Introduction to
Cromix-Plus

Reference Manual

Cromemco

Introduction to
Cromix-Plus

Reference Manual

023-5012
October 1987 Rev. F
CROMEMCO, Inc. Copyright © 1986
P.O. Box 7400 CROMEMCO, Inc.
280 Bernardo Avenue Al Rights Reserve d

Mountain View, CA 94039

This manual was produced using a Cromemco System 420 computer running under the
Cromemco UNIX Operating System. The text was edited with the Cromemco CE Editor.
The edited text was formatted by the UNIX TROFF formatter and printed on a Texas
Instruments OmniLaser 2108 Printer.

The following are registered trademarks of Cromemco, Inc.

C-Net®
Cromemco®
Cromix®
FoniMaster®
SlideMaster®
SpellMaster®
System Zero®
System Two®
System Three®
WriteMaster®

The following are trademarks of Cromemco, Inc.

c-10™
CalcMaster ™
Cromix-Plus™
DiskMaster’
Maximizer
TeleMaster
System One™
System 100™
System 120™
System 200™
System 220™
System 400™
System 420™

UNIX is a registered trademark of Bell Laboratories.

CONTENTS

Chapter 1 - Introduction

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
213
2.14
2.15
2.16

Chapter 2 - Getting Started

Before You Begin

The Terminal Keyboard

Logging in to the Cromix-Plus System
Some Conventions Used in this Manual
Giving Some Typical Commands
Command Arguments

Command Syntax . .
Displaying the On-line Manual .
Stopping a Program While it is Executing
Displaying Additional Screens of Information
The Terminal as a Carriage-Return Device
Error Messages

Changing Your Password

Logging Out

Intrinsic Commands

Privileged Access .

Chapter 3 - Working With Text Files

3.1
3.2
33
34
3.5
3.6
3.7
3.8
39
3.10
3.1
3.12
3.13
3.14
3.15
3.16
3.17

Naming Files

An Additional Conslderatlon When Nammg Flles
Special Characters -
Creating a Sample File

Displaying a List of Files

Command Options .
Access Privileges for the Owner of a Fxle
Displaying the Contents of a File

Displaying a File with Page Headings and Llne Numbers .

Making a Copy of a File
File Links ..

Renaming a File

Deleting a File .

Some Common Error Messages

Printing a File . .
General Rules for Command Opuons .

The .bin, .com, and .cmd Filename Extensions

Chapter 4 - Cromix File Structure .

4.1
4.2
4.3
4.4
4.5
4.6

The Home Directory
Visualizing the Cromix-FPlus Flle Slruclure
Absolute Pathnames

How to Make Sure You Have Execute Access for a Dnrectory

Displaying the Absolute Pathname of an Executable File
Relative Pathnames N ..

O OD 00 =~ ~1 L R W R e

h Sk

SO~ =~ TN W0 N RN e

e e T e T T
A R N DO ND

L7 T N T

O WD Co

4.7 Changing Directories .

4.8 Creating a Directory

49 Moving Files to a Directory

4.10 How Move Works

4.11 Copying Files to Another Dxrectory e e e .
4,12 Renaming Files With Move and Copy
4.13 Shortcuts for Working Within a Directory Structure

4.14 Deleting a Directory Structure

4.15 Copying a Directory Structure .

4.16 How the Shell Looks for Executable Fl]es

4.17 Special Files in the Home Directory

4.18 Device Files

Chapter 5 - The Mail Utility

5.1 Sending Mail .

5.2 Correcting Mistakes Whl]e Usmg Mall

5.3 What Happens to the Mail You Send .
54 How Do You Know When You Have Mail
5.5 Reading Your Mail

5.6 The mbox File . .
5.7 Sending the Same Mail to Several Users .

Chapter 6 - The Cromix-Plus Shell
6.1 The Standard Output

6.2 The Standard Input

6.3 The Sort Utility .

6.4 Redirecting Output to a Flle

6.5 Appending Output to a File .

6.6 Redirecting Type’s Output to a File

6.7 Redirecting Input From a File

6.8 Running a Job in the Background

6.9 Giving Sequential Commands

6.10 Parentheses on the Command Line
6.11 Redirecting Error Messages .

6.12 Redirection with Pipes

6.13 Redirecting Output 10 2 Temporary Fxle
6.14 The Tee Command o e A
6.15 Filename Generation

6.16 Specifying a Range of Characters

6.17 An Important Consideration Regarding Fllename Generatlon .

6.18 Experimenting with Filename Generation

Chapter 7 - Writing Command Files
7.1 Command-File Description

7.2 A Practical Use of the Path Command
7.3 Redirection Within a Command File

7.4 The Echo Command

7.5 Command File Structure .

7.6 The Goto Command

- -

11
13
14
14
14
15
17
19
20
22
23
25

AR W W N DD e e

W N =

CO ~3 O\ A

11
11
12
13
13
14
15
17
17

103 DD e e

~1 B

7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15

Al

The If Command

The Shift Command

The Rewind Command

The Exit Command .
The Input and Stremp Commands
The Strcmp Command

The Repeat Command

The Scan Command

Sample Command Files

Appendix A - The Shell Command-Line Editor

Retrieving the Previous Command .

- il -

Chapter 1 Introduction

Chapter 1 - Introduction

The Cromemco Cromix-Plus Operating System is a program that supervises the operation of the
computer and its resources, disk drives, printers, terminals, modems, and so on. All computers, even
the personal computer you may have at home, require some kind of operating system.

The Cromix-Plus system stores information in files--each containing some related information, and
each having a distinct filename. (Physically, these files are located on some storage medium, such as
the computer’s hard disk.) To ensure that files are easy to access, the Cromix-Plus system organizes all
files in directories within a hierarchical file structure (chapter 4).

Password security and a system of access privileges protect files from unauthorized access. If desired,
access privileges can be changed to authorize access by selected users.

At any given time, a personal computer can normally do only one job for one user. A Cromemco
microcomputer, on the other hand, can be working on numerous jobs for many users. The Cromix-
Plus system is a multiuser system. Whiie the computer compiles a program for one user, it may be
printing a file for another. From the viewpoint of the Cromix-Plus user, the computer is dedicated to
his or her special needs.

Cromix-Plus is also a multitasking operating system. To illustrate, suppose you need to print 10 copies
of a lengthy report, and you also need to edit an important file. By printing the report as a
"background” task, you can free your terminal for other work, such as editing that file. This is
"multitasking,” and it means you won’t waste time waiting for one job to finish so you can start
another.

With some multi-user systems, as the number of users and tasks increase, it takes longer and longer to
process individual jobs. Such degradation in performance can be a real problem. With the Cromix-
Plus Operating System, degradation is minimal because the Cromix-Plus system takes full advantage of
the Cromemco computer's 68000 microprocessor family.

Supplied with every Cromix-Plus system is a set of utility programs. These utilities handle the jobs
users need done again and again, such as printing a copy of a file (the Spool utility) or giving a file a
new filename (the Rename utility). The most versatile of Cromix-Plus utility programs is the Shell
utility. The Shell provides the interface between the Cromix-Plus Operating System and its users. It is
the Cromix-Plus command interpreter and command processor. The Shell is also programmable, which
means you can instruct it to process commands in special ways. Such customized commands can be
given from the command line (chapter 6) or from command files (chapter 7).

The Cromix-Flus Operating System is as powerful as many operating systems designed to run on large,

Cromemco Introduction to Cromix-Plus Manual 1—1

Introduction Chapter 1

mainframe computers. Its capabilities include:

Device-compatible 1/O, to support redirection of input and output.

Date and time support.

Numerous file buffers for high-speed execution.

Resident execution of tasks (jobs are not swapped out to disk).

» RAM-disk feature, providing extra RAM for use as a high-speed disk.

1—2 Cromemco Introduction to Cromix-Plus Manual

Chapter 2 Getting Started

Chapter 2 - Getting Started

In this chapter, you'll start using the computer and give some simple commands to the operafing
system. In the process, you’ll become familiar with your terminal keyboard and some of the
conventions used in this manual.

If you've used a computer with a multi-user operating system before, much of the information in this
chapter will seem familiar. Be sure to at least skim through the chapter before continuing.

2.1 Before You Begin
Talk to the System Administrator--the person in charge of your Cromix-Plus System. The System

Administrator will create a user account and a directory for you.

The System Administrator will also help you choose a login name and password. Your login name
identifies you to the operating system--your password ensures that only you can log in with your login
name.

When you have received a login name and password, you can log in to the system. In other words,

vou can tell the Cromix-Plus system you wish to use the computer, and the system will grant your
request.

2.2 The Terminal Keyboard

Figure 2-1, a Cromemco 3102 terminal keyboard, points out some important keys.

Cromemco Introduction to Cromix-Plus Manual 2—1

Getting Started Chapter 2

{Recemer ru..;:""m IR) N B . i T e ¥ { : 1
T L i et e 1 v v e Sl e | mee |omea [P0 1% s Do s
" ar o 17 wone o

o fon R (€
N T4 s foie b
et i ‘

l-Control Key Delete Key—J Return Key

Figure 2-1: CROMEMCO 3102 TERMINAL

The RETURN key is an end-line key. After you've typed am instruction to the operating system,
pressing RETURN ends the typed line and enters that instruction. As you're typing fexr from the
keyboard, a RETURN ends the current line so you can begin a new line.

The DELETE key deletes characters on the current line. (DELETE is not an "abort,” or program-
interrupt, key as it is with some other operating systems.)

The CONTROL key is discussed later in the chapter.

2.3 Logging in to the Cromix-Plus System

Many terminals may be connected to a multi-user Cromix-Plus system, and the system keeps track of
what terminals are in use. When a terminal is not in use, the system displays the prompt "Login:".

This prompt means that you (or any system user) can log in to the Cromix-Plus system from that
terminal.

You should see "Login:" on the terminal now. If you do not, make sure the terminal is turned on
(there is an ON/OFF switch at the rear of the terminal). Then press the RETURN key on the terminal
keyboard a few times.

With the cursor next to "Login:", type your login name. Because the Cromix-Plus system is pot

2—2 Cromemco Introduction to Cromix-Plus Manual

Chapter 2 Getting Started

sensitive to letter case, you can use any combination of upper- and lowercase letters. After typing the
last letter of your login name, press the RETURN key. In response, the system displays a password
prompt, as shown here:

LOGIN: jim
Password:

To protect your password, you will not see what you type when you answer this prompt. (Nor will the
cursor move.) After typing the last letter of your password, press RETURN.

Note: If you think you mistyped your password, just press RETURN. The system will give you a
new login prompt, so you can start over,

If you correctly typed both your login name and password, your terminal will look similar to this:

LOGIN: jim
Password:

Logged in jim Nov-14-1984 09:53:47 on qtty3
Message of the day: Welcome to the Cromix-Plus Operating System
jim[1]

Each time you log in, the Cromix-Plus system displays the message of the day. It announces that you
are Jogged in to the system. Of greater importance, however, is the Shell prompt to the left of the
cursor.

The Shell prompt is the login name followed by the command number in brackets. With each
command the command number increases by one. The command numbers are used by the Cromix-Plus
Command Line Editor (see appendix A).

Because the Shell is your means of communicating with the operating system, you will see the prompt
again and again. With the prompt displayed, you can give a command to the Shell.

A command is a typed instruction, which you send to the Shell by pressing RETURN. Until you press
RETURN, you can correct or change any command. Use the DELETE key to erase characters; then
retype the command. If you prefer, erase the entire command line by pressing CONTROL-U (hold
down the CONTROL key and type "U"), Under the Cromix-Plus system, CONTROL-U is a "lipe-
kill" key.

Appendix A, "The Cromix-Plus Command-Line Editor," explains other ways to correct or change a
command line.

2.4 Some Conventions Used in this Manual

In text, command names are capitalized, as are the names of corresponding utility programs.

Cromemco Introduction to Cromix-Plus Manual 23

Getting Started Chapter 2

Example:

Time command
Time utility

For each command, there is a sample command line.

Jim[1] time
To give the command, type what’s printed in boldfaced type (using any combination of upper- and
lowercase letters), and press the RETURN key. Pressing RETURN sends the command to the system.
Under the Cromix-Plus system, RETURN is an "enter" key.
Almost all the commands in this manual can be given by any user--privileged or nonprivileged.

Privileged access is discussed at the end of this chapter.

2.5 Giving Some Typical Commands
Because the Cromix-Plus System is a multi-user system, it is often helpful to know who is currently
logged in. You can find out by giving the Who command:

jim[1] who

When you press RETURN to enter the command, the Shell calls the Who utility program. ("Calling" a
program starts it running.) In response, Who executes, displaying a list of users on the terminal screen.
A typical display is shown here:

jim[1] who

betty qttyl Nov-14-1984 07:16:22 3 7
jim qtty2 Nov-14-1984 09:42:29 4 1
fred qtty3 Nov-14-1984 09:53:47 5 1
jim{2]

This list of login names and terminal ("gtty") numbers tells you who is currently using the system,
from what terminal. Also shown is the time each user logged in to the system.

Note: You can log in from any unused terminal--even if you are already logged in somewhere else.
Although the Cromix-Plus System keeps track of the terminal (or terminals) you are using, it
does not associate you with a specific terminal.

When a program such as Who is through executing, it returns control to the Shell. The Shell then
displays a new prompt so you can give another command. To demonstrate, give the Time command.
jim[1] time
Wednesday, November 14, 1984 9:58:12
jim{2]

2—4 Cromemco Introduction to Cromix-Plus Manual

Chapter 2 Getting Started

In response, Time displays today’s date and the current time on your terminal screen.

2.6 Command Arguments

By typing additional items on a command line, you can modify what a command does. These
additional items are called command arguments.

To demonstrate, give this variation of the Who command.
jim[1] whe am i
This time, Who displays information about you only (your login name, your terminal, and the time you

logged in). A typical display is shown here:

jim{1] who am i
jim qtty3 Nov-14-1984 (09:53:47 4 1
jim([2]

Many commands can use arguments. For some commands, arguments are required. For others (such
as Who), arguments are optional.

2.7 Command Syntax
The required form of a command--how the command and its arguments are grouped on the command
line--is called command syntax. When representing command syntax, the Cromix-Plus documentation
shows optional arguments in square brackets.
For example, the syntax of the Who command can be represented as follows:
who [am i]
The command arguments (in brackets) are optional.
A basic understanding of command syntax will help you use the system’s on-line manual. There are

additional examples of command syntax throughout this manual.

2.8 Displaying the On-line Manual

The Help utility displays "pages" from the system’s on-line manual. To display information about a
particular command, give the Help command with an argument.

The syntax of the Help command is:
belp [command-name]

When you give the command, the argument is the name of any command (such as Who, Time, or

Cromemco Introduction to Cromix-Plus Manual 2—35

Getting Started Chapter 2

Help).

Figure 2-2 shows a typical display. i

" R

TIVE CROMIY Instruction Manual TIME
utility: TIME
plurpose: This program displays or alters the time and date.
user access: 211 users tor display

privileged user for changes

summary: time l-se2]
arguments: none
options: -5 set system values

-2 set 2102 clock
~e Europear style display (od/mm/yy)

Description

The Time prograr~ clspleys or changes the time and date. If the -s option
T5% MORE

_J

Figure 2-2: TYPICAL "HELP" DISPLAY

"75% MORE" in the middle of the bottom line of the screen indicates there is more information about
this particular command.

Pressing RETURN or the SPACE bar brings additional information onto the screen. Pressing the
RETURN key brings a new line into view, while pressing the SPACE bar displays an entire screen of
new text.

When you’re through using Help, type q for quir. In a few seconds, the Shell will display a new
prompt so you can give another command. While a program like Help is running, you can also get a
new prompt by pressing CONTROL-C, as explained in the next section.

Note: Other than CONTROL-C, the remaining keys and/or commands that work with Help (such as
pressing RETURN or typing q) are specific to Help. Help, like a few other programs, has its
own set of commands.

2—6 Cromemco Introduction to Cromix-Plus Manual

Chapter 2 Getting Started

2.9 Stopping a Program While it is Executing

Almost all the commands in this manual execute utility programs like Who, Time, or Help. You can -
stop most programs while they are executing by pressing CONTROL-C (hold down the CONTROL
key and type "C").

Pressing CONTROL-C sends an "abort” signal (via the Shell) to the program. In response, the
program prematurely returns control to the Shell. In other words, the program stops running, and the
Shell displays a new prompt.

2.10 Displaying Additional Screens of Information

Many programs display output on the terminal screen. Sometimes that output exceeds the capacity of
the terminal screen (24 lines). For example, the Query utility displays a summary of Cromix-Plus
commands that is longer than 24 lines.

So you can view a program’s output at your leisure, the display stops after each screenful. To
demonstrate, give the Query command:

jim[1] query
After displaying one screenful of text, your terminal beeps. The beep tells you there is more oufput.
To view the next 24 lines of output, press CONTROL-Q (hold down the CONTROL key and type
"Q". Each time you press CONTROL-Q, you’ll see a new screen of text. After displaying the final

screen of output. Query returns control to the Shell.

This is how your terminal mormally displays output. Occasionally, your terminal will display a
program’s output without stopping the display after one screen.

If this happens, you can restore the normal mode of operation by giving the following command:
jim[1] mode pa

This command resets one of your terminal’s operating characteristics. The command argument, pa (for
pause), causes your terminal to, once again, pause after each screen of output.

There is additional information about the Mode utility in the Cromix-Plus User’s Reference Manual.

2.1 The Terminal as a Carriage-Return Device

Another of your terminal’s operating characteristics is to move the cursor down a line each time you
press the RETURN key. This enables you to give commands to the Shell.

Occasionally, without any action on your part, the terminal may not work in this manner. You will
press RETURN, and the cursor will not move down a line. To restore the terminal to its normal mode
of operation, give the following command:

jim{1] mode crdev

Cromemco Introduction to Cromix-Plus Manual R

Getting Started Chapter 2

To enter the command, you will have to press the DOWN ARROW key. (Pressing RETURN does
nothing.) The command argument, crdev, re-establishes your terminal as a carriage-return device.
After you give the command, pressing RETURN will again move the cursor down a line.

There is additional information about the Mode utility in the Cromix-Plus User’s Reference Manual.

2.12 Error Messages

From time to time, all users receive "error messages" from the system. The Cromix-Plus system
displays error messages on the terminal screen. Some of these messages come from the Shell; others
come from the individual programs.

A common error message is "Command not found"--the message the Shell displays when you give a
non-existent command. For example, under the Cromix-Plus system, there is no Chmod utility. Thus,
the following command produces an error message:

jim[1] chmod
Command not found: "chmod”

If you ever mistype a command name, you'll see a similar message when you press RETURN. I
means the Shell could not carry out your command. (The Shell looked for, but could not locate, the

program.)

Some programs generate error messages of their own. Mode is an example. Although many programs
ignore bad arguments, Mode displays an error message:

jim{1] mode who
Illegal argument: "who"

Some common error messages assocjated with the Cromix-Plus utility programs are given throughout

this manual.

2.13 Changing Your Password

For security, you should occasionally change your password. Whenever you wish to change your
password, give the Passwd command:

jim[1] passwd

In response, the Passwd utility prompts for your login name:
jim[1] passwd
Name:

When you type your login name and press RETURN, Passwd displays another prompt. In the
example, a user named Jim is changing his password:

2—8 Cromemco Introduction to Cromix-Plus Manual

Chapter 2 Getting Started

jim{1] passwd
Name: jim
Password:

To answer this prompt, type your new password and press RETURN. When you press RETURN,
Passwd displays an "encrypted” version of your new password (not what you actually typed).

The system will next ask what your prompt should be:

jim{1] passwd
Name: jim
Passwd: xhbydksy
Prompt string:

If the user just types RETURN, the prompt is going to be the user name followed by the command
number in brackets. If the user enters some other siring that other string will be used as the prompt.
The string entered may contain the characters "%d". If so, these two characters will be replaced by the
actual command number whenever the prompt is written out. The new prompt will take effect when
the user logs in next time.

For the purpose of this example the user just enters RETURN to say he wants to default prompt.
To respond to the next prompt ("Name:"), simply press RETURN:

iim{1] passwd
Name: jim
Password: xhbydksy
Prompt string:
Name: (RETURN)
jim{2]

After changing your password in this manner, you must use your new password the next time you log
in. (The system no longer recognizes your old password.) If, after several tries, you cannot log in
using your new password, see the System Administrator.

2.14 Logging Out

When you are through using the computer, log out by giving the Exit command. Exit, like many
commands, can be abbreviated on a command line. To give the Exit command, you can either type
the command name in full or a just a portion of it:

jim[1] ex

Although the sample command lines in this manual show the abbreviated form for all commands, you
can often substitute the full command name (exit instead of ex).

When you log out, the system redisplays its login prompt. To use the system again from this terminal,
you must repeat the login procedure.

Cromemco Introduction to Cromix-Plus Manual 2 -9

Getting Started Chapter 2

2.15 Intrinsic Commands

Exit is an example of an "intrinsic" command. In other words, it is "intrinsic" to the Cromix-Plus
System--it is not a utility program like Who or Passwd, which the Shell calls from the computer’s hard
disk each time you use the program.

Whether the first item on a command line is the name of an intrinsic command (like Exit) or a
program (like Who) matters only to the system. The distinction is mentioned to help you understand
the Cromix-Plus documentation. For example, the User’s Reference Manual summarizes the Shell
commands and Cromix-Plus utility programs. "Shell command” means an intrinsic command such as
Exit,

2.16 Privileged Access

The system administrator will most likely create your Jogin name to be a nonprivileged user. As such,
there are certain commands you cannot give. For example, you cannot use the Passwd utility to
change someone else’s password--that requires privileged access.

jim{1] passwd

Name: cindy

Can only change your own password.

jim[2]
You can, of course, change your own password.
As a nponprivileged user, you cannot give a command that might harm the system or inconvenience
other users. So, as you use the Cromix-Plus Operating System, feel free to experiment with new

commands.

If you accidentally give a command requiring privileged access, the Shell will display an error
message, as in the following example:

jim[1] passwd -n
Must be privileged user.
jim(2]

Most commands can be given by all users--privileged and nonprivileged.

2 — 10 Cromemco Introduction to Cromix-Plus Manual

Chapter 3 Working With Text Files

Chapter 3 - Working With Text Files

In this chapter you'll learn the basic utilities and Shell commands that manipulate files. First, you'll
create a sample file using the Cromemco CE program-entry editor. Using this sample file. you can
experiment with some of the Cromix-Plus system’s most used commands--such as Rename (the
command that gives a file a new filename) and Delete (the command that deletes a file from the hard
disk).

Also covered is the Spool utility, which prints one or more files. Instructions for stopping printing are

included.

3.1 Naming Files

In the next section, you'll create your first file. You can name this file sample, as suggested in the
text, or select another filename. (In the Cromix-Plus documentation, filenames are always printed in
boldfaced, lowercase type.) Filenames consist of one to twenty-four consecutive characters (in other
words, no SPACES) from the following set:
a-z, A-Z.0-9, _. %, .
Because the Cromix-Plus system is not sensitive to letter case, the following filenames are equivalent:
letters
Letters

LETTERS

You can use the underscore character (_) to make filenames easier (0 read, as in the following
examples:

form_letter
chapter_1

A period in a filename is the first character of a filename extension, as in the following examples:

file.text
sort.out

In these filenames, the extensions are .text and .out. Filename extensions are useful for identifying
similar kinds of files:

Cromemco Introduction to Cromix-Plus Manual 3 —1

Working With Text Files Chapter 3

report.save
chapter2.save
memo.save

To illustrate, you would think twice before deleting a file with a .save extension. You might reserve
this filename extension for all your important files.

If a filename contains several periods, only the final period (and the characters that follow) is a
filename extension.

For example:

file.text.out
sort.out.save

In these filenames, the extensions are .out and .save. As explained at the end of this chapter, the files
you create may not have a .bin or .com filename extension.

Although you can use a .bak (for backup) extension when naming files, its use may prove confusing.
The CE program, introduced in this chapter, automatically creates a backup file with a .bak filename
extension whenever you update an existing file.

3.2 An Additional Consideration When Naming Files
Any Cromix-Plus utility that uses filenames will accept a 24-character filename. Remember, however,

that not all the programs you may use are Cromix-Plus utilities.

There are a number of programs that can be installed on the Cromix-Plus system that may have their
own file-naming conventions. An example is the Cromemco Formatter-1I text-formatting program.
Formatter-1I is not a Cromix-Plus utility program and will not accept a 24-character filename. (Its
limit is 12 characters, including a 3-character filename extension.)

When in doubt, consult the documentation for the program you're using.

3.3 Special Characters
Each of the following characters means something special to the Shell, and should not be used when
creating files:

* 9 [1><)") - & "\#

In choosing a filename, restrict yourself to those characters shown earlier in the chapter.

3.4 Creating a Sample File

In this section, you’ll create a sample file. This manual assumes you’'ll be using the CE program-entry
editor to create the file. CE is another of the Cromix-Plus utility programs, available to all Cromix-
Plus users.

3—2 Cromemco Introduction to Cromix-Plus Manual

Chapter 3 Working With Text Files

In preparation, read the discussion of CE in the Cromix-Plus User's Reference Manual where the CE
editor is discussed in detail.

Using the CE editor, create a file named sample, and type the following text in the file:

Help
Passwd
Query
Who
Exit

Then save the file.

Because the CE editor has its own set of commands, pressing CONTROL-C does not exit you from
the CE program. If you press CONTROL-C with the editor in the Command mode, nothing will
happen.

3.5 Displaying a List of Files

The Ls (for list) utility displays useful information about files. Without an argument, Ls displays a
simple list of files. To better illustrate the display, the following example shows some typical
filenames; obviously, you'll see a different display when you give the command:

jim[1] Is
letter memo output plan6_10

3.6 Command Options

Command options modify what commands do. On a command line, options follow the command
name. They consist of a single alphabetic character, preceded by a hyphen. In the following example,
~-m (2 hyphen, followed by the letter "em") is a command option:

jim[1] Is -m

239 1 letter
241 1 memo
50 1 output

240 1 plan6_10

The -m (for medium) option instructs Ls to display more detailed information about files. From left to
right, the display shows you the size of the file (in characters), the number of links to the file, and the
filename. (Links are discussed later in this chapter.)

Another option, -l {for long), displays even more information:

Cromemco Introduction to Cromix-Plus Manual 3.3

Working With Text Files Chapter 3

jim[1] Is -
239 1 rewa re-- re-- betty Nov-14 10:18 letter
241 1 rewa re-- re-- betty Nov-14 10:18 memo
50 1 rewa re-- re-- betty Nov-14 10:22 output
240 1 rewa re-- re-- betty Nov-14 10:21 plan6_10

Now you can check the time you last worked on a file. You can also see the access privileges
associated with each file. (Access privileges and file ownership are discussed in the next section.)

To display still more detailed information about files, give the Ls command with the ~e (for everything)
option. A typical display is shown here:

jim[1] Is -e
letter 239
created: Nov-14-1984 10:17:16 rewa re-- re--
modified: Nov-14-1984 10:18:08 betty group: 1
accessed: Nov-14-1984 10:17:23 links: 1
dumped: 000-00-1900 00:00:00 inode: 423
memo 241
created: Nov-14-1984 10:18:18 rewa re-- re--
modified: Nov-14-1984 10:18:55 betty group: 1
accessed: Nov-14-1984 10:18:18 links: 1
dumped: 000-00-1900 00:00:00 inode: 421
output 50
created: Nov-14-1984 10:21:55 rewa re-- re--
modified: Nov-14-1984 10:22:14 betty group: 1
accessed: Nov-14-1984 10:22:16 links: 1
dumped: 000-00-1900 00:00:00 inode: 402
plan6_10 240
created: Nov-14-1984 10:19:58 rewa re-- re--
modified: Nov-14-1984 10:21:04 betty group: 1
accessed: Nov-14-1984 10:20:30 links: 1
dumped: 000-00-1900 00:00:00 inode: 422

Included in the display is the inode number assigned to each file. (The system uses inode numbers to
locate files on the computer’s hard disk.) Ls with the -i (for inode) option displays only filenames and
inode numbers. A System Administrator might give this command to determine the inode number of a
particular file:

jim[1] lIs -i
239 Jetter
241 memo

3 —4 Cromemco Introduction to Cromix-Plus Manual

Chapter 3 Working With Text Files

50 output
240 plan6_10

By adding options to a basic command ("Ls"), one utility serves the needs of many--ordinary users,
who need to verify filenames, or System Administrators, who need to check inode numbers. Ls is one
of many Cromix-Plus utilities that use options.
In command syntax, options are written as in the following example:

Is [-eilm]

Ls, like a number of Cromix-Plus utilities, will accept multiple options:

jim[1] s -e -m

letter 239
created:; Nov-14-1984 10:17:16 rewa re-- re--
modified: Nov-14-1984 10:18:08 betty group: 1
accessed: Nov-14-1984 10:17:23 links: 1
dumped: 000-00-1900 00:00:00 inode: 423
memo 241
created: Nov-14-1984 10:18:18 rewa re-- re--
modified: Nov-14-1984 10:18:55 betty group: 1
accessed: Nov-14-1984 10:18:18 links: 1
dumped: 000-00-1900 00:00:00 inode: 421
output 50
created: Nov-14-1984 10:21:55 rewa re-- re--
modified: Nov-14-1984 10:22:14 betty group: 1
accessed: MNov-14-1984 10:22:16 links: 1
dumped: 000-00-1900 00:00:00 inode: 402
plan6_10 240
created: Nov-14-1984 10:19:58 rewa fre-- re--
modified: Nov-14-1984 10:21:04 betty group: 1
accessed: Nov-14-1984 10:20:30 links: 1
dumped: 000-00-1500 00:00:00 inode: 422

When you give Ls multiple options, the one producing the most extensive list (in this case, -e)
prevails. If Ls cannot recognize one or more options, a command-syntax summary is displayed so you
can see what options are available.

When using a utility that accepts multiple options, you can often group options after a single hyphen,
as in this example:

Cromemco Introduction to Cromix-Plus Manual 3—35

Working With Text Files Chapter 3

jim[1] Is -em

letter 239
created: Nov-14-1984 10:17:16 rewa re-- re--
modified: Nov-14-1984 10:18:08 betty group: 1
accessed: Nov-14-1984 10:17:23 links: 1
dumped: 000-00-1900 00:00:00 inode: 423
memo 241
created: Nov-14-1984 10:18:18 rewa re-- re--
modified: Nov-14-1984 10:18:55 betty group: 1
accessed: Nov-14-1984 10:18:18 links: 1
dumped: 000-00-1900 00:00:00 inode: 421
output 50
created: Nov-14-1984 10:21:55 rewa re-- re--
modified: Nov-14-1984 10:22:14 betty group: 1
accessed: Nov-14-1984 10:22:16 links: 1
dumped: 000-00-1900 00:00:00 inode: 402
plan6_10 240
created: Nov-14-1984 10:19:58 rewa re-- re--
modified: Nov-14-1984 10:21:04 betty group: 1
accessed: Nov-14-1984 10:20:30 links: 1
dumped: 000-00-1900 00:00:00 inode: 422

As a general rule, you can group options that do not require arguments. All Ls command options fit
this description because none requires additional information on the command line for Ls to act on that
option.

General rules regarding command options are summarized at the end of this chapter.

3.7 Access Privileges for the Owner of a File

When you gave the "Is -1" command, you saw a string of lowercase letters and hyphens preceding your
login name:

jim[1] }s -1
32 1 rewa re-- re-- you Nov-14 10:14 sample

Your login name means you are the owner of the file sample. You "own" it in the sense that the
Cromix-Plus system created the file for you.

What you can do with the file depends on the access privileges associated with the file. Your
privileges (as the owner of a file) are defined by the first four characters in the string of lowercase

letters and hyphens. As supplied, the Cromix-Plus system automatically gives you the following
access to your files:

3—6 Cromemco Introduction to Cromix-Plus Manual

Chapter 3 Working With Text Files

rewa

This group of letters:

r for "read”

e for "execute”
w for "write"
a for "append”

means you have all possible access privileges. You can read from the file, wrire to the file, append
(add to the end) of the file, or execute the file. Read, write, and append access ensure you can display,
change, and add text to files at will. Execute access becomes important when you create command
files, as explained in chapter 7.

Having these privileges ensures you can work with your own files. For more information about access
privileges, refer to the discussion of the Access utility in the Cromix-Plus User’s Reference Manual.

3.8 Displaying the Contents of a File

The Type command displays the contents of text files on the terminal screen. (Any file you can edit
using the CE program is a text file.)

To display a file, the command syntax is:
ty filename
For example, you can display the contents of the sample file by giving this command:

jim{1] ty sample
Help

Passwd

Query

Who

Exit

jim[2]

Type shows you the text in a file. When files are long, pressing CONTROL-Q brings more text onto
the terminal screen. Type only displays files--to change the contents of a text file, you must use an
editor, such as the CE program.

3.9 Displaying a File with Page Headings and Line Numbers

The Clist utility, like Type, displays the contents of text files. Clist, however, adds some information
of its own to the display. In Clisi’s display, each line of the file is numbered for easy reference. At
the top of the display is a heading, showing the name of the file and the last time you worked on it:

Cromemco Introduction to Cromix-Plus Manual 3—7

Working With Text Files Chapter 3

jim[1] clist sample
File SAMPLE Wednesday, November 14, 1984 10:14:29

Help
Passwd
Query
Who
Exit

Lh o O D e

If you create text files that contain your own computer programs, you may wish to display those files
with Clist. For text files containing letters, memos, and so on, use Type instead.

Neither Type nor Clist change the files they display in any way.

3.10 Making a Copy of a File

When you need another copy of an existing file, use the Copy utility. Afler a copy operation, you
have two files--the original and the copy.

The two files are identical in every respect--except for their filenames. The Cromix-Plus system will
not allow two files to have the same name.
When you wish to make a copy of a file, the command syntax is:

copy source-file destination-file

The term "source file" refers to the original file (the source of Copy's input). The term "destination
file" refers to the new file. In the Cromix-Plus documentation, and in the on-line help files, you will
see these terms often.
Make a copy of the sample file now. Call the new file alpha.

jim{1] copy sample alpha

The Ls command verifies the presence of the new file.

jim[1] Is
alpha sample

For practice, make a copy of the alpha file named beta.

3 —8 Cromemco Introduction to Cromix-Plus Manual

Chapter 3 Working With Text Files
jim[1] copy alpha beta
Using Copy, you created two files that (except for their names) are identical to the file sample:

jim[1] ty alpha
Help

Passwd
Query

Who

Exit

jim{2] ty beta
Help

Passwd
Query

Who

Exit

jim{3]

Giving the "ls -1" command will show that even the creation times associated with the files are the
same, If the system created the sample file on December 12, at 12:02, the alpha and beta files will
show "Dec-12 12:02" as their creation times, too. Only the inode numbers associated with each file
will be different.

3.11 File Links

The Cromix-Plus system identifies files by associating each filename with an inode number. Each
inode number corresponds to a physical location on the computer’s hard disk. When you create a file,
you create both the file itself (under an inode number) and an identifying filename. The filename is
also called a link, and every inode must have at least ope link. The "Is -m" command

jim{1] Is -m
32 1 sample

tells you how many links an inode has. In the above example, the "1" indicates that the filename
"sample" is the only link to that inode (use the lIs -i command to get the inode number).

Multiple links are particularly useful for files that have long or awkward pathnames (pathnames are
discussed in the next chapter). With the Maklink utility (refer to the Cromix-Plus User’s Manual), you
can make a link from the original file to a simpler filename in the current directory, and delete it later

when you no longer need it. As long as an inode has more than one link, deleting one of the links
does not delete the file.

Cromemco Introduction to Cromix-Plus Manual 3-—9

Working With Text Files Chapter 3

3.12 Renaming a File

The Rename command gives an existing file a new filename.
Command syntax:
ren old-filename new-filename
To demonstrate, give the sample file a new filename:
jim[1] ren sample practice
The Ls command verifies the file has been renamed:

jim{1] 1s
alpha beta practice

3.13 Deleting a File

The Delete command deletes files. Once a file is deleted, it no longer appears in the list of files that
Ls displays. Nor can you access the information in the file (unless that particular inode had more than
one link).

Command syntax:

del file-list

For "file-list," you can substitute a series of filenames. Or, you can delete just one file by giving the
command with a single argument (one filename). To demonstrate, delete the file beta by giving the
following command:

jim{1] del beta
You know the file is gone when you see the new Shell prompt.
You can delete several files by giving the command with several arguments (a series of filenames),

For example, if you had files named text, demo, and chapter, the following command would delete
those files:

jim[1] del text demo chapter

Once you delete a file, its contents are irretrievably gone. For this reason, it is a good idea to check

3—10 Cromemco Introduction to Cromix-Plus Manual

Chapter 3 Working With Text Files

the contents of a file using Type before deleting that file.

3.14 Some Common Error Messages

When using Copy. Delete, or Rename, a new Shell prompt means the system carried out your
commands.

jim[1] copy myfile yourfile
iim[2] del myfile
jim[3]

You know the system did not execute a particular command if an error message precedes the pew
prompt.

jim{1] ren myfile ourfile
File not found: "myfile"
jim[2]

This particular message means Rename could not locate the old file (the file to be renamed). Rename
returned control to the Shell without renaming a file. To produce a similar error message, you might
try renaming the beta file--the file you deleted in the previous section.

Some common error messages associated with Rename and Copy are:

jim[1] ren today
Wrong number of arguments
jim[2]

This is an example of a syntax error--Rename requires two arguments. Thus, Rename returned control
to the Shell without even looking for a file named today.

jim[1] copy letter letter.save
File already exists: "letter.save"
jim[2]

As a safeguard, Copy and Rename normally require a new filename as their final command argument.
Without this protection, you could easily destroy the contents of an existing file.
If you do want Copy to overwrite an existing file, use the -f (for force) option:
jim[1} copy -f letter letter.save
jim{2]
Cromemco Introduction to Cromix-Plus Manual I—11

Working With Text Files Chapter 3

3.15 Printing a File

When you want to print a copy of a file, use the Spool utility.

To print files, the command syntax is:

spool file-list

When you give Spool a filename as an argument, Spool sends a copy of that file to the system printer,
To demonstrate, print a copy of the practice file by giving this command:

jim[1] spool practice
jim([2]

The new Shell prompt tells you Spool found the practice file and sent a copy of the file to the system
printer. If your printer is turned on, and properly loaded with paper, your file will be printed.

Like Delete and Rename, Spool displays an error message when it cannot locate a particular file.

jim[1] spool pactice
File not found: "pactice”
jim([2]
Sometimes, when you give the Spool command, another user’s job will be printing. In this case,

Spool will add your job to a queue--to be printed in its turn.

To print more than one copy of a file, give the Spool command with the -m (multiple-copy) option.
Using this option, the following command instructs Spool to print three copies of the practice file.

jim[1] spool -m 3 practice

The -m option requires an argument--the number of copies to print. The option and its argument must
be separated by spaces, as shown. When you do not use the -m option to specify multiple copies,
Spool, by default, prints one copy of a file.

When called without a filename as an argument, Spool can be used with still more options. Two of
them, -1 and -k, are especially useful. The -1 (for list) option displays a list of your own print jobs,
whether a job is currently printing or in the queue.

betty[1] spool -]
Filename User Seq Dev Pri Pages Lines Copies Form
-> memo betty 3 5:5 5 1 12 1 0

By adding an option, -a (for all), to the command, you can display a list of all print jobs (other users’
jobs, as well as your own):

3 —12 Cromemco Introduction to Cromix-Plus Manual

Chapter 3 Working With Text Files

betty[1] spool -la

Filename User Seq Dev Pri Pages Lines Copies Form
-> memo betty 3 5:5 5 1 12 1 0

first_draft jim 4 5:5 5 19 1498 1 0

budget jim 5 5:5 5 1 47 2 0

Spool displays an arrow, pointing to the current job (the one that is printing). Your job’s Sequence
pumber is a reference if you need to cancel that particular job. Pressing CONTROL-C after giving the
Spool command does not stop printing.

You can use Spool with the -k (for kill) option to cancel any of your own print jobs. To kill a job,
while it prints or as it waits in the queue, the Spool command syntax is:

spool -k sequence-#-or-filename

To illustrate, consider the following list of jobs:

jim[1} spool -la

Filename User Seq Dev Pri Pages Lines Copies Form
-> memo betty 3 5:5 5 1 12 1 0

first_draft jim 4 5:5 5 19 1498 1 0

budget jim 5 5:5 5 1 47 2 0

If Jim wanted to cancel the two jobs he has in the queue, he might give the following commands:

jim[1] spool -k 4
jim[2] spool -k budget

The first command kills a job by referring to its sequence number, the second, by referring (o a
filename. Use whichever method you prefer. Be aware, however, that killing a job by sequence
pumber is more precise than killing a job by filename. To illustrate, if Jim had two files named
budget in the queue, the command "spool -k budget” would kill both of them.

As a nonprivileged user, you can only kill your own print jobs. If Jim tries to kill Betty’s job, an error

message results:

jim[1] spool -k 3
3 not found

The Printer Daemon -- Although it’s easiest to call Spool a utility that "prints a file" or "sends a copy
of a file to the printer,” Spool is a little more complex than this. Printing is a multi-step process.

Cromemco Introduction to Cromix-Plus Manual 3—13

Working With Text Files Chapter 3

The Spool utility is the process that initiates printing, but it is another process--called the printer
daemon--that actually prints your files. Spool activates the daemon before returning control to the

Shell.

At your terminal, you see a new Shell prompt, while (behind the scenes) the daemon prints your file.

3.16 General Rules for Command Options

As you use the Cromix-Plus system, you’ll encounter numerous programs that can be used with
options. The following information will help you use these programs effectively.

10.

Option names must be a single character in length.

All options must be proceeded by "-".
jim[1} Is -m
Options may have arguments.

Option arguments cannot be optional.

The first optional-argument following an option must be preceded by white space (space or tab).

jim[1] readall -¢ 76 fda

Options with no arguments may be grouped behind one delimiter ("-").

jim[1] copy -fv myfile yourfile

Groups of option-arguments following an option must be separated by commas or separated by
white space and quoted.

jim[1] readall -¢ 75,76 fda
OR

jim[2] readall -¢ "75 76" fda

All options precede command arguments on the command line.

"N

may be used to delimit the end of the options. This must be done when the command line
arguments could logically be mistaken by the command to be options rather than arguments,

jim[1] echo ~- -1

The order of options relative to one and other does not matter.

jim[1] ftar -cv -b 510 /dev/ftcd .

3— 14 Cromemco Introduction to Cromix-Plus Manual

Chapter 3 Working With Text Files

is equivalent to:

jim[1] ftar -b 510 -vc /dev/fted .

11. The order of command arguments may matter, and position-related interpretations should be
determined on a command-specific basis.

jim[1] copy -v myfile yourfile
is NOT equivalent to:

jim[1] copy -v yourfile myfile

12. "-" preceded and followed by white space is used only to mean standard input.
jim[1] stremp - YES OQUI SI

In this case, stremp will test its command arguments against standard input.

3.17 The .bin, .com, and .cmd Filename Extensions

Three filename extensions have special significance to the Shell -- .bin, .cmd, and .com.

.bin and .com mean the file is an executable binary file. For example, the Cromix-Plus utility
programs are stored in files with .bin extensions. (Files with .com extensions were originally designed
to work with Cromemco’s CDOS Operating System.)

You cannot use the CE program-entry editor (or another text editor) to edit the contents of a binary
file.

jim[1] ce sample.bin
Cromix-Plus Editor vers. xx.Xx
Illegal filename: "sample.bin"

jim[1] ce sample.com
Cromix-Plus Editor vers. xx.xx
Illegal filename: "sample.com”

Nor should you display the contents of a binary file using Type or Clist. If you do, your terminal may
not work properly until you turn it OFF and back ON.

.cmd means the file is a command file. Command files are text files, like the file practice. (A text file
is any file you can edit with the ce program or display with Type or Clist.) The text in a command file
is a series of ordinary commands (like the commands you gave in this chapter).

For example, the following command file contains the "spool -la" command.

Cromemco Introduction to Cromix-Plus Manual 3 —15

Working With Text Files Chapter 3

jim[1] ty sla.cmd
spool -la

By giving the Shell the name of a command file--minus the filename extension--you tell the Shell to
execute that file. '

jim[1] sla

Executing a command file executes all the commands in the file.

If you're interested in command files, you may wish to duplicate this sample command file. Use the
Screen editor to create a file named sla.cmd, and proof the file carefully before you save it.

When the Shell executes the file, a list of all print jobs will be displayed--as if you’'d given the
command "spool -la" in response to the Shell prompt:

jim[1] sla
Filename User Seq Dev Pri Pages Lines Copies Form
> chapter1 betty 539 5:5 5 42 6781 1 0
policy fred 540 55 5 3 132 1 0

The system executes the commands in a command file as though you’d given the commands from the
terminal keyboard. (To the Shell, you did.) You can write command files to perform many repetitive
tasks. Refer to chapter 7 for details.

Before continuing, you may wish to delete some of the sample files you created in this chapter. If so,
keep the practice file (it is used again in chapter 6).

3— 16 Cromemco Introduction to Cromix-Plus Manual

Chapter 4 Cromix File Structure

Chapter 4 - Cromix File Structure

The Cromix-Plus system must keep track of hundreds of files--including executable binary files (such
as who.bin) and text files (such as practice).

In many respects, the Cromix-Plus file system is similar to an ordinary filing system. But, instead of
file folders, the Cromix-Plus system organizes information in directories. On a computer, information
is always stored in files. Thus, the information in a directory is one or more files.

For example, on every Cromix-Plus system, there is a directory called the bin directory. In this
directory are most files with .bin filename extensions (ce.bin, Is.bin, etc.). The system stores text files
(such as practice) in other directories. Using the commands in this chapter, you can create some
directories and organize your information--the files you create with the Cromix-Plus system.

4.1 The Home Directory

The System Administrator created one directory for you--your user (or home) directory. Normally, the
name of your home directory is your login name. Whenever you log in to the system, you are
working in your home directory. Unless you change directories (as explained later in the chapfer), the
system stores your files in your home directory.

In chapter 3, you created a simple file system, or structure. It consists of your home directory and a
text file. '

Cromemco Introduction to Cromix-Plus Manual 4 — 1

Cromix File Structure

Chapter 4

Your Home
Directory

~ practice

Figure 4-1: FILE STRUCTURE 1

The next section explains how your file structure fits into a much larger structure.

4.2 Visualizing the Cromix-Plus File Structure

The Cromix-Plus file system is hierarchical. In other words, its parts are ranked, so some are on
higher levels than others. Figure 4-2 shows a typical system (because there are hundreds of files on

any system, only directories are shown):

Cromemco Introduction to Cromix-Plus Manual

Chapter 4 Cromix File Structure

(root)

l

|

betty jrm fred mait

correspond-
ence

I

|

letters memos

vendors

Figure 4-2: FILE STRUCTURE 2

As a family tree traces the ancestry of people, so the Cromix-Plus "tree" traces the ancestry of files.
The ancestor of all files is the root directory. lts name is represented by a slash mark (/). Like your
home directory, / (root) contains other files. But, most of the files in / are not ordinary files--they are
directory files.

To the Cromix-Plus system, each directory (/, your home directory, and so on) is a file. You cannot
edit a directory file:

jim[1] ce /
Cromix-Plus Editor vers. xx.xx
Not ordinary file: "/"

Nor can you execute a directory file:

jim[1}/
Command not found: "/"

But, directories are files nonetheless. A directory can contain ordinary files, other directory files
(called subdirectories), or a combination of ordinary files and subdirectories.

Cromemco Introduction to Cromix-Plus Manual 4 —3

Cromix File Structure Chapter 4

For example, one of the files in / is a subdirectory called bin. This directory contains most of the
executable files with .bin filename extensions. On the same level as bin is another subdirectory of /
called usr. Figure 4-2 shows that usr contains subdirectories of its own. One of these subdirectories
is your home directory.

Using the analogy of the family tree, / is the parent directory of bin and usr, whlle usr is the parent
directory of every user's home directory.

You can determine the name of your current directory by giving the D (directory) command:

jim[1] d
fusr/you

Without an argument, the D command prints the absolute pathname of the current directory. Until you
change directories, as explained later in the chapter, the command displays the absolute pathname of
your home directory. It traces a path to the directory file you (your login name) from the root
directory, / (see figure 4-3).

‘(root)

r

S

1 il

{sub~ {sub-
directory) directory)

you

L practice

Figure 4-3: FILE STRUCTURE 3

4 —4 Cromemco Introduction to Cromix-Plus Manual

Chapter 4 Cromix File Structure

4.3 Absolute Pathnames

The first item in an absolute pathname is the pame of the root directory (/). The last item is a
filename. :

Using absolute pathnames, the system can locate any file in the Cromix file structure. The first /"
tells the system to look for the file from the root directory. Each successive "/" tells the system to
look one level deeper in the file structure.

For example, the absolute pathname of the file who.bin is /bin/who.bin. This pathname gives the
system the information it needs to trace a path from the root directory to the file whe.bin in the bin
directory. (For clarity, figure 4-4 shows only a few of the files in the bin directory.)

(root}

o clist,bin

- copy.bin

r- Is.bin

- rename.bin
- screen.bin
= spool.bin

time bin

L» who.bin

Figure 4-4: FILE STRUCTURE 4

Using the Ls command, you can display information about the files in many directories. Without an
argument, Ls displays information for the current directory. With an argument, the pathname of a
directory, Ls displays information for that directory.

To illustrate, give the following command:

jim{1] s -m /usr

Without changing the current directory (you're still working in your home directory), Ls displays

Cromemco Introduction to Cromix-Plus Manual 4 —5

Cromix File Structure Chapter 4
information about the files in the usr directory. An uppercase "D" means the file is another directory
file, a subdirectory of usr. Preceding each "D" is the number of files in that directory.
The file corresponding to your login name is your home directory. In the following sample display,
bill is the name of a user’s home directory, as is alan, jimmy, mark, and sue.

jim[1] Is -m /usr

Directory: fusr

6D 1 alan
3D 1 bill
98 D 1 help
35D 1 jimmy
4D 1 mail
27 D 1 mark
2D 1 pkg
5D 1 query
4D 1 spool
83 D 1 sue

Subdirectories such as help, mail, and spool serve other purposes. They are not user directories, as
are mark or sue.

The Ls command with the -1 or -e options displays even more information about the files in /usr.
(Because the "Is -e" command displays so much information, only a portion of the display is shown.)

jim[1] Is -e /usr

Directory: fusr

alan 6 directory
created: Oct-16-1984 11:13:25 rewa re-- re--
modified: Oct-16-1984 11:13:25 alan group: 1
accessed: Nov-14-1984 08:41:14 Jinks: 1
dumped: 000-00-1900 00:00:00 inode: 393
bill 1 directory
created: Nov-06-1984 09:59:41 rewa re-- re--
modified: Nov-06-1984 09:59:41 bill group: 1
accessed: Nov-06-1984 10:03:49 links: 1
dumped: 000-00-1900 00:00:00 inode: 157
belp 98directory
created: Oct-12-1984 12:20:36 rewa re-- re--
modified: Oct-12-1984 12:20:36 bin group: 32767
accessed: Nov-06-1984 13:27:34 links: 1
dumped: 000-00-1900 00:00:00 inode: 146

4—6 _ Cromemco Introduction to Cromix-Plus Manual

Chapter 4 Cromix File Structure

When you give the commands, both displays will show the date and the time the System Administrator
created your home directory (/usr/you) and the home directories of the other system users.

Ordinary files have absolute pathnames, too. For example, the following command displays the
contents of the practice file:

jim[1] ty /usr/you/practice
Help

Passwd

Query

Who

Exit

jim[2]

The first /" told the system to look for the file from the root directory. Each successive "/" told the
system to look one level deeper in the file structure.

{root)

{sub- {sub-
directory) directory)

Figure 4-5: FILE STRUCTURE 5

First, the system looked for a subdirectory of / named usr. Finding usr, the system looked for a
subdirectory of usr named you. Finding you, the system looked for (and found) the practice file.

Cromemco Introduction to Cromix-Plus Manual 4 —7

Cromix File Structure Chapter 4

Each directory in a pathname must be the parent of the next. For this reason, the following command
produces an error message:

jim[1] Is /ete/usr
File not found: "/etc/usr"

The system cannot trace a path from the root directory through the etc directory to the usr directory
because etc and usr are on the same level in the file structure.

As supplied, the Cromix-Plus system makes a few directories inaccessible to nonprivileged users. For
example, in the usr directory, there is a subdirectory named mail. (Chapter 5 explains this directory’s
purpose.) The access privileges (chapter 3) associated with the file /usr/mail do not normally include
"execute" access for nonprivileged users. Withour execute access for a directory, you cannot use the
name of that dirvectory in a pathname.

The following command attempts to make mail the current directory using an absolute pathname:

jim[1] d /usr/mail
Directory not accessible: "/usr/mail"

Because you do have access to the directories you really need to work with (such as your home
directory), you may never see a similar message. If you do see "Directory not accessible,” however,
its meaning is always the same. Somewhere in the pathname you gave the Shell is a directory for
which you lack execute access.

The System Administrator can explain the situation. If need be, the System Administrator can also
change the access privileges for the directory. Refer to the discussion of the Access utility in the
Cromix-Plus User’s Reference Manual.

A privileged user, such as the System Administrator, automatically has access to all the system’s
directories.

4.4 How to Make Sure You Have Execute Access for a Directory

You have execute access for many files you do not "own" simply because you can log in to the
Cromix-Plus system. When discussing access privileges, anyone who can log in is called a member of
the "public”.

When you give the "Is -1" command, public access privileges are defined by the last four characters

preceding each filename. A lowercase "e” means you, as a member of the public, have execute access
for that file.

4 8 Cromemco Introduction to Cromix-Plus Manual

Chapter 4 Cromix File Structure

To illustrate, consider the following display:
jim[1] Is -l /usr

Directory: /usr

6 D 1 rewa re-- re-- alan Oct-16 11:13 alan

3 D 1 rewa re-- re-- bill Nov-06 09:59 bill
98 D 1 rewa re-- re-- bin Oct-12 12:20 belp
35 D 1 rewa re-- re-- jimmy Oct-12 14:40 jimmy

4D 1 rewa -~ ~--- bin Oct-12 12:20 mail
27 D 1 rewa re-- re-- mark Oct-16 11:20 mark

2 D 1 rewa re-- re-- bin Oct-12 12:20 pkg

5D 1 rewa re-- re-- bin Oct-12 12:20 query

4D 1 rewa —--- -~ bin May-04 12:20 spool
83 D 1 rewa re-- re-- system Oct-12 15:38 sue

Members of the public (Alan, Bill, Jimmy, Mark, and Sue) have execute access for all subdirectories
of /usr except mail and spool. The four characters preceding these filenames do not include a
fowercase "e" (for execute). Thus, none of this system’s nonprivileged users may use the name of
either directory in a pathname.

Access privileges affect nonprivileged users only. The System Administrator, and any other privileged

user, has access to all files. (For more information about access privileges, consult the discussion of
the Access utility in the Cromix-Plus User’s Reference Manual.)

4.5 Displaying the Absolute Pathname of an Executable File

Using the Path command you can display the absolute pathname of an executable file.
For example:

jim[1} path who
/bin/who.bin

OR:
jim[1] path ce

/bin/ce.bin

If Path’s argument is the name of an intrinsic command, Path displays the message "Shell command.,"
as in the following examples:

jim[1] path ex
ex: Shell command
jim{1] path del
del: Shell command

Cromemeco Introduction to Cromix-Plus Manual 4 —0

Cromix File Structure Chapter 4

You cannot use Path to display the absolute pathnames of ordinary files, such as practice:

path practice
Command pot found: "practice”

There is additional information about the Path command in chapter 7.

4.6 Relative Pathnames
A pathname that does nor begin with a "/" is a relative pathname. The path traced by a relative
pathname starts at (or is relative to) the current directory.

A relative pathname can be as simple as the name of an ordinary file. For example, with your home
directory the current directory, the following command displays the practice file.

jim[1] ty practice

Using a relative pathname, the system looks for (and finds) the file within the current directory.

Like absolute pathnames, relative pathnames can trace a path through many levels of the file structure.
Consider figure 4-6. a typical user’s file structure. Like your own file structure, it begins with the
user’s home directory (fred). The home directory is the parent of another directory, correspondence,
and that directory is the parent of other directories (letters and memos). The contents of the letters
and memos subdirectories are ordinary files.

4 — 10 Cromemco Introduction to Cromix-Plus Manual

Chapter 4 Cromix File Structure

fred

activity
jones

status

correspond-
ence

adams
brown.1

brown._2
fiscal

smith

L |

letters memos

lt brown.ltr { memo.brown
smith.itr memo.sue

Figure 4-6: FILE STRUCTURE 6
While the home directory is the current directory, the following command displays information about
the files in the memos directory:
jim[1] Is -m correspondence/memos
Directory: correspondence/memos
576 1 memo.brown
320 1 memo.sue
jim{2]
In a similar manner, the next command displays the contents of the file memo.sue.

jim[1] ty correspondence/memos/memo.sue

Figure 4-7 shows the path the system traced to locate the file.

4.7 Changing Directories

The D command, which you’ve used to display the absolute pathname of the current directory, can
also be used to change directories. To make another directory the current directory, the command
syntax is:

Cromemco Introduction to Cromix-Plus Manual 4 — 11

Cromix File Structure Chapter 4

d directory-pathname

fred
correspond-
ence
letters memos
memo.brown
memo.sue

Figure 4-7: FILE STRUCTURE 7

For "directory-pathname." substitute the relative or absolute pathname of the new directory.
To move to any directory that is a descendant of the current directory, it’s easiest to use a relative
pathname. For example, while fred (figure 4-6) is the current directory, the following command
makes correspondence the current directory:

jim{1] d correspondence
To move to any directory that is an ancestor of the current directory, use an absolute pathname. When

you use absolute pathnames, the current directory is immarterial. From correspondence (or any other
directory), the following command makes fred the current directory:

jim[1] d /usr/fred

In a similar way, while memos is the current directory, the following command makes letters the
current directory:

jim[1} d /usr/fred/correspondence/letters

4 — 12 Cromemco Introduction to Cromix-Plus Manual

Chapter 4 Cromix File Structure

Because the system can locate any file from the root directory, the current directory is immaterial.
Unless you take advantage of the "shortcuts” discussed later in the chapter, you must use absolute '

pathnames to move up in the Cromix-Plus file structure.

4.8 Creating a Directory

The Makd (Make Directory) command creates directory files:
makd directory-pathname

The command argument can be a relative or absolute pathname. Because creating a directory creates a
new file, the last item in the pathname must be a new filename.

To illustrate, if fred (figure 4-6) is the current directory, the following command creates a subdirectory
of letters named jan_june.

jim[1] makd correspondence/letters/jan_june
If letters (figure 4-8) is the current directory, the pathname is simply a pew filename.

jim[1] makd jan_june

letters memos

brown.lir

smith.itr

jan-june

Figure 4-8: FILE STRUCTURE 8

Cromemco Introduction to Cromix-Plus Manual 4 — 13

Cromix File Structure Chapter 4

4.9 Moving Files to a Directory

The Move utility moves files from one directory to another:
move file-pathname(s) directory-pathname
When moving a group of files, it is usually easiest to give the command from the directory that

contains the files. In this way, you reduce the need for typing long pathnames.

To illustrate, if correspondence (figure 4-6) is the current directory, the following command moves
two files from correspondence to the jan_june subdirectory of letters:

jim [1] move brown_1 brown_2 letters/jan_june
Each filename is the shortest kind of relative pathname.

4.10 How Move Works

In "moving" files within a Cromix file structure, Move does not physically move files. A file you
"move” is still stored at the same location on the computer’s hard disk (the file’s inode number is
unchanged). The Move command creates a new link to the inode and deletes the old link.

For example, in "moving” brown_1 to jan_june, all Move did was change the absolute pathname of
the file from

{usr/fred/correspondence/letters/brown_1
to

/usr/fred/correspondence/letters/jan_june/brown_1

411 Copying Files to Another Directory

The Copy command (chapter 3) can also copy one or more files to another directory:
copy file-pathname(s) directory-pathname
For example, while correspondence is the current directory, the following command makes a copy of

the file smith in the letters directory:

jim{1] copy smith letters

4 — 14 Cromemco Introduction to Cromix-Plus Manwual

Chapter 4 Cromix File Structure

There are now two files named smith, one in the correspondence directory, another in letters:

jim[1] 1s /usr/fred/correspondence

Directory: fust/fred/correspondence
adams fiscal letters memos smith

jim[1] Is /usr/fred/correspondence/letters
Directory: fusr/fred/correspondence/letters

brown.ltr jan_june smith smith.ltr

Files in different directories can have the same name. Because their pathnames are different, they are
different files to the Cromix-Plus system.

4.12 Renaming Files With Move and Copy

By using another form of these commands, you can rename a file as you move or copy it to another
directory:

move file-pathname file-pathname
copy file-pathname file-pathname

To rename a file, the final command argument is the pathname of an ordinary file (not a directory
pathname).

For example, with correspondence the current directory, the following command moves a file named
fiscal to the memos directory.

jim[1] move fiscal memos/budget

Because budget is an ordinary filename, the file is renamed budget in its new directory, as shown in
figure 4-9,

Cromemco Introduction to Cromix-Plus Manual 4 —15

Cromix File Structure Chapter 4

fred

activity
jones

status

correspond~

ence
!: adams
smith

L |

letters

memaos

brown.itr memo.brown
smith.Hir memo.sue
smith hudget

jan-june

{ brown_1
brown.2

Figure 4-9: FILE STRUCTURE 9%

It is possible to accidentally renmame files using Move. To demonstrate, suppose that Fred’s

correspondence directory is the current directory, and he gives the following command to move the
file adams from correspondence to letters:

jim[1] move adams lettrs

Because there is no subdirectory of the current directory named lettrs, Move renames adams to
lettrs--within the current directory.

jim[1} ls /usr/fred/correspondence

Directory: /usr/fred/correspondence
letters lettrs memos smith
jim{2]

4 — 16 Cromemco Introduction to Cromix-Plus Manual

Chapter 4 Cromix File Structure

correspond-
ence

lettrs

smith

Figure 4-10: FILE STRUCTURE 10

4.13 Shortcuts for Werking Within a Directory Structure

To reduce the need for typing long pathnames, the Cromix-Plus system provides some useful notations:

1. A single period (.) represents the current directory.
2. A double period (..) represents the home directory.

3. A caret (") represents the parent directory.

Using the file structure shown in figure 4-11, here are some things you can do with these notations.

Cromemco Introduction to Cromix-Plus Manual 4 — 17

Cromix File Structure Chapter 4

fred

activity
jones
status

correspond~

ence
l: adams
smith

| |

letters memos
brown.ltr memo.brown
smith.itr memo.sue
smith budget

jan-june

k brown.1
brown._2

Figure 4-11: FILE STRUCTURE 11

With jan_june the current directory, the following command makes letters the current directory:
jim[1] d ~

With letters the current directory, the next command moves a file named jones from the home
directory (..) to letters (.):

jim{1] move ../jones .

Without these notations, you would have to use absolute pathnames to move the file:
jim[1] move /usr/fred/jones /usr/fred/correspondence/letters

The double period (..) is often used to make the home directory the current directory:
Jim[1] d ..

jim[2] d
fusr/jim

4 — 18 Cromemco Introduction to Cromix-Plus Manual

Chapter 4 Cromix File Structure

The command "d .." makes the home directory the current directory from any directory in the Cromix
file structure.

If jan_junme is the current directory, this command makes its parent directory, letters, the current -
directory:

jim{i]d "
Or, from jan_june, this command makes the "grandparent” of jan_june the current directory:

jim[1] d ™
jim(2] d
{usr/fred/correspondence

Each " moves one level higher in the Cromix file structure.

One or more carets (") can also be used as part of a pathname. To illustrate, if letters is the current
directory, the following command displays the file memo.brown in the memos directory:

jim{1] ty “memos/memo.brown
The system started looking for the file from the parent of the current directory.

4.14 Deleting a Directory Structure

You can delete a directory using the Del command (chapter 3), as you would any other file. You
must, of course, delete all the directory’s descendants (files and subdirectories) before deleting the
directory itself. The following series of commands would delete the memos directory from its parent
directory, correspondence.

jim[1] del memos/budget
jim[2] del memos/memeo.brown
im[3] del memos/memo.sue
jim[4] del memos

jim[5]

To simplify the process, the Cromix-Plus system provides the Deltree (Delete Tree) utility, which
deletes an entire directory structure (or "tree”). Deltree deletes the directory and all its descendants.

The Deltree command syntax is:

Cromemco Introduction to Cromix-Plus Manual 4 — 19

Cromix File Structure Chapter 4
deltree directory-pathname

Deltree asks for confirmation before deleting each file. To answer, type y or m without pressing
RETURN.

jim[1] deltree memos

Delete memos/budget? y
Delete memos/memo.brown? y
Delete memos/memo.sue?

Deltree’s final prompt asks if the directory itself should be deleted.

jim[1] deltree memos

Delete memos/budget? y
Delete memos/memo.brown? y
Delete memos/memo.sue? y
Delete memos? y

jim[2]

Because Deltree asks for confirmation before deleting each file, it can be used to "prune” a directory
structure. In other words, without intending to delete an entire directory structure, you can use Deltree
to selectively delete a series of files.

When you really want to delete all files, you may wish to use the -a (for all) option.
jim[1] deltree -a memos

Do you really want to delete all of memos? y
jim[2]

When you select the -a option, Deltree asks if you wish to delete the entire directory structure. If you
type y, Deltree deletes all files--without requesting further confirmation.

4.15 Copying a Directory Structure

The Cptree (Copy Tree) utility makes a copy of all or parts of a directory structure. Before using
Cptree, you must first create a destination directory with Makd. This example creates a destination
directory named oldletters (the command is given from the correspondence directory):

jim[1] makd oldletters

4 — 20 Cromemco Introduction to Cromix-Pius Manual

Chapter 4

Cromix File Structure

To copy an entire "tree” (a directory and all its descendants), the command syntax is:

cptree source destination

"Source” refers to the existing directory and its descendants--the source of the new directory structure.

For example, with correspondence the current directory, the following command copies letters and all

its descendants to the oldletters directory.

jim[1] cptree letters oldletters

Cptree copies letters and all its descendant files, as shown in figure 4-12,

correspond~
ence

letters coldletters
brown.iir brown.lr
jones jones
smith smith
smith.ltr smith.ltr
jan-june jan..june
brown.1 brown_1
brown-2 brown.2

Figure 4-12: FILE STRUCTURE 12

Because it can take a long time to copy an entire "tree," you may wish to use the -v (for verbose)
option when you give the command. Cptree with the -v option displays each filename as it is copied.

jim[1] cptree -v letters oldletters
oldletters/brown.itr
oldletters/smith.ltr
oldletters/jan_june
oldietters/jan_june/brown_1

Cromemco Introduction to Cromix-Plus Manual

4—21

Cromix File Structure Chapter 4

oldletters/jan_june/brown_2
oldletters/jones
oldletters/smith

In using the Cromix-Plus system, you’ll discover other commands you can give with a -v (for verbose)
option. Selecting this option displays useful information on the terminal screen while the program
executes. The information displayed depends on the program.

4.16 How the Shell Looks for Executable Files

When a command is entered, the Shell interprets the first item on the command line as the name of an
executable file. Under Cromix-Plus, all executable files contain either the .bin, .com or .cmd filename
extension.

For example:
jim[1] time

causes the Shell to look for an executable file named time, with a .bin, .com or .cmd filename
extension. When the program is found it is loaded into memory and it’s execution is begun.

It is not necessary to supply the pathnames of commands. The Shell will automatically search a
prescribed list of directories for them. The directories and the order in which they are searched by the
Shell is determined by the Shell variable #path. It is also possible via the #ext variable to instruct the
Shell on the order of precedence in which to search for commands with the same name, but with
different filename extensions (.bin, .com or .cmd).

Both the #path and #ext variables are set automatically upon invocation of a new Shell through the
use of sh_env files. When a new Shell is invoked, usually by logging into the system, the Shell first
searches the file /etc/sh_env for variable definitions (including #path and #ext) and then searches the
file ../sh_env if it is present (".." denotes the user’s home directory).
When both /etc/sh_env and ../sh_env are present, variable definitions in ../sh_env will be overlayed
upon those defined in /etc/sh_env. This means that any variables previously defined in /etc/sh_env will
be be re-defined by the values specified in ./sh_env. Any variables not previously defined in
[ete/sh_env will be created. Any variables defined in /etc/sh_env and not re-defined in ../sh_env will
remain as set in /etc/sh_env. These files may be edited and changed as required.
As shipped from the factory, the values of #path and #ext are defined in /etc/sh_env as follows:

path: /ram:/bin:/cmd:/usr/bin

ext bin:com:cmd

This means that the directory search path (as defined by #path) is as follows:

4 22 Cromemco Introduction to Cromix-Plus Manual

Chapter 4 Cromix File Structure

1. The current directory (nothing to the left of the first colon)
The /ram directory (if present)
The /bin directory (standard distribution utilities)

The /emd directory (standard distribution command files)

A

The /usr/bin directory (user programs)

NOTE: The /ram directory should only be present if your system has a RAM disk containing
executable files.

The extension search precedence (as defined by #ext) is as follows:

1. command.bin
2. command.com
3. command.cmd

Following the search path defined above, the Shell will search for the file in the following way:

1. Within the cumrent directory, the Shell will search for the command name with the .bin
extension. If command.bin is not found, the Shell will search for the same file with a .com
extension. If command.com is not found, the Shell will search for the same file with a .cmd
extension.

2. If command.cmd is not found within the current directory, the search proceeds to the /ram
directory (if present). Within /ram, the Shell will search for command.bin, command.com, and
command.cmd.

3. This procedure will be repeated in turn within both the /emd and /usr/bin directories. If a file
with the command name and any of the three extensions is not found in the prescribed
directories, the Shell will display the message:

Command not found: "command.cmd”

NOTE: Please refer to the "shell" and "set" entries in the Cromix-Plus User's Reference Manual for
further information regarding Shell variables.

4.17 Special Files in the Home Directory

If you create a file in your home directory named .reminder, the Shell will display the contents of that
file on the terminal screen whenever you log in to the system.

The contents of a typical .reminder file is shown here:

Cromemco Introduction to Cromix-Plus Manual 4 — 23

Cromix File Structure Chapter 4

jim[1] ty .reminder
Don’t forget to fill out your timesheet,
jim[2]

Logging in with this .reminder file in the home directory might look like this:

LOGIN: jane
Password:

Logged in jane Nov-15-1984 12:18:40 on qttyl

Message of the day: Welcome to the Cromix-Plus Operating System
Don’t forget to fill out your timesheet.

jane[1]

You may also wish to create a file in your home directory named .startup.cmd. The Shell will
execute this command file whenever you log in.

A simple .startup.cmd file might contain these commands:

jim[1] ty .startup.cmd
who

Is

jim[2]

With this file in the home directory, logging in might produce the following result:

LOGIN: fred
Password:

Logged in fred Nov-14-1984 09:53:47 on qtty3
Message of the day: Welcome to the Cromix-Plus Operating System

betty qttyl Nov-14-1984 07:16:22 0 O
jim gtty2 Nov-14-1984 09:42:29 0O O
fred qtty3 Nov-14-1984 09:53:47 0 o0
activity correspondence jones status
fred[1]

The file sh_env, located in your home directory, is a vehicle by which you can have the Shell define
Shell variables, including the command search variables #path and #ext. Please refer to Section 4.16
and the Cromix-Plus User's Reference Manual for details regarding Shell variables.

The file .ce_env, located in your home directory, will be consulted by the CE screen editor upon
invocation. It can be used to customize the editing environment to your tastes. Please refer to the

4 — 24 Cromemco Introduction to Cromix-Plus Manual

Chapter 4 Cromix File Structure

discussion of CE in the Cromix-Plus User’s Reference Manual for details.

Because they begin with periods, .reminder, .ce_env and .starfup.cmd are "invisible" filenames. The E
Ls command will not display information about the files unless you use the -a (for all) option. In the
following example, -m and -a combine to produce a medium-detailed list of all files,

fred[1] Is ~ma
9 1 .startup.cmd

950 1 activity
5D 1 correspondence
505 1 jones
1,216 1 status

4.18 Device Files

The System Administrator often works with files that are neither ordinary files nor directory files. This
third kind of file is the device file.

Most device files represent the system’s peripheral devices. A peripheral device is any piece of
hardware attached to the computer that is not a part of the computer. The system printer is a
peripheral device. So is every terminal connected to the computer. Each has a corresponding device
file in the /dev (device) directory.

You see your terminal’s device filename whenever you give the Who command:
jim[1] who am i
john qtty7 Nov-15-1984 11:35:51 0 0
In the sample display, it is gtty7, or /dev/qtty7 (the file's absolute pathname).
The System Administrator uses the Makdev utility to add devices to the system. Makdev creates
device files. Although you might never work with device files as the System Administrator does,

knowing they exist may help you better understand the Cromix-Plus system.

To the Cromix-Plus system, devices and disk files (such as practice) appear to be files. This
compatibility allows the Shell to redirect input and output as described in chapter 6.

Cromemco Introduction to Cromix-Plus Manual 4 — 25

Chapter 5 The Mail Utility

Chapter 5 - The Mail Utility

This chapter discusses the Mail utility--the program that handles the bulk of communication among
Cromix-Plus system users. Such communication is from user to user, in the form of typed messages
that Mail copies from one terminal for eventual display on another.

A typical mail "delivery" is shown here:

From sue, Nov-12-1984 15:57:01

Friday’s meeting has been rescheduled. The new
time is Monday at 9:00 A.M.

Let me know if you can attend.
The Mail program automatically signs and dates all messages. Thus, whoever receives your message
knows who sent it, when, and where to address a reply.
This chapter explains how to send mail and how to read the mail others send you. For more

information about communications under the Cromix-Plus system, refer to the discussions of the Mail,
Msg, and Ccall utilities in the Cromix-Plus User’s Reference Manual.

5.1 Sending Mail

To send mail to another system user, use the following procedure:

1. Give the Mail command with that user’s login name as an argument, as in the following
example:

jim[1] mail john

Cromemco Introduction to Cromix-Plus Manual 5 —1

The Mail Utility Chapter 5

2. Type your message, ending each line by pressing RETURN.

jim[1] mail john
Friday’s meeting has been rescheduled. The new
time is Monday at 9:00 A.M.

3. When you're through, type CONTROL-Z on a line by itself:

jim[1] mail john
Friday’s meeting has been rescheduled. The new
time is Monday at 9:00 A.M.

Let me know if you can attend.
(CONTROL-2)
jim(2]

When Mail receives CONTROL-Z (end-of-file) from the terminal, the program knows there is no more
input from the terminal. Mail sends the message and returns control to the Shell.

5.2 Correcting Mistakes While Using Mail

As you type your message, you can erase characters on the current line by pressing either the DELETE
key or the LEFT ARROW key. After erasing one or more characters, you can then retype that portion
of the line. This is the only way to make corrections when giving a program like Mail input from the
terminal.

If you want to start over, press CONTROL-C, as you do to stop other programs as they execute.
CONTROL-C displays a new Shell prompt--without sending mail.

Note: There is a way you can edit a message you send using Mail as you would an ordinary file.
For details, refer to chapter 6, the section "Redirecting Input From a File."

5.3 What Happens to the Mail You Send

When you press CONTROL-Z, your message is not displayed immediately on some other terminal.
Instead, it is delivered to a file in the /usr/mail directory, where it is stored until it is read.

Each system user has a place for mail within /usr/mail. As a ponprivileged user, you probably cannot
"list" the files in /usr/mail (you lack execute access to the directory). If you’re curious about its
contents, a typical display is shown here:

system[1] }s -m /usr/mail

Directory: /usr/mail
0 1 alan

5—2 Cromemco Introduction to Cromix-Plus Manual

Chapter 5 The Mail Utility

0 1 bill

0 1 jimmy
193 1 mark

0 1 sue

Most of the filenames are user login names. In each of these files, the corresponding user’s mail is
stored until that user reads the mail from one of the system’s terminals.

A "0" preceding the filename means the file is empty (at the moment, that user has no mail). In the
sample display, only the user named Mark has mail. There are 193 characters stored in the file
/usr/mail/mark.

5.4 How Do You Know When You Have Mail

When mail for you is received in /usr/mail, the Mail utility notifies you. You will see a message on
whatever terminal you’re using. Mail even displays the login name of the user who sent you mail, as
in the following example:

You have mail from sue

If you are logged out when you receive mail. you'll see the message "You have mail" as soon as you
log in.

Until you read vyour mail, the system will remind vou about it each time you log in. Checking
/usr/mail is part of the system’s login procedure.

5.5 Reading Your Mail

To read mail, give the Mail command without an argument. Here, a user named John logs in 1o
discover he has mail. He then gives the Mail command to read it:

LOGIN: john
Password:

Logged in john Nov-13-1984 08:32:12 on qtty5

You have mail.

Message of the day: Welcome to the Cromix-Plus Operating System
john[1] mail

From sue, Nov-12-1984 15:57:01

Friday’s meeting has been rescheduled. The new
time is Monday at 9:00 A.M.

Let me know if you can attend.

Cromemco Introduction to Cromix-Plus Manual 5—3

The Mail Utility Chapter 5

Should mail be saved?

To answer Mail's prompt ("Should mail be saved?"), type y or n and press RETURN. If you type n
for no, Mail discards that item of mail. If you type y for yes, Mail stores that item of mail in a file
named mbox.

5.6 The mbox File

The first time you save mail, the Mail program creates a file pamed mbox in the current directory.
The file contains the mail you saved.

john{1] mail

From sue, Nov-12-1984 15:57:01

Friday’s meeting has been rescheduled. The new
time is Monday at 9:00 A.M.

Let me know if you can attend.
Should mail be saved? y
john[2] ty mbox

From sue, Nov-12-1984 15:57:01

Friday's meeting has been rescheduled. The new
time is Monday at 9:00 A.M.

Let me know if you can attend.

john[3]

The mbox file is an ordinary text file. You can edit the file, rename it, print it, and so on. When you
have an mbox file in the current directory, Mail adds new items of saved mail to the end of the file. If
you delete the mbox file, Mail will create it again the next time you save mail.

5.7 Sending the Same Mail to Several Users

By giving the Mail command with several arguments (several login names), you can send the same
mail to more than one user.

The following example sends the same mail to two users:

5—4 Cromemco Introduction to Cromix-Plus Manual

Chapter 5 The Mail Utility

jim[1] mail betty jim

I need your estimates by Thursday
afternoon. No excuses!
(CONTROL-Z)

jim([2]

When Betty and Jim read their mail, each will receive the same message. By including your own

Jogin name on the command line, you can save copies of the mail you send others. The copy is
created when you read your own mail and save it in the mbox file.

Cromemco Introduction to Cromix-Plus Manual

Chapter 6 The Cromix-Plus Shell

Chapter 6 - The Cromix-Plus Shell

This chapter explains some of the Cromix-Plus Shell’s special features. By taking advantage of these
features, you can make your work easier. For example, you can let the Shell generate the filenames it
passes, as arguments, to a program. When the Shell generates filenames, you don’t have to type a
long list of filenames on the command line. In a sense, the Shell does it for you.

One of the Shell’s most useful features is its ability to redirect a program’s output to an ordinary file.
When the Shell redirects output to a file, output you would normally see on the terminal is written to a
file on the disk. Most of the sample output in this manual, such as the Ls command example shown
below, was created by redirecting output to a file:

jim[1] Is -m /usr/mail

Directory: fusr/mail

0 1 alan
0 1 bill
0 1 jim
193 1 mark
3 D 1rpkg
0 1 sue

In the example, only the command itselfl was typed. The rest of the display was produced by
redirecting Ls’s output (o an ordinary file, which was then added to the text of the manual. In this
chapter, you will use the Cromix-Plus utilities to create some similar files.

The Shell can also redirect a program’s input. Redirected input comes from an ordinary file instead of
from the terminal keyboard.

Using another kind of redirection, called a "pipe,” the Shell can connect one or more programs
specified on the command line. The programs work together to produce a customized result.

To experiment with these, and other, features, you don’t need to create a single new file with the CE
program. Nor do you need to learn to use additional utility programs. The two new utilities in this
chapter (Sort and Create) are introduced only to aid your experiments. You already know enough
Cromix-Plus commands to use all of the features discussed in the chapter.

Cromemco Introduction to Cromix-Pius Manual 6—1

The Cromix-Plus Shell Chapter 6

6.1 The Standard Qutput

The Cromix-Plus system provides a standard file where programs can send their output. It is called
STDOUT (for standard output). Although STDOUT is "visible" only to the Shell, you see its effects
whenever you use the system.

For example, each time you’ve given the Who command, you’ve seen output (a list of system users)
on your terminal screen:

jim[1] who

betty qttyl Nov-14-1984 07:16:22 3 1
jim qtty2 Nov-14-1984 09:42:29 4 1
fred qtty3 Nov-14-1984 09:53:47 5 1

It happened because the Who utility sends its output to STDOUT, and the Shell connects STDOUT
with the terminal screen. Clist, Ls, and Date are some other programs that send output to STDOUT.
Their output, too, appears on the terminal screen.

Unless you redirect output as explained in this chapter, STDOUT is always the terminal.

Note: Not all programs use STDOUT. For example, the Spool program sends ils output to a system
printer--not to the terminal screen.

6.2 The Standard Input

The Cromix-Plus system provides another standard file where programs can get input. It is called
STDIN (for standard input). STDIN is connected to the terminal keyboard.

An example of a Cromix-Plus utility that uses STDIN is Mail. When you give Mail an argument (a
login name), Mail takes its input from the terminal keyboard.

jim[1] mail john

Friday’s meeting has been rescheduled. The new
time is Monday at 9:00 A.M.

Let me know if you can attend.

(CONTROL-Z)

jim([2]

CONTROL-Z (end-of-file) sends what you typed--via STDIN--to Mail.

Unless you redirect input as explained in this chapter, STDIN is always the terminal keyboard.

6 —2 Cromemco Introduction to Cromix-Plus Manual

Chapter 6 The Cromix-Plus Shell

Note: Not all programs use STDIN. For example, Who takes its input from a file in the etc
directory (/etc/who)--not from the terminal keyboard.

6.3 The Seort Utility

The Cromix-Plus system provides several programs that can use both STDOUT gnd STDIN. One of
them is Sort, which sorts its input (normally, the lines in an ordinary file). In this chapter, you'll use
this program to sort the lines in a file.

Your practice file (chapter 3), which contains a series of short, unalphabetized lines, is ideal for
demonstrating Sort.

jim[1] sort practice
Exit

Help

Passwd

Query
Who

Sort takes its input--the lines in the practice file--and sends sorted output to STDOUT (the terminal
screen). That output is sorted alphabetically, as shown above.

Only Sort’s outpur is sorted. The input file (practice) is unchanged.

jim[1] ty practice
Help
Passwd

Query
Who
Exit
jim{2]

Summarized, this is what happened when you gave the Sort command:

1. The Shell located and called the Sort program, passing on the command argument (the filename)
to Sort. The Shell never checks the arguments and command options it passes to a program.

2. Sort located its input file and sent a sorted version of that file to STDOUT.

3. With STDOUT connected to the terminal, Sort’s output appeared on the terminal screen.

A program like Sort, which can use both STDOUT and STDIN, is ideal for experimenting with the
redirection techniques discussed in this chapter. The first of these techniques, redirecting output to an
ordinary file, is explained in the next section.

Sort is one of the most versatile Cromix-Plus utility programs. For detailed information about this

Cromemco Introduction to Cromix-Plus Manual 6 —3

The Cromix-Plus Shell Chapter 6
program, consult the Cromix-Plus User’s Reference Manual.

6.4 Redirecting Qutpnt to a File

If you add a greater-than symbol (>) and a filename to the command line, the Shell will connect
STDOUT to an ordinary file. Then, output that normally appears on the terminal screen is written (o a
file instead.

jim[1] who > who.out
jim[2]

The redirect-output symbol (>) instructs the Shell to redirect a program’s output from its usual
destination--the terminal screen--to a file. In this case, the Shell redirected Who’s output to the file
who.out.

jim[1] ty who.out

betty qityl Nov-14-1984 07:16:22 3 1
jim qtty2 Nov-14-1984 09:42:29 4 1
fred quy3 Nov-14-1984 09:53:47 5 1

Summarized, this is what happens when you give a command that contains a redirect-output symbol:

1. First, the Shell opens an output file (such as who.out) and connects STDOUT with that file. If
the outpur file already exists, the Shell deletes its contents before it opens the file.

2. With the output file ready, the Shell calls the program (such as Who).

3. The program executes in response to the Shell. As always, the program sends its output to
STDOUT. But, with STDOUT connected to an ordinary file, output that normally goes to the
terminal goes to that file instead.

In the following example, Ls’s output is redirected to a file named list.usr.

jim[1] Is -m /usr > list.usr

The result is a file containing information about the files in the usr directory.

jm[1] ty list.usr
Directory: fusr
6 D1 alan
3 D1 bill

6 —4 Cromemco Introduction to Cromix-Plus Manual

Chapter 6 The Cromix-Plus Shell

98 D 1 help
35D1 jim
4 D 1 mail
27 D 1 mark
2D1 pkg
5 D 1 query
4 D 1 spool
83 D 1 sue
jim[2]

Note: Redirecting output to a file works onlv with programs thar send output to STDOUT,

Sort uses STDOUT. Thus, the following command creates an output file containing a sorted version
of practice (Sort’s input file).

jim{1] sort practice > practice.out

The output file practice.out is an ordinary file. You can print it using Spool or edit it using CE:

jim[1] spool practice.out
jim[2] ce practice.out

When you redirect a program’s output to a file, the Shell will overwrite any file in the same directory
with the same name. To demonstrate, create a file named test by giving the following command:

jim[1] who > test
jim(2]

The file test contains the redirected output from Who.

jim[1] ty test

betty qttyl Nov-14-1984 07:16:22 3 1
jim qtty2 Nov-14-1984 09:42:29 4 1
fred qtty3 Nov-14-1984 09:53:47 5 1
jim[2]

Now try redirecting the output from Time 1o the same file. Then display the contents of the file with
Type.

Cromemco Introduction to Cromix-Plus Manpual 6 —5

The Cromix-Plus Shell Chapter 6

jim{1] time > test

jim[2] ty test

Wednesday, November 14, 1984 9:58:12
jim(3]

The file test now contains only the output from Time. In opening a new output file named test, the
Shell automatically deleted the previous contents of the test file.

When you don’t want the Shell to overwrite a file with the same name, use the redirect-and-append
symbol discussed in the next section.

Important: In opening an output file, the Shell automatically deletes the contents of an existing file
with the same name. This happens BEFORE the Shell calls the program.

It is thus possible to accidentally delete a file while redirecting output. Consider the
following command:

jim[1] clist prog.c > prog.c

The input file and the output file have the same name (prog.c). In executing this
command. the Shell deletes the contents of prog.c before calling Clist. When Clist
executes, the file prog.c contains nothing.

When redirecting output, make sure the input file (if any) and the output file have

different filenames.

6.5 Appending Output to a File

The Shell will not overwrite a file with the same name if you use a redirect-and-append symbel (>>).
Instead, the Shell adds (appends) the new output to the end of the existing file.

To demonstrate, give the following commands:

jim[1] time >> time.out
jim[2] Is >> time.out

The first command created a new file named time.out, a file containing Time’s output. The second
command appended Ls’s output to the end of the file.

jim[1] ty time.out
Friday, November 16, 1984 16:28:24

6—6 Cromemco Introduction to Cromix-Plus Manual

Chapter 6 The Cromix-Plus Shell

list.usr practice test time.out who.out
jim{2]

6.6 Redirecting Type’s Output te a File

Unless you specify an input file, Type waits for input from the terminal (STDIN). By redirecting
Type’s output to a file, as you supply input from the terminal keyboard, you can create a text file using
Type.

If you’d like to try it, give the following command:

jim[1] type > type.out

In response, the Shell calls Type--without passing a filename to the program. (The Shell opens the
output file before calling the program.) Because the Shell called Type without an argument, Type
expects input from STDIN (the terminal keyboard).

Enter two or three lines of text (as if you were using Mail). When you're through, type CONTROL-Z
(for end-of-file).

jim[1] type > type.out
This 1s some sample text
I am typing into a file
named type.out.
(CONTROL-Z)

jim[2]

The new prompt means Type’s output has been redirected. You now have a file named type.out in
your directory.

jim[1] Is type.out
type.out
jim[2]

You can creale a similar, sorted file using Sort:

jim[1] sort > sort.out
Music

Message

Case

Cromemco Introduction to Cromix-Plus Manual 6 —7

The Cromix-Plus Shell Chapter 6

Countess
(CONTROL-Z)
jim[2] ty sort.out
Case

Countess
Message

Music

jim(3]

Sort and Type can create files in this way because both programs use STDOUT, and both can take
input from STDIN (the terminal keyboard). When called with an argument, a filename, they take their
input from a file; when called without an argument, they take their input from STDIN. Some other
programs that use STDIN when called without an argument are: Clist, Dump, Match, Scan, and Spool.

6.7 Redirecting Input From a File

If you add a less-than symbol (<) and a filename to the command line, the Shell will connect STDIN
to an ordinary file. The redirect-input symbol (<) instructs the Shell to redirect a program’s input so it
comes from an ordinary file instead of from the terminal keyboard. In this example, the Shell redirects
Mail’s input from the file info.

jim[1] mail sue < info
jim(2]

Mail sends a copy of the text in the file--as if that text had been typed after giving the Mail command.
Summarized, this is what happens when you give a command that contains a redirect-input symbol:

1. First, the Shell locates the input file (such as info) and connects STDIN with that file. If the
Shell cannot locate the input file, the Shell displays the message "File not found" before calling
the program.

2. The Shell calls the program (such as Mail).

3. The program executes in response to the Shell. As always, the program gets its input from
STDIN. But, with STDIN connected to an ordinary file, input that normally comes from the
terminal comes from that file instead.

4. The program returns control to the Shell when it encounters an end-of-file indicator. (At this
point, the Shell displays a new prompt.)

When you redirect a program’s input from a file, the Shell supplies the end-of-file indicator for you.
You do not need to type CONTROL-Z (for end-of-file), as you do when a program’s input comes
from the terminal keyboard.

6—8 Cromemco Introduction to Cromix-Plus Manual

Chapter 6 The Cromix-Plus Shell

Note: Redirecting input from a file works only with programs that can take input from STDIN.

6.8 Running a Job in the Background

So far, your commands have executed in seconds. After each command, the Shell quickly displayed a
new prompt so you could give another. Some commands, however, can take much longer to execute.

To illustrate, give the following command:

jim[1] Is -e /bin > bin.out

The Shell will not display a new prompt until Ls’s output (information about the files in the bin
directory) has been redirected. Because there are a lot of files in the bin directory, and the -e option
produces so much information, the process will take some time.

When you have a new prompt, try a similar version of the same command. Add an ampersand (&) to
the command line:

jim[1] Is -e /bin > bin.out &

An ampersand instructs the Shell to start a detached process--a process that is no longer connected to
your terminal. In seconds, the Shell displays a PID (process identification) number and a new prompt.
You can now give a new command while the Ls program executes in the background (as a detached
process). You can even log out while the program executes,

Any program that takes a long time to execute can be run in the background. For example, if you are
copying a long file, you may wish to run the job as a detached process:

jim[1] copy longfile longfile.save &
PID=1578
jim[2]

Using Cptree (chapter 4) to copy an entire directory structure is also time-consuming.

jim[1] cptree bigdirectory newdirectory &
PID=5781
jim(2]

While a program runs as a detached process, pressing CONTROL-C will not stop it. To stop a
detached process, use the Kill command. Kill's argument is the PID number of the process. This
example starts and stops a typical detached process:

Cromemco Introduction to Cromix-Plus Manual 6—29

The Cromix-Plus Shell , Chapter 6

jim[1] copy bigfile bigfile.copy &
PID=4137

jim[2} kill 4137

jim[3]

As a non-privileged user, you can kill any process the Shell starts for you. You cannot kill a process
the Shell starts for another user.

Important: When the Shell runs Spool as a background process, the PID # you see on the terminal
is Spool’s process number. The printer daemon (chapter 3) is a separate process, and
the Kill wtility will not stop it. To kill background printing, use the "spool -k"
command.

6.9 Giving Sequential Commands

You can give the Shell more than one command on a single command line by separating the
commands with a semicolon (). To illustrate, give the following command sequence:

jim[1] time;who;ls

In response, Time executes, followed by Who, followed by Ls. The Shell processes each command in
the order it appears on the command line. This is called sequential processing.

In the next example, the Shell deletes a file before Ls executes.

jim[1] del who.out:ls

list.bin list.usr practice sort.out test time.out type.out
Jjim[2]

When giving the Shell a series of commands, you can also use an ampersand to separate the
commands. The Shell executes a command followed by an ampersand as a detached process (in the
background).

This example redirects output to a file named logged_in in the background and, at the same time, calls
the CE editor:
jim[1] who > logged_in&ce practice

Or, this command starts two detached (or background) processes:

6 — 10 Cromemco Introduction to Cromix-Plus Manual

Chapter 3 Working With Text Files

the contents of a file using Type before deleting that file.

3.14 Seme Commen Error Messages

When using Copy, Delete, or Rename, a new Shell prompt means the system carried out your
commands.

jim[1] copy myfile yourfile
jim[2] del myfile
jim[3]

You know the system did nor execute a particular command if an error message precedes the new
prompt.

jim{1] ren myfile ourfile
File not found: "myfile"
jim[2]

This particular message means Rename could not locate the old file (the file to be renamed). Rename
returned control to the Shell without renaming a file. To produce a similar error message, you might
try renaming the beta file--the file you deleted in the previous section.

Some common error messages associated with Rename and Copy are:

jim[1] ren today
Wrong number of arguments
jim{2]

This is an example of a syntax error--Rename requires two arguments. Thus, Rename returned control
to the Shell without even looking for a file named today.

jim{1] copy letter letter.save
File already exists: "letter.save"
jim[2]

As a safeguard, Copy and Rename normally require a new filename as their final command argument.
Without this protection, you could easily destroy the contents of an existing file.
If you do want Copy to overwrite an existing file, use the -f (for force) option:

jim[1] copy -f letter letter.save

jim{2]

Cromemco Introduction to Cromix-Plus Manual 3 —11

The Cromix-Plus Shell Chapter 6

jim[1] move memol memo2 memo3 memos >* error
jim[2] move letterl letter2 correspondence >>* error
jim(3]

Error messages, if any, are contained in the file error.

jim[1] ty error

File not found: "memo3"
File not found: "letterl"
jim[2]

6.12 Redirection with Pipes

A pipe symbol () on the command line instructs the Shell to connect the output from one program to
the input of another. For example, the following command uses a pipe to connect Ls with Spool:

jim[1] s /usr | spool

Spool’s input is the output from Ls. The result is a printed list of the files in the /usr directory, as if
you'd given the following commands:

jim[1] s /usr > list.out
Jim[2] spool list.out
jim[3] del list.out

A pipe does not create an intermediate file. Instead, Ls’s output is channeled directly to Spool.

Try this similar command to connect Who and Sort:

jim[1] whe | sort

The result is-a sorted list of system users.

This command uses rwo pipes to produce a printed, sorted list of system users.

jim[1] who | sort | spool

Using pipes, the Shell can connect a variety of programs that were not specifically designed to work
together. At the beginning of a pipe is a program that sends output to STDOUT. In the preceding

6— 12 Cromemco Introduction to Cromix-Plus Manua]

Chapter 6 The Cromix-Plus Shell

command, both Who and Sort fill this requirement. At the end of a pipe is a program that can take its
input from STDIN. In the sample command, both Sort and Spool fill this requirement.

When you use a pipe (1), the programs run concurrently. The Shell starts three processes (one for each
program) when you give this command:

jim[1] who | sort | spool

Even though Spool must wait for Who and Sort to execute before it has output to print, it is running
nevertheless. If system memory is at a premium, you may wish to use the redirection technique
discussed in the next section instead of a pipe.

6.13 Redirecting Qutput to a Temporary File

Using a redirect-output symbol immediately followed by a redirect-input symbol, you can duplicate the
effects of a pipe. For example. the following command prints a list of system users:

jim[1] who >< spool

A "><" symbol, called a "sequential pipe,” instructs the Shell to create a remporary file. In the sample
command, the Shell redirects Who’s output to a temporary file, and then redirects Spool’s input from
the same file. The file is "temporary” because the Shell automatically deletes it before displaying a
new prompt.

The Shell runs each process (for example, Who and Spool) sequentially. In other words, Who
executes before the Shell calls Spool. This form of redirection, although slower than using a pipe,
saves system memory.

6.14 The Tee Command

Using the Tee command, you can redirect output to a file and have that output appear on the terminal
as well. For example, this command redirects Sort’s output to a file (practice.sort) and displays that
output, too.

jim[1] sort practice | tee practice.sort

The Tee command requires an argument--the pathname of an ordinary file. For more information
about the Tee command, refer to the Cromix-Plus User’s Reference Manual.

Cromemco Introduction to Cromix-Plus Manual 6 — 13

The Cromix-Plus Shell Chapter 6

6.15 Filename Generation

A command argument that contains an asterisk (*) or question mark (?) is an ambiguous file reference:

1. An asterisk (*) matches a string of zero or more characters. An asterisk does nor match a
leading or embedded period.

2. A double asterisk (**) matches zero or more characters, including an embedded period. A
double asterisk does nor match a leading period.

3. A question mark (?) matches any single character other than a leading period.

In response to an ambiguous file reference, the Shell generates the names of specific files and passes
those filenames to a program. For example, suppose you have the following files in your directory:

account
data_sheet
intro
memo
memos
memo.fred
memol
memo?2

The following command displays information about all the "memo” files:

Jim[1] 1 m**
memo memos memo.fred memol memo2

Because a double asterisk matches zero or more characters (including an embedded period), the Shell
generates the names of all files that begin with "m".
This command displays information about the file memo.fred only:

Jim[1] T m*.*

memo.fred

Only this file has a name that consists of "m", followed by zero or more characters, followed by a
period, followed by zero or more characters.

This command uses a question mark to display information about the files that begin with "memo”,
followed by any single character:

jim[1] 1 memo?

6 — 14 Cromemco Introduction to Cromix-Plus Manual

Chapter 6 The Cromix-Plus Shell
memos memol memo2

The Shell does not generate the filename memo because it does not consist of "memo" followed by

another character.

You can usually use an ambiguous file reference wherever you'd use an ordinary filename. In this

example, an ambiguous file reference is used to print the file memol:

jim[1] spool m*1

Or, in this example, an ambiguous file reference is used to move the files memos, memol, and
memo2 to another directory.

jim[1] move memo? correspondence

Because ambiguous file references can produce some unforseen matches, be careful when you use
them. When in doubt, test them with the Ls command:

jim[17] Is 2.txt
1.txt 2.txt 3.txt 4.txt 5.t

If none of the filenames in a directory begins with a period, a double asterisk--by itself--matches every
filename in the directory. Thus, the following command will usually delete all the files in the current
directory:

jim[1] del **

This command is mentioned because, sooner or later, almost everyone tries it. Resist temptation, and
use the Deltree utility instead. Deltree requires confirmation from you before deleting files--Delete
does not.

It is safest not to use ambiguous file references with the Delete command. If you feel you must,
always check the current directory before giving the Delete command.

6.16 Specifying a Range of Characters

Using another kind of ambiguous file reference, you can instruct the Shell to look for a range of
characters. The Shell will substitute characters in square brackets for the corresponding character in a
filename.

The Cromix-Plus Shell Chapter 6

To illustrate, suppose your directory contains the following files:

a_letter
b_letter
c_letter
a_memo
b_memo
C_memo
d_memo

The following command would display information about the files a_letter and b_Jetter:

jim[1] 1s [ab]_letter
a_letter b_letter

Without the brackets, the Shell would pass the argument "ab_letter” to Ls, and Ls would Jook for an
exact maich:

jim[1] Is ab_letter
file not found: "ab_letter”

The letters "a" and "b", in square brackets, define a range of characters the Shell may substitute for the
first character in the filename.

In a similar manner, the next command displays information about all files that begin with "a" or d™:

jim{1]} Is [ad}*
a_letter a_memo d_memo

To specify a wider range of characters, you can use a hyphen within the brackets, as in this example:

jim[1] Is [b-d]_memo
b_memo C_memo d_memo

The hyphen means "through," as it does in normal usage.

6—16 Cromemco Introduction to Cromix-Plus Manual

Chapter 6 The Cromix-Plus Shell

6.17 An Important Consideration Regarding Filename Generation

The number of filenames the Shell can generate in response to an ambiguous file reference is limited
by the number of characters the Shell can pass, as command arguments, to any program. The
maximum is 512 characters. When asked to pass more characters than this to any Cromix-Plus
program, the Shell displays the message "Arg list too big," as shown below:

jim[1] Is /bin/**
Asg list too big

If you give this command, you'll see the same message, followed by a partial list of files in the /bin
directory. This message comes from the Shell. The program (in this case, Ls) has no way of knowing
it received a partial list of filenames from the Shell.

If, as you use the Cromix-Plus system, you see an "Arg list too big" message, try breaking the list into
two commands, as in the following examples:

jim[1] move [a-k]** /usr/jerrv/sales_leads
jim[2] move [l-z]** /usr/jerry/sales_leads

Better still, avoid the problem by limiting the size of your directories. If the Shell cannot generate the
names of all the files in a user’s directory, that directory contains too many files. Create some
subdirectories, and reduce the clutter.

6.18 Experimenting with Filename Generation

Without a group of files with similar filenames, it's difficult to appreciate the Shell's ability to generate
filenames. If you would like to experiment with filename generation, there is an easy, quick way to
create a series of files.

The Create command with a filename as an argument creates a file containing zero bytes. The file has

a name, but there is no information in the file. By giving the command with a list of filenames, you
can create a series of zero-byte files:

jim[1] create big bigger biggest 2big really_big

The preceding command will create five new files in your current directory. Although the files contain
no characters, they will show up in the list Ls displays. Because their filenames are similar, they are
ideal for demonstrating filename generation.

Cromemco Introduction to Cromix-Plus Manual 6 — 17

Chapter 7 Writing Command Files

Chapter 7 - Writing Command Files

In addition to general information about command files, this chapter discusses some commands that are
often used in command files. A few of these commands (such as Shift and Rewind) are used nowhere
else.

Most likely, when you’ve used the Cromix-Plus system for a while, you'll discover some repetitive
task you could do more easily with a command file. By taking advantage of the Shell's ability to
interpret command files (the programs you write for the Shell), you can make your work a lot easier.

7.1 Command-File Description

Command files are ordinary files, which contain a series of Cromix-Plus commands. A command file
must have the filename extension .cmd (for command). The following command file (list.cmd)
contains the "Is -m" command:

jim[1] ty list.cnd
Is -m

Giving the command filename (minus the filename extension) from the command line executes the file:

jim[1] list

239 1 letter

241 1 memo
50 1 output

240 1 plan6_10

Command files can be this simple. Command files can also perform more complex tasks, such as
copying files from the computer’s hard disk onto floppy diskettes for long-term storage.

When you give a command that executes a command file, that file should be located in the current

directory or the /emd directory. (If /ram is present, command files may also reside in that directory.)
To execute a command file in some other directory, supply a complete pathname:

Jim[1] /usr/ted/list

OR

Cromemco Introduction to Cromix-Plus Manual 7 —1

Writing Command Files Chapter 7

jim[1] ./list

Note: Only privileged users may create files in the /cmd directory. Even if you are privileged, you
should check with the System Administrator before adding command files to /emd.

As supplied, the Cromix-Plus system has some standard command files in /emd. For
example, the file named /cmd/bak.cmd deletes all files in the current directory with bak
filename extensions. (For information about the Bak command, consult the Cromix-Plus
User’s Reference Manual.)

7.2 A Practical Use of the Path Command

Because the Shell looks first in the current directory for executable files (refer to chapter 4), you have
complete freedom over the command files you create within your own directory structure. For
example, if you have a file named sort.cmd (a personalized version of Sort) in your current directory,
the following command executes your file--not the file sort.bin in the /bin directory:

jim{1] sort infile > outfile

To find out what file (if any) the Shell will execute in response to a particular command, use the Path
command:

jim[1] path sort
/usr/you/sort.cmd

In this example, the Shell located the file in the current directory. Giving the Sort command now will
execute the file sort.cmd.
Here, the Shell locates the file in the /bin directory:

jim{1] path sort
/bin/sort.bin

If you do have a file named sort.cmd it is not in the current directory. Giving the Sort command now
will execute the file sort.bin.

To avoid confusion, it is a good idea to give your command files distinctive filenames, such as
mysort.cmd. Once again, the Path command will tell you if the Shell can execute the file:

jim[1] path mysort
Command not found: "mysort”

7—2 Cromemco Introduction to Cromix-Plus Manual

Chapter 7 Writing Command Files

"Command not found" means the file, if it exists, is not in any of the directories the Shell searches for
executable files (refer to chapter 4). To execute the file, you must either change directories or supply a
more complete pathname, as in the following examples:

jim[1] Is ../mysort
../mysort.cmd

jim[2] ../mysort infile > outline
jim[3]

The first command verifies the existence of the file in a user’s home directory. The second command
executes the file.

7.3 Redirection Within a Command File

Any command you can give from the command line can be put in a command file. This means you
can use all the redirection techniques discussed in chapter 6.

Because command files can execute many commands, redirecting error messages is often desirable.

You can even discard error messages (so they are neither displayed nor saved in a file) by redirecting
them to a file named null in the /dev directory:

jim[1] del *.temp >* /dev/nuil

/dev/null is a null device. Redirecting any kind of outpur to this file discards that output.

Discarding error messages can be compared to ignoring road signs while driving on a highway. There
is probably no harm in ignoring the sign

"Scenic route ahead"
but you would probably want to notice the sign
"Next gas station 300 miles ahead"

As there is no way to tell in advance how important error messages are going to be it is probably wise
not to ignore them at all.

The next section introduces the Echo command, which is especially useful when writing command
files. Using Echo, you can send informative messages to the terminal as a command file executes.

7.4 The Echo Command

Echo "echoes” its arguments to the terminal screen, as in the following example:

Cromemco Introduction to Cromix-Plus Manual 7—13

Writing Command Files Chapter 7

jim[1] echo Hello there.
Hello there.
jim([2]

You can echo "special” characters (such as an asterisk or pipe symbol) by quoting that character on the
command line, as in the following example:

jim[1] echo This is a special character: ">" right
jim[2] This is a special character: > right

As an alternative, you may wish to quote the entire string of arguments, as in this example:

jim[1] echo *This is a special character: > right’
This is a special character: > right

The Shell ignores special characters anywhere within single or double quotation marks. This is true
when using Echo or any other utility. Without the quotation marks, the sample command redirects
Echo’s output to a file named right:

jim{1] echo This is a special character: > right
jim[2] ty right

This is a special character:

jim[3]

Chapter 3 contains a list of special characters you must quote if the Shell is to interpret them literally
on a command line.

7.5 Command File Structure

Within a command file:

1. You can instruct the Shell to substitute arguments from the command line for up to nine
numbered parameters in the command file.

2. You can specify labels and comments.
3. You can define string variables.

4. You can jump to labels using the Goto command, or do conditional jumps using Goto and If.

Items 1 and 2 are discussed more fully in the following subsections. After these subsections, the If
and Goto commands are discussed.

7—4 Cromemco Introduction to Cromix-Plus Manual

Chapter 7 Writing Command Files
Argument Substitution -- For #1 in a command file, the Shell substitutes the first argument from the
command line, for #2, the second, and so on, through the ninth command-line argument (#9).

For example, the following command file displays two files--#2 (the second command argument) and

#1 (the first command argument).

jim[1} ty display.cmd
ty #2
ty #1

The following command executes the file and displays the files letterl and letter2.

jim[1] display letterl letter2
This is letter 2

This is letter 1

jim[2]
For #* in a command file, the Shell substitutes al/l command-line arguments:

jim[1] ty display_all.cmd

ty #*

jim{2] display_all letterl lettexr2
This is letter 1

This is letter 2

jim[3]
For the asterisk, the Shell substitutes arguments in order--first, second, and so on, until there are no
more arguments.

You can pass even more arguments to a command file using ambiguous file references on the
command line. This example (again using the display_all command file) displays all the files in the

Cromemco Introduction to Cromix-Plus Manual 7 —5

Writing Command Files Chapter 7
current directory with .txt filename extensions:

jim[1] display_all *.txt
This is text-file 1

This is text-file 2

This is text-file 3

Specifying Labels and Comments -- A percent sign anywhere on a line means the rest of the line is a
comment. In the following example, "display all files" is a comment:

jim[1] ty display_all.cmd
ty #* % display all files

The Shell executes the command (ty #*) and ignores the comment. Comments are always ignored.
Their only purpose is to make a command file's operation more understandable.
A comment at the beginning of a line--with no space after the percent sign--is a label. In the

following example. "%start" and "%end" are labels:

jim[1] ty display_all.cmd

Postart

ty #* % display all files
%end

As described in the next section, labels can affect the operation of a command file.

Shell Variables

It is possible to set and access string values stored in Shell variables. These include the standard Shell
variables #path, #ext, #abort and #err as well as those defined by the user. Please refer to the
discussions of "Shell” and "Set" in the Cromix-Plus User's Reference Manual.

7—6 Cromemco Introduction to Cromix-Plus Manual

Chapter 7 Writing Command Files

7.6 The Goto Command

The Goto command transfers control within 2 command file. Goto’s argument is always a line label.

To illustrate, consider this sample command file:

jim[1] ty echo_args.cmd
Jostart

echo #*

%end

All this file does is echo any command arguments.

Adding a Goto command causes the file to execute again and again.

jim[1] ty echo_args.cmd
Jostart

echo #*

goto start

%end

The command "goto start” starts the file executing once more from the beginning, the label start.
Only CONTROL-C stops execution.

A Goto command always interrupts the sequential, line-by-line execution of a command file. After a
Goto command, execution continues at another point in the command file, as determined by Goto’s
argument (a label). The process is commonly called "jumping” to a label.

Using Goto in combination with the If command (the next section), you can do "conditional” jumps.
In other words, you can jump to a label if--and only if--some condition is satisfied. 1f the condition is
not satisfied, the Goto command is ignored.

If you give the Goto command with a nonexistent line label, any commands in the file after Goto are

not executed.

7.7 The If Command

The If command conditionally executes another command (often, the Goto command).

The most common forms of the If command are:

1. Execute the command if the previous command returned an error:

if -err command

Cromemco Introduction to Cromix-Plus Manual 7 —17

Writing Command Files Chapter 7
All commands return a value to the Shell when they are through executing. The Shell, in turn,
passes that value to the next command. A pon-zero value indicates an error.

The "if -err” command tests for a non-zero return value. If the preceding command returns an
error, the command following "if -err" executes, as in this example:

if -err goto end

If the preceding command returns a zero value, the command following "if -err" (in this case
Goto) does not execute,

N

There is additional information about return values in this chapter and in the Cromix-Plus
User’s Reference Manual.

2. Execute the command if a specified condition is true or false:

if string-1 = string-2 command
if string-1 != string-2 command

The relational operator (!=) means "not equal." Spaces must bracket both relational operators (=
and !=).

For example, this line tests for an argument:

if #1hi = hi goto done

For #1, the Shell substitutes the first argument on the command line. In the absence of an
argument, the Shell substitutes a null string (comparable to nothing) for #1. In this case, "#1hi"
and "hi" are equal, and the Goto command is executed. If they are not equal (the condition
specified by If is false), the Goto command is not executed.

Comparing #1 to a single character, such as a period (.), is the quickest way to test for an
argument:
if #1. =

You must compare #1 to somerhing because the following command is syntactic nonsense:

if #1 =

7—8 Cromemco Introduction to Cromix-Plus Manual

Chapter 7 Writing Command Files

You may be used to combining If with Else and Endif. Under the Cromix-Plus system, If-Else-
Endif constructions are not possible. However, you can usually emulate their effects with
consecutive If-Goto constructions.

7.8 The Shift Command

The Shift command shifts arguments in a command file. After a Shift command, #1 matches the
second argument on the command line, #2, the third, and so on. Using Shift commands, you can cycle
through a series of arguments.

If you want to return all command-file parameters to their original values, use the Rewind command.

7.9 The Rewind Command

The Rewind command cancels all preceding Shift commands in a command file. After a Rewind
command #1 matches the first argument on the command line, #2, the second, and so on.

7.10 The Exit Command

Within a command file, Exit returns control to the Shell. Exit logs you out only when you give the
command in response to the Shell prompt.

By giving the Exit command with an argument (a number), you can control the value Exit returns to
the Shell. Any nonzero value will return an error. Without an argument, Exit returns whatever value
it receives {rom the Shell.

The following command file, which sorts a series of files to the file sortout, contains several Exit

commands. Clist displays the file, providing line numbers for reference (the line numbers and heading
are pot a part of the file):

jim[1] clist sort_all.cmmd

File SORT_ALL.CMD Wednesday, November 14, 1984 10:14:29
1 if #1. = . goto error % if no arguments
2 sort #* >> sortout % sort input files
3 exit
4
5 Joerror
6 echo "Give me an argument!”
7 exit 1

The first Exit command returns the value returned by the preceding command (Sort). The second Exit
command returns an error value, regardless of the value returned by the preceding command (Echo).

Which Exit command executes depends on the outcome of the argument test (line 1). If true (#1. = .).
execution jumps to error, and lines 6 and 7 execute.

Cromemco Introduction to Cromix-Plus Manual 79

Writing Command Files Chapter 7

jim[1] sort_all
Give me an argument!
jim[2]

If the argument test (line 1) is false (#1. != .), lines 2 and 3 execute. The rest of the file (lines 4
through 7) does not execute.

7.11 The Input and Strcmp Commands

_The Input utility reads one line from STDIN and writes that line to STDOUT. The line is written
when you press RETURN to end that line.

jim[1] input

This line is displayed when I press RETURN.
This line is displayed when I press RETURN.
jim[2]

By redirecting output, you can use Input to create a file containing one line of text.

jim[1] input > oneline

This line is written to a file when I press RETURN.
jim{2] ty oneline

This line is writlen to a file when I press RETURN.
jim([3]

Input, when used with Strcmp (the next command discussed), lets you communicate from the terminal
with an executing command file.

7.12 The Strcemp Command

Stremp tests for equality between STDIN and one or more text strings--ignoring letter case. For
example, the following command tests the file temp for equality with the string yes or please.

ty temp | strcmp yes please

If the contents of the file is not identical to either of the two strings, Strcmp returns an error value,
(Like all comumands, Stremp returns a value to the Shell when it is through executing.)

With the -f (for first) option, Strcmp tests the first character of STDIN for equality with the first
character of one or more strings.

To test for a multiword string. enclose the string in quotation marks, as in this example:

7 — 10 Cromemco Introduction to Cromix-Plus Manual

Chapter 7 Writing Command Files
ty temp | strcmp "yes please”

In response to this command, Strcmp returns an error if the contents of STDIN does not match the

entire string "yes please.” .

Important: Do not conclude that Strcmp tests for a string embedded in the text of a file. Jr does
not. Strcmp tests for equality between the file and the string. In other words, whether
STDIN contains the string is irrelevant. The contents of STDIN must be the same as
the string.

To test for embedded text strings, use the Match utility (refer to the Cromix-Plus
User’s Reference Manual).

The Stremp utility is normally used in command files together with the Input utility. This command file
runs the Shutdown utility if confirmation from the terminal is received:

jim[1] ty crash.cmd

echo "Do you want to shut down the system?"
input | strcmp f y

if -err exit

shutdown

Jjim[2]

The first line echoes the phrase "Do you want to shut down the system?”

jim[3] crash
Do you want to shut down the system?

Input utility now waits for a line from the terminal. Any response (a single line) will be piped to the

Stremp utility that will compare the line received to the string "y". Suppose the user types yes and
presses RETURN.

jim[4] crash
Do you want to shut down the system?
yes

The line containing the string "yes" is piped into the Stremp utility which compares it with the string

y". The -f option causes the Strcmp utility to compare only the first character. The first characters are
the same so that Strcmp return no error to the shell. As a result the exit command is not executed and
the system shut down is initiated.

7.13 The Repeat Command

The Repeat command repeats a command a specified number of times, as in the following example:

Cromemco Introduction to Cromix-Plus Manual 7 — 11

Writing Command Files Chapter 7

jim[1] repeat 3 echo "this line is displayed three times"
this line is displayed three times

this line is displayed three times

this line is displayed three times

jim[2]

Other commands on a command line are not repeated:

jim[1] repeat 3 echo "Get to work!"; time
Get to work!
Get to work!
Get to work!
Monday, November 4, 1984 12:57:32
The semicolon (;) as a command separator is discussed in chapter 6.

In a command file, Repeat might be used to do multiple "shifts":

repeat 3 shift

After this command, the fourth command-line argument is equivalent to #1 in the command file.

7.14 The Scan Command

The Scan command is a sophisticated utility that can scan all files in a directory, including
subdirectories, and do various things to each file. The full description of the Scan utility can be found
in the Cromix-Plus User's Reference Manual. The following description gives just a few useful
examples.

The general form of the command is:

scan directory-pathname instruction-string

Almost in all cases the instruction-string has to be in (single) quotes to prevent the Shell from trying to
interpret it.

The simplest example is:
scan / *print(path)’

The scan utility will print the full pathname of every file in the file structure, just like the Ncheck
utility described elsewhere.

The next example will print the pathnames of all files in the current directory (and its subdirectories)

7 — 12 Cromemco Introduction to Cromix-Plus Manual

Chapter 7 Writing Command Files

that have the ".bak" extension:
scan . ’ext == ".bak" && print(path)’

In a similar way you can get rid of all ".bak" files in your directory:
scan . ’ext == "bak" && shell("del -v " | path)’

The meaning is this: if the file has a ".bak" extension. execute a command. The command to be
executed is

del -v filename

and this command has to be constructed by concatenating the string "del -v " and the filename supplied
by the Scan utility. the "I" character (in this context) stands for concatenation.

A more sophisticated example is the same as above except that the user can first confirm (or not
confirm) that the file is to be deleted. Note that as examples get more and more complicated they are
more and more inconvenient to type. The Scan command is most useful when used in command files.

scan . ’ext==".bak" && print(path) && ok && shell("del "| path)’
The Jogic behind this example is as follows:

For every file, if the extension is the right one,
then if the pathname can be printed (it always can),
then if the user confirms it,
then if it was successfully deleted
then do nothing.

If this command is run the Scan utility will print the pathname of every file with the extension ".bak"

[

and wait for user confirmation. If the user types a "y" or a "Y" character, the file will be deleted.

7.15 Sample Command Files

This sample command file illustrates argument substitution, the Shift command, the Repeat command
and the Rewind command.

k]

jim[1] ty shift_args.cmd
echo #*

shift

echo #1

repeat 2 shift

echo #1

rewind

echo #1

jim[2]

Cromemco Introduction to Cromix-Plus Manual 7 —13

Writing Command Files Chapter 7

Executing the file first echoes all arguments. Then, after a shift, the second argument is echoed. After
two more shifts, the fourth argument is echoed. A Rewind command cancels all shifts, and the first
argument is again echoed.

jim[1] shift_args 12 3 4
1234

2

4

!

jim([2]

The next example combines argument substitution with the Shift, If, and Goto commands:

jim[1] ty clist_all.cmd

Jostart

clist #1 % display file
shift

if #1. 1= . goto start

echo That’s all!

To execute this file, you might give the following command:

jim{1] clist_all *.c

Before executing the file, the Shell generates the names of files in the current directory with .¢ (for C
program) filename extensions. Then., the file executes as follows:

1. Clist displays the file corresponding to the first command argument (#1).

2. The Shift command shifts the arguments by one (#1 is now the second command argument, #2,
the third, and so on).

3. The If command tests for another argument. If "#1." is not equal to ".", there is another
argument--a filename generated by the Shell. In this case, the Goto command jumps to the label
start.

4. The process repeats until "#1." (as determined by successive Shift commands) is equal to "."

By taking advantage of the Shell’s ability to pass arguments to a command file, you can define options
for the command files you write. For example, the following command executes the file ccomp.cmd
with a user-defined option, -1 (for link):

jim[1] ecomp -1 *.c

7—14 Cromemco Introduction to Cromix-Plus Manual

Chapter 7 Writing Command Files

"-1" is the first argument. The other arguments are the filenames in the current directory with .¢ (for C
program) extensions.

Ccomp, written to compile and (optionally) link C programs, needs to know if "-1" is present so it can
call Crolinker (the Cromemco linker) to link the programs to the Cromemco C libraries. During
compilation and linking (if applicable), Ccomp must ignore "-1".

The next examples show portions of the file ccomp.cmd, illustrating how the Shift and Rewind
commands solve the problem.

jim[1] ty ccomp.cmd
if #1.= -l.shift % get rid of -1 option
if #1. = . goto no-args % if no other arguments

1nogn

The Shift command shifts command-line arguments so "-1" (if present) is ignored. All arguments are

now filenames, ensuring a successful compilation.

A Rewind command later in the file reinstates all arguments:

rewind

if #1. 1= -1 exit % no linking requested
shift % get rid of -1 option

crolinker #* usr/lib/clib /usr/lib/paslib

Then, Ccomp tests for "-1" once more. If linking is not required (#1. I= -1.), the Exit command returns
control to the Shell. If linking is required (#1. = -1.), the rest of the file executes:

1. The Shift command again gets rid of the option, so the next command (Crolinker) receives only
filenames.

2. Crolinker then links all files to the Cromemco C-language libraries.

The file ccomp.cmd is shown in its entirety in the Cromix-Plus User’'s Reference Manual, under the
discussion of the Exit command.

Cromemco Introduction to Cromix-Plus Manual 7 — 15

Writing Command Files Chapter 7

7 — 16 Cromemco Introduction to Cromix-Plus Manual

Appendix A The Shell Command-Line Editor

Appendix A - The Shell Command-Line Editor

The Shell command-line editor lets you correct or change a command line with a minimum of
retyping. To illustrate. consider the following command line, in which the command name "scan" and
the keyword "name" have been mistyped. The command-line editor is ideal for corrections like these.

System[1] scn / 'name == "repeat” && print(path)’

While you are typing the command, the LEFT and RIGHT ARROW keys move the cursor left and
right on the command line--without erasing typed characters. Pressing the DELETE key deletes
characters to the left of the cursor (one character is deleted each time you press the key).

Pressing CONTROL-]I puts the editor in the Insert mode. With the editor in the Insert mode, any
characters you type will be inserted to the left of the cursor. To take the editor out of the Insert mode,
press ESCAPE. If the editor is not in the Insert mode, any characters you type replace existing
characters.

When you are through editing a command line. pressing RETURN sends all visible characters to the

Shell. The cursor’s position when you press RETURN is therefore irrelevant.

A.1 Retrieving the Previous Command

One of the editor's most convenient features is its ability to retrieve, or "retype,” a previous command.

You can easily demonstrate this feature by giving any command to the Shell. When the Shell displays
a pew prompt, press CONTROL-R, as in the following example:

jim[1] who

betty qttyl Nov-14-1984 07:16:22 3 1
jim qtty2 Nov-14-1984 09:42:29 4

fred qtty3 Nov-14-1984 09:53:47 5 1

% (CONTROL-R)

CONTROL-R redisplays your entire previous command.

Cromemco Introduction to Cromix-Plus Manual A—1

The Shell Command-Line Editor Appendix A

jim[1] who
betty queyl Nov-14-1984 07:16:22 3 1
jim qtty2 Nov-14-1984 09:42:29 4 1
fred qity3 Nov-14-1984 09:53:47 5 1
jim[2] who

If you first type a number and then press CONTROL-R the command with that number, provided it
exists, will be redisplayed.

It is also possible to move up and down through the list of previously entered commands using the UP
and DOWN arrow keys. Additionally, if any characters appear to the left of the cursor prior to typing
either arrow key, the editor will attempt to match a previous command with those characters.
Commands retrieved in either manner may or may not be edited further and then executed by typing
RETURN.

A—2 Cromemco Introduction to Cromix-Plus Manual

280 Bernardo Ave.
P, Box 7400
Mountain View, CA 94039

