetic,
numerie, or the apostrophe ('). The last character must be a dollar sign ($).

String variable names may be entered in lower or upper case characters, or any
combination of the two. Basic will convert the string variable name into its
format which is an initial upper case character followed by all lower case
characters.

The following are examples of legal string variable names:
Text$
Page$(Character)

Last'name$
Address$

19

Cromemeo 68000 Structured Basie Instruction Manual
5. Variable Representaticn

Dimensioning String Variables

There is, for most purposes, no limit to the size (i.e., number of characters) of
a string literal that may be assigned to a string variable. However, the default
value in Structured Basie for string size is 11 or fewer characters. If string
values of more than 11 characters are to be assigned to a variable, the string
variable must be DIMensioned. The DIM statement is used in Basic to define the
size of a string variable (refer to the "DIM" instruction).

Example:
10 Dim Apples$(20), Pears$(30), Bananas$(40)

In this example, the string variable Apples$ is DIMensioned to allow for strings
up to 21 characters in length, the variable Pears$ is dimensioned to allow up
to 31 characters, and Bananas$ is dimensioned for up to 41 characters. Any
string value assigned to a variable which exceeds the specified dimension is
truncated. Consequently, the programmer should be sure to DIMension string
variables to handle the largest string which will be input.

Note: DIM Apples$(20) allows a 21 character string because string bytes are
numbered from Q through the specified DIM size. Remember that using
the 0'th element of strings (and arrays) can save memory space,

A string of LENgth zero is called a pull string.

Referencing String Variables

In many cases, the data needed from a string is contained in a subset of the
string. Say, for example, a programmer wants to allow a user to enter either
Yes or Y in response to a question. The programmer could do it this way:

70 Print"More data?";

80 Input Response$

90 If Response$="YES" or Response$="Yes" Then Goto 140
100 If Response$="yes" or Response$="Y" Then Goto 140
110 If Response$="y" Then Goto 140

120 .

a

By referencing just a substring of Response$, the first character in this case,
the programmer could shorten this to:

20

Cromemec 68000 Structured Basie Instruction Manual
5. Variable Representation

-

.

70 Print"More data?";

80 Input Response$

90 If Response$(0,~1)="Y" or Response$(0,-1)="y" Then Goto 140
100 .

®

Structured Basic offers five ways to reference all or part of a string variable.
While reading the description of these methods, keep these points in mind:

All string variables are actually one DIMension arrays. By default, the
arrays are 11 characters long. Longer string variables can be declared
with the DIMension instruction.

Each position within the array holds one character. Basic references the
positions by numeric subseripts. The first position is number 0. The last
position has the value of the DIMension of the string. For example, an
array of DIMension 100 is referenced from position 0 through 100. Basic
allows positions to be referenced with numeric constants, variables, or
arithmetic expressions. These are all legal references to positions:

A$(6)
A$(6+2)
A${(Sum)
A${(Sum+5)

When placing data into a string variable, some of the methods of
referencing positions cause Basic to first replace the data in the indicated
range with null characters. Other methods do not.

The discussion of the different referencing methods use several acronyms
deseribed here:

svar
This refers to the name of a string variable.
aexp

This refers to the arithmetie expression indicating a subseripted position
within the string variable.

21

Cromemeco 638000 Structured Basic Instruction Manual
5. Variable Representation

Method 1: svar

The first method references the string variable from the first position to the
last position containing a non-null character. When this method is used for
assigning a value to the variable, Basie places nulls into every position and then
assigns the string to the variable. The following program demonstrates this:

>>List

10 Rem -~ First, the variable is dimensioned

20 Dim String$(100)

40 Rem -~ The variable is assigned one string

50 Stripg$="XXXXXXXXXXXXXXXXXXXXXXXXX"
60 Print String$

70 Rem -- When the variable is assigned a second
80 Rem -- string, the first string is completely

90 Rem -- erased.

100 String$="abe"

110 Print String$

>>Run
) 9.9.9.9:9.9.:9.9.9.9.99.9.90.0.9.9.0.90.9.9.90.¢.4
abe

*RFFErkk

Basic also nulls the entire array when a string variable is assigned a value with
the INPUT and GET instructions.

For comparisons and output, Basic references the array from the first position
to the last position containing a non-null character. Trailing nulls are ignored.
This makes this method convenient for writing to a console or printer, but could
cause problems when a programmer wants to write fixed-length records to a disk
file.

Method 2: svar(-aexp)
The second method references the string variable from the first position to the
last position in the array. This method differs from the first method in that for

output, nulls trailing the last non-null character are not ignored.

In this format, aexp is any number preceded by a minus sign. Regardless of the
value of aexp, the variable is referenced from the first position to the last,

When this method is used for assigning a value to the variable, Basic places nulls

into every position and then assigns the string to the variable. The following
program demonstrates this:

22

Cromemeo 68000 Structured Basie Instruction Manual
5. Variable Representation

>>List -

10 Rem -- First, the variable is dimensioned

20 Dim String$(100)

40 Rem -~ The variable is assigned one string

50 String$="XXXXXXXXXXXXXXXXXXXXXXXXX"
60 Print String$

70 Rem -~ When the variable is assigned a second
80 Rem -- string, the first string is completely

90 Rem -~ erased,

100 String$(-1)="abc"

110 Print String$

>>Bun
) 9.9.9.90.9.9.9.99.99.9.9.9.9.9.9.90.9.9.0.0.9.9.4
abe

*kF P dkkk

Basic also nulls the entire array when a string variable is assigned a value with
the INPUT and GET instructions.

For comparisons and output, Basic references the array from the first position
to the last position in the array. Trailing nulls are not ignored. This makes
this method useful when a programmer wants to write fixed-length records to
a disk file,

A useful variation of this method initializes the entire array with a character
string. The format is:

svar{-aexp)="string"+svar(-aexp)

The following example shows this format used to initialize two strings:

>>List

10 Dim A$(15)

20 Dim B$(15)

30 A$(-1)="x"+A$(-1)
40 Print"A$: ";A$
50 B$(-1)="-->"+B$(~1)
60 Print"B$: ";B$

>>Run
1 A%: XXXXXXXXAXXXXXXX
B$: —-->-->-=>—Dm>-

ke 8 o Ve kb

23

-

Cromemeco 68000 Structured Basic Instruction Manual
5. Variable Representation

Method 3: svar{aexp)

The third method references the string variable from the position specified by
aexp to the last position containing a non~null character. In this format, aexp
must be a value between zero and the length of the variable. If this rule is not
followed, the following will result:

-~ If the subseript is less than zero, the entire string will be referenced.
This is the same as using method 2 of referencing string variables.

-~ If the subseript is greater than the length of the variable, a run time error
message will result.

When this method is used for assigning a value to the variable, Basic places nulls
into every position from aexp on and then assigns the string to the variable.
The following program demonstrates this:

>>List

10 Rem -- First, the variable is dimensioned

20 Dim String$(100)

40 Rem -—- The variable is assigned one string

50 String3="XXXXXXXXXXXXXXXXXXXXXXXXX"
60 Print String$

70 Rem -- When the variable is assigned a second
80 Rem -- string, the first string is erased

90 Rem -- from the beginning of the substring to the
91 Rem -~ end of the array.

100 String$(10)="abe"
110 Print String$

>>Run
KAXXXXXEXXEXEXEXEXXXXKXXEKEXKXXXXX
XXXXXXXXXXabe

bkt O o Ve bt

For comparisons and output, Basic references the array from the position
specified by aexp to the last position eontaining a non-null character. Trailing
nulls are ignored. This makes this method convenient for writing to a console
or printer, but could cause problems when a programmer wants to write
fixed~length records to a disk file.

Method 4: svar(aexpl,aexp2)

The fourth method references the string variable from one position to another.
In this format, aexpl defines the first position and must be a value between zero
and the length of the variable. aexp2 defines the last position of the substring
and must be a value greater than aexpl and less than or equal to the length of
the variable. If these rules aren't followed, the following will result:

24

Cromemeo 68000 Structured Basic Instruction Manual
5. Variable Representation

-— If either subseript exceeds the length of the variable, a run time error
results.,

-~ If aexpl is less than zero, the entire string is referenced as though no
subseript had been used.

-- If aexp2 is less than aexpl, aexpl will be the starting character of the
substring and the last character will be the last non-null character in
the variable.

-- If aexp2 is less than zero, then aexp? refers to the length of the substring
instead of the position of the last character in the substring. This is the
same as using method 5 of referencing string variables.

When this method is used for assigning a value to the variable, Basic does not
null any portion of the substring. The following program demonstrates this:

>>List
10 Rem ~-- First, the variable is dimensioned
20 Dim String$(100)
40 Rem -- The variable is assigned one string
50 String$="XXXXXXXXXXXXXXXXXXXXXXXXX"
60 Print String$
70 Rem -- When the variable is assigned a second
80 Rem -- string, none of the variable is nulled.
100 Rem -~ Note that the second string is only
110 Eem -- 8 characters long although 11 positions
120 Rem ~-- in the variable potentially could be
130 Rem -- affected.
150 String$(5,15)="QQQREQAEA"
160 Print String$
170 Rem -- Again, a string is assigned to the variable
180 Rem -- and nothing is nulled
190 String$(5,15)="~~=~~ "
200 Print String$

i

>>Run
XEXXXXXXXXEZXXXXXXXXXXXXKXXX
XXXXXQQQAQAAAXXXXXXXXXXXX
XXEXEXX=mmmm QAEXXXXXXXXXXXX

**kEkTnd*E*

For comparisons and output, Basic references the array from the position
specified by aexpl to aexp2.

Method 5: svar(aexpl,-aexp2)

The fifth method references the string variable from one position for a specified
number of positions. In this format, aexpl defines the first position and must
be a value between zero and the length of the variable. aexp2 specifies the
length of the substring. The minus sign must appear before the expression even

25

Cromemeo 68000 Structured Basic Instruetion Manual
5. Variable Representation

though it doesn't denote a negative number. If these rules aren't followed, the
following will result:

-~ If either subscript exceeds the length of the variable, a run time error
results.

-- If aexpl is less than zero, the entire string is referenced as though no
subseript had been used.

-— If the sum of aexpl and aexp2 minus one is greater than the length of the
variable, a run time error results.

When this method is used for assigning a value to the variable, Basic does not
null any portion of the substring. The following program demonstrates this:

>>List
10 Rem -~ First, the variable is dimensioned
20 Dim String$(100)
40 Rem -- The variable is assigned one string
50 String$="XXXXXXXXXXXXXXXXXXXXXXXXX"
60 Print String$
70 Rem -- When the variable is assigned a second
80 Rem -- string, none of the variable is nulled.
100 Rem -~ Note that the second string is only
110 Rem -~ 8 characters long although 10 positions
120 Rem -- in the variable potentially could be
130" Rem -- affected.
150 String$(5,-10)="@QQQQQRAQA"
160 Print String$ ‘
170 Rem -~ Again, a string is assigned to the variable
180 Rem -- and nothing is nulled
190 String$(5,-10)="-~-~~ "
200 Print String$

>>Run

). 9.9.9.9.99.9.9.0.9.9.9.9.9.9.99.9.9.9.9.9.9.9.¢
XXXXXQQAQAEEEE@EX XXX XXX XXXKXX
XX XXX mmmmm QRAXXXXXXXXXXXX

Rk DY o To bkt

For comparisons and output, Basic references the array from the position
specified by aexpl to aexp2.

Examples of Referencing Substrings
Assume that the command Wd$ = "ABCDEFGHIJK" has been given and that the
string variable Wd$ has not been DIMensioned in a DIM instruetion. (That is,

it is implicitly DIMensioned at 10 and it contains 11 characters numbered zero
through ten.)

26

Cromemeco 68000 Structured Basie Instruction Manual

5. Variable Representation

Instruection Result

Print Wd$ ABCDEFGHIJK
Print Wd$(5) FGHIJK

Print Wd$(4,8) EFGHI

Print Wd$(3,-2) DE

Explanation

Method 1 was used to PRINT the entire
string.

Method 3 was used to PRINT the
substring starting with character 5
(remember that the characters are
numbered starting with 0).

Method 4 was used to PRINT the
substring starting with character 4 and
ending with character 8.

Method 5 was used to PRINT the
substring starting with character 3, for
a length of two characters.

Now assume the command Wd$ = "ABCDEFG" has been given. This will fill the
string with the seven characters A-G and 4 null characters. In the following
examples the lower case n represents a null character,

Instruction Result

Print Wd$ ABCDEFG
Print Wd$(-1) ABCDEFGnnnn
Print Wd$(8) nnn

Print Wd$(5) FG

Print Wd$(5,2) FGnnnn

Print Wd$(8,9) nn

Print Wd$(13,15)

Print Wd$(3,%8000%)

Explanation

Method 1 was used to PRINT character
0 through the first non-null character.

Method 2 was used to PRINT characters
0 through Dim.

Method 3 was used to PRINT characters
8 through 10. Note that character 8
is greater than the LENgth of Wd$ so
that all succeeding nulls are referenced
by implication.

Method 3 was used to PRINT character
5 through the last non-null character.

Method 4 was used with aexp2<aexpl
so the string was output from character
5 through the DIMension of the string.

Method 4 was used to output characters
8 through 9.

Method 4 error, since aexpl>Dim.
A length of -0 indicates a null string,

no string is output.

27

Cromemeo 68000 Structured Basic Instruetion Manual

28

Cromemeo 68000 Structured Basie Instruction Manual
6. Operators

Chapter 6
OPERATORS
An operator is a symbol or group of letters which indicates that an action is to

be taken on one or two items. This section describes the types of operators used
in Struetured Basic and the symbols which represent them.

ARITHMETIC OPERATORS

The arithmetic operators are analogous to their algebraie counterparts:

Arithmetic
Operator Meaning
+ plus sign (positive number)
- minus sign (negative number)
** op © exponentiation
* multipliéation
/ division
+ addition
- subtraction

Arithmetic operations in a numeric expression are performed, according to the
priority of the operation, from left to right. All operations enclosed within
parentheses are performed first. When multiple sets of parentheses appear,
the operations in the innermost set of parentheses are performed first, followed
by the operations in the next set of parentheses, and so on until the operations
in the outermost set of parentheses are evaluated. Following evaluation of
expressions enclosed in parentheses, arithmetic operations are performed in
the following order: plus and minus signs (unary operators), exponentiation,
division and multiplication (these two operations have the same priority), and
addition and subtraction (these operations also have the same priority). When
operations have the same priority, calculations are performed from left to right
within the expression. The use of parentheses can alter the order in which
operations are performed since the parentheses override both the left to right
priority and the normal order of operations.

29

Cromemeo 68000 Structured Basie Instruction Manual
6. Operators

Examples:

A+ B*C** D

The above expression will be evaluated as follows:

temp = C *¥* D
templ = temp * B
final value = templ + A

The order of association can be changed by the use of parentheses:

((A +B) *C) ** D

This expression will be evaluated as follows:

temp = A + B
templ = temp * C
final value = templ ** D

It is a good idea to use parentheses if there is any doubt as to the order in which
a series of operations will be performed. Intermediate results may also be
assigned to temporary variables if this will help to elarify the order of
operations.

ASSIGNMENT OPERATOR

The equal sign (=) is the assignment operator. It is used to assign the value
of an arithmetic, relational, or Boolean expression, or a function, to a numeric
variable.

In addition, the assignment operator is used to assign the value of a string
literal, string variable, or string function to a string variable.

Basic also uses the equal sign as a relational operator (see the following

section). The only place the equal sign is a legal assignment operator is the
first equal sign in a LET, implied LET, or MAT instruetion.

30

Cromemco 6:8000 Structured Basice Instrucetion Manual
6. Operators

Examples:

100 Number = 2

110 Print Number

120 Number = Number*2

130 If Number >= 16384 Then Stop
140 Goto 110

This program will print out all of the powers of 2 which are less than 16384 and
then it will Stop. Statement 100 assigns the value of 2 to the numeric variable
Number.

Line 120 assigns the result of the multiplication of the variable Number times
the constant 2 to the variable Number. This is a good example of the reason the
term assigned to is used instead of equal to. Number is obviously not equal to
Number times 2. The expression on the right side of the assignment operator
is evaluated (Number * 2) and then this value is assigned to the variable on the
left of the assignment operator.

Statement 130 uses the greater than or equal to sign as a relational operator.
The relational expression (Number >= 16384) is evaluated as true or false, If
it is true, the portion of the instruetion following Then is executed (program
execution STOPs). If it is false, the next statement (140) is executed. Refer
to the following section for a further discussion of relational operators.

Line 140 transfers CONTROL back to line 110 and execution continues until the
relational expression (Number >= 16384) is true.

10 Termination'cond$ = "End"

20 *Loop : Print "Enter a name,"

30 Print "End to stop";

40 Input Name$

50 If Name$ = Termination'cond$ Then Stop
60 Print Name$: Print

70 Goto Loop

80 End

Statement 10 assigns the value of the string literal "End" to the string variable
Termination'cond$. Line 40 gets a string from the user and assigns the value
of that string to the string variable Name$ after having set Name$ equal to a
string of null characters (see the INPUT instruction).

Statement 50 uses the equal sign as a relational operator. The relational
expression (Name$ = Termination'econd$ or we could have used Name$ = "End")
is evaluated as true or false and the execution of the program continues on the
basis of the evaluation. See the next section for more information on relational
operators.

31

Cromemeo 68000 Structured Basie Instruetion Manual
6. Operators

RELATIONAL OPERATORS

Relational

Operator Meaning

= is equal to

< is less than

> is greater than

<{= is less than or equal to
>= is greater than or equal to
Oor # is not equal to

Relational operators are used to compare two expressions. Each of these
expressions may be composed of other relational, Boolean, or arithmetic
expressions. This allows the user to nest relational and Boolean expressions.

In addition, relational operators are used to compare string variables, string
literals, and string functions with each other,

The result of a relational operation is either true (=1) or false (=0).

Example:
100 If Test<=0 Then Goto 150
110 Print Test=0
120 Result=Test<0
130 Boolean=Test=5
150 End

Statement 100 can be read as, "If the value of the variable Test is less than or
is equal to zero, transfer program control to line 150; otherwise continue with
the next statement (line 110)." This is the most common use of a relational
operator. This statement can be used to test the validity of user input,
transferring CONTROL to another section of code if the input is not as desired.

Statement 110 may at first look like an improper assignment instruction.

- Remember that the equal sign is, in this case, a relational operator, not an
assignment operator. This statement can be read as, "Compare the value of Test
with 0 and PRINT the result of the comparison." Thus, a zero (=false) will be
output if Test is not equal to zero and a 1 (=true) will be output if Test is equal
to zero.,

Statement 120 is similar to 110, with the exception that the result of the

relational comparison is assigned to the variable Result. Result will therefore
take on a value of 0 or 1.

32

Cromemeco 68000 Structured Basie Instruetion Manual
6. Operators

Statement 130 is a combination of the ideas used in 110 and 120. Remember that
the first equal sign is an assignment operator while the second equal sign is
a relational operator. This statement can be read as, "Compare the value of
the variable Test with five and assign the result of that comparison to the
variable Boolean". Boolean will take on the value of 1 (=true) if Test is equal
to five, otherwise Boolean will be set equal to 0 (=false).

Example:
300 Large$ = "zzz"
305 *Get'string : Input Test$
310 If Test$ > Large$ Then Goto Get'string
315 Large$ = Test$.
320 Print Large$
325 Goto Get'string

Line 300 initializes the string variable Large$ by filling it with z's (the
alphabetic character with the highest value in the ASCII collating sequence).
Line 305 requests string data from the user.

Statement 310 evaluates the relational expression (Get'string$>Large$) on the
basis of the ASCII collating sequence (refer to the table of ASCII characters
in the appendix). If the first character in the string Get'string$ is different from
the first character in the string Large$ then these characters are compared and
this relationship determines the relationship of the two strings. If the first
character in each string is identical to the other, the comparison moves on the
second character and so on. For example:

Value of
Value of Value of Expression
Get'string$ Large$ Get'string$>Large$
George Fred false
Fred April true
April Ted false
april Ted true
april ted false
april apron false
april apricot true
april aprilandmay false

Notice that gll lower case letters follow the set of upper case letters in the
ASCII collating sequence and that if two strings are the same except for length,
the longer string has a greater value than the shorter one.

Continuing with the example, if the relational expression (line 310) is evaluated
as true, CONTROL is transferred to line 305 and the user is asked for another
string, If the expression is false, this means that the string which was just
INPUT by the user is closer to the beginning of the ASCII collating sequence

33

Cromemeo 68000 Structured Basic Instruction Manual
6. Operators

than any other string which had been INPUT previously. The value of this string
is then assigned to the string variable Large$ so that all strings which are INPUT
following this one can be compared with it. The value of the string is then
PRINTed and CONTROL is transferred to line 305. Execution of this program
may be terminated by depressing the ESCAPE key.

BOOLEAN OPERATORS

Boolean operators perform a logical operation on one or two expressions. The
expressions in a Boolean operation may take on one of two values: false (=0)
or true (=1). In Cromemco Structured Basie, all values which are not equal to
zero (false) are considered to be true when used with Boolean operators.

Boolean
Operator Meaning
And | logical And
Or logical Or
Xor logical eXelusive Or
Not logical Not or negation

And Boolean Operator

The And Boolean operator compares twoylogical values and if both are 1 returns
a result of 1. If both values are not 1, then the result is 0.

Truth Table

AND 10 1
0 | 0 0
1 | 0 1

Or Boolean Operator

The Or Boolean operator compares two logical values and if either or both are
equal to 1 then the result is 1. Otherwise the result is 0.

Truth Table
OR_10 1
0 i 0 1
1 11 1

34

Cromemeo 68000 Structured Basie Instruction Manual
6. Operators

Xor Boolean Operator
The Xor Boolean operator returns a 0 if the logical values are identical and a
1 if the logical values are not identical.

Truth Table

XOR 1 0 1

0 Jo 1

1 i1 0

Not Boolean Operator

The Not Boolean operator returns the complement of any logical value. In other
words, if the logical value is 1, the Not operator returns a 0. If the logical
value is 0, a 1 is returned.

Truth Table
Not 0is 1

Not 1is @

Examples:

10 True = 1 : False =0

11 If True And True Then Print "11 True"

12 If Not True Then Print "12 True"

13 If Not False Then Print "13 True"

14 If True Xor True Then Print "14 True"

15 If Not (True Xor True) Then Print "15 True™
16 If True Or False Then Print "16 True"

The statements above give some examples of the use of Boolean operators. The
IF-THEN instructions are used in these examples to test if a given Boolean
expression is true or false., If the expression is true, the PRINT instruction
following the IF-THEN is executed. If it is false, then nothing is printed.

The results of each of these expressions can be determined from the preceding
truth tables. For example, line 14 uses the XOR operator to compare two true
(=1) values. Looking at the XOR Truth Table, it can be seen that a 1 and a 1
yield a 0 or false value. Line 15 negates this same expression. Looking at the
Not Truth Table, NOT 0 (Not false) is seen to be equal to 1 or true.

The results of the rest of the examples can be determined in a similar manner,
then tested on the computer.

33

Cromemco 68000 Structured Basie Instruction Manual

36

Cromemeo 68000 Structured Basie Instruction Manual
7. Programming Examples

Chapter 7

PROGRAMMING EXAMPLES

The examples in this chapter are intended for the first time user. They explain
in step by step detail the procedures for creating, editing, and saving a Basic
program. If a more detailed deseription of a Basie instruction is required, the
reader is referred to the later chapters of this manual which cover the
instructions on an individual and in depth basis.

Additional programming examples for the more advanced user are included
throughout the manual.

The first instruction we will discuss is PRINT. PRINT causes Basic to display
the information following the word PRINT. Using only the PRINT instruction,
and the standard Arithmetic Operators (+ for addition, - for subtraction, / for
division, and * for multiplication), Basic may be used as a caleulator.

37

Cromemeo 68000 Structured Basie Instruction Manual
7. Programming Examples

Examples:

Instruction Explanation

Print 5 This will PRINT the number 5. Since there is nothing
following the 5, Basic will add a RETURN and LINE FEED
after the 5 so that the next item which is PRINTed will
start in column 0 of the following line.

Print 7 + 4 This will PRINT the result of adding 7 and 4, or 11.

Print "FRED" This will PRINT the word FRED. Notice that if a group
of letters (ealled a string) are to be PRINTed, they must
be enclosed in quotation marks. When a string is enclosed
in quotation marks, it is called a string literal. Numbers
(called econstants) which are to be used in a computation
may not be enclosed in quotation marks.

Print This will PRINT a blank line.

Print 1,2,3,4 This will PRINT the numbers 1 through 4 in four columns

across the sereen. When commas (,) are used to separate
items in a PRINT list, the items are aligned in four
columns across the console sereen. If semicolons (;) are
used, the items are displayed with no intervening spaces.

Print "ANS. = ";75 This will display ANS. = 75 on the console. Notice that
a blank was included after the equal sign in the string
literal. This blank is considered part of the string
literal, just as any other character.

Next we will discuss variables and the Assignment Operator. A variable is the
name of a location in the computer's memory. While the name of a variable stays
the same, the contents of the variable may vary.

A variable name may be thought of as a label which has been affixed to a box.
If we are speaking of an arithmetic variable, then the box would contain a
number. The number inside the box is the value of the variable. The value of
the variable can be changed while the name of the variable stays the same.
Similarly, a string variable would contain a string of characters which could
include letters, spaces, numbers, and any other printable characters. This
combination of characters would be the value of the string variable.

Arithmetiec variable names are composed of a letter (A-Z) followed by any

combination of letters, numbers, and apostrophes not exceeding 31 characters
in length. Some examples of arithmetic variable names are:

38

Cromemeo 68000 Structured Basic Instruction Manual
7. Programming Examples

Name

Time'of'day
Table'of'values
Social'security 'lnumber

String variables may use any name which is a legal arithmetic variable name.
A dollar sign, however, must immediately follow the name. Some examples of
string variable names are:

Name$
Address$
Vegetable$
License'plate$

The assignment operator assigns a value to a variable. The equal sign (=) is used
for this purpose. In Basic, the equal sign can be read as, "is assigned the value
of." Notice that it does not necessarily denote equality.

Examples:

Instruction Explanation

Name$ = "FRED" The value of the string literal "FRED" is assigned to the
string variable named Name$. Notice that, although the
string literal "FRED" must be enclosed in quotation
marks, the quotation marks are not part of the string
variable. The quotation marks indicate to Basie that the
enclosed characters are to be considered a string literal.

Print Name$ This instruction will display the value of Name$ on the
console. If this instruetion follows the preceding one,
FRED will be PRINTed on the console terminal.

P4 =775 The variable named P4 is assigned the value of 775.

P4=P4+1 P4 is assigned the value of P4 + 1. If this instruction
follows the previous example, P4 will have the value of
776.

Text$ =" IS NO. " The string variable Text$ is assigned the value of the
string literal " IS NO. ".

Replace$ = Text$ The string variable Replace$ is assigned the value of the

string variable Text$.
Print Name$; Replace$; P4

This will print FRED IS NO. 776 (assuming it follows the
above assignment instructions).

39

Cromemeo 68000 Struetured Basie Instruction Manual
7. Programming Examples

The next instruction we are going to discuss is the INPUT instruction. When
executed, this instruetion displays a question mark on the console and waits
for the user to supply a number or a string.

Examples:

Instruetion Explanation

Input Age This command will display a question mark and wait for
the user to enter a number. The number which is entered
will be assigned to the variable named Age.

Input Month$ This command will display a question mark and wait for

the user to enter a string (any group of characters, in
this case up to a maximum of eleven). The value of the
string whieh is INPUT will be assigned to the string
variable named Month$.

The RUN or Program Execution Mode

Up to this point, all of our examples have been executed as commands or in what
is referred to as the immediate mode. Each command was executed as soon as
the RETURN key was depressed. Once executed, the entire instruction had to
be typed again in order to be re-executed.

Now we shall use these same instructions to write a program. A program
consists of statements. A statement is nothing more than an instruction with
a line number preceding it. Line numbers are also called statement numbers;
the two terms are interchangeable. The line number indicates to Basic that the
instruction is to be stored in memory for later execution. A line number (or line
name) is also a useful way to refer to a Basic statement if it needs to be
changed.

Let's take a moment to cover the rules for naming variables. A variable name
must start with a letter (A through Z) which may be followed by up to 30 more
characters. These subsequent characters may be letters (A through Z), numbers
(0 through 9), or the apostrophe ('). The apostrophe has no different significance
than the letters and numbers. It is very useful for breaking up long variable
names so that they may be read more easily. Consider these examples:

Timeofday or Time'of'day
Firstrecordprimarykey or First'record'primary'key
Readarecord or Read'a'record
Getabandebloecks or Get'a'b'and'e'blocks

40

Cromemeo 68000 Structured Basic Instruction Manual
7. Programming Examples

Try to make your variable names reflect the meaning of the contents of the
variables. This will make your program easier to debug and will also make it
easier for another person to understand.

Now we can enter a programs:

>>100 Input Name'of'person$
>>200 Print Name'of'person$;" is smart!"

This program is now current in the User Area. The User Area is the Basic
workspace in which a program can be written, EDITed, and RUN. The LIST
command displays the contents of the User Area.

The RUN command causes Basic to execute the program in the User Area.
Program execution begins with the statement with the lowest line number and
continues sequentially.

We can now execute the program:

>>Run

? Ed Basic displays the ? (prompt) and the user enters a
string. Don't forget the RETURN at the end of the string.

Ed is smart! Basic PRINTs the string variable (Ed) and the string
literal (is smart!).

KEXEndFE Basic tells you that it's done with the program,

> and prompts you that it is ready for additional

instructions.

To get a LISTing of your program, type the command LIST in response to the
Basie prompt.
>>List

100 Input Name'of'person$
200 Print Name'of'person$;" is smart!"

>>

41

Cromemeo 68000 Structured Basic Instruetion Manual
7. Programming Examples

Program Editing
Continuing with the same program, suppose we wish to alter a statement.

To change a line, it can be typed over again. When Basic recognizes that it
already has a line with the same line number, it will replace the old line with
the new one. To delete a line, type the line number followed by a RETURN.

We can also use the Basic In-Line Editor. The Editor facilitates both minor
corrections to long lines and multiple replacements. Suppose we wanted to
change line 200 of the program above:

>>Edit 200

- 200 Print Name'of'person$;" is smart!"

. i very

- 200 Print Name'of'person$;" is very smart!™

: in
- 200 Print Name'of'person$;" is very smart!!!"
:RETURN

>>

The EDIT command can be given with or without a line number. When used
without a line number, each line of the program will be displayed in turn for
EDITing. When a line number is given, only the specified statement line will
be displayed.

The Editor precedes a line to be EDITed with a dash (-) and prompts the user
with a colon (:). Following the colon the user can position the cursor under the
part of the line to be EDITed by typing spaces.

In our example above, line 200 was displayed followed on the next line by the
colon prompt. Spaces were typed until the cursor was just under the space
before smart. Then i (for insert) was typed, followed by the text to be inserted.
Notice that an insertion precedes the character above the i. The text to be
inserted was followed by a RETURN. Basic displayed the line again,
incorporating the change we just made. Next, some exclamation points were
added to the end of the line in a similar manner. This time after Basic displayed
the corrected line and displayed the Editor prompt (:) a RETURN alone was
entered to indicate that no further changes were to be made.

While using the EDIT command, the character d may be positioned under any
characters in a line which are to be deleted. As many d's must be typed as there
are characters to be deleted. After the RETURN key is pressed, the line will
be displayed as EDITed. A RETURN alone in response to the EDIT prompt will
return the user to the Basiec monitor.

42

Cromemeo 68000 Structured Basie Instruction Manual
7. Programming Examples

>>List After making the change, we can list the program to make
sure that we changed it properly.

100 Input Name'of'person$
200 Print Name'of'person$;" is very smart!!!"

>> Again, Basic waits for further instructions.

Suppose that, instead of executing these statements only once, we wanted them
executed several times. We could type RUN each time the program was to be
executed, or we could add another statement which would direet Basic back to
the beginning of the program each time it finished PRINTing:

>>300 Goto 100 This GOTO statement tells Basic to GOTO line number
100 and continue execution from there.
>>List

100 Input Name'of'person$
200 Print Name'of'person$;" is very smart!!!"
300 Goto 100

>>Run
? Alice Don't forget the RETURN.

Alice is very smart!!!

? Eileen After it was done with statement 200, statement 300 told
Basie to go back to statement 100, which gave us another
question mark.

Eileen is very smart!!!

2 This could (and would) go on forever. This can be avoided
by depressing the ESCAPE key (appropriately named).
On a Cromemeco terminal this key is located on the upper
left of the keyboard and is marked ESCAPE.

*¥**¥100 ESCAPE***
Basic tells you what happened,
> and waits for further instructions.

EXAMPLE PROGRAM

Let's write a program to compute a person's age in the year 1995. For this
program, we will introduce two new instructions. The first of these is SCR which
is short for SCRatch. This instruction clears memory of a program or any
statements which may be in the User Area:

43

Cromemeo 68000 Structured Basie Instruction Manual
7. Programming Examples

>>Ser

>>List Nothing will be listed, because everything has been
SCRatched,

>>

The other instruetion is AUTOL which is short for AUTOmatic Line numbering.
This is a convenient feature of Cromemeo Structured Basie which allows the
programmer to concentrate on the program and forget about entering line
numbers. AUTOL is followed by two numbers (called arguments). The first of
these indicates the first line number, while the second indicates the increment
between line numbers. In the following example, the line numbers are
automatically typed by Basic while the program is entered by the user:

»>>Autol 1000,10

>21000 Print"Enter the year of your birth: ";
>>1010 Input Birth'year

>>1020 Print"In 1995 you will be ";1995-Birth'year;
>>1030 Print " years old"

>>1040 Print

»>>1050 Goto 1000

>>1060

>>

There are several things about this program which bear discussion. The first
is that the AUTOmatic Line numbering mode may be terminated by entering a
RETURN alone in response to a line number, as was done on line 1060. Line 1020
and 1030 PRINT two strings with a number in the middle. The number is the
result of a computation, the numeric variable Birth'year is subtracted from the
numeric constant 1995. Line 1040 is included so that there will be a blank line
PRINTed between examples.

Listing to a Disk File

The program we have written will stay in memory (in the User Area) as long as
we don't execute the SCRatch or BYE command or turn the power off.

We may write the program to a disk file so that it may be retrieved at a later
time. Once it has been LISTed on the disk, we may SCRatch the User Area or
turn off the system power and our program will still be safe on the disk.

The only way a disk file can be destroyed is by ERASing it or by writing another
file with the same name to the disk. In the latter case, the second file would
be written over the first so that the first file would be destroyed.

44

Cromemeco 68000 Structured Basice Instruction Manual
7. Programming Examples

The LIST command, as we have been using it, LISTs the contents of the User
Area to the console. If the LIST command is followed by a string literal, Basic
will interpret the string literal as a file name, and LIST the contents of the
User Area to that file. Assuming that our program is still in the User Area, the
following ecommand will write the program to a file ecalled FIRST.

>>List "First.lis"

>>

To get a list of all the files on the disk enter the command:

>> Dir

Basic will respond with a list of file names, including FIRST.LIS. Now you ean
turn off the computer without losing your program.

Note: Remember to exit Basic and remove the disk before turning the power
off. It is also a good idea to insert the disk only after the power has
been turned on. Do npot turn the power on or off while the disk is
inserted in the machine.

Reading a Program from a Disk File

A program which has been LISTed to a disk file may be re-entered by using the
ENTER command.

Before ENTERing any program, whether from a disk file, or from the console,
it is a good idea to SCRatch the User Area. Assuming that we are once again

(or still) in Basie, we can give the following two commands to clear the User
Area and ENTER our program which was LISTed to the disk file FIRST.LIS,

>> Ser
>> Enter "First.lis"

>>

Our program may now be LISTed, RUN, or EDITed as we desire.

45

Cromemeo 68000 Structured Basie Instruction Manual
7. Programming Examples

Using the SAVE and LOAD commands

The SAVE command will write the program which is current in the User Area to
a disk file. The program will be in internal machine format unlike a program
which is written to disk using the LIST command, which is in text format. The
LOAD command is to the SAVE command what the ENTER command is to the LIST
command. LOAD allows the user to read a SAVEd file into the User Area. Notice
that LOAD cannot be used with a LISTed file and that ENTER cannot be used
with a SAVEd file.

The formats of these commands are:

>>Save "Second.sav"
>>Load "Second.sav"

When used with larger programs, SAVE and LOAD can be significantly faster than
LIST and ENTER. Also, when the RUN instruction is given with the name of a
SAVEQ file, the specified file will be LOADed and RUN with only that one
instruction. Programs may be chained in this fashion, one calling the next,
calling the next, ete.

>>Run "Second.sav"
or

5999 Run "Second.sav®

The execution of either of these instructions will cause the SAVEd program
SECOND.SAV to be LOADed into the User Area and execution to begin.

Note in the above examples the use of the three-letter LIS or SAV extension
to the filename. This extension to the name is not required, but is good practice
for ease in remembering the type of file later on. It is conventional to use the
file extensions "LIS" or "LST" for a LISTed file and the extension "SAV" for
a SAVEAd file.

STATISTICAL ANALYSIS PROGRAM

A common use for a computer is the calculation of statisties for a set of data.
This program will compute six common statisties for any set of data which the
user may enter,

100 Count=0 : Sum=0 : Sum'of'squares=0

110 Input "Number (9999 to stop): ", Number
120 While Number #9999

130 Count = Count + 1

46

Cromemeo 68000 Structured Basie Instruetion Manual
7. Programming Examples

140 Sum = Sum + Number

150 Sum'of'squares = Sum'of'squares + Number**2
160 Input "Number (9999 to stop): ", Number
170 Endwhile

180 Rem skokskokok deok stk skok s skok ok sk sk sk skoke ke ok

190 Rem All data in, compute statistices.

200 Mean = Sum/Count

210 Temp = Count*Sum'of'squares

220 Variance = ((Temp-(Sum*Sum))/Count)/(Count-1)
225 If Variance <0 Then Variance =0

230 Standard'deviation = Sqr(Variance)

240 Rem e o o ok ok ok ok 3 e sk o ok ok ok o ok ok ok o ok ok ok sk ke e ok

250 Rem All statistics computed, PRINT results
260 Rem Call a user defined function to round

270 Rem results to 4 decimal places.

280 Print "Number", Count

290 Print "Sum", Fnround(Sum)

300 Print "Sum of squares", Fnround(Sum'of'squares)
310 Print "Mean", Fnround(Mean)

320 Print "Variance", Fnround(Variance)

330 Print "Standard'deviation", Fnround(Standard'deviation)

340 Rem
350 Rem
360 Rem
370 Def Fnround(X) = Int(X * 10000. + 0.5)/10000.0
380 End

Line 100 initializes three of the program variables. These three variables
{Count, Sum, and Sum'of'squares) are used to hold sums of values as the program
is executed. They must be set equal to zero at the beginning of the program
in order to assure that the values they sum are accurate,

Lines 110 through 170 will continue to accept numbers from the user, keeping
track of how many numbers have been INPUT (Count), the sum of the numbers
(Sum), and the sum of the squares of the numbers (Sum'of'squares), until the
number 9999 is entered. For the purpose of this example, it is assumed that 9999
is outside the range of numbers which will be INPUT into this program.

CONTROL will remain within the WHILE loop WHILE the variable Number is pot
equal to (#) 9999. This means that statements 130 through 170 will be executed
over and over again WHILE Number is pnot equal to 9999. As soon as the user
enters 9999, the variable Number is assigned the value 9999, the condition for
the WHILE loop is false (Number now equals 9999), and CONTROL is passed to
the statement following the ENDWHILE.

Now the rest of the statistics are computed and all results are PRINTed.

Notice that the user defined funetion Fnround is used to round the answers to
4 decimal places for PRINTing.

47

Cromemeo 68000 Structured Basic Instruction Manual

48

Cromemeo 68000 Structured Basie Instruetion Manual
8. Instruetions for Developing a Program

Chapter 8

INSTRUCTIONS FOR DEVELOPING A PROGRAM

This chapter deseribes instructions used for developing programs. These include
‘instructions to:

-~ Edit, ehange, and delete lines

-- Save programs on disk and retrieve them
-- Renumber lines in programs

-- Execute programs

-~ Debug programs

49

Cromemeo 68000 Structured Basie Instruetion Manual
8. Instructions for Developing a Program

command: Automatie Line Numbering
format: AUTOL 1.1,L2 *AUTOL

where:
L1 is the starting line number.,

L2 is the line number increment.

The AUTOL command provides automatic statement line numbering so that the
user does not have to enter a line number for each line when entering a program,

MNote:

1. The automatic generation of line numbers may be terminated by pressing
the ESCAPE or RETURN key when the user is prompted for the next line.

Example:
>>Autol 100,10

>>100 Rem All line numbers in this
»2110 Rem example are generated by Basic.
>>120 Index,=5

$
Error 1 -- Syntax
>>120 Index=5
»>>130 Rem Notice that after a Syntax Error
>>140 Rem Autol will re-prompt so that
>>150 Rem the error can be corrected.
>>160 Print Index
>>170 End
>>180
>>

50

Cromemeo 68000 Struetured Basic Instruction Manual
8. Instructions for Developing a Program

instruetion: Bye
format : [Ln] BYE
where:
Ln is an optional line number. If Ln is ineluded, the

instruetion is executed at run time. Otherwise it is
executed immediately.

The BYE instruction is used to exit from Basic and return to the operating
system,
Notes:

1. After the BYE instruction is executed the computer will respond with the
operating system prompt.

2. BYE will close all files which are OPEN at the time the instruetion is
executed,

Example:

>>Bye

%

In this example, the user has typed the BYE command. The next prompt
displayed (%) indicates that the user has returned to the Cromix shell.

31

Cromemeo 68000 Structured Basic Instruction Manual
8. Instructions for Developing a Program

instruction: B
format:
where:
Ln
L1
L2

Delete Statement Lines

[Ln] DELETE L1

[Ln] DELETE L1,

[Ln] DELETE L1,L2

is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

is a line number or line name.

If L1 is the only argument and there is no comma following
it, then L1 is the only line DELETEd.

If L1 is the only argument and the comma is included,
L1 through the last line in the program are DELETEJ.

is an optional line number or line name which indicates
the last line to be DELETEd. If included, it must be
preceded by L1 and a comma.

The DELETE instruction is used to remove statement lines from the program
currently in the User Area.

Notes:

1. The DELETE instruction must be the last (or only) instruction on a line.

2. The DELETE instruction must have at least one argument (L1).

52

Cromemeco 68000 Structured Basie Instruction Manual
8. Instructions for Developing a Program

Example:
>>List

10 Input Numl,Num2,Num3
20 Sum = Numl-+Num2+Num3
30 Print Numl

40 Print Num2

50 Print Num3

60 Print Sum

70 End

>>Delete 30,50

>>List

10 Input Num1,Num2,Num3
20 Sum = Numl+Num2-+Num3
60 Print Sum

70 End

Here the DELETE command removed lines 30 through 50 from the program.

33

Cromemco 68000 Structured Basic Instruetion Manual
8. Instructions for Developing a Program

command: List Disk Files
format: DIR
DIR svar

where:

svar is a string variable or a string literal file reference.
The DIR command corresponds to the Cromix ls command (see the Cromix Manual
for a full description). The DIR command lists files either in the current
directory or disk drive, giving the size of each file in Kilobytes. If the optional

file pathname reference is used, it must be enclosed in quotation marks (string
literal) or else must be a valid string variable.

Examples:

Dir will list all files in the current directory.

Dir "*.SAV" will list all files in the current directory with the file
name extension SAV.

Dir "/usr/basic™ will list all files in the direct‘ory /usr/basic.

54

Cromemeo 68000 Structured Basic Instruction Manual
8. Instructions for Developing a Program
command: Edit Program Lines
format: EDIT
EDIT L1
EDIT L1,
EDIT L1,L2

where:
L1 is an optional line number or name.

If L1 is omitted, all lines of the program are processed.

If L1 is the only argument and there is no comma following
it, then L1 is the only line processed.

If L1 is the only argument and the comma is included,
L1 through the last line in the program are processed
by the command.

L2 is an optional line number or name which indicates the
last line to be processed. If included, it must be
preceded by L1 apnd a comma.

EDIT is one of the three commands which are collectively called the Cromemco
In-Line Basie Editor. The other two are CHANGE and FIND. EDIT lists lines
of code one at a time, as specified by the arguments L1 and L2. Each line to
be EDITed is preceded by a dash (-) and followed on the next line by a colon
(:) prompt. In response to the prompt, the user may type:

1. A RETURN, whieh goes on to the next operation, accepting any changes
which may have been made to the line, or

2. An ESCAPE, which leaves the line unchanged and exists EDIT mode, or

3. A series of spaces, which will position the cursor under the character
which is to be EDITed.

At this point, the user can give the following commands:

a. D (Delete) - deletes the character above the cursor. Several
deletions can be made on one line.

b. I (Insert) - inserts the string which follows. An insertion can follow

one or more deletions. An insertion precedes the character above the
I.

55

Cromemee 68000 Structured Basie Instruetion Manual
8. Instructions for Developing a Program

c. K (Kill) - deletes the rest of the line from the current position of
the cursor,

Upon issuing the EDIT command, the edited line is typed out and a prompt is
given for changes.,

When the line has been changed to the user's satisfaction, a RETURN should be
typed in response to the colon(:) prompt to exit EDIT mode.

56

Cromemeo 68000 Structured Basic Instrucetion Manual
8. Instructions for Developing a Program

command: Find String
format: FIND
FIND L1
FIND L1,
FIND L1,L2

where:
L1 is an optional line number or name.

If L1 is omitted, all lines of the program are processed.

If L1 is the only argument and there is no comma following
it, then L1 is the only line processed.

If L1 is the only argument and the comma is included,
L1 through the last line in the program are processed
by the command.

L2 is an optional line number or name which indicates the
last line to be processed. If included, it must be
preceded by L1 and a comma.

FIND is another of the interactive Editor commands. FIND will locate all
occurrences of a string within the set of lines specified by L1 and L2. After
the FIND command is given, the Editor will prompt with:

FIND:

In response, the user should enter the string to be located, terminated by a
RETURN. If a RETURN is entered immediately following the prompt, the Editor
will return control to the Basiec monitor.

FIND will cause each line containing the string to be printed out with a pointer
below the line indicating the occurrence of the specified string.

37

Cromemeo 68000 Structured Basie Instruction Manual
8. Instructions for Developing a Program

command: Change String

format : CHANGE
CHANGE L1
CHANGE L1,
CHANGE L1,L2

where:
L1 is an optional line number or name.

If L1 is omitted, all lines of the program are processed.

If L1 is the only argument and there is no comma following
it, then L1 is the only line processed.

If L1 is the only argument and the comma is included,
L1 through the last line in the program are processed
by the command.

L2 is an optional line number or name which indicates the

last line to be processed. If included, it must be
preceded by L1 and a comma.

The CHANGE command will replace all occurrences of a string within a set of
lines specified by L1 and L2. After the CHANGE command is given, the Editor
will prompt with:

FROM:

In response, the user should enter the string to be replaced followed by a
RETURN. The Editor will then prompt with:

TO:

The user should respond with the replacement string. The Editor will then print
the first line containing the string with a pointer below the line indicating the
location of the string. The user can then type:

1. A RETURN to reject the CHANGE at that loeation,

2. The letter (C) to accept the CHANGE, or

3. An asterisk (*) to accept all CHANGEs from that peint on.

58

Cromemeo 68000 Structured Basie Instruetion Manual
8. Instruetions for Developing a Program

instruection: Enter File

format : [Ln] ENTER svar

where:

Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

svar is a string variable or string literal file reference,

The ENTER instruction is used to ENTER a Basic program (in ASCII format) from
a disk file or other external device into the User Area.

Notes:

1.

ENTER will read a program which was written to the disk by the LIST
instruction. The program will be read into the User Area. ENTER will
not read a program which was written to the disk by the SAVE instruction.

ENTER does not delete statement lines from the program which is
currently in the User Area. ENTER does replace lines in the current
program with lines from the.file being ENTERed if the line numbers are
the same.

Efficient use of memory following an overlay results if the ENTERed
program, to as great an extent as is possible, replaces lines in the current
program and does not add new line numbers.

The ASCII ESCAPE character (1BH) or CONTROL-Z (1AH) are used as the
end of file mark by Basic. ENTER looks for either of these characters to
determine the end of the program.

The following programs demonstrate the ability of the ENTER instruction to
overlay or have one program overlay (part of) itself with another. This feature
is very useful for running large programs on smaller systems.

Space is most efficiently used if the same line numbers are used in all programs
which are to be overlayed. In the following example, program One is run and

calls

in program Two.

Program "One.lis"

1
5
10
20
30

Goto 10

Enter "Two.lis"

Data 1,2,3,4,5,6,7,8,9
Read A,B,C,D,E,F,G,H,I
Goto 5

59

Cromemeo 68000 Structured Basic Instruction Manual
8. Instructions for Developing a Program

Program "Two.lis"

10
20
30
40
50

X=A+B+C+D
Y=E+F+G+H+]
Z=X+Y

Print X,Y,Z
End

>>Enter "One.lis"

>>Run
10

33

k%5() Epdkk

45

When program One is entered and RUN, line 1 passes CONTROL to line 10. Then
at line 20, the DATA from line 10 is READ into variables A through I. CONTROL
is then passed to line 5 which calls in the second program. Program Two

overlays lines 10, 20, and 30.
however, line 10 is a line from program Two.

The line which follows line 5 is line 10. Now,

The rest of program Two is

executed with the results being printed out by line 40.

60

Cromemec 68000 Structured Basic Instruction Manual

8. Instructions for Developing a Program

instruction:

where:

format :

Ln

L1

L2

svar

List Current Program

[Ln] LIST
[Ln] LIST
[Ln] LIST
[Ln] LIST
[Ln] LIST

[Ln] LIST

L1
L1,
L1,L2
svar

svar,L1

[Ln] LIST svar,L1,
[Ln] LIST svar,L1,L2
is an optional line n’umber.

instruction is executed at run time.
executed immediately.

If Ln is included, the
Otherwise it is
is an optional line number or line name.

If L1 is omitted, all lines of the program are LISTed.

If L1 is the only argument and there is no comma following
it, then L1 is the only line LISTed.

If L1 is the only argument and the comma is included,
L1 through the last line in the program are LISTed.

is an optional line number or line name which indicates
the last line to be LISTed. If included, it must be
preceded by L1 and a comma.

is a optional string variable or a string literal file

reference denoting the pathname of the LISTing. If
omitted, the LISTing is displayed on the console.

61

Cromemeo 68000 Structured Basie Instruction Manual
8. Instructions for Developing a Program

The LIST instruction is used to LIST in ASCII format one or more statement lines
from the User Area on the console, to a disk file, or to another file device. The
instruction may be used to output an entire program, a bloek of statement lines
within a program, or a single statement line. The formats of LIST whieh do not
use svar will direct the output to the console.

Notes:

1. A program which has been LISTed to a disk can be read back into the User
Area using the ENTER instruction. It can pot be read back using LOAD
or RUN,

2. LISTed files are compatible between different versions of Cromemco
Structured Basie. SAVEd files are not necessarily compatible in this

manner.

3. The ASCII ESCAPE character (1BH) is used as the end of file mark by
Basic. LIST outputs this character at the end of a program.

62

Cromemeo 68000 Structured Basie Instruction Manual
8. Instructions for Developing a Program

instruction: List Variables
format : [Ln] LVAR
[Ln] LVAR file-ref

where:
Ln is an optional line number. If Ln is inecluded, the
instruction is executed at run time. Otherwise it is
executed immediately.,

file~ref is an optional string variable or string literal
file-reference denoting the destination of the list of
variables. If omitted, the listing is displayed on the
console.

The LVAR instruction lists all variables, functions, procedures, and
alphanumeric line names. The abbreviations used in the list are:

INT integer variable

SFP short floating point variable
LFP long floating point variable
LBL alphanumeric label, line name
FUN funetion name

PROC procedure name

$ string variable

(*) list or matrix

The current value of each scalar arithmetic variable is also displayed.

Notes:

1. If a variable, function, PROCEDURE name or line name is used in a Basic
program, and then the line containing that item is deleted, the item will
still appear in the list produced by LVAR. The LIST can be updated by
LISTing the program to a file, SCRatching the User Area, ENTERing the
program, and then using LVAR.

2. If a line name, PROCEDURE name, or function has been defined in the
program, its line number will be printed after its type. If a line name,
PROCEDURE name, or function has been used (e.g., GOTO Start'over) but
not yet defined, no entry will follow the type.

63

Cromemeo 68000 Struetured Basie Instruetion Manual
8. Instructions for Developing a Program

instruetion: Load Program
format : [Ln] LOAD svar

where:
Ln is an optional line number. If Ln is ineluded, the

instruction is executed at run time. Otherwise it is
executed immediately.

svar is a string variable or string literal file reference.

The LOAD instruction is used to LOAD a Basic program (in internal machine

format) from a disk file into the User Area.

Notes:

1. LOAD will read a program which was written to the disk by the SAVE
instruction. The program will be read into the User Area. The program
must have been SAVEd under the version of Basie and the version of the
operating system under which Basic is currently being run.

Files which are written to the disk by the LIST instruction are compatible
between different versions of Cromemeco Structured Basic; files written

using the SAVE instruction are not,

2. The LOAD instruction resets (clears) all variables, string variables, and
matrices (the equivalent of seratch) before LOADing.

3. LOAD resets the trigonometric mode to RADians.

64

Cromemeo 68000 Structured Basice Instruction Manual
8. Instructions for Developing a Program

command:

format :

where:
L1

L2

L3

L4

Renumber Statement Lines

RENUMBER

RENUMBER L1

L1,L2

RENUMBER L1,L2,L3

RENUMBER L1,L2,L3,

RENUMBER L1,L2,L3,L4

is an optional starting line number in the RENUMBERed
program.

is an optional line number increment in the RENUMBERed
program.

is an optional line number or line name in the original
program.

If L3 is omitted, all lines of the program are
RENUMBERed.

If L3 is not followed by a comma then L3 is the only line
which is RENUMBERed.

If L3 is followed by a comma, L3 through the last line
in the program are RENUMBERed.

is an optional line number or line name which indicates
the last line in the original program to be RENUMBERed.

The RENUMBER command alters the statement numbers in the current program.

Notes:

1. The default value for the RENUMBER command is a starting line number
(L1) of 10 and an inerement value (L2) of 10.

2, If only the first parameter (L1) is specified, the second parameter (L2)
assumes the same value as the first. In the example below, the command
RENUMBER 100 is equivalent to the command RENUMBER 100,100.

3. The RENUMBER instruction alters line numbers imbedded in the entire
program in GOTO, GOSUB, and IF-THEN statements to conform to the
RENUMBERed statements. This will affeet a line whieh is not
RENUMBERed if the line contains a reference to a RENUMBERed line.

65

Cromemeo 68000 Structured Basie Instruction Manual
8. Instructions for Developing a Program

4. RENUMBER cannot normally be used to re-order or rearrange sections of
a program relative to other sections. If line numbers are LISTed out of
order after the RENUMBER instruction is given, follow the procedure below
(5a-d) to rearrange the lines in numeric order.

B The RENUMBER command will include DELETEd statement numbers in the
sequence of RENUMBERed statements. If this presents a problem (such
as one or more statement numbers being omitted) the following procedure
will correct the problem:

a. LIST the program (do not SAVE it) to a temporary disk file.
b. SCRatch the User Area.
e, ENTER the temporary disk file.

d. RENUMBER as desired.

Examples:
>>List
11 Input Alpha
24 Input Beta
37 Print Alpha*Beta
50 Goto 11
- 63 End
>>Renumber (default parameters are 10,10)
>>List
10 Input Alpha
20 Input Beta
30 Print Alpha*Beta
40 Goto 10
50 End

>>Renumber 100 (if L2 is not specified, 1L2=L1)

>>List
100 Input Alpha
200 Input Beta
300 Print Alpha*Beta
400 Goto 100
500 End

>>Renumber 100,10

66

Cromemeo 68000 Structured Basie Instruction Manual
8. Instructions for Developing a Program

>>List

100
110
120
130
140

Input Alpha
Input Beta

Print Alpha*Beta
Goto 100

End

>>Renumber 1000,150,120,

>>List

100
110
1000
1150
1300

Input Alpha
Input Beta

Print Alpha*Beta
Goto 100

End

>>Renumber 1000,1,110,1150

>>List

100
1000
1001
1002
1300

Input Alpha
Input Beta

Print Alpha*Beta
Goto 100

End

(Renumber all lines from line 120 to
the end of the program.)

(Renumber lines 110 through 1150 in
the current program. The new line
numbers will start at 1000 and use an

increment of 1.)

67

Cromemeco 68000 Structured Basice Instruction Manual
8. Instructions for Developing a Program

instruction: Run Program
format : [Ln] RON

[Ln] RUN svar

where:

Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

svar is a string variable or string literal file pathname.

The RUN instruction directs the computer to execute a program beginning with
the lowest numbered line.

If svar is omitted, the program which is currently in partition zero of the User
Area is executed.

If svar is ineluded, it must be the name of a SAVEd program. This program will
be LOADed into partition zero of the User Area and executed.

Notes:

1.

The RUN instruetion, if given with a file reference, must reference a
program whieh has been SAVEd under the version of Basie which is
cuprrently being used.

LISTed files are compatible between different versions of Cromemeco
Structured Basie, SAVEd files are not.

The RUN instruction resets or clears all variables, string variables, and
matrices, It also sets the trigonometric mode to RADians.

If partition zero is not the current partition (after a USE instruction or
if execution was terminated in another partition), RUN will cause partition
zero to become the current partition and execution to begin in partition
Zero.

RUN resets ON ERROR and ON ESCAPE instructions to their default modes.
This means that run-time non-fatal errors as well as the use of the
ESCAPE key will cause a running program to abort and Basic to display
a message.

RUN sets the variable mode to that which was last specified. The default
mode is Long Floating Point.

Refer to the Areas of User Interest Appendix if it is necessary to change
the default variable mode.

68

Cromemeo 68000 Structured Basic Instruction Manual
8. Instructions for Developing a Program

instruection: Save Program
format : [Ln] SAVE svar
where:
Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

svar is a string variable or string literal file reference.

The SAVE instruction is used to SAVE the current program on a disk or other
file device in internal machine format.

Note:

1. A program which has been written to the disk using the SAVE instruction
can be read back using the LOAD or RUN instructions. A SAVEd program
can only be LOADed or RUN with the same version of Basic it was SAVEd
under.

69

Cromemeo 68000 Structured Basie Instruetion Manual
8. Instructions for Developing a Program

instruction: Scerateh User Area

format : [Ln] SCR

where:

Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

The SCRateh instruction deletes the current program from the User Area.

Motes:

1.

The programmer should keep in mind that the SCRatch command erases
everything in all partitions of the User Area and that SCRatched programs
cannot be recovered,

2. Once the work space has been SCRatched, the user may input a new
program or access a SAVEd or LISTed program which has been stored on
the disk. |

3. SCRatch sets the trigonometric mode to RADians.

4, SCRateh resets the variable mode to the default mode, normally the Long
Floating Point mode.

5. SCRatch does not reset the ECHO or ON ESCAPE mode.

6. SCRa{eh CLOSEs all OPEN files before performing the actual SCRatch.
If any file cannot be CLOSEd (because of disk or 1/0 problems), some other
files may be left OPEN and the User Area will not be SCRatched. The
other files may be CLOSEd via the CLOSE\n\ instruection.

Example:
>>List

10 X=4
20 Input Y
30 Z=X*2+Y
40 Print Z
50 End
>>Ser
>>List
>>

In the above example, all statement lines are deleted from memory. The user
can now input a new program.

70

Cromemcoe 68000 Structured Basie Instruction Manual
8. Instructions for Developing a Program

instruetion:
format:
where:
Ln

Enable Trace Option
[Ln] TRACE
is an optional line number. If Ln is included, the

instruction is executed at run time. Otherwise it is
executed immediately.

The TRACE instruction sets the TRACE mode so that the user can follow the
execution of a program line by line. When in the TRACE mode, Basie will list
the line number of each statement as it is being executed. Statement line
numbers will be enclosed in angle brackets.

Example:
>>List

10
20
30
40
50
60

>>Run
<20>

? 10
30>

This is 10
<40>
<50>

11

<60>

**¥*6() Endg¥*¥*

Trace

Input Number
Print"This is ";Number
Let Numberl=Number+1
Print Numberl

End

71

Cromemeo 68000 Structured Basic Instruetion Manual
8. Instructions for Developing a Program

instructions Disable Trace Option
format [Ln] NTRACE
where:
Ln is an optional line number. If Ln is included, the

instruction is executed at run time. Otherwise it is
executed immediately.

The NTRACE instruction resets the TRACE mode so that line numbers are not
displayed during program execution.

72

Cromemeo 68000 Structured Basie Instruction Manual
9. Documentation

Chapter 9

DOCUMENTATION

This chapter deseribes the REMark instruetion used for documenting programs.

instruction: Remark

format : [Ln] REM text

where:

Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

text is any string of printable characters.

The REM instruction is used to insert REMarks or comments in a program.

Notes:

1.

20

REM statements included in a Basic program are ignored when the program
is executed but are output exactly as entered when the program is LISTed.

REM statements occupy space in the User Area. With some long programs,
or those with large lists or matrices, it may be necessary to minimize the
use of REM statements in order to accommodate the program.

Any grammatical or typing mistakes which are made when inputting a REM
statement will not generate an error message and will be output precisely
as they appear in the statement line.

The programmer is encouraged to use REM statements liberally throughout
a program to describe program operation. These REMarks can be
particularly helpful to any one who wishes to use or modify a program
written by another person.

Multiple spaces in REMark instructions occupy no more User Area than
do single spaces. For this reason, the use of multiple spaces in REMarks
is encouraged when it will improve readability.

73

Cromemeo 68000 Structured Basic Instruction Manual

74

Cromemeco 68000 Structured Basie Instruction Manual

10. Assignment Instructions

Chapter 10

ASSIGNMENT INSTRUCTIONS

This chapter describes the LET and MATrix initialization instructions used for
assigning values to variables and matrices.

instruetion:
format:
where:
Ln
var
exp

Let

[Ln] LET var = exp

or

[Ln] var = exp

is an optional line number. If Ln is inecluded, the
instruction is executed at run time. Otherwise it is

executed immediately.

is a numeric or string variable or a reference to an
element of a matrix.

is the value to be assigned to var. It may be any
expression, variable, econstant, function, string variable,
or string literal.

The LET instruction is used to assign a value to a given numeric variable, string
variable, or element of a matrix. The equal sign (=) is called the assignment
operator. Refer to chapter 6.

Notes:

1. When a string variable is used with a LET instruection, the portion of the
string which is referenced is set equal to null charaeters before the source
is moved into the string variable. The whole string is referenced if no
subseripts follow the string variable, while various substrings may be
referenced by the use of subscripts. Refer to the section Referencing
String Variables in Chapter 5 for a complete discussion of the subject.
The LET instruection will not move more characters than can be accepted
by the destination string or substring which is being referenced.

2. In Basie the equal sign is also used as a relational operator.

75

Cromemeo 68000 Structured Basic Instruetion Manual

10. Assignment Instructions

3. A string variable or literal may only be assigned to a string variable while
any expression or funetion yielding a numeric result may only be assigned

to a numeric variable.

4, Basic is designed to allow the user to assign values to variables without

entering LET each time.

This capability is called implied LET.

LET and implied LET instructions execute with equal speed.

Examples:

LET Instruetions

Let Arm = 45

Let Bat = Arm + 10

Let Text$ = "Basic™

Let Total = Partl + Part2

Let Element = Inversion(10,5)

Equivalent Implied
LET Instructions

Arm = 45

Bat = Arm + 10

Text$ = "Basic"
Total = Partl + Part2

Element = Inversion(10,5)

76

Cromemeo 68000 Structured Basie Instruction Manual
10. Assignment Instruetions

instruction: Matrix Initialization
format : MAT mvar = aexp
where:
aexp is an arithmetic expression, variable, or constant.
mvar is a MATrix arithmetic variable.

The MAT instruction is used to set all elements in a MATrix (M) equal to the
value of the arithmetic expression (aexp).

Note:

1. MATrix M must be explicitly dimensioned.

Example:
>>List
10 Dim Array(4)
20 Read Array(1),Array(2),Array(3),Array(4)
30 Data 20,21,22,23
40 Print Array(1),Array(2),Array(3),Array(4)
50 Mat Array=0
60 Print Array(1),Array(2),Array(3),Array(4)
70 Mat Array-=1
80 Print Array(l),Array(2),Array(3),Array(4)
20 End
>>Run
20 21 22 23
] 0 0 0
1 1 1 1

kEkKQ 0 Enpdx*=*

77

Cromemeco 68000 Structured Basie Instrucetion Manual

78

Cromemeco 68000 Structured Basie Instruction Manual
11. Initialization '

Chapter 11

INITIALIZATION

This chapter deseribes instruetions used for defining the numeric variable ty pes.
These include instructions to:

-- Define matrices

-— Define for one or all variables whether the mode is integer, long floating
point, or short floating point

-~ Define whether the mode for trigonometric caleulations is degrees or
radians

MIXED MODE OPERATIONS

There are three types of numbers in Basie, INTEGER, Short Floating Point
(SHORT), and Long Floating Point (LONG), (hexadecimal constants are treated
as integers). Any arithmetic computation, assignment, INPUT, or READ can be
performed using any one or more of these types of numbers.

An assignment, READ, or INPUT will automatically convert the number to the
type of the receiving variable. This is the variable which is on the left of the
equal sign in an assignment instruction, and in the DATA list in the READ and
INPUT instructions.

In general, numbers are converted to other types freely as needed. For

example:

Sin(30) works, even though the SIN funetion must have a LONG
argument. The Integer 30 is converted to a Long Floating Point
number,

Sys(2.6) works, even though the SYS funection must have an INTEGER

argument. The Long (or Short) Floating Pcint number 2.6 is
converted to an integer (rounding to 3.0).

Most problems will oceur with mixed mode arithmetic involving INTEGER
numbers. Remember that all constants without a decimal point and with a value
less than 10,000 are stored as INTEGERSs.

79

Cromemeco 68000 Structured Basie Instruetion Manual
11. Initialization

Examples:

>>Short Short'var

>>Integer Integer'var

>>Short'var = 6 : Integer'var = 1
>>Short'var = Integer'var / 3 * Short'var

This example will assign a value of 0 to Short'var. This is because Integer'var/3
is evaluated first (rules of precedence, arithmetic operators). Because both
Integer'var and 3 are INTEGERs, Integer'var/3 is evaluated as a 0 using integer
arithmetic. Zero times anything, no matter what type, is still 0.

>>Short Short'var

>>Integer Integer'var

>>Short'var = 6 : Integer'var = 1
>>Short'var = Short'var * Integer'var / 3

Won

This example will assign a value of 2 to Short'var. This time
Short'var*Integer'var is evaluated first, and because this is mixed mode
arithmetic, the shorter form is converted to the longer form (the value of
Integer'var is converted to SHORT). Then Short'var*Integer'var is equivalent
to 6.0*¥1.0 or 6.0. We are left with 6.0/3, mixed mode again.

The Integer 3 (the shorter type) is converted to Short Floating Point (the longer

type) and the division is performed. Short'var is assigned a value of 6.0/3.0 or
2.0.

>>Integer Integer'var

>>Short Short'var

>>Long Long'var

>>Integer'var = 1 : Short'var = 3 : Long'var = 1

If at this point we give the command:

>>Long'var = Long'var/Short'var
Long'var will be assigned a value of 0.33333333333333 because
Long'var/Short'var is evaluated as Long Floating Point (the longer type).

If instead we had given the command:

>>Long'var = Integer'var/Short'var

80

Cromemec 68000 Structured Basic Instruetion Manual
11. Initialization

Long'var would have been assigned the value of 0.33333300000000 because I/S
is evaluated as Short Floating Point (the longer type, but still only 6 digits of
accuracy) and then assigned to a Long Floating Point variable (Long'var) with
14 digits of accuracy.

Conversion of both types of floating point numbers to Integer numbers and vice
versa does take time. Also arithmetie, indexing, and subscripting with floating
point numbers is much more time consuming than it is using INTEGERs.

Time can be saved by using INTEGER numbers wherever possible. Where it is
not possible, care in precedence ordering can result in significant time savings.
If Long'var is type LONG and Integer'var is type INTEGER, the first of the
following commands will execute faster than the second one.

>>Long'var
>>Long'var

Integer'var*Integer'var*Integer'var*Long'var
Long'var*Integer'var*Integer'var*Integer'var

i

This is because, until the last multiplication, the first example is using INTEGER
arithmetic. The second example uses Long Floating Point arithmetic from the
start, because the Long variable is at the left and this is where evaluation of
this expression begins.

81

Cromemeo 68000 Structured Basie Instruction Manual
11. Initialization

instruetion: Degree Mode
format : [Ln] DEG

where:
Ln is an optional line number. If Ln is included, the

instruetion is executed at run time. Otherwise it is
executed immediately.

The DEG instruction sets the trigonometric calculation mode to DEGree.
Note:

1. RUN, SCRatch, and LOAD will automatically reset the trigonometric
calculation mode to RADian.

82

Cromemco 68000 Structured Basie Instruction Manual
11. Initialization

instruction: Dimension
format : [Ln] DIM svar(aexpl)
[Ln] DIM avar(aexpl)
[Ln] DIM avar(aexpl,aexp2)
[Ln] DIM avar(aexpl,aexp2,aexp3)

where:

Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

avar is a matrix arithmetic variable.

svar is a string variable.

aexpl-3 are arithmetic expressions, variables or constants.

The DIM instruction is used to define the size of a matrix or a string variable.

Cromemeo Basie permits the user to define one, two, or three DIMensional

matrices.

Notes:

1. A DIMensioned numeric matrix variable can have the same name as any
other numeric variable., A DIMensioned string variable must have the name
of a string variable.

2. If a matrix or string variable is not explieitly dimensioned in a program,
the default value of 10 (11 elements, numbered 0 through 10) will be

automatically assigned to a singly subseripted matrix or string variable.

Doubly and triply subsecripted matrices will generate an error message if
not explieitly dimensioned.

3. The maximum size of any matrix is only restricted by the amount of
available memory. Any single DIMension may not exceed 16,382,

4, The DIMension of a string variable may not exceed 32766.

5. The first element in a matrix is numbered 0 (zero indexing).

83

Cromemeo 68000 Structured Basic Instruction Manual
11. Initialization

instruetion: Integer Mode
format : [Ln] IMODE

where:
Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

The IMODE instruction changes the default mode of all variables to the Integer
mode.

Notes:

1. This instruction takes effect only after the execution of a RUN instruction
after the IMODE instruction has been given. See the following example.

2. Integer variables occupy 2 bytes and must be within the range +32767
to -32768.

3. This instruction will be overridden by the LONG and SHCRT instructions.

Example:

1 Imode : X=2.5 : If X=2.5 Then Run

This line, appearing as the first line of a program, will ensure that the
interpreter is in the Integer mode. If the line is encountered while the
interpreter is pot in the Integer mode, the IMODE instruction will be given, X
will be set equal to 2.5 (a non integer number), and if X=2.5 (as will be the case
if SFMODE or LFMODE are current) the RUN instruction will be executed.
Program execution will then begin over again, this time the RUN instruetion will
be given gfter the IMODE instruction and the current mode will be integer. When
the value 2.5 is assigned to X, X will be an integer variable so that 2.5 will be
rounded and X will have the value of 3. Then X=2.5 will be false and CONTROL
will be transferred to the next line.

84

Cromemco 68000 Structured Basic Instruction Manual

11. Initialization

instruction:

format :

where:
Ln

avar

mvar

Integer Variable

[Ln] INTEGER avar, mvar(x),...

is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

is a scalar arithmetic variable

is a matrix arithmetic variable.

is the optional DIMension of mvar.

The INTEGER instruction is used to set a given variable to the INTEGER mode.

Notes:

1. DIMensioning may be done via the INTEGER instruetion.

2. The INTEGER instruction must be executed before the variable is
referenced for the first time. :

3. INTEGER variables occupy 2 bytes and must be within the range +32767

to -32768.

4., This instruction overrides the SFMODE and LFMODE instructions.

83

Cromemeo 68000 Structured Basie Instruction Manual
11. Initialization

instruction: Long Floating Point Mode
format : [Ln] LFMODE

where:
Ln is an optional line number. If Ln is included, the
instruction is executed at rum time. Otherwise it is
executed immediately.

The LFMODE instruetion is used to set all variables within a program to the Long
Floating Point mode.

Notes:

1. This is the standard default mode for all variables and arithmetic
operations.

2. This instruction takes effect only after the execution of a RUN instruction
after the LFMODE instruction has been given. See the following example,

3. Long Floating Point variables occupy 8 bytes and must be within the range
+9.99E+62 to +9.99E-65. They have an accuracy of 14 digits.

4, This instruection will be overridden by the INTEGER and SHORT
instructions.

Example:
1 Lfmode : X=0.12345678 : If X<>0.12345678 Then Run

This line, appearing as the first line of a program, will ensure that the
interpreter is in the Long Floating Point mode. If the line is encountered while
the interpreter is pot in the Long Floating Point mode, the LFMODE instruction
will be given, X will be set equal to 0.12345678 (a number that cannot be
represented in either Short Floating Point or Integer modes), and if X dces not
equal 0.12345678 (as will be the case if SFMODE or IMODE are current), the
RUN instruetion will be executed. Program execution will then begin over again,
this time the RUN instruction will be given gfter the LFMODE instruetion and
the current mode will be Long Floating Point. When the value 0.12345678 is
assigned to X, X will be a Long Floating Point variable with the value of
0.12345678. Then X<>0.12345678 will be false and CONTROL will be transferred
to the next line.

36

Cromemeo 68000 Structured Basie Instruetion Manual

11. Initialization

instruection:
format:

where:
Ln

avar
mvar

X

Long Variable

[Ln] LONG avar, mvar{x),...

is an optional line number. If Ln is included, the
instruection is executed at run time. Otherwise it is
executed immediately.

is a scalar arithmetic variable.

is a matrix arithmetic variable.

is the optional DIMension of mwvar.

The LONG instruction is used to set a given variable to the Long Flcating Point

mode,

Notes:

1. DIMensioning may be done via the LONG instruction.

2. The LONG instruction must be executed before the variable is referenced
for the first time.

3. Long Floating Point variables occupy 8 bytes, have an accuracy of 14

4, SCRatch, RUN, and LOAD will automatically reset the trigonometric mode

to RADian,

87

Cromemeo 68000 Structured Basic Instrucetion Manual
11. Initialization

instruction: Radian Mode
format: [Ln] RAD
where:
[Ln] is an optional line number. If Ln is inecluded, the

instruction is executed at run time. Otherwise, it is
executed immediately.

The RAD instruction sets the RADian mode for trigonometric calculations.
Note:

1. SCRatch, RUN, and LOAD will automatically reset the trigonometric mode
to RADian.

88

Cromemco 68000 Structured Basie Instruetion Manual
11. Initialization

instruction: Short Floating Point Mode
format [Ln] SFMODE

where:
Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

The SFMODE instruection is used to set all variables within a program to the
Short Floating Point mode,

Notes:

1. This instruction takes effect only affer the execution of a RUN instruction
after the SFMODE instruction has been given. See the following example.

2. Short Fleating Point variables occupy 4 bytes, have an acecuracy of 6 digits,
and must be within the range +9.99E+62 to +9.99E-65.

3. This instruction will be overridden by the LONG and INTEGER instruections.

Example:

1 Sfmode : X=0.90000001 : If X<>0.9 Then Run

This line, appearing as the first line of a program, will ensure that the
interpreter is in the Short Floating Point mode. If the line is encountered while
the interpreter is not in the Short Floating Point mode, the SFMODE instruction
will be given, X will be set equal to 0.90000001 and if X is not equal to 0.9 (as
will be the case if IMODE or LFMODE are current) the RUN instruction will be
executed., Program execution will then begin over again, this time the RUN
instruction will have been given after the SFMODE instruction and the current
mode will be Short Floating Point. When the value 0.90000001 is assigned to
X, X will be a Short Floating Point variable so that 0.90000001 will be rounded
and X will have the value of 0.9. Then X<>0.9 will be false and CONTROL will
be transferred to the next line.

89

Cromemeo 68000 Structured Basie Instruction Manual
11. Initialization

instruction: Short Variable
format 2 [Ln]l SHORT avar, mvar{x),...

where:
Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

avar is a scalar arithmetie variable.
mvar is a matrix arithmetic variable.
X is the optional DIMension of mvar,

The Short instruction is used to set a given variable to the Short Floating Point
mode.

Notes:

1. DIMensioning may be done via the SHORT instruction.

24 The SHORT instruction must be executed before the variable is referenced
for the first time.

3. Short Floating Point variables occupy 4 bytes, have an accuracy of 6 digits,
and must be within the range +£9.99+62 to +9.99E~-65.

4, This instruction overrides the IMODE and LFMODE instructions.

90

Cromemeo 68000 Struetured Basic Instruction Manual
12. Control Structures

Chapter 12
CONTROL STRUCTURES

This chapter describes the instructions used for controlling the flow of
execution within a program. These include instructions to:

~- Set up loops

-~ Call subroutines

-~ Go to specific lines
-- Stop and end execution

command: Continue Program Execution

format: CON
The CON ecommand CONtinues program execution after a program is interrupted
by a STOP statement, a program error, or the ESCAPE key.

Notes:

1. Program execution will commence with the line following the statement
at which the program stopped.

24 If program execution stopped because of a program error, the error can
be corrected and the CON command used to continue execution from the
line following the one where the error occurred.

3. If the user wishes to re-execute the line in error, GOTO (as a command)
should be used.

91

Cromemeo 68000 Structured Basie Instruetion Manual
12. Control Struetures

statement: End Program Execuntion
format: Ln END
where:

Ln is a line number.

The END statement halts program execution and causes Basie to return to the
command mode,

Notes:

1. Unlike the STOP statement, program execution may not be CONtinued after
an END statement has been executed.

2. Upon execution of the END statement, Basic displays a message on the
console indieating the line number of the END statement which caused the
program to halt,

Example:
>>List
100 Print "Tomorrow and tomorrow and {OmMOrrow,.."
200 End
>>Run

Tomorrow and tomorrow and fOMOrrow ...
200 End

>>

92

Cromemeco 68000 Structured Basic Instruction Manual
12. Control Structures

instructions:
format:
where:
Ln
avar
aexpl-3

For-Next Loop

[Ln] FOR avar=aexpl To aexp2 [Step aexp3]

[program instructions]

[Ln] NEXT avar

are optional line numbers. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

is a non-subscripted numeric variable. This is the index
variable.

are arithmetic expressions, variables, or constants. They
may not be string literals or string variables. These are
the FOR-NEXT loop parameters.

aexpl is the initial value.
aexp? is the final value.
aexpd is the step value.

The FOR-NEXT instructions are used to repeat a part of a Basic program a
specified number of times. During the execution of a FOR-NEXT loop, an index
(avar) is maintained. When this index becomes equal to (or greater than, or less
than) the final value (aexp-3), CONTROL is transferred to the instruction
following the NEXT instruction.

Notes:

1!

The following sequence defines the execution of a FOR-NEXT loop:

ab

The expressions aexpl, aexp2, and aexp3 are evaluated. If aexp3 is
omitted it is given a value of +1 (if the step value is not specified it
is assumed to be +1).

The index variable (avar) is set equal to the initial value (aexpl).

The instructions following the FOR and preceding the NEXT are
executed.

The step value is added to the index variable (avar = avar + aexp3).

93

Cromemec 68000 Structured Basie Instruction Manual
12. Control Structures

e. If the step value (aexp3) is positive and the index variable (avar) is
greater than or equal to the final value (aexp2), then the condition
for termination of the FOR-NEXT loop has been met and CONTRCL is
transferred to the instruction following the corresponding NEXT
instruetion.

If the step value (aexp3) is negative and the index variable (avar) is
less than or equal to the final value (aexp2), then the condition for
termination of the FOR-NEXT loop has been met and CONTROL is
transferred to the instruction following the corresponding NEXT
instruction.

Otherwise execution of the loop continues with C above.

2. The step (aexp3) portion of the FOR instruction is optional. If a step
value is not specified, Basic assumes a value of +1 for aexp3.

3. Basic programs will execute significantly faster if the loop parameter
variables are declared as type Integer.

4, FOR~-NEXT loops may be nested within a program. It is important to keep
in mind, however, that each FOR instruction and its corresponding NEXT
instruetion must be completely contained within any larger loop.

5. Program LISTings have FOR-NEXT loops indented for clarity.

Examples:

>>List
10 Rem Demonstration Program
20 For Index'var = 0 TO 10 Step 2
30 Sum = Index'var+l
40 Print Sum; " "
50 Next Index‘var
60 End

»>>Run

1357911***5HEng*+*

In the above example, upon entering the FOR-NEXT loop defined by lines 20
through 50, the loop parameters are evaluated and set equal to:

0 (aexpl, the initial value)
10 (aexp2, the final value)
2 (aexp3, the step value)

94

Cromemeo 68000 Structured Basie Instruetion Manual
12. Control Structures

The index variable is then set equal to the initial value (Index'var=0). Execution
continues with lines 30 and 40 where the Index'var maintains the value assigned
to it by the FOR instruction. At line 50 the index variable is tested to see if
it is greater than or equal to the final value (is Index'var > 10?). In this case
0 is not greater than 10, so execution continues with line 20. The step value
is added to the index variable (Index'var = Index'var + aexp3). This continues
until (Index'var >=aexp2). Then CONTROL is transferred to statement 60.

Correct Nesting Format:

10 For Varl = 1 TO 50 Step 2

20 For Var2 = 1 TO 30 Step 5
30 For Var3 = 1 TO 10 Step 1
100 Next Var 3

110 Next Var2

120 Next Varl

Illegal nesting occurs when FOR-NEXT loops overlap. The following example

will generate a run-time error.

Incorrect Nesting Format

10 For Varl = 1 TO 50 Step 2

20 For Var2 = 1 TO 30 Step 5
30 For Var3 =1 TO 10 Step 1
100 Next Var2

110 Next Vard
120 Next Varl

95

Cromemeo 68000 Structured Basie Instruction Manual
12. Control Structures

instruction: Gosub-Return

format: [Ln] GOSUB n

n [program instructions]

[Ln] RETURN

where:
Ln are optional line numbers. If Ln is included, the
‘ instruction is executed at run time. Otherwise it is
executed immediately.

n is the line number or line name of the first statement of
the subroutine to which CONTROL is transferred.

The GOSUB instruction transfers CONTROL to a subroutine.

When, during the execution of the subroutine, a RETURN instruction is executed,

CONTROL is passed to the instruction following the GOSUB instruction which

called the subroutine,

Notes:

1. In Basic, subroutines may be fully enclosed or nested in other subroutines.
When nesting subroutines, remember that the RETURN instruetion will take
you back to the last GOSUB and start execution of the instruction
immediately following. Improperly nested GOSUB-RETURN instructions

will generate run time error messages.

A nested subroutine is executed after the GOSUB statement and before
the RETURN statement of the subroutine in whieh it is enclosed.

96

Cromemeo 68000 Structured Basie Instruction Manual

12. Control Structures

Example:

>>List

10
20
30
40
50
60
70
80
90

>>Run

Rem Example program, GOSUB

Gosub Demo'print

Print "Program Over"

End

*Demo'print : Print "This is a subroutine"
Print "which demonstrates the"

Print "Gosub statement"

Print

Return

This is a subroutine
which demonstrates the
Gosub statement

Program Over

97

Cromemeo 68000 Structured Basie Instruction Manual
12. Control Structures

instruetion: Gosub-Retry

format : [Ln] GOSUB n

n [program instructions]

"

[Ln] RETRY
where:

Ln are optional line numbers, If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

n is the line number or line name of the first statement of
the subroutine to which CONTROL is transferred.

The GOSUB instruction transfers CONTROL to a subroutine.
The RETRY instruction is similar to the RETURN from a subroutine instruction
except that it re-executes the instruetion which called the subroutine.

Notes:

1. RETRY is to be used in conjunction with the ON ERROR-GOSUB error
trapping instruction only.

When used with an error trap, the condition which caused the error can
be fixed and the statement which caused the error will be re-executed.

2. When used in place of RETURN in a subroutine which was called by a

standard GOSUB instruetion, RETRY will cause Basic to repeatedly execute
the subroutine without end.

98

Cromemeo 68000 Structured Basie Instruetion Manual
12. Control Struetures

Example:

100 Procedure .Open'file (File'name$)

110 Rem

120 Rem This Procedure OPENs a file on channel 1.
130 Rem If the file does not exist it will be CREATEGd
140 Rem before it is OPENed.

150 Rem

160 On Error Gosub File'create : Rem Set error trap
170 Open\1\File'name$

180 On Error Stop : Rem Reset error trap.

190 Endproc

200 Rem

210 Rem

220 Rem Subroutine FILE'CREATE

230 Rem If called because of an error 134

240 Rem (Cannot Open File) this routine will CREATE
250 Rem the file. If called because of any other

260 Rem error, the Basic error flag will be set,
270 Rem the error trap will be reset, and the
280 Rem Procedure aborted.

290 Rem

300 *Tile'create
310 Error'number=Sys(3)
320 If Error‘number=134 Then Do

330 Create File'name$
3440 Else

350 On Error Stop
360 Errproe

370 Enddo

380 Retry

390 End

99

Cromemeo 68000 Structured Basie Instruction Manual
12. Control Struetures

instruction: Goto

format : [Ln] GOTO n

where:

Ln is an optional line number. If Ln is included, the
instruetion is executed at run time., Otherwise it is
executed immediately.

n is the line number or line name line number of the
statement to whiech CONTROL is transferred.

The GOTO instruction unconditionally transfers CONTROL to the statement line
specified by n.

When used as a statement, GOTO interrupts the normal execution sequence of
program statements and transfers CONTROL to the specified statement.

When used as a command GOTO will cause execution of a program to start with
the specified statement.

Notes:

1. When used with the IF-THEN instruction and a line number, the words
GOTO are optional:

If Bool=0 Then Goto 50
or

1f Bool=0 Then 50

are equivalent and are both legal instructions.

2. When execution of a program is initiated or continued using a GOTO
command, no variable initialization takes place.

100

Cromemeo 68000 Structured Basie Instruction Manual

12. Control Struectures

Example:
>>List

10
20
30
40
30
200
210

>>Run
? -2

Input Number

If Number<0 Then 200

Root = Sqr{Number)

Print "The square root of ";Number;" is ";Root
Goto 210

Print "This yields an imaginary number"

End

This yields an imaginary number
*%%91() End**+*

>>Run
? 9

The square root of 9 is 3
210 End

In statement 20 the words GOTO are omitted. This statement causes CONTRCL
to be transferred to statement 200 if the condition (A<0) is true. Statement 50
unconditionally transfers CONTROL to statement 210.

101

Cromemeo 68000 Structured Basie Instruction Manual

12. Control Structures

instruction:

format-1:

format-2:

where:

Ln

exp

instruction

If-Then
[Ln] IF exp THEN n
[Ln] IF exp THEN instruction

[Ln] IF exp THEN instruction:instruetion:...

is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

is a relational or arithmetic expression, an arithmetic
variable, or a constant.

is the line number or line name of the statement to which
CONTROL is transferred.

is any Basic instruction except FOR, NEXT, REM or DATA.

The IF-THEN instruction evaluates exp to false (=0) or true (not equal to 0).

If format~-1 is used, CONTROL is transferred to the specified statement if exp
is evaluated as true, and to the next sequential statement if exp is false.

If format-2 is used, and if exp is true, the instructions remaining on the same
line are executed before CONTROL is transferred to the next sequential
statement. If exp is false, CONTRCOL passes to the next sequential statement

line.

Notes:

1. In a relational expression, a relational operator (=, <, >=, <=, <>, or >) is
used to compare two expressions or values. Refer to Chapter 6 for a
discussion of relational and Boolean operators.

2. No instruction may follow format-1 of the IF-THEN instruction on the same

line.

3. IF-THEN instructions may be nested using format-2.

For example:

100

If A =B Then If G$§ = "N" Then 500
is a legal statement.

4, Also refer to the IF-THEN-ELSE instructions.

102

Cromemeo 68000 Structured Basie Instruetion Manual
12. Control Structures

Examples:

100 *In : Input Part'number

110 If Part'number=0 Then @"must be non-zero" : Goto In
120 Print Part'number

130 End

In this example, the computer outputs a prompt (?) to which the user responds
with a number. IF the number is non-zero (Part'number=0 is false), CONTROL
will be passed to line 120, the number will be printed, and execution of the
program will terminate. IF the number is zero (Part'number=0 is true), the part
of line 110 after THEN will be executed, printing out the message and returning
CONTROL to the line labeled In (line 100) which will request another number
from the user.

100 *Again : Input "First Name: ", Name$

200 If Name$ = "FRED" Or Name$ = "Fred" Then Goto Finish
300 Goto Again

400 *Finish : Print "So you are Fred!"

500 End

This program will continue to prompt the user with "First Name:" until the user
responds with either Fred or FRED. The IF-THEN instruction includes a
compound relaticnal expression:

Name$ = "FRED" Or Name$ ="Fred"

This expression is evaluated as true (=1) if either FRED (all upper case) QR Fred
(Upper case F, lower case red) is entered. This type of checking is very useful
in interactive programs where a variety of user responses are to be allowed.

103

Cromemeo 68000 Structured Basie Instruction Manual
12. Control Structures

statements: If-Then~-Else

format: Ln IF exp THEN DO

[Ln ELSE]
Ln ENDDO
where:
Ln are line numbers
exp is a relational or arithmetic expression.

If exp evaluates to true (not equal to zero) then the program instructions
following DO are executed. If, in addition, ELSE is coded, ELSE will transfer
CONTROL to the ENDDO statement.

If exp evaluates to false (equal to zero) then CONTROL is transferred to ELSE
(if ELSE is used) or to ENDDO (if ELSE is not used).

Example:

The following program will request a line of text from the user, and then count
the number of words and non-blank characters in the line. The average number
of characters per word will be computed and displayed and then the user will
be prompted for another line of text. Entering a RETURN in response to the
request for INPUT will terminate the program.

104

Cromemeo 68000 Structured Basie Instruetion Manual
12. Control Structures

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450

460

470
480
490
200
510

Dim Buffer$(100)
Dim Blank$(0) : Blank$=" "
Rem initialize blank character flag
Rem word counter
Rem character counter
Last'char'was'blank=0
Number'of'words=1
Number'of'char=0
Rem prompt user
Input"Enter line: ",Buffer$
Rem check for user termination (null buffer)
Length'of tbuffer=Len(Buffer$)
If Length'of'buffer=0 Then Goto 510
Rem
Rem
Rem loop through buffer
For Index=0 To Length'of'buffer-1
Rem check for blank character
If Buffer$(Index,~1)=Blank$Then Do
Rem check if the last character was a blank
If Last'char'was'blank=0 Then Do
Rem if not, inerement word counter and
Rem set flag
Number'of 'words=Number'of '"words+1
Last'char'was'blank=1
Enddo
Rem if not a blank, increment character counter
Rem and reset flag
Else
Number'of'echar=Number'of 'char+1
Last'char'was'blank=0
Enddo
Next Index
Rem
Rem
Rem display results and return for another user
entry
@"Number of non-blank characters is
" Number'of'char
@"Number of words is ";Number'of 'words
Avg=Number'of'char/Number'of'words
@"Average number of characters/word is ";Avg
Goto 150
End

105

Cromemeo 68000 Structured Basic Instruction Manual
12. Control Structures

instructions: On~-Goto
On-Gosub

format: [Ln] ON aexp GOTO nl,n2,...,ni

[Ln] ON aexp GOSUB n1,n2,...,ni

where:

Ln is an optional line number. If Ln is included, the
instruetion is executed at run time. Otherwise it is
executed immediately.

aexp is an arithmetic expression, variable, or constant

nl-i are line numbers and/or line names of the statements to
which CONTROL can be transferred.

The ON-GOTO and ON-GOSUB instructions transfer CONTROL to any one of
several lines in a program based on the value of the expression (aexp) contained
in the instruetion.

Refer to the GOTO and GOSUB instructions for more information.

Notes:

1.

When aexp is evaluated, if it is equal to one, CONTROL will be passed
to the statement nl; if it is equal to two, CONTROL will be passed to the
statement n2; if it is equal to i, CONTROL will be passed to the statement
ni.

If aexp evaluates to a non integer number the value of the number will
be rounded to the nearest integer for the purpose of these instructions.

If aexp is evaluated as less than one or greater than i the instruction will
be ignored and CONTROL will pass to the next sequential instruction.

If n1, n2, or ni is a nonexistent line, and if CONTROL is transferred to that
line, a fatal run time error will be generated.

No instruction may follow an ON-GOTO or ON-GOSUB instruction on the
same line.

106

Cromemeo 68000 Struetured Basice Instruction Manual

12. Control Structures

statements:

format:
where:

Ln

exp

Repeat-Until Loop

Ln REPEAT

Ln UNTIL exp

is a line number.

is an arithmetic or relational expression.

The REPEAT structure is used to REPEAT a set of Basiec program instructions
UNTIL exp is evaluated as true (not equal to zero).

Note:

1. The Basic program instructions contained within the REPEAT-UNTIL
structure will be executed at least one time. If exp is true when it is
evaluated, CONTROL is passed to the instruction following the UNTIL
instruction. Otherwise program CONTROL is passed back to the REPEAT

instruction.

Example:

1000 Input"Nu

mber, limit: ",Number,Limit

1010 Power'of 'number=Number

1020 Repeat

1030 Print Power'of 'number

1040 Power'of 'number=Power'of '"number*Number
1050 Until Power'of'number>=Limit

1060 End

This program will prompt the user for 2 number and a limit. The series of powers

of the number will be

displayed until the limit is reached.

107

Cromemeo 68000 Structured Basice Instruction Manual
12. Control Struetures

statements: While~Endwhile Loop

format: Ln WHILE exp

[program instruetions]

Ln ENDWHILE

where:
Ln are line numbers.

exp is an arithmetic or relational expression.

The WHILE structure is used to repeatedly execute a section of a Basie program
WHILE a condition is true.

Notes:

1. If exp is false when it is evaluated, CONTROL passes to the instruction
following the ENDWHILE instruction. Otherwise program CONTROL
continues with the next sequential instruction.

2, It is possible for the code contained in the WHILE structure not to be
executed at all. This will happen if exp is false the first time the WHILE
instruetion is executed.

Example:

110 Integer Valid'answer'flag,True,False

120 True=l : False=0

130 Valid'answer'flag=False

140 While Not Valid'answer'flag

150 Input"Answer(y/n): ",Answer$

160 If Answer$="Y"Or Answer$="y"Then Valid'answer'flag=True
170 If Answer$="N"Or Answer$="n"Then Valid'answer'flag=True
180 If Not Valid'answer'flag Then Print"Invalid response. ";
190 Endwhile

200 Rem The program continues here,

210 Rem once a valid answer has been entered.

>>run

Answer(y/n): 57

Invalid response. Answer(y/n): new
Invalid response. Answer(y/n): Y

108

Cromemeo 68000 Structured Basice Instruction Manual
12. Control Struetures

This section of code demonstrates the use of the WHILE structure. The WHILE
condition (Not Valid'answer'flag) becomes false, and the program continues,
only when the user provides an acceptable response.

The first program line defines the variables (Valid'answer'flag, True, and False)
as type INTEGER. Since all Basic operations involving Integer variables are
performed faster than those involving Floating Point variables, defining these
variables as type INTEGER allows for faster program execution. Note that
throughout the program, these are used strictly as Boolean-type variables. This
means that they may only take on the values of true (=1) or false (=0). On the
second line, the variables True and False are initialized.

On line 130, the variable Validlanswer'flag is set to False (=0) because, before
the user is prompted, no valid answer has been accepted by the program.

Line 140 defines the condition for execution of the WHILE loop. This statement
line can be read as, "WHILE the variable Valid'answer'flag is not true, perform
the instructions up to the ENDWHILE instruction and then return CONTROL to
this test (line 140)". If the portion of the statement following the WHILE is
true, CONTROL remains within the WHILE structure. If it is false, CONTROL
is transferred to the instruction following the ENDWHILE. In this example, the
boolean operator NOT causes CONTROL to remain within the WHILE loop as long
as Valid'answer'flag is NOT true. When a valid answer is INPUT by the user,
Valid'answer'flag is set to true, the WHILE test condition becomes false, and
CONTROL passes to the instruction following the ENDWHILE.

Lines 150 through 180 prompt the user for a response and determine if the
response meets the criteria of the programmer. If a valid response is INPUT,
the value of the variable Validtanswer'flag is set to true (=1), otherwise it
remains as false (=0). If Valid'answer'flag is false, an error message is
displayed before the user is reprompted.

Upon encountering the ENDWHILE statement, CONTROL is transferred to the
WHILE statement where a test is performed as indicated above.

109

Cromemeo 68000 Structured Basice Instruction Manual
12. Control Structures

statement: Stop Program Execution
format: Ln STOP

where:
Ln is a line number.

The STOP statement halts program execution and causes Basic to return to the
command mode.

Notes:

1. After a program has been STOPped by a STOP statement execution may
be restarted from the statement line immediately following the line
containing the STOP statement by the use of the CONtinue command.

2, Upon execution of the STOP statement, Basic displays a message on the
console indicating the line number of the STOP statement which caused
the program to halt.

- Example:
>>List

10 Input A,B,C,D,E,F
200 Let Number=A+B/C
30 Print A;B;C

40 Stop

50 Print D;E;F

60 Print Number

70 End
>>Run
? 1,2,3,4,5,6
123
*¥%4() Stoph**
>>Con
456
1.6666666666667

70 End#

In this example, the Basie returns to command mode after encountering the STOP

in statement line 40. The program is then CONtinued when the user enters the
CON command.

110

Cromemeco 68000 Structured Basie Instruetion Manual
13. Console and Data Input/Cutput

Chapter 13

CONSOLE AND DATA INPUT/OUTPUT

This chapter deseribes the instruetions used for reading and writing data to and
from the console and for setting up DATA statements.

instruction: Input (from the console)
format [Ln] INPUT var-1,var-2,...,var-n
[Ln] INPUT "string", var-1,var-2,...,var-n

where:
Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

varl-n is a list of one or more numeric and/or string variables.

string is an optional string literal. It is a prompt to be
displayed on the console,

The INPUT instruction assigns a value, INPUT from the conscle, to a variable.
When the INPUT instruetion is executed, a prompt (either a question mark (?) or
a string as used above) is output to the console. The user should respond to
this prompt by entering a list of data which corresponds to the variable list in
the INPUT instruction. The data list entered by the user must be terminated
by a RETURN.

Notes:

1. If the string format of the INPUT instruction is used, the string will
replace the question mark as the initial prompt.

24 If the user types in fewer data items than are called for in the variable
list, a double question mark will appear on the terminal. This prompt
continues to appear until each variable has been assigned a value. See
the examples,

3. If more data is INPUT than is required, an error message will be generated.

111

Cromemeo 68000 Struetured Basice Instruction Manual
13. Console and Data Input/Output

‘40

The type of data INPUT must be the same as the type of variable listed
in the INPUT instruction. For example, if the INPUT command contains
a list of numeric variables, the data INPUT must be numeric data. If an
attempt is made to INPUT string data into a numeric variable, an error
message will be generated.

When a string variable is used with an INPUT instruetion, the portion of
the string which is referenced is set equal to null characters before the
source is moved into the string variable. The whole string is referenced
if no subscripts follow the string variable, while various substrings may
be referenced by the use of subseripts. Refer to the section Referencing
String Variables in Chapter 5, for a complete discussion of the subject.
The INPUT instruction will not move more characters than can be accepted
by the destination string (or substring) which is being referenced.

If the INPUT list is terminated with a semicolon, the RETURN which the
user types after the requested data has been entered will not be echoed.
This allows more than one prompt and response sequence to appear on
a single line.

Refer also to the description of the INPUT instruction in the chapter on
Data File 1/0.

Examples:

>>List

10 Input Numl,Num2,Num3,Num4

20 Print Numl

30 Input Nums5,Num8é

40 Print Num2;" ";Numd;"™ ";Num4;" ";Numb5;" ";Numé

>>Run

? 32,18,20,4

32

? 100,200

18 20 4 100 200
%%50 Enpd¥t

In the above example, the proper number of items was INPUT in response to each

prompt. Suppose we were to respond to INPUT statement 10 with only three
numbers:

>>Run

? 5,10,15

2?7 20

5

7 30,40

10 15 20 30 40
50 End

112

Cromemeco 68000 Structured Basie Instruction Manual
13. Console and Data Input/Output

Basie displayed an additional prompt (2?) when it did not receive as many items
as were in the INPUT list.

In our example, line 10 and line 30 can be replaced with lines which will tell
the user specifically what items are needed:

>>10 Input "Enter four numbers: ",Numl,Num2,Num3,Num4
>>30 Input "The last two numbers: ",Num6,Num?7

>>Run

Enter four numbers: 100,200,300,400

100

The last two numbers: 500,600

200 300 400 500 600

50 End

113

Cromemeco 68000 Structured Basie Instruetion Manual
13. Console and Data Input/Cutput

instruction: Print (to the console)

format : [Ln] PRINT

[Ln] PRINT A1,A2,...,An

where:

Ln is an optional line number. If Ln is included, the
instruetion is executed at run time., Otherwise it is
executed immediately.

Al-n are numbers, string literals, numeric variables, string
variables, numeric expressions, or standard or user
defined functions.

The PRINT instruection is used to output information to the terminal.

Notes:
1. When used alone, the PRINT instruction will generate a new line (RETURN,
LINE FEED).
2, The at sign (@) may be used in place of the word PRINT for brevity.
Example;
30 Print
40 Print "And it saves space"
can also be written as:
30 @
40 @ "And it saves space"
This feature facilitates entry of large, text-oriented programs.
3. The spacing of output can be controlled by using a comma (,) or a semicolon

(3) between items in a PRINT list.

Items separated by commas are PRINTed beginning in the leftmost column
of each PRINT field. Using the default value of 20 eolumns per field, the
PRINT statement below:

10 Print 1,2,3,4

Cromemeo 68000 Structured Basie Instruetion Manual
13. Console and Data Input/Output

4A

will produce output in the following format:

column 0 20 40 60
no.
See the SET instruction to change the number of ecolumns per field.
If a semicolon is used between items, the items are printed adjacent to

each other (i.e., without spaces between items). For example, the
statement:

10 Prlnt "Al“; "toﬂ; ng"; "th"; ﬂer"
will produce output in the following format:

Altogether
Commas and semicolons may be used in a PRINT instruetion in any
combination.
If more items are listed in a PRINT statement than can be output on one
line, Basic will generate a LINE FEED and continue PRINTing on the next
line.

More complex formatting of PRINTed text is possible with the TAB and
SPC functions and the PRINT USING instruction.

Refer also to the description of the PRINT instruction in the chapter on
Data File 1/0.

115

Cromemeo 68000 Structured Basie Instruetion Manual
13. Consocle and Data Input/Cutput

Example:

>>List
20 Current'year=1979
30 Print "This is ";Current'year
40 Print
50 Print
60 Input Birth'date
70 Age=Current'year-Birth'date
80 Print "You were born in ";Birth'date
90 Print
100 Print "You are "; Age;" years old this year"
110 End

>>Run

This is 1979

? 1952
You were born in 1952

You are 27 years old this year
110 End

116

Cromemeo 88000 Structured Basie Instruetion Manual

13. Console

and Data Input/Output

instruction: Read Data

format : [Ln] READ var-1,var-2,...,var-n

where:

Ln is an optional line number. If Ln is included, the
instruction is executed at run time., Otherwise it is
executed immediately.

varl-n is a list of one or more numeric and/or string variables

The READ instruction is used to READ values from DATA statement(s) and assign

these values to the READ instruction variable list.
Notes:
1. The order in which variables appear in the READ instruction determines

Exam

which value from the DATA list will be assigned to which variable. For
instance, the first value that appears in the DATA list is assigned to the
first variable in the READ list, the fifth value is assigned to the fifth
variable, and so forth.

A pointer is moved in sequence through the list of DATA values as these
values are assigned to variables in the READ list. The number of DATA
elements must be equal to or greater than the number of variables in the
READ list. If there are fewer items remaining in the DATA list than are
in the current READ list, an error message will be generated.

DATA elements corresponding to numeric variables must be numeriec DATA
and elements corresponding to string variables must be string literals.

When a string variable is used with a READ instruction, the portion of the
string which is referenced is set equal to null characters before the source
is moved into the string variable. The whole string is referenced if no
subseripts follow the string variable, while various substrings may be
referenced by the use of subscripts. Refer to the section Referencing
String Variables in Chapter 5, for a complete discussion of the subject.
The READ instruction will not move more characters than can be accepted
by the destination string (or substring) which is being referenced.

ple:

>>List

10
20
30
40

>>Run
10
***40

Read Bananas,Pears,Peaches,Company$
Print Bananas,Pears,Peaches,Company$
Data 10,20,30,"Fruit Co."

End

20 30 Fruit Co.
End¥x*

117

Cromemeo 68000 Structured Basie Instruction Manual
13. Console and Data Input/Qutput

instruction:
format :
where:
Ln
n

Restore Data Pointer

[Ln] RESTORE

[Ln] RESTORE n

is an optional line number. If Ln is ineluded, the
instruction is executed at run time. Otherwise it is

executed immediately.

is a line number or line name in the current program.

The RESTORE instruction resets the DATA list pointer which is associated with
the READ instruction. This allows the user to reREAD or skip over DATA items.

Note:

1. Line n must be a line of or before a DATA statement. If n is not used, the
DATA list pointer is positioned before the first DATA list item in the
program. If n is included, the DATA list pointer is positioned before the
first occurring DATA list item on or after the speecified line.

Example:
>>List
10 Read A,B,C,D
20 Read E,F,G,H
30 Restore
40 Read R,S,T,U
50 Restore 90
60 Read L,M,N,O
70 Data 1,2,3,4
80 Data 5,6,7,8
90 Data 9,10,11,12
100 Print A,B,C,D
110 Print E,F,G,H
120 Print R,S,T,U
130 Print L,M,N,O
>>Run
1 2 3 4
5 6 7 8
1 2 3 4
9 10 11 12
End

118

Cromemco 68000 Structured Basic Instrucetion Manual
13. Console and Data Input/Cutput

statement: Data
format: Ln DATA Al, A2,...,An

where:
Ln is a line number.

Al-An are constants, string literals, numeric variables, string

variables, numeric expressions, or standard or user
defined functions.

The DATA statement specifies values for variables appearing in a READ
instruetion.
Notes:

1. The READ instruction is used to READ values from DATA statements and
assign these values to the READ instruction variable list.

2. The RESTORE instruction allows items in the DATA list to be skipped or
reREAD by resetting the DATA list pointer.

Example:

10 Data 7%3,9+(2*107),"This is Data",15,75

119

Cromemeo 68000 Structured Basie Instruetion Manual

120

Cromemec 68000 Structured Basie Instruction Manual
14, Output Formatting

Chapter 14

OUTPUT FORMATTING

This chapter describes the instructions used for formatting output sent to the
console or a printer.

instruction: Print Using
format: [Ln] PRINT USING svar, A1,A2,...,An

where:
Ln is an optional line number. If Ln is included, the
instruetion is executed at run time. Otherwise it is
executed immediately.

svar is a string literal or string variable format definition.

Al-n are constants, string literals, numerie variables, string
variables, numeric expressions, or standard or user
defined funetions.

The PRINT USING instruction allows the user to specify a format for displaying
output.

Note:
In examples in this section the character b represents a blank character.

1. A format field is bounded on either side by any character which is not one
of the special characters (# & * +, $! -~ .). As indicated in the general
format for the PRINT USING instruction, a format expression may include
more than one format field and may also include string literals. If multiple
format fields are specified, the values of expressions are assigned to these
fields in order. A format expression may also be assigned to a string
variable.

121

Cromemeco 68000 Structured Basic Instruction Manual
14. Output Formatting

Example:

>>List
10 Nurﬁl=ll : Num2=333 : Numi3=22
20 Dim Format$(20) : Format$="4#4#4# &&&&M&&&"
30 Print Using"### &&&&M&&&™ Numl,Num2,Num3
40 @Using Format$,Numl,Num2,Num3
50 End

>2Run 11 0333M022 11 0333M022 ***5() End***

Statement 30 in the above example outputs the three variables (Numl,
Num2, and Num3) with 2 spaces separating the first two and the literal
M separating the last two. Any literal which is not one of the PRINT
USING special characters may be used to separate format fields. This
literal will be PRINTed between the fields if it is a blank or any other
character. Statement 40 outputs the same information in the same format
using a string variable instead of a string literal in the PRINT USING
instruction. Statement 40 also abbreviates PRINT with the symbol Q.

When a string appears in a PRINT USING list, the characters of the string
are PRINTed in the positions held by any of the special format field
characters. Strings are left justified in the format field. If the number
of characters in the string is less than the number of characters in the
format field, the extra spaces will be blank filled. If the number of
characters in the string is greater than the number of characters in the
format field, the extra characters in the string will be truncated.

Examples:

In the instruection:
Print Using "**** % %n nwABCDER"
the string literal is output in the format:
ABCDEFbbb
In the instruction:

Print Using "&&&,&&&.&&","ABCDEFGHIJKLMN"

the string literal is output in the format:

122

Cromemeo 68000 Structured Basie Instruction Manual
14. Output Formatting

ABCDEFGHIJ

- 3. If the number of items in the expression list exceeds the number of
specified format fields, the specified format fields will be re-used for the
extra items.

Examples:

In the instruction:
Print Using "3&&.&&", A,B,C
the expressions A, B, and C will all be PRINTed with the format field

$$&&.& .
In the instruection:
Print Using "$$##bb$$&&.&", A,B,C
the expressions A and C will be formatted using the format field $$## and
the expression B will be formatted using the format field $$&&.&.

4, All normal PRINT functions (such as TAB, SPC, and comma) are overridden
by the PRINT USING instruction. The terminating semicolon will still
suppress the generation of a new line.

5. The format expression may include a maximum of 128 characters.

6. If a number being formatted has more digits than allowed for in the format
expression, an all asterisk error message will result.

Digit Formatting

These special characters may be used to format digits:

indicates leading blanks
& indicates leading zeroes
* indicates leading asterisks

These symbols are used to right justify digits in a PRINT field. The width of
this PRINT field is determined by the number of special characters included in
a format field. Any non-digits (such as a minus sign) are eliminated. If the
number of special characters in the format field exceeds the number of digits
in the expression, the digits will be right justified within the field and preceded

123

Cromemeco 68000 Structured Basie Instruction Manual
14, Output Formatting

by characters corresponding to the special echaracters used in the format field.
In the following examples, the character b is used to represent blank characters

(spaces).

Examples:

Value of expression Format Field Output
1 #hH#H bbbb1
12 #HAH# bbb12
123 #H### bb123
1234 #H#HH b1234
12345 #4444 12345
123456 #H#4# HAAAE
1 &&&&& 00001
12 &&&&& 00012
123 &&& & 00123
1234 &&&&& 01234
12345 &&&&& 12345
123456 &&&&& ok kdk
i EE ST 3 ****1
12 sk ***12
123 ek ok ke ok *%19253
1234 ok Rk *1234
12345 *kokokk 12345

Comma (,)

The comma (,) places a comma in the position in whieh it appears in the format
field. If the format specifies that a comma be output in a position in the field
which consists of leading blanks, zeroes, or asterisks, then a blank, a zero, or
an asterisk respectively are printed in the comma position.

Examples:

Value of Expression Format Field Output
2003 #i#, 444 b2,003
4 4,444 bbbbb4
4457 &8b,&& 044,57
18 &&&,&& 000018
996546 Fdokkk %k 99654,6
22 *****,* ****2,2

124

Cromemeo 68000 Strucetured Basie Instruction Manual
14, Output Formatting

Decimal Point (.)

The decimal point (.) places a decimal point in the position in which it appears
in the format field. All digit positions which follow the decimal point are filled
with digits. If the expression contains fewer fractional digits than are
specified, zeroes will be PRINTed in the extra positions. If the expression
contains more fractional digits than are specified, the expression will be
rounded so that the number of fractional digits equals the number of format
positions specified,

Examples:

Value of Expression Format Field Output
234 ##4 444 234.000
23.4567 #H#HH# b23.457
13 &&.& 13.0
66.72319 &&.& 66.7
876.1245 Fokdkk kx **876.12
1234567.245 dkkokk kk ¥Rk Kk

In the last example, when too many significant digits appear to the left of a
decimal point, an all asterisk error message is generated.

Fizxed Plus (+) and Minus (-) Signs

The plus (+) and minus (-) signs may appear in the first character position in
a format field. The character + or - will print the respective sign of an
expression in the specified character position in the format field. When an
expression is preceded by a plus or minus sign, any leading zeroes will be
replaced by blanks, zeroes, or asterisks as specified. When a positive
expression is preceded by a minus sign, a blank space is left in the sign position.

Examples:

Value of Expression Format Field Output
56.8888 +##HH# +56.889
4,564 +H#HH# +b4.564
6.456 +&&&&& +006.46
234.2 +&&&.&& +234.20
_23’56 _*****.* _***23n6
2345 ~FAEER K b*2345.0
_.2345678.34 _*****_* ******‘*

125

Cromemeo 68000 Structured Basie Instruction Manual
14, Output Formatting

Floating Plus (++) and Minus (--) Signs

The use of two or more plus or minus signs at the beginning of a format field will
output the respective sign directly preceding the value of the expression. If
a positive expression is PRINTed USING a floating minus format, a blank is
PRINTed immediately preceding the number instead of a minus sign. The
additional signs in the floating point format can be used to represent digits.

Examples:

Value of Expression Format Field Output
2.234 ++i# A H# b+b2.234
22.234 ++fd A E# b+22.234
~-44,56 —~&&&.& b-044.6
532 ~~&&&.& bb005.3
178.456 ok ek b+*178.46
12345678.45 FAREER ok HAkrkE Kk
39.17 bttt bb+55.17
3%.17 e bbb55.17
-35.x7 e o bb-55.17

Fixed Dollar Sign ($)

The dollar sign ($) is used in either the first or second character position in the
format field to PRINT out a dollar sign in that position. A dollar sign specified
in the second position of the format field must be preceded by either a plus (+)
or a minus (-) sign.

126

Examples:

Value of Expression Format Field Output
23.456 S##. 44 $23.46
4.52 St 44 $b4.52
~57.654 -$&&&L&&& ~$057.654
123.7789 ~$&&&.&&& b$123.779
2.34 $* * $2.3
234.55 Gk ¥ k%

Cromemeo 68000 Structured Basie Instruetion Manual
14. Output Formatting

Floating Dollar Sign ($3%)

The use of two or more dollar signs beginning at either the first or second
character position in the format field will output a dollar sign immediately
preceding the value of an expression. If the dollar signs begin in the second
character position, the first character position must contain a pius or a minus

sign.

Examples:

Value of Expression Format Field Output
234.2345 $Eo54. 4 b$234.235
4.45 $ESSH . HHH bbb$4.450
23.989 $$&&.&& b$23.99
4,5 $P&&&& b$04.50
24.56 —~§PrkE Hk bb$*24.56
~4455.67 —§prark wk -$4455.67

Exponent Fields (!111)

Four consecutive exclamation characters (!!!!) indicate an exponent in the
format field. The exclamation points represent the expression Einn, where n
is any digit. When used with a numeric expression, this format field will output
the expression in exponential form.

Examples:

Value of Expression Format Field Output
23.3456 #H#HHI1! 23.35E+00
2000 #H#.4H#111 20.00E+02
~ .36 ~&&&& &I ~360.00E-03

7. Only the characters #, &, or ! should be used to the right of a decimal
point. The asterisk (*) character follows the same rules as the # character
when used to the right of a decimal point.

8. Only one type of floating character may be used within a single format

instruction. Either the floating dollar ($$) character, pluses {(++), or
minuses (--) may be used, but may not be combined.

127

Cromemeco 68000 Structured Basie Instruction Manual
14. Qutput Formatting

9. A non-floating PRINT character cannot be placed to the left of a floating
character. For example, the format fields $+++ or +$$$ are legal but the
format field +$++ is illegal.

10. Structured Basie does not check comma syntax.

11. Only one decimal point may be used in a format field.

12. Trailing + or - signs are illegal.

128

Cromemeco 68000 Structured Basie Instruction Manual
14. Output Formatting

funetion: Space

format: SPC(aexp)

where:

aexp is an arithmetic expression, variable, or constant.

The SPC function instructs Basic to PRINT a specified number of SPaCes.

Notes:

1M

The SPC function may be used only in conjunction with a PRINT
instruction. If used elsewhere, it is a transparent function:

Value = Spe(1.47)

is the same as

Value = 1.47
2. Unlike the TAB function, which always determines PRINT position relative
to column 0, the SPC function determines PRINT position relative to the
current PRINT column.
Example:
>>List
10 Numi=2
20 Input Num2,Num3
30 Print Spe(10);Num1;Spe(Numl*10);Num?2;Num3
40 End
>>Run
? 20,30
2 2030
column no. 10 31

In this example, the computer is instructed to skip 10 SPaCes, PRINT Numl, skip
20 SPaCes, and PRINT Num2 and Num3.

129

Cromemeo 68000 Structured Basic Instruction Manual
14. Output Formatting

funetion: Tab

format: TAB(aexp)

where:

aexp is an arithmetic expression, variable, or constant.

The TAB function causes output to begin in a specified column.

Notes:

10

The TAB function may be used only in conjunetion with a PRINT
instruction. If used elsewhere, it is a transparent function:

Value = Tab(6.2)

is the same as

Value = 6.2

Multiple TAB functions may be included in one PRINT instruection, but the
user should keep in mind that the PRINT position indicated by successive
TAB functions is always determined relative to column 0.

Columns are numbered 0 through the page width so the first column is
column 0.

If the argument to the TAB function exceeds the current page width, it
is reduced modulo that page width to a number between 0 and the page
width., The default value for the page width is 80 characters.

If the argument is negative, no TABbing takes place.

If the (reduced) argument is greater than the current column position, a

new line (RETURN-LINE FEED) is issued and the TAR is executed onto
the next line.

130

Cromemeco 68000 Structured Basie Instruetion Manual
14. Output Formatting

Example:

>>List

10 Addtab=1

20 Input Numl,Num2,Num3

30 Print Tab(2);Numl;Tab(5);Num2;Tab(Addtab+9);Num3

40 End
>>Run
? 5,8,9

5 8 9

*¥%kA() End*k*

In this example, the computer is instrueted to begin PRINTing Numl in column
2, Num?2 in column 5, and Num3 in column 10.

131

Cromemeo 68000 Structured Basie Instrucetion Manual

132

Cromemeco 68000 Structured Basic Instruetion Manual
15. Input and Output to Disk Files and Device Drives

Chapter 15

INPUT AND OUTPUT TO DISK FILES AND DEVICE DRIVES

Struetured Basic treats all input and output as reading and writing data from
files rather than specific peripheral devices. Because of this, a single approach
can be used to perform all input and output. For example, the programmer goes
through the same process to send data to a printer as he does to send it to a
disk file.

When the programmer gives an input or output instruetion, routines within Basie,
called device drivers, handle the differences between the various hardware
devices. Those differences are largely invisible to the programmer.

To read or write data, the programmer generally follows these steps:

1. First, a channel to a disk file or a device driver must be opened with the
OPEN instruetion.

2. Then the programmer uses the INPUT, GET, PRINT, and PUT instruetions
to read and write data.

3. When the programmer is finished using the device or file, the logical
channel is closed with the CLOSE instruction.

The major exception to this scheme is standard input and output to the console.
The channel for the console is always open and cannot be closed. Any PRINT
or INPUT instruction that doesn't use a channel assigned to a disk file or another
device driver automatically uses the standard channel to the console. Chapter
13 deseribes standard input and output to the console.

Basic also provides a second device driver for the console that is described in
this chapter. It differs from the standard console driver in that the full range
of console functions and cursor addressing can be used with it. The standard
driver doesn't offer these options.

The rest of this chapter describes the use of the input and output instructions.

HOW THE FILES ARE ORGANIZED

Data is information. A file is a place and method for storing many individual
items of information.

A computer data file (or file) is defined by:

133

Cromemeo 68000 Structured Basic Instruction Manual
15. Input and Output to Disk Files and Device Drives

1. The storage medium (paper tape, floppy disk, ete.),
2. The method of accessing the data (sequential or random),

3. The code by which the data is translated for storage (ASCII or internal
machine representation),

Records

A record is a group of related items. A data file is made up of records.
Information is inserted into or retrieved from the file record by record.

If a file contained information on all of the baseball games in one year, each
record might contain information on one game, one player, or one team. All of
the records would contain similar information. If the first record (record number
0) held the statistics on game #1, the first number in the first record could be
the number of hits team A got, while the second number would be the number
of hits team B got. The third number eould be the number of errors made by team
A, while the fourth number would be the number of errors made by team B. The
second record (record number 1) would contain similar information covering game
#2.

Fields

A field describes one item in a record. A field can contain string (alphabetic)
or numerie information.

In the above example, instead of saying that the first npumber was the number
of hits team A got, we could say that the first field was numeric and contained
the number of hits team A got. We can now further deseribe the record layout
by saying that the fifth and sixth fields are alphabetic and contain the team
names.

File Pointer

While a file is OPEN, Basic maintains a pointer which may determine where the
next read or write will oceur. This pointer can be manipulated by the various
file read and write instructions as will be explained in the following paragraphs.

When a file is first OPENed, the File Pointer is positioned just before the first
byte of the first record of the file. If the file is a new file (i.e., it contains no
data), the beginning of the file and the end of the file coincide, and so the File
Pointer also points to the end of file. This is appropriate. If a read is
attempted on a new file, an end of file error will be returned because there is
no data in the file.

If no record number is specified in a file I/0 instruction (sequential 1/0), the

data list contained in the instruetion is written to or read from the file from
the current position of the file pointer.

134

Cromemeco 68000 Structured Basie Instruetion Manual
15. Input and Output to Disk Files and Device Drives

If a record number is specified in a file I/0 instruction (random 1/0), the File
Pointer is moved to a position just before byte zero of the specified record and
then the data list contained in the instruction is written to or read from the file
from the new position of the File Pointer.

If a byte number is specified in addition to the record number, the File Pointer
will be positioned just before the specified byte in the current or specified
record before the I/0 instruction is executed.

If there is no data list associated with a PUT instruction, the pointer is
repositioned as specified above and no input or output takes place.

After the input or output has taken place, the PUT and GET instructions leave
the File Pointer just after the byte which was last input or output.

The PRINT and INPUT instructions use the Carriage RETURN or Carriage
RETURBN-LINE FEED sequence as a delimiter.

The PRINT instruction will move the File Pointer to a position just after the
last PRINT character. If the PRINT line starts with byte zero of the current
record and is the same length as the specified record size, the pointer will be
positioned just before byte zero of the next logical (sequential) record.

The PRINT instruction will automatically insert a RETURN-LINE FEED sequence
ifs

1. The data list associated with the Print instruction will cause a record to
be output which is longer than the page width (refer to the SET
instruction), and

2. No single item in the data list is longer than the specified page width.

This can happen when items in a PRINT list are separated by commas or a PRINT
instruction is terminated with a comma or semicolon and a subsequent PRINT
instruction adds to the already PRINTed line. This rule also applies to the
PRINT instruction when used to send output to the terminal.

A PRINT list containing an item which is longer than the page width will cause
a run time error. The default page width is 80 characters. It is possible to
change this parameter by using the SET instruction.

Sequential Files

A sequential file is written in the order of the record numbers. That is, record
number zero is written with the first output (PUT or PRINT) instruection, record
number one is written next, then record number two, ete. This continues until
the file is CLOSEd. When the file is OPENed again, the first record which is
output will write over record number zero, etc.

When a file is read sequentially, record zero is read first, then record one, ete.

135

Cromemec 68000 Structured Basie Instruetion Manual
15. Input and Output to Disk Files and Device Drives

Note that if an entire record is not input or output each time the file is
accessed, the File Pointer will remain after the last character which was read
or written. Any subsequent file access will read or write from that position,
not from the beginning of the next record.

Random Files

A random access file is written in the order specified by the programmer. Each
output instruction must specify the number of the record which is to be written.
When a file is read randomly, the programmer must specify the record number
to be read for each INPUT or GET instruction.

A file which was written sequentially may be read as a random file. Files which
were written randomly may be read by sequential or random instructions
provided that no attempt is made to read a record before it has been written.

A file may be accessed by any combination of sequential and random
instructions.

A random instruction, one that specifies a record or record and byte number,
will reposition the File Pointer before accessing the file.

A sequential instruction, one that does not specify a record number, will access
the file from the current position of the File Pointer.

Internal Machine Vs. ASCII Representation

Basje can store data in two formats. Both consist of groups of ones and zeros
(binary representation), but each needs to be translated differently for output
to a terminal or printer.

ASCII (American Standard Code for Information Interchange) is the closest to
written letters and numbers. ASCII is stored in the machine according to the
table of ASCII codes (see Appendix B). Each character code occupies one byte
(8 bits). When the code is translated from binary to decimal, the character
which is represented can be found in the ASCII table. This is the way all Basic
strings are stored. ASCII information is stored so that one character is stored
in one byte.

The need arises for another method of storing numbers when speed of arithmetic
computation, Input/Output translation, and amount of storage space become
important factors.

Internal Machine code is used only for the storage of numbers. The number of
bytes occupied by a number depends on its magnitude and precision (the size
of the number and the number of decimal places which need to be kept.) There
are three internal machine formats:

136

S~

~Cromemeo 68000 Structured Basic Instruetion Manual
15. Input and Qutput to Disk Files and Device Drives

Integer size: 2 bytes
range: +32767 < N < -32768

accuracy: nearest integer

Short Floating Point size: 4 bytes
range: +9.99E+62 < N < +9.99E-65

accuracy: 6 decimal digits

Long Floating Point size: 8 bytes
range: +9,99E+62 < N < #9.99E-65
accuracy: 14 decimal digits

Refer to Chapter 3 for a more complete discussion of internal machine
representation.

DIFFERENCES IN THE INPUT AND OUTPUT INSTRUCTIONS

The following paragraphs describe the major differences between the two sets
of input and output instructions: PRINT-INPUT and PUT-GET. In addition to
the differences described here, the two sets of instructions also use the file
pointer somewhat differently. See the description of the file pointer earlier
in this chapter for more information.

PRINT and INPUT

PRINT and INPUT write and read in ASCII format. These instructions are
primarily intended to write data to an output file which is to be displayed on
a console or printer, and to read a data file which was created by the Screen
Editor. When used with a file, they exactly parallel their use with the console
terminal. (See Chapter 13 for information on their use with the console.) In
particular, INPUT requires a comma or RETURN between INPUT data items.

The PRINT and INPUT instructions translate numeric data from ASCII to Internal
Machine Format (or vice versa). They are therefore slower than the PUT and
GET instructions. There is little need for the programmer to keep track of the
type of variable which is written out with a PRINT instruction. An integer
variable which is written using the PRINT instruction may be INPUT back into
a string or floating point variable without losing its meaning. No attempt should
be made to INPUT an ASCII string into a numeric variable. A file whieh has been
output using the PRINT instruction may also be Typed out (using the operating
system) and read whereas the same file output with the PUT instruction would
not be able to be Typed.

137

Cromemco 68000 Structured Basic Instruction Manual
15, Input and Output to Disk Files and Device Drives

PUT and GET

It is recommended that the PUT and GET instructions be used with disk data files
that are created and used by Basiec programs.

The PUT and GET instructions write and read in internal machine format. If an
integer variable is written out to a file using a PUT instruction, it must be read
back into an integer variable (and not into a floating point variable or an ASCII
string) using a GET instruction or it will be meaningless. The machine does no
translation with these instructions so they can be executed faster than PRINT
and INPUT. The programmer must keep track of the types and lengths of
variables written by PUT so that they may be read back in properly.

Input and Output with Character Strings

A string (which is stored internally in ASCII code) may be output with a PUT
or PRINT instruction with the same general result (except that PRINT outputs
a carriage RETURN-LINE FEED sequence where appropriate and tabs, using
spaces, when variables are separated by commas). This is because PUT will
output a string in internal machine format, whieh (for a string) is ASCII. PRINT
will not translate the string because it is glready in ASCII format.

USING THE DEVICE DRIVERS

Structured Basic offers four standard device drivers. They are:

Standard Console Driver

The standard console driver sends input and output directly to the console
without going through the operating system. The channel to this driver is always
open and cannot be closed. To use this driver with the PRINT and INPUT
instruetions, do not specify a channel number. To use this driver with the PUT
and GET instructions, specify channel number 0. These instructions would send
output to the console and then read in data:

Print"The current balance is: ";Balance
Input"Do you wish to continue?" ,Answer$

$CO Console Driver

The $CO console driver sends input and output to the console through the
operating system. This allows the input and output instructions to use the
console system ecalls to invoke special console funetions and to use cursor
addressing. (See the GET, PUT, PRINT, and INPUT instructions for more on these
features.) To use the $CO driver, use the OPEN instruetion to open a file named
$CO. These instructions show the use of the $CO driver:

138

Cromemeco 68000 Structured Basic Instruetion Manual
15. Input and Output to Disk Files and Device Drives

5 Rem: Line 10 opens a channel to driver $CO
10 Open\1\"$CO"
15 Rem: Line 20 has $CO clear the screen
20 Print\1,0,0\
25 Rem: Line 30 has $CO begin printing at column 30, row 12
30 Print\1,30,12\"Enter Password -->"
35 Rem: Line 40 has $CO begin a protected field
40 Print\1,15,0\
45 Rem: Line 50 has $CO read the password beginning at
46 Rem: column 48, row 12
50 Input\l1,48,12\Password$
55 Rem: Line 60 has $CO end the protected field
60 Print\1,16,0\
65 Rem: Line 70 has $CO clear the sereen
70 Print\1,0,0\
- 75 Rem: Line 80 closes the channel to $CO
80 Close\l\

Disk Drivers

The disk device drivers send data to and from files on disks. To use these
drivers, use the OPEN instruction to open each disk file to be used. Then these
drivers are automatically used each time the input or output is sent to the files.
The following instructions show the use of the disk drivers:

1 Temporary 'value=1.0

5 Rem: Line 10 creates the file "scrateh"

10 Create"serateh”

15 Rem: Line 20 opens a channel to file "scratch™
20 Open\2\"scratch"

25 Rem: Line 30 PUTs a value into the file

30 Put\2\Temporary'value

35 Rem: Line 40 GETs record 0 from the file

40 Get\2,0\Read'value

50 Print Read'value

55 Rem: Line 60 closes the channel

60 Close\2\

65 Rem: Line 70 deletes the file "scerateh” from the disk
70 Erase"serateh"

The following Basic instructions are useful in working with disk files:

Create Creates a disk file
Ren and

Rename Rename a disk file
Erase Deletes a disk file

Before a disk file can be used (OPENed), it must already exist on the disk.

139

Cromemeo 68000 Structured Basic Instruction Manual
15. Input and Output to Disk Files and Device Drives

Line Printer Driver

The line printer driver sends output to the system line printer. To use this
driver, use the OPEN instruction to open a file named $LP. The following
instructions show the use of the $LP driver:

10 Cpen\5\"$LP"
20 Print\5\Buyer$,Price,Profit
30 Close\5\

USING CHANNELS

The OPEN instruction reserves an Input/Output channel and assigns the 1/0
ehannel number to the file reference or file device. Once a file has been OPENed
(and assigned a channel number) all input and output from/to that file will be
done through the assigned channel.

Basic normally carries 8 I/O channels in addition to the console and the
Procedure Library. One 1/0O channel is needed for each file which is OPENed
at the same time. Each channel occupies 192 bytes of memory. Increasing the
number of channels allows more files to be OPENed simultaneously but reduces
the amount of memory available to the Basic user. Conversely, decreasing the
number of I/O channels increases the amount of available memory. If you wish
to change the number of channels available for use, see the Appendix, Changing
the Number of I/O Channels.

140

Cromemeco 68000 Structured Basie Instruetion Manual
15. Instruetions - Data File Input/Output

instruction: Create File

format: [Lon] CREATE file-ref

where:

Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

file-ref is a Cromix path name composed of optional directory
names and a file name separated by slashes. This may
be a string literal enclosed in quotation marks or a string
variable.

The CREATE instruction places the file name (and file name extension, if one
is used) in the specified directory. A file may only be CREATEd once, and must
be CREATEQ before it can be OPENed.

Notes:

1.

The file path name is composed of optional directory names and/or the
file name and/or the file name extension. These may be a string variable
or a string literal enclosed in quotation marks.

The file name and file name extension may include any printable ASCII
character except the following:

$*?2 =.,: - "space"
No space is allocated to a file by the CREATE instruction. All file space

is dynamically allocated only when needed.

Error Number 137 (File Already Exists) will result if the file already
exists in the directory when the CREATE instruction is given.

141

Cromemeo 68000 Structured Basice Instruetion Manual
15. Instructions - Data File Input/Output

instruction:

format :

where:

Ln

pl

P2

file-ref

Open File
[Ln] OPEN\n\ file-ref
[Ln] OPEN\n,p1\ file-ref

[Ln] OPEN\n,p1,p2\ file-ref

is an optional line number. If Ln is ineluded, the
instruction is executed at run time. Otherwise it is
executed immediately.

is the required file (channel) number.

(for a disk file) is the optional record size in bytes which
may be assigned any value between 1 and 32,767. The
default value is 128 bytes per record (one sector).

(for a disk file) is the optional file access mode specifier:

=1 is read only

=2 is write only

=3 is read and write
(default value)

is a Cromix path name composed of optional directory
names and a file name separated by slashes. This is the
name of the device driver or disk file pathname. This
may be a string literal enclosed in quotation marks or
a string variable.

The OPEN instruction allows a disk file or system device to be linked to a file
number (channel) for future reference in connection with file Input/Output
instructions (i.e., PUT, GET, INPUT, PRINT, CLOSE).

Notes:

1. The file path name is composed of optional directory names and/or the
file name and/or the file name extension. These may be a string variable
or a string literal enclosed in quotation marks.

2. The file name and file name extension may include any printable ASCII
character except the following:

$*2?

s + - "space"

142

Cromemeo 68000 Struetured Basic Instruetion Manual
15. Instruetions - Data File Input/Output

7‘!

The file number must be between 1 and the maximum channel number
available with an absolute maximum of 16. As Basic is shipped, the
maximum channel number is 8. See Appendix F for the method of changing
the number of channels available,

Error number 133 (File Number) will result if an attempt is made to
reference a file number greater than the maximum channel number
available.

The file number 0 (zero) is reserved for the console. It cannot be OPENed
by the user. All input/output (GET, INPUT, PUT, and PRINT) directed
from/to file 0 will use the console.

Caution: If file number 0 is specified by the CLOSE instruction, all
currently OPENed files will be CLOSEd.

Although files OPENed for read/write access may be used as write only
files, slightly faster execution speed may result if the file is OPENed for
write only access.

If the PRINT instruction is used to write a single item which is longer than
the current page width, it will be necessary to increase the page width
(using the SET instruction) in order to avoid Error number 6 (Print Item
Size). Refer to the discussion section of this chapter for additional
information,

143

Cromemeo 68000 Structured Basic Instruction Manual
15. Instructions ~ Data File Input/Output

instruetion: Close File

format : [Ln] CLOSE
[Ln] CLOSE \n\

where:

Ln is an optional line number. If Ln is inecluded, the
instruction is executed at run time. Otherwise it is
executed immediately.

n is an optional file (channel) number. The default value

if unspecified is all currently OPENed files.

The CLOSE instruction disassociates the channel number and file whiech were
associated by the OPEN instruetion.

Note:

1. If the CLOSE instruetion is given without a file number or with the file
number set equal to zero, all currently OPENed files will be CLOSEd.

144

. Cromemeo 68000 Structured Basie Instruction Manual
15. Instructions - Data File Input/Output

instruetion: Erase File
format 3 [Ln] ERASE file-ref

. where:

‘ Ln is an optional line number. If Ln is included, the
instruction is executed at run time, Otherwise it is
executed immediately.

file-ref is a Cromix path name composed of optional directory
names and a file name separated by slashes. This may
be a string literal enclosed in quotation marks or a string
variable,

The ERASE instruction will remove a disk file from the file directory.

Examples:

Erase "TEMP.BAS"
Erase "* ,BAK"
Erase "/USR/TEMP.REL"

The first of these examples will ERASE the file named TEMP.BAS from the
current or default disk drive. The second will ERASE all files from the current
disk drive with the file name extension of BAK. The third example will ERASE
the file called TEMP.REL from the /usr directory.

145

Cromemeo 68000 Structured Basic Instruetion Manual
15, Instruetions - Data File Input/Output

instruction: Rename File
format : [Ln] RENAME old-file-ref, new-file-ref
where:
Ln is an optional line number. If Ln is included, the

instruction is executed at run time. Otherwise it is
executed immediately.

file-ref-1 is a Cromix path name composed of optional directory
names and a file name separated by slashes, This may
be a string literal enclosed in quotation marks or a
string variable.

file~ref-2 is a Cromix path name composed of optional directory
names and a file name separated by slashes, This may

be a string literal enclosed in quotation marks or a
string variable.

The RENAME instruetion is used to give a new file name to an existing disk file.

Note:

1. The REN instruction performs the same function as the RENAME
instruction. The REN instruction is included to be compatible with the
CDOS REN command. The parameter order on the REN instruetion is the
opposite of the RENAME instruction. RENAME is the preferred form for
the Cromix Operating System.

Example:

Rename "Oldfile", "Newfile"

This command will ehange the name of the file (on the current disk drive) from
OLDFILE to NEWFILE.

146

Cromemeo 68000 Struetured Basie Instruetion Manual
15. Instructions - Data File Input/Output

instruction: Rename File
format : [Ln] REN new-file~ref, old-file-ref
wheres
Ln is an optional line number. If Ln is included, the

instruction is executed at run time. Otherwise it
is executed immediately.

new-file-ref is the new name for the file. This is a Cromix path
name composed of optional directory names and a
file name separated by slashes. The file name may
be a string literal enclosed in quotation marks or
a string variable name,

old~file~ref is the name of an existing file. This is a Cromix path
name composed of optional directory names and a
file name separated by slashes. The file name may
be a string literal enclosed in quotation marks or
a string variable name.

The REN instruction is used to give a new file name to an existing file on the

directory.

Note:

e The REN instruction performs the same function as the RENAME
instruction. The REN instruction is ineluded to be compatible with the
CDOS REN ecommand. The parameter order on the REN instruetion is the
opposite of the RENAME instruction.

Example:

Ren "Newfile", "Oldfile"

This command will change the name of the file (on the current disk drive) from
NEWFILE to OLDFILE,

147

Cromemeco 68000 Structured Basic Instruction Manual
15. Instruetions ~ Data File Input/Cutput

instruction:

where:

format :

Ln

pl

p2

Print

[Ln] PRINT

[Ln] PRINT exp-1,...,eXp~n
[Ln] PRINT\n\

[Ln] PRINT\n,p1\

[Ln] PRINT\n,pl,p2\

[Ln] PRINT\n\ exp-1,...,eXxp-n
[Ln] PRINT\n,pl\ exp,...,exp-n

[Ln] PRINT\n,pl1,p2\ exp-1,...,eXp-n

is an optional line number. If Ln is included, the
instruetion is executed at run time. Otherwise it is
executed immediately.

is an optional file number. If no file number is specified,
or if the file number is zero, output goes to the console
terminal.

(for a disk file) is the optional record number. The
default value is sequential access starting with record
0 or the current position of the File Pointer.

(for a console) is an optional console function parameter.
If specified, this parameter can specify either a special
terminal funetion or a cursor location on the terminal.
To be used, the $CO console driver must be the driver
used for this instruetion. If this parameter isn't
specified, the instruection executes without changing the
cursor location or invoking any special functions.

(for a disk file) is the optional byte number. The default
value is byte 0.

(for a console) is an optional console function parameter.
If specified, this parameter can specify either a special
terminal function or a cursor loecation on the terminal.
To be used, the $CO console driver must be the driver
used for this instruction. If this parameter isn't specified
but pl is specified, this parameter has a default value
of zero. If neither this parameter nor pl is specified,
the instruction executes without changing the cursor
location or invoking any speeial functions.

148

Cromemeo 68000 Structured Basie Instruetion Manual
15. Instructions - Data File Input/Output

expl-n is an optional list of expressions, numeric or string
variables, or string literals. The data list must be
separated by either semicolons or commas. If an item
is followed by a comma, the item following it will be
printed starting in the next tab position; if it is followed
by a semicolon no space will be left before printing the
next item.

When used without a file reference, the PRINT instruction will cause the data
list to be output to the console. When used with a file reference, it will cause
the data list to be output to an ASCII device (e.g., the line printer) or a disk
file in ASCII format. :

Notes:

It is recommended that PRINT only be used for the output of PRINT or list files
and pnot be used for writing data files which are to be read back by a Basic

program.

1. The at (Q) sign may be used to abbreviate the word PRINT in this
instruetion.

2. Most of the above forms of the PRINT instruction may incorporate the
PRINT USING feature. Refer to PRINT USING for additional information.

3. The PRINT instruction outputs a RETURN-LINE FEED (ASCII 13,10)

sequence at the end of the data list. If the file is to be read in using the
INPUT instruction, a RETURN-LINE FEED sequence (or just a RETURN)
must follow each item which is output, as it is this character or character
sequence which delimits (terminates) each item. In Basic, there are two
ways this can be accomplished:

a. Allow only one item per PRINT instruction.
b. Insert a RETURN between each item as follows:

100 Cr$ = CHR$(13)
200 Print \1\ "String"; Cr$; Num; Cr$; Text$

Statement 100 assigns the ASCII value of the RETURN to the string
variable Cr$. Statement 200 PRINTs a string literal, a numeric variable,
and a string variable, each separated by the RETURN.

The above procedure will allow all of the items output by the PRINT

instruction to be read by the INPUT instruction which looks for a RETURN
between each item read.

149

Cromemeo 68000 Structured Basice Instruetion Manual
15. Instruetions - Data File Input/Output

If only numeric data is to be PRINTed and INPUT a comma (ASCII 44) may
be used as a delimiter between variables within one INPUT list, The last
item in the data list must be delimited by a RETURN.

Specifying a negative number for either pl or p2 will result in the default
value being assigned to that parameter.

The PRINT instruction, when given without a data list, causes one blank
line to be sent to the console or PRINT file.

When using the $CO console driver, the pl and p2 parameters ean be used
as shown in the following table:

150

Cromemeo 68000 Structured Basie Instruction Manual
15. Instruetions - Data File Input/Output

Eunection pl pZ
Address cursor on screen 1-80 1-24
Clear screen 0 0
Home cursor without clearing 1 0
Cursor left one character position 2 0
Cursor right one character position 3 0
Cursor up one position 4 0
Cursor down one line 5 0
Clear from cursor to end of line 6 0
Clear from cursor to end of screen 7 0
Set intensity to high light 8 0
. Set intensity to low light 9 0
Set intensity to normal light 10 0
Enable keyboard 11 0
Disable keyboard 12 0
Dynamic function keys 13 0
Static function keys 14 0
Begin protected field 15 0
End protected field 16 0
Begin blinking characters 17 0
End blinking characters 18 0
Send from cursor to end of line 19 0
Send from cursor to end of sereen 20 0
Transmit screen out auxiliary port 21 0
Delete character at current cursor position 22 0
Insert character at current cursor position 23 0
Delete line at ecurrent cursor position 24 0
Insert line at present cursor position 25 0
Formatted sereen on 26 0
Formatted screen off 27 0
Begin reverse background field 28 0
End reverse background field 29 0
Begin underlining characters 30 0
End underlining characters 31 0
Display message on 32 0
Display message off 33 0
Insert character off 35 0
Graphies mode on 36 0
Graphics mode off 37 0
Cursor on 38 0
Cursor off 39 0
Memory lock on 40 0
Memory lock off 41 0
Alarm on 45 0
Alarm off 46 0

There are no functions that have a pl value of 34, 42, 43, or 44,

151

Cromemeo 68000 Structured Basie Instrucetion Manual
15. Instruetions - Data File Input/Output

instruetion:

format :

where:
Ln

pl

p2

varl-n

Input

[Ln] INPUT var-1,...,var-n
[Ln] INPUT\n\ var-1,...,var-n
[Ln] INPUT\n,pl1\ var,...,var-n

[Ln] INPUT\n,pl,p2\ var-1,...,var-n

is an optional line number. If Ln is ineluded, the
instruction is executed at run time. Otherwise it is
executed immediately.

is an optional file number. If no file number is specified,
or if the file number is zero, input is received from the
console terminal.

(for a disk file) is the optional record number. The
default value is sequential access starting with record
0 or the current position of the File Pointer.

(for a console) is an optional consocle funetion parameter.
If specified, this parameter can specify either a special
terminal funection or a cursor location on the terminal.
To be used, the $CO console driver must be the driver
used for this instruetion. If this parameter isn't
specified, the instruction executes without changing the
cursor location or invoking any special functions.

(for a disk file) is the optional byte number. The defauit
value is byte 0.

(for a console) is an optional console function parameter.
If specified, this parameter can specify either a special
terminal function or a cursor location on the terminal.
To be used, the $CO console driver must be the driver
used for this instruction. If this parameter isn't specified
but pl is specified, this parameter has a default value
of zero. If neither this parameter nor pl is specified,
the instruction executes without changing the cursor
location or invoking any special functions.

is a list of one or more numeric and/or string variables.

When used without a file reference, the INPUT instruction will cause the data
list to be INPUT from the console, When used with a file reference, it will cause
the list to be INPUT from an ASCII device (e.g., paper tape reader) or a disk

file in ASCII format.

152

Cromemeco 68000 Structured Basic Instruction Manual
15. Instructions ~ Data File Input/Output

Notes:

lﬂ

When a string variable is used with an INPUT instruction, the portion of
the string which is referenced is set equal to null characters before the
source is moved into the string variable. The whole string is referenced
if no subseripts follow the string variable, while various substrings may
be referenced by the use of subseripts. Refer to the section Referencing
String Variables in Chapter 5, for a complete discussion of the subject.
The INPUT instruction will not move more characters than can be accepted
by the destination string or substring which is being referenced.

INPUT can accept no more than 132 characters per line.

INPUT retrieves only 7 bit ASCII. The GET instruetion must be used to
retrieve all 8 bits.

INPUT treats some control eharacters as editing or end of file commands.

When using the $CO console driver, the pl and p2 parameters can be used
as shown in the following table:

153

Cromemeo 68000 Structured Basie Instruction Manual
15. Instructions - Data File Input/Output

Funection Pl 27
Address cursor on screen 1-80 1-24
Clear screen 0 0
Home cursor without clearing 1 0
Cursor left one character position 2 0
Cursor right one character position 3 0
Cursor up one position 4 0
Cursor down one line 5 0
Clear from cursor to end of line 6 0
Clear from cursor to end of sereen 7 0
Set intensity to high light 8 0
Set intensity to low light 9 0
Set intensity to normal light 10 0
Enable keyboard 11 0
Disable keyboard 12 0
Dynamie funection keys 13 0
Statie function keys 14 0
Begin protected field 15 0
End protected field 16 0
Begin blinking characters 17 0
End blinking characters 18 0
Send from cursor to end of line 19 0
Send from cursor to end of sereen 20 0
Transmit sereen out auxiliary port 21 0
Delete character at current cursor position 22 0
Insert character at current cursor position 23 0
Delete line at current cursor position 24 0
Insert line at present cursor position 25 0
Formatted sereen on 26 0
Formatted sereen off 27 0
Begin reverse background field 28 0
End reverse background field 29 0
Begin underlining characters 30 0
End underlining characters 31 0
Display message on 32 0
Display message off 33 0
Insert character off 35 0
Graphies mode on 36 0
Graphies mode off 37 0
Cursor on 38 0
Cursor off 39 0
Memory lock on 40 0
Memory lock off 41 0
Alarm on 45 0
Alarm off 46 0

There are no functions that have a pl value of 34, 42, 43, or 44,

154

Cromemeo 68000 Structured Basic Instruction Manual
15, Instruetions - Data File Input/Output

instruection:

format :

where:
Ln

pl

p2

expl—-n

Put Record

[Ln] PUT\n\

[Ln] PUT\n\ exp-1,...,eXp-n
[Ln] PUT\n,pl\ eXxp,...,eXp-n

[Ln] PUT\n,pl,p2\ exp-1,...,eXxp-n

is an optional line number. If Ln is included, the
instruction is executed at run time, Otherwise it is
executed immediately.

is a file number. If file number 0 is used, output will be
sent to the console.

(for a disk file) is the optional record number. The
default value is sequential access starting with record
0 or the current position of the File Pointer.

(for a console) is an optional console function parameter.
If specified, this parameter can specify either a special
terminal function or a cursor location on the terminal.
To be used, the $CO consocle driver must be the driver
used for this instruetion. If this parameter isn't
specified, the instruction executes without changing the
eursor location or invoking any special functions.

(for a disk file) is the optional byte number. The default
value is byte 0.

(for a console) is an optional console function parameter.
If specified, this parameter can specify either a special
terminal function or a cursor location on the terminal.
To be used, the $CO console driver must be the driver
used for this instruetion. If this parameter isn't specified
but pl is specified, this parameter has a default value
of zero. If neither this parameter nor pl is specified,
the instruction executes without changing the cursor
location or invoking any special functions.

is a list of one or more numeric and/or string variables.

The PUT instruction outPUTs the data in the data list (exp-1,...exp-n) to the
file specified by the file number (n). The data is output in internal machine
format. This is useful if the data is to be read back by Basie. The PRINT
instruction should be used if the file is to be Typed or LISTed to the printer.

155

Cromemeco 68000 Structured Basie Instruetion Manual
15. Instructions - Data File Input/Output

Notes:

10

If no outPUT list is included, cnly the device status is set (i.e., record
and byte position on a disk file). This is a useful way of setting status
(position) without actually initiating any data transfer.

The PUT instruction will output data to a file in internal machine format
(refer to the discussion at the beginning of this chapter on Internal
Machine vs. ASCII Representation). Numeric data whieh has been output
using the PUT instruction must be read back in using the GET instruction.

ASCII data which is output by the PUT instruction will not be readable
by INPUT unless a RETURN appears at least every 132 bytes.

When using the $CO console driver, the pl and p2 parameters can be used
as shown in the following table:

156

Cromemeo 68000 Structured Basie Instrucetion Manual
15. Instructions - Data File Input/Output

Function pl p2
Address eursor on screen 1-80 1-24
Clear sereen Q 0
Home cursor without clearing 1 0
Cursor left one character position 2 0
Cursor right one character position 3 0
Cursor up one position 4 0
Cursor down one line 3 0
Clear from cursor to end of line 6 0
Clear from cursor to end of screen 7 0
Set intensity to high light 8 0
Set intensity to low light 9 0
Set intensity to normal light 10 0
Enable keyboard 11 0
Disable keyboard 12 0
Dynamic funection keys 13 0
Static funection keys 14 0
Begin protected field 15 0
End protected field 16 0
Begin blinking characters 17 0
End blinking characters 18 0
Send from cursor to end of line 19 0
Send from cursor to end of screen 20 0
Transmit sereen out auxiliary port 21 0
Delete character at current cursor position 22 0
Insert character at current cursor position 23 0
Delete line at current cursor position 24 0
Insert line at present cursor position 25 0
Formatted screen on 26 0
Formatted sereen off 27 0
Begin reverse background field 28 0
End reverse background field 29 -0
Begin underlining characters 30 0
End underlining characters 31 0
Display message on 32 0
Display message off 33 0
Insert character off 35 0
Graphics mode on 36 0
Graphics mode off 37 0
Cursor on 38 0
Cursor off 39 0
Memory lock on 40 0
Memory lock off 41 0
Alarm on 45 0
Alarm off 46 0

There are no functions that have a pl value of 34, 42, 43, or 44.

157

Cromemee 68000 Structured Basie Instruetion Manual
15. Instruetions - Data File Input/Cutput

instruction:

format:

where:
Ln

pl

p2

expl-n

Get Record
[Ln]l GET\n\ exp-1,...,exp-n
[Ln] GET\n,pl1\ exp-1,...,eXp—n

[Ln] GET\n,pl,p2\ exp-1,...,exp-n

is an optional line number. If Ln is included, the
instruetion is executed at run time. Otherwise it is
executed immediately.

is a file number. If file number 0 is used, input will be
accepted from the console.

(for a disk file) is the optional record number. The
default value is sequential access starting with record
01!

(for a console) is an optional console funetion parameter,
If specified, this parameter can specify either a special
terminal funection or a cursor location on the terminal.
To be used, the $CO consocle driver must be the driver
used for this instruetion. If this parameter isn't
specified, the instruction executes without changing the
cursor location or invoking any special funetions.

(for a disk file) is the optional byte number. The default
value is byte 0.

(for a console) is an optional console function parameter,
If specified, this parameter can specify either a special
terminal funetion or a cursor location on the terminal.
To be used, the $CO console driver must be the driver
used for this instruetion. If this perameter isn't specified
but pl is specified, this parameter has a default value
of zero. If neither this parameter nor pl is specified,
the instruction executes without changing the cursor
location or invoking any special functions.

is a list of one or more numeric and/or string variables.

The GET instruction GETs the data in the data list (exp-1,...exp-n) from the
file specified by the file number (n). The data is input without translation
(internal machine format). This is useful if the data has been output by the PUT

instruction,

138

Cromemco 63000 Structured Basic Instruetion Manual
15. Instructions - Data File Input/Output

Notes:

1.

When a string variable is used with a GET instruction, the portion of the
string which is referenced is set equal to null characters before the source
is moved into the string variable. The whole string is referenced if no
subseripts follow the string variable, while various substrings may be
referenced by the use of subscripts. Refer to the section Referencing
String Variables in Chapter 5, for a complete discussion of the subject.
The GET instruetion will not move more characters than can be accepted
by the destination string or substring which is being referenced.

When using the $CO console driver, the pl and p2 parameters can be used
as shown in the following table:

159

Cromemeo 68000 Structured Basie Instruetion Manual
15. Instructions - Data File Input/Output

Function pl p2
Address cursor on screen 1-80 1-24
Clear sereen 0 0
Home cursor without clearing 1 0
Cursor left one character position 2 0
Cursor right one character position 3 0
Cursor up one position 4 0
Cursor down one line 5 0
Clear from cursor to end of line 6 0
Clear from cursor to end of screen 7 0
Set intensity to high light 8 0
Set intensity to low light 9 0
Set intensity to normal light 10 0
Enable keyboard 11 0
Disable keyboard 12 0
Dynamic function keys 13 0
Statie function keys 14 0
Begin protected field 15 0
End protected field 16 0
Begin blinking characters 17 0
End blinking characters 18 0
Send from cursor to end of line 19 0
Send from cursor to end of sereen 20 0
Transmit screen out auxiliary port 21 0
Delete character at current cursor position 22 0
Insert character at current cursor position 23 0
Delete line at current cursor position 24 0
Insert line at present cursor position 25 0
Formatted sereen on 26 0
Formatted screen off 27 0
Begin reverse background field 28 0
End reverse background field 29 0
Begin underlining characters 30 0
End underlining characters 31 0
Display message on 32 0
Display message off 33 0
Insert character off 35 0
Graphies mode on 36]
Graphics mode off 37 0
Cursor on 38 0
Cursor off 39 0
Memory lock on 40 0
Memory lock off 41 0
Alarm on 45 0
Alarm off 46 0

There are no functions that have a pl value of 34, 42, 43, or 44.

160

Cromemeco 68000 Structured Basie Instruction Manual
15. Instructions ~ Data File Input/Output

Example Program - Random Access Files

10 Rem This is a program which demonstrates
20 Rem the implementation of a Random

30 Rem Access File.

40 Rem

50 Rem The program creates and opens a file, writes
60 Rem 51 records sequentially, allows

70 Rem the user to repeatedly select any

80 Rem of the 51 records at random, and

90 Rem then closes and erases the file.

100 Rem

110 Dim Text$(21)

120 Integer Index,Number

130 Create"Randtest”

140 Openl,24"Randtest”

150 On Error Goto Query

160 On Esc Goto Finish

170 Print"Pause, writing file Randtest"

180 For Index=0 To 50

190 Put1"This is record number ",Index

200 Next Index

210 *Query : Print

220 Print"Which record would you like to see?"
230 Print"Enter record number (0-50) or -1 to stop: ™;
240 Input Index

250 If Index<0 Then Goto Finish

260 If Index>50 Then Goto Query

270 Getl,IndexText$(-1),Number

280 Print"Contents of record number ";Index;™ is:"
290 Print Text$;Number

300 Print

310 Goto Query

320 *Finish : Close

330 Erase"Randtest"

340 Print : Print : Print"File Randtest eraseqd"
350 End

On line 130, the file Randtest is CREATEd. If a file does not exist in the
directory, it must be CREATEQ before it can be OPENed for reading or writing.
The file is OPENed on line 140 with a record length of 24 bytes which are
allocated as follows:

22 bytes for the string, and
2 bytes for an integer

Line 150 ensures that any run time error (such as an invalid user response) will
return control to the user within the program and will not cause the program
to terminate abnormally. Because many programs can be terminated by the use
of the ESCAPE key, statement 160 is included in this program. The program will

161

Cromemco 68000 Structured Basie Instruetion Manual
15. Instruetions ~ Data File Input/Output

still be terminated by depressing the ESCAPE key, but the active file will be
closed and deleted before control is returned to the user.

Statements 180 through 200 write out 51 records, each containing (for
identification) the record number in addition to a string. Because no record
numbers are specified, the records are written sequentially starting with record
number zero.

The user is then asked for the number of the record to be retrieved or displayed
and on line 270 the record whose number is specified by the variable I is
retrieved. Because the records which were written to this file each centained
a 22 character string followed by an integer number, they must be read back into
variables of the same type and length.

The user is allowed to view as many records as desired. Entering a negative
one (-1) when asked for a record number will cause the file to be CLOSEd and
ERASEd and program execution to be terminated.

Refer to the discussion section of this chapter for more information on the use
of files.

162

Cromemec 68000 Structured Basie Instruction Manual
16. Functions

Chapter 16

FUNCTIONS

Cromemeco Structured Basic includes a number of functions, such as arithmetic
and trigonometrie functions, that perform common, frequently used calculations.
These funetions are pre-defined in Basic so that the programmer does not need
to write a program every time one of these funetions is required.

Cromemco Basie also includes a number of functions designed to increase string
handling capabilities, system functions which provide general system
information, and functions which makes it possible to call assembly language
subroutines.

In addition to these pre-defined functions, Cromemco Basic permits the
programmer to define additional functions.

This chapter describes how to write user defined functions, and bow to use the
arithmetie, trigonometric, and string functions. Chapter 17 desecribes several
functions used to determine system and file status, and Chapter 18 deseribes
several functions used for machine level instructions.

163

Cromemeo 68000 Structured Basie Instruction Manual
16. Functions

WRITING PROGRAMMER DEFINED FUNCTIONS

The DEF FNS instruection allows users to write their own functions.

function: Programmer Defined Funetion

format: DEF FNS(avar-1,avar-2,...,avar-n)=aexp

where:

S is any legal arithmetic variable name.
avarl-n are arithmetic variables.

aexp is an arithmetic expression, variable, or constant.

The DEF FuNetion permits the programmer to define funetions in addition to the
pre~-defined funetions included in Basie.

Notes:

1‘

The definition of a function must be a statement whieh is encountered
during the execution of a program in order for Basic to retain the
definition. After the function has been defined, it may be used in a
command line.

2. Any of the variables used in the definition of a function (avar-1 through

avar-n) are unique to the function. Their use in the definition does pot
confliet with a variable of the same name appearing elsewhere in the
program.
If a variable appears on the right side of the definition (as a part of aexp)
without appearing on the left, its value may be accessed and changed
outside the funection definition and its value is maintained throughout a
function call. These variables are not unique to the function.

Examples:
>>List

10 Length=20
20 Width=10
30 Height=5
40 Def Fnvolume(A,B,C)=A*B*C
50 Print Fnvolume(Length,Width,Height)
60 End
>>Run
1000

***60 Engi**

164

Cromemec 68000 Structured Basie Instruction Manual
16, Funetions

In the above example, variables A, B, and C are unique to the definition of the
funetion. Variables Height, Length, and Width are regular program variables
whose values may be established at any point in the program (Partition).

The following example should help to clear up any confusion about variables
which are unique to a function definition.

>>List

100 Def Fnmult(P'meter) = P'meter * Factor
200 P'meter = 77

300 Factor = 5

400 Actual'value = 10

500 Print Fnmult(Actual'value)

600 Print P'meter

700 End)

>>Run

50

77

*®k%7()() End***

In the above example, statement 100 defines the funetion Fnmult in terms of the
formal parameter (function definition variable) P'meter and the program variable
Factor. In statement 100 P'meter is called a function definition variable because
it appears to the left of the equal sign in the function definition. As such,
P'meter can not be accessed by the user. The program variable (P'meter) defined
by statement 200 is a different variable than the aforementioned function
definition variable, and can be accessed by the user. According to the above
definitions, Faetor, appearing in statement 100, is a program variable. In
statements 300, 400, and 500 program variables P'meter, Factor, and Actual'value
are assigned values.

In statement 500, the value of the function Fnmult is eomputed using the value
of Actual'value to replace P'meter in the definition of the function. Being a
program variable, Factor maintains its value in the calculation of the value of
the function. Once the value of the function has been calculated, its value is
printed.

Statement 600 prints the value of the program variable P'meter to demonstrate
that the program variable P'meter can be accessed by the user, that it maintains
its value through the function call, and that it is a different variable than the
funetion definition variable P'meter.

165

Cromemeco 68000 Structured Basie Instruction Manual
16. Funetions

ARITHMETIC FUNCTIONS

Structured Basice offers these arithmetic functions:

it} ic Funeti

Abs(X)
Binadd(X,Y)
Binand(X,Y)
Binor(X,Y)
Binsub(X,Y)
Binxor(X,Y)
Exp(X)
Fra(X)
Int(X)
Irn(X)
Log(X)

Max(X1,.,Xn)

Min(X1,.,Xn)

Randomize

Rnd(X)
Sgn(X)

Sqr(X)

absolute value of X

binary addition

binary logical And

binary logical Or

binary subtraction

binary logical Exclusive Or
"e" to the power X
fractional portion of X
integer value of X
generates an integer random number between 0 and 32767
natural logarithm of X

returns the numeric expression Xn with the maximum
value in the expression list

returns the numeric expression Xn with the minimum value
in the expression list

used with Rnd and Irn to produce different sets of random
numbers

generates a random number between 0 and 1
algebraie sign of X

square root of X

166

Cromemeo 68000 Structured Basie Instruction Manual
16. Functions

function: Absolute Value
format: ABS(aexp)
where:

aexp is an arithmetic expression, variable, or constant.

The AES function gives the ABSolute (i.e., positive) value of aexp, which can
be any arithmetic expression.

Example:
>>List
10 Print Abs(-26), Abs(26)
20 End
>>Run
26 26

%%9() Endir

167

Cromemeo 68000 Structured Basice Instruction Manual
16. Funections

funetions: Binary Operations

format: BINADD(aexpl,aexp2)

BINAND(aexpl,aexp2)
BINOR(aexpl,aexp2)
BINSUB(aexpl,aexp2)
BINXOR(aexpl,aexp2)
where:
aexpl-1
and

aexpl-2 are arithmetic expressions, variables, or constants.

The BINAND, BINOR, BINXOR functions perform logical operations bit by bit
on 16-bit operands. The BINADD and BINSUB functions perform binary
arithmetic operations on integer (16-bit) operands.

BINADD performs the BINary ADDition of aexpl and aexp2. A carry is ignored.

BINAND performs a BINary AND logical operation on aexpl and aexp2. It
returns a 1 bit in a given position if both bits are equal to 1 and a 0 otherwise.

BINOR performs a BINary OR logical operation on aexpl and aexp2. It returns
a 1 bit in a given position if either bit is equal to 1 and a 0 otherwise.

BINSUB performs the BINary SUBtraction of aexpl minus aexp2. An overflow
is ignored.

BINXOR performs a BINary EXelusive OR logical operation on aexpl and aexp2.

It returns a 1 bit in a given position if either bit is equal to 1 and the other bit
is equal to 0. A 0 is returned otherwise.

Notes:

1. If necessary, aexpl and/or aexp2 will be converted to 16 bit integers for
the purpose of these functions.

2. Refer to Chapter 6 for a discussion of Boolean operstors.

168

Cromemeo 68000 Structured Basic Instruction Manual
16, Funections

funetion: Exponent
format: EXP(aexp)
wheres

aexp is an arithmetic expression, variable or constant.

The EXP funetion calculates the value of the constant e (where e =
2.71828...) raised to the aexpth power.

Example:

>>List
10 Numl=4.1
20 Num2=Exp(Num1)
30 Print Num2
40 End

>>Run

60.340287597344

*%%kA) EndrEx

169

Cromemeo 68000 Struetured Basie Instrucetion Manual
16. Funetions

funetion: Fractional Portion
format: FRA(aexp)
where:

aexp is an arithmetic expression, variable or constant.

The FRA function returns the FRAectional portion of aexp.

Example:
>>List
10 Number=3.7
20 Print Fra{Number)
30 End
>>Run
0.7

xk%3() Epdkt*

170

Cromemeo 68000 Struetured Basie Instruction Manual
16. Funetions

function: Integer Portion
format: INT(aexp)

where:
aexp is an arithmetic expression, variable or constant.

The INT function returns the largest INTeger value which is less than or equal
to aexp.

Example:
>>List

100 Boxes=5.7
200 Print Int(Boxes)
300 End

>>Run

5

*%%300 End***
>>Print Int(-5.7)
-6

171

Cromemeo 68000 Structured Basie Instruction Manual
16. Funetions

function: Integer Random Number Generator
format: IRMN(X)

where:
X is a dummy argument.

The IRN funection generates an Integer Random Number between 0 and +32767.

Note:

1. To ehange the sequence of random numbers, the RANDOMIZE instruection
should be included in the program.

Example:
>>List

10 Rem Demo of Integer Random Number Generator
20 For Section=1 to 10

30 Print Irn(6)

40 Next Seetion

50 End

>>Run
29284
25801
18835
4647
9295
18846
4924
10105
20210
7652
40 End

The program listed above will print out 10 integer random numbers. If this
program is run a second time, it will generate the same 10 random numbers., A
different set of random numbers will be generated only if a RANDOMIZE
statement is included at the beginning of the program.

172

Cromemco 68000 Structured Basie Instruction Manual
16. Functions

funetion: Logarithm
format: LOG(aexp)

where:
aexp is an arithmetic expression, variable or constant.

The LOG funetion calculates the natural LOGarithm (i.e., log to the base e) of
aexp.

Note:.

1. The logarithm base 10 for X can be computed as follows:

Log'base'10 = Log(X)/Log(10)

Example:

>>List
10 Input Number
20 Nat'log=Log(Number)
30 Print Nat'log
40 End

>>Run

7 3.2

1.1631508098056

¥kEA() Engkx*

173

Cromemeo 68000 Struetured Basic Instruction Manual
16. Funetions

funetion: Maximum Value
format: MAX(aexpl,...,aexpn)
where:

aexpl-n are arithmetic expressions, variables, or constants.

The MAX function examines the list of arithmetic expressions (aexpl through
aexpn) and returns the value of the largest expression.

Example:

>>List
10 Num1=10
20 NumZ2=25
30 Max 'val=Max(Numl,Num2)
40 Print Max'val
50 End

>>Run

29

k%50 Epdk**

174

Cromemeo 68000 Structured Basic Instruetion Manual
16, Functions

funetion: Minimum Value
format: MIN(aexpl,...,aexpn)
wheres

aexpl-n are arithmetic expressions, variables, or constants.

The MIN function examines the list of arithmetic expressions (aexpl through
aexpn) and returns the value of the smallest expression.

Example:

>>List
10 Num1=35
20 Num2=10
30 Min'val=Min(Num1,Num2)
40 Print Min'val
50 End

>>Run

5

¥%%5() EpdE**

175

Cromemeo 68000 Structured Basic Instruction Manual
16. Functions

instructior}: Randomize
format: [Ln] RANDOMIZE

where:
Ln is an optional line number. If Ln is included, the
instruetion is executed at run time. Otherwise it is
executed immediately.

The RANDOMIZE instruction is used to reset the random number dummy variable
used by the RND and IRN functions so that a different sequence of random
numbers will be produced each time the RND and IRN functions are used.

Notes:

1. RANDOMIZE should be used only once within a program utilizing RND to
ensure that a truly random sequence of numbers results.

2. RANDOMIZE should be used after generating every 1000 numbers using
IRN. This will ensure a truly random sequence of numbers.

Example:
>>List
10 Print "This is a Random number ";
20 Randomize
30 Print Rnd(0)
40 End
>>Run

This is a Random number 0.7137712225
40 End
>>Run ,
This is a Random number 0.8171978025
40 End

This program will PRINT a different random number every time it is RUN.

176

Cromemeo 68000 Struetured Basie Instrucetion Manual
16. Functions

funetion: Random Number Generator
format: RND(X)

where:
X is a dummy argument.

The RND function generates a RaNDom number in the range 0 £ Rnd(0) < 1.

Example:
>>List
10 Rem Demo of Random Number Generator
20 For Index=1 To 100
30 Print Rnd(2)
40 Next Index
50 End

The above example will PRINT 100 random numbers. If this program is RUN a
second time, it will generate the same 100 random numbers. To generate a new
set of random numbers each time the program is RUN, the above example can
be rewritten as follows:

>>List
10 Rem Demo of Random Number Generator
15 Randomize
20 For Index=1 To 100
30 Print Rnd(2)
40 Next Index
50 End

Cromemeo 68000 Structured Basie Instruction Manual
16. Functions

function: Sign
format: SGN(aexp)
where:

aexp is an arithmetic expression, variable or constant.

The SGN function returns a +1 if the value of the expression aexp is greater
than 0, a 0 if aexp equals 0, and a -1 if aexp is less than 0.

Example:

>>List
10 Input Valuel,Value2,Value3d
20 Print Sgn(Valuel)
30 Print Sgn(Value?2)
40 Print Sgn{Value3)
50 End

>>Run

? ~12,0,14

-1

0

1

50 End

178

Cromemeo 68000 Structured Basie Instruction Manual
16. Functions

functicn: Square Root
format:: SQR(aexp)

where:

aexp is an arithmetic expression, variable or constant.,
The SQR function calculates the SQuare Root of the positive expression aexp.
Example:

>>Print Sqr(9)
3

179

Cromemeco 68000 Structured Basie Instruction Manual
16. Funections

TRIGONOMETRIC FUNCTIONS

Structured Basic offers these trigonometric funetions:

Atn(X) arctangent of X
Cos(X) cosine of X
Sin(X) sine of X
Tan({X) tangent of X

180

Cromemeo 68000 Structured Basie Instruction Manual
16. Functions

function: Aretangent
format: ATN(aexp)
where:
aexp is an arithmetic expression, variable or constant.

The ATN function calculates the ArcTaNgent of aexp.

Note:

1. Although Structured Basic does not include pre-defined Aresin and Arccos
funections, the user can calculate these using the ATN funetion as follows:

Aresin(X) = Atn(X/Sqr{-X*X+1))

Arecos(X) = ~Atn(X/Sqr{-X*X+1))+2. *Atn(1.)
Example:

>>Print Atn(.80)

0.67474094222353

In this example the ArcTaNgent of 0.80 is equal to 0.6747094222353 radians.
If the DEGree mode is selected, the arctangent of 0.80 is given in DEGrees:

>>Deg

>>Print Atn(.80)
38.659808254087

181

Cromemeo 68000 Structured Basie Instruetion Manual
16. Funetions

funetion: Cosine
format: COS(aexp)
where:
aexp is an arithmetic expression, variable or constant.

The COS function calculates the CCSine of the angle represented by aexp.

Notes:
1. See ATN for a description of how to calculate Arccos.

2. Unless DEG mode has been selected, it is assumed that the value of aexp
is expressed in RADians.

Example:

>>List
10 Input Numl
20 Let Num2=Numl¥*2
30 Print Cos(Num2)
40 End

>>Run

7 .60

0.36235775447529

40 End

In this example, the COSine of a 1.20 radian angle is 0.36235775447529.

182

Cromemeo 68000 Structured Basie Instrucetion Manual
16. Functions

function: Sine
format: SIN(aexp)
where:
: aexp is an arithmetic expression, variable or constant.

The SIN function calculates the SINe of an angle represented by aexp.

Notes:
1. See ATN for a description of how to calculate Aresin.

2. It is assumed that the value of aexp is expressed in RADians unless the
DEG mode has been specified.

Example:

>>List
10 Input Number
20 Print Sin(Number*3)
30 End

>>Run

? .04

0.11971220728892

k%k3() Engr¥

In this example, the SINe of a 0.12 radian angle is approximately 0.12.

In the following example, we first select the DEG mode and then request the
program to PRINT the SINe of a 90 degree angle:

>>List
5 Deg
10 Print Sin(90)
20 End
>>Run
1

®%%9() Epndkt*

The SINe of a 90 degree angle is 1.0.

183

Cromemeo 68000 Structured Basie Instruetion Manual
16. Functions

function: Tangent
format: TAN(aexp)

where:
aexp is an arithmetic expression, variable or constant.

The TANMN function calculates the TANgent of the angle represented by aexp.

Note:

1. It is assumed that the value of aexp is expressed in RADians unless the
DEGree mode has been specified.

Example:
>>List
5 Deg
10 Print Tan{30)
20 End
>>Bun
0.577350269189

x%9() Fnd¥¥

184

Cromemeo 68000 Structured Basic Instruetion Manual

16. Funections

STRING FUNCTIONS

Structured Basic offers these string functions:

String F .
Ase(X$)
Chr$(X)

Ex pand X$,n

Bex$(X)

Len(X$)

Pos(X$,Y$,n)
Str$(X)
Val(X$)

Vale(X$)

provides equivalent ASCII numeric value of the first
character of X$

gives a single character string whieh is the ASCII
equivalent of X :

inserts n null characters in string X$

returns the 4 byte ASCII hexadecimal representation of
a number

returns the length of string X$

returns the location of substring Y$ within string X$
starting with character n

returns the character representation of any numerie
expression X$

returns the numeric representation of any string
expression X$.

returns the numeric representation of any string

expression X$. Sets an error condition for unacceptable
values of X8$.

185

Cromemeo 688000 Structured Basie Instruetion Manual
16. Funetions

funetion: ~ ASCII Value of a Character
format: ASC{svar)
where:

svar is a string variable or literal.

The ASC function returns the ASCII decimal value of the first character of
string.
Note:

1. Refer to Appendix B for a table of ASCII characters and their values,

Example:
>>List

10 Input Text$
20 Print Asc(Text$)
30 End

>>Run

? A

65 v
*%%3(FEpgr**

In this example, the ASCII decimal value for the first character of the string
variable Text$ (character A) is 65,

186

Cromemeo 68000 Structured Basie Instruction Manual
16. Funetions

funetion: Character

format: CHR$(aexp)

where:

2exp is an arithmetic expression, variable, or constant.

The CHE$ function returns the single CHaRacter which is represented in ASCII

by aexp.
Notes:
1, If aexp is outside of the range 0<aexp<255 an error will be generated.
2. This function allows the user to draw graphs or figures with special
characters. The function may also be used to initiate special functions
such as cursor positioning, generating line or form feeds, or causing a bell
to sound on the terminal.
3. This function may be used to output non-printing and speecial purpose
characters such as control or underline characters.
4., CHR$ may be used any place a string is required.
Example:
> List
10 Input Value
20 Print Chr$(Value)
30 End
>>Run
? 42

*
*%x%3() Epd*e*

The ASCII decimal value 42 is equivalent to the character *. Thus, in the above
example, the instruction PRINT CHR$(42) instructs the computer to output the
character * on the terminal.

187

Cromemco 68000 Structured Basic Instruction Manual
16. Funections

instruction: Expand String
format : [Ln] EXPAND svar, exp-2
[Ln] EXPAND svar(exp-1), exp-2
where:
Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

svar is a string variable.

exp-1 is an optional arithmetic expression, variable, or
constant. The default value is 0.

exp-2 is an arithmetic expression, variable, or ccnstant.
The EXPAND instruction inserts null characters inte a string variable. The
number of nulls to be inserted is specified by exp-2. The nulls are inserted
before the character specified by exp-1, or, if exp-1 is omitted, before the first
character of the string.

Notes:

1. Remember that the first character in a string is located at index position

0 (svar{0)).

2. This instruction is very useful for inserting characters into the middle

of a string.
Example:

>>List
100 Word$ = "ABEF"
110 Expand Word$(2),2
120 Word$(2,3) = "CD"
130 Print Word$

>>Run

ABCDEF

188

Cromemeo 68000 Structured Basie Instruction Manual
16. Funetions

function: ASCII Hex Representation
format: HEX$(avar)

where:
avar is an arithmetic variable or constant.

The HEX$ function will convert avar into its 4 byte Hexadecimal ASCII (string)
representation.

Example:
>>List

100 Number=32

200 String$=Hex$(Number)
300 Print String$

400 End

>>Run
0020
400 End

189

Cromemeo 68000 Structured Basic Instruction Manual

16, Funetions

funetion: Length of String

where:

format: LEN(svar)

is a string variable or literal.

The LEN function returns an integer value which is equal to the number of
characters in any string variable svar. In other words, the LEN function gives
the LENgth of a string.

Note:

1. Both characters and spaces are counted as part of the length. Trailing
null characters are pot counted as part of the string length.

Example:
>>List

10
20
30
40
50

>>Run

? Example

Dim String1$(20),String24$(30)

Input Stringl$,String2$

@"Length of Stringl is ";Len(Stringl$)
@"Length of String2 is ";Len(String2$)
End

?? Length Command
Length of Stringl is 7
Length of String?2 is 14
%k%5() Fpdkk

190

Cromemec 68000 Structured Basie Instruetion Manual
16, Functions

function: Position of Substring
 format: POS(svar-1,svar-2,aexp)

where:
svar-1 is a string variable or literal

svar-2 is a substring variable or literal

aexp is an arithmetic expression, variable, or constant
The POS function is used to locate the POSition of a substring (svar-2) within
a string (svar-1). The position within the string svar-1 at which the search is
to begin is specified by the arithmetic expression aexp. This funetion returns
a value equal to the POSition index of the first character of the substring within
the string.
Notes:

1. A -1 is returned if the substring is not found.

2. Remember that the first element of a string is numbered 0.

Example:

>>List
10 Dim String$(50)
20 String$="This is a substring search™
30 String'is=Pos(String$,"is",4)
40 String'r=Pos(String$,"r",20)
50 Print String'is
60 Print String'r
70 End

>>Run

9

23

xkRT() Epdhrs

In this example, the computer is first instructed to search for "is" starting from
the fourth character in string$ and second to search for "r" starting from the
twentieth character in string$. Starting from position 4, the first character in
substring "is" is located in position 5. Starting from position 20, the first
character "r" is loeated in position 23. Consequently, the computer returns
a value of 5 for String'is and 23 for String'r.

191

Cromemeco 68000 Structured Basie Instruction Manual
16. Funetions

An application of this funetion is the conversion of numbers from hexadecimal
to decimal. The following program demonstrates the principle using a one digit
number:

>>List

1000 Dim Hex'number$(0), Answer$(0)

11060 *Start : Input "One digit hex number: ",Hex'number

1200 Decimal'number = Pos ("0123456789ABCDEF", Hex'number, 0)
1300 IF Decimal'number = -1 Then Goto Start

1400 Print "The decimal equivalent is: ";Decimal’number

1500 Input "Another one (Y/N)? ",Answer$

1600 If Apnswer$ = "y" then goto Start

1700 If Answer$ = "Y" then goto Start

1800 End

192

Cromemeo 68000 Structured Basie Instrucetion Manual
16. Functions

function: String Equivalent
format: STR$(aexp)
where:

aexp is an arithmetic expression, variable, or ccnstant.

The STR$ function converts an expression (aexp) to a STRing which is the ASCII
representation of the expression.

Notes:

1. Valid input to this function includes the decimal point (.) and a leading
plus (+) or minus (-) sign.

2. STR$ may be used any place a string is required.

Example:
>>List

10 Input Number

20 String $=Str$(Number)
30 Print String$

40 End

>>Run

? 8.45

8.45

xk%k () End***

193

Cromemco 68000 Structured Basie Instruction Manual
16. Functions

function: Value of String
format: VAL(svar)

where:
svar is a string variable or literal.

The VAL funetion converts a string (svar) into a numeric variable which may be
used in an arithmetic expression.

Notes:

1. If the argument string for VAL consists of both numeric and non- numeric
information, the following conventions hold:

a. If the first eharacter is non-numeric, VAL will return a zero value (this
can be used to decode a user's input). The first character is considered
to be numeric if it is the leading percent sign (%) of a hexadecimal
constant.

b. If the first character or characters are numeric they will be converted
without consideration of the portion of the string ineluding and
following the first non-numeric character.

Example:

>>List
10 String$="26.6321"
20 Inerement=1
30 Value=Inerement+Val(String$)
40 Print Value
5Q End

>>Run

27.6321

xk%k5() Epdhss

194

Cromemeo 68000 Structured Basie Instruction Manual
16. Funetions

function: Value of String
With Error Checking

format: VALC(svar)

where:
svar is a string variable or literal.

The VALC funetion returns a value which can be assigned to a numeric variable.
This funetion provides a user trappable error when its argument is not properly
struetured.

Notes:
1. The error conditions that may be set are as follows:

a. The actual parameter of a VALC function call has evaluated to a
numerie quantity whose accuracy is outside the range of Long Floating
Point numbers.

b. The actual parameter of a VALC function call has evaluated tc a
numerie quantity whose value is outside the range of Long Floating
Peoint numbers.

¢. The actual parameter of a VALC function call was not structured
according to the proper syntax for numeric constants.

The characteristic aspeets of this syntactie specification are as
follows:

1. The comma is not allowed to exist in numbers.

2. If the string contains a decimal point there must be digits on both
sides of it.

3. Both integers and floating point numbers may contain exponents.
4, Multiple positive or negative signs are illegal.

2. If the process of converting the string is successful, the funetion will
return a numerie value which is assignable to a numeric data type. If the
string is properly structured, but evaluates to a value outside of the
accuracy (condition A) or range (condition B) of the Long Floating Point
numbers, then a run-time trappable error will result. The funetion may

also be aborted for a syntax error (condition C). 1If it is aborted for any
reascn, the returned value is undefined.

If the value is to be assigned to a variable of a less precise data type,
the value will be rounded as per Basic's implicit type conversion.

195

Cromemce 68000 Struetured Basic Instruction Manual
16. Functions

TIME AND DATE FUNCTIONS

Structured Basic offers these time and date funections:

Time and Date Functions

Time$("") read the time
Time$("hhmmss") set the time
Date$("") read the date

Date$("yymmdd") set the date

196

Cromemeo 68000 Structured Basie Instruetion Manual
16. Funetions

function: Set Time or Read Time
format : TIMES$(™")
TIMES$("hhmmss")
where:

nu has the operating system return the time in the form
hhmmss, where hh is the hour, mm is the minutes, and ss
is the seconds.

"hhmmss" sets or resets the time in the operating system, where
hh is the hour, mm is the minutes, and ss is the seconds.

The TIME$ function either returns the time or sets the time depending on the
parameters used.

Notes:

1. The time may be assigned to a string variable, printed or called in any
manner a standard function may be called.

Example:

>>List

10 Dummy$=Time$("134700")
20 A$=Time$("") ,

30 Print A$

>>Run

134700
*k Ky sk

197

Cromemeo 68000 Structured Basic Instrucetion Manual
16, Functions

funetion: Set Date or Read Date
format: DATES$("™)
DATE$("yymmdd")
where:

nu has the operating system return the date in the form
yymmdd, where yy is the year, mm is the month, and dd
is the day of the month.

"yymmdd" sets or resets the date in the operating system, where
yy is the year, mm is the month, and dd is the day of the
month,

The DATE$ function either returns the date or sets the date depending on the
parameters used.

Notes:

1. The date may be assigned to a string variable, printed, or called in any
manner a standard function may be called.

Example:

>>List

10 Dummy$=Date$(“820716")
20 A%$=Date$("")

30 Print A$

>>Run

820716
k ok dEk

198

Cromemeo 68000 Structured Basic Instruction Manual
17. System and File Status

Chapter 17

SYSTEM AND FILE STATUS

This chapter describes the instructions used for controlling the status of the
system and of files.

command: Disk Drive

format: DSK
DSK "X™

where:

X is a disk or directory specifier. Under the CDOS
Operating System, the DSK instruction uses the parameter
to change the default disk drive to the drive specified.
Under the Cromix Operating System, the DSK instruction
uses the parameter to change the default directory to
a directory of the same name as the specifier.

Under the CDOS Operating System, the DSK instruction displays or alters the
default disk drive. Under the Cromix Operating System, the DSK instruction
alters the current directory.

Notes:

1.

When no parameter is given, DSK displays the current disk drive identifier.
Under the Cromix Operating System, the identifier refers to the current
direetory.

Use 10STAT(0,0) to determine the current drive while in the RUN mode.

When DSK is used under the Cromix Operating System, the drive specifier
refers to a directory that has the same name as the specified drive. In
this case, any reference to drive A automatically refers to the current
directory regardless of the name of that directory. Specifying any other
directory changes the default directory to a directory that has the same
name as the drive specified. A change in the directory remains in effect
only during the Structured Basic session. Once the user exits from Basie,
the current directory is what it was when Basiec began executing.

199

Cromemeo 68000 Structured Basie Instruetion Manual
17. System and File Status

instruetion: Enable Echo
format : [Ln] ECHO

where:
Ln is an optional line number. If Ln is included, the
instruction is executed at run-time. Otherwise it is
executed immediately.

The ECHO instruction is used to re-enable the display of certain information
at the console terminal after the display has been disabled by the NOECHO
instruction.

200

Cromemeo 68000 Structured Basie Instruetion Manual
17. System and File Status

instruction:

Disable Echo

format : [Ln] NOECHO

where:
Ln

is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

The NGECHO instruction is used to disable the display of user entered responses
to the INPUT instruction.

Motes:

1. This instruction is useful when a secret code or password is to be INPUT.
The code will not be displayed on the sereen, making theft of the code

difficult.

2, The NOECHO mode is pot reset by the RUN or SCRateh instructions. It

is reset by

. Example:
>>List

100
200
300
400

>>Run
?

517

the ECHO instruction.

Noecho

Input Secret'number
Print Secret'number
End

(user entered INPUT is not displayed)
(the value of Secret'number is PRINTed)

¥*%%400 Endt®*

201

Cromemec 68000 Struetured Basie Instruction Manual
17. System and File Status

instruction: Enable Escape
format 2 [Ln] ESC
where:
Ln is an optional line number. If Ln is included, the

instruetion is executed at run time. Otherwise it is
executed immediately.

The ESC instruction is used to re~enable ESCAPE key operation after it has been
disabled by the NCESC instruction.

202

Cromemeco 68000 Structured Basie Instruction Manual
17. System and File Status

instruetion: Disable Escape

format : [Ln] NOESC

where:

Ln is an optional line number. If Ln is included, the
instruction is executed at run time, Otherwise it is
executed immediately.

The NMOESCape instruction disables the console terminal ESCAPE key operation.

Notes:

1.

Most terminal keyboards inelude a key labeled ESCAPE. Basic recognizes
the escape character as a signal to abort program execution and return
to the command mode. The NOESC instruection is used to prevent program
interruption when the ESCAPE key is pressed.

ESC results from the use of the CONTROL-Z, ESCAPE, or CONTROL~[key.
ESCAPE key operation is reset by the ESC instruction.

Most programs will execute significantly faster when the operation of the
ESCAPE key has been disabled by the NOESC instruction.

203

Cromemeco 68000 Structured Basic Instruction Manual
17. System and File Status

funetion:. Free Space

format: FRE(X)

where:

X is a dummy argument.

The FRE function gives the number of bytes of memory in the User Area which
are currently FREe or unused. It is a long floating point value.

Notes:

1. Certain statements do not occupy their full space until after they have
been executed (e.g., DIM).

2. Because Basic allocates space for its internal tables in segments, the FRE
funetion is only an approximation of the aetual number of bytes available
to the user.

3. Space recovered from DELETEd lines is available for new program lines,

not for arrays or variables. Thus, the FRE funection will not necessarily
reflect available program space.

If statement lines have been DELETEd from the User Area, it will be
necessary to perform the following steps in order for the FRE funection
to reflect the change:

a. LIST the program (do pot SAVE it) to a temporary disk file.

b. SCRateh the User Area.

¢. ENTER the temporary disk file.

d. Give the command PRINT FRE(X).

204

Cromemeco 68000 Structured Basic Instruction Manual
17. System and File Status

funetion: I/O Status
format: [Ln] IOSTAT(aexpl, aexp2)
where:
Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

aexpl is a channel number.

aexp? is the status parameter.

The IOSTAT function returns the current status of an OPENed Basic file.

Status Returned
Parameter Value Meaning
0 XX Latest error code when reading. See Cromix manual
for error codes.
1 X Sector number for file pointer.
2 Y Byte number in sector X (above),
3 Z File pointer, long floating point.
Notes:

1. Devices other than disk drives may or may not return status values.

2. If Rec is the record size and File is the file number, the expression:

INT((128.0 * Iostat(File,1) + Iostat(File,2))/Rec)

will give the current record number. A similar expression can derive the
current byte within the record.

205

Cromemeo 68000 Structured Basice Instruction Manual
17. System and File Status

instruetions: On Error Transfer Control
format: [Ln] ON ERROR STOP
[(Ln] ON ERROR GOTO n

[Ln] ON ERROR GOSUB n

where:

Ln is an optional line number. If Ln is ineluded, the
instruction is executed at run time., Otherwise it is
executed immediately.

n is the line number or line name of the statement to which
control is transferred.

The ON ERROR instruction causes program control to be transferred as specified
(STOP, GOTO, or GOSUB) when a non-fatal error oeccurs during program
execution.

Notes:

1,

A non-fatal error in Basic is any error listed in the error table (see
Chapter 24) with a number of 128 or greater. Errors numbered 127 and
below are defined as fatal errors and cannot be trapped with an ON ERROR
statement.

2. If ON ERROR. is written at the beginning of a program, the instruction
specified with ON ERROR will be executed each time a program error
occurs. If placed elsewhere in the program, the instruction will be
executed only for errors which ocecur during the execution of statements
following the execution of the ON ERROR statement.

3. ON ERROR is reset by the RUN, SCRatch, and ON ERROR STOP instructions.

4, Using RETRY to exit from a subroutine will cause the instruction which
caused the error to be executed again. Refer to the RETRY instruection.

Example:

60 Input Numl,Num2
80 Print Num1*Num2
100 On Error Goto 300
120 Input Num3,Numé4
140 Print Num3/Num4
160 Goto 60
300 Print "A non-fatal error has occurred"
320 Goto 120

In this example, any error which ocecurs before line 100 has been executed for
the first time will be dealt with by the standard system error handling
procedure. Any trappable error which occurs after line 100 has been executed
will cause program execution to continue with statement line 300.

206

Cromemeo 68000 Structured Basie Instruction Manual
17. System and File Status

instructicn: On Escape Transfer Control
format [Ln] ON ESCAPE STOP
[Ln] ON ESCAPE GOTO n
[Ln] ON ESCAPE GOSUB n

where:
Ln is an optional line number. If Ln is ineluded, the
instruction is executed at run time. Otherwise it is
executed immediately.

n is the line number or line name of the statement to which
control is transferred.

The ON ESCAPE instruction causes program control to be transferred as
specified (STOP, GOTO, or GOSUB) when the ESCAPE key is depressed during
program execution.

Notes:

1. If ON ESCAPE is written at the beginning of a-program, the instruction
specified with ON ESCAPE will be executed each time the ESCAPE key
is depressed. If placed elsewhere in the program, the statement will be
executed only when the ESCAPE key is depressed following the execution
of the ON ESCAPE statement.

24 ON ESCAPE is reset by the RUN, SCRateh, and ON ESCAPE STOP

instructions.
Example:

>>List
10 *Begin : Input Condl,Cond2,Cond3
20 If Condl = -1 Then 70
30 Let Answer=Cond1+Cond2+Condd
40 On Ese Goto Begin
50 Print Answer
60 *Wait : Goto Wait
70 End

>>Run

7 10,15,20

45 (ESCAPE must be pressed here to get out of the Wait

loop.)

? 70,10,5

85

? ~-1,0,0

*x%7() End***

207

Cromemeo 68000 Structured Basie Instruetion Manual
17. System and File Status

instruetion: Set System Parameter

format : [Ln] SET aexpl, aexp2

where:

Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

aexpl,2 are arithmetic expressions, variables, or constants.

aexpl is the system parameter pumber.

aexp2 is the value to be assigned to the parameter.

The SET instruction is used to change the value of a given system parameter.

Notes:

1.

2.

Refer to the SYS instruction for a list of all user accessible system
parameters.

System parameter number 0 is the width of a page in characters and may
assume any value between 0 and 32767. The default value for this
parameter is 80 characters which corresponds to a standard 8 1/2 inch

page.

A special use of the SET command is:

Set 0, -1

which inhibits the automatic carriage RETURN-~LINE FEED at the end of
a line when page width is reached. Refer to the discussion of the PRINT
instruection as it pertains to file output.

Using SET 0,~1 to disable page width checking is especially useful for
graphics output to devices suech as the Cromemeo 3355 printer.

System parameter 1 is the tab field width and may assume any value
between 1 and 32767. This corresponds to the width of the field whieh
is output by a comma (,) in a PRINT instruction. If the tab field width is
SET to a 0 or -1, no tabbing takes place (i.e., commas are treated as
semicolons). The default value for this parameter is 20 characters.

System parameter 5 may be used to facilitate timed input. To start the

timer, the SET 5 instruction is given, with aexp2 equal to approximately
ten (10) times the number of seconds of delay desired. For example:

208

Cromemeo 68000 Structured Basic Instruction Manual
17. System and File Status

Set 5,50

will allow about 5 seconds for a complete user response.

When the next INPUT instruction is encountered, Basie will issue an Error
210 -- INPUT Timeout if the user does not respond with a complete INPUT
within the allotted time.

Once SET, the time used to respond to all subsequent INPUT instructions
is added together until it exceeds the specified value, and then an error
message is generated. It is therefore necessary to give the SET instruction
prior to each timed INPUT. When timed INPUT is no longer desired, it may
be de-activated by coding:

Set 5,0

The ON ERROR statement can be used to trap the timeout error. The
programmer may find out how much time was used by coding SYS(5) to find
the time remaining.

209

'Cromemeo 68000 Structured Basic Instruetion Manual
17. System and File Status

function: System Parameter
format: SYS(aexp)
where:

aexp is an arithmetic expression, variable, or constant.

The SYS function provides system information based on the value of the argument
aexp. .

Notes:

1. See the SET instruction for methods of changing the values of these system

parameters.
Example:
100 On Error Goto Error'routine
140 Open \1\ "FILE.DAT"
699 *Error'routine
700 If Sys(3)=128 Then Create"FILE.DAT":Goto 140

o

£

In this example, if the file FILE.DAT did not originally exist on the disk, the
error routine at line 700 would CREATE the file. Lines 710, 720 ete. could be
written to test for other values of SYS(3), and take appropriate action(s).

The table on the following page lists all of the user accessible system
parameters.

The first column represents the Value (aexp) of the System Parameter. SET
indicates if it is valid to SET this parameter (Yes) or if it may just be examined
by the SYS function (No). The Range and Default are those of the Parameter
while the last column is a brief description of the Parameter.

210

Cromemeco 68000 Structured Basie Instruction Manual

17. System and File Status

Value

10

12
13

14

15

16

17
18

19

SET
Yes
Yes

No

Yes
Yes

Yes

Yes
Yes
Yes

Yes

No

Yes
Yes

reserved

No

Yes

Yes

reserved
reserved

reserved

Range
20

20
0-255

0-255
0~Sys(0)

any

0,1
0,7
-2 thru 5

0,1

0-7

1-15

1-15

0,1

any

0,1

Default
80

20

0(off)

211

System Parameter
Page width
Tab field width

character last
printed

Last run time error
Current print column
INPUT timeout; value 14
must be set to 1 to

use this

Upper case LISTing

LIST constants with spaces

Indentation control

Ignore quotation
marks on INPUT

Current Partition
number

Basic-KSAM Pages per Data Block

Basic-KSAM Pages per Key Block

Sets Console device driver
into character mode

Reserved for user
inter-program communication

0 sets integers to Z80 order for
PUTSs/GETs (low, high). 1 sets
integers to 68000 order for
PUTs/GETs (high, low).

Cromemee 68000 Structured Basie Instruction Manual

17. System and File Status

(Rest use greater than 16-bit values:)

100

101

102

No

No

reserved

Address space

Line number

212

Gives the address of a 256-byte
patch area near the beginning of
sbasie60.bin after the version
number, This area can be
dynamically patched during
run-time by means of POKE or
permanently pateched with the
Cromix pateh utility.

Gives line number of the statement
that was executed when an error
occurred when ON~-ERROR was
active.

Cromemeo 63000 Structured Basie Instruction Manual
17. System and File Status

function: Execute a Shell Command

.

format: [Ln] sh _—— "> - 7 T T
[Ln] sh svar 2970 ShREIETS
where:
Ln is an optional line. If Ln is included, the instruction
is executed at run time. Otherwise it is executed
immediately. |

The sh command causes program control to be suspended and transferred to a
Cromix shell. The Cromix exit command will return control to Basic.

If a command-line is specified as the svar, it will be executed by the Cromix
shell and contreol then returned to Basie.

213

Cromemeo 68000 Structured Basie Instruetion Manual

214

Cromemeco 68000 Structured Basie Instruction Manual
18. Machine Level Instructions

Chapter 18

MACHINE LEVEL INSTRUCTIONS

This chapter describes the instructions used for using the system on a machine
level and for executing machine level routines.

function: Address Of A Variable
format: ADR(var)
where:

var is a string or arithmetic variable.

The ADR function will return the memory storage location starting address of
a variable as an integer.

Notes:

1. The ADR function allows the use of subsecripted variables.

215

Cromemeo 68000 Structured Basie Instruction Manual
18. Machine Level Instructions

funetion: Input From I/O Port
format : INP(m)
where:
m is an I/0 port.

The INP function is used to read the contents of INPut port (m).

Note:

1. The value of m must be in the range 0<mK255.

Example:
10 Noese : Integer Character
20 *Poll : If Binand(Inp(0),%0040%) = 0 Then Goto Poll
30 Character = Inp(1)
40 Character = Binand(Character,%007F%) '
60 If Character = %001B% Then Print : Goto Escape
70 Print Chr$(Character); |
80 If Character = 13 Then Print
90 Goto Poll
100 *Escape : Ese
110 End

When a character is typed at the console, this program will echo it back to the
console CRT. A RETURN will be echoed as a RETURN followed by a LINE FEED,
and an escape character will terminate the program.

The NOESC instruction at line 10 is necessary to disable Basie's continuous
polling of input port 0. While a program is being executed, Basic ignores most
characters typed at the console. Basie continually polls the UART status port
0 and if a character is ready, reads it from port 1. If this character is not an
escape character, it is ignored by Basie. If it is an escape character, program
execution is terminated.

Upon reading the UART status, the status bit is reset. It is necessary to disable
Basie's polling of the status port so that this user program will be able to
determine if a character has been typed. If this were not done, Basic would,
by reading the status port, reset the character ready bit, thereby preventing
the user program from determining that a character had been typed.

Line 60 replaces the ESCAPE key function by testing the character typed by
the user. If it is an escape character, program execution is terminated.

216

Cromemeo 63000 Structured Basie Instruction Manual
18. Machine Level Instruections

Statement 20 is a loop which continually polls the UART status ready port to
determine if a character has been typed. The Receiver Data Available flag is
bit 6 {refer to the 4FDC manual). The contents of input port 0 is ANDed with
40 hex to determine if this bit is a one or a zero. If it is a zero, no data is
available, and control remains on line 20, polling the input port again.

If the bit has been set (=1) it indicates that data is available, and statement 30
reads the data from input port 1 and assigns this data to the variable Character.
Line 40 strips the parity bit off of the input data (the ASCII character set
requires only the seven bits, 0 through 6) and as stated before, line 80
terminates program execution upon determining that an escape character (1B
hex) has been INPut,

The rest of the program prints the ASCII character whose value was INPut,
PRINTs a LINE FEED if a RETURN was INPut, and transfers control to line 20.

When an escape character is detected, control is transferred to line 100 which
re-enables the operation of the ESCAPE key and terminates program execution.

217

Cromemeo 68000 Structured Basic Instruction Manual
18. Machine Level Instructions

instruection: Output To I/O Port
format : [Ln] OUT m,b
where:
Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

m is an 1I/0 port

b is a byte value
The OUT instruction is used to OQUTput data byte (b) to OUTput port(m).

Notes:
1. The value of m must be in the range 0<mg255.

2a The value of b must be in the range 0<b<255.

Example:

>>Out 1,75

will display the character K (ASCII 75) on the console terminal (output port
1).

218

Cromemeo 68006 Structured Basie Instruction Manual
18. Machine Level Instructions

function: Peek At Memory
format: PEEK(m)
where:
m is a memory location (long value).
The PEEK function returns the contents of memory location (m).
Note:
1. Hexadecimal numbers may be used to access locations in the range:

0<h<%FFFF%. Negative decimal numbers map into their hexadecimal
equivalents:

Peek(-2)
is the same as
Peek(%FFFE%)

Example:

Print Peek(5)

will PRINT the contents of memory location 5.

219

Cromemeco 68000 Structured Basic Instruetion Manual
18. Machine Level Instructions

function: Poke Into Memory

format: [Ln] POKE m,b

where:

Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

m is a memory location (long value).

b is a byte value,
The POKE instruction puts the byte value b into memory location m.

Notes:

1. Hexadecimal numbers may be used to access lccations in the range:
0<h<%FFFF%. Negative decimal numbers map into their hexadecimal
equivalents:

Poke ~2,5
is the same as

Poke %FFFE%,5

2. The value of b must be in the range 0<b<255.

Example:

Poke 1000,255

will place the value 255 into memory location 1000,

220

Cromemco 68000 Structured Basie Instruction Manual
18. Machine Level Instructions

function: Call a User Program

format: USR(m,P1,...,Pn)

where:

m is the address of the assembly language routine.

Pl-n are parameters that are converted to 32 bit integers.

The USR function makes it possible to call an assembly language subroutine from
a Basie program. It turns a long flosting peoint value,

Sbasic68 contains a 256-byte patch space that may be used for USR routines.
Use SYS(100) function to get the address of this pateh space.

Notes:

1m

4,

The USR function always requires the user to specify one parameter in
addition to the address, even if it is a dummy parameter. For example,
USR(0,1) is correct, while USR(0) will result in a syntax error.

If m is decimal, it must correspond to a legal memory address,
Hexadecimal numbers may be used to access locations only in the ranges:
0<h<%FFEF%.

USR is a funection and must take the form of a funetion when it is used:

>>100 Alpha = Usr(X,Y)

When the user routine gains control (at the address specified in the USR
funetion call), the following conventions apply:

a. Register DO contains the number (n) of parameters in the function call.
b. Register A4 contains the return address to Basie. The user rcutine

may re—enter Basic by coding the following assembly language
instruction:

JMP (A4)

c. The parameters are placed in order (P1, P2, ..., Pn) on the CPU stack
(A7) and may be recovered via the instructions:

POP.L D5
MOVE.L -(A7), D5

221

Cromemeo 63000 Structured Basic Instruction Manual
18. Machine Level Instructions

d. If and only if n parameters (n is the contents of register D0, as above)
are Popped off the stack, and the stack pointer is not otherwise
changed, Basic may be re-entered via the following instruction:

RTS

e. The routine may return a long value to be assigned to the funection by
piacing the value in the D6 register before re-entering Basic.

f. If registers DO through D4 are used, they must be restored or set to
0 prior to return to Basic,

222

Cromemec 68000 Struetured Basie Instruction Manual
18. Machine Level Instructions

function: Type Of Variable
format: TYPE(aexp)

where:
2exp is an arithmetic expression or variable.

The TYPE function will return a value indicating the TYPE of exp.

Note:

The following values are returned by TYPE:

Value TYPE of Expression
Integer

1
2 Short Floating Point
4 Long Floating Point

223

Cromemeo 68000 Structured Basie Instruction Manual
18. Machine Level Instruetions

functions: Basiec~-KSAM Numeric Sorting Conversions

formats: IKEY$(aexp)

FKEY$(aexp)
KEYI(svar)
KEY F(svar)
where:
aexp is an arithmetic expression, variable, or ccnstant.
svar is a string variable or string literal.

These four functions allow the user to store numerie information in character
variables so that numeric fields of a data file may also be key fields. The
conversion is such that the ordering of the records with regard to these key
values will be the ordering of the key fields, interpreted as numeric quantities.

Notes:

1. The Ikey$ function will take an integer variable argument and return two
character positions of a string variable. When these two character
positions are used as a key field, Basic-KSAM will put them into the file
in the proper order of the integer argument. Thus, integers may be used
as keys, and will be sorted according to the integer value,

2. The Fkey$ function performs the same operation as the Ikey$ funetion,
except it takes a Long Floating Point variable as an argument and produces
eight characters of a string variable as a result. These eight characters
also cause the record to be added to the Basic-KSAM file in the order of
the numeric quantity of the argument of the funetion. Short Floating Peint
numbers may be utilized by ignoring the last four bytes returned.

3. The Keyi function performs the opposite operation of the Ikey$ function.
When a record is read into a string variable which contains bytes that are
really the converted form of an integer, this function will translate them
into the integer representation and assign the value to an integer variable,
Thus, the argument for this funetion is two bytes of a string variable and
the result is of type integer.

4, The Keyf function performs the reverse of the Fkey$ funection, and thus
will take from four to eight characters of a string variable as an argument
and return a Basiec Long Floating Point number which may be assigned to
a Long or Short Floating Point variable.

224

Cromemec 68000 Structured Basie Instruction Manual
19. Seope of Variables

Chapter 19

SCOPE OF VARJABLES

This chapter deseribes the instructions used for setting up COMMON and LOCAL
variables.

statement: Common Storage Area Method 1
format: Ln COMMON

where:
Ln is a line number.

This version of the COMMON statement may be used when chaining programs
(using RUN statements in the program). Refer also to the BEGINCOMMON and
ENDCOMMON instructions in the description of Common Storage Area Method
I1.,

This statement reserves a Common Storage Area for variable storage. The size
and contents of this area are determined by the string variables and array
variables which have been explicitly DIMensioned (used in a DIM, INTEGER,
SHORT, or LONG instruction) since the last RUN instruction or since Basic was
loaded. The space is reserved in a byte-by-byte fashion without regard to
variable type or length.

A subsequent RUN instruction will initialize all variables except those in the
Common Storage Area. The reserved area will be assigned on a byte-by-byte
basis to variables as they are DIMensioned in the new program (the program
called by the RUN instruction).

The Common Storage Area will cease to be reserved if two RUN instructions are
issued without an intervening COMMON statement.

225

Cromemeo 68000 Structured Basie Instruction Manual
19. Scope of Variables

Notes:

1.

It is up to the user to ensure that DIMensioned variable types match
between programs. For example, if program A is as follows:

200 - Dim Name$(25), Interest'rate(10,2)
300 Integer Time'period(100)

400 Common

500 Run-"B"

then program B, if it has explicitly DIMensioned variables, must
DIMensions

a. 26 bytes of string (ASCII) variables
b. 264 bytes of Long Floating Point variables (8 bytes each)
c. 202 bytes of Integer variables (2 bytes each)

in that order. The names and lengths of the strings and arrays do not
matter, as long as the types matech. Program B could use either of the
following sets of statements:

a. 10 Dim Title$(9), Reference$(15), Table(10,2)
20 Integer Time'prior(25), Time'current(24)
30 Integer Time'future(49)
40 Common

b. 10 Dim Last'name$(1), First'name$(1), Middle'name$(1)
20 Dim Initials$(19), Value(10,2)
30 Integer Buffer(100)
40 Commaon

Notice that the 27th through 290th bytes in the reserved area must be
DIMensioned similarly in each program if the same indices are to be used
in each program. This is true for all two and three DIMensional arrays.

226

Cromemeo 68000 Structured Basie Instruetion Manual
18. SBeope of Variables

statement: Common Storage Area Method II
format: Ln BEGINCOMMON
Ln ENDCOMMON

where:
Ln is a line number.

This version of the Common statement may be used to establish a Common
Storage Area when using Procedures.

A Common Storage Area is provided so that the programmer may declare certain
strings and arrays as global throughout a series of calling and called
Procedures.

A global string or matrix variable is one which may be referenced from a
Partition other than the one in whieh it was originally declared. The value of
a global variable may be altered both by the calling as well as the called
Procedure regardless of whether the Procedures reside in the same or different
Partitions.

Variables which are not used as receiving parameters in a procedure are always
global within one Partition.

Defining and Accessing the Common Storage Area

Only matrices (1, 2, or 3 DIMensional) and string variables can be placed in the
Common Storage Area,

The amount of Common Storage Area which is established by the main program
determines the maximum amount of Common Storage Area for all called
Procedures.

When the RUN command is given, before any Basic instructicn is executed, there
is an impliecit BEGINCOMMON instruction.

If the user does not wish to have a Common Storage Area, an ENDCOMMON
instrucetion should be coded in the main program before any definition of or
references to subseripted variables. This will cause Basic to reserve a Common
Storage Area of length zero (i.e., no Common Storage Area).

If the user wishes to have a Common Storage Area for string variables and
arrays, this area may be reserved by DIMensioning the variables (or by
referencing the subseripted variables which implicitly DIMensions them) and
then coding the ENDCOMMOCN instruetion in the main program (the program
residing in Partition zero).

227

Cromemeo 68000 Structured Basie Instruction Manual
19. Scope of Variables

Note that ENDCOMMON is impliecit in a call to a Procedure or a return from a
Procedure (ENDPROC or ERRPROC).

Once ENDCOMMON has been executed (either explicitly or implicitly) the
Common Storage Area has been reserved. Loading another module or transferring
control to another Partition will not alter this area.

It is not possible to expand the Common Storage Area to a size greater than was
originally defined in the main program. The size of the Common Storage Area
remains fixed until another RUN instruction is executed.

In order to access the Common Storage Area from a called Procedure in another
Partition, it is necessary to code the BEGINCOMMON and ENDCOMMON
instructions in the called Procedure. In between these two instructions, any
definition of subseripted variables will cause the elements of the array or string
to reference the Common Storage Area.

Storage is allocated from the bottom of the Common Storage Area, sequentially,
as subseripted variables are defined. Note that string variables occupy one byte
for each element (character), while elements of an Integer, Short or Long
Floating Point array will oceupy 2, 4, and 8 bytes respectively. When assigning
subseripted variables to the Common Storage Area, it is the programmer's
responsibility to ensure that each type of variable is assigned to a sequence
of bytes which were originally that same type of variable.

Remember that all arrays start with element zero (i.e., an array which is
DIMensioned as 20 contains 21 elements numbered 0 through 20).

228

Cromemeco 68000 Structured Basic Instruetion Manual
19. Scope of Variables

Example:

>>Run

This is a message

5 10 15

*¥%% 240 End***

>>List
110 Rem MAIN Program
120 Rem
130 Rem
140 Rem There is an implicit BEGINCOMMON instruction
150 Rem before the first program instruction.
160 Lib"comexamp"

170 Dim Strg$(19),Var(2)

175 Endecommon

180 Strg$="This is a message"

190 Var(0)=5 : Var(1)=10 : Var(2)=15

210 Rem The following array is NOT in COMMON.
220 Dim Address(100)

230 Call .Called'procedure

240 End
>>Use 7
>>List
100 Procedure .Called'procedure
110 Rem
120 Rem COMMON is not accessed until the BEGINCOMMON
130 Rem instruction is given.
140 Begincommon
150 Dim Message$(19),Table(2)
160 Endeommon

170 Print Message$

180 Print Table(0),Table(1),Table(2)
190 Endproc

200 End

229

Cromemee 68000 Structured Basice Instruction Manual
19. Seope of Variables

instruection: Define Local Variable

format : [Ln] LOCAL var-1, Mat var-2,...

where:

Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

varl-n are scalar, matrix, or string variables. Matrix variables
must be preceded by the word MAT.

The LOCAL instruction defines a new variable (or string or explicitly
DIMensioned matrix) with the same name as a previously defined variable. The
previous value of the variable is saved for later use. This process may be
repeated as many times as necessary (or as storage space permits). The
previous value of a variable will be recalled when a econtrol structure, which
was pending before the LOCAL instruction was given, is completed.

Notes:

l‘ll

‘The control structures which will cause the previous value of a variable

to be restored are ENDDO, ENDWHILE, NEXT, ENDPROC, ERRPROC,
EXITPROC, RETURN, and UNTIL.

DO and ENDDQO may be used as a do-nothing control structure to cause
variables to be popped as desired.

When a variable is defined as LOCAL, the contents of the variable are
zeroed (numerie) or set to null characters (string).

This explanation may help clarify the LOCAL instruction to those users
who are familiar with LIFO stacks. The LOCAL instruction allows the user
to push the value(s) of a variable, string, or explicitly DIMensioned matrix
onto the run time stack. The value(s) will automatically be popped back
into their respective variables upon completion of a pending control
strueture,

When a DIMensioned string or arithmetie variable is defined as LOCAL,
it must be re-DIMensioned. The LOCAL variable is a new variable with
a value of zero (or null eharacters in the case of a string) and no specified
DIMension.

230

Cromemeco 68000 Struetured Basic Instrucetion Manual
19. Scope of Variables

Examples:

100 Length=5
110 Do
120 Local Length
130 Length = 10
140 Print Length
150 Enddo
160 Print Length
170 End

>>Run

10

5

In this example, the variable Length is assigned a value of 5 on line 100. A
control structure is introduced on line 110. The purpose of the DO-ENDDO
control structure is to restore the variable Length to its former value after being
used as a LOCAL variable. Line 120 creates a new variable, Length. Length
has a value of 0 until, on line 130, it is assigned a value of 10. Line 150 (the
termination of a Pending control structure) restores the old value of 5 to Length
as can be seen from the PRINT instruction on line 160.

The following example demonstrates a more practical use of the LOCAL
instruction. Each time before the recursive Procedure .Factorial calls itself,
the variable N is saved (on the run time stack) for later use. Each time
.Factorial ends and goes back to a previous level, the variable N is recalled
(popped) and used in computing Nfactorial (line 1150).

Refer to the chapter on Procedures for additional information on the use of
Procedures and automatic local variables.

231

-Cromemeo 68000 Structured Basie Instruction Manual
19. Scope of Variables

>>List

100 Rem Program to compute factorials.

110 Long Answer : Integer N,Boogie : Dim Response$(0)

120 Library "factor”

130 Boogie=1

140 While Boogie=1

150 Input"number: ",N

160 If N>49 Or N<1 Then Do

170 @"The number cannot be larger than 49,"

180 @'Nor can it be smaller than 1."

190 Else

200 Call .Factorial (N;Answer)

210 Print N;"! = ";Answer

220 Enddo

230 @

240 Input”Another? ",Response$

250 Rem Y or y says: calculate another factorial.

260 If Response$"y" And Response$"Y" Then Boogie=0

270 Endwhile

280 End
>>lse 7
>>List

1000 Procedure .Factorial (N)

1010 Rem Recursive Procedure for Computing Factorials
1020 Rem SAVE file name: FACTOR

1630 Integer New'n

1040 If N=1 Then Do

1050 Rem initialize Nfactorial and End Procedure
1060 Nfactorial=1

1070 Else

1080 Do

1090 Rem Decrement N and Call Factorial
1100 New'n=N-1

1110 Local N

1120 Call .Factorial (New'n;Nfactorial)

1130 Enddo

1140 Rem Compute Nfactorial on the way back
1150 Nfactorial=N*Nfactorial

1160 Enddo

1170 Endproc (Nfactorial)

1180 End :
>>Run "Main"
number: 3
3! =6

232

Cromemeo 68000 Structured Basie Instruetion Manual
18. Scope of Variables

Apother? Y

number: = 35

The pumber cannot be larger than 49,
Nor can it be smaller than 1.

Another? Y
number: 5
5! =120

Another? n
280 End

233

Cromemeo 68000 Structured Basie Instruction Manual

234

Cromemeo 68000 Structured Basie Instrucetion Manual
20. Procedures

Chapter 20

PROCEDURES

A major facet of structured programming is modularization. The implementation
of Partitioned memory, Procedures, and a Procedure Library makes Cromemeco

Basie truly a Structured Basic.

Procedures differ from subroutines mainly in flexibility. A procedure may be
stored in a library and loaded just by Calling it. A procedure in any partition
may be called from any other partition, while a subroutine must reside in the
same partition as the program that uses it. Procedures allow programs that are
more modular by passing variables explicitly between program and procedures.
Finally, procedures allow the programmer to build large programs in limited
memory by loading program segments only as needed and reusing memory
occupied by inactive program segments.

Under Structured Basie, the User Area is divided into 8 Partitions whieh are
numbered zero through seven. Until used, each Partition is a null Partition and
occupies no space in the User Area. When Basic is loaded, the user has
immediate access to Partition zero. This is normally where execution of a
program starts and where the main program is stored.

A Procedure is a section of a Basic Program whieh is designed to do one complete
task or an integral subtask. Procedures may call other Procedures. They may
have parameters passed to them by the calling routine and also return
parameters back to the calling routine. Procedures may be recursive, that is
call themselves. (Refer to the LOCAL instruction.)

One or more Procedures may be loaded into each Partition. This may be done
manually by the USE and LOAD (or ENTER) instructions, or automatically from
a RUNning program by the LIBRARY instruction and Procedure CALLS,

Structured Basic allows the user to build a Procedure Library by means of the
Basic Program LIBBUILD. Once this Library has been opened (refer to the
LIBRARY instruetion), all Procedure CALLs which cannot be resolved by
reference to one of the eight Partitions will cause the Library to be searched
for the requested Procedure.

If the Procedure is found, it will be loaded into an available Partition (refer to
the Procedure CALL instruction).

Unless explicitly requested (by being passed as a parameter or by the use of
a Common Storage Area, refer to the BEGINCOMMON and ENDCOMMCN
instructions), variables are local to a Partition. If more than one Procedure
resides within a Partition, the variables are global for all Procedures within

235

Cromemeo. 68000 Struetured Basie Instruction Manual
20. Procedures

that one Partition. Thus, if Procedures .AAA and .BBB reside in Partition zero
and Procedure .ZZZ resides in Partition seven and the variable Time is defined
in Procedure .AAA, the variable Time will be accessible from Procedure .BBB
(in the same Partition as its definition) but will not be accessible from .ZZZ (in
another Partition) unless it is passed in common or as a parameter.

When parameters are passed to a Procedure (refer to the Procedure CALL
instruction, parsetl) they are automatically declared as local variables within
the called Procedure. This is beneficial for calls to other Procedures within
a single Partition or for the implementation of recursive Procedures.

USING PARTITIONS

Under Structured Basic the user area of memory is divided into 8 partitions
numbered 0 through 7. The main program resides in, and begins execution in,
partition 0. Modules are loaded into partitions as called, beginning with the
highest available partition on down. Each partition can contain just one module,
though a module may contain many procedures.

Partition size depends on the size of user memory and the size of the program
segment loaded into it. A partition shrinks or grows to accommodate the program
text as necessary, up to the total size of user memory. Procedures are loaded
from a library on a space-available basis. If a procedure that is called is not
in memory, it is loaded from disk. If there is no space available, any library
procedures not currently being executed are overlaid by the called procedure.
Thus, the user need not be concerned about the size of an individual partition,
only the total memory available for programs.

Variables defined in one partition are not available to other partitions. The
variables are Jocal to that partition. However, within the loecal partition, any
procedure or program segment may access any variable that is not expliecitly
declared as common or passed as an argument to a procedure. Within the local
partition, variables are global.

There are two ways to access a partition. Under program control, a partition
is accessed when a procedure that resides in that partition is CALLed. When
programming, you can enter any partition by executing the command USE n,
where n is the partition number. Once in a partition, any program text can be
entered. Normally, however, the main program is entered into partitions 0, while
procedures are entered in partitions 1 thru 7.

A partition may be cleared by using the instruction CLEAR n. This is the
equivalent of SCR but is limited to the partition specified by n.

All Basic command mode instructions are local to the current partition. For
example, if you are in partition 7, a LIST command will list only the program
text in partition 7. The only exceptions are instructions which affect the
operating environment (SET, OPEN, CLOSE, ete). The RUN instruction will
automatically transfer control to partition 0,

236

Cromemeo 68000 Struetured Basie Instruction Manual
20. Procedures

USING PROCEDURES

Procedures are a powerful tocl for building structured programs and saving
programming labor. They allow a programmer to build and use a library of
frequently used procedures.

Once a procedure is stored in a library, it can be included in any program by
first specifying the library that the procedure is in and then calling the
procedure. If the procedure is not already in memory when it is called, it is
loaded from disk. Note that the library must reside either on the current disk
or on the disk in drive A. Procedures are loaded into the highest available
partition, starting with partition 7 on down.

When a procedure is loaded into a partition, all procedures in the same module
are loaded along with the procedure that was called. Thus a group of procedures
that function together can be loaded all at once by calling any one of them.

Variables are passed to the procedure via the variable list in the CALL
instruction. The actual value of a scalar variable is passed to the receiving
variable specified in the procedure definition. This means that although the
scalar variable specified in the procedure definition may have the same name
as the variable that was passed in the CALL instruction, they are not the same
variable. (The name need not be the same.)
Suppose, for example, that the variable named Index is passed through the CALL
instruection to .Procedure'l to the variable in the procedure definition named
Index. Index is a separate variable in the calling program and the procedure,
- but Index (in the procedure) is assigned the value of Index (in the calling
program). After the procedure finishes and control has returned to the calling
program, examine the value of Index. It will be the same as it was when the
procedure was called.

In order to pass the value back from the procedure, Index must be specified as
a return argument in both the CALL instruction and the ENDPROC instruction.
When the ENDPROC instruction returns control to the calling program, it assigns
to Index (in the calling program) the value of Index (in the procedure).

For scalar variables, the type of the destination variable is made toc mateh the
type of the variable being passed. For example, the variable A'int is an integer
in the calling program. The variable that it is being passed to, A'lfp, is defined
as long floating point (1fp). When A'int is passed, A'lfp is converted to integer.
Similarly, passing an 1fp variable to an integer will result in the type of the
receiving variable to be changed to lfp.

Scalar variables that are not used as arguments for a procedure are global within
the partition they are defined in. Therefore, they may be modified by any
procedure within the partition without being passed. While this may be legal,
it is not recommended. It is good programming practice to limit exchange of
variables between procecures to explicitly defined arguments. Wholesale use
of global variables will only make your programs harder to debug. A good
example is a procedure that was entered and debugged in the same partition as

237

Cromemeo 68000 Structured Basie Instruction Manual
20. Procedures

the calling program. When the procedure is later called from a library, it will
be loaded in a different partition. Variables which were previously global are
not now, and can be a source of mysterious bugs.

For this reason, it is recommended that you: 1) Make a list of variables used
in each procedure and not reuse them elsewhere, and 2) Set aside a group of
variable names to be used as serateh variables (for instance, all variable names
starting with X), These scrateh variables may be used freely within any
procedure, but should not be relied upon to have the same value the next time
the procedure is called. The only variable that should be used as input to a
procedure should be one that is passed through CALL arguments.

Matrix and string variables are handled differently. By specifying a matrix or
string variable as an argument, you declare it common between the procedure
and the calling program. It is the same variable even though it may be referred
to by a different name in the procedure than it was in the calling program.
Therefore, any value assigned to it by a procedure will be retained when control
returns to the calling program.

The use of COMMON in this Basic is different from the COMMON in Fortran or
most Basies. Using the COMMON instruction means that all variables explicitly
defined before its occurrence are not cleared from memory when another program
is Loaded and Run. It does not mean that those variables are available to other
partitions. BEGINCOMMON and ENDCOMMON are used to define varisbles that
are available to all partitions. Therefore, the COMMOCN instruction is used to
preserve variables between program overlays.

COMMON string and matrix variables defined in the area between BEGINCOMMON
and ENDCOMMON (referred herein as the common area), may be referenced or
altered in any other partition as long as they are defined in a common area in
that other partition. Due to the method of storing the common variables, it is
important that the definitions of the variables are exactly the same in the main
program and the procedure,

USING LIBRARIES

A library is a collection of SAVEd basic procedures. To build a library of
procedures, each procedure or group of procedures must be SAVEd on the same
disk as the library. All procedures that were SAVEd at the same time (are in
the same program file) constitute a library module. If the modules you want
are not on the correct disk, copy them using the Xfer utility.

Load Sbasic and run LIBBUILD. You must first create the library, then add
module files to the library. LIBBUILD creates an index of the library modules
and stores it on the disk. The index and the program modules together make up
the library.

When you want to call modules in a library, specify the library by the form
LIBRARY svar where svar is a quoted literal or a string variable containing
the name of the library file given when it was created. Once the library has
been specified, any module in that library may be loaded by CALLing any

238

Cromemeo 68000 Struetured Basice Instruetion Manual
20. Procedures

procedure in that module. When a procedure is loaded, all other procedures in
the same module are loaded at the same time, Therefore, saving unrelated
procedures in the same module will create unnecessary overhead at run time.

Once a library has been specified, it is considered the current library, and you
may call any procedure in it. To load a module from another library, it is
necessary to specify that library as the current library. Once a procedure is
loaded, it remains in memory until either SCR, CLEAR, or Bye is executed, or
it is overlaid by another procedure.

A caution to users who have defined more file channels than the standard 8.
File channel ¢ is reserved for the library. Use of file 9 and a library in the same
program will result in an Error 131 -- File Already Open message.

Anotber caution. Do not delete the SAVEA files of procedures that have been
put into a library because there is no easy way of getting them out again. This
causes problems when a change is necessary to a procedure in the library. If
this has happened to you, there is a method for retrieving the module. Clear
memory using the SCR instruction. Using command mode, select the library that
the procedure is in. Again using command mode, CALL the procedure. Enter
partition 7 (where the module will be loaded into) and then SAVE or LIST the
procedure to the disk.

Repeat this process for each library module that you want to retrieve,
remembering to SCR memory each time. After the changes are made, delete the
modules from the library (this doesn't affect the files you just saved) and add
the ehanged versions.

EXAMPLE PROGRAMS

It is recommended that you enter and run the following sample programs yourself,
The REM instructions are there to help you understand the programs, but you
don't need to enter them. It would also be a good idea for you to experiment
with and expand on the programs. Try running procedures in different partitions,
saving the procedure in the first program in a library and calling it, ete.

The first program demonstrates the passing of variables to a procedure. Notice
that when the value of Index is printed after the return from the procedure, it
is not the same as the value that was assigned to Index in the procedure.

Example 1

10 Rem Procedure demonstration - Program 1

20 Rem Demonstrates locality of variables between procedures
30 Rem and the root program.

50 Dim String$(20),Array(9)

60 Rem

70 Rem Assign a value to String$
90 String$="Initial value™
106 Rem

239

Cromemco 68000 Structured Basie Instruetion Manual
20. Procedures

110 Rem Assign values to each element of Array

130 For Index=1 To 9 : Array(Index)=Index : Next Index
140 Rem

150 Rem Note that Index now has a value of 10

17¢ Rem Print initial values of variables.,

190 @"Initial value of String$ = ";String$

200 For X=1 To 9 : @ Array(X); : Next X : @
210 @"Initial value of Index = ";Index

220 Rem

230 Rem Call the procedure .Proc'l

250 Call .Proe'l (String$,Mat A,Index)

260 Rem
270 Rem Print the variables that were initialized earlier
280 Rem and then passed to the procedure.

300 @ : @"End value of String$ = ";String$
310 For X=1 To 9 : @ Array(X); : Next X : @
320 @"End value of Index = ":;Index

330 Rem

340 Rem Note that Index still has value of 10 (not passed back).
360 End :

380 Rem Procedure will modify all values and then print them.
390 Rem Note that Index is *not* passed back to main program.

410 Procedure .Proc'l (X$,Mat A,Index)

420 X $=".00ec0s0000000000000’

430 For X=1 To 9 : A(X)=10-X : Next X

440 Index=123456789.0

450 @ : @ Tab(10);"Value of String$ inside procedure = ";X$
460 @ Tab(10); : For X=1 To 9 : @ A(X); : Next X : @
470 @ Tab(10);"Value of Index inside procedure = ";Index
480 Endproc

After you have run the first program successfully, modify lines 250 and 480 like
this:

250 Call .Proe'l (String$,Mat A,Index;Index)
480 Endproc (Index)

Run the program and note the final value of Index: it has been passed back
from the procedure.

The second program demonstrates how a procedure can call itself. Notice that
when the procedure returns to the procedure that called it, the value of X is
the same as before the call, even though the first level executed itself 4 more
times.

240

Cromemeo 68000 Structured Basic Instruction Manual
20. Procedures .

Example 2

10 Rem Recursive procedure demonstration

20 Rem This procedure will call itself and print

30 Rem level or nesting going in and out.

40 Rem

50 X=0 : @"Main level”

60 Call .Recursive'procedure (X)

70 @"Main level™

80 End

100 Procedure .Recursive'procedure (Number)

110 @ Tab(Number*5);"Just entered level #";Number

120 If Number<5 Then Do

130 Call .Recursive'procedure (Number+l)

140 Enddo

150 @ Tab(Number*5);"Now leaving level #";Number
Endproe

160

The third set of programs should be entered and then saved separately under
the names Root, One, Two, and Three. Once they are all saved on disk, create
the library testlib and add the programs One, Two, and Three to it, using
LIBBUILD. List the library directory to be sure they are all in the library.

Then run Root.

Root

5 Rem Root program

10 Dim String1$(99)

20 - Eem

25 Rem Assign an initial value to Stringl$

30 Stringl1$="This is message number zero "

40 Rem

45 Rem Identify Basic library to be searched for procedures.
50 Library"Testlib"

60 @"main"

70 Rem Call procedures to demonstrate nesting of procedures
75 Rem and loading from a library.

80 Call .One (Stringl$)

90 @"main"

99 End

241

Cromemeo 68000 Structured Basie Instruetion Manual
20, Procedures

One

100 Rem Library procedure one
110 Procedure .One (X$)

120 @ Tab(5);"Begin one"

130 @ Tab(5);X$

140 X$="Message from procedure one"
150 Call .Two (X$)

160 @ Tab(5);X$

170 @ Tab(5);"End one"

180 Endproc

Two

200 Rem Library procedure two
210 Procedure .Two (X$)

220 @ Tab(10);"Begin two"

230 @ Tab(10);X$

240 X$="Message from procedure two"
250 Call .Three (X$)

260 @ Tab(10);X$

270 @ Tab(10);"End two"

280 Endproc

Three

300 Rem Library procedure three
310 Procedure .Three (X$)

320 @ Tab(15);"Begin three"

330 @ Tab(15);X$

340 X$="Message from procedure three"
350 Endproc

242

Cromemeco 68000 Struetured Basie Instruction Manual
20. Procedures

program: Library Builder

format: Run "LIBBUILD"

The LIBBUILD program allows the user to create and modify a Procedure
Library. LIBBUILD will prompt the user for the necessary file references.

Note:

1. A Library may be composed of many different Modules or just one SAVE
file. The LIBBUILD Program is required to group a number of different
SAVE files into a single Library which can automatically be searched for
a needed Procedure. All files requested by the LIBrary BUILDer must
be SAVEd Basic files. Each file (or Module) may contein one or more
Procedures.

A CALL to a Procedure which is in the Current Library will cause all -
Procedures in the same Module (SAVE file) to be loaded into one Partition.
If only one Procedure is to be loaded into each Partition, then only one
Procedure may be SAVED at a time. This will ensure that there is only
one Procedure in each Module and therefore only one Procedure in each
Partition,

Example:

As an example of creating and building a LIBRARY, let us assume that we have
a program which consists of a main program, two Procedures (one of which
usually calls the other several times in succession), and three larger Procedures
(no two of which need to be in memory at the same time). The two smaller
Procedures are named .AA and .BB while the larger ones are .XX, .YY, and .ZZ.

While in Basie, ENTER the two Procedures .AA and .BB into the User Area. Then
issue a SAVE command. We will call this SAVE file MOD1. Then, in turn, ENTER
and SAVE the three large Procedures. These SAVE files will be named MOD2,
MOD3, and MOD4.

Next, LOAD and RUN the LIBBUILD program (supplied on the disk with
Cromemeo Struetured Basie.)

The first selection from the program menu must be C for Create Procedure
Library. The name of the Library may be any legal file name.

Continue to follow the prompts of LIBBUILD and Add the four SAVE files to the
Library which was just created.

If the Library name is specified in a LIBRARY instruetion in a Basic program,

a CALL tc any of the four Procedures will automatically load the Procedure into
the highest numbered available Partition (refer to the CALL instruction.)

243

Cromemee 68000 Structured Basie Instruetion Manual
20, Procedures

instruction: Procedure Call

format : [Ln] [CALL] .prname [(parsetl; parset2)]

where:

Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

.prname is a procedure name
parsetl is an optional set of one or more actual parameters to
be passed to the called PROCEDURE. These parameters
may include one or more of the following:
mvar an implicitly or explicitly DIMensioned cne, two,
or three DIMensional matrix. In this list the name
of the matrix must be preceded by the word MAT.
svar a string variable.
aexp an arithmetic expression, variable, or constant.
parset? is an optional set of one or more return parameters whose

values are received from the called PROCEDURE. Parset?
is composed of arithmetic variables only.

The CALL instruetion transfers control to a PROCEDURE.

Motes:

1.

4#

Parsetl is composed of variables which are to be transferred to the
PROCEDURE. This list must mateh the list in the PROCEDURE definition
(refer to the PROCEDURE instruction).

Parset 2 contains return variables. This list must mateh the list in the
ENDPROC or EXITPROC instruction (refer to the ENDPROC and EXITPROC
instructions).

The semicolon (;) is part of parset2. It must precede parset2 but is not
to be included if parset2 is not present.

Implementation of Procedure Library search:

When a PROCEDURE is referenced by a Basic pregram, the following
locations will be searched until it is found:

1. the Current Partition,

2. all other Partitions, commencing with Partition zero.

244

Cromemeco 68000 Structured Basie Instruction Manual
20, Procedures

If the PROCEDURE is located in one of the Partitions, control will be
transferred to the PROCEDURE in that Partition. If 1 and 2 above are not
suceessful, the search will continue with:

3. the Current Library.

If the PROCEDURE is found within the Library, the Module containing the
PROCEDURE will be loaded into the highest numbered Available Partition.
An Available Partition is one which is neither manually nor automatically
locked. Manual locking is invoked by the use of the Loek instruetion.
Locking occurs automatically when nested calling of PROCEDUREs (in
other Partitions) takes place. When control is transferred out of a
Partition by a PROCEDURE CALL, that Partition is locked. When control
is transferred out of a Partition by an ENDPROC, ERRPROC, or EXITPROC
instruetion, that Partition is unlocked (assuming that no aective control
structures remain). :

If the search is not successful, an error will be generated.

5. The variables in parsetl are automatically declared as local to the CALLed
Procedure. This is advantageous when calling another Procedure within
the same Partition, or when a Procedure CALLs itself (a recursive
Procedure),

Example:

160 Rem Program to demonstrate the automatic
110 Rem local feature of a Procedure CALL.

120 Rem

130 Dim String'one$(15),String'two$(15)

140 String'one$="AAAAAAAAAAAAAAAA"

150 String'two$="BBEBBBBBBBBBBBBBB"

160 Print : Print String'one$: Print String'two$
170 Call .String'proc (String'one$)

180 Print : Print String'one$: Print String'two$
180 End

200 Rem

210 Rem

1000 Procedure .String'proc (String'two$)

1100 Print : Print String'one$: Print String'two$

1200 String'two$="CCCCCCCCCCCCCCCC"

1300 Print : Print String'one$: Print String'two$

1400 Endproc

1500 End

>>Run

AAAAAAANABLABALAAN

BBBBBBBBBBBBBBEB

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

245

Cromemee 68000 Structured Basie Instruction Manual
- 20. Procedures

CCCccceeeeceecccec
CCCcCcCceeeceeccece

ccceeeeceecceeccee
BBBEBBBBBBBBBBBB
*x%x19() Epdrks

The user may wish to refer to the Glossary while reading the following
explanation,

This example demonstrates that parameters which are received by Procedure
are local to that Procedure., In the main program, the string variables
String'one$ and String'two$ are DIMensioned, assigned values of 16 A's and 16
B's, and displayed for verification.

When .String'proe is CALlLed, String'one$ is passed to the Procedure in which
it is referred to as String'two$. This is a call by reference. This means that
during the execution of the Procedure the two string variables will be equivalent
to each other. The two strings are displayed again. String'one$ maintains its
value of A's because all variables which are not used as receiving parameters
in a Procedure are global within a Partition. String'two$ is local to the CALLed
procedure because it is a receiving parameter. As such, String'two$ received
the original value of String'one$ and now it also displays a value of A's.

The next instruction assigns a string of C's to String'two$. String'one$ takes
on this same value because the two string variables are equivalent tc each other
during the execution of the Procedure. The two strings are once again displayed
for verification.

Upon the termination of the Procedure (ENDPROC) and a return to the main
program, the two string variables are displayed a final time. String'one$ (global
throughout the Partition) maintains its latest value and contains all C's.
String'two$ (which was local to the Procedure) reverts to the value it had at
the time the Procedure was CALLed and contains all B's.

246

Cromemco 68000 Structured Basie Instruction Manual
20. Procedures

statement: Procedure Definition
format: Ln PROCEDURE .prname
Ln PROCEDURE .prname (parset-1)

where: ‘
Ln is a line number

.prname is a Procedure name
parsetl is an optional set of one or more formal parameters which
) are passed from the calling program. These parameters
may include one or more of the following:
mvar a one, two, or three DIMensional matrix whieh
is defined by the calling routine. In this list the
name of the matrix must be preceded by the word"
MAT.
svar a string variable,
avar an arithmetic variable.
The PROCEDURE definition names a PROCEDURE and provides an entry point
into the PROCEDURE.
Note:

1. Parset 1 contains receiving variables. These variables must mateh parsetl
in the corresponding Procedure CALL.

247

Cromemeo 68000 Structured Basie Instruetion Manual
20, Procedures -

statement: Procedure End
format: Ln ENDPROC
Ln ENDPROC (parset2)

where:
Ln is a line number

parset2 is an optional set of one or more actual return parameters
whose values are passed to the calling program. Parset?2
can contain arithmetic expressions, variables, and
constants.

The ENDPROC statement indicates a logical end of a PROCEDURE and returns
control to the calling program.

Note:

1. Parset2 contains expressions whose values are to be returned to the

calling program. These must match parset? in the corresponding Procedure
CALL.

248

Cromemeo 68000 Structured Basic Instruction Manual
20. Procedure_s

statement: Procedure Error End
format: Ln ERRPROC

where:
Ln is a line number

The ERRPROC statement returns control to the calling program in case of a user
trapped error. The statement removes all active control structures within the
current PROCEDURE and sets the Basic error flag before transferring control
to the calling program.

Notes:

1. The ERRPROC instruction is useful when an error is detected while one
or more WHILE, UNTIL, ete. control structures are pending in a called
PROCEDURE. A jump in program logic to an ERRPROC instruction will
cause the Basic error flag to be set, the run time stack to be serubbed
back to the PROCEDURE CALL, and control to be transferred to the calling
routine. '

2. This statement sets SYS(3) =251, SYS(3) stores the last error encountered
in the Basie program.

3. No parameters may be passed by the ERRPROC statement.

249

Cromemeo 68000 Structured Basice Instruetion Manual

20 . Procedures

statement:

format:

where:
Ln

parset2

Procedure Exit
Ln EXITPROC

Ln EXITPROC (parset2)

is a line number.

is an optional set of one or more actual return parameters
whose values are passed to the calling program. Parset?2
can contain arithmetic expressions, variables, and
constants.

The EXITPROC statement returns control to the calling program when it is not
possible for a normal End of Procedure (ENDPROC) to be executed. The
statement removes all active control structures within the current PROCEDURE
and transfers control to the calling program.

Notes:

1. Parset? contains expressions whose values are to be returned to the
calling program. These must mateh parset2 in the corresponding
PROCEDURE CALL.

2. The EXITPROC instruetion is useful when an error or other need for a
change in program logic is detected while one or more control structures
are pending in a called PROCEDURE. The execution of an EXITPROC
statement will cause the runtime stack to be serubbed back to the last
PROCEDURE CALL and control to be transferred to the calling program.

250

Cromemeco 68000 Structured Basic Instruction Manual
20. Procedures

instruetion: Clear Partition
format: [Ln] CLEAR aexp
[Ln] CLEAR .prname
where:
Ln is an optional line number. If Ln is ineluded, the
instruction is executed at run time. Otherwise it is

executed immediately.

aexp is an arithmetic expression, variable, or constant which
represents a partition number in the range 0-7.

.prname is the name of a procedure.

The CLEAR instruction parallels the SCRatch instruection, but affects only the
specified Partition, or the Partition containing the specified PROCEDURE.

Note:

1. The CLEAR instruction overrides the LOCK instruection.

251

Cromemeo 68000 Structured Basic Instruction Manual
20. Procedures

instruction: Select Procedure Library
format : [Ln] LIBRARY
[Ln] LIBRARY svar
where:)
Ln is an optional line number. If Ln is inecluded, the
instruetion is executed at run time. Otherwise it is

executed immediately.

svar is a string variable or string literal file reference.

When used with a file reference, the LIBRARY instruction causes the specified
file to become the Current LIBRARY.

If the file reference is omitted, the LIBRARY instruction closes the Current
LIBRARY.

Notes:

1. The Current LIBRARY is the file which will be searched if a requested
PROCEDURE is not current in one of the Partitions. Refer to the
PROCEDURE CALL instruction.

2 The LIBRARY can be closed by the LIBRARY, CLOSE, SCR, or BYE
instructions. If the CLOSE instruction is used, it must not specify a file
number (i.e., CLOSE all files).

3. The LIBRARY instruction automatically closes the Current LIBRARY prior
tc opening a new LIBRARY.

4. The LIBRARY may be a single SAVE file.

252

Cromemec 68000 Structured Basie Instruction Manual
20. Procedures

command: Use Partition
format: USE aexp
USE .prname
where:
aexp is an arithmetic expression, variable, or ccnstant which

represents a partition number in the range 0-7.

.prname is the name of a procedure.

If the USE instruction specifies a Partition number, that Partition will become
the Current Partition.

iIf a PROCEDURE name is specified, then the Partition containing that
PROCEDURE will become the Current Partition. If the specified PROCEDURE
is not located in one of the Partitions, the Current LIBRARY will be searched.
If the PROCEDURE is found within the LIBRARY, the Module containing the
procedure will be loaded into the highest numbered Avesilable Partition and this
will become the Current Partition.

Note:

1. The USE command allows the user to hand lecad and EDIT Modules.

253

Cromemeo 68000 Structured Basic Instrucetion Manual
20. Procedures

instruction: Loek Partition

format : [Ln] LOCK aexp
[Ln] LOCK .prname

where:)

Ln is an optional line number., If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

.prname is the name of a Procedure.

The LOCK instruction causes the specified Partition to become pot Available
for automatie Module loading. If the LOCK instruction specifies a single
PROCEDURE, the entire Partition containing that Module is LOCKed.

Mote:

1. The LOCK instruction overrides the automatic lock/unlock feature.

254

Cromemeo 68000 Structured Basic Instruetion Manual
20. Procedures -

instruction: Unlock Partition

format: [Ln] UNLOCK aexp
[Ln] UNLOCK .prname

where:

Ln is an optional line number. If Ln is included, the
instruetion is executed at run time. Otherwise it is
executed immediately.

.prname is the name of a procedure.

The UNLOCK instruction causes the specified Partition to become Available for
automatic Module loading. If the UNLOCK instruction specifies a single
PROCEDURE, the entire Partition containing that Module is UNLOCKed.

Note:

1. The UNLOCK instruction does not override the automatic Loeck feature.

255

Cromemeco 68000 Structured Basic Instruction Manual

256

Cromemeo 68000 Structured Basie Instruetion Manual
21. Program Security

Chapter 21
PROGRAM SECURITY
This chapter describes the instructions used to provide for program security
by preventing the listing of some or all of the program.
command: Delete Remark Statements
format: DELREM
DELREM L1
DELREM L1,

DELREM L1,L2

where:
L1 is an optional line number or line name.

If L1 is omitted, all lines of the program are processed.

If L1 is the only argument and there is no comma following
it, then L1 is the only line processed.

If L1 is the only argument and the comma is included,
L1 through the last line in the program are processed
by the command.

L2 is an optional line number or line name which indicates
the last line to be processed. If included, it must be
preceded by L1 and a comma.

The DELREM command DELetes all REMark statements whieh ocecur in the lines
specified by L1 and L2.

Notes:

1. The DELetion of REMark statements from a program will reduce the amount
of memory space needed to RUN it and disk space needed to store it.
However, it will have virtually no effect on the execution time of the
program.

257

Cromemeo 68000 Structured Basie Instruetion Manual
21. Program Security ‘

Because DELeted REMark statements are not recoverable, the following
procedure is recommended for the use of DELREM:

a. After a program has been debugged, LIST or SAVE a copy of the
program on a disk file before using DELREM.

b. Use DELREM to delete REMark statements.
c. SAVE a copy of the new, shorter version of the program in a different

file. The file extension NSV could be used to indicate No remarks,
SaVed file.

258

Cromemco 68000 Structured Basic Instruetion Manual
21. Program Security

command: Proteet Program Lines
format: NOLIST

NOLIST L1

NOLIST L1,

NOLIST Li,L2

where:
L1 is an optional line number or line name.

If L1 is omitted, all lines of the program are protected.

If L1 is the only argument and there is no comma following
it, then L1 is the only line protected.

If L1 is the only argument and the comma is included,
L1 through the last line in the program are protected
by the eommand.

L2 is an optional line number or line name which indicates
the last line to be protected. If included, it must be
preceded by L1 and a comma.

The NCLIST command allows the programmer the option of keeping part or all
of a Basic file confidential. After the execution of the NOLIST command, the
specified lines cannot be LISTed.

Notes:

1. Because NOLISTed lines can never be LISTed, the following procedure
is recommended for the use of NOLIST:

a. After a program has been debugged, Save or LIST a copy of the program
in a disk file before using NOLIST.

b. Use NOLIST to protect those parts of the program which are
confidential.

¢. SAVE a copy of the NOLISTed version of the program in a different file.
One could use the file name extension PUB to indicate that it is a
PUBIlic file.

2. This command protects only those lines present at the time the ecommand
is executed. If, after the NOLIST command has been executed new lines
are entered, they will not be protected from LISTing even if they replace
already NOLISTed lines.

259

Cromemeo 68000 Structured Basie Instruetion Manual

260

Cromemeo 68000 Structured Basice Instruetion Manual
22. Basie-KSAM

Chapter 22

BASIC-KSAM

Basic~-KSAM is the Keyed Sequential Access Method file management system,
which is a part of Cromemeco 32K Structured Basie.

It was developed primarily for use in applications where large files are involved
and fast random access is necessary. Such applications include, but are not
limited to, inventory control, reservation systems, library systems, acccunts
receivable, and bill of materials processing.

Files are always saccessed dynamically, i.e., sequential and random access
instructions can be intermixed freely. Records are identified by a unique user
defined data field within the record called the Primary Key. Additionally any
number of fields may be designated as Alternate Keys (sometimes called
Secondary Keys) for retrieval purposes. Examples of keys are: part numbers
for inventory control, account numbers for billing systems, and customer names
for mailing list applications.

Records can be accessed randomly by their Primary Key or by any of their
Alternate Keys,

In addition, Basic-KSAM supports sequential movement through the file (forward,
backward and static), and random access by partial key or relative record
number.

Space is automatically allocated to the file when records are added. Any number
of files can be processed simultaneously provided that sufficient memory for
buffer storage is available.

If a diskette becomes full during processing, the user program may instruct
Basic-KSAM to overflow automatically to additional disks without program
interruption.

Basie~KSAM utilizes a look-aside buffering technique which eliminates
unnecessary disk accesses thereby increasing retrieval speed and minimizing
head movement, as well as drive and media wear.

A number of utility programs (KSAMUT) and Numerie Sorting Conversion
functions (IKEY$, FKEY$, KEYI, and KEYF) are also provided as part of
Basic-KSAM.

261

Cromemeo 63000 Structured Basie Instruction Manual
22. Basic-KSAM

LOGICAL STRUCTURE
Basic-KSAM files consist of three portions:

a. The data set
b. The key set
¢. The header

Data Set

The data set contains the actual data records created by the user. These
records are arranged in ascending collating sequence on the basis of their
Primary Keys. As records are added or deleted, Basic-KSAM Kkeeps the entire
file in this sequence.

Records are organized in Blocks (Data Blocks) which are scattered throughout
the available disk space. The number of records per Data Block is derived by
dividing the block length by the record length. Logical records may not span
Data Blocks so that only an integral number of records may be contained in any
one Block. Any remaining bytes are left unused.

Basie~-KSAM allocates space to a file in multiples of a page (256 bytes). Each
Data Block normally occupies four pages (1K bytes).

Key Set

The key set contains various pointers to the Data Blocks and it is maintained
by Basic-KSAM.

Header

The header contains information about the structure and contents of the file
such as record length, key length, and key displacement. It is created from
information supplied by the user at file~creation time and maintained by
Basie~KSAM. It occupies 1K bytes.

PHYSICAL STRUCTURE

A Basie-KSAM file is organized physically as a collection of one or mcre disk
files. These files may reside on one or more volumes (disks). Each file has its
own name which is specified at file creation time. The purpose of having more
than one file name associated with a Basic~-KSAM file is the creation of a
multi-volume file.

A Basic-KSAM file may extend to more than one disk, The user specifies the
file names to be included in the Basic-KSAM file at file opening, and can
increment this number at any time during processing by use of the KADDVOL
instruction.

262

Cromemco 68000 Structured Basie Instruetion Manual
22. Basic~KSAM

All volumes of a given Basic-KSAM file must be mounted and on-line any time
the file is accessed.

Logieal Records and Keys

Logical records make up the largest portion of a Basic-KSAM file. Records are
added to Data Files by the user, and to Alternate Key files by Basie-KSAM at
the request of the user.

All records of a given Data File must be of the same length. Data File record
length is user defined and may vary from one byte to one Data Bloek.

Alternate Key file record length is determined by the eriteria outlined in the
following section.

Records may not span Data Blocks. This implies that the minimum number of
records in a Block is one. A Data Block may not span two volumes but Bloeks
of the same file may be distributed over several volumes (diskettes). The
maximum number of reccrds in a Block is derived by dividing the Block length
(default value of 1024 bytes) by the record length, and taking the highest integer
which is less than or equal to the quotient.

Unused Bloek Space

When more than one record can fit in a Data Block, the user may specify at
file-creation time that a portion of the block be reserved for later addition of
records. Although this may waste space on the disk it improves processing
speed greatly in those applications where frequent additions to the file are
involved.

Keys

Any field within the record can be used as a means of randomly accessing the
record. A field used for that purpose is called a Key. Key fields may be up to
250 bytes in length.

All Keys are stored by Basic-KSAM as strings. If the user needs a numeric
variable (Integer, Long or Short Floating Point) as a Key, the Basic-KSAM
Numeric Sorting Conversion Instructions (IKEY$, FKEY$, KEYI and KEYF) must
be used. These will convert numbers to strings which may be sorted by
Basic~-KSAM and will also convert these strings back into numeric variables
which can be used by Basic. Refer to Chapter 18 for a description of these
instructions.

Primary Key

One of the record keys must contain a value which is unique for that record and
is used to identify and distinguish it from all other records of the same file.
This key is called the Primary Key and is declared as such by the user when
creating the file. The length and displacement of the Primary Key must be the
same for all records of the same file.

263

Cromemeo 68000 Structured Basie Instruction Manual
22, Basie~-KSAM

Alternate Keys

All other keys are considered to be Alternate Keys and need not be unique., The
length and displacement of an Alternate Key must also be the same for all
records of the same file.

Examples of Primary Keys are account numbers, part numbers, and Social
Security numbers. Examples of Alternate Keys are zip codes and surnames.

Alternate Keys are used to create pointer (index) files called Alternate Key or
Inversion Files. These files provide a means of accessing records by the
contents of a field other than the Primary Key.

Key Length

The Primary Key may be from one to 250 bytes long. If Alternate Keys are also
used, the sum of the longest Alternate Key plus the Primary Key may not exceed
250 bytes.

Record Retrieval

For random retrieval the user normally specifies the key of the desired record
when requesting service from Basie-KSAM.

For example if a customer record must be retrieved and the Primary Key consists
of the customer account number, that number must be supplied if random access
is desired. Of course, if sequential retrieval is acceptable the file can be read
sequentially (forward or backward) until the desired record is found.

The relative position of a record within the file may also be used for retrieval.
This is a number ranging from 0 (for the first record) to the actual number of
records in the file minus 1. Once a record has been read in this fashion, it can
be updated or deleted as desired.

The user accessing records by relative position must note that the relative
position of records will change as records are added or deleted.

ALTERNATE KEY FILES

An Alternate Key is a field in the record which may be used as an alternate
means of retrieving the record.

Any and all fields in the record may be designated as Alternate Keys at any time
after the file is created. The difference between the Primary Key and any
Alternate Key is that Alternate Key values need not be unique. For example
if a file of students exists, the Primary Key may be the student's social security
number while the major field of study may be used as an Alternate Key. Since
more than one student may have the same major, the Alternate Key value will
not be unique but the social security number (Primary Key) will be. Student

264

Cromemec 68000 Struetured Basie Instruction Manual
22. Basie~-KSAM

records may then be accessed in order of their major rather than their sccial
security number, thus eliminating the need for sorting the file in major sequence.

An Alternate Key file (inversion file) is a Basic~KSAM file whose records are
arranged in ascending order by the value of the Alternate Key field and contain
pointers to corresponding records in the Primary or Data File., Any number of
Alternate Files may be created for the same Data file, each corresponding to
a different Alternate Key field of the Data file record. An Alternate Key file
record is an inversion of the corresponding data file record according to the
specified Alternate Key. Since Alternste Key files are Basic-KSAM files they
can also be read independently of their associated Data file for inquiry and
report purposes. The user cannot, however, add, delete, or update records in
the Alternate Key file independently using the KADD, KPUT, KDEL, and
KUPDATE instructions. To add or delete records from an Alternate Key file the
appropriate Alternate Key instructions must be used while both the Data and
Alternate Key files are open.

There is no restriction that there be a one-to-one correspondence between the
Data file records and their corresponding records in the Alternate Key file.
Adding or deleting Alternate Key file records is not done automatically upon
adding or deleting a Data file record, but is left up to the user. One may
therefore create Alternate Key records for only a part of the total Data file.
Similarly a Data file record may be deleted or altered without its corresponding
Alternate Key record being affected. If the user wishes to maintain a
one-to-one correspondence then a record must be added to every Alternate Key
file after a new Data file record is added, and deleted before the Data file record
is deleted, If a Data file record is to be modified s¢ that the value of an
Alternate Key field will be echanged, and the user wishes to maintain a
one~to~one correspondence, the affected Alternate Key file record must be
deleted first, then added again after the Data file record is updated. This will
insure that the latest value of the Alternate Key field is stored in the Alternate
Key file and that the Data file record can still be accessed through the Alternate
Key. If this is not done, as a result of the selective addition and deletion of
Alternate Key file records, it is possible that these records may be left stranded
in the sense that they are still part of the Alternate Key file but they cannot
be used to access any Primary Data file records. This should be avoided as it
defeats the purpose of the Alternate Key file.

Alternate Key file records are made up of two fields. The first field contains
the value of the Alternate Key field in the corresponding Primary Data file
record. Therefore the length of this field equals the length of the corresponding
Alternate Key field in the Data file record. The second field contsins the
Primary Key of the corresponding Data file record and is equal in length to the
Primary Key.

The total length of the Alternate Key File record is the sum of the lengths of
the Alternate Key and Primary Key fields.,

In the example above, if the Social Security field (Primary Key) of the Data file

record is 9 bytes and the major code (Alternate Key) is 2 bytes, each record in
the Alternate Key file MAJOR will be 11 bytes long.

265

" Cromemeco 68000 Structured Basice Instruction Manual
224 BasichSAM

Since Alternate Key files are Basic-KSAM files, they must also possess their
unique Primary Key. Therefore the entire Alternate Key File record constitutes
the Primary (and only) Key of the Alternate Key file. Since the Primary Key
of the Data file record is unique, the Primary Key of the Alternate Key file is
also unique.

Taking these facts into consideration the user is never required to supply the
record length, Primary Key length and Primary Key displacement when creating
an Alternate Key file. All that is needed is the length and displacement in the
Data file record of the field to be used as an Alternate Key. The file number
of an open Data file is passed to Basic-KSAM and these quantities are calculated
as follows:

RECORD LENGTH OF ALTERNATE KEY FILE =
LENGTH OF ALTERNATE KEY FIELD +
LENGTH OF PRIMARY KEY OF DATA FILE RECORD

PRIMARY KEY LENGTH OF ALTERNATE KEY =
RECORD LENGTH OF ALTERNATE KEY

PRIMARY KEY DISPLACEMENT OF ALTERNATE KEY FILE = 0

Quantitative inquiries about the Data file can be made without ever accessing
it. If the user keeps a one-to-one correspondence between the Data file and
all of its Alternate Key files, questions such as:

How many students are enrolled in Engineering?

can be answered quickly without having to access the Data file. After the Data
file has been opened, the Alternate Key file MAJOR is opened, and all records
corresponding to major = Engineering are counted. Since the Alternate Key File
records are generally much smaller than the corresponding Date file records,
Alternate Key files can be scanned very quickly.

Temporary Alternate Key files can be created instead of sorting for report
generation purposes. These files can be deleted immediately after the desired
report is produced. With a little effort the user can implement inquiry programs
to quickly answer questions such as:

How many AMERICAN MALE students are enrolled in ENGINEERING?

The words in capitals correspond to fields in the Data file record which can be
used as Alternate Keys.

Remembering that the Alternate Key file record contains the Primary Key of the
Data file record corresponding to it, the Data file can always be accessed
directly (without the use of Alternate Key instructions) by using information
derived from Alternate Key Files.

Note that Basic~-KSAM requires that the Primary File be opened in order to open
the Alternate Key File. The Primary file need not be accessed.

266

Cromemeo 68000 Structured Basic Instruetion Manual
22. Basie~KSAM

THE CURRENT RECORD POINTER (CRP)

At all times Basic-KSAM maintains a pointer to the current record. Special CRP
cases are the beginning of file (BOF) and end of file (EOF). All possible
positions of the CRP are described in detail below:

1ll

2.

Any successful read, add or update operstion will cause the CRP (current
record pointer) to point to the successfully processed record.

A BOF (beginning of file) condition occurs whenever the CRP points to the
dummy record in front of the first logical record of the file. This is the
case immediately after the file is opened. Reading backwards
(sequentially) past the first record will also set this condition.

When the EOF (end of file) is reached the CRP (current record pointer)
points to the dummy record beyond the last record of the file. This
condition will occur when reading sequentially forward past the last
record, or when a random instruetion is given with a key value greater than
any key on file,

A sueccessful deletion will cause the CRP to point to the previous record
(in the collating sequence of the Primary Keys) or to the BOF if the first
record of the file was deleted.

An unsuccessful read, update or delete operation will position the CRP
at the first record which has a key value greater than the one specified
in the operation. The CRP will be left peointing to the EOF if the specified
key is larger than any on file or if sequential reading past the last logical
record was attempted.

An unsuccessful add operation will position the CRP at a record in the
file which has the same key as the one specified by the user. (Remember
that Primary Keys must be unique so that trying to add a record with a key
that already exists will cause an error.) An exception to this rule is the
case of an add which was unsuccessful because there was no more room
available on the disk. In this instance the CRP points as specified in
paragraph E.

If the CRP is positioned at the BOF and a read previous or read current
operation is attempted, the CRP is unchanged. This is also true if the CRP
is positioned at ECF and a read current or read next is attempted.

If an 1I/0O error occurs during processing the contents of the CRP is
unreliable.

When in doubt as to the position of the CRP, issue a Read Current Record,
Primary File (KGETCUR) or retrieve key (KRETRIEVE) instruetion. This
will return either the current record or a BOF/EQF/File Empty error
message.

Cromemco 68000 Structured Basic Instruction Manual
22. Basie~-KSAM

SAMPLE BASIC-KSAM FILE HANDLING PROGRAM

This is a Struetured Basic Program which demonstrates some Basic-KSAM file
building and accessing techniques.

200 Rem Program to demonstrate the establishment and use
300 Rem of Basic-KSAM Primary Data and Alternate Key files.
400 Rem

500 Rem

600 Dim Supplier$(6),Part$(0),Class$(0)

706 Rem create and open Primary Data File

800 Rem Primary File Layout:

900 Rem Primary Key- Part Number
1060 Rem bytes 1-7 Supplier Name
1100 Rem 8 Shipping Class

12000 Kcreate\8,1\"Primary"

1300 Kopen\1\"Primary"

1400 Rem

1500 Rem create and open two Alternate Key Files
1600 Kaltcreate\l,7\"Supplier”

1706 Kaltopen\2,1\"Supplier"

1800 Kaltcreate\l,1,7\"Class"

1900 Kaltopen\3,1\"Class"

2000 Rem

2100 Rem

2200 Read Part$,Supplier$,Class$

2300 While Part$#"0"

2400 Rem build Primary Data file

2500 Kadd\1,Part\Supplier,Class$

2600 Rem put corresponding records in two Alternate
2700 Rem Key files

2800 Kaltadd\2\

2900 Kaltadd\3\

3000 Read Part$,Supplier$,Class$

3100 Endwhile

3200 Rem close files, data base is complete

3300 Kelose\l\ : Kelose\Z\ : Kelose\3\

3400 Rem

3500 Rem

3600 Rem Open files for query

3700 Kopen\1\"Primary"

3800 Kaltopen\3,1\"Class"

3900 Rem error indicates that there are nc more

4000 Rem records with the specified Alternate Key
4100 On Error Goto Done

4200 Rem

4300 Rem get first occurrence in Primary Data file of
4400 Rem record with specified Alternate Key

4500 Kaltfirst\3,"1"\Supplier$,Class$

4600 Rem retrieve Primary Key

4700 Kretrieve\l\Part$

4800 Print Part$,Supplier$,Class$

4900 Rem loop through successive records with specified

268

Cromemeo 68000 Structured Basie Instruction Manual
22. Basie~-KSAM

3000 Rem Alternate Key

2100 *Loop : Kaltfwd\3\Supplier$,Class$

5200 Kretrieve\l\Part$

5300 Print Part$,Supplier$,Class$

5400 Goto Loop

5500 *Done : Kelose\l\ : Keclose\3\

5600 Rem erase files so the program may be run again
5700 Erase"Primary" : Erase"Supplier" : Erase"Class"
5800 End

5900 Rem

10000 Data"9","Fred T.","1"

16001 Data"4","Mary Q.","3"

106002 Data™3","Fred T.","2"

10003 Data"7","Jane S,","1"

10004 Data"2","Jane S.","3"

10005 Data"1","Fred T.","2"

10006 Data"()“,“()","ﬂ"

>>Run
7 Jane S. 1
9 Fred T. 1

*%%5800 END***

>

Line 600 DIMensions string variables. A variable which is DIMensioned as 0
contains one element (numbered 0).

Lines 1200 and 1300 create and open the Primary Data file (named PRIMARY)
with a record length of 8 and a Key length of 1. Channel number 1 is used for
this file.

Lines 1600-1900 create and open two Alternate Key files. The first (SUPPLIER)
relates the supplier name (Alternate Key) to the part number (Primary Key).
SUPPLIER uses the file which was opened on channel 1 (PRIMARY) as the
Primary Key file and has a Key length of 7 with a displacement (by default) of

o

Note that the displacement does not include the Primary Key. The second
Alternate Key file (CLASS) relates the shipping class (Alternate Key) to the
part number (Primary Key). CLASS also uses the file which was opened on
channel 1 (PRIMARY) as the Primary Key file and has a Key length of 1 with a
displacement of 7. .

Lines 2200-3100 READ the data from the DATA statements and build the Primary

Data and two Alternate Key files. Notice that in line 2500 the Primary Key is
not part of the variable list.

269

Cromemeco 68000 Structured Basie Instruction Manual
22. Basic-KSAM

Line 4500 searches the Alternate Key file CLASS for the first record containing
a shipping class of 1. If one is found, the Primary Data file (PRIMARY) is
searched for the corresponding record. The class and supplier name are then
read from the Primary File. Notice that the Primary Key has not been returned.
The next instruction (line 4700) retrieves the current Primary Key.

The KALTFWD instruction searches for additional records in the Alternate Key
file whieh have the same Alternate Key value.

When no more records with the same Alternate Key value exist, an error is
generated, trapped by line 4100, and control is passed to line 5500 (line label
Done).

The techniques used in this example can be drawn upon and extended to provide
the user with examples of the use of all of the Basic~-KSAM instructions. As
will become self evident, the power of these instruetions will allow the user
to accomplish many things which were heretofore impossible in Basic.

BASIC~-KSAM INSTRUCTIONS
Basic-KSAM instructions are logically divided into five groups:
A, Instructions which treat the entire file as a unit.

1. Create Primary Data File

2. Create Alternate Key File
3. Close File

4, Cpen Primary File

5. Open Alternate File

6. Add Volume to Existing File

B. Sequential access in Primary Key sequence.

1. Read Previous Record, Primary File
2. Read Next Record, Primary File

C. Random access by Primary Key.

1. Read Random Record, Primary File
2. Read Approximate, Primary File
3. Update Record, Primary File

4. Delete Record, Primary File

5. Read Nth Record, Primary File

6. Add Record, Primary File

7. Load Record, Primary File

D. Current record access
1. Read Current Record, Primary File
2. Retrieve Primary Key, Current Record
3. Read Fields, Current Record
4. Write Fields, Current Record

270

Cromemeo 68000 Struetured Basic Instruetion Manual
22. Basic-KSAM

E. Alternate Key instruections.

- Read Primary Record by Current Alternate Key

. Bead First Primary Record by Specified Alternate Key
Read Next Primary Record by Current Alternate Key
. Verify Alternate Record

» Add Record, Alternate File

. Delete Record, Alternate File

DO QO DD

Instruetions in group A, with the exception of the Close instruction, expect the
file to be closed. If it is not, an Invalid Request error will occeur. The Close
instruction expects the file to be open.

As was mentioned earlier, it is possible that at a certain point in time the file
may be devoid of data records. This will happen when the only record on the
file is deleted or when the file has just been created. If an Empty File is e¢losed
the only acceptable instructions are KOPEN and KALTOPEN. If the Empty File
is open the only acceptable instructions are LOAD, ADD, and CLOSE. All other
requests will return an EMPTY-FILE error.

When the file becomes empty it does not disappear. The file remains open until
closed by the user (KCLOSE).

Since 1/0 errors are possible with every instruction they will not be explicitly
mentioned where error return codes are diseussed. This is also true for all
system related errors such as File Not Found, ete. Note that the Invalid Request
code can be returned by any instruction.

Refer also to Chapter 18, Machine Level Instructions, KSAM Numerie Sorting

Conversions. These instructions are necessary to create key fields from numeric
variables.

Summary of Instructions

INSTRUCTION DESCRIPTION

Add Record, Add a record to a

Primary File Data file in the proper sequence by Primary Key.

Add Record, Add a record to an

Alternate File Alternate Key file corresponding to the current
Primary Data file record.

Add Volume to Add a volume to an

Existing File existing file.

Close File Close a file.

271

Create Primary
Data File

Create Alternate
Key File

Delete Record,
Primary File

Delete Record,
Alternate File

L.oad Record,
Primary File

Open Alternate File

Open Primary File

Read Previous Record,
Primary File

Read Current Record,
Primary File

Read Fieids,
Current Record

Read Next Record,
Primary File

Read Random Reecord,
Primary File

Read Approximate,
Primary File

Read Nth Record,
Primary File

Cromemeco 68000 Structured Basie Instruetion Manual
22. Basie~-KSAM

Initialize and format
a Basic-KSAM Primary Data file.

Initialize and format
a Basie-KSAM Alternate Key file.

Delete a record from
a Primary Data file.

Delete the Alternate
Key file record (if any) corresponding to the
current Primary Data file record.

Load (add) a record

to a Primary Data file and attempt to preserve
the unused space in the block. Usually used
when building the file.

Open an Alternate Key file for further
processing.

Open a Primary Data file for further processing.

Read the previous
Primary File record in the collating sequence
of the Primary Keys.

Read the current
record from the Primary Data file.

Read data from
the current record from the Primary Data file.

Read the next
Primary file record in the collating sequence
of the Primary Keys.

Read a record

randomly from the Primary Data file by Primary
Key.

Read the first

record in the Primary Data file whose Primary
Key is greater than or equal to a given key.

Read the Nth record
of the Primary Data file.

272

Read Primary Record

By Current Alternate Key

Read First Primary
Record By Specified
Alternate Key

Read Next Primary
Record, Current
Alternate Key

Retrieve Primary Key,
Current Record

Update Record,
Primary File

Verify Alternate
Record

Write Fields,
Current RBecord

File Instructions

Cromemec 68000 Structured Basie Instrucetion Manual
22 Basic-KSAM

Read the Primary
Data file record corresponding to the current
Alternate record.,

Read the first

Primary Data file

record which contains a given Alternate Key
value.

Read the next

Primary Data file

record which contains the same Alternate Key
value as the current Alternate Key file record.

Read the Primary Key
of the current record.

Replace a given
record in a Primary Data file.

Read the Alternate

Key File record (if any) corresponding to the
current Primary Data File record. Check that
the contents of the Alternate record correspond
to the Primary record.

Write data to
the current record in the Primary Data File,

Before a file can be accessed it must be created. This is the funetion of the
KCREATE (KALTCREATE) instruction. This instruetion does not actually add

any data records to the file (this is done through the KADD (KALTADD), KPUT,
and KLOAD instruction), it only pre-formats certain fixed areas and allocates
initial disk space to the file.

After the file is created it exists in an empty state until a record is written to
it Note thet a file may be created in one program but actually be built in
another. After the KCREATE (KALTCREATE) instruction is processed
successfully, the file is automatically closed by Basic-KSAM.

Before an existing file can be processed, it must be opened through the KOPEN
(KALTOPEN) instruction. An Invalid Request will be returned if any request
is issued to an unopened file.

After processing of a file is completed, the file must be closed by the KCLOSE
instruetion. It is very important to remember to close a file if records were
added, deleted or updated.

Refer alsc to the Alternate Key Instructions section.

273

Cromemeo 68000 Structured Basice Instruetion Manual
22. Basic~KSAM

instruction:

format:

where:

Ln

prl

pkl
spe

file~-ref

Create Primary Data File

[Ln] KCREATE\prl,pkl\file-ref-1,file-ref-2,...
[Ln] RCREATE\prl1,pkl,spe\file-ref-1,file-ref-2,...
is an optional line number. If Ln is ineluded, the
instruetion is executed at run time. Otherwise it is

executed immediately.

Primary Data file record length (not including Primary
Key)

Primary Key Length (maximum of 250 bytes)
unused space per bloek

is one or more file references to the Primary Data File.
This is a Cromix path name composed of optional
directory names and a file name separated by slashes.
The file references may be string variables or string
literals (enclosed in quotation marks.)

The KCREATE instruetion will initialize and format one or more Basic-KSAM

files.

Notes:

10

Errors whieh may be returned:

Error

167
168
169

Error Result:

Meaning

Invalid Request

Invalid Create Parameters
File Exists

The file is not created.

If more than one file reference is used, the Basic~KSAM file may span more
than one volume (disk). More than one file reference must be used for
multi-volume files.

An attempt will be made by the KLOAD instruction to preserve the unused
space per block. This instruction can be used for building a Data file,
while the Kadd instruction is generally used to add records after the initial

file set up.

274

Cromemeo 68000 Structured Basie Instruction Manual
22, Basic~-KSAM

4. Refer also to the Create Alternate Key File (KALTCREATE) instruction.
3. A null (empty) string used as a file reference indicates to Basic that all

subsequent file references in the list are to be ignored.

10 Voll$ = "/a/Filel"

20 Vol2$ = "/b/File2"

30 Vol3$ = "¢

40 Kereate \50,7\ Voll$,Vol2$,Vol3$,Vol4s

Because Vol3$ is a null string a 2 volume file (Voll$ and Vol2$) is created.

275

Cromemco 68000 Structured Basic Instruetion Manual
22. Basie~KSAM

instruction: Close File

format: [Ln] KCLOSE\fn\

where:

Ln is an optional line number. If Ln is inecluded, the
instruction is executed at run time. Otherwise it is
executed immediately.

fn Primary Data or Alternate Key file number

The KCLOSE instruction will close and update the status of a Basic~-KSAM file,
This instruection is valid for both Primary Data and Alternate Key files.

Notes:

lﬂ

Errors whieh may be returned:

Data Alternate
Eile File Meaning
167 183 Invalid Request

Error Result: The file is not closed.

This request is normally the last one issued after completion of file
processing. Not issuing this instruction will result in data being lost if
records were added to or deleted from the file, or if any records were
updated. If the file is open it must be closed before a Rename or Erase
operation is performed. If this instruction is issued while the file is elosed
then an Invalid Request code will be returned.

The CLOSE instruction will CLOSE all open files (including Basic-KSAM
files),

276

Cromemec 68000 Structured Basic Instruction Manual
22. Basic-KSAM

instruetion: Open Primary File

format : [Ln] KOPEN\pfn\file-ref-1 file~-ref-2,...

where:

[Lnl is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

pfn Primary Data file number

file-ref is one or mcre file references to the Primary File. This
is a Cromix pathname compcsed of optional directory
names and a file name separated by slashes. The file
references may be string variables or string literals
(enclosed in quotation marks.)

The KOPEN instruction makes an existing file available for further processing.

Notes:

1.

Errors which may be returned:
Ecror Meaning

167 Invalid Request
173 Open Failed

Error Result: The file is not opened.
The file must exist (it must have been previously created).

The number of file references in the KOPEN instruction must be the same
as the number of file references in the corresponding KCREATE instruction.
More than one file reference must be used for multi-volume files.

A null (empty) string used as a file reference indicates to Basic that all
subsequent file references in the list are to be ignored.

i0 Voll$ = "/a/Filel"

20 Vol2$ = "/b/File2"

30 Vol3$ = "n

40 Kopen 1 Voll$,Vol2$,Vol3$,vVol4d$

Because Vol3$ is a null string a 2 volume file (Voll$ and Vol2$) is opened.
Each open Basic-KSAM file uses 512 + 256 * (Sys(11) + Sys(12)) bytes.
The values for Sys(11) and Sys(12) are determined at the time the file is

created. Using the default values of 4 pages per Key Block and 4 pages
per Data Block, each Basic-KSAM file will occupy 2304 decimal bytes.

277

Cromemeo 68000 Structured Basice Instruetion Manual
22. Basic~KSAM

instruection: Add Volume To Existing File
format : [Ln] KADDVOL\fn\file-ref

where:
[Lnl is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

fn is a Primary Data or Alternate Key file number.

file~ref is a single file reference to the file which is to be added
to the Primary or Alternate file. This is a Cromix path
name composed of optional directory names and a file
name separated by slashes. The file reference may be
a string variable or string literal (enclosed in quotation
marks.)

The KADDVOL instruction allows the user to add an additional volume (disk)
to an already created file. This is necessary when the file is in an overflow
condition.

Note:

1. This instruction is valid for both Primary Data and Alternate Key files.

Sequential Access Instructions

These instructions do not require that a key be supplied by the user. Instead,
they use the Current Record Pointer (CRP) which was discussed previously.

The Read Previous (KGETBACK) instruction will decrement the CRP unless it
is pointing to the BOF (Beginning of File) in which case it will be left unchanged.

The Read Next (KGETFWD) instruction will inerement the CRP unless it is
pointing to the EOF (End of File) in which case it will leave it unchanged.

Although none of these instructions return the Primary Key, it may be obtained
by executing a KRETRIEVE instruction following any other instruction.

278

Cromemeo 68000 Structured Basic Instrucetion Manual
22. Basic-KSAM

instruction:
format:
where:
Ln
pfn
varl-n

Read Previous Record, Primary File

[Ln] KGETBACK\pin\

[Ln] KGETBACK\pfn\var-1,...,var-n

is an optional line number. If Ln is included, the
instruetion is executed at run time. Otherwise it is
executed immediately.

Primary Data file number

numeric and/or string variable list

The KGETBACK instruetion returns the previous record in Primary Key sequence.

Notes:

l"

Errors which may be returned:

Error

161
162
167

Error Result:

Meaning

File Empty
Beginning of File
Invalid Request

No movement of data takes place

If the CRP is pointing to the EOF, it is decremented and the last record
of the file is returned.

If the CRP is pointing to the first record of the file it is decremented so
that it points to the BOF, a Beginning of File error is returned, no data
is moved, and the CRP is left pointing to the BOF.

If the CRP is pointing to the BOF, a Beginning of File error is returned.

In all other cases the CRP is decremented and the record to whieh it is
pointing (next lower Primary Key on file) is returned.

279

Cromemeo 68000 Structured Basie Instruetion Manual
22. Basic-KSAM

instruection: Read Next Record, Primary File
format : [Ln] KGETFWD\pfn\

[Ln] KGETFWD\pfn\var-1,...,var-n

where:

Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

pfn Primary Data file number

varl-n numeric and/or string variable list

The KGETFWD instruction returns the next record in Primary Key sequence.

Motes:

ll

Errors which may be returned:

Error Meaning

161 File Empty

163 End of File
167 Invalid Request

Error Result: No movement of data takes place

If the CRP is pointing to the BOCF, it is incremented and the first record
of the file is returned.

If the CRP is pointing to the last record of the file an End of File error
will be returned, no movement of data will take place, and the CRP will
be incremented so that it points to the EOF.

If the CRP points to the EOF an End of File error will be returned, no
movement of data will take place, and the CRP will be left pointing to
the ECF.

In all other cases the CRP is ineremented and the record to which it is
pointing (the next higher Primary Key on file) is returned.

280

Cromemco 68000 Structured Basie Instruetion Manual
22. Basiec~-KSAM

Random Access Instructions

These instruetions use the key (or record number) rather than the CRP to locate
the desired record. On completion, successful or otherwise, the CRP is adjusted
according to the rules in the section describing the Current Record Pointer
(CRP). This allows sequential processing to follow any random instruction.

The following discussion applies to all random acecess instructions except the
Read Nth Record (KGETREC) instruction:

Basie-KSAM will attempt to locate a record in the Primary Data file whose key
matches the specified key.

a. If such a record exists, KADD or KLOAD operations will fail with an
Invalid Key return code (Primary Key must be unique) while all other
operations will be successful. The CRP will point to that record. If a
Delete instruction is successfully completed the CRP will then be moved
back by one record (previous record in the sequence of Primary Keys) since
the original record will no longer be there.

b. If the given key is higher than any key in the Primary Data file, KADD or
KLOAD operations will append this record to the end of the file and set
the CRP pointing to it. All other operations will fail with an End of File
return code and set the CRP pointing to EQOF.

C. If the given key does not exist, and it is less than the highest key on file,
the KADD and KLOAD operations will add this record in the correet place
according to the sequence of the Primary Keys, and the Read Approximate
(KGETAPP) instruction will retrieve the next higher key on file. The CRP
will be positioned at that record. All other operations will fail with an
Invalid Key return code. The CRP will be poeinting to the next higher key
on file,

The Read Nth Record (KGETREC) instruction will attempt to lcecate the record
by its sequence number (in the order of Primary Keys) rather than its key., If
found, the CRP will point to it. If not, an End of File return code is set and the
CRP points to the ECF.

281

Cromemce 68000 Structured Basie Instruetion Manual
22, Basie~KSAM

where:

instruction:

format:

Ln

pfn

pkey

varl-n

Read Random Record, Primary File

[Ln] KGETKEY\pfn,pkey\var-1,...,var-n

is an optional line number. If Ln is included, the
instruetion is executed at run time. Otherwise it is
executed immediately.

Primary Data file number

Primary Key (string variable or literal)

numeric and/or string variable list

The KGETKEY instruction will return the record with the specified Primary Key.

Notes:

1,

Errors which may be returned:

Error

161
163
164
167

Error Result:

Meaning

File Empty
End of file
Invalid Key
Invalid Request

No movement of data takes place

If a record exists on file with the given key the operation is successful.
The record is moved to the variable list and the CRP is set pointing to it.

If the given key is higher than the highest key on file the operation fails
with an End of File return code and the CRP points to the EOF.

If the given key is less than the highest key on file but it is nonexistent
the operation fails with an Invalid Key return code. The variable list is
not altered and the CRP points to the next record (next higher key).

282

Cromemeo 68000 Structured Basie Instruetion Manual
22. Basiec~-KSAM

instruetion: Read Approximate, Primary File

format : [Ln] KGETAPP\pfn,pkey\var-1,...,var-n

where:

Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

pfn Primary Data file number
pkey Primary Key (string variable or literal)
varl-n numeric and/or string variable list

The KGETAPP instruetion will return the record with the specified Primary Key
or the next higher Primary Key.

Notes:

ll

Errors which may be returned:

Error Meaning

161 File Empty
163 End of file
167 Invalid Request

Error Resuit: No movement of data takes place

If a record exists on file with the given key or a higher key the operation
is suecessful. The record is moved to the variable list and the CRP is set
pointing to it.

If the given key is higher than the highest key on file the operation fails
with an End of File return code and the CRP peints to the EQF,

This is a very useful tool for browsing through a file. The advantage it
has over read random is that it will normally fail only if the given key is
higher than the highest cn file. This means that the exact key need not
be known for successful retrieval, A partial key with the lower portion
filled with blanks will either retrieve the desired record or the record with
the next higher key. Sequential processing normally follows this
operation. For example if a group of records exists for which the high
order portion of the key is the same, a KGETAPP instruction will retrieve
the first of the group and the rest can be accessed sequentially. If the
key supplied is higher than any on file and the End of File error cccurs,
the CRP is positioned at the EQOF. Otherwise a record is retrieved and the
CRP poeints to it.

The exact Primary Key for the returned record may be obtained by
executing a KRETRIEVE instruction following the KGETAPP instruction,

283

Cromemeo 68000 Structured Basie Instruction Manual
22. Basie~KSAM

Ainstruction:

format:

where:

Ln

pfn
pkey

varl-n

Update Record, Primary File

[Ln] KUPDATE\pfn,pkey\

[Ln] KUPDATE\pfn,pkey\var-1,...,var-n

is an optional line number. If Ln is included, the
instruetion is executed at run time. Otherwise it is
executed immediately.

Primary Data file number

Primary Key (string variable or literal)

numeric and/or string variable list

The KUPDATE instruction will update the record with the specified Primary Key.

Notes:

1n

Errors which may be returned:

Error

161
163
164
167

Error Result:

Meaning

File Empty
End of file
Invalid Key
Invalid Request

No movement of data takes place

This operation behaves in the same manner as a read random operation.
The difference between the two instructions is the direction of the data

movement.

284

Cromemeo 68000 Structured Basic Instruetion Manual
22. Basic~-KSAM

instruection: Delete Record, Primary File
format: [Ln] KDEL\pfn,pkey\
where:
Ln is an optional line number. If Ln is included, the
instruetion is executed at run time. Otherwise it is
-executed immediately.

pfn Primary Data file number

pkey Primary Key (string variable or literal)

The KDEL instruction will delete the record with the specified Primary Key.

Notes:

1. Errors which may be returned:

Error Meaning

161 File Empty
163 End of file
164 Invalid Key
167 Invalid Request

Error Result: No record is deleted

2. 1f the record does not exist in the Primary Data file, this operation will
fail in the same manner as the Read Random instruction, the return codes
and CRP settings are the same. If the record exists, it will be physically
removed from the file and the space occupied by it will be reclaimed. The
CRP will be set pointing to the previous record (next lower key) or to the
BOF if the first record on file is deleted. The return code will indicate
successful completion. If the only record of the file is deleted, then the
file exists in an Empty state until a record is written to it.

285

Cromemeo 68000 Structured Basice Instruetion Manual
22 . Basic-KSAM

instructions Read Nth Record, Primary File
format : [Ln] KGETREC\pfn,reec\
[Ln] KGETREC\pfn,rec\var~1,...,var-n
where: : |
Ln is an optional line number. If Ln is included, the

instruction is executed at run time. Otherwise it is
executed immediately.

pfn Primary Data file number
rec record number
varl-n numeric and/or string variable list

The KGETREC instruction will return the record whose number in the sequence
of Primary Keys is rec.

Notes:
1. Errors which may be returned:

Error Meaning

161 File Empty
163 End of File
167 Invalid Request

Error Result: No movement of data takes place

2, For successful retrieval the record number (ree) must be in the range from
0 to the actual number of records in the file minus one. The first record
in the file is considered to be record 0 (relative position). If the number
is within range the operation is successful. The record is returned and
the CRP points to it. If not, the operation fails with an End of File return
code and the CRP points to the EOF.

286

Cromemee 68000 Structured Basie Instruction Manual
22. Basic-KSAM

instruction:; - Add Record, Primary File

format : [Ln] KADD\pfn,pkey\var-1,...,var-n

where:

Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately,

pfn Primary Data file number
pkey Primary Key (string variable or literal)
varl-n numerie and/or string variable list

The KADD instruction will add the record (variable list) to the Primary Data
file in sequence by the Primary Key.

’Notes:

1.

Errors which may be returned:

Error Meaning

164 Invalid Key

167 Invalid Request
170 Key Set Full
171 No Free Blocks

Error Result: No movement of data takes place

The record is inserted between two others which carry the next lower and
next higher keys or at the ECF (BOF), if its key is higher (lower) than any
key in the file. The CRP points to the record.

If a record with the same key already exists, the operation fails with
Invalid Key code and the file is not altered. The CRP is left pointing to
that record (which can be retrieved by the Read Current Record
(KGETCUR) instruetion).

If a free block cannot be found on any of the disks allocated to the file,
the operation will fail with a No Free Blocks return code and the contents
of the file will not be altered. The CRP will be left pointing either to
the next higher key or to the EOF. A Retrieve Primary Key (KRETRIEVE)
instruction will establish the position of the CRP.

287

Cromemeo 68000 Structured Basie Instruetion Manual
22. Basic-KSAM

The file should either be closed and compacted (see UTILITIES), or the
number of volumes should be ineremented (KADDVOL). Then the KADD
instruetion may be issued again.

The KADD instruction will disregard the unused space per block option
of the KCREATE instruction, even if specified by the user, and will attempt
to fit as many records in a block as the block length permits. To preserve
unused space the user should write records to the file using the KLOAD
instruction.

288

Cromemec 68000 Structured Basic Instruction Manual
22. Basic~KSAM

instruetion: Load Record, Primary File

format: [Ln] KLOAD\pfn,pkey\var-1,...,var-n

where:

Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

pfn Primary Data file number
pkey Primary Key (string variable or literal)

varl-n numeric and/or string variable list

The KLOAD instruction will add the record (variable list) to the Primary File
in sequence by the Primary Key.

Notes:

10

Errors which may be returned:

Error Meaning

164 Invalid Key

167 Invalid Request
170 Key Set Full
171 No Free Blocks

Error Result: No movement of data takes place

This instruction has practical use only when adding successively higher
keys to the end of the file. This might be the case, for example, when
building the file from seratch using records which are in the same sequence
as the file being created. In this instance the unused space, specified
when the KCREATE instruction was issued, will be preserved. This is the
only difference between the KADD and KLOAD instructions. If the records
are in different sequence or if this instruetion is used to insert records
anywhere other than the end of the file, KLOAD behaves in the same
manner as the KADD instruction (i.e., it attempts to fill the blocks
completely).

Current Record Instructions

These instructions read or write from whatever record the Current Record
Pointer (CRP) is pointing to. They do not change the position of the CRP in any

Way.

After the execution of one of these instructions, the CRP continues to

point to whatever record it pointed to before the instruction executed.

289

Cromemee 68000 Structured Basice Instruction Manual
22. Basic-KSAM

instruection: Read Current Record, Primary File
format: [Ln] KGETCUR\pfn\
[Ln] EGETCUR\pfn\var-1,...,var-n

where:

Ln is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

pfn Primary Data file number

varl-n numeric and/or string variable list
The KGETCUR instruection returns the current record from the Primary Data file.

Notes:
1. Errors which may be returned:

Error Meaning

161 File Empty

162 Beginning of File
163 End of File

167 Invalid Request

Error Result: No movement of data takes place

2. The CRP is not changed. If it is pointing to the BOF or EOF then the
appropriate error code is returned and no movement of data takes place.
In all other cases the record to which the CRP is pointing is moved to the
variable list. This instruction is normally used in conjunetion with random
operations.

290

Cromemeoc 68000 Structured Basie Instruction Manual
22. Basiec~-KSAM

instruetion: Retrieve Primary Key, Current Reeord
format: [Ln] KRETRIEVE\pfn\svar
where: ‘

Ln is an optional line number. If Ln is included, the
instruetion is executed at run time. Otherwise it is
executed immediately.

pfn Primary Data file number

svar string variable

The KRETRIEVE instruction returns the Primary Key from the current record
in the Primary Data file.
Notes:

1. Errors which may be returned:

Error Meaning

161 File Empty

162 Beginning of File
163 End of File

167 Invalid Request

Error Result: No movement of data takes place

2. This instruetion is similar to the Read Current instruction. The difference
is that only the Primary Key of the current record is returned upon
successful completion.

3. The KRETRIEVE instruction does not alter the CRP. It returns the Primary
Key from the record to which the CRP is pointing.

291

Cromemeo 63000 Structured Basie Instruction Manual
22. Basie-KSAM

instruction: Read Fields, Current Record
format ; [Ln] KGET\pfn\var-1,...,var-n
where:

Ln is an optional line number. If Ln is included, the
instruetion is executed at run time. Otherwise it is
executed immediately.

pfn Primary Data file number

varl-n numeric and/or string variable list

The KGET instruction returns the named variables from the current record in
the Primary Data file.

Notes:

1. Errors which may be returned:

Error Meaning

161 File Empty

162 Beginning of File
163 End of File

167 Invalid Request

Error Result: No movement of data takes place

2. The Current Record Pointer (CRP) must be positioned before the KGET
instruction is used. KGET does not alter the CRP, It only returns data
from the record to which the CRP is pointing. If the CRP is pointing to
the BOF or EOF, then the appropriate error code is returned and no
movement of dsta takes place.

For example, the two following sets of instructions are equivalent:
100 Kgetfwd\l\Id'number, Year, Amount

and
100 EKgetfwd\l\

110 Kget\l\Id'number, Year
120 Kget\1\Amount

292

Cromemeo 68000 Structured Basie Instruction Manual
22. Basic~KSAM

instruction: Write Fields, Current Record
format : [Ln] KPUT\pfn\exp—~1,...,eXp—n
where:

Ln is an opticnal line number. If Ln is ineluded, the
instruction is executed at run time. Otherwise it is
executed immediately.

pfn Primary Data file number

expl-n numerie and/or string variable list

The KPUT instruction writes the expressions to the current record in the Primary
Data file.

Notes:

1. Errors which may be returned:

Error Meaning

167 Invalid Request
174 1/0 Error

Error Result: No movement of data takes place

2. The Current Record Peointer (CRP) must be positioned before the KPUT
instruction is used. KPUT does not alter the CRP. It only returns data
from the record to which the CRP is pointing. If the CRP is peinting to
the BOF or EOF, then the appropriate error code is returned and no
movement of data takes place.

293

Cromemeo 68000 Structured Basie Instruction Manual
22. Basic-KSAM

Alternate Key Instructions

Alternate Key instructions allow the user to create and maintain Alternate Key
(inversion) files and access the Primary Data file by means of Alternate Keys.

All Alternate Key instructions involve two files, the Primary Data file and one
of its Alternate Key files.

The Primary Data File must be open when any Alternate Key instruction is issued
and, with the exception of KALTCREATE and KA LTOPEN, the Alternate Key file
must also be open.

During the executicn of an Alternate Key instruction an error can occur while
accessing either the Primary Data file or the Alternate Key file. If an error
occurs on the Primary Data file record, then the return code will range from
161 to 174. If an error occurs on the Alternate Key file, then the return code
will range from 177 to 190.

As was mentioned earlier, all Basic~-KSAM instructions, with the exception of
KCREATE, KADD, KLOAD, and KUPDATE, can be issued to an Alternate Key file.
In this case Basic-KSAM treats the file as a Primary Data file and if any error
occurs then returned error codes range from 161 to 174,

The KALTCUR, KALTFIRST, and KALTFWD instructions do pot return the Primary

Key. The Primary Key can be obtained after the execution of one of these
instructions by executing a KRETRIEVE instruction.

294

Cromemeco 68000 Structured Basic Instruction Manual

22. Basic-KSAM

instruction:

format:

where:
Ln

pfn

akl

akd

file~ref

Create Alternate Key File
[Ln] KALTCREATE\pfn,akl\file-ref-1,file-ref-2,...

[Ln] KALTCREATE\pfn,akl,akd\file-ref-1,...

is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

Primary Data file number

Alternate Key length not including the Primary Key
(maximum of 250 bytes when combined with Primary Key.)

Alternate Key displacement not including the Primary
Key. Default value of 0.

is one or more file references to the Alternate File. This
is a Cromix path name composed of optional directory
names and a file name separated by slashes. The file
references may be string variables or string literals
(enclosed in quotation marks.)

The KALTCREATE instruction will create and format one or more Basic-KSAM

Alternate Key Files.

Notes:

1. Errors which may be returned:

Error

183
184
185

Error Result:

Meaning

Invalid Request
Invalid Create Parameters
File Exists

The file is not created.

2. If more than one file reference is used, the Basic~-KSAM file may span more
than one volume (disk). More than one file reference must be used for
multi-volume files,

3. The Alternate Key displacement does pot include the Primary Key. At this
point the Primary Key is transparent to the user and need not be taken
into consideration.

295

Cromemeo 68000 Structured Basie Instruetion Manual

22. Basic~-KSAM

4, A null (empty) string used as a file reference indicates to Basie that all
subsequent file references in the list are to be ignored.

10
20
30
40

Voll$ = "A:Filel"
Vol2$ = "B:File2"
V013$ — un

Kopen \1\ Vol1$,V0l2$,Vol3$,Vol4$

Because Vol3$ is a null string a 2 volume file (Vol1$ and Vol2$) are opened.

296

Cromemeo 68000 Structured Basie Instruetion Manual
22. Basiec-KSAM

instruction: Open Alternate File

format : [Ln] KALTOPEN\afn,pfn\file-ref-1,file-ref-2,...

where:

Ln : is an optional line number. If Ln is inecluded, the
instruction is executed at run time. Otherwise it is
executed immediately.

afn Alternate Key file number

pfn Primary Data file number

file-ref is one or more file references to the Alternate File. This
is a Cromix path name composed of optional directory
names and a file name separated by slashes. The file

references may be string variables or string literals
(enclosed in quotation marks.)

The KALTOPEN instruction makes an existing Alternate Key file available for
further processing.
Notes:
1. Errors which may be returned.
Error Meaning

183 Invalid Request
189 Open Failed

Error Result: The file is not opened.
2. The file must exist (it must have been previously created).
3. More than one file reference must be used for multi~volume files.

4. A null (empty) string used as a file reference indicates to Basic that all
subsequent file references in the list are to be ignored.

10 Voll$ = "A:Filel"
20 Vol2$ = "B:File2"
30 Vol3$ = n

40 Kopen \1\ Vol1$,Vol2$,Vol3$,Vol4$

Because Vol3$ is a null string a 2 volume file (Voll$ and Vol2$) are opened.

297

Cromemeo 63000 Structured Basic Instruetion Manual

22, Basie-KSAM

instruection:

where:

Read Primary Record By Current Alternate Key

format : [Ln] KALTCUR\afn\var-1,...,var-n

Ln is an optional line number.

If Ln is ineluded, the

instruction is executed at run time. Otherwise it is
executed immediately.

afn Alternate Key file number,

varl-n numeric and/or string variable list

The KALTCUR instruetion will read the Primary Data file record specified by
the current record in the Alternate Key file.

Notes:

1. Errors which may be returned:

Data
Eile
161
163
164

167

Alternate
Eile

177
179
178
183

Error Result:

No movement of data takes place,
follows the rules of the KGETKEY instruction.

Meaning

File Empty

End of File
Invalid Key
Beginning of File
Invalid Request

Key file remains unchanged.

The CRP for the Primary Data file
The CRP of the Alternate

2. An Invalid Key error code can be returned by this instruction. This error
will oecur when:

aO

b.

There is no record in the Primary Data file whose Primary Key
matches the Primary Key field on the current record of the Alternate
Key file (stranded inversion due to deletion of the Primary file

record).

A record exists in the Primary Data file with the corresponding
Primary Key but its Alternate Key value does not matech the value
of the alternate field on the current record of the Alternate Key file
(stranded inversion due to modification of the Alternate Key field
in the Primary Data file record).

298

Cromemeo 68000 Structured Basie Instruction Manual

22. Basie-KSAM

instructions .

format :

where:
Ln

afn
akey

varl-n

Read First Primary Record By Specified Alternate
Eey

[Ln] KALTFIRST \afn,akey\

[Ln] KALTFIRST\afn,akey\var-1,...,var-n

is an optional line number. If Ln is included, the
instruction is executed at run time. Ctherwise it is
executed immediately.

Alternate Key file number

Alternate Key (string variable or literal)

numeric and/or string variable list

The KALTFIRST instruction will read the first (in Primary Data file sequence)
Primary file record specified by the Alternate Key.

Notes:

1. Errors which may be returned:

Data Alternate

File File Meaning

161 177 File Empty

163 179 End of File
164 - Invalid Key

167 183 Invalid Request

Error Result:

No movement of data takes place. The CRP for the Primary Data file
follows the rules of the KGETKEY instruction. The CRP for the Alternate
Key file follows the rules of the KGETAPP instruetion.

299

Cromemco 68000 Structured Basie Instrucetion Manual
22. Basic-KSAM

instruetion: Read Next Primary Record By Current Alternate Key
format: [Ln] KALTFWD\afn\

[Ln] KALTFWD\afn\var-1,...,var-n

where:

Ln is an optional line number. If Ln is included, the
instruction is executed at run time., Otherwise it is
executed immediately.

afn Alternate Key file number.

varl-n numeric and/or string variable list

The KALTFWD instruction will read the next (in Primary Data file sequence)
Primary Data file record specified by the current record in the Alternate Key

file.
Notes:
1. Errors which may be returned:
Data A}ternate .
File File Meaning
161 177 File Empty
163 179 End of File
167 183 Invalid Request
Error Result:
No movement of data takes place. The CRP for the Primary Data file
follows the rules of the KGETKEY instruction. The CRP for the Alternate
Key file follows the rules of the KGETFWD instruection.
2. This instruction will attempt to locate the next Primary Data file record

that contains the same Alternate Key field value as the current Alternate
Key record. Assume that we have issued a KALTFIRST instruction on an
Alternate Key file. Successive executions of KALTFWD instruction will
access all logieal records of the Primary Data file with the same Alternate
Key value.

300

Cromemeo 68000 Structured Basie Instruetion Manual

22. Basie-KSAM

instruection:
format:
where:
Ln
afn

Verify Alternate Record

[Ln] KALTVER\afn\

is an optional line number. If Ln is included, the
instruction is executed at run time. Otherwise it is
executed immediately.

Alternate Key file number..

The KALTVER instruction attempts to locate the Alternate Key file record which
corresponds to the current Primary Data file record.

Notes:

1. Errors which may be returned:

Data
File
161
163
162

167

Alternate
File

177

179

180

183

‘Error Result:

Meaning

File Empty

End of File
Beginning of File
Invalid Key
Invalid Request

If a corresponding record does not exist on the given Alternate Key file
an Invalid Key error will be returned. The CRP for the Data File follows
the rules of the KGETKEY instruction. The CRP of the Alternate file
follows the rules of the KGETFWD instruection.

301

Cromemeo 638000 Structured Basie Instruction Manual
22. Basic-KSAM

instruction: Add Record, Alternate File
format s [Ln] KALTADD\afn\
where:
: Ln is an optional line number. If Ln is ineluded, the
instruetion is executed at run time. Otherwise it is
executed immediately.
afn Alternate Key file number
The KALTADD instruction will write a record in the specified Alternate Key
file. This record will correspond to the current record of the Primary Data file,

Notes:

1. Errors which may be returned:

Data Alternate

File File Meaning

161 - File Empty

163 - End of File

162 - Beginning of File
167 183 Invalid Request
- 186 Key Set Full

- 187 No Free Blocks

Error Result:
The alternate record is not added. The CRP for the Primary Data file is

not changed. The CRP for the Alternate Key file follows the rules of the
KADD instruction.

302

Cromemeco 68000 Structured Basic Instruction Manual

22. Basic-KSAM

instruetion:
format :
where:
Ln
afn

Delete Record, Alternate File

[Ln] KALTDEL\afn\

is an optional line number. If Ln is included, the
instruction is executed at run time., Otherwise it is
executed immediately.

Alternate Key file number.

The KALTDEL instruction will delete a record from the specified Alternate Key
file. This record is the one which corresponds to the current record of the
Primary Data file. :

Notes:

1. Errors which may be returned:

Data
File
161
163
162

167

Alternate

Ele
177

180
183

Error Result:

Meaning

File Empty

End of File

Beginning of File

Invalid Key (No Alternate Key record to Delete)
Invalid Request

The record is not deleted. The CRP for the Primary Data file is not
changed. The CRP of the Alternate Key file follows the rules of the KDEL
instruction.

303

Cromemeco 68000 Structured Basie Instruction Manual
22 . Basic~-KSAM

KSAMUT UTILITY PROGRAM

The Ksamut utility program performs a number of functions useful for creating
and maintaining KSAM files. The functions are:

COMMAND DESCRIPTION

CHANGE DISKS Change the disks and initialize the bit maps.
CREATE Create a Primary Data or Alternate Key file.
ERASE Remove a Basic-KSAM file from the directory
COMPACT Compact the file

REORGANIZE Reorganize the file

STATUS Print file status

RENAME Repame a file

COPY Copy the file in compacted form

COMPACT

COPY Copy the file in reorganized form
REORGANIZE

To load the utility program, ty pe KSAMUT in response to the operating system
prompt. The utility then displays a list of functions on the console screen.
The user can select one function at a time. If the selected command needs more
information before processing, then the user must follow the prompts displayed
on the screen by the utility program. If a file has to be accessed then the file
unit, name, and type of the first volume must be provided. If the file extends
to more volumes you will be asked to provide file unit, name, type information
for all volumes. All volumes of the file must be mounted.

Any number of requests can be executed on the same or different files of disks
without exiting from the utility.

When the utility is executed, all Basic~-KSAM and operating system error codes
are possible. If the execution of any request is successful the utility responds
with "SUCCESSFUL", displays the menu on the sereen again, and waits for the
next request. If the request failed then the appropriate message is printed and
the utility returns to the menu waiting for the next request.

In this diseussion, file-ref indicates a file reference of the form:

[X:]JFILENAME.XYZ

304

Cromemeco 68000 Structured Basie Instruction Manual
22. Basie~-KSAM

In the above file reference, X is an optional disk drive specifier. If omitted,
the file is assumed to be in the current directory. "B:™ through "H:" are
mapped to "/b" through "/h" on the Cromix Operating System,

Note that all commands and file references given while running KSAMUT must
be given in upper case characters.

KSAMUT Prompts

The KSAMUT commands use several prompts to request additional information
from the user. This section describes the prompts. Note that this list deseribes
every prompt used by all the commands. Each individual command uses a

different subset of the prompts.

Remember that all responses to the prompts must be given in upper case.

Prompt ENTER FILE UNIT

Response Enter the disk drive designator or directory name where the
file resides.

Prompt ENTER FILE NAME

Response Enter the file name without giving the file name extension
Prompt ENTER FILE TYPE

Response Enter the file name extension. Do not precede the extension

with a period (.).

Prompt NUMBER OF VOLUMES

Response Enter the number of volumes that the file may extend to. The
number must be >=1 and <=4.

Prompt " PAGES PER KEY BLOCK

Response Enter the number of pages per key block. The number of keys
in a key block must be 2<{n<256. To determine the maximum
number of pages for any given key length (K), use the formula
Pages=INT(((K+5)*255)/256). For alternative files, the key
length is the alternate key length plus the primary key length.

305

Cromemco 68000 Structured Basic Instruetion Manual

22. Basie-KSAM

Prompt

Response

Prompt

Response

Prompt

Response

Prompt

Response

Prompt

Response

PAGES PER DATA BLOCK

Enter the number of pages per data block. The best size for
the data block is the multiple of 256 that divided by the record
length plus key length yields the smallest remainder, For
example, with a record length of 163 and a key length of 2,
the number of pages would be 11. This is arrived at by dividing
165 (163+2) into successive multiples of 256. Using
11*256=2816, 2816/165 gives a remainder of 11. This means
that only 11 bytes of every 2816 bytes will be wasted.

Note: This method optimizes disk space usage, not processing
speed.

FREE SPACE

Enter the amount of free space in terms of logical records to
be reserved in each block when the file is built using the Kload
instruetion. The amount of free space should be less than the
maximum number of records in a block.

Specifying free space is useful only when the file is built with
the Kload instruction and the Kadd and Kput instructions are
used to add records to the file. Specifying unused space can
optimize file processing speed when many additions will be
made to the file, If the file will be static or many deletions
are expected, the amount of free space should be zero.

RECORD LENGTH

Enter the length of the record in bytes.

KEY LENGTH

Enter the length of the primary key in bytes.

KEY DISPLACEMENT

Enter the position of the first byte of the key within the record.

KSAMUT Commands

The following paragraphs describe each Ksamut command in more detail:

Request
Definition

CHANGE DISKS
Change the disks and initialize the bit maps.

306

Diseussion

Request
Definition

Discussion

Req uest
Definition

Discussion

Request
Definition

Discussion

Request
Definition

Discussion

NOTE

Cromemeo 68000 Structured Basic Instrucetion Manual
22, Basic-KSAM

This command must be executed if the user wishes to change
disks while running KSAMUT. After the completion of this
command, Drive A (or the current directory) is the current disk
drive.

CREATE
Create a Basic~-KSAM Primary Data or Alternate Key file,

This ecommand will create a Basic-KSAM file. The user must
follow the prompts and provide the needed information. Also
refer to the KCREATE and KALTCREATE instructions.

ERASE
Remove a Basic-KSAM file from the disk directory.

If the file extends to more than one disk then all disks should
be mounted. If the operation was sucecessful then, all disk
space occupied by this file has become available for other use.
The file name has been removed from all the disk directories
to whieh it extended. If the operation failed then the
appropriate message is printed.

COMPACT
Rewrite the original file so that its bloeks contain the maximum
number of logical records.

If the execution of this request is successful, then the new
file has blocks containing the maximum number of logical
records. The file name(s) remain the same. The new file might
have fewer data or key blocks in use, but the disk space
occupied by the compacted file will be the same as the original.

If the execution of this request fails then the appropriate error
message is printed.

REORGANIZE
Rewrite the original file so that every block contains the initial
unused space specified at file-creation time.

This command tries to rewrite the given file so that blocks
contain if possible the unused space specified at file creation
time. The disk space occupied by the new file will be the same
as the original file.

A compact file will not be reorganized.
The COPY COMPACT and COPY REORGANIZE commands are
more efficient than the COMPACT and RECRGANIZE commands.

307

Cromemeo 68000 Strucetured Basie Instruetion Manual

22. Basiec-KSAM

Request
Definition

Disecussion

Request
Definition

Discussion

Request
Definition

Discussion

STATUS
Print file status (Header Information)

The following will be printed:

FILE NAME

FILE TYPE

RECORD LENGTH
INITIAL UNUSED SPACE
PAGES PER KEY BLOCK
PAGES PER DATA BLOCK
DATA BASE (OR ALTERNATE FILE)
KEY LENGTH

KEY DISPLACEMENT
VOLUMES SPECIFIED
VOLUMES IN USE

DATA BLOCKS IN USE
FILE SIZE IN RECORDS

RENAME
Rename a file

This command is similar to the rename command of the operating
system. The file to be renamed does not have to be Basie-KSAM
file. This command does not need to have all volumes of a
Basie~KSAM file mounted to be executed.

COPY and COMPACT
Copy the given file so that the blocks of the new file contain
the maximum number of records.

The successful execution of this request will create a compact
copy of the original file. The new file can be created on the
same or different disks. The new file does not have to extend
to the same number of volumes as the original file. If the new
file will extend to disks on whiech the original file exists then
their filenames must be different.

The number of data blocks, key blocks and the disk space

occupied by the new file could be less than the original file.
If the operation fails, the appropriate message is printed.

308

Cromemec 63000 Structured Basic Instruction Manual

22. Basic-KSAM

Request
Definition

Discussion

COPY and REORGANIZE
Copy the original file so that the blocks of the new file contain
the initial unused space specified file-creation time,

This request is similar to COPY-COMPACT request. Instead
of compacting the blocks, however, it attempts to insert in each
block the amount of empty space specified by the user at file
creation time,

The disk space occupied by the new file might be more than
that of the original file.

The COPY~-COMPACT and COPY-REORGANIZE commands are

the only commands by which the free data and key blocks are
physically removed from the file.

309

Cromemeo 68000 Structured Basie Instruction Manual
22. Basic-KSAM

ERROR CODES FOR KSAM FUNCTIONS

This section describes the error codes that can be generated by Basic-KSAM
functions. These error codes are also briefly deseribed in Chapter 24.

The following table summarizes the error codes.

PRIMARY ALTERNATE

ERROR DATA FILE KEY FILE
FILE EMPTY 161 177
BEGINNING OF FILE | 162 178
END OF FILE 163 179
INVALID KEY 164 180
INVALID REQUEST 167 183
INVALID CREATE

PARAMETERS 168 184
FILE EXISTS 169 185
KEY SET FULL 170 186

NO FREE BLOCKS 171 187
OPEN FAILED 173 189

I/0 ERROR 174 190

310

Cromemeo 68000 Structured Basic Instruction Manual

22, Basic-KSAM

Error
Error Codes

Discussion

Remarks

Error
Error Codes

Discussion

Error
Error Codes

Discussion

FILE EMPTY
161 For A Primary Deta File
177 For An Alternate Key File

This error code is returned when an attempt was made to access
a record of an Empty file. A file is Empty if no records have
been written to it, or if all its records have been deleted.

Provided that an Empty file is open, the only allowable reqguests
are KCLOSE, KLOAD and ADD. If an empty file is closed the
only request allowed is KOPEN, RENAME, and ERASE.

- Upon return from a Create (KCREATE) or Create Alternate

(KALTCREATE) request the file is empty and closed., Before
records can be written to the file, it must be opened.

Assume that we have deleted all the records of a fiié. This
file is still open and empty. If we want to ERASE it we must
close it first.

BEGINNING OF FILE (BOF)
162 For A Primary Data File.
178 For An Alternate Key File.

An attempt was made to read a record before the first record
of the file. This error will be returned by a Read Previous
(KGETBACK), Read Current (KGETCUR), or Retrieve
(KRETRIEVE) instruction.

Assume that the current record pointer (CRP) is pointing to
the first record of a file. A Read Previous instruction will
result in a BOF error condition. If an Open instruction is
followed by Read Current or Read Previous instruction a BOF
error will result.

END OF FILE (EOF)
163 For A Primary Data File
179 For An Alternate Key File.

This error code will be returned when an attempt is made to
access a record beyond the last record of the file. The Read
Next (KGETFWD), Read Current (KGETCUR), Read Random
(KGETKEY), Delete (KDEL), Read Approximate (KGETAPP),
Retrieve (KRETRIEVE), Update (KUPDATE) instructions as well
as most Alternate Key instructions can return an EOF error
message.

311

Cromemeo 68000 Structured Basie Instrucetion Manual

22. Basie-KSAM

Error
Error Codes

Discussion

Error
Error Codes

Discussion

Error
Error Codes

Discussion

INVALID KEY
164 For A Primary Data File
180 For An Alternate Key File

This error code can be returned by random access and Alternate
Key instructions.

When writing a record to a file this error indicates that a record
with the same Primary Key already exists.

When reading, updating or deleting a record the error indicates
that there is no such record on file.

INVALID REQUEST
167 For A Primary Data File
183 For An Alternate Key File

This error code can be returned by all Basic-KSAM instructions.
An Invalid Request error will be returned if:
8. = A KOPEN instruction is given while the file is open.

b. A KCLOSE, sequential, or random instruction is given
while the file is closed.

c. An improper instruction was issued to an Alternate Key
file.

d. An Alternate Key instruction was issued to a Data file.

e. The Primary Data file and the Alternate Key file were
not open when an Alternate Key instruction was given.

INVALID CREATE PARAMETERS
168 For A Primary Data File
184 For An Alternate Key File.

The Create (KCREATE) and Creste Alternate (KALTCREATE)
instruetions are the only ones that can return this error code,
It means that the given create parameters are not correct.

An attempt is being made to create a file with a key larger than
the logical record size, key length plus key displacement larger
than the record length, key length equal to zero, logical record
length larger than Data Block length, or with unused space

per block greater or equal to the maximum number of records
per block.

312

Error
Error Codes

Discussion

Error
Error Cedes

Discussion

Error
Error Codes

Discussion

Error
Error Codes

Discussion

Error
Error Codes

Diseussion

Cromemec 63000 Structured Basie Instruction Manual
22. Basic~-KSAM

FILE EXISTS
169 For A Primary Data File
185 For An Alternate Key File

This error code can be returned by a Create (KCREATE) or
Create Alternate (KALTCREATE) instruction. It means that
a file with the given file name and file type already exists on
the given drive.

KEY SET FULL
170 For A Primary Data File
186 For An Alternate Key File

This error can be returned only by a KADD, KLOAD, or Add
Alternate (KALTADD) instruction. The maximum number of key
blocks is 16. This error will cccur because an attempt is made
to allocate a key block to a file that already has 16 key blocks.
The record causing the problem is not added to the file.

To continue, close the file, compact it using the utility
program, and proceed by adding the last record again.

NO FREE BLOCKS
171 For A Primary Data File
187 For An Alternate File

This error can be returned only by the Add (KADD), Load
(KLOAD), or Add Alternate (KALTADD) instruction. An attempt
was made to allocate a new Data Block to the file. No disk
space was found on any disk to which the file can extend.

The record which was to be written is not added to the file.
If the number of volumes cannot be increased, the file must
be closed and then compacted using the utility program.

OPEN FAILED
173 For A Primary Data File
189 For An Alternate Key File

This error is returned when the operating system is not able
to open the file as requested. This can be caused by a full
directory. It can also occur because the file already exists.

1/0 ERROR
174 For A Primary Data File
190 For An Alternate Key File

The operating system returned an error code when an attempt
was made to access the disk,

313

Cromemeoc 63000 Structured Basie Instruction Manual

314

Cromemeo 68000 Structured Basic Instruction Manual
23. Glossary

Chapter 23

GLOSSARY

The Glossary defines the computer terms and expressions used throughout the
manual.

[1]

Square brackets are used to indicate an optional quantity. The item enclosed
in square brackets may be used, in the position indicated, at the user's
diseretion.

Argument

An argument is an independent variable, constant, or expression used with a
Basic instruction whose value can be specified by the user to instruet Basic to
perform a certain task. For example, in the instruction:

Print A, 3, C+7

A, 3, and C+7 are arguments to the Basic instruction PRINT.

ASCII

This acronym stands for American Standards Code for Information Interchange.
It is an industry standard used to assign numerical codes (0 through 127) to 128
characters used as letters, numbers, arithmetic cperators, various symbols, and
control characters. The ASC(X) funetion will return the ASCII equivalent of
any argument. A table of ASCII codes is provided for reference in Appendix
B.

Available Partition

An Available Partition is one which is not either manually nor automatically
locked. Manual locking is invoked by the use of the LOCK instruction. Locking
occurs automatically when nested CALLing of PROCEDURES (in other Partitions)
takes place. When control is transferred out of a Partition by a Procedure CALL,
that Partition is locked. When control is transferred out of a Partition by an
ENDPROC, EXITPROC, or ERRPROC instruction, that Partition is unlocked

315

Cromemeo 68000 Structured Basie Instruction Manual
23. Glossary

(assuming that no active control structures remain). The LOCK instruction
overrides the automatic lock feature.

Basic Library Editor

An editor which allows the user to create (give a name to) a Library or add,
delete, or replace Modules within an existing Library.

Basie Word

A Basic word, commonly called an instruction, is an alphanumeric set of
characters which briefly deseribes the operation to be performed by the
computer. Some examples of Basic words are:

List
Print

On Error
Len

Stop

End

Binary Code

Binary code is defined as a code where every code element is either a 0 or a
1. Computer instructions and data for most microcomputers consist of unique,
8 bit binary codes.

Command

A command in Basic is an instruction to the computer which specifies an
operation to be performed. In contrast to a Basic statement (see the Statement
definition), commands are executed immediately. Commands are used primarily
to manipulate or execute a program once the program has been entered.
Commands have no line number preceding them.

A powerful feature of Cromemeo Structured Basic is the ability to use most
commands as statements. As such, they may be given line numbers and ineluded
in the body of the program for execution while the program is running.

Control Charaeter

A control character is a non-printing ASCII character whieh is (usually) used
to transmit eontrol signals between a peripheral deviece and the computer. For
example, 2 CONTRCL-P entered from the console will cause the system printer
to echo all information which is displayed on the console.

316

Cromemece 68000 Structured Basie Instruction Manual
23. Glossary

Control Structure

Control structures are (sets of) instructions which change the order of execution
from the sequential line number order. In structured programming preferred
structures are conditional loops and branches, which allow program flow to
continue linearly, conditionally repeating or skipping over sections of code.

Current Library

The Current Library is the file whieh will be searched if a requested
PROCEDURE is not current in one of the Partitions. Refer to the LIBRARY
instruetion.

Current Partition

That Partition in which execution or Editing is taking place. The contents of
the Current Partition will be displayed by the LIST instruction. Refer alsc to
the USE instruction.

Current Program

The current program is any program with which the user is currently interacting.
When Struetured Basic is entered, no program is current, Should the user enter
text to create a new program, this program becomes the current program. If
the user calls a SAVEd program from system memory, that program becomes the
current program. If the user EDITs a program, it remains the current program
in its edited form.

Data

The term is used in two ways. Strictly speaking, any information contained
within memory or control logic is binary data. Whether this data becomes
alphanumeric characters or control information depends upon the program in
use.

In the other sense, data is used to refer to numerical or string information., In
Basie, this numerical or string information is listed in a file or DATA statement.
Default

With certain Basic instructions, an argument may be optionally added to control
a certain function. If no argument is given, the instruetion defaults or reverts

to a value already programmed into the Basic interpreter, For example, the
default values of the arguments for the command:

Renumber

317

Cromemeceo 68000 Structured Basie Instruction Manual
23. Glossary

are 10,10 in Cromemeco Basic. This default value for RENUMBER will produce
automatic line renumbering starting with line 10 and numbering consecutive lines
by increments of 10, (e.g., 10, 20, 30, 40...). To change this default value, the
Basic word must be followed by an argument. For example, the command:

Renumber 5,3

will provide automatic line RENUMBERing starting with line 5 and continuing
by increments of 5 (e.g., 5, 10, 15,...).

Disk Storage

A disk is a computer memory device which is used to store information. Disks
are typically used in place of main memory when large amounts of information
must be stored. A floppy diskette is similar in appearance to a phonograph
record. Most microcomputer systems currently offer disk storage capabilities
through either large or mini floppy disks. The floppy and mini floppy terms refer
to the two different sizes (8 inch and 5 inch respectively) of the flexible plastic
disks used with the disk assemblies.

In addition, Cromemco offers a hard fixed disk with a very large (10 megabyte)
storage capeaeity.

Entry Point

The starting line of a PROCEDURE within a Module. The Entry Point allows
Basic to locate a PROCEDURE within a Module or Library.

Expression

An expression is defined as any combination of variables, constants and

operators which is evaluated as a single value or logical condition. For
instance, in the statement:

10 Let Alpha = (Num1*Num2) + (Alpha*Num3)

the (Num1*Num2) + (Alpha*Num3) operation, the value of which is assigned to
variable Alpha, is interpreted as an expression. In the statement:

10 If Alpha = Beta Then Goto 250

the logical comparison Alpha = Beta is called an expression and is evaluated
to True (=1) or False (=0).

318

Cromemeo 68000 Structured Basie Instruction Manual
23. Glossary

File or Data File

A File defines a group of related information. This information is addressed by
means of a File Reference and usually resides on a floppy diskette.

File Name

This is a Cromix path name composéd of optional direectory names and a file name
separated by slashes (/). File names may also be a file name extension (usually
3 characters), separated from the name by a dot (.).

Firmware

Firmware is the middle ground between hardware and software. This term is
generally applied to specific software instructions that have been burned in or
programmed into Read Only Memory (ROM).

Floating Point Mode

Floating point mode refers to a method of computer calculation in which the
computer keeps track of the decimal point in each number. In Structured Basie,
three formats are used to define variables: Integer, Long Floating Point, and
Short Floating Point. In the Long Floating Point mode, numerical values are
allowed up tc 14 digits. In the Short Floating Point mode, numerical values are
limited to 6 digits. The default value in Cromemeco Basie is the Long Floating
Point (LFP) mode.

Hardwsare

In eomparison to firmware and software, hardware represents the actual material
(or hard) elements of a computer system. Items such as cireuit boards, printers,
terminals, and the computer itself are considered to be hardware.

Integer

An integer is defined as a whole number, positive or negative. The following

numbers are examples of integers and non-integers:

INTEGERS NON-INTEGERS

3 3.14159
10 66666
-5 2/3

319

Cromemeo 68000 Structured Basie Instruction Manual
23. Glossary

Integer Mode

Integer mode is a format used to define variables in which one or all variables
within a given program are set to integer values only.

Interactive

An interactive device is one used to achieve direct person to computer

communication, and vice versa. The teletype and CRT terminals are the best
known examples of interactive terminals, although many variations are possible.

1/0 (Input/Output)

The 1/C initials stand for Input and Qutput. I/O is the transfer of data between
the computer system and an external device. Devices such as CRT (Cathode
Ray Tube) terminals, TTY (teletypewriter) terminals, and disk drives are
examples of devices that accept the input data from the user, another peripheral
device, or from the computer memory, and that output data to the computer or
user,

Library

A collection of one or more Basic Modules which has been put into the required
Basie Library format by the Basic Library Editor.

Line Number

All lines in Basie begin with a line or stetement number. For example:
10~ Print Peaches,Pears

includes the statement number 10. Line numbers can be assigned manually or
through the AUTOL command and may be any integer from 1 through 99999, All
Basie lines have a unique number which may be used to access lines which
require modification or deletion from the program.

Line Name

A Line Name follows the Line Number and may be used to acecess the line for
EDITing, or to transfer control to the named line.

320

Cromemeo 68000 Structured Basie Instruction Manual
23. Glossary

Matrix

A matrix is an array of numeric variables in a preseribed form. For example, the

array:
3 2 0
1 4 6
-3 4 5

is a matrix with three rows and three columns. A matrix with m rows and n
columns is written:

all al2 all waslD
a2l 822 a23 eeel 2NN
aml am?2 am3 vesd NN

"~ The individual entries in the matrix are called elements or cells. For example
the quantity aij in the above matrix is the element in row i and eolumn j.
Subseripts used to indicate elements always denote the row first and the eolumn
second. Cromemeo Basic permits the user to define one, two, or three
dimensional matrices. A two (i.e., Mij) or three (i.e., Mijk) dimensional matrix
is commonly called a table. A one dimensional matrix, a matrix with n columns
but only one row, is commonly called a list. For example, the matrix:

3, -1, 5, -8

is a list (or a matrix) with one row and four columns.

Memory

The computer memory is used to store information, including programs and data,
for future use. Microcomputers typically use semiconductor memories, of which
the two most common types are random-access memory (RAM) and read-only
memory (ROM). From a hardware perspective, memory consists of an array of
bistable, individually addressable elements each of which represents a single
binary digit., Information can be stored either in meain memory, which commonly
consists of RAM or ROM, or external storage devices, which include disks,
magnetic tape, and magnetic drums.

321

Cromemec 68000 Structured Basic Instruction Manual
23. Glossary

Module

One or more PROCEDUREs which have been saved under one file name using the
Basie SAVE command.

Partition

A subdivision of memory while running under Basic. Memory is divided into eight
Partitions, numbered zero through seven (0-7). Each Partition may be loaded
with one Module.

Peripheral Device

Peripheral devices are units which are used in conjunction with a computer but
which are external to the computer. Peripherals refer to devices such as
printers, plotters, terminals, disk storage devices, ete., which can be connected
to the computer. The computer is assumed to be the central unit and periphersls
are merely support devices.

Procedure

A section of Basic code as delimited by the PRCCEDURE and corresponding
terminal ENDPROC, EXITPROC, or ERRPROC instructions.

Program

A computer program is a set of instructions arranged into statement lines. The
instructions are used to instruet the computer to perform specified operations
in a certain order. Programs are designed and written to solve a wide range of
problems and are used in applications as varied as process control, data
reduction, telephone systems, mathematical analysis, games, and stock market
transactions.

PROM

This acronym stands for Programmable Read Only Memory. PROMs consist of
an array of memory cells that can be fixed in certain patterns by the application
of higher than normal voltages. These memories are said to be non-volatile;
that is, when power is withdrawn the programmed pattern remains.

Recently, EPROMs, or Erasable Proms, have appeared and have found industry

wide usage. EPROMs may be erased by exposure to ultraviolet light, and then
re-programmed. The Cromemeco Bytesaver II is designed to program EPRCMs,

322

Cromemeo 68000 Structured Basie Instruction Manual
23. Glossary

Protocol

Protocol is a set of conventions on the format and content of messages to be
exchanged between two logical devices. Most often, differences in timing
account for failure of devices to communicate. For example, a certain signal
might, of necessity, be present to enable an I/O request to a mieroprocessor's
protocol. To mateh a computer to a terminal, one must know the mutual
handshake protocol.

RAM

RAM stands for Random Access Memory, or read-write memory. In contrast to
PROMs, read-write memory can be changed as well as being read. Some RAMs
(known as dynamie) retain data for only a fraction of a second and must be
refreshed constantly to retain data. All RAM is volatile and must have power
applied to retain data patterns.

ROM

A ROM is a Read Cnly Memory device that is used for storing fixed information.
This information is burned in, or programmed, at specific locations when the ROM
is manufactured. A ROM cannot be written into during operation. Any ROM that
can later be altered is a Programmable Read Only Memory (see PROM). ROM
family memories, once burned, retain their data regardless of power
contingencies.

Seetor

A Sector is a subdivision of a track. Generally, sectors are 128 bytes or 512
bytes in size. .
Software

Software is a term used to refer to the programs, languages and procedures used

in a computer. For example, the Structured Basic interpreter as well as any
Basic programs are identified as software.

Statement or Statement Line
A statement in Basic is an instruction or series of instructions to the ecomputer.

A statement is defined as one line in a Basie program which is preceded by a
line number. For example:

100 Quantity = Number'per'box * Boxes

323

Cromemeo 68000 Struetured Basice Instruction Manual
23. Glossary

is defined as a statement. Typically, a statement can contain a maximum of 132
characters.

A powerful feature of Cromemco Structured Basic is the ability to use most
statements as commands. AS such, they may be used without line numbers and
executed immediately. This is very useful for debugging programs,

Cromemeo Structured Basic also allows more than one instruction on a single
statement line as long as adjacent instructions are separated by a colon (:).
String Literal

A string literal (or string) is a sequence of alphanumeric characters, spaces,
and special characters. In Structured Basic, string literals must be enclosed
within quotation marks. Examples of valid string literals include:

"Cromemeo Structured Basie"

"12345"

"This program prints square roots"

The statement:
100 Print "Cromemeo Structured Basie®
will cutput the string

Cromemeo Structured Basie

String Variable

A string variable is a variable which may assume the value of a string literal.

Track

A Track is a physically defined eircular path which is concentric with the hole
in the center of a disk. It is defined by its distance from the center of the disk.
With the read/write head of the disk drive located on a given track, data may
be read from or written to that track. A large floppy disk has 77 tracks per
side, while a small disk has 40 per side,

324

Cromemeo 68000 Structured Basie Instruction Manual
23. Glossary

User Area
The User Area is the Basic workspace in which a program can be written,
EDITed, and RUN, The LIST command displays the contents of the User Area.
Variable
A variable is a quantity that can assume any one of a given set of values. In
Structured Basie, variables are defined by a letter (A through Z) followed by
any combination of up to 30 letters, numbers, and apostrophes ('). Examples
of legal variable names include:

Oranges

Boxes'of'Oranges

Cost'per'box

Al

- Variables represent numeric values. In the statement:

20 Portion = 8 + 2

Portion is the variable and 8+2 or 10 is the value assigned to Portion. A new
value can be assigned to Portion at a subsequent point in the program.

325

- Cromemeo 68000 Structured Basie Instruetion Manual

326

Cromemeco 68000 Structured Basie Instruetion Manual
24. Basic Error Messages

Chapter 24

BASIC ERROR MESSAGES

This chapter deseribes the error messages produced by Basie.

FATAL ERRORS

This section describes fatal errors; that is, those errors that cause the execution
of a command or program to cease.

FATAL ERRORS

Number Message Meaning

1 Syntax This error message covers a number of errors
whiech can oecur when the user is entering
(typing in) a program.

For example:

Unmatched parentheses:
A=(B*(C)
Misspelled words:
Print A
Wrong data type: A$=3*A
Bad punctuation:
Print A(7;2)

Because there is only one message for all these
errors, a dollar sign is printed under the line
in error at a position approximately indicating
the position of the error.

2 Using Syntax The format string for a Print Using instruction
is in error.

327

Cromemeo 68000 Structured Basie Instruction Manual
24. Basie Error Messages

10

Number of
Arguments

Illegal
Statement

Print Item Size

Too Many Gosubs

Expression Too
Complex

Return, No

Gosub Active

Next Without
For

For example:

Print Using "#.##!1!1", 3.2E9
(only 3 exclamation marks; 4 required)

A function call requires a
different number of arguments than the number
passed to it.

For example:

Def Fna(X,Y)=X+Y
Print Fna(J)

1. This can be caused by
entering a line with a syntax error and then
RUNning the program without correcting the
line.

2. In certain systems, certain statements can
be declared invalid. For example, POKE
might be illegal in a multi-user system.

An attempt was made to PRINT a single item
whieh required more characters than the current
page width.,

For example:

Set 0,10
Print "Lots of characters"

Subroutines are nested within subroutines to
a depth which exceeds that allowed by Basic.

Too many levels of
expressions, too many parentheses or functicn
references,

The program has no place

to RETURN. This can be caused by deleting a
line with a GOSUR statement and then
encountering its corresponding RETURN
statement,

FOR and NEXT statements

must be paired. This error may occur if a line
containing a FOR statement is deleted.

328

Cromemeo 68000 Structured Basie Instruction Manual
24. Basic Error Messages

12

13

14

15

16

17

19

20

21

User Function
not Defined

Invalid
Dimensions
given

Goto or Gosub
non~existent
line

Subseript
Value(s)

Number of
Subseripts

Duplicate
definition
of label or
funection

Use of
undefined
line label

Run time

stack improperly

nested

Attempt to go
back to altered
or deleted line

A user function is)

referenced by the program but has not been
defined. If the line containing the function
definition (DEF FNS(X)) is deleted, the function
is no longer defined.

Invalid argument(s) in the
DiMension statement.

For example:

Dim A(-20) a negative number
Dim B(5,5,5,5) too many subseripts
Dim C$(20000) too large an integer
(> 16382)

A GOTO or GOSUB statement
refers to a line that does
not exist.

The values assumed by
subseripts must be less than those in the
DIMension statement.

The number of subscripts
associated with a variable must mateh the number
of subseripts in the DIMension statement.

An attempt has been made

to give two different

statements the same line

label or to give two different functicns the same
function name.

Control is transferred to
a line label which does
not exist.

The terminating

instruetion of a control

structure does not mateh the initial instruction
of that control structure.

For example:
10 While x 20 Enddo

A statement containing

part of a control

structure was EDITed or DELETEG and then an
attempt was made to return control to that
statement.

329

Cromemeo 63000 Structured Basic Instruction Manual
24. Basie Error Messages

22

23

24

71

72

73

74

99

DIM would
overflow top
of existing
COMMON

Bad Begincommon/
Endeommon
sequence

String/numeric
ex pression
mismatch

No such
procedure
available

Bad arguments
to a procedure
CALL/ENDPROC

No free
partitions
to load
procedure/
module into

Invalid
procedure
library

FEATURE NOT
IMPLEMENTED

The maximum size of the
Common Storage Area is
defined in the main

program (Partition zero).

An ENDCOMMON instruction

was encountered with no

previous corresponding BEGINCOMMON
instruction.

A syntax error for an
expression incorrectly
involving both string and numeric data.

For example:
If Ax$ = Bp$ + 7 Then 200

PROCEDURE name not found

in the current Partition

or any other Partition or the Current Library
(if open).

The arguments for a

Procedure CALL or ENDPROC

do not mateh the arguments in the PROCEDURE
definition.

For example:

10 Call .Xyz (Mat Aa)

500 Procedure .Xyz (String$)

o

L)

All eight Partitions are
either manually or auto-
matically LOCKed.,

The specified Library was

not properly built. The

Library must be composed of one or more SAVEd
files whieh have been concatenated by the
LIBBUILD program.

This feature has not been
implemented.

330

Cromemeo 68000 Structured Basic Instruction Manual
24. Basic Error Messages

101

102

End of Statement/
End of Line

Cut of
Memory

This is an internal Basic
error - please document and mail to Cromemco,
Customer Service Dept.

There is not enough memory

to store the array (string) or to execute the
specified control structure. Running or changing
a program after the occurrence of Error 102
produces unpredictable results and should not
be done.

USER TRAPPABLE (NON-FATAL) ERRORS -

This section describes errors that can be trapped with the ON ERROR instruction
deseribed in Chapter 17.

129

130

131

132

133

134

File not
Found
Illegal Filename

Invalid Command
for Device

File Already
Open

File Not Open
File Number

Out of Range

Cannot Open
File

Meaning

File not found on disk
(file not in directory) or the device name is not
in the device directory list.

An illegal file name was passed.

A command was given to a

device which that device was incapable of
performing. For example: a read command given
to a line printer.

An OPEN command was given
to a file which was already OPEN.

A read or write was attempted using a file which
had not been OPENed,

The file number requested

was outside the allowable range. The file number
must be greater than 0 and less than or equal
to the maximum channel number. The file number
can never be greater than 16,

A message from the device
driver. (A non-zero value returned on OPEN.)

331

Cromemeo 68000 Structured Basie Instruetion Manual
24. Basie Error Messages

135

136

137

138

139

140

141

142

143

144

145

No File Space

File Mode Error

Cannot Create
file

File Read: No
Data

File Write

File Position/
status

No Channels
Available

Cannot Close
File

KSAM-Invalid
Alternate
File Request

KSAM-Key
Length

KSAM~
Record Size

All files in use., The system must have one
unused channel to do a LIST, ENTER, SAVE, or
LOAD.

CDOS only - no more space on disk {or there
are 64 directory entries).

A read was attempted from a write only file or
vice versa.

An attempt was made to
CREATE a file that already exists.

End of file read, or, for
random access only, an attempt to read a portion
of the file which had not been written.

A message from CDOS - an attempt was made
to write to a write protected disk or an error
oceurred while writing to the disk.

An attempt was made to
read a negative file record or record larger than
240K bytes.

All 1/0 channels in use.
(The maximum number of channels is system
dependent.)

The specified file has
been erased from the disk or a different disk
has been inserted in the drive,

An Alternate file request

was given to a Primary

file or the corresponding Primary file was closed
or missing or a KALTCREATE or KALTOPEN
instruction was given with an invalid Primary
file reference,

The combined Key length

for both the Primary and Alternate Keys is
greater than 250 bytes or the Key length is
shorter than originally specified (except
KGETAPP).

The variable list in a

read or write instruction was greater than the
specified record size.

332

Cromemeo 68000 Structured Basie Instruetion Manual
24. Basie Error Messages

146

147

148

NOTE:

161

162

163

164

167

1638

169

170

171

Not a KSAM
file

File is KSAM
file only

Wrong Number
of Volume
Names Specified

A Basie-KSAM operation
was attempted on a standard (non-KSAM) file.

A standard operation was
attempted on a Basic-KSAM file.

The number of files

specified on a KOPEN or

KALTOPEN must match the number of files
specified by the corresponding KCREATE or
KALTCREATE instruetion plus any files which
have been added by use of the KADDVOL
instruction.

THERE IS A DETAILED DESCRIPTION OF ERRORS NUMBERED 161-190
AT THE END OF CHAPTER 22.

KSAM-Primary
File Empty

KSAM-Primary
Beginning
of File

KSAM-Primary
End of File

KSAM~-Primary
Invalid Key

KSAM-Primary
Invalid Request

KSAM-Primary
Invalid Create
Parameters

KSAM-Primary
File exists

KSAM-Primary
Key Set Full

KSAM-Primary
No Free Bloeks

An attempt to access a
record of an Empty Primary Data File.

An attempt to read a
record before the first
record of the Primary Data file.

An attempt to access a
record beyond the last record of the Primary
Data File. :

The Primary Key already
exists (write operations) or does not exist (read,
update, and delete operations.)

Refer to the detailed
descriptions of error codes in the Basic-KSAM
chapter of this manual.

The parameters in the
KCREATE instruection are
incorrect.

A file with the same file
name and extension already exist on the
specified drive.

The Primary Key Set is
Full. The file must be closed and compacted
using the utility program before proceeding.

No more space on disk.

Either add another volume (KADDVOL) or close
and compact the file (utility program) before
proceeding.

333

Cromemeo 68000 Structured Basic Instruction Manual
24. Basic Error Messages

173

174

177

178

179

180

183

184

185

186

187

189

190

KSAM-Primary
Cpen
Failed

KSAM~Primary
1/O Error

KSAM-Alternate
File Empty

KSAM~Alternate
Beginning
of File

KSAM-Alternate
End of File

KSAM-Alternate
Invalid Key

KSAM-Alternate
Invalid Request

KSAM~-Alternate
Invalid Create
Parameters

KSAM~-Alternate
File exists

KSAM~-Alternate
Key Set Full

KSAM~Alternate
No Free Blocks

KSAM-~-Alternate
Open
Failed

KSAM-Alternate
1/C Error

The operating system
could not
open the Primary Data file.

The operating system
could not access the disk as was required.

An attempt to access a
record of an Empty Alternate Key File.

An attempt to read a
record before the first
record of the Alternate Key file.

An attempt to access a
record beyond the last record of the Alternate
Key File.

The corresponding Primary
Record does not exist (read, update, and delete
operations.)

Refer to the detailed
descriptions of error codes in the Basic-KSAM
chapter of this manual.

The parameters in the
KA LTCREATE instruction
are incorrect,

A file with the same file
name and extension already exist on the
specified drive.

The Alternate Key Set is
Full. The file must be closed and compacted
using the utility program before proceeding.

No more space on disk.

Either add another volume (KADDVOL) or close
and compact the file (utility program) before
proceeding.

The operating system
could not
open the Alternate Key file,

The operating system
could not access the disk as was required.

334

Cromemeo 68000 Structured Basie Instruetion Manual
24, Basic Error Messages

200

201

202

203

204

205

206

207

208

209

210

250

231

Invalid Hex
Number

Integer Overflow

Funetion
Argument
Value

Invalid Input
Too Mueh Input
Not Dimensioned
No Data

Statement

Data Type
Mismateh

Number Size

Line Too Long
Input Timeout
Overflow/

Underflow

Errproc return
from a procedure

Hexadecimal numbers
must contain only the characters 0 through 9
and A through F.

A value greater than 32767 was assigned to an
integer variable.

A function was called
using an illegal argument.
For example: Sqr(-2).

An attempt was made to INPUT non-numeric data
into a numeric variable.

An attempt was made to INPUT more items than
were called for in the INPUT instruction.

A reference was made to a subseripted variable
which had not been DIMensioned.

An attempt was made to

READ past the end of the DATA supplied. Either
there was a READ with no DATA statement or
there were not as many items in the DATA
statement as in the READ list.

An attempt was made to
READ a numeric value to a string variable or
vice versa,

For example:

10 Data 5
20 Read A$

An attempt was made to assign a value outside
of the range 9.99E+62 to 9.99E-65 to a variable.

A line longer that 132 characters was entered,

See the SET instruction for information about
this error.

A floating point operation

produced a number outside of the range 9.99E+62
to 9.99E-65. For example: A=1/0. Or, Integer
arithmetic caused results outside of the range
-32768 to 32767,

This error is set when an
ERRPROC instruction is executed.

335

Cromemeco 68000 Structured Basie Instruction Manual

336

Crorﬁemco 68000 Structured Basic Instruction Manual
A.ASCII Character Codes

Appendix A

ASCII CHARACTER CODES

This table lists the ASCII codes.

DEC. HEX CHAR. DEC. HEX | CHAR. | DEC, HEX CHAR.
000 00 NUL (CONTROL-@){ 043 2B + 086 56 v
001 01 SOH (CONTROL-A)f 044 2C s 087 a7 w
002 02 STX (CONTROL~B) | 045 2D - 088 58 X
003 03 ETX (CONTROL-C)| 046 2E . 089 59 Y
004 04 EOT (CONTROL-D)| 047 2F / 090 5A Z
005 05 ENQ (CONTROL~E)] 048 30 0 091 5B [
006 06 ACK (CONTROL~F)] 049 31 1 092 5C \
007 07 BEL (CONTROL-G)} 050 32 2 093 5D]
008 08 BS 051 33 3 094 S5E ~
009 09 HT 052 34 4 095 5F <
010 0A LF 053 35 5 096 60 '
011 0B VT 054 36 6 097 61 a
012 oc FF 055 37 7 098 62 b
013 0D CR 056 38 8 099 63 [¢]
014 OE SO (CONTROL-N)§ 057 39 9 100 64 d
015 0F SI (CONTROL-O) { 058 3A H 101 65 e
016 10 DLE (CONTROL~P)] 059 3B H 102 66 £
017 11 DC1 (CONTROL-Q)| 060 3C < 103 67 g
018 12 DC2 (CONTROL~R) | 061 3D = 104 68 h
019 13 DC3 (CONTROL~S)} 062 3E > 105 69 i
020 14 DC4 (CONTROL-T){ 063 3F ? 106 BA i
021 15 NAK (CONTROL-U)] 064 40 @ 107 6B k
022 18 SYN (CONTROL-V)] 065 41 A 108 6C 1
023 17 ETB (CONTROL-W)}] 066 42 B 109 6D m
024 18 CAN (CONTROL-X)] 067 43 C 110 6E n
025 19 EM (CONTROL-Y) 068 44 D 111 6F o
026 1A SUB (CONTROL-Z) § 069 45 E 112 70 p
027 1B ESC (CONTROL-[) § 070 46 F 113 71 q
028 1C FS (CONTROL-\) { 071 47 G 114 72 r
029 1D GS (CONTROL-])] 072 48 H 115 73 s
030 1E RS (CONTROL-"){ 073 49 1 116 74 t
031 1F US (CONTROL~)} 074 4A J 117 75 u
032 20 (SPACE) 075 4B K 118 76 v
033 21 ! 076 4C L 119 77 w
034 22 " 077 4D M 120 78 X
035 23 # 078 AE N 121 79 y
036 24 $ 079 4F 0 122 7A 4
037 25 % 080 50 P 123 7B {
038 26 & 081 51 Q 124 7C

039 27 ! 082 52 R 125 7D }
040 28 (083 53 S 126 7E -
041 29) 084 54 T 127 7F DEL
042 24 * 085 55 U

Legend

LF=Line Feed

FF=Form Feed

CR=Carriage Return

DEL=Rubout

ESC=escape character

337

Cromemeo 68000 Structured Basic Instruction Manual

338

Cromemeo 68000 Structured Basice Instruction Manual
Index

abs, 167

absolute value, 166

add record, alternate file, 302
add record, primary file, 287
add volume to existing file, 278
address of a variable, 215

adr, 215

and boolean operator, 34
arctangent, 181

argument, 315

arithmetic function, 166
arithmetic operator, 29
arithmetic operators, 37
arithmetic variable, 38

ase, 186

aseii, 136, 315

aseii hex representation, 189
asecii table, 337

ascii value of a character, 186
assignment instruction, 75
assignment operator, 30, 38, 75
atn, 181

autol, 44

automatic line numbering, 50
available partition, 315

basic library editor, 316
basie word, 316
begincommon, 227
binadd, 168

binary code, 316
binary operations, 168
binor, 168

binsub, 168

binxor, 168

blank character, 5
boolean operator, 34

bye, 51

call, 244

call a user program, 221
chaining, 46
change, 58

change string, 58
character, 187
chr$, 187

clear, 251

clear partition, 251
close, 144

close file, 144, 276
command, 6, 316

339

Cromemeo 68000 Structured Basie Instruction Manual
Index

command mode, 3

common, 225

common storage area method, 225
common storage area method ii, 227
con, 91

constant format, 13

continue program execution, 91
control character, 316

control structure, 317

cos, 182

cosine, 182

create, 141

create alternate key file, 295
create file, 141

current library, 317

current partition, 317

current program, 317

data, 119, 317

data files, 133

date, set or read, 198

def fns, 164

default, 317

define local variable, 230

deg, 82

degree mode, 82

delete, 52

delete record, alternate file, 303
delete record, primary file, 285
delete remark statements, 257
delete statement lines, 52
delrem, 257

dim, 83

dimension, 83

dimensioning string variable, 20
dir, 45, 54

directory, 54

disable echo, 201

disable escape, 203

disable trace option, 72

disk drive, 199

disk storage, 318

DO, 104

dsk, 199

edit, 55

edit program lines, 55
editing, 42

else, 104

enable echo, 200
enable escape, 202

340

Cromemeo 68000 Structured Basic Instruction Manual
Index

enable trace option, 71
end, 92

end program execution, 92
endecommon, 227

endproc, 248

endwhile, 108

enter, 59

enter file, 59

entering from a disk file, 45
entry point, 318

erase, 145

erase file, 145

error messages, 327
errproc, 249

esc, 202

example program, 161, 268
examples, 37

Execute a shell command, 213
execution mode, 40

exp, 169

expand string, 188
exponent, 169

expression, 318

fatal errors, 327

fields, 134

file name, 319

file or data file, 319
file pointer, 134

find, 57

find string, 57
firmware, 319

fkey$, 224

floating point constant, 13
floating point mode, 319
for-next loop, 93

fra, 170

fractional portion, 170
fre, 204

free space, 204
functions, 163

get, 138, 158, 161
get record, 158
gosub, 106
gosub-retry, 98
gosub-return, 96
goto, 43, 100, 106

hardware, 319

341

Cromemeo 68000 Struetured Basie Instruetion Manual
Index

hex$, 189
hexadecimal, 11
hexadecimal constant, 14

ifo, 320

i/o drivers, 138

i/o status, 205

if-then, 102

if-then-else, 104

ikey$, 224

immediate mode, 3

imode, 84

implied let, 76

inp, 216

input, 111, 135, 137, 152

input (from the console), 111

input from i/o port, 216
input/output, 320

instruction syntax, 5

int, 171

integer, 9, 85, 319

integer and floating point constants, 13
integer constant, 13

integer mode, 84, 320

integer portion, 171

integer random number generator, 172
integer variable, 85

interactive, 320

internal machine representation, 136
iostat, 205

irn, 172

kadd, 287
kaddvol, 278
kaltadd, 302
kaltereate, 295
kalteur, 298
kaltdel, 303
kaltfirst, 299
kaltfwd, 300
kaltopenl, 297
kaltver, 301
kelose, 276
kdel, 285
keyf, 224
keyi, 224
kget, 292
kgetapp, 283
kgetback, 279
kgeteur, 290
kgetfwd, 280

342

Cromemeo 68000 Structured Basie Instruction Manual
Index

kgetkey, 282
kgetree, 286
kload, 289
kopen, 277
kput, 293
kretrieve, 291
kupdate, 284

len, 190

length of string, 190

let, 75

1fmode, 86

library, 252, 320

line name, 320

line names, 7

line number, 40, 320

list, 41, 61

list current program, 61
list variables, 63

listing to a disk file, 44
load, 46, 64

load program, 64

load record, primary file, 289
local, 230

lock, 254

lock partition, 254

log, 173

logarithm, 173

long, 87

long fleating point, 10

long floating point mode, 86
long fleating point variable, 18
long variable, 87

lvar, 63

mat, 77

matrix, 18, 321

matrix initialization, 77
max, 174

maximum value, 174
memory, 321

min, 175

minimum value, 175
module, 322

multiple instruection line, 7

next, 93

noecho, 201

noese, 203

non-fatal errors, 331

343

Cromemeo 68000 Structured Basic Instruetion Manual
Index

not boolean operator, 35

ntrace, 72

numeric internal machine representation, 9
numeric sorting conversions (basiec-ksam), 224
numerie variable, 17

on error transfer control, 206
on ese, 207

on escape transfer control, 207
on-gosub, 106

on-goto, 106

open, 142

open alternate file, 297

open file, 142

open primary file, 277
operator, 29

or boolean operator, 34

out, 218

output to i/o port, 218

partition, 322

peek at memory, 219
peripheral device, 322
poke into memory, 220
pos, 191

position of substring, 191
print, 37, 114, 135, 137, 148
print (to the console), 114
print using, 121
procedure, 247, 322
procedure call, 244
procedure definition, 247
procedure end, 248 _
procedure error end, 249
procedure exit, 250
program, 40, 322
programmer defined funetion, 164
prom, 322

prompt (>>), 3, 5

protect program lines, 259
protocol, 323

put, 138, 155, 161

put record, 155

rad, 88

radian mode, 88

ram, 323

random aceess file, 161
random files, 136

random number generator, 177

344

Cromemeo 68000 Structured Basie Instruction Manual
Index

randomize, 176

read, 117

read approximate, primary file, 283
read current record, primary file, 290
read data, 117

read date, 198

read fields, current record, 292

read next record, primary fie, 280
read nth record, primary file, 286
read previous record, primary file, 279
read random record, primary file, 282
read time, 197

records, 134

referencing string variable, 20
relational operator, 32

rem, 73

remark, 73

ren, 147

rename file, 146, 147

renumber, 65

renumber statement lines, 65
repeat-until loop, 107

restore, 118

restore data pointer, 118

retrieve primary key, current record, 291
retry, 98

return, 96

rnd, 177

rom, 323

run, 41, 68

run program, 68

save, 46, 69

save program, 69

ser, 43

serateh, 70

seratch user area, 70

seetor, 323

seleet procedure library, 252
sequential files, 135

set, 208

set date, 198

set system parameter, 208
set time, 197

sfmode, 89

sgn, 178

short, 90

short floating point, 9

short floating point mode, 89
short floating point variable, 18
short variable, 90

sin, 183

345

Cromemeo 68000 Structured Basie Instruction Manual
Index

sine, 183
software, 323
space, 5, 129
spe, 129
sqr, 179
square root, 179
statement, 6, 40
statement line, 323
statement number, 40
stop, 110
stop program execution, 110
str$, 193
string, 11
string equivalent, 193
string internal machine representation, 9
string literal, 15, 324
string literal format, 13
string variable, 19, 39, 324
symbol [1, 315
syntax, 5

! sys, 210
system parameter, 210

tab, 130

tan, 184

tangent, 184

then, 102, 104

time, set or read, 197
trace, 71

track, 324

trigonometrie function, 180
type, 223

ty pe of variable, 223

unloek, 255

unlock partition, 255

until, 107

update record, primary file, 284
upper case character, 5

use, 253

use partition, 253

user area, 41, 325

user trappable (non-fatal) errors, 331
usr, 221

val, 194

vale, 195

value of string, 194

value of string with error checking, 195
variable, 38, 325

346

Cromemeo 63000 Structured Basie Instruction Manual
Index

variable representation, 17
verify alternate record, 301

while-endwhile loop, 108
write fields, current record, 293

xor boolean operator, 35

347

(Detach Here)

Reader Responses To This Documentation

Dear Reader,

We have made a sincere effort to provide you with the information you need in this manual. If you should find
the documentation deficient or in error, let us know so we can correct it. We appreciate and value your response;
it will be useful in improving the documentation. Please detach and use the Reader Response Card below to send

us your comments.
Thank you for your time and interest in Cromemco products.
Sincerely, ,
. . A
Technical Pblications Manager

(Detach Here)

Cromemco’ Reader Response Card

To: Winthrop A. Stiles II,
Technical Publications Manager
Re (Manual title):

My System is (Specify configuration):

The following information is incorrect (Please specify page number):

(Fold Here)

The following additional information would be helpful:

What general suggestions do you have for improving this manual?

If you need a response from Cromemco, please print your name, mailing address, and telephone number:

Name:

Address:

Telephone: ()

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 599 MOUNTAIN VIEW, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Cromemco*

Attn: Winthrop A. Stiles [l
Technical Publications Manager
280 Bernardo Avenue
P.0. Box 7400
Mountain View, CA 94039

(Eald ac indicatad and tama tha adea)

280 Bernarco Ave.
P.O. Box 7400
Mountain View, CA 94039

