
,... --

0
I

I
-o

Hyperion™
Programmer
Guide

~'Jnnni:;_nnn_n.,

Bytec Management Corporation Ottawa, Canada K2E 7M6

BYTEC PROGRAM LICENSE AGREEMENT

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS
BEFORE OPENING THIS SOFTWARE PACKAGE. OPENING THIS SOFTWARE PACK­
AGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS. IF YOU
DO NOT AGREE WITH THEM, YOU SHOULD PROMPTLY RETURN THE PACKAGE
UNOPENED AND YOUR MONEY WILL BE REFUNDED.

Bytec Management Corporation provides this program and licenses its use in the United States
and Canada. You assume responsibility for the selection of the program to achieve your
intended results obtained from tbe program.

LICENSE
You may:

a. use the program on a ri"llk Bytcc microcomputer;

b. copy the program into any machine readable or printed
form for backup or modification purpases in support of
your use of the prognm on the single Bytec micro·
computer (Certain progr.ims, however, may indude
mechanisms to limit or inhibit copying. They are marked
"copy protected".);

c. modify the program and/or merge it into another
progrJ.m for your use on the single Bytec microcomputer.
(Any portion of this program merged imo another
progrJ.m will continue to be subject to the terms and
conditions of this Agreement.); and,

d. transfer the program and license to another part)' if the
other party agrees to accept the terms and conditions of
this Agreement. If you transfer the program, you must at
the same time either transfer all copies whether in
printed or machine-readable form to the same party or
destroy any copies not tnnsferred; this includes all
modifications and portions of the program <.omained or
merged into other programs.

You must reproduce and include the copyright notice on any
copy, modification or portion merged into another program.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER
THE PROGRAM, OR ANY COPY, MODIFICATION OR
MERGED PORTION, IN WHOLE OR IN PART, EXCEPT
AS EXPRESSLY PROVIDED FOR IN THIS LICENSE.

IF YOU TRANSFER POSSESSION OF ANY COPY, MOD­
IFICATION OR MERGED PORTION OF THE PROGRAM
TO ANOTHER PARTY, YOUR LICENSE IS AUTOMATI­
CALLY TERMINATED.

TERM
The license is effective until terminated. You may terminate it
at any other time by destroying the program together with all
copies, modifications and merged portions in any form. It will
also terminate upon conditions set forth elsewhere in the
Agreement or if you fail to comply with any term or
condition of the Agreement. You agree upon such termina­
tion to destroy the J'rogram together with all copies, mod­
ifications and merge portions in any form.

LIMITED WARRANTY
THE PROGRAM IS PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND. EITHER EXPRESSED OR
IMPLIED. INCLUDING, BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF
THE PROGRAM IS WITH YOU. SHOULD THE PROG­
RAM PROVE DEFECTIVE, YOU (AND NOT BYTEC
MANAGEMENT CORPORATION OR AN AUTHORIZED
BYTEC COMPUTER DEALER) ASSUME THE ENTIRE
COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION. SOME STATES OR PROVINCES DO
NOT ALLOW THE EXCLUSION OF IMPLIED WARRAN­
TIES, SO THE ABOVE EXCLUSION MAY NOT APPLY
TO YOU. THIS WARRANTY GIVES YOU SPECIFIC
LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER
RIGHTS WHICH VARY FROM STATE TO STATE OR
PROVINCE TO PROVINCE.

Rytec Management Corporation does not warrJnt that the
functions contained in the prognm will meet your require­
ments or that the operation of the progrdm will be uninter­
rupted or error free.

However, Bytec Managemem Corporation warrants the dis­
kette(s) on which the program is furnished, to be free from
defects in materials and workmanship under normal use for a
period of ninety (90) days from the dale of delivery to you as
evidenced by a copy of your bill of sale.

LIMITATIONS OF REMEDIES

Bytec Management Corporation's entire liability and your
exclusive remedy shall be:

1. the replacement of any diskette(s) not meeting Bytec
Management Corporation's "Limited Warranty" and
which is returned to Bytec Management CorporJtion or
an Authorized Bytec Computer Dealer with a cop)' of
your bill of sale. or

2. if Bytec Management Corpordtion or the dealer is unable
to deliver a replacement disk.ene(s) which is free of
defects in materials or workmanship, you may terminate
this Agreement by returning the progrdm and your
money will be refunded.

IN NO EVENT WILL BYTEC MANAGEMENT COR­
PORATION BE LIABLE TO YOU FOR ANY DAMAGES,
INCLUDING ANY LOST PROFITS, LOST SAVINGS OR
OTHER INCIDENTAL OR CONSEQUENTIAL DAM­
AGES ARISING OUT OF THE USE OR INABILITY TO
USE SUCH PROGRAM EVEN IF BYTEC MANAGEMENT
CORPORATION OR AN AUTHORIZED BYTEC COMPU­
TER DEALER HAS BEEN ADVISED OF THE POSSIBIL­
ITY OF SUCH DAMAGES. OR FOR ANY CLAIM BY ANY
OTHER PARTY.

SOME STATES OR PROVINCES DO NOT ALLOW THE
LIMITATION OR EXCLUSION OF LIABILITY OF IN­
CIDENTAL OR CONSEQUENTIAL DAMAGES SO THE
ABOVE LIMITATION OR EXCLUSION MAY NOT APP­
LY TO YOU.

GENERAL
You may not sublicense, assign or transfer the license or the
program except as expressly pro\·ided in this Agreement.
Any attempt otherwise to subliccnse, assign or tr.msfer any of
the rights, duties or oblig-dtions hereunder is void.

This Agreement will be governed by the laws of the Province
of Ontario, Canada.

Should you have any questions concerning this Agreement,
you may contact Bytec Management CorporJtion by writing
to Customer Support Division, Bytec Management Corpor.t­
tion, 8 Colonnade Road, Ottawa. Ontario, Canada. K2E 7M6.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS
AGREEMENT, UNDERSTAND IT AND AGREE TO BE
BOUND BY ITS TERMS AND CONDITIONS. YOU
FURTHER AGREE THAT IT IS THE COMPLETE AND
EXCLUSIVE STATEMENT OF THE AGREEMENT BE­
TWEEN US WHICH SUPERCEDES ANY PROPOSAL, OR
PRIOR AGREEMENT, ORAL OR WRITTEN, AND ANY
OTHER COMMUNICATIONS BETWEEN US RELATING
TO THE SUBJECT MA1TER OF THIS AGREEMENT.

• r
* nynalogic Info-Tech Corporation is committed to providing

Hyperion users with an optimal balance between IBM(tml PC
compatibility and enhanced capability.

The GW-BASIC(trn) provided with all Hyperions produced during
the first quarter of calendar year 1°A~ does not meet our
criteria for either compatibility or enhanced capability.
Microsoftftml Corporation, producers of the GW-BASIC, were
unable to meet stated deliverv deadlines for the IBMftml PC
compatible version. ·

* We will therefore gladly upgrade the BASIC supplied with
these early Hyperions, at no charge to the owner. You will
qualify for this free upgrade if:

1. This notice was present in your Hyperion
Programmer Guide;

2.

Afln --

Your Hyperion Programmer
GWBASIC,COM, instead of
BASICA.COM;

Diskette contains
the compatible

0 -- MIO

*

*

~. You have returned your Hyperion Warranty
Certificate, completed by the authorized
nynalogic nealer from whom you purchased your
Hyperion.

Most programs written in the interim GW-BASIC will run
without change both on the IRM(tml oc and on Hyperions using
the eventual BASICA version.

The contents of your current Hyperion Programmer Guide will
also be replaced when the BASIC version is replaced by
Dynalogic.

For those programmers who will be writing BASIC code before
the upgrade, we have enclosed a list of differences between
the documented and actual actions of the interim version.

Matur ally, nynal ogic regrets any inconvenience this may cause
Hyperion users. We will be delivering the upgrade package as
soon as Microsoftftm) make their compatible BASIC available.

Hyperion is a trademark of nynalogic Info-Tech Corporation.
IBM is a trademark of International Business Machines Corporation.
GW-BASIC is a trademark of r1icrosoft Corporation.
Microsoft is a trademark of Microsoft Corporation.

0

0

0

0

), Starting BASIC:

For the interim version, the comand GWBASIC must be
used from DOS to initiate BASIC, instead of the command
BASICA.

?. . Statements and Functions:

Statement As Documented Current GWBASIC
/function

LINE Optional attibute Attribute not opti anal

LINE Attribute out of range Attribute out of range
automatically changed results in error
to default message

PSET Optional attibute Attribute not optional

PSET Attribute out of range Attribute out of range
automatically changed results in error
to default message

PRESET Optional attibute Attribute not opti anal

PRESET Attribute out of range Attribute out of range
automatically changed results in error
to default messaqe

CIRCLE Optional color Color not optional

CIRCLE Color out of range Color out of range
automatically changed results in error
to default message

l'EV OFF Syntax error incorrectly
reported if keys on

SCREDI Screen change to mode n Screen change to Mode n
retains current width sets width to An

CHR$(n) Outputs a blank space for
any n < :i~

OH COM Hot available in current
COM OM GWBAS!C version
OPEil "COl11 : ••• 11

BLOAO !, Adrl extension .BAS to 11se exact filename as
EISAVE filename before disk specifierl

search or save

:i. f'.eyboard Input (H!VEY.!:) Differences:

It should be possible to detect the presence of an
extended key scan code by testing for LEN(ItJVEY~)=2. In the
current version, that test fails.

As well, the possible extended key scan codes in the
current version are limited to those listed below. This list
should be used instead of the list given in Appendix G.

Extended Key Scan Codes:

Code Meaning Code Meaning

11 Home l? Ctrl + Home
~n l'p Arrow
?4 Pg !Jp
,'O Left Arrow ?. Ctrl + Left Arrow
?A Right Arrow fi Ctrl + Right Ar row
1.4 End 'i Ctrl + End
'.l1 [)own Arrow
?.Ii Pg On ?.fi Ctrl + Pg On
111 Ins

J.27 Oel
Q Tab 1 s·hift + Tab

4. Comressed Save Incompatibility:

The current GW-BASIC can not correctly read IBM BASIC
programs from a diskette if they were saved in the compressed
(non-ASCII) form.

To transfer an IBM BASIC program to the current
GW-BASIC on the Hyperion, SAIIE the program from the IBM BASIC
using the ",A" option of the SAVE command. This SA"Es the
program in its original pure text form. This ASCII file can
then be LOAOed into the current Hyperion GW-BASIC.

Ii. Error Codes:

The current GW-AASIC reports certain error conditions
with different error code numbers than the IBM PC version.
This will affect only those programs that test for specific
error code conditions.

C'

0

C

HYPERION PROGRAMMER GUIDE

Published by: Dynalogic Info-Tech Corporation
ni; February to1n

version n2

This manual describes programs supplied under license.
(cl Copyright 1QR2, R3 Nicrosoft Corporation

and Dynalogic Info-Tech Corporation
All Rights Reserved,

Federal ~onmunication Conmission Compliance

The Hyperion is subject to Federal Communication Commission
(FCC) rules. The certification process is underway. The
Hyperion will comply with the appropriate FCC rules prior to
final delivery to buyers or centers of distribution, The
Hyperion will also have Canadian Standards Association (CSA)
approval, and will conform with the Government of Canada
telecommunications interconnect requirements (CS-n3).

The Hyperion generates and uses radio frequency energy and, if
not installed and used according to the manufacturer's
instructions, may cause interference to radio and television
reception. The Hyperion has been type tested and found to
comply with the limits for a Class B computing device in
accordance with the specifications in Subpart J of Part 15 of
FCC Rules, which are designed to provide reasonable protection
against such interference in a residential installation.
However, there is no guarantee that interference will not
occur in a particular installation. If this equipment does
cause interference to radio or television reception: riorient
the receiving antenna; relocate the computer; plug the
computer into a different branch outlet; consult an
experienced radio/television technician; or consult the

0 booklet, How to Identify and Resolve Radio-Tl/ Interference
Pr ob 1 ems, prepared by--U,""eF'C"C"ancfavaiTaole--ffoiittfie1TI
Government Printing Office, Washington, D.C. 2n402, Stock No.
nn4-nnn-nn14~-4.

Trademarks

Hyperion is a trademark of Dynalogic Info-Tech Corporation.
MS-DOS is a trademark of Microsoft Corporation,
Microsoft is a trademark of Microsoft Corporation.
MIILTIPLAN is a trademark of Microsoft Corporation.
IBM is a trademark of International Business Machines

Corporation.

Disclaimer

The information in this manual has been carefully prepared and
checked for completeness and accuracy. There is, however,
always the possibility of omission or error. In such an
event, Dynalogic Info-Tech Corporation cannot assume liability
for any damages resulting from the use of this manual.

0

(

()

Programmer Guide Table of Contents

SEC TI OM

1 , l
1.2
l. ~
1.,d

1,'i
1,fi
1,f;,J

l.7
1, 7 .1

l. 7.?
l.A
1.9
].Q, 1
1,Q, J, 1

1,0, 1.2
1 ,Q, 1, ~
1, Q, 2
l.~.3
1 .<J,d
, • 1n

2, J
2. l.l
2, l.?
;, • 1. ~
2. 1.4

PART I - BASIC INTERPRETER

SECTION 1 - GENERAL INFORMATION ABOUT BASIC

TITLE

Starting BASIC
Modes of Operation
Line Format
Line ii umbers
Character Set
Constants
Sinqle and Double Precision Form
for-Numeric Constants
variables
Variable Names and
Declaration Characters
Array 11ariables
Type Conversion
Expressions and Operators
Arithmetic Operators
Integer Division and
Modulus Arithmetic
Overflow and Division by Zero
Relational Operators
Logical Operators
Functional Operators
String Operations
Error Messages .

PAGE

I. 1-1
I. 1-1
I.1-1
I. 1-?
I,1-2
I.1-11

I, 1-'i
I. 1-5

I.1-fi
I.1-7
I.1-R
I.1-0
I,l-10

I.1-11
I.l-11
I. 1-]2
I. 1-13
I. 1-l'i
I. 1-l'i
I.1-lfi

SECTiotJ 2 - THE BASIC FULL SCREnl EDITOR

The BASIC Full Screen Editor
Inputting the BASIC Program
Altering Lines with the Editor
Changing a BASIC Program
The EDIT Statement

I.2-1
I.2-1
I.2-2
I.2-'i
I .2-fi

Table of Contents

3. J
1. 2
1.<
1.4
3.'i
1.6
3. 7
1.A
3.9
'· 10 3.11
J. 12
J.1'.l
J. 14
J.l'i
J. lfi
1.17
3.lA

4.1
4.2
4.1
4.4
4.'i
4.1'
4.7
4.A
4.9
II.JO
4.11
4.12
4.13
4.14
4.15
4. 16
4.17
4.lfl
4.19
4.20
4.21
4.22
4.2J
4.24
4.25

i i

AllTO
CLEAR
COMT
DELETE
EDIT
FILES
f'ILL
LIST
LUST
LOAD
MERGE
NAME
tlEW
RENIIM
RllM
SAVE
SYSTEM
TRON/TROFF

SECTiml 3 - BASIC COMMANDS

I.3-1
I. 3-2
I .3-3
I.3-4
I. 3-5
I.3-fi
I.3-7
I.3-A
I.3-CI
I.3-10
I.3-11
I.3-12
I.:l-D
I.:l-14
I. :l-15
I.3-11'
I. :l-17
I.3.lA

SECTION 4 - BASIC STATEMENTS & VARIABLES

BEEP I.4-1
BLOA[J I .4-2
BSAIIE I .4-4
CALL I .4-'i
CHAIN I.4-R
CIRCLE I. A-10
CLOSE I.4.]2
CLS I .4-13
COLOR (Alpha Mode) I. 4-14
COLOR (Graphic Mode) I.4-15
COM(n) I.4-Jfi
COMMON I.4-17
CSRLIN I.4-lR
DATA I. 4-1 Cl
llATE$ I.4-20
DEF nl I. 4-22
DEFINT/SHG/DBL/STR I .4-24
DEF SEG I.4-2~
DEF IISR I.4-26
DIM I.4-27
DRAW I. 4-2R
mo I .4-30
ERASE I. 4-31
ERR & ERL I .4-32
ERROR I. 4-J3

Program~er Guide

C

0

C

C

(

Programmer Guide

4.2/i
4.27
4.2/l
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.31i
4.37
4.3A
4.30
4.4n
4.41.
4.42
4.43
4.44
4.45
4.41i
4.47
4.4A
4.49
4.50
4.51
4.52
4.'i:1
4.54
4.'i'i
4.'ifi
4.57
4.5R
4.59
4.fiO
4.lil
4.li2
4.li3
4.fi4
4.li'i
4.lili
4.li7
4.liR
4.li9
4.7()
4.71
4.72
4.73
4. 74
4.7'i
4.76
4. 77

FIELD
FOR ••• NEXT
GET (Files)
GET (Graphics)
GOSIIB ••• RETI IR~I
GOTO
IF ••• THEMr ••• ELSE) and IF GOTO
HIKEY$
IMPIIT
INPIJTII
f'.EY
LET
LINE
LltlE HIPIIT
LINE INPIIT#
LOCATE
LPRIMT and LPRP!T IISHIG
LSET and RSET
OM COM(n)
ON ERROR GOTO
Qtl ••• GOSIIB and 0!1 ••• GOTO
Qt! l(EY
OPEN
OPEM "COMl: II

OPTIOM BASE
OIJT
PAINT
PLAY
POKE
PRUIT
PRIMT IISIMG
PRINT/I and PRINT/I IISHIG
PSET
PRESET
PIIT (Files)
PIIT (Graphics)
RMIDOMJZE
READ
REM
RESTORE
RESIIME
RETIIRN
SCREEM
SOIJMD
STOP
SWAP
TIME$
WAIT
WHILE. •• WHID
WIDTH
WRITE
WRITE/I

Table of Contents

I. 4-35
I .4-3fi
I.4-3R
I. 4-39
I .4-41
I.4-42
I.4-43
I. 4-4'i
I.4-4/i
I.4-4R
I. 4-49
I.4-52
I .IL-Ii?
I .4-'i'i
I.4-'iFi
I.4-li7
I. ll-'iQ
I .4-liO
I.4-lil
I .4-fi3
J.4-li4
I. 4.-fi'i
I. 4-67
I.4-70
I.4-7'.l
I.4-74
I.4-71i
I.4-77
I.4-79
I.4-AO
I.4-112
I. 4-R7
I. 4-89
I.4-Cl()
I. 4-0l
I.4-92
I.4-95
I.4-9/i
I.4-9R
I. 4-99
I.4-100
I .4-101
I.4-102
I.4-).04
I.4-105
I.4-10/i
I.4-107
I.4-109
I.11-110
I.4-111
I.4-11'.1
I.4-114

iii

Table of Contents

Ii.I
i;.2
i;.::i
i:;_4
5. 5
Ii.Fi

"'· 7 !i.A
5.Q
5.10
i;.11

"'· J 2
5.B
<;.14
5. l i;
5. lfi
li.17
Ii. lA
5.19
5.2()

"'· 21 !i.22
i;.2:i
!i.24
C,.25
Ii. 2/i
li.27
li.2A
li.29
5.:in
Ii. 31
li.12
'i. 33
!-.34
"'· 35
5. ::ifi
li.'.17
5.3A
li.39
5.40
5.41
i;.42
5.43
'i.44
",.45

i V

ABS
ASC
AnJ
CDBL
CHR!:
CHIT
cos
CStlG
c111,cvs,c110
EDF
EXP
FIX
FRE
HEX$
HIP
IMPIIH
ItJSTR
HJT
LEFH
LDl
LDC
LDF
LOG
LPOS
MID$

SECTION 5 - BASIC FUNCTIONS

Ml<'!$, 11Y.S$, Mlc'D~
OCH
PEEi<
POINT
POS
RIGHH
RND
SCREEN
SGtl
SHJ
SPACE$
SPC
SOR
STR$
STRHJGS
TAB
TAH
IISR
VAL
VARPTR$

I.li-1
I.li-2
I.5-1
y_i:;_4

I."· 5
I.,:;_,:;
I.'i-7
I. r:.-A
I.'i-Q
I.5-10
1.i;-11
I.5-12
I. 5-13
I.5-14
I. 5-l'i
I.5-lfi
I.'i-17
I.5-lA
I. 'i-1 q
I.5-20
I.li-21
I. "-22
I.5-23
I.'i-24
I. r:.-25
I. !i-2fi
I. 'i-?.7
I.5-2A
I.!--2Q
I.5-30
I.5-31
I. 5-32
I.'i-13
I .!i-34
I.5-3!­
I.5-3fi
I.!i-17
I.5-3A
I.5-39
I .'i-40
I. 5-41
I.5-42
I. 'i-43
I.5-44
I.5-4"

Programmer Guide

0

(

C

(

Programmer Guide Table of Contents

PART II - ASSEMBLY LA~JGUAGE TOOLS

J..1

l.Ll

l. 1 .2

1.2
1.2.1

1.2.2

l.2.1
1.:1
1.3.1
1.1.2
1.3.2.1
1.3.2,2

t. :I. 2 .3

J..1.3
1.3.1.1

l.1.1.2
1.1.3.1
).. 1.1.4
1.1.:1. 'i

1.4
1.4.l.
l,4,2
1.4.2. l

SECTION 1 - MACRO ASSEMBLER

Macro Assembler
Introduction
Creating a Macro Assembler
Source Fil es
General Facts About Source Files
Naming Your Source File
Legal Characters
Numeric flotation
What's in a Source File?
Statement Line Format
Mames
Comments
Action
Expressions
Names: Labels, variables and Symbols
Labels
Segment
Offset
Type
variables
Type
Symbols
Expressions: Operands and Operators
Memory Organization
Operands
Immediate Operands
Register Operands
Other Registers
Memory Operands
Direct Memory Operands
Indexed Memory Operands
Structure Operands
Operators
Attribute Operators
Override Operators
Record Specific Operators
Arithmetic Operators
Relational Operators
Logical Operators
Expression Evaluation:
Precedence of Operators
Action: Instructions and Directives
Instructions
Directives
Memory Oirectives

II. 1-l
II. 1-2

II.1-l'i
II. I-Ji;
II.1-li;
II.1-lli
I I. l-17
II.1-lR
II.1-lQ
II. 1-20
II.1-21
II.1-21
I I. 1-2:1
II.1-25
II. 1-2,;
II.1-2,;
II. 1-27
II.1-27
I I. l-2R
II.1-29
I I. 1-:10
I I. :11
II.l-12
II. 1-3R
I!.1-39
II.1-40
I I. 1-42
II. 1-41
II.1-43
II. l-44
I I. 1-4/;
II. 1-47
II.1-47
II.1-4R
I I. 1-'iA
I I. J-62
II. 1-"4
II.l-"'i

II. 1-f;fi
JI. J -fi7
II.1-fiR
II.J-fiQ
II.1-71

V

Table of Contents

I .4.2.2
1.4.2.3
1.4.3
1.s;

1.li.1
1.1;.J..1
1.5.1.2
] .'i.2

l. l;.3

1. s;.4
l.Fi
l.Fi.l
1.Fi.2

2.1
2.2
2.3
2.4
2.i;
2.6
2.fi. 1
2.6.2
2.fi.3
2.7
?..R
2.?

Conditional Directives
Macro Directives
Listing Directives
Assembling a Macro Assembler
Source File
Invoking Macro Assembler
Method 1: MASM
Method 2: MASM <filenames>[/switchesJ
Macro Assembler
Command Prompts
Macro Assembler
Command Switches
Symbol Table Format/II.1-l'iO
Macro Assembler Messages
Operating Messages
Error Messages

Section 2 - LINK

Introduction - Features and Benefits
Oefinitions
Fil es that L HIK uses
VM. TMP File
Running LIMY.
Invoking LHII<
Method 1: UNI(
Method 2: LHIY <filename>r/switches]
Method 3: LINK 0<filespec>
Command Prompts
Switches
Error Messages

Section 3 - DEBUG

3.1
3.2
1.'3
3.4

vi

Introduction
Invocation
Commands
Parameters
Compare
Dump
Enter
Fill
Go
Hex
Load
Move

Programmer Guide

II.l-105
II.1-111
II.1-DO

TI. l-D7
II.l-B7
II.1-n7
I I. 1-140

II.1-141

I I. 1-143

I I. 1-l'iQ
II.1-11;9
II. 1-lfiO

of LINK/II.2-1
II.2-1
II.2-"
II.2-fi
II.2-7
II.2-7
II.2-R
II.2-11
I I. 2-12
II.2-13
II.2-J Ii
II.?-JR

II. 3-1
II.3-1
II.3-2
I I. 3-4
I I. 3-7
I I. 3-A
II.3-1.0
II.3-12
II.3-13
II.3-lli
II.3-lfi
II.3-lR

0

0

Programmer Guide

3.5

flame
Output
nuit
Register
Search
Trace
Unassemble
Write
Error Messages

Section 4 - EDLIN

4.1
4.2
4.:1
4.1.1
4.4
4.5

Invocation
Intraline Commands
Interline Commands
Parameters
Err or Messages
Errors while Editing

(Section 5 - CREF

5.1 Introduction
'i.1.1 Features and Benefits
'i.1.2 Overview of CREF operation
5.2 Running CREF
5.2.1 Creating a Cross Reference File
5.2.2 Invoking CREF
'i.2.3 Method 1: CREF
5.2.4 Method 2: CREF <crffile>,<listing>
5.2.5 Format of Cross Reference Listings
'i.3 Error Messages
5.4 Format of CREF Compatible Files
5.4.1 General Description of

CREF File Processing
5.4.2 Format of Source Files

Section fj - EXE28IN

C li.1 EXE28IN

Table of Contents

II.3-19
I I. '.1-22
I I. 3-22
II.3-23
II.3-2fi
II.:1-27
I I. 3-2R
II.3-30
II.3-32

II .4-1
II.4-2
II.4-B
II.4-14
II.4-3fi
II.4-'.lfi

II.5-1
II."-1
II.5-1
I I. !i-3
II.5-3
rr.r:;_4
I I. 5-5
II . 5-7
I I. !i-R
I I. 5-11
I I. 5-13

I I. !i-13
II.!i-D

II.fi-1

vii

0

PART III - APPENDICES

APPEMDIX A - ASCII Character Codes A-1
APPENDIX B - BASIC DISV I/0 B-1
APPEMDIX C - Summary of BASIC Error Codes

and Error Messages C-1
APPE~DIX D - Mathematical Functions in BASIC D-1
APPEMDIX E - Alphabetical Summary of BASIC Commands, Functions

and Statements

er

0

0

PART I - BASIC INTERPRETER

SECTION 1 - GEHERAL INFORMATION ABOUT BASIC

Programmer Guide I nforma ti on

()

0

1.1 STARTING BASIC

Start nos, as described in the Hyperion !Iser Guide. Remove
the Hyperion !Iser l)iskette from drive A, and insert the
Hyperion Programmer Diskette. Enter the command: "BASICA",
and press the Return key. RASJC will display the version, the
release number, and the number of free bytes.

1.2 MODES OF OPERATION

After BASIC is initialized, it types the prompt "Ok". "Ok"
means BASIC is at command level, that is it is ready to accept
commands. At this point, BASIC may be used in either of two
modes: the direct mode or the indirect mode.

In the direct mode, BASIC statements and commands are not
preceded by line numbers. They are executed as they are
entered. Results of arithmetic and logical operations may be
displayed immediately and stored for later use, but the
instructions themselves are lost after execution. This mode
is useful for debugging and for using RASIC as a "calculator"
for quick computations that do not require a complete program.

The indirect mode is the mode used for entering programs.
Program lines are preceded by line numbers and are stored in
memory. The program stored in memory is executed by entering
the RllfJ command.

1.~ LINE FORMAT

Program lines in a BASIC program have the following format.
Square brackets indicate optional entries, angle brackets
indicate data entered by the programmer.

nnnnn BASIC statement[:BASIC statement •.•] <Rtn>

At the programmer's option, more than one BASIC statement may
be placed on a line, but each statement on a line must be
separated from the last by a colon.

A BASIC program line always begins with a line number, ends
with a carriage return, and may contain a maximum of 255
characters.

It is possible to extend a logical line over more than one
physical line by use of automatic return feature. It allows
you to continue typing a logical line on the next physical
line without entering a <Rtn>. When you reach the end of the

Paqe I.1-1

Information Programmer Guide

physical line, the Hyperion automatically returns the cursor
to the left-most position of the next line. Entering <Rtn> is
the signal to BASIC that the end of a logical line has been
reached.

1.4 LINE NUMBERS

Every BASIC program line begins with a line number . Line
numbers indicate the order in which the program lines are
stored in memory and are also used as references when
branching and editing. Line numbers must be in the range n to
fi!i5? 0 • A period (.) may be used in EDIT, LIST, AIITO and
DELETE commands to refer to the current line.

1.5 CHARACTER SET

The BASIC character set is comprised of alphabetic characters,
numeric characters and special characters.

The alphabetic characters in BASIC are the upper case anrl
lower case letters of the alphabet.

The numeric characters in BASIC are the digits f! through a.

The fo 11 owing special characters and keys are recognized by
BASIC:

Character Name

Blank

= Equal sign or assignment symbol

+ Plus sign

- Minus sign

* Asterisk or multiplication symbol

I Slash or di vision symbol

- lip arrow or exponentiation symbol

(Left parenthesis

) Right parenthesis

% Percent

Page I.1-2

0

0

Programmer Guide J nforma ti on

!I nctothorpe

~ Dollar sign

! Fxclamation point

r Left bracket

J Right bracket

'
Comma

Period, or decirnal point

I Apostrophe

; Semi-colon

: Colon

" Arnpersand

? nuestion mark

0 < Less than

> Greater than

\ l'ackslash, or inteqer division symbol

fl At-sign

l!nderl i ne -

<RubOut> Deletes last character typed

<Esc> Escapes Edit Mode subcommands (See Sec ti on
2.2)

<Tab> Moves print position to next tab stop (Tab
stops are every eight columns.)

<Rtn> Terminates input of a line

0

Paae I.1-3

Information Programmer r,uide

1.6 CONSTANTS

Constants are the actual values BASIC uses during execution.
There are two types of constants: string and numeric.

A string constant is a sequence of up to 255
characters enclosed in double quotation marks.
string constants:

alphanumeric
Examples of

"HELLO"
"~?i;,nnn.on"
"Number of Employees"

Numeric constants are positive or negative numbers. Mumeric
constants in BASIC cannot contain commas. There are five
types of numeric constants:

1. Integer Constants

Whole numbers between -327fiR and +]27fi7.
constants do not have decimal points.

2. Fixed Point Constants

Integer

Positive or negative real numbers, i.e., numbers that
contain decimal points.

3. Floating Point Constants

Positive or negative numbers represented in exponential
fonn (similar to scientific notation). A floating point
constant consists of an optionally signed integer or fixed
point number (the mantissa) followed by the letter E and
an optionally signed integer (the exponent). The
allowable range for floating point constants is 10-38 to
10+3R. Examples:

23?.9RRE-7 = .nnnn2159RR
2159Efi = 2]50000000

(Double precision floating point constants use the letter
D instead of E. See Section 1.5.J.)

4. Hex Constants

Hexadecimal numbers with the prefix &H. Examples:

&H?~ = Decimal 1lR
&H]2F = Oecimal 815

Page I.1-4

·O

C

0

()

Programmer Guide

5. Octal Constants

Octal numbers with the prefix &O or&. Examples:

&0347 Decimal 231
&12~4 = Decimal ,;,;R

Information

t .Ii. 1 Sfngle and Double Precision Form for Mumeric
Constants.

Numeric constants may be either single precision or double
precision numbers. With double precision, the nuMbers are
stored with 1~ digits of precision, and printed with up to 1,;
digits.

A single precision constant is any numeric constant that has:

1. seven or fewer digits, or

2. exponential form using E, or

3. a trailing exclamation point (!)

A double precision constant is any numeric constant that has:

1. eight or more digits, or

?. exponential form using D, or

,. a trailing number sign (#).

Examples:

Single Precision Constants

4,;_p
-1.00E-Oli
~t'!Ao.n
22.5!

1. 7 VARIABLES

nouble Precision Constants

111.i;,;02A11
- , • no432n-n,;
1,rno.nf!
7fi!id~21 .1 ?34

Variables are names used to represent values that are used in
a BASIC program. The value of a variable may be nssigned
explicitly by the programmer, or it may be assigned as the
result of calculations in the program. Before a variable is
assigned a value, its value is assumed to be zero.

Paae I.1-5

Information Programmer r,uide

1.7.1 Variable Names and Declaration Characters

BASIC variable names may be any length, however, only the
first 40 characters are significant. The characters allowed
in a variable name are letters and numbers, and the decimal
point is allowed. The first character must be a letter.
Special type declaration characters are also allowed see
below.

A variable name may not be a reserved word, although BASIC
will allow embedded reserved words. If a variable begins with
FM, it is assumed to be a call to a user-defined function.
Reserved words include all BASIC commands, statements,
function names and operator names.

variables may represent either a numeric value or a string of
text. String variable names are written with a dollar sign ($)
as the last character. For example: AS= "SALES REPORT". The
dollar sign is a variable type declaration character, that is,
it "declares" that the variable will represent a string.

Numeric variable names may declare integer, single or double
precision values. The type declaration characters for these
variable names are as follows:

% Integer variable

Single precision variable

Double precision variable

The default type for a numeric variable name is single
precision.

Examples of BASIC variable names follow:

PI# declares a double precision value
tHMIMl/M! declares a single precision value
LIMIT% declares an integer value
M$ declares a string value
ABC represents a single precision value

There is a second method by which variable types may be
declared. The BASIC statements flEFIMT, DEFSTR, tlEFSMG and
DEFOBL may be included in a program to declare the types for
certain variable names. These statements are described in
detail in section 5.

Page I.1-6

C

0

0

C

0

()

Programmer Guide Information

1.7.2 Array Variables

An array is a group or table of values referenced by the same
variable name. Each element in an array is referenced by an
array variable that is subscripted with an integer or an
integer expression. An array variable name has as many
subscripts as there are dimensions in the array. For example
V(lO) would reference a value in a one-dimension array, T(l,4)
would reference a value in a two-dimension array, and so on.
The maximum number of dimensions for an array is 2~~. The
maximum number of elements per dimension is 327~7.

1.7,3 Space Requirements

VARIABLES: BYTES -
INTEGER 2
SHIGLF. PRECISIOM 4
flOIIBLE PRECISIOM R

ARRAYS: BYTES --- -
HITEGER 2 per element
SH!GLE PRECISIOM 4 per element
DOUBLE PRECISION R per element

STRIMGS:

3 bytes overhead plus the present contents of the strin~.

Page I.1-7

Information Progra111P1er fiuide

J .!l TYPE CONVERSIOM

When necessary, BASIC will convert a numeric constant from
one type to another. The following rules and examples should
be kept in mind.

1. If a numeric constant of one type is set equal to a
numeric variable of a different type, the number will be
stored as the type declared in the variable name. (If a
string variable is set equal to a numeric value or vice
versa, a "Type mis111atch 11 error occurs.)
Example:

10 A% = 2:l.42
2n PRHJT A%
Rl"J

2:1

2. nuring expression evaluation, all of the operands in an
arithmetic or relational operation are converted to the
same degree of precision, i.e. that of the most precise
operand. Also, the result of an arithmetic operation is
returned to this degree of precision:
Example:

]1'1 011 = r,1117
20 PRH1T D#
Rlltl

.A5714?.R47142R~71

The arithmetic was perfor111ed in double prec1s1on and the
result was returned in 0# as a double precision value.

1n D = li#/7
?.O PRHIT fl
RIIM

.A57Jl!:l

The arithmetic was performed in double precision and the
result was returned to fl (single precision variable),
rounded and printed as a single precision value.

:l. Logical operators (see Section~) convert their operands
to integers and return an integer result. Operands must
be in the range -:l271iR to ?.27n7 or an "Overflow" error
occurs.

Page I.1-8

0

0

0

Programmer Guide Information

~- When a floating point value is converted to an integer,
the fractional portion is rounded.

1n C'.t = 'i'i.AR
20 PRHIT C%
Rll~I

5,;

'i. If a double precision variable is assigned a single
precision value, only the first seven digits, rounded, of
the converted number will be valid. This is because only
seven digits of accuracy were supplied with the single
precision value. The absolute value of the difference
between the printed double precision number and the
original single precision value will be less than ~.JE-R
times the original single precision value.
F.xampl e:

10 A= 2.()4
20 B# = A
:in PRH1T A; n11
RIIN
2.n4 2.n~qoqqq,;1R'iJn27

1.9 EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, or a
variable, or it may combine constants and variables with
operators to produce a single value.

Operators perform mathematical or logical operations on
values. The operators provided by BASIC may be divided into
four categories:

1. Arithmetic
?.. Relational
:i. Logical
11. Functional

Paae I.1-9

Information Programmer r,uide

1.9,1 Arithmetic Operators

The arithmetic operators, in order of precedence, are:

OPERATOR OPERATIOII

Exponentiation

Negation

SAMPLE EXPRESSION

X~Y

-X

*,/ Multiplication, Floating X*Y
Point Oivision Y/Y

+,- Addition, Subtraction X+Y

To change the order in which the operations are performed, use
parentheses. Operations within parentheses are performed
first. Inside parentheses, the usual order of operations is
maintained.

Here are some sample algebraic expressions and their BASIC
counterparts.

Algebraic Expression

X+?.Y

X-Y -z-
XV/Z

X+Y/Z

(X2)Y

xYZ

X(-Y)

BASIC Expression

X+V*2

X-Y/Z

Y*V/Z

(X+Y)/Z

rx·21·v
x·rv·z1
X*I-Y)

Two consecutive operators must be separated by parentheses.

Page I.1-10

C

0

0

0

0

Programmer Guide Information

1.9.1.1 Integer Division and Modulus Arithmetic

Two additional operators are available in BASIC: Integer
division and modulus arithmetic.

Integer division is denoted by the backslash (\). The
operands are rounded to integers (must be in the range -327/iA
to 17.71i7) before the division is performed, and the quotient
is truncated to an integer.
Example:

10\4 = 2
21;.fiA\li.~9 1

The precedence of integer division is just after
multiplication and floating point division.

Modulus arithmetic is denoted by the operator MOD.
the integer value that is the remainder of an
division. For example:

1n.4 MOO~= 2 (ln/4=7. with a remainder 2)
7.~.liA MOO li.99 = ~ (?li/7=~ with a remainder i;)

It gives
integer

The precedence of modulus arithmetic is just after integer
division.

1.9.1.2 Overflow and Division by Zero

If, during the evaluation of an expression, a division by zero
is encountered, the "Division by zero" error message 1s
displayed, machine infinity with the sign of the numerator is
supplied as the result of the division, and execution
continues. If the evaluation of an exponentiation results in
zero being raised to a negative power, the "Division by zero"
error message is displayed, positive machine infinity is
supplied as the result of the exponentiation, and execution
continues.

If overflow occurs, the "Overflow" error message is displayed,
machine infinity with the algebraically correct sign is
supplied as the result, and execution continues.

Paoe I.1-11

Information Programmer Guide

1.9.1.3 Relat;onal Operators

Relat;onal operators are used to compare two values. The
result of the comparison is either "true" (-1) or "false" (0).
Th;s result may then he used to make a dec;sion regarding
program flow. (See IF, Section 5.)

Operator Relation Test Expression

Equality X=Y

<> Inequality X<>Y

< Less than X<Y

> Greater than X>Y

<= Less than or equal to X<=Y

>= Greater than or equal to X>=Y

(The equal sign is also used to ass;gn a value to a variable.
See LET, Sect;on 5.)

When arithmet;c and relational operators are combined in one o
expression, the arithmetic is always performed first. For
example, the expression

X+V < (T-1)/Z

is true if the value of X plus Y is less than the value of T-1
divided by Z. More examples:

IF SIN(X) <0 GOTO 1non
IF I MOD J <> n THE~ V=,+l

Page I.1-12

(_

0

()

Programmer Guide Information

1.9.2 Logical Operators

Logical operators perform tests on multiple relations, bit
manipulation, or Boolean operations. The logical operator
returns a bitwise result which is either "true" (not zero) or
"false" (zero). In an expression, logical operations are
performed after arithmetic and relational operations. The
outcome of a logical operation is determined as shown in the
following table. The operators are listed in order of
precedence.

MOT
.x. !LQL.1.
1 n
n 1

AND
.1.. V)(AMIJ y
1 T 1
1 0 0
n 1 n
n 0 n

OR
X y XOR Y

T T --r-
1 n 1
0 1 1
0 0 n

XOR
X y X XOR Y
T T 0
1 0 1
0 1 1
0 0 0

IMP
.l.. y X IMP Y
1 T 1
1 0 0
0 1 1
0 0 1

EOV
X y)(EOV V
T T 1
1 0 0
n 1 n
0 0 1

Pane I.1-13

Information Programmer Guide

Just as the relational operators can be combined to make
decisions regarding program flow, logical operators can
connect two or more relations and return a true or false value
to be used in a decision (see IF, Section 2.26), For example:

IF 0<200 A~!O F <4 THEN RO
IF I>lO OR V<O THEH ~O
IF ~JOT P THEM 10

Logical Operators work by converting their operands to sixteen
bit, signed, two's complement integers in the range -127/iR to
+12767. (If the operands are not in this range, an error
results.) If both operands are supplied as O or -1, logical
operators return nor -1. The given operation is performed on
these integers in bitwise fashion, i.e., each bit of the
result is determined by the corresponding bits in the two
operanc1s.

Thus, it is possible to use logical operators to test bytes
for a particular bit pattern. For instance, the AtlO operator
may be used to "mask" all but one of the bits of a status byte
at a machine 1/0 port. The OR operator may be used to "merge"
two bytes to create a particular binary value. The following
examples will help demonstrate how the logical operators work.

fi3 AMO lfi=lfi

l'i Min J.4=14

-l AM[) A=R

4 OR 2=n

10 OR lf1=10

-1 OR -?=-1

MOT X=-(X+ll

Page I.1-14

fi3 = binary 111111 and J.fi = binary 10000,
so n3 MID J.n=ln

15 = binary 1111 and 14 binary 1110, so
15 MIO 14=14 (binary 1110)

-1 binary 1111111111111111 and A
binary 1000, so -1 AMO R = A

4 = binary Jnn and ?. = binary J.O, so 4 OR
2 = Ii (binary 11n)

10 = binary 1.010, so JOJO OR 1010=1(110
r 101

-1 = binary llllllllllllllll
lllllllllllllJlO, so -1 OR -2 =
bit complement of sixteen zeros
ones, which is the two's
representation of -1.

anc1 -?. =
-L The

is sixteen
complement

The two's complement of any integer is the
bit complement plus one.

0

0

0

Programmer Guide

1.9.3 Functional Operators

A function is used in an expression to
operation that is to be performed on
"intrinsic" functions that reside in
(square root) or SHI (sine). All
functions are described in Section 5.

Information

call a predetermined
an operand. BASIC has
the system, such as snR
of BASIC's intrinsic

BASIC al so allows "user defined" functions that are written by
the programmer. See DEF FN, Section 5.

1.9.4 String Operations

Strings of test may be concatenated using+. For example:

10 A~="FILE" : B$="NAME"
20 PRHIT M, + BS
~O PRIMT "NEW"+ A$+ BS
Rml
FILEMAME
MEW FILEtlAME

Strings may be compared using the same relational operators
that are used with numbers:

<> < > <= >=

String comparisons are made by taking one character at a time
from each string and comparing the ASCII codes. If all the
ASCII codes are the same, the strings are equal. If the ASCII
codes differ, the lower code number precedes the higher. If,
during string comparison, the end of one string is reached,
the shorter string is said to be smaller. Leading and trailing
blanks are significant. Examples:

"AA" < "AB"
"FILENAME"= "FILEMAME"
"X&" > "X/1 11

"CL II > "CL"
11 kg 11 > 11 KG 11

"SMYTH" < "SMYTHE"
BS< "?/12/?R" WHERE BS= "R/12/?R"

Thus, string comparisons can be used to test string values or
to alphabetize strings. All string constants' used in
comparison expressions must be encloserl in quotation marks.

Pa!'.le I .1-15

Information Programmer Guide

1.10 ERROR MESSAGES

If BASIC detects an error that causes program execution to
terminate, an error message is printed. For a complete list
of BASIC error codes and error messages, see Appendix C.

Page I.1-16

0

0

0

0

PART I - BASIC INTERPRETER

SECTION 2 - THE BASIC FULL SCREEN EDITOR

0 rogntl'11'1Pr r.ui de Screen Frtitnr

0

0

?..1 The BASIC Full Screen Erlftor

The time saving henefit of the Full Screen Editor durinn
program rlevelorment cannot he over emphasizeci. To that end~
it is suggestert that a saMple program be enterP.d and each P.rlit
commanrl practicerl until it hecomes second nature.

In the following discussion of edit commanrls, the term
"cursor" refP.rs to the "blinking" line appearing just to the
right nf the last character typed. This marks the next
position at which a character is to he inserted or deleted.

The rlynamic nature of P.diting anywhere on the screen makes it
rlifficult to provide clear examples of col'lllland usage in
printed text; therefore, the best way of getting the "feel"
for the editing process is to try editing a few lines while
studying the ertit col'lmands that follow.

?,) ,J. Inputting the BASIC Program

Any line of text typerl while RAS TC is in [lirect f1orlP will be
prncP.sserl by the Full Screen Fditor. RAS TC is always in
ni rect tlorle aftP.r the prol'lpt nv anrl until a P.IIH coMmanrl is
given.

Any line of text typed that begins with a numeric character
(digit) is consirlererl a PrograM statement and will he
processed in one of four ways:

J. A new line is added to the program. This occurs if the
1 ine number is legal (rangP is n thru ,:;i;i:;?0) and at least
one non-blank character follows the line numher in the
line.

?.. An existing line is mortified. This occurs if the line
number Matches the line nuMber of an existing line in the
program. This line is replaced with the text of the
newly entered line.

1. An existing line is deleted. This occurs if the line
number matches the line number of an existing line and
the entered line contains OHLV a line nuMber.

a, An error is producerl.

a) Tf an attempt is Made to rlelete a non-existent line,
an "11nrtefi ner! line nul'lher" error l'les sage is
rli spl ayerl.

J .? -1

Screen Fditor Programmer r,uide

bl If program memory is exhausted, and a line is added
to the program, the error; "nut of Memory" is
displayed and the line is not added.

At the programmer's option, more than one RASIC statement may
he placed on a line, but each statement on a line must he
separated from the last hy a colon I:).

A RASIC program
with a carriage
characters.

line always begins with a line number, ends
return, and may contain a maximum of ?1;1;

Tt is possible to extend a logical line over more than one
physical line hy use of the automatic return feature. This
feature automatically returns the cursor to the left margin of
the next line when you approach the QOth column of a physical
line. When <Rtn> is finally entered, the entire logical line
is passed to RASJC for storage in the program.

nccasionally, RASJC may return to Oirect Mode with the cursor
positioned on a line containing a message issued hy R/\SIC such
as "Or". When this happens the line is automatically erased.
This is provided as a courtesy to the progra1J11ner. If the line
were not erased and the programmer typed <Rtn>, thP message
would be given to fl/\SJC and a "Syntax Error" would surely o
result. llAS!C messages are terminated by HFY 'FF' to
distinguish then from user text.

2.1.2 Altering Lines with the Editor

F.diting existing lines on the Screen is achieved by moving the
cursor on the screen to the place requirinq change and then
performing nne of the following four functions:

I. ?. - ?

1.

?.

.,

nvertyping characters already there.

neleting characters to the left of the cursor.

neleting characters to the right of the cursor .

~. Inserting characters at the cursor while
characters followinq the cursor to the right.

pushing

~ Adding, or appendinp, characters to the end of the
current logical line.

0

C

0

0

oroqra111111er r.uide Screen Fc1i tor

o special or nu111eric key-pad
key, plus the CTRL key for

on the sr.reen, inserting

The Full Screen Fc1itor recnonizes
keys, the back-sp11ce key, the F.SC
111oving the cursor to a loc11tion
characters, or deleting characters.
decimal values are:

The keys and their ASCII

Horne

Ctrl+Horne

t

-·

Ctrl+-

Ctrl++-

End

Ctrl+End

Moves the cursor to the upper left hand corner of
the screen. IASCJI decimal value - 1 1)

Clears the screen and positions the cursor in the
upper left hand corner of the screen. IASCII
decimal value - 1?.)

Moves the cursor up one line. /ASCII c1ecimal value
- '.lO)

Moves the cursor one position <lawn.
decimal value - 11)

(ASCII

Moves the cursor one position left, ~/hen the
cursor is advanced beyonn the left of the screen,
it will be movec1 to the right side of the screen
on the preceeding line. IASCJI deci111al value -
?''1

Moves the cursor one position right. When the
cursor is advanced beyonc1 the right of the screen,
it will be 111oved to the left sine of the screen on
thP next line down. (ASCII decimal value - ?q)

!loves the cursor right to the next word.
word is defined as the next character to
of the cursor in the set rA •.• Zl or
!ASCII decimal value - 14) · ·

The next
the right

rn .. ,nJ,

Moves the cursor left to the previous word. The
next word is defined as the next character to the
left of the cursor in the set r.A •• Zl or rn,,oJ.
IASCII decimal value - n2)

11oves the cursor to the end of the Logical Line.
Characters typed from this position are appended
to the line. (ASCII decimal value -)

nepressing the CTRL and F.Mn key erases to the End
of Logical Line from the current cursor position.
All physical Full Screens are erase<1 until the
terminating carriage return is found. (ASCII
decimal value - n~)

I. ;:>-'.l

Screen Fditor

Tns

Tab

ne1

Rub Out

I . ?. -4

Programmer r,uidP

Toggles Insert Mode. If Insert Mode is off, turns
it on. If on, then turns it off. (ASCII decimal
value - 1A)

Insert Mode is indicated by the blinking cursor
blotting the lower half of the character position.
In Graphic Modes, the norMal cursor covers the
whole character position. When Insert Mode is
active only the lower half of the character
position is blotted.

When in Insert Mode, characters followinq the
cursor are moved to the right as typed characters
are inserted at the current cursor position.
After each keystroke, the cursor moves one
position to the right. Line folding is observed.
That is, as characters advance off the right side
of the screen they are inserted from the left on
subsequent lines.

When out of Insert Mode, charac:ters typed will
replace existing characters on the line.

When out of Insert Mode, depressing the
moves the cursor over characters until
tab stop is reached. Tab stops occur
character positions. 10°)

TAR key
the next
every A

When in Insert Mode, depressing the TAR key causes
blanks to be inserted from the current cursor
position to the next tab stop. Line folding is
observed as above.

neletes one character imediately to the right of
the cursor for each depression. All characters to
the right of the one deleted are then moved one
position left to fill in the one deleted. If a
logical line extends beyond one physical line,
characters on subsequent lines are moved left one
position to fill in the previous space, and the
character in the 1st column of each subsequent
line is moved up to the end of the preceeding
line. /ASCII decimal value - J?.A)

Causes the last character typed to be deleted, or
deletes the character to the left of the cursor.
All characters to the right of the cursor are
moved left one position. Subsequent characters
and lines within the current logical line are
moved up as with the DF.L key. /ASCII decimal
value - nP)

0

0

0

r>rogr ilf!'llller Gui de Screen Fditor

F. sc

Ctrl+Brk

When typed ilnywhere in the line causes the entire
logical line to be erased. IASCII decimill value
- ?1)

Returns to nirect Mode, without saving any changes
that were made to the current line beinq edited.
IASCII decimal value - n~J ·

Other Control Characters may be used in BASJC:

Ctrl+HumLock Pauses, suspending program execution. Pressing
any key resumes program execution.

Ctrl+G

Ctrl+H

Sounds the speaker in the Hyperion.

neletes the last character typed (i.e. Rubout).

2. J.. ~ Changing a BASIC Program

Modifying existing programs is achieved by clisplaying program
lines on the screen with the LIST statement. List the range
of lines to be edited, 1See the LIST statement, section~,.
Position the cursor at the line to be edited, modify the line
using the keys described in "Altering Lines with the Editor".
Type <Rtn> to store the modified line in the program.

HOTE: A program line is not actually modified within the BASIC
program until <Rtn> is entered. Therefore, when several lines
need alteration, it is sometimes easier to move around the
screen making corrections to several lines at once, and then,
go back to the first line changed and enter <Rtn> at the
beginning of each line and by doing so store the modified line
in the program.

Mote that it is not necessary to move the cursor to the end of
the logical line before pressing <Rtn>. The Full Screen
F.ditor remembers where each logical line ends and transfers
the whole line even if the carriage return is typed at the
beginning of the line.

To truncate a line at the current cursor position, enter

I. ?-r;

Screen Fditor PrograJ11111er Guide

CTRL+EMfl followed by <Rtn>.

SYMTAX ERRORS

When a Syntax F.rror is encountered during program execution,
BASIC automatically enters EDIT at the line that caused the
error. For example:

lfl A = ?.C:12
Rll11
?Syntax F.rror in Jn
in A = ?.C:1?.

The Full Screen Editor has displayed the line in error and
positioned the cursor under the digit
cursor right to the dollar sign (t}
up-arrow(~), followed by a carriage
line is now stored back in the program.

1. The user moves the
and changes it to an

return. The corrPcted

In this example, storing the line back in the program causes
all variables to be lost. Had the prograMTTier wanted to
exa111ine the contents of some variable before making the
change, P.RFAV would be typed to return to flirect Mode. The
variables would be preserved since no program line was
changed, and after the programmer was satisfied, the line
could be edited and the program re-run.

2.1.4 The EDIT Statement

With the Full Screen Editor, the F.DIT statemPnt simply
displays the line specified and positions the cursor under the
first digit of the line number. The line may then be modified
using the keys described in "Altering Lines with the F.ditor".

J . ?-F.

0

C:

C

(~)

C

0

,,

PART I - BASIC INTERPRETER

SECTION 3 - BASIC COMMANDS

Programer <;uide

C
Fonnat:

Purpose:

Remarks:

0
Example:

C

Col!IMands

ALITO [<line numher>r,<increment>ll

To generate a line number automatically after every
carriage return.

AIITO begins numbering at <line number> and
increments each subsequent line number hy
<increment>. The default for both values is lfl. If
<line number> is followed hy a coma but
<increment> is not specified, the last increment
specified in an AIITO command is assumed.

If AIITO generates a line number that is al ready
being used, an asterisk is printed after the number
to warn the user that any input wi 11 replace the
existing line. However, typing a carriage return
imMediately after the asterisk will save the line
and generate the next line number.

AIITO is terminated by typing Ctrl+!lrk. The line in
which Ctrl+Prk is typed is not saved. After
Ctrl+~rk is typed, RASIC returns to comand level.

AIITO

r.enerates line numbers inn, 1 ~n,
?f'lfl •••

(;enerates line numbers ,n, ?fl,
~n. lln •••

Dage r.~-,

Co1111'1an<ls

Fonnat:

Purpose:

Remarks:

MOTE:

Example:

Page I.]-?

Programer Guide

CLFAR r, r <expressionl>lr ,<expression?>) l

To set all numeric variables to zero, all string
variables to null, and to close all open files;
and, optionally, to set the enri of memory and the
amount of stack space.

<expression,> is a memory location which, if
specified, sets the highest location available for
use hy R/\SIC-Pn.

<expression?> sets aside stack space for R/\SI C.
The default is?~~ hytP.s or one-eighth of the
available memory, whichever is smaller.

Hyperion ij J\S!C allocates strinq space riynarnically.
An "nut of string space error" occurs only if
there is no free me!'lory 1 eft for fl /1.S !C to use.

The CLE/\R
actions:

statement performs the following

Closes all files
Clears all cm HON and user variables
Resets the stack and strin9 space
Releases all disk buffers

CLE/\R

CLE/1.R , ~?71':f>

CLF./\R ,,?.Nlfl

CLF.AR ,~?.7~A,?nnn

0

Progra1111'1er Guirle

?.3

Fonnat:

Purpose:

Remarks:

0
Example:

0

CoJ11!!1ands

Cnt'T

To continue orooram execution after a Ctrl+Rrk has
been entered~ o~ a STOP or F~n statement has heen
executerl.

rxecution resumes at the point where the break
occurred. If the break occurred after a prompt
from an prr>IIT statement, execution continues with
the reprinting of the prompt !? or prompt strinpl.

COl'T is usually used in conjuction with STOP for
debugging. When execution is stopped, intennediate
values May be examined and changerl using direct
mode stateMents. Execution may be resumerl with
C<HIT or a direct mode r,nrn, which resumes
execution at a specified line number. C011T may be
userl to continue execution after an error.

cmrT is invalid if the program has been edited
during the break. Fxecution cannot be C011Tinued if
a rlirect Mone error has ocr.urrerl durino the break.

See example in STOP, Section !.~.

Page !. 1_ -i

Commands Programer r,uide

Format : nF.LFTFr<line number>lf-<line nurnber)l

Purpose: To delete program lines.

Remarks: P.ASIC always returns to comMand leve l after a
nFLFTF 1s executed . If <line nuMber> does not
exist, an "I l legal function call" error occurs .

Example:

Page I.~-11

fl period " . " May he used instead of a line number
to in~icate the current line.

flFLl:TF 11n
O[LETf 11n_1nn

flFLF.n:-11n

ne 1 ete l i ne 110
l'eletes lines ~n through 1nn,
inclusi ve
neletes all lines up to and
including line 40.

0

0

r>rogra!Mler Gui de Commands

~ · ~ •11t§IIIBl[aB•B11t.tiillii~
Fonnat: EnIT <line number>

Purpose: To edit a specified line.

Remarks: With the Full Screen F.ditor, the F.D!T statement
simply displays the line specified and positions
the cursor under the first digit of the line
number. The line may then be modified using the
keys described in "Altering Lini>s with the
Fdi tor".

<line number> is the program line number of a line
existino in the program. !f there is no such line,
an "llndefined line nul'lbP.r" error message is
displayed.

The"." always 9ets the last line referenced by an
En!T statement, LIST co111Tiand, or F.rror message.
Rel'lember, if you have ,iust entered a line and wish
to go back and edit it, the co11111and "Ef)IT • " wil 1
enter EnIT at the current line. (The line number
symbol ~ " al ways refers to the current 1 i ne \.

Page I. ;1_i;

Conmands ProgralllfTler r.uirle

Fonnat: F!LF.S rfilespecJ

Purpose: This command displays the names of files on a
specified diskette. It is similar to the 'DIR'
COlll!land in DOS.

Remarks: rfilespecJ is a string expression for the file
specification. If rfilespecJ is not entered, all
files on the source drive will be listed.

If rfilespecl is included, all files matching the
filename are listed. FILES allows the ODS
'wildcard' feature to be used: '?' may be
substituted for any single character, or '*' may
be used as a substitute for a string of
characters.

If a drive is included in the filename, the files
which match the rfilespecJ on that drive are
listed. Otherwise, the source drive is the
default drive.

Example: FTLF.S

This displays all files on the default source
drive.

FILES "*.COM"

This displays all files with the extension '.COM'
on the default source drive.

Files 11 8:*.* 11

This displays all files on drive R.

FILES "TEYT??.COM"

This displays all files on the default source
drive whose filenames begin with TEYT followed by

0

two or less other characters, and an extension of

0 '.COM'.

Page I.3-fi

Programmer r,uide Conrnands

0

Fonnat: V!Ll <filename>

Purpose: To delete a file fro~ a disk.

Remarks: l f a VJLL state~ent is given for a file that is
currently OPE~, a "File already open" error
occurs.

Example:

VJLL is used for all types of disk files : program
files, random data files and sequential data
files.

2nn v1LL "nATAl"

See also Appendix B.

Page I. "1.-7

Comands 0 rograf!llller r.uide

Format 1: L!ST f<line number>)

Format 2: LIST r<line number>f-f<line number>Jl)

Purpose: To list all or part of the program currently in
memory at the terminal.

Remarks: BASIC always returns to co1m1and level after a LIST
is executed.

Format 1: If <line number> is omitted, the program
is listed beginning at the lowest line numher.
/Listing is teminaterl either by the end of the
program or by typing Ctrl+Rrk.) If <line number>
is included, RASTC will list only the specified
line.

Format ?: This format allows the following
options.

~f only the first number is specified, that
line anrl all higher-numbered lines are listed.

2. Jf only the second number is specified, all
lines from the beginning of the program
through that line are listed.

., If both numbers are specified, the entire
range is listed.

Example: Fornat 1 :

Daoe I.•-P

LIST

Format 2:

LIST 1 ,;r,_

UST -lnnn

Lists the program currently in
memory.

Lists all lines form 1~n to the
end.

Lists all lines from the lowest
nunber through 10nn.

LIST 1~n-1nnn Lists lines ,~n through 1nnn,
inclusive.

0

0

C

0

0

Programmer Guide Commands

~.9

Fonnat: LLIST r<line nurnber>r-r<line number>Jl 1

Purpose: To list all or part of the program currently in
memory at the line printer.

Remarks: LLIST assumes a 1?2-character wide printer.

BASIC always returns to col'll!land level after an
LLIST is executed. The options for LLIST are the
same as for LIST, Format?.

tlOTE: LLIST and LPRitlT are not included in all
implementations of BASIC.

Example: See the examples for LIST, Format?..

Dage I.~-o

Commands Progra1T1111er r,uide

Format: LOAD <file spec> r,RJ

Purpose: To load a BASIC program into memory from disk and
to optionally run the program.

Remarks: <file spec> is a valid
containing the device and file
must be 4 characters in length.
be 1 to R characters in length.

string expression
name. The device

The file name may

~/hen ' , R' is specified, the program will begin
execution from the first statement after loading.

LOAD closed all open files and deletes all
variables and program lines currently residing in
memory before it loads the designated program.
However, if the "R: option is used with UlAtl, the
program is RIii! after it is LOADed, and all open
data files are kept open. Thus, LOAD with the "R"
option may be used to chain several programs (or
segments of the same programl. Information may be

0 passed between the programs using their disk data
files.

Rules:

Example:

Page I.~-,n

If the device identifier is omitted and the
filename is less than 1 character or greater
than~ characters in length, a "Bad File Name"
error is issued and the load is aborted.

2. !f the ,R option is omitted, BASTC returns to
Direct Mode after the program is loaded. If
the ,R option is specified, the program is
executed after loading.

~. Rl!tl <file spec> is equivalent to LOAn <file
spec>,R

LOAD"MEIIIJ"
LOAD"It1'1EIIT" ,R
RI 1'1" !'! 11 FJ1T"
LOAD"C.I\Sl: 11

'Load program f1Etlll, do not run it.
'Load and run the progral'l H'"F."T.
'Same as LOAD"IN 11 EHT",R
'Load the next Program encountered.

(

0

Programmer r,uide Commands

Fonnat: MF.Rr,E < fil enarie >

Purpose:

Remarks:

Example:

To merge a specified disk file into the prograri
currently in memory.

<filenarie> is the name used when the file was
S/1.l'Ed. !f the filenarie is less than 1 character or
areater than Q characters in length, a "Rad File
ijarie" error is issued and the ~ERr,F. is ahorted.

If the pro~ram being mer~ed was not saved in ASCJI
with a ,A option, a "Rad File ~ode" error is
issuerl. The proqram in memory remains unchanged.

Tf any lines in the disk file have the same line
numhers as lines in the program in riemory, the
lines from the file on rlisk will replace the
corresponding lines in meriory. /r'F.Rr,i:.:i ng l'lay be
thought of as "inserting" the program lines on
disk into the program in riemory, l

B/1.SIC always returns to command level after
executing a 11F.Rr,F. command.

11F.Rr,F. "SI l[lRT'I"

Page I.1-11

Col'llTlands Pro~rammer Guide

Format: t1AMF. <olrl filename> A.S <new filename>

Purpose: To change the name of a disk file.

Remarks: <old filename> must exist anrl <new filename> must
not exist; otherwise an error will result. After a
''I\J'E command, the file exists on the same rli sk, in
the same area of disk space, with the new name.

F.xample: Ok

oac:ie I.:l-1?

fl/lt1F. "AI\CT" 11.S "LEf'IGER"
(1k

!n this example, the file that was formerly namerl
ACCTS will now be named LEDGER.

0

0

ProciraJ11Mer r,ui de Commands

Fonnat: 11m

Purpose:

Remarks:

To delete the prograM currently in memory and
clear all variables.

t'n/ is enterec1 at comMand level to clear Memory
before entering a new program. BASIC always
returns to comand 1 evel after a •IFW is executed.

Page 1.1-11

Commands

~.14

Format:

Purpose:

Remarks:

MOTE:

Example:

oage I.1-1'1

Prograrrner Guide

REtll!f1 rr<new number>lr ,r<old nuMber>F ,<increMent>nl

To renuMber pro~ram lines.

<new number> is the first line number to be used
in the new sequence. The default is in. <ol rJ
number> is the line in the current program where
renuMbering is to begin. The rlefault is the first
line of the program. <increment> is the increment
to be usen in the new sequence. The default is Jn.

RF.tlllM al so changes all 1 i ne number references
following GOTO' GOS!IB' mm' Otl •.• GOTO' m, ... GOSIIB
and ERL statements to reflect the new line
numbers. If a nonexistent line number appears
after one of these statements, the error message
"1 lndefi ned 1 i ne xxxxx in yyyyy" is printed. The
incorrect line number reference (xxxxxl is not
changed by RF.tll!M, but 1 i ne number yyyyy may be
changed.

REIIIIM cannot be used to change the order of
prograM lines (for example, RD111M J ~. 1(1 when the
prograM has three lines number 1n, 2n and 1n)
to create line numbers greater than 1-'i'i?O,
"Illegal function

REMIIM

call" error will result.

Renumbers the entire program.
The first new line number
wi 11 be ,. n. Lines wi 11
increment by 1n.

REI!' IM 1nn,. i;o RenuMbers the entire program.
The first new line number
will be 1nn. Lines will
increment by i;n.

REtll 1~ 1nnri, oriri, 2n Renumbers the lines from
onn up so they start with
line number Jnnn and
i ncrel'lent by 2n.

or
An

(

0

0

Programer r,uide Commands

~ • 1 i; 111t~t9!PJ.i1iiltll1;@tRBIIII\IIII
Fonnat: RIIP <filenaJ11e>r ,RJ

Purpose: To load a file from disk into memory and run it.

Remarks:

Example:

<filename> is the name used when the file was
SA 11Ed.

RIIII closes all open fi 1 es and deletes the current
contents of memory before loading the designated
program. However, with the "R" option, all data
files remain ODEii.

RIIM "MEWFIL" ,R

See also Appendix R.

Dage I.~-lS

Co1m1ands Progra1'1111er Guide

Forriat: SA11 E <filename>r ,A I ,PJ

0 urpose: To save a program file on disk.

Remarks: <filename> is quoted string that confoms to nos
requirements for filenames. If <filename> already
exists, the file will be written over.

Ilse the A option to save the file in ASCII format.
Otherwise, BASIC saves the file in a compressed
binary format. ASCII format takes more space on
the disk, but some disk access requires that files
be in ASCII format. For instance, the MERGE
command requires an ASCII fomat file, and some
operating system commands such as LIST may require
an ASCII format file.

Ilse the P option to protect the fi 1 e by saving it
in an encoded binary format. When a protected file
is 1 ater Rlltl (or LOADed), any attempt to 1 i st or
edit it will fail.

Example: SAVE"COM2",A
SA11 E"PROG",P

See also Appendix B.

Page I.~-lli

0

0

Progral'llller r,uide ColTlllands

Fonnat: SVSTJ:.:M

Purpose: Exits BASIC and returns to nos.

Remarks: SYSTEM closes all files before it returns to DOS.
Your BASIC prograM is not saved.

0

oage r.1_17

'I

Commands Pro gr arn111er r,ui de

:l. lR

Format: TROM

TROFF

Purpose: To trace the execution of program statements.

Remarks: As an aid in det>uggi ng, the TRm1 statement
/executed in either the direct or indirect model
enables a trace flag that prints each line nu111ber
of the program as it is executed. The numbers
appear enclosed in square brackets. The trace flag
is disabled with the TROFF statement for when a MFW
comand is executed).

Example:
TRm1
Ok
LIST
Ifl l<'=Jn
2n FOR ,1=1 TO ?
~n L=I<' + in
4n PRH'T ,J;l<';L
5n v=v+rn
i;n f.lEXT
7n END
Ok
Rllt.t
r1nJr2nJr1n1r4n1
r i;n1r i;n1r ::in 1 r ,ml
r~njri;nJr?ni ·
flk
TROFF
ov

0

0

PART I - BASIC INTERPRETER

SECTION 4 - BASIC STATEMENTS & VARIABLES

0

Pro9r amer r,ui lie Statel'lents

Format: BrF.P

Purpose: The BF.FP st~tement sounrls the speaker at Ann Hz for
1/tt. seconds.

Example: ?11.in IF Y < ?n THPI RF.ED 'X is out of range.

Pa!Je I .~-1

Statel'lents Programmer r:uide

4,2

C
Fornat: RLnAn <file spec> r,<offset>l

Purpose: The RLnAn statement allows a file to be loarled
anywhere in user mel'lory.

Remarks:

Action:

Page I,4-?

<file spec> rs
containinq the
device must be
file nal'le !'lay be 1

a valid strino expression
rlevice and file name. The

4 characters in length. The
to P characters in length.

<offset> Is a valid numeric expression
returning an unsigned Integer in the range n to
~~~~~. This is the offset into the segment 
declared by the last OF.F SF.f: statel'lent at which 
loading is to start. 

If the BLOAn statel'lent is entered in direct mode, 
the file names will be displayed on the screen 
followed by a period ( .) and a sinqle letter 
indicating the type of file. This is followed 
by the message "Skipped." for the files not 
matching the namerl file, and "Found." when the 
named file is found. Types of files and their 
letter are: 

.R For Rinary Basic Progral'ls. 
,P For Protected Binary Basic Programs. 
.A For Ascii Basic Progral'ls. 
,M For Mel'lory Ima9e files. 
.n For nata Files. 

To see what files 
LnAn"FOO" or some 
be on the tape. 
displayed. 

are on a cassette tape, enter; 
other name that is known not to 
A 11 file na!'les wi 11 then be 

Mote that Ctrl+Brk may be typed at any til'le 
during BLOAn or LOAD, between files or after a 
time-out period, Basic will exit the search and 
return to nirect Mode. Previous memory contents 
rel'lain unchanged. 

If the BLOAn command is executed in a Basic 

0 

prograM, the file naMes skipped and found are not 0 
displayed on the Screen. 



flrograruTJer r::ui de 

Rules: 

0 

Example: 

StateMents 

) . If device is Ol'litted, the source drive is 
assuMed. 

2. If the device identifier 
filenal'le is less than 1 
than A characters in 
11ame" error is issued 
aborted. 

is omitted and the 
character or greater 
length, a "Bad File 

and the load is 

,. If the device identifier is specified and the 
fi 1 ename is omitted, the flF.XT Memory Image 
file encountered is loaded. 

'1. If offset is omitted, 
RSA''E is assumed. 
loaded into the same 
frol'l. 

the offset specified at 
That is, the file is 

location it was saved 

~. If offset is specified, a nFF srr, statement 
should be executed before the RLnAD. When 
offset is given, RASIC assuMes the user wants 
to BLOAO at an address other than the one 
saved. The last known OEF SF.r, address will 
be used. 

F.. CAl!TIOI!: RLOAr.l does not perfom an address 
range check. That is, it is possible to 
BLOAD anywhere in memory. The user must not 
BLOAD over RASIC's stack, BASIC Program or 
BASIC's variable area. 

1n 'Load a Machine language program at F.n:Fnnn 
?n DEF SEr, 'Restore Seoment to BASIC's ns. 
,n BLOAn"PROr,J" ,&HFnnn 'Load PROGJ into the DS. 

1n 'load the screen buffer frol'l disk. 
2n OF.F SEG= P.HBAnn 'Point segment at screen buffer. 
1n BLOAO"PICTl~F.",n 'Load file PIC~IRE into screen. 

flote that the DEF SEG statement in 2n and the 
offset of n in ~n is wise. This guarantees 
that the correct address is used. 

The BSAVE exaMple in the next section illustrates 
how PICTl'RF. was saved. 

Page I.II-~ 



Statements Programer Guide 

Format: ASA11E <file spec>,<offset>,<length> 

Remarks: 

Rules: 

Example: 

Page I. 4-4 

<file spec> is 
containing the 
device must be 
fi l e name May be 

a valid string 
device and file 

4 characters in 
1 to R characters 

expression 
name. The 

length. The 
in length. 

<offset> 
returning 
i:;r:;i;~r:;. 

is a valid numeric expression 

declared 
from. 

an unsigned Integer in the range n to 
This is the offset into the seqment 
by the last nEF SEr. to start saving 

<lenqth> is 
returning an 
i;r:;c;:,c;. This 
to be savecf. 

a valid numeric 
unsigned Integer in the 

is the length of the 

expression 
range 1 to 

memory image 

1 • If device is omitted, the DOS default 
diskette drive is used. 

2. If filename is less than l character or 
greater than A characters in length, a "Bad 
File tiaMe" err or is issued and the save is 
aborted. 

:'l. If offset is omitted, a "Bad File tlame" error 
is issued and the save is aborted. A DEF SEG 
statement should be executed before the 
BSA"E. The last known OEF SF.G address is 
always used for the save. 

4. If length is omittecf, a "Bad File ~ame" error 
is issued and the save is aborted. 

1n 'Save the screen buffer on cfisk. 

0 

?n DEF SEG= ~HBRnn 'Point segment at screen buffer. 
:,n RSA"E"PICTIIRE" ,n,lli'.1R4 'Save screen buffer in file PICTIIRE 

tlote that the OEF SEG statement in ?n and the 
offset of n in :,n is wise. This guarantees 
that the correct address is used. 



0 

0 

Programmer Guide Statements 

Format: CALL <variable name>r(<argument list>ll 

Purpose: To call an assembly language subroutine. 

Remarks: The CALL statement is one way to transfer program 
fl ow to an external suhrouti ne. I See al so the IISR 
function, Section ,.~l 

<variahle name> contains the address that is the 
startinn point in memory of the subroutine. 
<variahie name> may not he an array variable name. 
<argument list> contains the variables or 
constants, separated by commas, that are passed to 
the external subroutine. 

Invocation of the CALL 
following to occur: 

statement causes the 

1, For each parameter in the argument list; the 2 
byte offset into the ns of the parameter's 
location is pushed onto the stack. 

?. The return address Code segment rcsl, and 
offset are pushed onto the Stack, 

~. Control is transferred to the user's routine 
via the segment address given in the last OEF 
SEG statement, and offset given in <variable 
name>. 

The user's routine now has control. Parameters may 
be referenced by moving the Stack pointer fSPJ to 
the Base Pointer rap~ and adding a positive offset 
to fBPl. 

Page I.4-!i 



State111ents 

Rules: 

Page I.4-fi 

Programer Guide 

J. The CALLed routine may destroy any registers. 

2. The CALLed program MIIST know how many 
parameters were passed. Parameters are 
referenced via a positive offset being added to 
rBP]. (Assuming the called routine moved the 
current stack pointer into BP, ie: r1011 BP,SP). 

That is, the location of pl is at RrBP], p2 is 
at "rBP], p:l is at 4rBP], ••• etc. 

The CALLed routine must do a RET <n> where <n> 
is the number of parameters in the argument 
list *2. This is necessary in order to adjust 
the stack to the point at the start of the 
calling sequence. 

:i. "alues are returned to BASIC by including the 
variable name which will receive the result in 
the argument list. 

4. If the argument is a string, the parameter's 

C 

offset points to :i bytes called the "String 
Descriptor. Ryte n of the string descriptor 0 
contains the length of the string (n to ?~~,. 
Bytes 1 and ?, respectively, are the lower and 
upper A bits of the string starting address in 
string space. 

CAl!TIOM: If the argument is a string literal 
1n the program, the string descriptor will 
point to program text. Be careful not to alter 
or destroy your program this way. To avoid 
unpredictable results, add+"" to the string 
literal in the program. Example: 

20 AS= "BASIC"+"" 

This will force the string literal to be copied 
into string space. Now the string may be 
modified without affecting the program. 

5. Strings may be altered by user routines but the 
length MIIST MOT be changed! BASIC cannot 
correctly erase strings if their lengths are 
modified by external routines. 



0 

0 

Programmer Guide Statements 

Example: 1nn DEF SEG=tHPnnn 
1J.n FOO=n 
12n CALL FOO(A,B~,C) 

Line 1nn sets the segment to Pnnn Hex. Fnn is set 
to zero so that the call to FOO will execute the 
subroutine at location pnnnH. 

The following sequence of Anpi; assembly language 
demonstrates access of the parameters passed and 
storing a return result in the variable 'C'. 

MOVE BP,SP 
MOIIE Rx,i;rf!pl 
MOIIF. CLJBXl 
Mrl"E nx,, r0y1 

MO\/ SI,PfBPJ 
MOV [l!, ~ r!!Pl 
MOIIS WORD 
RET fi 

·Get the current Stack posn in BP. 
;Get address of B~ in dope. 
;Get length of B~ in CL. 
;Get addr of P.~ text in OX. 

;Get address of 'A' in SI. 
;Get pointer to 'C' inn!. 
;Store variable 'A' in 'C'. 
;Restore Stack, return. 

BEWARE!: the called program must know the variable 
type for numeric parameters passed. In the above 
example, the instruction; MO"S wnRn will copy only 
2 bytes. This is fine if variables A and C are 
Integer. We would have to copy 4 bytes if they were 
Single Precision and copy R bytes if they were 
Double Precision. 

Page I ,4-7 



Statements 

4.5 

Format: CHAI" n1ERGE1 <fi l ename>r ,r <line number exp> J 
r,ALLJr,DELETF.<range>JJ 

Purpose: To call a program and pass variables to it from the 
current program. 

Remarks: <filename> is the name of the program that is 
call ed. Example: 

Page J .11-P 

CHAHl"PROG) II 

<line number exp> is a line number or an expression 
that evaluates to a line number in the called 
program. It is the starting P?int for execution of 
the called program. If it 1s omitted, execution 
begins at the first line. Example: 

CHAI""PROG1 11 , 1nnn 

<line number exp> is not affected by a Rn11 IM 
col"flland. 

With the ALL option, every variable in the current 
program is passed to the called program. If the ALL 
option is omitted, the current program must contain 
a COMMO!l statement to list the variables that are 
passed. Example: 

CHAIH"PROG1",1nnn,ALL 

If the MERGE option is included, it allows a 
subroutine to be brought into the BASIC program as 
an overlay. That is, a MERGE operation is performed 
with the current program and the called program. 
The called program must be an ASCII file if it is 
to be MERGEd. Example: 

CHAIH MERGE"OVERLAY 11 ,1nnn 

After an overlay is brought in, it is usually 
desirable to delete it so that a new overlay may be 
brought in. To do this, use the DELETE option. 
Example: 

CHAIH MERGF. 11 nVERLAV~ 11 ,1nnn,nELETF 1nnn-~nnn 

The line numbers in <range> are affected by the 
RE!111M command. 

0 

(_ 



Programmer Guide 

NOTE: 

0 
NOTE: 

0 

0 

Statements 

The CHAIM statement with MERGE option 1 eaves the 
files open and preserves the current OPTIO~ BASE 
setting. 

If the MERGE option is omitted, CHAI~ does not 
preserve variable types or user-defined functions 
for any use by the chained program. That is, any 
OEFHIT, DEFSflG, DEFOBL, DEFSTR, or OEFFfl statements 
containing shared variables ~ust be restated in the 
chained program. 

Page 1.11_0 



Statements Progral'ITTler Guide 

Format: CIRCLF. lx,y),rr,colorr ,start,endr,aspectJJJ 

Purpose: 

Remarks: 

Page I.4-ln 

To draw an ellipse on the screen with center lx,yl 
and radius r 

lx,y) 

color 

start, end 

aspect 

are the coordinates of the center of 
the ellipse. The coordinates may be 
given in either absolute or relative 
form. 

is the radius (major axisl of the 
ellipse in points. 

is a number which specifies the 
color of the ellipse, in the range n 
to~. Tn Medium resolution, color 
selects the color froM the current 
palette as defined by the COLOR 
stateMent. n is the background 
color. The default is the 
foreground color, number 1 In high 
resolution, a color of n indicates 
black, and the default of 1 

indicates white. 

are angles in radians and may range 
from -?*P! to 2*1'I, where 
Pl=1 • 1n.1i;o1. 

is a numeric expression. 

start and end specify where the drawino 
of the ellipse will begin and end. The angles are 
positioned in the standard Mathematical way, with n 
to the right and going counterclockwise. 

If the start or end angle is negative the ellipse 
will be connected to the center point with a line, 
and the angles will betreated as if they were 
positive (note that this is not the same as adding 
?*PI). The start angle may be greater or less than 
the end angle. 0 



Prograf11111er Guide 

0 

0 

0 

Statements 

The aspect ratio affects the ratio of the x-radius 
to the y-radius. For example, the !AM aspect ratio 
of 2/~ in high resolution indicates that the 
vertical axis of the screen is?/~ as long as the 
horizontal axis. This ratio is not equal to 
~An/2nn simply because pixels are higher than they 
are wide. The default aspect ratios for each of 
the four graphic modes are as follows: 

MODE Screen Ratio 

!AM medium resolution (~?n x ?nn) 1 ~/~ 
rm1 high resolution (1;11n x ?nn) ? 2/~ 
Hyperion medium resolution 1~2n x ?~n) 1n1 1 
Hyperion high resolution (t;~n x ;>~n) 1n? 1/? 

!f the aspect ratio of 
resolution (screen=?), 
have the same length 
For example: 

?/~ is used with !AM high 
then the? vertical pixels 

as the~ horizontal pixels. 

CIRCLE (lnn, 1;,n), 2n, J ,n .~. ?R,? /~ 

produces a perfect circle with its centre at 
11nn, J.?n). Changing the aspect ratio from 2/~ to a 
number greater than 1 would produce an elipse with 
the radius measured in points in the vertical 
direction. \/hen the aspect is less than one, the 
radius given is the x-radius, i.e. the radius is 
measured in horizontal pixels. If the aspect ratio 
is greater than one the radius is measured in 
vertical pixels. 

CIRCLE (?.nn,on),~~.3,,, 1/1 

produces an elipse with a horizontal radius of 3~ 
pixels. 

Page I.4-11 



Statements Prograrmier Guide 

Format: CLnsErr~J<file number>r, ]~)<file number ... >l) 

Purpose: To conclude 1/0 to a disk file. 

Remarks: <file nur1ber> is the number under which the file 
was 0PHled . A CLOSE with no argur1ents closes all 
open files. 

The association between a particular file and file 
number terminates upon execution of a CLOSF.. The 
file !'lay then be reOPEHed using the same or a 
different file number; likewise, that file nul'lber 
l'lay now be reused to QPf]I any file. 

A CLOSE for a sequential output file writes the 
final buffer of output. 

The i::11n statement and the HEU col'lmand always CLOSE 
all clisk files autol'latically. fSTOP cloes not close 
di sk files. l 

Example: See Appendix ij , 

Page I ,4-1? 

0 

0 



Programmer Guide Statements 

Format: CLS 

Purpose: 

Rules: 

Example: 

The CLS statement erases the current active screen 
page. (See the Screen statement.I 

1. 

2. 

Tf the Screen is in 
page is cleared to 
Background Color. 
statement l. 

Alpha Mode, the active 
the currently selected 

/See the COLOR 

If the Screen is in Graphics medium 
mode, the entire Screen buffer is 
Black. 

or Hi-res 
cleared to 

~. The Screen may be also be cleared by 
depressing the Ctrl+L or Ctrl+Home keys. 

4. NOTE: The SCREEH and WIDTH 
force a Screen clear if the 
mode created is different 
currently in force. 

1 CLS 'Clears the screen. 

statements will 
resultant Screen 

than the mode 

Page I.4-l:! 



Statements Programmer Guide 

Format: COLOR rforegroundJ r,rhackgroundll 

Purpose: The COLOR statement selects the Foreground, 
Background and Border screen display colors. 

Remarks: If the Screen Aoard Imitation setting in the nos 
MOPE command is set to COLOR Board imitation: 

Page I.4-14 

Foreground color: n -black 
1-11i -white 

Aackground color: n -black 
1-7 -white 

If the Screen Board Imitation is set to Monochrome Board 
imitation with IBM alpha mode (SCREEN 0): 

Foreground Color 

n,2-7,:!2,:!4-:19,n4,nn-71 
1,:!:! ,Fili 
R,ln-lli,40,42- 47,72,74-79 
0,41 ,73 
1Fi,1A-2•,4A,lin-lili,Rn,R2-A7 
1_7 ,40,A1 
24,26-:11,lin,liA-n:!,AA,on_gi; 
21i,li7 ,AO 

Font 

White on Black 
llnderlined 
I ntensi fi ed 
llnder 1 i ned, I ntens ifi eu 
Blinking 
Blinkin9, llnderlined 
Blinking, Intensified 
Blinking, llnderlined, 
I ntensi fi ed 

If the Screen Board Imitation is set to Monochrome 
Board imitation with Hyperion alpha mode (SCREDI 
inn): 

Foreground Text Color 

n,2-7 
1 
A, 10-!li 
Q 

lfi,lA-2:1 
17 
24, 2fi-:ll 
21i 

Add :12 to the above numbers 
Add n4 to the above numbers 

Font 

White on Black 
Underlined 
Intensified 
llnderlined, Intensified 
Blinking 
Blinking, llnderlined 
Blinking, Intensified 
Blinking, Underlined, 
Intensified ~ 1 
Superscripted , J 

Subscripted 



Programmer Guide Statements 

0 

Format: COLOR [background] 

where: background= n (black), 1-7 (dark grey), 
"1-14 /light grey), 1i; (white). 

Other parameters are ignored and do not return 
errors. 

Purpose: The COLOR statement is used in medium resolution 
graphics to set the background color. 

Remarks: The foreqround color is the last used foreground 
color or-an explicit setting in PSET, PRESET, LIUE, 
CIRCLE, PAH!T, or DRAW, and ranges n for black, 1 
for dark grey, 2 for light grey, and~ for white. 

In graphics, the COLOR statement has meaning for 
medium resolution only (SCREEM l or SCREEM 1n1 ). 
Attempts to use COLOR in high re solution ( SCREEM 2 
or SC RED! 102) wi 11 result in an "Il 1 ega 1 function 
call" error. 

Any values entered outside the range o to 255 will 
result in an "Illegal Function call" error. 
Previous values will be retained. 

Page I.4-1<; 



Statements Progra11111er Guide 

4.11 

Format: COM(nl m1 

COMln) OFF 
COM(n) STOP 

Purpose: Enables or disables trapping of communcations 
activity to the specified communications adapter. 

Remarks: 

Page r. 4_ 1 i; 

n is the number of the col!lllunications adapter 
(J of 2) 

A COM(n)O~' statement must be executed to allow 
trapping by the m1 Cot1(n) statement. After 
COM(n)ON, if a non-zero line number is specified in 
the m1 COt-Hn) statement, BASIC checks to see if any 
characters have come in to the communications 
adapter every time a new statement is executed. 

If COM(n) is OFF, no trapping takes place and any 
cornunication activity is not remembered even if it 
does take place. 

If~ COM(n)STOP statement 
trapping can take 
comunications activity 
remembered so that an 
COM(n)ON is executed. 

has been executed, no 
pl ace. However, any 

that does take place is 
immediate trap occurs when 

( 

0 



Programmer Guide Statements 

0 

For1111t: COMMmr <list of variables> 

Purpose: To pass variables to a CHAHled program. 

Remarks: The COMMON statement is used in conjunction with 
the CHAHI statement. COMMmr statements may appear 
anywhere in a program, though it is recommended 
that they appear at the beginning. The same 
variable cannot appear in more than one COHt1m1 
statement. Array variables are specified by 
appending "()" to the variable name. If all 
variables are to be passed, use CHAI~ with the ALL 
option and omit the COMMON statement. 

Exaple: 
1nn COMMON A,B,C,D() ,G!: 
Jln CHAIM "PROG1",10 

Page I. 4-l 7 



Statements Programmer Guide 

4.13 

Format: x = CSRLHI 

Function: The CSRLHI function returns the current line (or 
row) position of the cursor. 

Rules: 

Example: 

Page I.4-lR 

x is a numeric variable rece1v1ng the value 
returned. The value returned will be in the 
range 1 to 24. 

x = POS(O) will return the column location of 
the cursor. A value in the range l to 4n or 
1 to Rn depending upon the current WIDTH. 

10 V = CSRLHI 
20 X = POS(O) 
30 LOCATE 24,1 
40 LOCATE Y,X 

'Record current line. 
'Record current column. 
:PRINT "HELLO" 'Print HELLO on last line. 
'Restore position to old line, column. 

( 

0 

0 



Programmer r,uide 

4,14 

Format: 

Purpose: 

Remarks: 

0 

Statements 

OATA <list of constants> 

To store the numeric and string constants that are 
accessed by the program's READ statement(s). (See 
READ, Section I-4,) 

DATA statements are nonexecutable and may be placed 
anywhere in the program. A DATA statement may 
contain as many constants as will fit on a line 
(separated by coM111as), and any number of OATA 
statements may be used in a program. The RF.AD 
statements access the OATA statements in order (hy 
line number) and the data contained therein may he 
thought of as one continuous list of items, 
regardless of how many items are on a line or where 
the lines are placed in the program. 

<list of constants> may contain numeric constants 
in any format, i.e., fixed point, floating point or 
integer. (Mo numeric expressions are allowed in the 
list.) String constants in DATA statements must be 
surrounded by double quotation marks only if they 
contain commas, colons or significant leading or 
trailing spaces. Otherwise, quotation marks are not 
needed. 

The variable type (numeric or string) given in the 
READ statement must agree with the corresponding 
constant in the DATP statement. 

See Also: See examples in READ. 

0 

DATA statements may be reread from the beginning by 
use of the RESTORE statement. 

Page I.4-lO 



Statements Programmer Gui de 

Format: As a variable: 

xl: = DATE~ 

As a statement: 

r>ATES = xS 

Purpose: Sets or retrieves the date. 

Remarks: For the variable (vs= DATES): 

As J.fl-char acter string of the form ITll"1-dd-yyyy is 
returned. Here, mm represents two digits for the 
month, dd is the day of the month (also?. digits), 
and yyyy is the year. The date may have been set by 
DOS prior to entering RASIC. 

For the statement (DATES= XS): 

x$ is a string expression which is used to set the o 
current date. You may enter x~ in any one of the 
following forms: 

Page I.4-?0 

mm-dd-yy 
mm/dd/yy 
mm-dd-yyyy 
mm/dd/yyyy 

The year must be in the range 19RO to 20~9. If you 
use only one digit for the month or day, an (zero) 
is assumed in front of it. If you give only one 
digit for the year, a zero is appended to make it 
two digits. If you give only two digits fro the 
year, the year is assumed to be 19yy. 

0 



0 

Programmer Guide Statements 

Example: Ok 
10 DATE~= "R/17/A2" 
20 PRIMT DATES 
RIIM 
OA-17-lQP.2 
Ok 

In the example we set the date to August 17th, 
lOR?. Matice how, when we read the rfate back using 
the DATE$ function, a zero was included in from of 
the month to make it two digits, and the year 
became 10A2. Also, the month, day, and year are 
separated by hyphens even though we entered them as 
slashes. 

Caution: Changing DATE~ within BASIC resets the Hyperion's 
internal clock. This should be avoided. See the 
DATE command in the Hyperion !Iser Guide for more 
information. 

Page I.4-21 



Statements Progra1T111er r.uide 

4,lfi 

Format: DEF FM<name>((<parameter list>)J=<function 
definition> 

Purpose: To define and name a function that is written by 
the user. 

Remarks: <name> must be a legal variable name. This name, 
preceded by ni, becomes the name of the function. 

<parameter list> is comprised of those variable 
names in the function definition that are to be 
replaced when the function is called. The items in 
the list are separated by commas. 

<function definition> is an expression that 
performs the operation of the function. It is 
limited to one line. variable names that appear in 
this expression serve only to define the function; 
they do not affect program variables that have the 
same name. A variable name used in a function 
definition may or may not appear in the parameter 
list. If is does, the value of the parameter is Q 
supplied when the function is called. Otherwise, 

Page I. 4-22 

the current value of the variable is used. 

The variables in the parameter list represent, on 
a one-to-one basis, the argument variables or 
values that will be given in the function call. 

!Iser-defined functions may be numeric or string. If 
a type is specified in the function name, the value 
of the expression is forced to that type before it 
is returned to the calling statement. If a type is 
specified in the function name and the argument 
type does not match, a "Type mismatch" error 
occurs. 

A DEF FN statement must be executed before the 
function it defines may be called. If a function is 
called before it has been defined, an "Undefined 
user function" error occurs. DEF FN is illegal in 
the direct mode. 

0 



Programmer Guide 

Example: 

410 DEF FNAB1X,Y)=X~3/Y: 2 
42f1 T=FMAB ( I ,J) 

. 

Statements 

Line 410 defines the function FNAB. The function is 
called in line 420. 

Page I.4-23 



Statements Programmer r,uide 

Format: DEF<type> <range(s)> 

Purpose: To declare variable types as integer, single 
precision, double precision, or string. 

Remarks: A OEFtype statement declares that the variable 
names beginning with the letter(sl specified will 
be that type variable. However, a type declaration 
character always takes precedence over a OEFtype 
statement in the typing of a variable. 

Examples: 

Page I.4-24 

If no type declaration statements are encountered, 
BASIC assumes all variables without declaration 
characters are single precision variables. 

1n DEFDBL L-P All variables beginning with the 
letters L, M, H, n, and P will be 
double precision variables. 

1n OEFSTR A All variables beginning with the 
letter A will be string variables. 

1n DEFI~T I-N,W-Z All variables beginning with 
the letters I, ,1, If, L, M, N, W, X, 
v, Z will be integer variables. 

0 

0 



0 

Programmer Guide Statements 

Format: nEF SEr, r=<address>l 

Purpose: The nF.F SEr, statement assigns the current value to 
be used by a subsequent RLOAn, BSA"E, PF.:Fv, 
pnvF., CALL, or user defined function call. 

Remarks: 

Rules: 

Example: 

<address> is a valid 
an unsigned Integer 

numeric expression returning 
in the range n to~~~~~. 

The address specified is saved for use as the 
segment required by the BLOAn, BS1\11F., PEF"'' POVE 
and C/\LL statements. 

l. /\ny value entered outside of this range will 
result in an "Illegal Function Call". Error. 
The previous value is retained. 

~- If the address option is omitted, the segment 
to be used is set to Basie's nata Segment. 
This is the initial default value. 

3. If the address option is given, it should be 
a value based upon a J; byte boundary. For 
the RLnAn, BSAVF., PEEV, PQ!,'F., or CALL 
statements, the value is shifted left 4 hits 
to form the Code Segment address for the 
subsequent call instruction. RASTC does not 
perform additional checking to ensure that 
the resultant seDment + offset value is 
valid. 

n. IIOTE: DEF and SF.G M!IST be separ aterl by a 
space! Otherwise, Basic would interpret the 
statement; nEFSEG=1nn to mean: "assign the 
value 1nn to the variable nF.FSEG". 

2n DEF S•G 

'Set segment to Screen buffer. 

'Restore segment to RASIC's ns. 

Page I.4-2~ 



Statements Progra111!'1er r.uirle 

Format: DEF IISRr <di git> J=<i nteger expression> 

Purpose: To specify the starting address of an assembly 
language subroutine, which is later called by the 
I ISR function. 

Remarks: <digit> may be any digit from n to Q. The digit 
corresponds to the number of the llSR routine whose 
address is being specified. If <digit> is omitted, 
DEF IISRO is assumed. The value of <integer 
expression> is the starting address of the IISR 
routine. 

Example: 

Page I ,4-?1' 

Any number of DEF IISR statements may appear in a 
program to redefine subroutine starting addresses, 
thus allowing access to as many subroutines as 
necessary. 

?.nn DEF l1SR0=240nn 
210 X=IISRO(Y ~?/2,AO) 

0 

0 



Programmer Guide Statements 

0 

0 

Format: DIM <list of subscripted variables> 

Purpose: To specify the maximum values for array variable 
subscripts and allocate storage accordingly. 

Remarks: If an array variable name is used without a !lIM 
statment, the maximum value of its subscriptls) is 
assumed to be 1n, If a subscript is used that is 
greater than the maximum specified, a "Subscript 
out of range" error occurs. The minimum value for a 
subscript is always n, unless otherwise specified 
with the OPTIOH BASE statement (see Section???). 

Example: 

The DIM statement sets all the elements of the 
specified arrays to an initial value of zero. 

1n DIM A(20) 
2n FOR I=n TO 2n 
~n READ A(I) 
40 IIEXT I 

'21 elements from n to 2n 

Page I.i\-27 



StateMents 

4.21 

Format: 

Purpose: 

Remarks: 

Page I.4-?.A 

Programmer Guide 

()RAW <string> 

Draws an object as specified by <string> 

You use the ORAW statement to draw using a 
"gr a phi cs defi ni ti on language". The language 
commands are contained in the string expression 
<string>. The string defines an object, which is 
drawn when BASIC executes the DRAW statement. 
Ouring execution, BASIC examines the value of 
<string> and interprets single letter commands from 
the contents of the string. These commands are 
detailed below: 

The following movement commands begin movement from 
the last point referenced. After each coJl1lland, the 
last point referenced is the last point the command 
draws. 

II n t1ove up. 
tJ n Move down. 
L n Move left. 
R n Move right. 
F. n Move diagonally up and right. 
F n Move diagonally down and right. 
r, n Move diagonally down and left. 
H n Move diagonally up and left. 

n in each of the preceding commands indicates the 
distance to move. The number of points moved is n 
times the scaling factor (set by the S coMmand). 

M x,y Move absolute or relative. If x has a plus 
sign (+) or a minus sign {-) in front of it, 
it is relative. Otherwise, it is absolute. 

B Move, but do not plot any points. 

H Move, and return to original position when 
finished. 

An Set angle n. n may be from n to~ (O is n 
degrees, 1 is 11n, 2 is u~n, :l is 27n l. 

C n Set color n. 
resolution, 
resolution. 
the color 

n may be from n to~ in medium 
and from n to 1 in high 
In medium resolution, n selects 

from the current palette as 

0 



Programmer Guide 

0 

C 

definerl by COLOR. Rackground 
is foreground color number 
resolution, n is black and 
indicates white. 

Statements 

is n, default 
]. In high 
l {default) 

Sn Sets scale factor. n may be from 1 to 255; 
n divided by four is the scale factor. The 
scale factor multiplied by the distances 
given with II, n, L, R, E, F, r,, H, and M 
gives the actual distance moved. The 
default value is 4, so the scale factor is 
1. 

X variable 
Executes substring, allowing a second string 
from within a string. 

The aspect ratio of the screen determines the 
spacing of the horizontal, vertical and diagonal 
points. For example, the IBM standard aspect ratio 
of A/~ in medium resolution, indicates that the 
vertical axis of the screen is 4/~ as long as the 
horizontal axis. This information can be used to 
determine how many vertical points are equal in 
length to how many horizontal points. The default 
aspect ratios from each of the four graphic modes 
are as follows: 

Mode Screen 

IRM medium res. {~2n x 2nn) 1 
IBM high res. {n4nx2nn) 2 
Hyperion medium res. {~2nx2~n) 1n1 
Hyperion high res. {n40x250) 1n2 

Ratio 

4/S 
2/r:, 
1 
1/? 

The aspect ratio of 4/5 indicates that 4 vertical 
pixels have the same length as~ horizontal pixels. 

For example, to draw a square box with 2n 
horizontal pixels, it would require 2n x {4/~) or 
ln vertical pixels. That is: 

DRAW 11 lllnR2;nOJnL2fl" 

produced a square in IBM medium resolution {screen 
1) 

DRAW 11 111nR2no1nL2n" 

produces a square in Hyperion high resolution 
{screen 1n2). 

Page I.4-2Q 



Statements Pro9ramer Guide 

Format: E!ID 

Purpose: To terminate program execution, close all files, 
anrl return to command level. 

Remarks: H•O statements may be placed anywhere in the 
program to terminate execution. l!nlike the STOP 
statement, EMO rloes not cause a DREIIK message to be 
printed. An EttD statement at the end of a program 
is optional. BASIC always returns to co1T111and level 
after an E1tn is executed. 

Example: 1;2n If lf>tnnn TH EM mo ELSE GOTO 2n 

Page I.4-JC1 

0 



Programmer Guide Statements 

0 

Format: ERASE <list of array variables> 

Purpose: To eliminate arrays from a program 

Remarks: Arrays may be redimensioned after they are ERASEd, 
or the previously allocated array space in memory 
may be used for other purposes. If an attempt is 
made to redimension an array without first ERASEing 
it, a "Redimensioned array" error occurs. 

Example: Jnn DIN B(1~n),A{12l 

45n ERASE A,B 
4f;/l DIM 8( on ) 

Page I.4-]l 



Statements 

4.24 

Page r. 4-12 

Programmer Guide 

When an error handling subroutine is entererl, the 
variable ERR contains-the error code for the error, 
anrl the variable ERL contains the line number of 
the line in which the error was detected. The ERR 
and ERL variables are usually used in IF •.• THEN 
statements to direct program flow in the error trap 
routine. 

If the statement that caused the error was 
mode statement, ERL will contain Ii~~~~. To 
an error occurred in a direct statement, 
li55:l~ = ERL THDI 
Otherwise, use 

IF ERR error code THEN .•• 

IF ERL line number THEN ••• 

a direct 
test if 
use IF 

If the line number is not on the right side of the 
relational operator, it cannot be renumbered by 
RDIIIM. Because ERL and ERR are reserved variables, o 
neither may appear to the left of the equal sign in 
the LET {assignment) statement. BASIC's error codes 
are listed in Appendix C. 

The ERROR statement can be used to assign 
user-defined error codes to the ERR variable. 

0 



Programmer Guide 

C 
Format: 

Purpose: 

Remarks: 

0 

Example 1: 

C 

Statements 

ERROR <integer expression> 

1) To simulate the occurrence of a BASIC error; or 
2) to allow error codes to be defined by the user. 

The value of <integer expression> must be greater 
than O and less than 2s,:;. If the value of <integer 
expression> equals an error code already in use by 
BASIC, the ERROR statement will simulate the 
occurrence of that error, and the corresponding 
error message will be printed. (See Example 1.) 

To define your own error code, use a value that is 
greater than any used by BASIC's error codes. These 
are listed in Appendix C. (It is preferable to use 
the highest available values, so compatibility may 
be maintained when more error codes are added to 
BASIC. l This user-defined error code may then be 
conveniently handled in an error trap routine. 
(See Example 2.) 

If an ERROR statement specifies a code for which no 
error mesage has been defined, BASIC responds with 
the message IINPRIMTABLE ERROR. Execution of an 
ERROR statement for which there is no error trap 
routine causes an error message to be printed and 
execution to halt. 

LIST 
10 S = 10 
20 T = i; 

30 ERRORS+ T 
40 HID 
Ok 
RWI 
String too long in line 30 

Or, in direct mode: 

Ok 
ERROR 15 
String too long 
Ok 

(you type this line) 
(BASIC types this line) 

Page I.4-3~ 



Statef!lents 

Example 2: 

Page I.11-14 

1 J n m1 ERROR GOTO 4nn 
12n HIPIIT "WHAT IS YOIIR BET" ;B 
1~n IF B > ~nnn THEM ERROR 21n 

Programmer Guide 

4nn IF ERR = 21.n THHI PRHJT "HOIISE LIMIT rs ~i;nnn" 
111n IF ERL= ,~n THEH RE~ITTE 12n 

0 

0 



C 

0 

Pr ogr a111111er Gui de 

Format: 

Statements 

FIELDr#J<file number>,<field width> AS <string 
variable> ••• 

Purpose: To allocate space for variables in a random file 
buffer. 

Remarks: To get data out of a random buffer after a GET or 
to enter data before a PLIT, a FIELD statement must 
have been executed. 

<file number> 
was OPEMed. 
characters to 
For example, 

is the number under which the file 
<field width> is the number of 

be allocated to <string variable>. 

FIELD 1, 20 AS NS, 1n AS ID$, 4n AS ADD$ 

allocates the first 2n positions (bytes) in the 
random file buffer to the string variable N~, the 
next 1n positions to ID~. and the next an positions 
to ADD~. FIEUJ does MOT place any data in the 
random file buffer. /See LSET/RSET and GET.) 

The total number of bytes allocated in a FIELD 
statement must not exceed the record length that 
was specified when the file was OPEMed. Otherwise, 
a "Field overflow" error occurs. (The ciefault 
record length is 12R.) 

Any number of FIELD statements that have been 
executed are in effect at the same time. 

Example: See Appendix B. 

NOTE: Do not use a FIELDed variable name in an 
INPUT or LET statement. Once a variable name is 
FIE[Ded, it points to the correct place in the 
random file buffer. If a subsequent Hlf>IIT or LET 
statement with that variable name is executed, the 
variable's pointer is moved to string space. 

Page J.4-'.1" 



Statements Programmer r,uide 

4.27 

Format: 
FOR <variable>=x TO y rsTEP xJ 

NEXT r<variable>Jr,<variable> ••. J 

Purpose: To allow a series of instructions to be performed 
in a loop a given number of times. 

Remarks: <variable> is used as a counter. The first numeric 
expression (x) is the initial value of the counter. 
The second numeric expression (y) is the final 
value of the counter. The program lines following 
the FOR statement are executed until the t!EXT 
statement is encountered. Then the counter is 
incremented by the amount specified by STEP. A 
check is performed to see if the value of the 
counter is now greater than the final value (y). If 
it is not greater, BASIC branches back to the 

Page ! . 4- ·v; 

statement after the FOR statement and the process o 
is repeated. If it is greater, execution continues 
with the statement following the NEXT statement. 
This is a FOR ••• tlE)(T loop. If STEP is not 
specified, the increment is assumed to be one. If 
STEP is negative, the final value of the counter is 
set to be less than the initial value. The counter 
is decremented each time through the loop, and the 
loop is executed until the counter is less than the 
final value. 

The body of the loop is skipped if the initial 
value of the loop times the sign of the step 
exceeds the final value times the sign of the step. 

Nested Loops 

FOR ••• MEXT loops may be nested, that is, a 
FOR ..• NEXT loop may be placed within the context of 
another FOR ••• NEXT loop. When loops are nested, 
each loop must have a unique variable name as its 
counter. The tlEXT statement for the inside 1 oop 
must appear before that for the outside loop. If 
nested loops have the same end point, a single tJEXT o 
statement may be used for all of them. 



0 

0 

0 

Programmer Guide 

Exa..ple 1: 

Statements 

The variable(s) in the l!EXT statement may be 
0JT1itted, in which case the NEXT statement will 
match the most recent FOR statement. If a "EXT 
statement is encountered before its corresponding 
FOR stateJT1ent, a "NEXT without FOR" error message 
is issued and execution is terminated. 

1n l<'.=10 
20 FOR I=l TO~ STEP 2 
:rn PRHIT I; 
40 f'.=Y+lO 
i;n PRitlT 1t 

liO MEXT 
RIIM 

) 20 
:1 1(1 
~ 4n 
7 ,;n 
0 Ii(\ 

Ok 

Example 2: 10 J=n 

Example 3: 

20 FOR I=J. TO ,1 
;1n PRHIT I 
40 ~!EXT I 

In this example, the loop does not execute because 
the initial value of the loop exceeds the final 
value. 

).0 I=~ 
20 FOR l=l TO I='i 
:10 PRHIT I; 
40 MEXT 
Rllfl 

1 ?. :1 4 i; fi 7 R 9 10 
Ok 

!n this example, the loop executes ten times. The 
final value for the loop variable is always set 
before the initial value is set. (Note: Previous 
versions of BASIC set the initial value of the loop 
variable before setting the final value; i.e., the 
above loop would have executed six times.) 

Page I.4-:17 



Statements Progra!'lller Guide 

Format: GF.T rfJ<fi le number>r,<record number>J 

Purpose: To read a record from a random disk file into a 
random buffer. 

Remarks: <file number> 
was (lPnted. If 
record ( after 
buffer. The 
~27n7. 

is the number under which the file 
<record number> is omitted, the next 
the 1 ast !,ET) is read into the 

largest possible record number is 

Example: See Appendix B. 

NOTE: l\fter a GET statement, JIIPIIT# and LIME ll'PIIT/1 may 
be done to read characters from the random file 
buffer. If a FIF.LO statement was used to assign 
variable names to the random buffer, these names 
should not be used in the subsequent !l!PIIT 
statement. 

Page I. 4-'.1A 

0 



0 

0 

Programmer Guide Statements 

Format: GETlxl,yl)-(x?,y2),<arrayname> 

Purpose: Reads points from an area of the screen. 

Remarks: (xl,yl )(x2,y?) 
are coordinates in either absolute or 
relative form. 

<arrayname> is the name of the array you want to 
hold the information. 

GET reads the colors of the points within the 
specified rectangle into the array. The specified 
rectangle has points lxl,yll and (x2,y2) as 
opposite corners. (This is the same as the 
rectangle drawn by the lt!IE statement using the 8 
option. l 

GET and PIIT can be used for high speed object 
motion in graphics mode. You might think of r,r.T and 
PIIT as "bit pump" operations which move bits onto 
(PIIT) and off of (GET) the screen. 

PIIT and GET are also used for random access files, 
but the syntax of the file-oriented statements is 
different. 

The array is used simply as a place to hold the 
image and must be numeric; it may be any precision, 
however. The required size of the array, in ;bytes, 
is: 

4+ HIT ( ( x*<bi ts per pixel +7) /R )*y 

where x and y are the lengths of the horizontal and 
vertical sides of the rectangle, respectively. The 
value of <bitsperpixel> is 2 in medium resolution, 
and 1 in high resolution. 

For example, suppose we want to use the GET 
statement to get a 1n by 12 image in medium 
resolution. The number of bytes required is 
4+H!T( (ln*2+7)/R)*12, or 40 bytes. The bytes per 
element of an array are: 

* 2 for integer 
* 4 for single-precision 
* R for double-precision 

Page I.4-~Q 



Statements Programmer r,uide 

Page 1.11-4n 

Therefore, we could use any integer array with at 
least 2n elements. 

The information froM the screen is stored in the 
array as follows: 

1. two bytes giving the x dimension in bits 
?. two bytes giving they dimension in bits 
~. the data itself 

It is possible to examine the x and y dimensions 
and even the data itself if an integer array is 
used. The x dimension is in element n of the array, 
and they dimension is in element 2. veep in mind, 
however, that integers are stored low byte first, 
then high byte; but the data is actually 
transferred high byte first, then low byte. 

The data for each row of points in the rectangle is 
left justified on a byte boundary, so if there are 
less than a multilple of eight bits stored, the 
rest of the byte will be filled with zeros. 

PIIT and GF.T work significantly faster in medium 
resolution when xl MOO 4 is equal to zero, and in 

0 high resolution when xl MOD 8 is equal to zero. 
This is a special case where the rectangle 
boundaries fall on the byte boundaries. 

0 



0 

0 

Programmer Guide Statements 

Format: GO SUB <line number> 

RfTIIR~I 

Purpose: To branch to and return from a subroutine. 

Remarks: <line number> is the first line of the subroutine. 

Example: 

A subroutine may be ca 11 ed any number of times in a 
program, and a subroutine may be called from within 
another subroutine. Such nesting of subroutines is 
limited only by available memory. 

The RETI!RN statement(s) in a subroutine cause BASIC 
to branch back to the statement following the most 
recent GOSIIB statement. A subroutine may contain 
more than one RETl!RM statement, should logic 
dictate a return at different points in the 
subroutine. Subroutines may appear anywhere in the 
program, but it is recommended that the subroutine 
be readily distinguishable from the main program. 
To prevent inadvertant entry into the subroutine, 
it may be preceded by a STOP, El1D, or GOTO 
statement that directs a program control around the 
subroutine. 

10 GOSIIB An 
2n PRH!T "RACK FROM SIIAROllTIME" 
~n rnn 
40 PRHJT "SIIBROIJTH!E" 
i:;n PRHIT " HI"; 
~O PRINT" PROGRESS" 
?n RETIIRM 
RIJN 
SIIBROIJTHJF. HJ PROGRESS 
BACY. FROM SIIAROIITH1E 
Ok 

Page I.4-41 



Statements Progra11111er Guide 

Format: GOTO <line number> 

Purpose: To branch unconditionally out of the normal program 
sequence to a specified line number. 

Remarks: <line nu111ber> must exist, or an "Undefined line 
number" error will be returned. If <line number> is 
an executable statement, that statement and those 
following are executed. If it is a nonexecutable 
statement, execution proceeds at the first 
executable statement encountered after <line 
number>. 

Example: 

Page I.4-42 

LIST 
Hl REA[l R 
2n PRHIT "R =";R, 
'.lO A = '.l.l4*R~2 
40 PRINT "AREA =" ;A 
i;o GOTO 1n 
fill DATA 5,7,12 
Ok 
RUN 
R 5 
R = 7 
R = 12 
?Out of data 
Ok 

AREA 
AREA 
AREA 
in 10 

= 78.R 
= 15'.l.Rf; 
= 4!i2.lfi 



0 

Programmer Guide Statements 

Format: IF <expression> THEfJ <statement( s l or <line number> 
rELSE <statement(s) or <line number>) 

Format: 

Purpose: 

Remarks: 

NOTE: 

IF <expression> GOTO <line number> 
<statement(s) or <line number>] 

To make a decision regar·ding program flow based on 
the result returned by an expression. 

If the result of <expression> is not zero, the THE~ 
or GOTO clause is executed. THEM may be foll owed by 
either a line number for branchino or one or more 
statements to be executed. GOTO is always followed 
by a line number. If the result of <expression> is 
zero, the THEN or GOTO clause is ignored and the 
ELSE clause, if present, is executed. Execution 
continues with the next executable statement. BASIC 
allows a command before THEM. 

Nesting of IF Statements 

IF ••• THEN ••• ELSE statements may be nested. Nesting 
is limited only by the length of the line. For 
example: 

IF X>Y THE~ PRIMT "GREATER" ELSE IF Y>X THEH PRI~T 
"LESS THA"" ELSE PRIMT "Enl~L" 

is a leoal statement. 
contain the same number 
each ELSE is matched 
THE~. For example 

If the statement does not 
of ELSE and THE" clauses, 

with the closest unmatched 

IF A=B THEM IF B=C THEfl PR HIT "A=C" ELSE PR HIT 
"A<>C" 

will not print "A<>C" when A<>B. 

If an IF ••• THEtl statement is foll owect by a 1 i ne 
number in the direct mode, an "Undefined line" 
error results unless a statement with the specified 
line number had previously been entered in the 
indirect mode. 

1-lhen using IF to test equality for a value that is 
the result of a floating point computation, 
remember that the internal representation of the 
value may not be exact. Therefore, the test should 

Page I.4-4'.1 



Statements Prografllfller Guide 

be against the range over which the accuracy of the 
value may vary. For example, to test a computed 
variable A against the value 1.0, use: 

IF ABS (A-1.0)<l.OE-fi THEM ••• 

this test returns true if the value of A is 1.n 
with a relative error of less than 1.0E-~. 

Example 1: 200 IF I THEN GET#l,I 

Example 2: 

This statement GETs record number I if I is not 
zero. 

1nn IF(I<20)AMD(I>10) THEN D8=1~7°-1:GOTO JOO 
110 PRPIT "OIIT OF RAMGE" 

In this example, a test determines if I is greater 
than 1n and less than 2n. If I is in this range, nA 
is calculated and execution branches to line JOO. 
If I is not in this range, execution continues with o 
line 1J n. 

Example 3: 210 IF IOFLAG THEH PRINT AS ELSE LPRINT AS 

Page I .II-Ml 

This statement causes printed output to go to 
either the terminal or the line printer, depending 
on the value of a variable (IOFLAG). If IOFLAG is 
zero, output goes to the line printer, otherwise 
output goes to the terminal. 

( 



C 

C 

( 

Programmer Guide Statements 

Format: H!KEYS 

Purpose: To read a single character from the keyboard. 

Action: Returns either a one-character string containing a 
character read fr om the terminal or a null string 
if no character is pending at the terminal. Mo 
characters will be echoed and all characters are 
passed through to the pro9ram except for Ctrl+Brk, 
which terminates the program. 

Example: 
1nnn 'TIMED H!PIIT SIJBROIITINE 
1010 RESPONSES="" 
1n2n FOR I%=1 TO TIMELIMIT% 
1n3n AS=INVEYS: IF LEN(AS)=O THEN Jn~n 
1n4n IF ASC(AS)=D THEM TIMEOIJH=n : RETllRM 
1nsn RESPONSES=RESPONSES+AS 
10~0 NEXT I% 
1070 TIMEOUT%=! : RETURN 

Remarks: See Appendix A for a list of extended keyboard scan 
codes that can be read into a two-byte H!l<'En 
variable. 

Page I .4-Mi 



Statements Programmer Guide 

Format: INPIJT[;Jr<"prompt string">;J<list of variables> 

Purpose: To allow input from the terminal during program 
execution. 

Remarks: When an HIPIJT statement is encountered, program 
execution pauses and a question mark is printed to 
indicate the program is waiting for data. If 
<"prompt string"> is included, the string is 
printed before the question mark. The required data 
is then entered at the termnial. 

Page I.4-4fi 

A comma may be used instead of a 
the prompt string to suppress the 
For example, the statement 
BIRTHnATE",B~ will print the 
question Mark. 

semicolon after 
question mark. 

UIPIIT "EtlTER 
proMpt with no 

If H1PIJT is il'lmediately followed by a semicolon, 
then the carriage return typed by the user to input 
data does not echo a carriage return/line feed 
sequence. 

The data that is entered is assigned to the 
variable(s) given in <variable list>. The number of 
data items supplied must be the same as the number 
of variables in the list. Data items are separated 
by commas. 

The variable names in the list may be numeric or 
string variable names (including subscripted 
variables). The type of each data item that is 
input must agree with the type specified by the 
variable nal'le, (Strings input to an HIPIIT statement 
need not be surrounded by quotation l'larks.) 

Responding to IMPLIT with too many or too few items, 
or with the wrong type of value (numeric instead of 
string, etc.) causes the message "?Redo frol'l start" 
to be printed. tlo as.s i iinment of input values is 
made until an acceptable response is given. 

0 

0 



Progra1111T1er Guide 

Example: 

0 

( 

10 IMPUT X 
20 PRINT X 
:rn END 

"SnllARED IS" X~2 

RUN 
? 5 (The 5 was typed in by the user 

in response to the question mark.) 
c; sn11AREJJ IS 2c; 

Ok 

LIST 
10 PI=1.14 
20 P!PIJT "WHAT IS THE RADIIIS" ;R 
'.10 A=PI*R"2 
40 PRHJT "THE AREA OF THE CIRCLE IS" ;A 
50 PRIMT 
i;o GOTO 2n 
Ok 
RIHJ 
WHAT IS THE RADIUS? 7.4 (llser types 7.4) 
THE AREA OF THE CIRCLE IS 171.Q~fi 

WHAT IS THE RADIIIS? 
etc. 

Statements 

Page I.4-47 



Statements Programmer Guide 

Format: HIPIIT/l<file number>,<variable list> 

Purpose: To read data items from a sequential disk file and 
assign them to program variables. 

Remarks: <file number> is the number used when the file was 
OPE~ed for input. <variable list> contains the 
variable names that will be assigned to the items 
in the file. (The variable type must match the 
type specifiecl by the variable name.) l4ith IMPIIT/1, 
no question mark is printed, as with IMPIIT. 

Example: 

Page I. 4-4R 

The dtaa items in the file should appear just as 
they would if data were being typed in response to 
an IHPI~ statement. With numeric values, leacling 
spaces, carriage returns and line feeds are 
ignored. The first character encountered that is 
not a space, carriage return or line feed is 
assumed to be the start of a number. The number 
terminates on a space, carriage return, line feed 
or co111111a. 

If BASIC is canning the sequential data file for a 
string item, leading spaces, carriage returns, and 
line feeds are also ignored. The first character 
encountered that is not a space, carriage return, 
or line feed is assumed to be the start of a string 
item. If this first character is a quotation mark 
("), the string item will consist of all characters 
read between the first quotation mark and the 
second. Thus, a quoted string may not contain a 
quotation mark as a character. If the first 
character of the string is not a quotation mark, 
the string is an unquoted string, and will 
terminate on a comma, carriage or line feed (or 
after 2~~ characters have been read). If end of 
file is reached when a numeric or string item is 
being It1Pl!T, the item is terminated. 

See Appendix B. 

0 

0 



Programmer Guide Statements 

0 

0 

0 

Format: 
VEY <key number>,<string expression> 
V.EY LIST 
VEY OM 
V.EY OFF 

Pijtpose: The KEV statement allows Function keys to be 
designated "Soft V.eys". 

Remarks: Any one or all of the ten Special Function r.eys 
may be assigned a 15 byte string which, when the 
Key is depressed, will be input to Basic. 

Fl 
F1 
F5 
F7 
F<l 

Initially, the Soft Keys are assigned the 
following values: 

- LIST F2 - RI"! 
- LOAD F4 - SAVE 
- COMT Fi; - , "LPTl:" 
- TROM FR - TROFF 
- f.'.EY Fl(l - SCREEtl o,n,o 

<key number> is the Vey number. An Expression returning 
an unsigned Integer in the range 1 to 10. 

<string expression> is the r.ey assignment text. Any valid 
string expression. 

KEY OH This is the initial setting. Causes the r.ey 
values to be displayed on the 25th 
Line. When the Width is 40, 5 of the 
1n Soft Keys are displayed. When the 
width is RO, all 1n are displayed. 
In either width, only the first 7 
characters of each value are 
displayed. 

KEY OFF Erases the Soft V.ey display from the 25th 
line. 

KEY LIST Lists all 10 Soft Key values on the 
screen. All 15 characters of each 
value are displayed. 

Page I,4-49 



Statements Programmer Guide 

KEY <key number>,<string expression> 

Rules: 

Assigns the string expression to 
the Soft ~ey specified (1 to 10). 

1. If the vahle--returned for <key number> is not in the 
range 1 to 1n, an "Illegal Function 
Call" Error is taken. The previous 
Key string assignment is retained. 

2. The i"ey assignment string may 
characters in length. 
is longer than Hi 
first 1~ characters are 

be 1 to 1~ 
If the string 

characters, the 
assigned. 

3. Assigning a null string (string of length 0) to a 
Soft Y.ey disables the Function Vey as a 
Soft Key. 

4. When a Soft Key is assigned, the INV.EV~ 
function returns one character of the 
soft key string per invocation. If the 
Soft Key is disabled, HlKEY!: returns 
a string of length 2. The first 
character is binary zero, the second is Q 
the Key Scan Code. 

Example: 

~O KEV ON 
EK-s-i,-1 ay the Soft Keys on- the 25th Line. 

2no KEY OFF 
Erase Soft Key display. 

10 KEY l,"MENU"+CHR~(13) 
Assigns the string 'MENU'<carriage return> 
to soft key 1. Such assignments might be 
used for rapid data entry. This exaMple 
might be used in a program to select a 
menu display when entered by the user. 

0 

Page I.4-50 



Programmer r,uide 

0 

0 

Statements 

2n Vf.Y J '"" 
Would erase Soft rey 1. 

The following routine initializes the first !i 
soft keys: 

1 KEY OFF 'Turn off key display during init. 
JO DATA iEYl,KEY2,KEY1,rEY4,KEYS 
20 FOR I=l TO ~:READ SOFTKEYS~(I) 
10 KF.Y I,SOFTKEYS~(I) 
40 flEXT I 
50 rEY OH 'now display new softkeys. 

Page I.4-!il 



State~ents Programmer Guide 

Format: rLF.Tl <variable>=<expression> 

Purpose: To assign the value of an expression to a variable. 

Remarks: 

Example: 

Page T .11-li? 

Notice the word LET is optional, 
sign is sufficient when assigning 
a variable narne. 

11 n LET fl= 1 2 
12n LET F.=12 ~2 
1;1n LET F=l2-4 
14(1 LET SIIM=O+F.+F 

or 

1 ,n fl= 12 
l?n E=12-? 
1~n F=12-4 
111(1 SI IM=l"l+E +F 

i.e., the equal 
an expression to 



0 

0 

Progral'llller r.uide Statements 

LINE is the most powerful of the graphics 
statement. It allows a group of pixels to be 
controlled with a single statement. 

Format: LIME rrx, ,y, )J -(x?.,y2l,attributer ,bfflJ 

Remarks: The simplest form of line is: 

LINE -(x?.,y?.),attr i bute 

This will draw from the last point to the point 
(x?,y?) in the foreqround attribute. 

We can include a starting point also: 

LJNF. I n,n l-/ 11 o,, na l, 1 ' draw diagonal 1 i ne down screen 
LINF. tn,1nn)-l~10,1nn1, 1 ' draw bar across screen 

We can append the attribute to draw the line in: 

LINE r1n,1n)-/?n,?.nl,? 'draw in color ?! 

Jn CLS 
?.n LINE -(rnd•11n,rnd*100J,rnd*~ 
~n GO TO 2n 'draw lines forever using random attribute 

10 FOR x=O TO ~10 
?n LIHE (x,n)-(x,J.?O) ,x MIO l 
~n MEXT 
(draw alternating pattern - line on line off) 

The final argument to line is ",b" -- box or ",bf" 
filled box. The syntax indicates we can leave out 
the attribute argument and include the final 
argument as follows: 

LIME (n,n)-(lM,lnn),l,b 

or include it: 

'draw box in foreground 

LINF ln,nl-/?nn,?nn),?,bf 'filled box attribute?. 

The ",b" tells 11ASIC to draw a rectangle with the 
points rx1,y1) and (x?.,y2l as opposite corners. 
This avoids giving the four LIMF. comands: 

LIME lxl,yl)-/x?,yll 
LJl'E fxl ,y1 l-lxi ,y?l 



Statef!lents Programmer Guide 

LIHE lx2,y l )-(x2,y2) 
LIHE (x l ,y2l - lx2,y21 

which perform the equivalent function. 

The ",bf" means draw the sar1e 
but also fill in the interior 
selected attribute. 

rectan9le as 
points· with 

u,bu 
the 

When out of range coordinates are given the line 
command the coordinate which is out of range is 
given the closest legal value. In other words, 
negative values become zero, y values greater than 
100 becof!le 1 0~ and x values greater than ~l~ in 
medium res become ?1Q and greater than ~~o in hi 
resolution become ~~a. 

C 

In the exafllples and syntax the coordinate form 
STEP(xoffset,yoffset) is not shown. However this 
form can be used wherever a coordinate is used. 
llote that all of the gr a phi cs statements and 
functions update the "more recent point used". In 
a line command if the relative forr1 is - used on the 
second coordinate it is relative to the first 
coordinate. The only other way "the most recently 
used" point is changed is that SCREDI and CLS O 
initialize it to be the point in the flliddle of the 
screen r1~n,1nn) for medium and r~2n,1nn) for hi 
resolution. 

The graphics commands have been fully optimized to 
take advantage of the AnAP. They are 
significantly faster than other machines. 

Last Example: 

Page r.11_1;11 

1n CLS 
;>n LP'E -( rnd*~~o, rnd*l on), rnd*?, bf 
~n GO TO 20 

C 



Programmer r,uide 

C 
Format: 

Purpose: 

Remarks: 

0 

Example: 

0 

Statements 

LIPF. HIPIITf; 1 r "<prompt>"; l<str i ngva r > 

Reads an entire line (up to ?.~II 
the keyboard into a string 
delimiters. 

characters) from 
variable, ignoring 

"<prompt>" is a string constant that is displayed 
on the screen before input is 
accepted. A question mark is not 
printed unless it is part of the 
prompt string. 

<stringvar> is the name of the string variable or 
array element to which the 1 i ne wi 11 
be assigned. All input from the end of 
the prompt to the <Rtn> is assigned to 
<stringvar>. Trailing blanks are 
ignorer:!. 

If LI11E PIPIIT is immediately followed by a 
semicolon, then pressin~ <Rtn> to end the input 
line does not produce a carriage return/line feed 
sequence on the screen. That is, the cursor remains 
on the same line as your response. 

Vou can exit LP1F P 1PIIT by pressing <Ctrl+l3rk>. 
RASIC returns to command level and displays Ok. vou 
may then enter COMT to resume execution at the LI flE 
HJPIIT. 

See example in "LIHE INPIITI - Statement" 

Page I. 11_,:;,; 



Statements Progra11111er Guide 

Format: L HIF. HIP!IT#<file nu111ber>,<string vilriahle> 

Purpose: To read an entire line (up to ?<;4 characters\, 
without deli111iters, from a sequential disk data 
file to a string variable. 

Remarks: <file number> is the nu111ber under which thP. file 
was OPE~ed. <strin9 variable> is the variable naMe 
to which the line will he assigner!. LP'E It1PPT'I 
rP.ads all characters in the sequential file up to a 
carriage return/line feed sequence, and the next 
u11r 111n11r, rearfs all characters up to the next 
carriage return. (If a line feerf/carriage return 
sequence is encountered, it is preserved.) 

LIHE HIPIITJ/ is especially useful if each line of a 
data file has been broken into fields, or if a 
BIi.SIC-An program saved in ASCII rnorfe is being read 
as data by another program. 

Example: 10 OPDI "O". 1 '"LIST" 0 
?.O LIHE IHPIIT "CIJSTOMER It1FORMAT!OM? ";C~ 
'.l() PRHIT f1, C~ 

Page I.4-'if; 

40 CLOSF. 1 
;n OPEH "I",1,"LIST" 
,;n LP!E HIPIIT #1, cc; 
7n PRJ!!T c~ 
R() CLOSF. l 
RIii! 
CIISTOMER HIFORMATIOM? LHIOA ,10t1ES ?~,i,4 MEMPHIS 
LHIOA ,lOtlES ?'lll,4 MFJ1°HIS 
Ok 

0 



Programmer r:uide 

0 Format: 

Purpose: 

Remarks 

Action: 

Statements 

LOCAT~ rrowJ r, rcolJ r, rcursor] r, rstartJ 
r,stopJ 111 

The LOCATE statement moves the Cursor 
specified position on the active Screen. 
parameters turn the blinking cursor on and 
define the start and stop raster lines 
cursor . 

to the 
Optional 
off and 
for the 

row 

col 

cursor 

Is the Screen Line number. A 
expression returning an unsigned 
in the range 1 to ?4. 

Is the Screen Column number. A 
expression returning an unsigned 
in the range 1 to An or 1 
depending upon Screen Width. 

Is a boolean value indicating 
the cursor is visible or not. 
off, non-zero for on. 

numeric 
Integer 

numeric 
Integer 
to Rn, 

whether 
n for 

start/stop Is the cursor starting and ending 

stop 

scan lines. If start = stop, cursor 
becor1es invisible (stop-start <1). If 
stop start J, cursor becomes 
underbar. If stop start > 1, cursor 
becomes block. 

Is the cursor stop scan 
expression returning an 
in the range o to 31. 

line. A numeric 
unsigned Integer 

Moves the cursor to the specified position. 
subsequent PRI~T statements begin placing 
characters at this location. Optionally may be 
used to turn the blinkinq cursor on or off, or 
change the size of the biinking cursor. 

Page I.4-,;7 



Statements 

Rules: 

Example: 

Page I.4-,R 

Programmer r.uide 

J . Any values entered outside of these ranges 
will result in an "Illegal Function Call" 
Frror. Previous values are retained. 

?. . Any parameter may be omitted. 
parameters assume the old value. 

Omitted 

i . If the start scan line parameter is given and 
the stop scan line parameter is omitted, stop 
assumes the start value. This produces a 
single scan line cursor. 

4. Cursor Blink is not selectable and always 
blinks 1~ times a second. 

,. The ~,th line is reserved for Soft Vey 
display and may not be written over, even if 
Soft vey display is Off. 

10 LOCATE l,1 Moves to the home position in 
the upper left hand corner. 

?n LOCATE ,,l Make the blinking cursor 
visible, position remains 
unchanged. 

~n LOCATE ,,1,1,0,7 Move to Line,, column 1, turn 
cursor on, cursor will cover 
entire character cell starting 
at scan linen and ending on 
scan line 7. 

0 



0 

0 

Prograf'lmer Guide Statements 

4.42 

Format: LPRHIT r<list of expressions>Jr;J 
LPRHIT IISHIG <string exp>;<list of expressions>r;l 

Purpose: To print data at the line printer. 

Remarks: Same as PR!MT and PRIMT !ISIMG, except output goes 
to the line printer (the PRH device). 

LPRH1T assumes a n?-char acter-wi de printer. 

For a description of the <string exp> parameter of 
the LPRHIT IISHIG statement see the PRHJT llSHIG 
statement. 

Page I. 4-!i9 



Statements Programr.ier Guide 

Format: LSET <string variable>= <string expression> 
RSET <string variable>= <string expression> 

Purpose: To ~ave data fro~ memory to a random file buffer 
fin preparation for a PIIT statement). 

Remarks: If <string expression> requires fewer bytes than 
were Fif.LDed to <string variable>, LSF.T 
left-justifies the string in the field, and RS~T 
right-justifies the string. (Spaces are used to pad 
the extra position.) If the string is too long for 
the field, characters are dropped from the right. 
t-lumeric values must be converted to strings before 
they are LSET or RSF.T. See the MV!5, Mf'St, MVn~ 
functi ans. 

Example: 1~n LSET A~=M~S!i(AMT) 

See also Appendix B. 

MTE: 

Page I .4-/;n 

LSET or RSF.T may also be used with a non-fielded 
string variable to left-justify or right-justify a 
string in a qiven field. For example, the program 
lines 

11n AS=SPACEt(2n1 
1 20 RSET AS=fl~ 

right-justify the string MS in a 2"-character 
field. This can be very handy for formatting 
printed output. 

0 



0 

0 

PrografTllTler Guide Statements 

Format: OM COMI n) r,os,1R<l i ne> 

Purpose: Sets up a line number for RASIC to trap to when 
there is information cominq into the communications 
buffer. · 

Remarks: n is the number of the ocrnmunication adapter 
(1 of ?.) • 

<line> is the line number of the beginning of the 
trap routine. Setting <line equal to O 
(zero) disables trapping of communications 
activity for the specified adapter. 

A COM(n) m1 statement must be executed to activate 
this statement for adapter n. After COM(n) Oil, if a 
non-zero line number is specified in the m1 COt1/n) 
statement then every time the program starts a new 
statement, ASIC checks to see if any characters 
have come in to the specified communications 
adapter. If so, BASIC per forms a GOSIIB to the 
specified <line>. 

If COM/n\ OFF is executed, no trapping takes place 
for the adapter. Even if comunications activity 
does take place, the event is not remembered. 

If a COM/n) STOP statement is executed, no trapping 
takes place for the arlapter. However, any 
characters heing receiverl are rememhererl so an 
immediate trap takes place when COM/n) Oil is 
executed. 

When the trap occurs an automatic COM/n) STOP is 
executed so recursive traps can never take place. 

The RETI~II from the trap routine automatically does 
a COM(n) m1 unless an explicit cmHn) OFF was 
performed inside the trap routine. 

Fvent trapping does not take place when BASIC is 
not executing a program. When an error trap 
(resulting from an OM ERROR statement) takes place 
all trapping is automatically disabled /including 
ERROR, STRIG(n), pn,1, COM(n), and VFV(n)). 

Typically the communications trap routine rearls an 
entire message from the comunications line before 



Statements Progra11111er Guide 

returning back. It is not recommended that you use 
the contnunications trap for single character 
messages since at high baud reates the overhead of 
trapping and reading for each individual character 
may allow the interrupt buffer for communication to 
overflow. 

You may use RF.TllRM<line> if you wnat to go bak to 
the RAS IC pro gr am at a fixed 1 i ne number. 1 lse of 
this non-local return must be done with care, 
however, since any other GOS11Bs, WHILF.s, or FORs 
that were active at the time of the trap will 
remain active. 

Exampl I: 1 r:;n Qfl COM ( 1 l GOSIIR !-00 
1i;n cor1(1) m1 

Page I. ,1._r:;2 

r:;nn REH incoming characters. 

r:;on RETIIRM 1nn 

This example sets up a trap routine for the first 0 
co1T.1unications adapter at line r:;nn. 

( 



Programmer Guide Statements 

C 

0 

Format: ClH ERROR GOTO <line number> 

Purpose: To enable error trapping and specify the first line 
of the error handling subroutine. 

Remarks: Once error trapping has been enabled all errors 
detected, including direct mode errors (e.g., 
Syntax errors), will cause a jump to the specified 
error handling subroutine. If <line number> does 
not exist, and "llndefined line" error results. To 
disable error trapping, execute an OH F.RROR GOTO n. 
Subsequent errors will print an error message and 
halt execution. An m! l:RROR GOTO n statement that 
appears in an error trapping subroutine causes 
BASIC-Rn to stop and print the error message for 
the error that caused the trap. It is recommended 
that all err or trapping subroutines execute an 011 
ERROR GOTO n if an error is encountered for which 

NOTE: 

Example: 

there is no recovery action. · 

If an error occurs during execution of an error 
handling subroutine, the BASIC error message is 
printed and execution terminates. Error trapping 
does not occr within the error handling subroutine. 

1 n OH ERROR GOTO 1 nnn 

Page I.4-f;:I 



Statements orogra1111"1er r.ui rte 

4.4(; 

Format: m1 <expression> GOTO <list of 1 i ne numbers> 

()M <expression> GOSIIB <list of line nu111bers> 

Purpose: To branch to one of several specified line numbers, 
depending on the value returned when an expression 
is evaluated. 

Remarks: The value of <expression> determines which line 
number in the list will be used for branching. For 
example, if the value is three, the third line 
number in the list will he the destination of the 
branch. /If the value is a non-integer, the 
fractional portion is rounded.) 

In the m1 ••• r,ns11B state111ent, each line nuMber in 
the list 111ust be the first line nu111ber of a 
subroutine. 

If the value of <expression> is zero or greater 
than the number of items in the list (but less than ( 
or equal to 21i5l, RASIC continues with the next 
executable stateMent. If the value of <expression> 

Example: 

Page I.4-lill 

is negative or greater than 251i, an "Illegal 
function call" error occurs. 

0 



Programmer Guide Statements 

C 

() 

Format: ()" Y.F:Yln)GOSIIB<line> 

Purpose: Sets up a line number for BASIC to trap to when the 
specified function key or cursor control key is 
pressed. 

Remarks: n is a numeric expression in the range 1 to 
14 indicating the key to be trapped, as 
follows: 

,_,n function keys Fl-FJn 
1l Cursor !Ip 
12 Cursor Left 
,~ Cursor Right 
).II Cursor flown 

<line> is the line number of the beginning of the 
trapping routine for the specified key. 
Setting <line> equal ton disables trapping 
of the key. 

A VEY/n)OIJ statement must be executed to activate 
this statement. After l'EV(n)ml, if a non-zero line 
number is specified in the OM KEY/nl statement then 
every time the program starts a new statement, 
BASIC checks to see if the specified key was 
pressed. If so, BASIC performs a GOSll8 to the 
specified <line>. 

If a KEV(n)OFF statement is executed, no trapping 
takes place for the specified key. Even if the key 
is pressed, the event is not remembered. 

If a VEV(nlSTOP statement is executed, no trapping 
takes place for the specified key. However, it the 
key is pressed the event is remembered, so an 
immediate trap takes pl ace when V[V ( n) n~• is 
executed. 

When the trap occurs an automatic V[V(n)STOP is 
executed so recursive traps can never take place. 
The RETI~M from the trap routine autonatically does 
a VEY/n)OM unless an explicit VEY(n)OFF was 
performed inside the trap routine. 

Event trapping does not take place when BASIC is 
not executing a program. When an err or trap 
I resulting form an OM ERROR statement) takes pl ace 

Page I.4-li~ 



Statements Programer r,uide 

all trapping is automatically pisabled /including 
ERRnR, cnr11n\, anct vi::vrn\l. 

v.ey trapping may not work when other keys are 
pressed before the specified key. The key that 
caused the trap cannot be tested using a1p11p: or 
n1v[vc;, so the trap routine for each key must be 
different if a different function is desired. 

Vou may use RETIIRfl<l i ne> if you want to go back to 
the BASIC program at a fixed line number. Ilse this 
non-local return with care, ho~1ever, since any 
other GnSIIBs, WHILEs, or FORs that were active at 
the time of the trap will remain active. 

l'.EYI n )otl has no effect on whether the softkey 
values are displayed at the bottom of the screen. 

Example: The following is an example of a trap routine for 
function key <;, 

Page I,4-lili 

1/'l/'l otl Vf.V(c;) GOS118 ?('1/'l 
11n YEY(<;\ m1 

2nn RFM function key i; pressed 

?rin RETIIRfl l<tn 

0 



0 

Programmer Guide 

Format: 

Statements 

OPEH [<dev>] <filename> fFOR <mode>) AS [#)<file 
numbei> rLE~=<lrecl>J 

Purpose: To establish addressability between a physical 
device and an I/0 buffer in the data pool. 

Remarks: <dev> is optionally part of the filename string and 
may be one of the following: 

A: 
B: 
C: 
n: 
PR'I 
CON 
l<'.YB£1: 
SCRl1: 

LPTl: 
COM1.: 

Drive A 
Drive B 
Ram disk 
Hard disk 
Line Printer - Output Only. 
Screen - Output Only 
V.eyboard - Input Only 
Screen - Output Only 
Line Printer Output Only 
RS?12 serial communications -
Input, Output, or random only. 

<filename> is a valid string literal or variable 
optionally containing a <dev>. If <dev> is omitted, 
disk A: is assumed. Refer to "OISK FILES" for 
naming conventions. 

<mode> determines the initial positioning within 
the file and the action to be taken if the file 
does not exist. The valid modes and actions taken 
are: 

HIPIIT Position to the beginning of an 
file. A "File not found" error 
if the file does not exist. 

existing 
is given 

OIITPIIT Position to the beginning of the file. If 
the file does not exist, one is created. 

APPEMD Position to the end of the file. If the 
file does not exist, one is created. 

DEFAIILT If the FOR <mode> clause is omitted, the 
initial position is at the beginning of 
the file. If the file is not found, one 
is created. This is the Random I/0 mode. 
That is, records may be read or written 
at will at any position with the file. 

Page I."--fi7 



Statements 

Action: 

Rules: 

Page I.4-fiR 

Programmer Guide 

<file number> is an integer expression returning a 
number in the ranoe 1 thru J~. The number is used 
to associate an rio buffer with a disk file or 
device. This association exists until a CLOSF. or 
CLOSE <file number> statement is executed. 

<Jrec1> is an integer expression in the range 2 to 
~??fiR. This value sets the record length to be used 
for random files (see the FIELD statement). If 
omitted, the record length defaults to 12R byte 
records. 

When a disk file is OPEHed FOR APPEHD, the position 
is initially at the end of the file and the record 
number is set to the last record of the file 
( LOB ( x) /12R). PRIMT, WRITE, or PIIT wi 11 then extend 
the file. The program may position elsewhere in the 
file with a GET statement. If this is done, the 
mode is changed to random and the position moves to 
the record indicated. 

Once the position is moved from the end of the 
file, additional records may be appended to the 
file by exeucting a GET #x,LOF(x)/<lrecl> 
statement. This positions the file pointer at the o 
end of the file in preparation for appending. 

1. Any values entered outside of the ranges given 
will result in an "Illegal Function Call" 
error. The file is not opened. 

?. If the file is opened as HIPIIT, attempts to 
write to the file will result in a "Bad File 
Mode" error. 

~. If the file is opened as OIITPIIT, attempts to 
read the file will result in a "Bad File Mode" 
error. 

4. At any one time, it is possible to have a 
particular disk filename OPEH under more than 
one file number. This allows different modes to 
be used for different purposes. Or, for program 
clarity, to use different file numbers for 
different modes of access. Each file number has 
a different buffer, so several records from the o 
same file may be kept in memory for quick 
access. 

A file may MOT be opened FOR OIITPIIT, however, 



0 

0 

Programmer Guide Statements 

on more than one file number at a time. 

~. If the LEtl=<lrecl > option is used, lrecl may 
not exceed the value set by the /S:<lrecl> 
switch option to the command. 

Examples: 1n OPEM "A:IWDATA" FOR OIITPIIT AS /11 
1n OPEM "vvsn:" FOR HIPIIT AS 112 
1n OPD! "A:H!VEtn.nAT" FOR APPEM[) AS /11 
10 OPEM "C:Ol!ICI.'." AS /11 'for random I/0 on RAM disk 

Page I.4-69 



Statements 

4.49 

Format: 

Programmer Guide 

OPEM "COMl:<speed>,<parity>,<data>,<stop>" AS [#] 
<file number> 

Purpose: Allocates a buffer for I/0 in the same manner as 
OPEH for disk files. 

Remarks: 

Page 1.4-70 

COMl: 

speed 

Is the name of the Hyperion serial 
corrmunications device. 

Is a liter al integer specifying the 
transmit/receive baud rate. Valid speeds 
are: 110, p;n, ~no, i;nn, 1211n, !Rno, 
2400, 4"nn, 9~00, 1~200. 

parity Is a one character literal specifying the 
Parity for Transmit and Receive as 
follows: 

0 

E 

ODD, Odd Transmit/Receive 
checking. 

EVEN, Even Transmit/Receive 
checking. 

Parity 

Parity 

H NONE, Ho Tr ansl'lit Parity, Mo Receive 
Parity checking. 

data Is a literal integer indicating the 
number of transmit/receive data bits. 
Valid values are: 7 or R. 

~IOTE: R data bits with any parity is 
illegal. 

stop Is a literal integer indicating the 
number of stop bits. Valid values are 1 
or 2. If omitted then 11n bps transmits 
two stop bits, all others transmit one 
stop bit. 

file number Is an integer expression returning a 

0 

valid file number. The number is then 
associated with the file for as long as o 
it is OPEN and is used to refer other COM 
I/0 statements to the file. 



0 

Programmer Guide Statements 

Example: 

nEFAIILTS: Missing parameters invoke the following 
defaults: 
speed - 3nn bps, parity - EVHI, data - 7, 
stop -2 if 11n bps else). 

NOTE: The COMl: device may be OPEMed to 
only one file number at a time. 

Any coding errors within the Fi 1 e Name String wi 11 
result in a "Bad File Name" error. No indication 
as to which parameter is in error is given. 

A "Device Timeout" error will occur if Data Set 
Ready (DSR) is not detected. Refer to hardware 
documentation for proper cabling instructions. 

ln OPEN "COMl: "AS 1 

File 1 is opened for 
defaults. Speed at 3nn 
bits, and one stop bit. 

20 opnr "COMl: 240n " AS #2 

communication with all 
bps, Even Parity, 7 data 

File 2 is opened for communication at 2400 bps. 
Parity and number of data bits are defaulted. 

JO OPEN "COMl:1200,N,A" AS ~1 

File number 1 is opened for Asynchronous I/0 at 
12nn bits/second, no parity is to be produced or 
checked, and A bit bytes will be sent and received. 

Communications I/0 

Since the communication port is opened as a file, 
all Input/Output statements that are valid for disk 
files are valid for COM. 

COM sequential input statements are the same as 
those for disk files. They are: IMPUT#<file 
number>, LINE HIPIJT#<fil e number>, and the IMPIIH 
variable. 

COM sequential output statements are the same as 
those for disk, and are: PRIMT#<file number>, and 
PRINT#<file number> IISH!G. 

Refer to HIPIJT and PRIMT sections for details of 
coding syntax and usage. 

Page I.4-71 



Statements Programmer Guide 

COM I/0 Functions 

Page I.4-72 

The most difficult aspect of asynchronous 
communication is being able to process characters 
as fast as t~ey are received. At rates above 2400 
bps., it 1s necessary to suspend character 
transmission from the Hyperion long enough to 
"catch up". This can be done by sending XOFF 
(Ctrl+MumLock) to the host and XOM (any key) when 
ready to resu111e. 

BASIC provides three functions which help in 
deter111ining when an "over-run" condition is 
eminent. These are given below, where x is the 
file number specified. 

LOC(x) 

LOF(x) 

EOF(x) 

Returns the number of characters in the 
input queue waiting to be read. The 
input queue can hold more than 25~ 
characters (determined by the /C: 
switch). If there are more than 2'i5 
characters in the queue, LOC(x) returns 
255. Since a string is limited to 2~5 
characters, this practical limit 
alleviates the need for the programmer to 
test for string size before reading data 
into it. If fewer than 25'i characters 
remain in the queue, LOC(x) returns the 
actual count. 

of free space in the 
is, /C:<size>-LOC(x). 

used to detect when the 

Returns the amount 
input queue. That 
Ilse of LOF may be 
input queue is 
practicality, LOC is 
purpose. 

getting full. In 
adequate for this 

If true (-1), indicates that the input 
queue is empty. Returns false (0) if any 
characters are waiting to be read. 

0 

0 



0 

0 

PrograMMer r,uide 

Format: ()PTI()M BASF n 
where n is, or n 

Statements 

Purpose: To declare the miniMum value for array suhscripts. 

Remarks: The default base is n. If the statenent 

Or>nm, RASF 1 

is executed, the lowest value an array subscript 
nay have is one. 

Page I ·"--P 



Statements Programer r.uide 

Format: OPT I ,,1 
where I and J are integer expressions in the range 
n to ~~~1i;. I is a machine port number, and J is 
the data to be transmitted. 

Purpose: To send a byte to a machine output port. 

Remarks: 

Example: 

Page I.it-74 

OIIT is the complementary statement to the H!I' 
function. 

!n assembly language, this is equivalent to: 

11011 flY, 1 ?'.lit~ 
110" AL,??'i 
n11T [)Y ,AL 

0 



PrograMmer r,uide Statements 

0 

0 

Format: PA!~Tlx,y)(,<paint>r,<houndary>lJ 

Purpose: Fills in an area on the screen with the selected 
color. nnly used in graphics Modes /Screen 1,?,1n1 
or 10?), 

Remarks: lx,y) 

<paint> 

are the coordinates of a point within 
the area to be filled in. The 
coordinates may be given in absolute or 
relative form. This point will be used 
as a starting point. 

is the color to be painted with, in the 
range n·to 1. In medium resolution, this 
color is the color from the current 
palette as defined by the COLnR 
statement. n is the background color. 
The default is the foreground color, 
color nuMber 1. In high resolution, 
<paint> equal to n !zero) indicates 
black, and the default of 1 (one) 
indicates white. 

<boundary> is the color of the edges of the figure 
to be filled in, in the range n to 1 as 
described above. 

The fiqure to be filled in is the figure with edqes 
of <boundary> color. The figure is filled in with 
the color <paint>. 

Since there are only two colors in high resolution 
it doesn't Make sense for <paint> to be different 
from <boundary>, Since <boundary> is defaulted to 
equal <paint> we don't need the third parameter in 
hiqh resolution mode. 

In high resolution this means "blacking out" an 
area until black is hit, or "whiting out" an area 
until White is hit. 

In medium resolution we can fill in with color J 
with a border of color 2. 

The starting point of 
figure to be painted. 
already has the color 
have no effect. If 

PAHIT must be inside the 
If the specified point 

<boundary> then PAJtlT will 
<paint> is omitted the 

Page I.fl-7<; 



Statements 

Example: 

Page I . 4- 7fi 

Pr 09r al'11ller r:ui de 

foreground color is used (1 in medium resolution, 1 
in high resolution\. PAPIT can paint any type of 
figure, but "jagged" edqes on a figure will 
increase the amount of stack space required by 
DAT'IT. So if a 1 ot of complex painting is being 
done you may want to use CLFAR at the beginning of 
the program to increase the stack space available. 

The PAIMT statement allows scenes to be displayed 
with very few statements. This can be a very useful 
capability. 

i; SCRf.Efl 1 

1n LIME 1n,n)-(Jnn, 1c;nJ,2,B 
;:>n PA HIT ( c;n, c;n l, 1 , 2 

The PAHIT statement in line 2n fills in the box 
drawn in line 1n with color 1 

0 

0 



0 

0 

Progral'll!ler Guide Statements 

Format: PLAY <string expression> 

REMARKS: PLAY imp1ements a concept simi1ar to DRAW by 
embedding a string expression into the string data 
type. 

The sing1e character commands in PLAY are: 

A-G r#,+,-J P1ay the note. A "a" or "+" 

L <n> 

MF 

afterwards means sharp, and"-" means 
f1 at. 

Length - Sets the 1ength of each note. 
L4 is a quarter note, L1 is a who1e 
note, etc. n may range from 1 to ~4 

The 1ength may a1so fo11ow the note when 
it is desired to change the 1ength on1y 
for the note. In this case, Aln is 
equiva1ent to Ll~A. 

Music Foreground. Music (PLAY 
statement) and sm1Nn are to run in 
Foreground. That is, each subsequent 
note or sound wi11 not start unti1 the 
previous note or sound is finished. 
This is the initia1 defau1t. 

MB Music Background. Music (PL.A.v 
statement) and som10 are to run in 
Background. That is, each note or sound 
is p1aced in a buffer a11owing the BASIC 
program to continue execution whi1e 
music p1ays in the background. lip to 1? 
notes (or rests) can be p1ayed in 
background at a time. 

HH 

ML 

MS 

Music ~lorrna1. 
7/flths of the 
f1 ength l. 

Each note wi11 p1ay 
time determined by L 

Music Legato. Each note wi11 p1ay the 
fu11 period set by L (1ength). 

Music Staccato. 
~/4ths of the 
(1 ength). 

Each note wi11 p1ay 
time determined by L 

Page I.4-77 



Statements 

Page I.4-7R 

~, <n> 

O <n> 

P <n> 

T <n> 

Programmer Guide 

Play note n. n may range from n to R4, 
In the 7 possible octaves, there are R4 
notes. M=O means rest. 

Octave - Sets the current octave. There 
are 7 octaves (n ••. ~). 

Pause. P may range from 1 to fi4. 

Tempo - Sets the number of L4's in a 
second. n may range from ?.12 to 255. 
Default is 12n. 

Dot or Period. After each note causes 
the note to play ~/2 times the period 
determined by L (length) times T 
( tempo l. Multiple dots may appear after 
a note. The period is scaled 
accordingly, (Example: A. 3/2, A •• 9/4, 
A ••• 27/R etc.). Dots may appear after 
a pause (Pl and scale the pause length 
as described above. 

X <string> Execute substring 

Because of the slow clock interrupt 0 
rate, some notes will not play at higher 
tempos; e.g. Lfi4 at T25~. Which 
note/tempno combinations these are must 
be determined through experimentation. 

C 



Programmer r.uide Statements 

0 

0 

Format: POVE I,J 
where I and J are integer expression 

Purpose: To write a byte into a memory location. 

Remarks: The integer expression I is the address of the 
memory location to be POKEd. The integer expression 
,1 is the data to be POVEd. J JT1ust be in the range J. 
to 2~5. I must be in the range n to n~~~n. 

Example: 

Data may be POV.Ed into memory locations above ~27nR 
by supplying a negative number for I. The value of 
I is coJT1puted by subtracting ~~~~n from the desired 
address. For example, to POVE data into location 
4~nnn, r = 4~nnn-n~~~n, or -?.n~~n 

The complementary function to POVE is PEEV. The 
argument to PEEV is an address from which a byte is 
to be read. 

POVE and PEEV are useful for efficient data 
storage, loading asseJT1bly language subroutines, and 
passing arguments and results to and froJTI assembly 
language subroutines. 

Page I. 4_70 



Statements Programmer Guide 

Format: PRHIT r<list of expressions>J~;J 

Purpose: To output data at the terminal. 

Remarks: If <list of expressions> is omitted, a blank line 
is printed. If <list of expressions> is included, 
the values of the expressions are printed at the 
terminal. The expressions in the list may be 
numeric and/or string expressions. (Strings must be 
enclosed in quotation marks.) 

Page I. 4-An 

Print Positions 

The position of each printed item is determined by 
the punctuation used to separate the items in the 
list. BASIC divides the line into print zones of 14 
spaces each. In the list of expressions, a comma 
causes the next zone. A semicolon causes the next 
value to be printed immediately after the last 
value. Typing one or more spaces between 
expressions has the same effect as typing a 
semicolon. 

If a comma or semicolon terminates the list of 
expression, the next PRHIT statement begins 
printing on the same line, spacing accordingly. If 
the list of expressions terminates without a cornna 
or a semicolon, a carriage return is printed at the 
end of the line. If the printed line is longer than 
the terminal width, RASIC goes to the next physical 
line and continues printing. 

Printed numbers are always followed by a space. 
Positive numbers are always preceded by a space. 
Megative numbers are preceded by a minus sign. 
Single precision numbers that can be represented 
with fi or fewer digits in the unscaled format no 
less accurately than they can be represented in the 
scaled format, are output using the unscaled 
format. For example, in~-7 is output as .nnnnnn1 
and 1n~-A is output as !E-08. Double precision 
numbers that can be represented with !fi or fewer 
digits in the unscaled format no less accurately 
than they can be represented in the scaled format, ( 
are output using the unscaled format. For example, 
10-15 is output as .nnnnnnnnnnnnnno1 and JD1fi is 
output as lfl-ti;. 



Programmer Guide Statements 

0 

A question mark may be used in place of the word 
PRIMT in a PRIMT statement. 

Example 1: 10 X=S 
20 PRINT X+5, X-'i, X*(-'i), X~'i 
~O END 
RUM 

10 o -25 112i; 
Ok 

In this example, the commas in the PRitff statement 
cause each value to be printed at the beginning of 
the next print zone. 

Example 2: LIST 
10 I~PIIT X 
2n PRHIT X "SOIIARECl IS" x·2 "AMO"; 
~n PRHIT X "CIIBE[l IS" x~~ · 
40 PRINT 
'iO GOTO 1.n 
Ok 
RIIM 
? 9 

o SOIIARED IS Al A•ID 9 CIIRED IS 7?0 

? 21 
21 Sf111ARFd IS 441 MIO 21 CllBF.D IS 021,J 

? 

In this example, the semicolon at the end of line 
20 causes both PR!t'T statements to be printed on 
the saMe line, and line 4n causes a blank line to 
printed before the next prompt. 

Example 3: 10 FOR X = J TD~ 
20 ,1=J+5 
~o r.=v+1n 
4n ?,l;K; 
Sf\ NEXT X 
Ok 
RIJ~I 
~ 1n 1n 2n 15 ~n 20 40 2'i sn 

Ok 

In this example, the semicolons in the PRHIT 
statement cause each value to be printed 
immediately after the preceding value. (Oon't 
forget, a number is always followed by a space and 
positive numbers are preceded by a space.) !n line 
4n, a question mark is used instead of the word 
PRHIT. 

Page I.4-AJ 



Statements Programmer Guide 

Format: PRHIT IISHI(; <string exp>;<list of expressions>r;l 

Purpose: To print strings or nuMbers using a specified 
format. 

Remarks: <list of expressions> is compriserl of the string 
expressions or numeric expressions that are to be 
printed, separated by semicolons. <string exp> is a 
string literal (or variable) comprised of special 
formatting characters. These formatting characters 
(see below) netermine the field and the format of 
the printed strings or numbers. 

Page I.4-A2 

String Fields 

When PR I NT 115 rnr; is used to print strings, one of 
three formatting characters may be used to format 
the string field: 

"\n 

"!" Specifies that only the first character 
in the given string is to be printed. 

spaces\" Specifies that 2+n characters from the 
string are to be printed. If the 
backslashes are typed with no spaces, 
two characters will be printed; with one 
space, three characters will be printed, 
and so on. If the string is longer than 
the field, the extra characters are 
ignored. If the field is longer than the 
string, the string will be 
left-justifierl in the fieln and padrled 
with spaces on the right. Example: 

1n A~="LOOV":B~="QJIT" 
~(1 PRIMT IISHIG "!";M;B~ 
1\0 PRHIT l!SIMG "\ \";M;B' 
4n PRPIT IISH!G "\ \";M;ll~;"!!" 
Rllf! 
LO 
LOOl'OIIT 
LOO!<' OIIT ! ! 

0 

0 



Programmer Guide 

11,.,11 

/I 

0 

0 + 

Statements 

Specifies a variable length string 
field. When the field is specified with 
"A", the string is output exactly as 
input. Example: 

].n A$="L001<'" :El~="OIIT" 
2f1 PRINT IISHIG "l"·At· 
~n PRIHT IISIMG 11 &11 ;si' 
RIIM 
LOIIT 

Mumer i c Fie 1 ds 

When PR INT IIS !MG 
numbers, the 
characters may be 
numeric field: 

is used 
following 
used to 

to print 
special 

format the 

A number sign is used to represent each 
digit position. Digit positions are 
always filled. If the number to be 
printed has fewer digits than positions 
specified, the number will be 
right-justified (preceded by spaces) in 
the field. 

A decimal point may be inserted at any 
position in the field. If the format 
string specifies that a digit is to 
precede the decimal point, the digit 
wi 11 al ways be printed ( as n if 
necessary). ~umbers are rounded as 
necessary. 

PRH!T IISPJG "/Hl.R/J";.7A 
n. 7A 

PRINT IJSI~IG 11 /IR/l.R/1 11 ;OA7 .filill 
OP.7 .fi'i 

PRPIT IISIMG 11 /1/1.#/1 ";lf1.2,,:;.3,i:;fi.7Rfl,.234 
10.2n ~.Jo fifi.70. n.2~ 

In the last example, three spaces were 
inserted at the end of the format string 
to separate the printed values on the 
line. 

A plus sign at the beginning or end of 
the forMat string will cause the sign of 
the number (plus of minus) to be printed 
before or after the number. 

Page I.4-A~ 



Statements 

Page I.4-114 

Programmer Guide 

A minus sign at the end of the format 
field will cause negative numbers to be 
printed with a trailing minus sign. 

PRINT IISHIG "+##.## ";-fiR.Qc;,2.4,c;c;.i;,-.o 
-fiR.oc; +2.4n +~c;.fin -n.~n 

PRHIT IJSING "#IJ.IJf!- ";-fiR.oi;,22.1140,-7.0l 
fiR.oc;_ 22.4c; 7.01-

** A double asterisk at the beginning of 
the format string causes leading spaces 
in the numeric field to be filled with 
asterisks. The ** also specifies 
positions for two more digits. 

PRUIT 11SnJG "**P. # "; 12. 30,-n.o, 7fi<;. ! 
*12.4 *-n.~ 7fic;.1 

A double dollar sign causes a dollar 
sign to be printed to the imediate left 
of the formatted number. The SS 
specifies two more digit positions, one 
of which is the dollar sign. The 
exponential format cannot be used with 
SS. Negative numbers cannot be used 
unless the minus sign trails to the 
right. 

PRH!T IISIMG "SS/l#/l.#11";4c;fi.7A 
Mlif;.7A 

**S The **S at the beginning of a format 
string combines the effects of the above 
two symbols. Leading spaces will be 
asterisk-filled and a dollar siqn will 
be printed before the number. **S 
specifies three more digit positions, 
one of which is the dollar sign. 

PRIMT IISING "**~RfJ.11/1";?.34 
***$2.34 

A comma that is to the left of the 
decimal point in a formatting string 
causes a co1111'1a to be printed to the left 
of every third digit to the left of the 

0 

decimal point. A comma that is at the o 
end of the format string is printed as 
part of the string. A comma specifies 
another digit position. The comma has no 
effect if used with the exponential 



Programmer Guide 

0 

Note: 

0 

r····1 format. 

PRINT IISHIG "#H/!#,./1/1";!.2:14.r:; 
1,214. r:;n 

PRHIT IJSIMG "#/IP./!.*/l,";12:14.5 
12:i11. 5n, 

Statements 

Four carats (or up-arrows) may be placed 
after the digit position characters to 
specify exponential format. The four 
carats allow space for E+xx to be 
printed. Any decimal point position may 
be specified. The significant digits are 
left-justified, and the exponent is 
adjusted. llnless a leading + or trailing 
+ or - is specified, one digit position 
will be used to the left of the decimal 
point to print a space or a minus sign. 

PRHIT IISIPr, "##.##""""" ;2~4.r:;fi 
2. 35E02 

PR HIT IJS HJG " • ####"". " - " ; RPRRRR 
.RPROE+nfi 

PRHIT IISHIG "+.##""""";12:1 
+l?E+n:I 

The underscore in the format string 
causes the next character to be output 
as a literal character. 

PRHIT IISH1G 11 !#*.## !";12.'.14 
!12.:14! - -

The literal character itself may be an 
underscore by pl acing " "in the format 
string. 

If the number to be print~d is larger 
than the specified numer,c field, a 
percent sign is printed in front of the 
number. If rounding causes the number to 
exceed the field, a percent sign will be 
printed in front of the rounded number. 

PRINT USING "##.*#";111.22 
%111.22 

PRIMT llSH!G "./1/1 11
; .9?9 

%1.00 

Page I.4-R5 



Statements 

Page I.4-flli 

Programmer Guide 

If the number of digits specified 
exceeds 24, an "Illegal function call" 
error will result. 

0 

0 



0 

0 

Programmer Guide Statements 

Format: PRINT#<filenumber>,[lJSIMG<string exp>;J<list of exps> 

Purpose: To write data to a sequential file. 

Remarks: <file number> is the number used when the file was 
OPEfled for output. <string exp> is comprised of 
formatting characters as described in PRHIT IISHIG. 
The expressions in <list of expressions> are the 
numeric and/or string expressions that will be 
written to the file. 

PRINT# does not compress data on the disk. An image 
of the data is written to the disk, just as it 
would be displayed on the terminal with a PRHIT 
statement. For this reason, care should be taken to 
delimit the data on the disk, so that it will be 
input correctly from the disk. 

In the list of expressions, numeric expressions 
should be delimited by semicolons. For example, 

PRINT#l ,A;B;C;X;Y;Z 

(If commas are used as delimiters, the extra blanks 
that are inserted between print fields will also be 
written to disk.) 

String expressions must be separated by semicolons 
in the list. To format the string expressions 
correctly on the disk, use explicit delimiters in 
the list of expressions. 

For example, let Al="CAMERA" and BS="03fi04-1". The 
statement 

PRINT#l,AS;BS 

would write CAMERA9~fi04-1 to the disk. 
there are no delimiters, this could not be 
two separate strings. To correct the 
insert explicit delimiters into the 
statement as follows: 

Because 
input as 
problem, 

PRINT# 

Page I.4-R7 



Statements 

Page I.4-RR 

PRIHT#l,Al;",";BS 

The image written to disk is 

CAMERA,91fi04-1 

Programmer Gui de 

which can be read back into two string variables. 

If the strings themselves contain commas, 
semicolons, significant leading blanks, carriage 
returns, or line feeds, write them to disk 
surrounded by explicit quotation marks, CHRS(]4). 

For example, let AS="CAMl:RA, A1JTOf1ATIC" and BS=" 
~:ii;n4-1". The statement 

PRIIJT#l,M;BS 

would write the following image to disk: 

CAMF.RA, AIITOMATIC O:lfin4-1 

and the statement 

HIPl!TP-l ,M ,BS 

would input "CAMERA" to M. and "AllTOMATIC 
~:l"f14-1" to B~. To separate these strings properly 
on the disk, write double quotes to the disk image 
using CHRl(:l4). The statement 

PRIMT#l ,CHR#( :l4) ;Al: CHRS( 34) ;CHRS( :14) ;BS;CHRI( 34) 

writes the following image to disk: 

"CAMERA, AUTOMATIC"," O:lfiM-l" 
and the statement 

I"lPUT#l. ,A.~,BS 

would input "CA11ERA, AUTOMATIC" to M and 
o~,:;n4-I" to B!:. 

The PRPIT# statement may al so be used with the 
IISHIG option to control the format of the disk 
file. For example: 

For more examples using PRI~T#, see Appendix B. 

See also WRITED, Section I.4. 

0 



0 

() 

Programmer Guide Statements 

Format: PSET ( xcoordinate , ycoordinate) r , attribute 1 

Purpose: PSET sets a point, and defines its attribute. 

Remarks: The first argument to PSET is the coordinate of 

Example: 

the point to PSET. Coordinates always can come in 
one of two forms: 

PSET ( x offset, y offset) or 
( absolute x, absolute y) 

The first form is a point relative to the most 
recent point referenced. The second form is more 
common and directly refers to a point without 
regard to the last point referenced. Examples 
are: 

PSET (1n,1n) absolute form 
PSET (10,0) offset 1n in x and o in y 
PSET (n,n) origin 

Note that when BASIC scans coordinate values it 
will allow them to be beyond the edge of the 
screen, however values outside the integer range 
(-~27nR to ~27n7) will cause an overflow error. 

Hote that (n,n) is always the upper left hand 
corner. It may seem strange to start numbering y 
at the top so the bottom left corner is (0,?.4Q) in 
both Hyperion high-resolution and medium 
resolution (screen 1n1 and 1n21, but this is 
standard. 

PSET allows the attribute argument to be left off 
and it is defaulted to ~ in medium resolution and 
1 in high resolution, since these are the 
foreground attributes for those modes. 

10 FOR i=O TO 1nn 
?.n PSET ( i , i ) 
30 NEXT 'draw a diagonal line 
40 FOR i=10n TO n STEP -1 
50 PSET ( i , i ) , 0 
nn NEXT 'clear the line 

Page I.4-R9 



Statements 

4.59 

Programmer Guide 

PRESET has an identical syntax to PSET. T~e ?nly 
difference is that if no third parameter 1s given 
for the backround color zero is selected. When 
a third argument is given, PRESET is identical 
to PSET. 

Line 50 in the example above could be: 

sn PRESET ( i. i) 

If an out of range coordinate is given to PSET or 
PRESET no action is taken nor is an error given. 
If an attribute greater than 4 is given this will 
result in illegal function call. Attribute value 
2 will be treated liken in hi-resolution, and 3 
will be treated like 1 for compatibility with 
medium resolution. 

0 

( 



0 

0 

Progra111mer Guide Statements 

4.60 

For111at: 

Purpose: 

Remarks: 

Example: 

MOTE: 

PIIT r # J<fil e nuMber>r, <record number> J 

To write a record from a random buffer to a random 
cli sic file. 

<fi le number> is the number under which the fi le 
was OPHled . If <record nu111ber > is omi ttecl, the 
record will have the next available record number 
(after the last Pl!Tl. The largest possible record 
number is ~27~7. The smallest record nurnher is 1. 

See Appendix B. 

PRH!TII, PR! 1TH IISWG , and WRJTF.H 111ay be used to put 
characters in the random file buffer before a PUT 
statement. 

In the case of WRITE', BASIC pads the buffer with 
spaces up to the carriage return. Any attempt to 
read or write past the end of the buffer causes a 
"Field overflow" error. 

Page I.4-91 



Statements Programmer Guide 

Format: PIIT(x,y) ,<array>r ,<action> J 

Purpose: Writes colors onto a specific area of the screen. 

Remarks: 

Page I.4-D2 

(x,y) are the coordinates of the top left 
corner of the image to be transferred. 

<array> is the name of a numeric array containing 
the information to be transferred. See 
"GET - StateJT1ent (Graphics)" for more 
information on this array, 

<action> is one of: 

PSET 
PRESET 
XOR 
OR 
A'IO 

XOR is the default. 

PIIT is the opposite of GET in the sense that it 
takes data out of the array and puts it onto the 
screen, However it also provides the option of 
interacting with the data already on the screen by 
the use of the action. 

PSET as an action simply stores the data from the 
array onto the screen, so this is the true opposite 
of GET. 

PRESET is the same as PSET except a negative image 
is produced. That is, a value of n in the array 
causes the corresponding point to have a color 
number 3, and vice versa; a value oft in the array 
causes the corresponding point to have a color 
number 2, and vice versa. 

A~n is used when you want to transfer the image 
only if an image already exists under the 
transferred iMage. 

OR is used to superimpose the image onto the 
existing iMage, 

XOR is a special mode which may be used for 

0 



Programmer Guide 

0 

0 

0 

Statements 

animation. XOR cuases the points on the screen to 
be inverted where a point exists in the array 
image. XOR has a unique property that makes it 
especially useful for ani~ation: when an image is 
PIIT against a complex background twice, the 
background is restored unchanged. This allows you 
to move an object around without obliterating the 
background. 

In medium resolution modes, AHO, XOR, and OR have 
the following effects on color: 

ANO 

OR 

array value 

n 1. 2 :1 

n n n n n 
s 
r 1 n 1 n 1 
C 

e 2 n n 2 2 
e 
n 3 n 1 2 ] 

s 
r 
C 

array value 

n 1 2 1 

n n 1 ?. 3 

e 2 ?. 3 2 ~ 
e 

Page I.4-Q~ 



Statel'lents Progra1'1111er Guide 

XOR 

array value 

n 1 2 1 

n (l 2 3 
s 
r 1 n 3 2 
C 

e 2 2 1 n 1 
e 
n 3 ~ 2 1 0 

Animation of an object can be performed as follows: 

1. PUT the object on the screen (with XOR). 

2. Recalculate the new position of the object. 

3. PllT the object on the screen (with XOR) a 
second time at the old 1 ocation to remove the 
old image 

4. Go to step I, this time putting the object at 
the new location. 

Movement done this way leaves the background unchanged. 
Flicker can be reduced by minimizing the time between step 4 
and 1, and making sure there is enough time delay between 
steps 1 and 3. If more than one object is being animated, 
every object should be processed at once, one step at a time. 

If it is not important to preserve the background, animation 
can be performed using the PSET action verb. But you should 
remember to have an image area that wi 11 contain the "before" 
and "after" images of the object. This way the extra area will 
effectively erase the old image. This method may be somewhat 
faster than the method using XOR described above, since only 
one PIJT is required to move an object (although you must PIIT a 
1 arger image). 

If the image to be transferred is too large to fit on the 
screen, an "Illegal function call" error occurs. 

Page I.4-<l4 

0 

0 



Programmer Guide Statements 

0 

0 

Format: RANDOMIZE r<expression>J 

Purpose: To reseed the random number generator. 

Remarks: If <expression> is omitted, BASIC suspends program 
execution and asks for a value by printing 

Random Humber Seed {-3276R to ~2767)? 

before executing RANflOMIZE. 

If the random number generator is not reseeded, the 
Rl1D function returns the same sequence of random 
numbers each time the program is RIIN, To change the 
sequence of random numbers every time the program 
is RIIH, place a RANDOMIZE statement at the 
beginning of the program and change the argument 
with each RIJN. 

Example: 10 RAIIDOMIZE 
20 FOR I=l TO 5 
30 PR HIT RND ; 
40 HEXT I 
RIJN 
Random Number Seed {-32768 to 32767)? 3 {user 
types 3 I 

,2226007 .5941419 ,2414202 ,2013798 5,36174AE-02 
Ok 
RIJN 
Random ~umber Seed {-32768 to 32767)? 4 {user 
types 4) for new sequence> 

,62R9RA ,76560~ .55~1~61 ,7757q7 .7R34~ll 
Ok 
RIJM 
Random Number Seed {-3?76A to 32767)? 3 {user 
types 3) 

,2226007 :5941419 ,2414202 ,201379R S,36174AE-02 
Ok 

Page I,4-95 



Statements Progra111ner Guide 

4.63 

Format: RF.AD <list of variables> 

Purpose: To read values from a DATA statement and assign 
them to variables. (See DATA.) 

Remarks: A READ statement must always be used in conjunction 
with a DATA statement. READ reads values on a 
one-to-one basis. READ statement variables may be 
numeric or string, and the values read must agree 
with the variable types specified. If they do not 
agree, a "Syntax error" will result. 

A single READ statement may access one or more DATA 
statements (they will be accessed in order), or 
several READ statements may access the same DATA 
statement. If the number of variables in <list of 
variables> exceeds the number of elements in the 
DATA statement(s), an OUT OF DATA message is 
printed. If the number of variables specified is 

C 

fewer than the number of elements in the DATA 
statement(s), subsequent READ statements will begin O 
reading data at the first unread element. If there 
are no subsequent RF.AD statements, the extra data 

Example 1: 

Page I,4-Qfi 

is ignored. 

To reread DATA statements from the start, use the 
RESTORE statement (See RF.STORE.) 

~O FOR I=l TO 10 
?O READ A(I) 
100 MEXT I 
110 DATA 3.0B,5.19,~.12,3.98,4.24 
120 DATA 5.0A,5.55,4.00,3.1~,~.~7 

This program segment READs the values from the DATA 
statements into the array A. After execution, the 
value of A(l) will be 3.0R, and so on. 

0 



0 

0 

Programmer Guide 

Example 2: 
LIST 
10 PRINT "CITY", "STATE", "ZIP" 
20 READ CS,SS,Z 
30 DATA "DENVER,", COLORADO, 8(1211 
40 PRHIT CS,SS,Z 
Ok 
RUN 

Statements 

CITY STATE ZIP 
DHIVER, COLORADO R02l.l 
Ok 

This program READs string and numeric data from the 
DATA statement in line 1n. 

Page I.4-97 



Statements Progranrner Guide 

Format: REM <remark> 

Purpose: To allow explanatory remarks to be inserted in a 
program. 

Remarks: REM statements are not executed but are shown 
exactly as entered when the program is listed. 

Example: 

Page 1.4-0R 

REM statements f!lay be branched into (from a GOTO or 
GOSllB statement), and execution wi 11 continue with 
the first executable statef!lent after the REM 
statement. 

Remarks may be added to the end of a line by 
preceding the remark with a single quotation mark 
instead of REM. 

WARHIHG: Do not use this in a data statement as it 
would be considered legal data. 

120 FOR I=l TO 20 
DO S!JM=SIIM=V (I) 
140 HEXT I 

'CALCIILATE AIIERAGE VELOCITY 
0 



Programmer Guide Statements 

0 

0 

4.65 

Format: RESTORE [ <line number>] 

Purpose: To allow DATA statements to be reread from a 
specified 1i ne. 

Remarks: After a RF.STORE statement is executed, the next 
READ statement accesses the first item in the first 
DATA statement in the program. If <line number> i s 
specified, the next READ statement accesses the 
first item in the specified DATA statement. 

Example: Jn REAO A,B,C 
2n RF.STORE 
~O READ O,E,F 
4n DATA ;7, ~A, 79 

Page I.4-99 



Statements Progra1'1111er Guide 

Format: RESIIME 

Purpose: 

Remarks: 

Example: 

Page I.4-lnn 

RESIIME n 

Rl:SI IMF. t!EJ<T 

RESIIME <line number> 

To continue program execution after an 
recovery procedure has been performed. 

error 

Any one of the four formats shown above may be 
used, depending upon where execution is to resume: 

RESIIME or RESI.IMF n 
Execution resuMes at the statement which 
caused the error. 

RF.SIIME MEXT 
Execution resumes at 
imMediately following 
caused the error. 

RF.SIIMF. <line number> 

the 
the 

statement 
one which 

Execution resumes at <line number> 

A RESIIME statement that is not in an error trap 
routine causes a "RF.SllMF. without error" message to 
be printed. 

H1 O~I ERROR GOTO onn 

gnn IF (ERR=2~0) AMO (ERL=OO) THEM PRIMT "TRV 
AGA IM" : RESIIME RO 

0 

0 



0 

PrograMmer Guide Statements 

Format: RETURM <line> 

Purpose: To bring you back from a subroutine. 

Remarks: 
line is the line number of the program line you 

wish to return to. 

Al though you can use RETIIRM <line> to return from 
any subroutine, this enhancement was anded to allow 
non-local returns from the event trapping routines. 
From one of these routines you will often want to 
go back to your prograM at a fixed line number, 
while still eliminating the GOSIIB entry the trap 
created. 11se non-local RETIIRM with care: any 
r,ns1111s, WHILF.s, or FORs that were active at the 
time of the trap will remain active. 

Page I. 4-lOJ 



Statements Programmer Guide 

4.fiB 

Format: SCREEN rmode] r, [burst][, rapage] r,vpage] J] 

Purpose: The Screen statement sets the screen attributes. 

Remarks: 
mode 

burst 

apage 

vpage 

a valid numeric expression returning an 
unsigned Integer value n, 1 or 2. Valid 
Modes are: 

n - Alpha mode at current width (40 or 
RO), and IBM attribute 
interpretation. 

1 - ~2ox2no medium resolution Graphics 
mode. 

? - fi4f1x200 high resolution Graphics 
mode. 

100 - Alpha mode at current width (40 or 
RfJ) and Hyperion attribute 
interpretation. 

101 - ~20 X 250 medium resolution 
graphics mode. 

102 - fi4n X 250 high resolution graphics 
mode. 

ignored parameter. On other machines 
using this BASIC, a value of n forces 
color screens to black and white only. 
~on-zero values enable color images. 

Active page. Valid in alpha only. A 
numeric expression returning an unsigned 
Integer in the range n to 7 for width 
4n, or o to~ for Width Rn. Selects the 
page to be written to. 

Visual Page. Valid in alpha only. Same 
values as apage above, selects which 
page is to be displayed on the screen. 
May be different than the active page. 

If all parameters are legal, the new screen mode is stored, 
the screen is erased, Foreground color is set to white, 
background color is set to Black. 

If the new screen mode is the same as the previous mode, 
nothing is changed. 

Page I. 4-102 

0 



0 

0 

0 

Programmer Guide Statements 

If the mode is 
specified, the 
for viewing. 

Alpha, and only <apage> and <vpage> are 
affect is that of changing display pages 

Rules: 

Example: 

Note: 

1. Any values entered outside of these ranges 
will result in an "Illegal Function Call" 
Error. Previous values are retained. 

2. Any parameter may be omitted. 
parameters assume the old value. 

Omitted 

1n SCREEN n,n,n,n 

20 SCREEM , , l,2 

30 SCREHI 102 
40 SCREEN 101 
50 SCREHI ,n 

'Select Alpha mode, 
'Active and visual page ton. 
'Mode unchanged, 
'use active page 1, but 
'display page 2. 

'Switch to high res graphic mode. 
'Switch to medium res graphics mode. 
'Medium res graphics, color off. 

If the screen or 101 is currently selected 
(medium resolution graphics), width RO forces 
screen?. or 10?., respectively. 

If screen 2 or 1n2 is currently selected (high 
resolution graphics), width 40 forces screen 1 or 
1n1, respectively. 

Page I.4-103 



Statements Progranuner Guide 

Format: srnJHD freq,duration 

Purpose: 

Remarks: 

Rules: 

Example: 

Page I.4-104 

The SOIIN[) statement generates sound through the 
speaker. 

freq is the desired frequency 
returning 
to :l27fi7. 

in Hertz. A 
an unsigned valid numeric expression 

Integer in the range 37 

duration is the 
A valid numeric 
Integer in the 

desired duration in Clock ticks. 
expression returning an unsigned 
range n to fi5535. 

Clock ticks occur lA.2 times per second. 

1. If the duration is zero, any current SOIJND 
statement that is running is turned off. If 
no SOUND statement is running, srn!ND x,n has 
no effect. 

2500 sm1No RttD*l000+37,2 'Creates random sounds. 0 

0 



0 

0 

0 

Programmer Gui de Statements 

4.70 

Format: STOP 

Purpose: 

Remarks: 

Example: 

To terminate program execution and return to 
command level. 

STOP statements may be used anywhere in a program 
to terminate execution. When a STOP is encountered, 
the following message is printed: 

Break in line nnnnn 

Unlike the END statement, the STOP statement does 
not close files. 

BASIC always returns to command level after a STOP 
is executed. Execution is resumed by issuing a CONT 
command (see Section 1.3) 

10 INPIIT A,B,A 
20 l<'.=A"2*~.~:L=B~~/.2fi 
~n STOP 
40 M=C*V+1nn:PRHIT M 
Rl!M 
? 1,2,3 
BREA!<'. HI ~n 
Ok 
PRINT L 
~0.7fig2 

Ok 
CONT 

115.9 
Ok 

Page I.4-10~ 



Statements Progra1T1T1er Guide 

Format: SWAP <variable>,<variable> 

Purpose: To exchange the values of two variables. 

Remarks: Any type of variable may be SWAPed (integer, single 
precision, double precision, string), but the two 
variables must be of the same type or a "Type 
mismatch" error results. 

Example: 

Page I.4-lOfi 

LIST 
1n A~=" ONE" : B~=" ALL" C~="FOR" 
2(1 PRHIT A~ C~ BS 
:in SWAP AS, BS 
4n PRH1T AS c~ BS 
RUN 
Ok 

ONE FOR ALL 
ALL FOR ONE 

Ok 

0 

0 



Programmer Guide 

4.72 

Format: 

Purpose: 

Remarks: 

0 

0 

Statel'lents 

As a statement: 

TIME!= <string expression) 
time. 

To set the current 

As a variable: 

<string expression> 
time. 

TIME~ To get the current 

The TIMEt statel'lent may be used to set or retrieve 
the current time. 

The current time is fetched and assigned to the 
string variable if TIME~ is the expression in a LET 
or PRHIT statement. 

The current time is reset if TIME~ is the target of 
a string assignment. 

1. If <string expression> is not a valid string, 
a "Type misl!latch" error will result. 

?. For <string expression>= TIME~, TIME~ returns 
an II character string in the form "hh:mm:ss" 
where hh is the hour (nn to 2~), mm is the 
minutes rnn to ~~). and ss is the seconrls rnn 
to 50). 

J . For TIME~ <string expression>, <string 
expression> may be one of the following forms: 

al "hh" Set the hour. Minutes and seconds 
rlefault to nn. 

bl "hh:f11m" Set the hour and minutes. Seconds 
default to nn. 

cl "hh:mm:ss" 
seconds. 

Sets the hour, minutes and 

If any of the values are out of range, an 
"Illegal Function Call" error is issued. The 
previous time is retained. 

Page I.11-107 



Statements 

Example: 
TIMES = "nR.nn" 
Ok 
PRHIT TIME~ 
M:nn:!14 
Ok 

Programmer Guide 

The following program displays the current date and 
time on the 2i;th line of the screen and will 
"chime" on the hour in the manner broadcast by wwu. 
Jn KEY OFF:SCREDI n:WinTH 4n:CLS 
2n LOCATE 2i;,i; 
::in PRH1T DATE~,, TIME~ 
4() SEC= VAL(Min~(TIME~,7,2)) 
i;n IF SEC= SSEC THEP 2n F.LSE SSEC = SEC 
fin IF SEC = n THEM lOJ.n 
?n IF SEC= ~n THE" 1n~n 
Rn IF SEC< 57 THEN 2n 

1nnn SOIIND 1nnn,2:GOTO 2n 
1n1n so1mo 2nno,R:GOTO 20 
1n2n snl1t10 4nn,4 :Gorn 2n 

Note: Changing TIME$ within BASIC resets the Hyperion's 

Page I.4-lf1R 

internal clock. This should be avoided. See the 
TIME command in the Hyperion 11ser Gui de for more 
information. 

0 



Programmer r.uide Statements 

0 

0 

Format: WAIT <port number>, Ir,JJ 
where I and J are integer expressions 

Purpose: To suspend program execution while monitoring the 
status of a machine input port. 

Remarks: The WAIT statement causes execution to be suspended 
until a specified machine input port develops a 
specified bit pattern. The data read at the port is 
exclusive OR'ed with the integer expression J, and 
the Atin"ed with I. If the result is zero, BASIC 
loops back and reads the data at the port again. If 
the result is nonzero, execution continues with the 
next statement. If ,J is omitted, it is assumed to 
be zero. 

CAUTION: 

Example: 

It is possible to enter an infinite loop with the 
WAIT statement, in which case it will be necessary 
to perform a system restart (power off, then back 
on). 

1nn WAIT ~?..2 

Page I. 11 -J nQ 



Statements Progralllf!1er Guide 

Format: WHILE <expression> 

r<loop statements>l 

• WEM!l 

Purpose: To execute a series of statements in a loop as long 
as a given condition is true. 

Remarks: If <expression> is not zero {i.e., true), <loop 
statements> are executed until the WEIi[) statement 
is encountered. RAS!C then returns to the WHILE 
statement and checks <expression>. If it is still 
true, execution resumes with the statement 
following the WEM!l statement. 

Example: 

Page I.tl-110 

WHILF./WF.M!l 1 oops may be nested to any 1 evel. Each 
WF.N!l will match the most recent WHILF.. An un111atched 
WHILE statement causes a "WHILE without WEl1D" 
error, and an unmatched WEMD statement causes a Q 
"WF.HD without WHILE" error. 

on I BIJBBLE SORT ARRAY M, 
inn FLIPS=l 'FORCE OMF. PASS THRII LOOP 
!JO WHILE FLIPS 
11 i; FLIPS=O 
l?O FOR I=l TO J-1 
J~O IF A$ (I)>A~{I+l) THEN 

SWAP A~ (I),A~(I+l):FLIPS=l 
140 MEXT I 
l~n WEMD 



Programmer Guide Statements 

C 

0 

0 

Format: WIDTH <size> 
WIDTH <file no.>,<size> 
WinTH <dev>,<size> 

Purpose: To set the printed line width in number of 
characters for the terminal or line printer. 

Remarks: 

Action: 

<size> is the new width. It is a 
expression with a value in the range 
default width is 7?. characters. 

valid numeric 
1 to ?'i!i, The 

<file no.> is a valid numeric expression in the 
range 1 to IL, This is the number of an OPEHed 
device file. 

<dev> is a valid string expression returning the 
device identifier, Valid devices are: SCRM:, and 
LPTJ:, 

If <value> is 25!i, the line width is "infinite," 
that is, BASIC never inserts a carriage return. 
However, the position of the cursor of the print 
head, as given by the POS of LPOS function, returns 
to zero after position 2i;i;, 

WinTH <size> 
or 

WinTH "SCRM:",<size> 

Sets the Screen width. Only 4n or Rn column width 
is all owed. 

tJOTE: Changing the screen width causes the screen 
to be cleared. 

If the Screen is in Medium Resolution Graphics Mode 
( SCREE!I J), WIOTH i:in forces the screen into High 
Res Graphics Mode (SCREEN 2). 

If the Screen is in High Resolution Graphics f1ode 
!SCREEM 2), WinTH 4(1 forces the screen into Medium 
Res Graphics Mode (SCREEN 1). 

WIDTH "LPTl:",<size> 

llsed as deferred width assignment for the Line 
Printer. This form of width stores the new width 
value without actually changing the current width 
setting. A subsequent OPEM "LPTl:" FOR OIITPUT AS 
<number> will use this value for width while the 

Page I.11-111 



Statements 

Rules: 

Example: 

Page I.4-112 

Programmer Guide 

file is open. 

WIDTH <file no.>,<size> 

If the file is open to LPTl:, the Line Printer's 
width is immediately changed to the new size 
specified. This allows the width to be changed at 
will while the file is open. This form of WIDTH has 
meaning only for LPTl:. 

1. "alid widths for the Screen are 40 and Rn. 
Valid widths for the Line Printer are 1 to 2~~. 

Any value entered outside of these ranges will 
result in an "Illegal Function CAll" error. The 
previous value is retained. 

2. Width has no affect for the r.eyboard (V.YBD:). 

1. The maximum printer width of many printers is 
Rn. However, WIDTH does not complain about 
values between Rn and 255. 

4. Specifying WIDTH 255 for the Line Printer 
(LPTl:) disables line folding. This has the 

0 effect of infinite width. 

~. Changing SCREEN mode affects Screen width only 
when moving between SCREHI 2 and SC REHi 1 or 
SCREEM n. 

10 WIDTH "LPTl:",7~ 
20 OPEN "LPTl:" FOR OllTPUT AS /!1 

i;n20 WIDTH /11, 4n 

In the preceeding example, line 10 stores a Line 
Printer width of 7~ characters per line. 

Line 20 opens the file /!1 to the Line Printer and 
sets the width to 75 for subsequent PRIMT /!J, ••• 
statements. Line i;n2n changes the current Line 
Printer width to 40 characters per line. 

SCREDI 1,1 
WIDTH RO 
WIDTH 4n 

SCREEM n,1 

Set Screen to Medium res. Color Graphics. ( 
Change Screen to Hi-res. Graphics. 
Change Screen back to Medium res. 

Changes Screen to ROx25 Alpha Color Mode. 



Programmer r.ui de Statements 

0 

Format: WRITEr<list of expressions>] 

Purpose: To output data at the terminal. 

Remarks: If <list of expressions> is omitted, a blank line 
is output. If <list of expressions> is included, 
the values of the expressions are output at the 
terminal. The expressions in the list may be 
numeric and/or string expressions, and they must be 
separated by commas, 

Example: 

When the printed items are output, each item will 
be separated from the last by a co1TW11a, Printed 
strings will be delimited by quotation marks. After 
the last item in the list is printed, BASIC inserts 
a carriage return/line feed, 

WRITE outputs numeric values using the sane format 
as the PRINT statement. 

10 A=RO:B=!IO:CS="THAT'S ALL" 
20 WRITE A,B,CS 
RIIN 

RO, !10,"THAT'S ALL" 
Ok 

Page I.4-11:l 



Statements Programmer r,uide 

Format: WRITE#<file nu~ber>,<list of expressions> 

Purpose: To write data to a sequential file. 

Remarks: <file number> is the number under which the file 
was OPE~ed in "O" mode. The expressions in the list 
are string or numeric expressions, and they must be 
separated by commas. 

Example: 

Page I.4-114 

The difference between WRITE# and PRHIT# is that 
WRITE# inserts commas between the items as they are 
written to disk and delimits strings with quotation 
marks. Therefore, it is not necessary for the user 
to out explicit delimiters in the list. A carriage 
return/line feed sequence is inserted after the 
last item in the list is written to disk. 

WRITE# outputs nata to a sequential file only, 
while PRH!T# may be used with a sequential or 
rand om file. 

Let M="CAMERA" and BS="Q~f;n4-l". The statement: 

WRITE#l,M,84 

writes the following image to disk: 

"CAMERA","9~~04-1" 

A subsequent HIPUT# statement, such as: 

INPUT31,M,BS 

would input "CAMERA" to A$ and "93~04-1" to BS. 

C 



PART I - BASIC INTERPRETER 

SECTION 5 - BASIC FUNCTIONS 





0 

!>rograrn:ier l,ui de 

5.1 

Format: AI\Slx) 

Purpose: Returns the absolute value of the expression x. 

Remarks: X ~ay be any numeric expression 

Functions 

The absolute value of a number is always positive 
or zero. 

Example: ov 
PRIIIT ABS(7*1-•;J) 

OY 

The absolute value of-~~ is positive~~. 



Functions 

Fonnat: 

Purpose: 

Progra1'11!1er Guide 

ASC(xS) 

Returns the ASCII code for the first character of 
string x~. 

Remarks: x~ may be any string expression 

The result of the ASC function is a numerical value 
that is the ASC!! code of the first character of 
the string x~. (See "Appendix A. ASCII Character 
Codes" for ASCII codes.I If xS is null, an 
"Illegal function call" error is returned. 

The CHR~ function is the inverse of the ASC 
function, and it converts the ASCII code to a 
character. 

Example: ov 

Page r.i:-2 

1n X~ = "TFST" 
?.f1 PRPIT ASCIY.~) 
RIii! 

fM 
ov. 

This example shows that the /!.SC I I code for a 
capital Tis A4. Print ASCl"TEST") would work just 
as well. 

0 

( 



0 

C 

PrograMme r Gui de Functions 

Format: AP1(xl 

Purpose: Returns the arctangent of x. 

Remarks: x may be a numeric expression of any nuMeric type, 
but the evaluation of ATII is always performed in 
single precision. 

Example: 

The AHi function returns the anol e whose tangent is 
x. The result is a value in radians in the range 
-PI/? to PI/?, where PT=?.J/lll;O?. 

If you want to convert radians to de~rees, multiply 
by JRn/pJ. 

ov 
DRHIT AT"/1) 

) • ?.110(1/l/; 

ov 

1n PI=1.1~1i;o? 
?0 RAnIMIS=AP'( 1 ) 

1n OF.GRF.F.S=RAO J M1S*1 Pn/P1 
M PR!IIT RAf1lM 1S,f1!'GRl:ES 
Rll11 

.?Q<;?()O~ /ll; 
()V 

The first example shows the use of the 
to calculate the arctangent of 1 

example finds the angle whose tangent 
.1ni; 1 nR~ radians, or 11i; degrees. 

AH1 function 
The second 

is 1 • It is 

Page r. i;_ 1 



Functions DrogralTl!ler r.uide 

Fonnat: C!l8Llx\ 

Purpose: Converts x to a double-precision nuMher. 

Remarks: x may be any nuMeric expression. 

Rules for converting from one numeric precision to 
another are followed as explained in ype 
Conversion, section J •0 • Refer also to the C!t1T and 
CSflG functions for converti n(J nuMbers to integer 
and single-precision. 

F.xample: ov 
in A= 111;11,,:;7 
;m PR~ltT A:Cf1flL(A\ 
RIii' 

111;11 . ~7 4,:;11.~7nn111171711111 
ov 

The valuP of CORLIAI is only accurate to the seconn 
necimal place after rounding. The extra niqits Q 
have no meaning. This is because only two decimal 
pl aces of accuracy were supplied with fl. .• 



0 

nrogramme r Gui de Functions 

Format: CHR~(nl 

Purpose: Converts an ASCJI code to its character equivalent. 

Remarks: n Must be in the range n to?~~. 

Example: 

The CHR, function returns the one-character string 
with ASC . J eerie n. (ASC t codes are listert in 
"Appendix r,. ASCII Character Codes.") CHR~ is 
c0Tl11'1only user! to send a special character to the 
screen or printer. For instance, the AFL 
character, which beeps the speaker, might he 
included as CHR~(7\ as a preface to an error 
message /instead of using BFFP) . Look under "ASC 
Function", earlier in this section, to see how to 
convert a character back to its ASCII code . 

nv 
PRJHT CHR((,;i:;) 
fl 
nv 

The next example sets function key FJ to the string 
"AIIT(1" joined with Enter. This is a good way to 
set the function keys so the Fnter is autoMatically 
done for you when you press the function key. 

nv 
VfV 1 '"AIITO"+CHR(( 1 ~ 1 
nv 

The followin~ example is a proqram which shows all 
the displayable characters, along with their ASCII 
codes, on the scrPen in Pn-column width. 

1n CLS 
?n FOR !=1 to ?~i:; 

~" ' ignore nondisplayable characters 
11n JF (!>" AMO l<JII) OR 1!>?.7 MID I<~?) THDI rnn 
~n COLOR n,7 ' black on white 
,:;n PIU'1T 11sr,1r, "*!I"; I; ' ?.-digit /I.SCI! code 
7n COLOR 1,n 'white on black 
Rn PRIMT" "; CHR~II); " "; 
00 IF POS(n)>7~ THDI DRJIIT ' go to next 1 ine 
inn HF.XT I 

0 age I. 'i-'i 



Functions Programer Guide 

Fonnat: CH'Tfxl 

Purpose: Converts x to an integer 

Remarks: 

Example: 

Page r. i;_,:; 

x may be any 
the range -'.l27n'1 
occurs. 

nuMeric expression. If xis not in 
to '.l~7n7, an "Overflow" error 

xis converted to an integer by rounding the 
fractional portion. 

See the FIX and Jl'T functions, both of which also 
return integers. See also the COBL and CSMG 
functions for converting nuMbers to single- or 
rlouble-precision. 

ov 
PRJNT CI~Tl4~.n7) 

,tf; 

ov 
PRHIT C!'1Tl-?.PO) 
-'.l 
0"' 

Observe in both exaMples how rounding occurs. 

0 

C 



0 

() 

r>rograMMer Guide Functions 

Fonnat: COS(xl 

Purpose: Returns the trigonometric cosine function. 

Remarks: x is the angle whose cosine is to be calcu1ated. 
The value of x· must be in radians. To convert from 
degrees to radians, multiply the degrees by PI/1°fl, 
where PT=~ .1~1<;n?. 

Example: 

The calculation of COSlxl is perfomed in single 
precision. 

ov 
1 n PI .. ;i. 1 n, ~o~ 
in PR TNT COS I Pil 
~n OEGRE~S=lRn 
nn RAOIA!1S=f1EGRF.ES*PI/lPfl 
i;n PRl'1T COS(RAOIAUS) 
Rll~I 
-1 
-J 
01' 

that the cosine of PI 
Then it calculates the 

by first converting the 
degrees happens to be the 

This example shows, first, 
radians is equal to _1. 

cosine of 10n deorees 
degrees to radians-flRO 
same as P! radians\. 

Page J.~-7 



Functions Prograrimer f,uide 

Fonnat: CStlG(xl 

Purpose: Converts x to a single-precision nuMber. 

Remarks: 

Example: 

Page I.<;-R 

x is a numeric expression which will be converted 
to single-precision. 

The rules outlined under "How BASIC Converts 
'lumbers from One Precision to Another" in Chapter ? 
are used for the conversion. 

See the CitIT and CDBL functions for converting 
nuMbers to the integer and double-precision data 
types. 

riv 
1n AP= 07<;.1d?l?22# 
;m PRINT A/I; CStlG(AP) 
R11~1 

07~.~421??? 07~.~d21 
ov 

The value of the 
rounded at the 
CSl1GIA#l. 

double-precision number A# 
seventh digit and returned 

is 
as 

0 



0 

0 

Programne r r,ui de Functions 

Format: C"Il?-byte string) 
C11 S(4-byte strino) 
c11n/Q-byte string! 

Purpose: Converts string variable types to numeric variable 
types, after the string variable has been created 
using r1vr, etc. 

Remarks: tlur,eri c values that are read fror, a random file 
must he converted fror, strings into nurihers. C"J 
converts a two-byte string· to an integer. C11S 
converts a four-hyte string to a sin~le-precision 
number. c11n converts an ei <Jht-hyte string to a 
double-precision number. 

The C"I ,c11s, and C"!l functions do ' 'OT chan~e the 
hytes of the actual data. They only change the way 
All.SIC interprets those bytes. 

See also WI~, 11VS.~, r,vn~ in this section, and 
Appendix B. 

Example: 7n FIF.L!l /!1,4 .'IS t!~, 1? AS B~ 
AO GF.T f1 
on v=C"S r 11~ l 

This example uses a randor, file (HJ l which has 
fields defined as in line 7n, Line ~n reads a 
record from the file. Line on uses the C"S function 
to interpret the first four bytes I 11~ l of the 
record as a single-precision number. 11 .( was 
probably originally a nuriber which was written to 
the file using the f11'S~ function. 

0 age J. ~-" 



Functions Programmer Guide 

Fonnat: F.OF!filenuml 

Purpose: Inrlicates an end of file condition. 

Remarks: Fil enum is the number specified on the OPEM 
statement. 

The F:OF function is useful for avoiding an "Input 
past end" error. EOF returns_, !true) if end of 
file has been reached on the specified file. An 
!zero) is returned if end of file has not been 
reached. 

EOF is meaningful only for a file opened for 
sequential input from diskette or cassette, or for 
a communications file. A -1 for a cornnunications 
file means that the buffer is eMpty. 

Example: Jn OPEM "DATA" FOR P1PIIT /IS #l 
211 C=n 

Page !.!;- in 

~n IF EOF/1) THE~ E~n 
4n HIPIIT J/1 ,MIC) 
~n C=C+l: GOTO ~n 

This example reads information from the sequential 
file named /lATA. 11 alues are read into the array M 
until end of file is reached. 

0 

C 



C 

0 

0 

Programmer Guide Functions 

!;, 11 

Format: EYP(x) 

Purpose: Calculates the exponential function. 

Remarks: 

Example: 

x ~ay be any numeric expression 

This function returns the mathematical number e 
raised to the x power. e is the base for natural 
logarithms. An overflow occurs if xis greater than 
RR,n;,Of;O, 

01". 
1n X = 2 
2n PRI~T EXPIY-1) 
Rll~I 

2,71R2P2 
QV 

This example calculates e raised to the (?.-1) 
power, which is simply e. 

Page I.'i-11 



Functions Programer f.uide 

li,J.2 

Fomat: FIYlxl 

Purpose: Truncates x to an integer. 

Remarks: x may be any numeric expression . 

FIX removes all digits after the decimal point and 
returns the value of the diaits to the left of the 
decimal point. 

The difference between FD' and I"T is that FIY does 
not return the next lower number when x is 
negative. 

Example: n.v 

Page !,i;-J? 

PRPIT FJX(/1.<;,i:;7) 
II.I; 

nv 
PRI"T FIX(-:>.RO) 
-? 
nv 

11 ote that_ FJV does not round the decimal part when 
converting to an integer. 

0 



0 

0 

0 

Pro~ramrner Guide 

5.1:1 

Format: 

Purpose: 

Rl!ffliir'k§I 

FRE/x) 

FRE/x~) 

Functions 

Returns the number of bytes in l'lenory that are not 
being used by AASIC. This number does not inclurle 
the size of the reserved portion of the interpreter 
workarea !nornally ?.~v to AV-bytes). 

x and x~ are dur,my argunents. 

Since strings in BASIC can have variable lengths 
leach time you do an assignment to a string its 
length may change), strings are manipulated 
dynamically. For this reason, string space may 
become frag!'lented. 

FRF. with any string value causes a housecleaning 
before returning the numher of free hytes. 
Housecleaning is when BASJC collects all of its 
useful data and frees up unused areas of memory 
that were once used for strings. The data is 
conpressed so you can continue until you really run 
out of space. 

BASIC automatically does a housecleaning when it is 
running out of usable workarea. You might want to 
use FRE("") periodically to get shorter delays for 
each housecleaning. Be patient: housecleaning may 
take a while. 

Clf.AR,n sets the maximum number of bytes for the 
BASIC workspace. FRE returns the amount of free 
storage in the BASIC workspace. If nothing is in 
the workspace, then the value returned by FP.E will 
be ?..~Y to 11.v-bytes (the size of the reserved 
interpreter workarea) smaller than the number of 
bytes set by CLEAR. 

Example: ov 
PRHIT FRF/n) 

111~/l? 
nv 

The actual value returned hy FRE on your computer 
may differ from this example. 

Page I.~-1< 



Functions Progra11111er Guide 

Fonnat: HEX~fnl 

Purpose: Returns a string which represents the hexadecimal 
value of the decimal argument. 

Remarks: n is a nuMeric expression in the ran~e - ??7~q to 
/;t;t;">I;. 

Jf n is negative, the two's compleMent fonr, is 
used. HEX~(-n) equals HFX~/~i;c. 7 1._n). 

0CT~ is the function for octal conversion. 

Example: The following example uses the HEY~ function to 
figure the hexadecimal representation for the two 
deciMal values wh ich are entered. 

Page J.C.-1~ 

ov 
10 JIIPIIT X 
20 A~= HEX~(Yl 
:10 PRHIT X "flF:CJMAL IS " M " HEXAnECmAL" 
Rlilt 
? ~? 

?2 OEC!t1AL !S ?n HF)(AOECIMAL ,w 
Rtll• 
? 1n?? 

102:1 OEC lMAL IS 7 ft HEXA!lEC HIAL 
ov 

0 

0 



Progra!'lmer r,uide 

0 
Format: 

Purpose: 

Remarks: 

Example: 

0 

Jttr>/n) 

Returns the byte read froM port n. 

n must be in the range n to~,;~~~. 

Functions 

H1P is the complementary function to the Ol!T 
statement rsee "OIIT Statement" in this chapter) . 

r~1p performs the same function as the II' 
instruction in assembly language. Refer to the !AM 
Personal Computer Technical Reference Manual for a 
description of valid port numbers (J/0 addresses). 

1nn A:HIP(~i;i;J 

This instruction reads a byte from port ?~~ and 
assigns it to the variable A. 

Page r.,;-1i; 



Functions ProgramMer Guide 

Format: n~=H'PIIB( xr, r JJlfi 1 enumJ) 

Purpose: 

Remarks: 

Returns a strino of x characters, read from the 
keyboard or from file number filenum. 

n is the number of characters to be read from the 
fi 1 e. 

fi 1 enum is 
statement. 
read. 

the fi 1 e number used on the OPDI 
If filenum is omitted, the keyboard is 

If the keyboard is used for input, no characters 
will be displayed on the screen. All characters 
(including control characters) are passed through, 
except Ctrl+Brk, which is used to interrupt the 
execution of the INPIIT~ function. When responding 
to HIPl!B from the keyboard, it is not necessary to 
press <Rtn>. 

The H1PIIT' function enables you to read characters 
from the keyboard which are significant to the 
BASIC Screen line Editor, such as Rubout (ASCII 
decimal value - nA\. If you want to read these 
speci a 1 characters, you should use HIPIIB or 
IM!<'EB. 

For communications files, the 
preferred over the PIPIIT# 
statements, since all ASCII 
significant in coT!111unications. 

IMP!!B function is 
and LINE IMPIIT# 
characters may be 

Example: The following program lists the contents of a 
sequential file in hexadecimal: 

Page I.5-11' 

10 OPEM "DATA" FOR HIPIJT AS #1 
20 IF EDF( 1) THEM 50 
:m PRHJT HEX~(ASC(HIPIIH(l,#1))); 
4n GOTO 20 
50 PRHIT 
lif1 EMO 

The next example reads a single character from the 
keyboard in response to a question. 

1nn PRINT "TYPE P TO PROCEED OR S TO STOP" 
nn X~=IIJPIIB/1) 
12n IF X~="P" THEN ~on 
l~O IF X~="S" THEN 7nn ELSE 1nn 

0 

0 



0 

Programmer Guide Functions 

Format: HISTR(rn,JxS,yS) 

Purpose: Searches for the first occurrence of string yS in x$ 
and returns the position at which the match is found. 
The optional offset n sets the position for starting 
the search in xS. 

Remarks: 

Example: 

n is a numeric expression in the range! to?~~. 

x$, yS may be string variables, string expressions 
or string constants. 

If n>LEM(x~), or if xS is null, or if yl cannot be 
found, IMSTR returns n. If yS is null, IMSTR returns 
n /or 1 if n is not specified). 

If n is out of range, an "Illegal function call" error 
will be returned. 

ov 
10 AS = "ABC!lEB" 
2n BS= "B" 
~n PRINT IMSTR(A$,BS);INSTR(4,AS,BS) 
RIIM 
2 I; 

ov 

This example searches for the string "B" within the 
string "ABCDEB". When the string is searched from 
the beginning, "B" is found at position 2; when the 
search starts at position 4, "B" is found at 
position fi. 

Page I.5-17 



Functions Progra11111er r.uide 

Format: PIT{x\ 

Purpose: Returns the largest integer that is less than or 
equal to x. 

Remarks: x is any numeric expression. 

This is ca 11 ed the "floor" function in some other 
progralll!ling languages. 

See the FIX and Cit1T functions, which also return 
integer values. 

Example: 01'. 

Page J.r:;_1P. 

PRIPIT HIT( 45.fi7) 
4!, 

OK 
PRll!T HITl-?.P.O) 
-;l 
OY 

This example shows how r11T truncates positive Q 
integers, but rounds negative numbers upward (in a 
negative direction). 



0 

0 

Programmer Gui de Functions 

Format: LEFT~lxS,n) 

Purpose: Returns the leftmost n characters of x~. 

Remarks: xs is any string expression. 

Example: 

n is a numeric expression which must be in the 
range n to ?.~5. It specifies the number of 
characters which are to be in the result. 

If n is greater than LEH/x~). the entire string 
(x!) is returned. If n=n, the null string (length 
zero) is returned. 

Also see the MIO~ and RIGHT~ functions. 

OY. 
1 n AS = "CllSTflMER SIJPPORT" 
?.n 8~ = LEFT~(AS,A) 
~n PRHIT BS 
RIIM 
SUPPORT 
01( 

In this example, the LEFTS function is used to 
extract the first eight characters from the string 
"CUSTOMER SIIPPORT". 

Page I. 5-J (J 



Functions Progralflller Guide 

Format: LEN(x~) 

Purpose: Returns the number of characters in x~. 

Remarks: x~ is any strin~ expression. 

llnprintable characters and blanks are included in 
the count on the number of characters. 

Example: Jll x.~ ,. "OvtlALO(;IC" 
2n PRIIIT LPHX~) 
RIJM 

0 

OK 

There are <l characters in the string "OYMALOGIC". 

Page r.,;-2n 

0 



0 

0 

0 

Programer Guide Functions 

!i.21 

Format: 

Purpose: 

Remarks: 

Example: 

LOC(filenum) 

Returns the current position in the file. 

filenum is the file number used when the file was 
opened. 

With random files, LOC returns the record number of 
the last record read or written to a random file. 

With sequential files, LOC returns the number of 
records read from or written to the file since it 
was opened. (A record is a J?.11 byte block of data. J 
When a file is opened for sequential input, BASIC 
reads the first sector of the file, so LOC will 
return a 1 even before any input from the file. 

For a communications file, LOC returns the number 
of characters in the input buffer waiting to be 
read. The default size for the input buffer is 2~F 
characters, but you can chan~e this with the /C: 
option on the BASIC command. If there are more than 
2!i!i characters in the buffer, LOC returns ?~~. 
Since a string is limited to 2~~ characters, this 
practical limit alleviates the need for you to test 
for string size before reading data into it. If 
fewer than ?.~!i characters remain in the buffer, 
then LDC returns the actual count. 

2011 IF LOC( 1 J>~O THEM STOP 

This first example stops the progran if we've gone 
past the ~nth record in the file. 

~no 011T 111,Loc(1) 

The second example could be used to re-write the 
record that was just read. 

Page I.~-21 



Functions 

5.22 

Format: 

Purpose: 

Remarks: 

Progralll!'ler Guide 

LOF(filenuml 

Returns the numher of bytes allocated to the file 
(length of the file). 

filenuM is the file nur1ber used when the file was 
opened. 

For diskette files created by BASIC, LOF will 
return a Multiple of 1 ?.P.. For example, if the 
actual data in the file is ~57 bytes, the number 
1RA will be returned. For diskette files created 
outside RASIC {for example, by using EnLI~l. LOF 
returns the actual numher of bytes allocated to the 
file. 

For communications, LOF returns the amount of free 
space in the input buffer. That is, 
size-LnC(filenum), where size is the size of the 
cor.111unications buffer, which defaults to 25~ but 
may be chan9ed with the /C: option on the BI\SIC Q 
comand. rrse of LOF may be used to detect when the 
input buffer is getting full. In practicality, LOC 
is adequate for this purpose. 

Example: These statements will get the last record of the 
file named RIG, assuming BIG was created with a 
record length of l?R bytes: 

Page r.i;-22 

Jn OPE~ "BIG" AS DJ 
?n GET #1,LOF(l)/l?R 



0 

Pr ogr arime r Gui de Functions 

format: LOG(x) 

Purpose: Returns the natural logarithm of x. 

Reaarks: x must be a numeric expression which is greater 
than zero. 

The natural logarithm is the logarithrl to the base 
e. 

Example: The first example calculates the lngarithm of the 
expression 11,;17: 

01' 
PRPIT LOGWi/7) 
1 .11i;n7i;2 

ov 

The second example calculates the logarith~ of e 
and of e2: 

nv 
E= ?.?lP2q2 
OK 
? LO<;(E) 

! 
01' 
? L0'1(E*F.) 

?. 
ov 

Page I."-?.~ 



Functions Programmer Guide 

Format: LPOS{n) 

Purpose: Returns the current position of the print head 
within the printer buffer for LDT]:. 

Remarks: n indicates which printer is being tested, as 
follows: 

nor 1 LPTJ: 
? LPT1: 
1 LPD: 

The LPOS function does not necessarily give the 
physical position of the print head on the printer. 

Example: In this example, if the line length is more than ~n 
characters long we send a carriage return character 
to the printer so it will skip to the next line. 

1nn IF LPOS(O)>~O THEN LPRINT CHR5(11) 

Page I.5-24 

0 

0 



Programmer Guide Functions 

0 

0 

0 

Format: MIDS(<strfng expl>,n~,mJ)=<string exp?> 

where l<n<2~~ and O<m<25~ and <string expl> and 
<string exp2> are string expressions. 

Purpose: To replace a portion of one string with another 
string. 

Remarks: The characters in <string expl>, beginning at 
position n, are replaced by the characters in 
<string exp2>. The optional m refers to the number 
of characters froM <string exp2> that will be used 
in the replacement. If mis omitted, all of <string 

, exp2> is used. However, regardless of whether mis 
omitted or included, the replacement of characters 
never goes beyond the original length of <string 
expl>. 

Example: JO M="!<'.M!SAS CITY, MO" 
20 MIDSIAS,14)="!<'.S" 
:10 PRH'T AS 
Rll~I 
~MISAS CITY, vs 

Page I.li-25 



Functions Programmer Guide 

5,2fi 

Format: MV.I$ (integer expression) 
MVS$ (single-precision expression) 
M~O$ (double-precision expression) 

Purpose: To convert numeric values to string values. 

Remarks: Any numeric value that is placed in a random file 
buffer with an LSET or RSET statement must be 
converted to a string. Ml<'!~ converts an integer to 
a 2-byte string. MVS~ converts a single-precision 
number to a 4-byte string. M"'D~ converts a 
double-precision number to an A-byte string. 

Example: 

Page I.5-21i 

These functions differ from STR$ in that they do 
not actually change the bytes of the date, just the 
way BASIC interprets those bytes. 

Refer also to the CVI, cvs, CVD Functions. 

!JO AMT=(Y.+T) 
100 FIELD #1, A AS D$, 20 AS NS 
110 LSET 0$ MKSJ;(AMT) 
120 LSET NS= A$ 
130 PIJT #1 

0 



C 

C 

C 

Programmer Guide Functions 

5.27 

Format: OCT~(X) 

Purpose: To return a string which represents the octal value 
of the decimal argument. 

Remarks: Xis a numeric expression in the range of -~27h8 to 
f.5<;35. 

If Xis negative , the two's complement form is 
used. That is, OCTS(-X) is the same as 
OCH(Mi5Jh-X). 

Refer to the HEX$ function for hexadecimal 
conversion. 

Exaaple: PRUIT OCH(24) 
:m 

Ok 

Page t.'i-27 



Functions Progranwner Guide 

5,2A 

Format: PEEK(!) 

Purpose: To return the byte read from the indicated memory 
position. 

Remarks: I is an integer in the range Oto fi5535. I is the 
offset from the current segment as defined by the 
OEF SEG statement, and indicates the address of the 
memory location to be read. (Refer to DEF SEG 
Statement) 

The returned value will be an integer in the range 
n to ~5i;, 

PEEK is the complementary function to the POKE 
statement. 

Example: A=PF.EV(~H5AOO) 

Page I. ~-2R 

C 

0 

0 



Programner Guide functions 

0 

0 

0 

5.29 

format: POHIT( X ,y) 

Purpose: To return the color of the specified point on the 
screen. 

Remarks: Cx,y) are the coordiantes of the point. 
Coordinates must be in absolute form. 

Example: 
lfl SCREEN 2 
20 If POltlT ( 1, 1) "' 0 THEM PRESET (1, 1) 

Page I.!'i-2Q 



Functions Programmer Guide 

Format: POSII) 

Purpose: To return the current cursor colu~n position. 

Remarks: The current horizontal (column) position of the 
cursor is returned. The returned value will be in 
the range of l to 40 or ! to ~n, depending on the 
current wrnTH setting. 

Example: IF POSIX)>i;n THEM PRIIIT CHR~( Pl 

Page I. i;-:rn 

0 

( 



0 

Pro gr aMmer Gui de Functions 

s.:n 

Format: n.!i = RIGHT~(x~,Il 

Purpose: To return the rightmost n characters of string x.!i. 

Remarks: x~ is any string expression. 

Example: 

If I=LEH(x!), x~ will be returned. If I=n, the null 
string /length zero) is returnerl. 

10 A ="OTTAWA, ONTARIO" 
20 PRHIT RIC,HH(A!, 7) 
RIii! 
ONTARIO 
Ok 

Also see the MID~ and LEFT~ functions. 

Page I. li-31 



Functions 

Format: 

Purpose: 

Remarks: 

Example: 

Programmer r,uide 

RIIOf (X)] 

To return a rundom number between n and 1. 

The same sequence of random numbers 
each time the program is Rlltl unless 
number generator is reseeded. (see 
However, x,n always restarts the same 
any given X. 

is generated 
the random 
RAMOOMIZEl. 

sequence for 

X>n or X omitted generates the next ranrlom 
in the sequence. X=n repeats the last 
generaterl. 

number 
number 

1n FOR I=l TO S 
2n PRI~T TMT(RMO*l~n); 
:in MEXT 
Rln1 

Ok 

C 

0 

( 



Programmer Guide 

5.33 

Format: 

Purpose: 

Remarks: 

0 
Rules: 

Example: 

0 

Functions 

x = SCREEH(row,col r,zJ) 

The SCREHI Function returns 
character from the screen 
(line) and column. 

the ordinal of 
at the specified 

the 
row 

x is a numeric variable receiving the ordinal 
returned. 

row is a valid numeric expression returning an 
unsigned Integer in the range 1 to ?4. 

col is a valid numeric 
unsigned Integer in the 
depending upon the width. 

expression returning an 
range 1 to 40 or 1 to An 

z is a vlid numeric expression returning a 
boolean result. 

The ordinal of the character at the specified 
coordinates is stored in the numeric variable. ff 
the optional parameter <Z> is given and non-zero, 
the color attribute for the character is returned 
instead. 

1. Any values entered 
will result in an 
error. 

inn X SCREEN r1n,1n) 

11n X SCREEN (l,1,1) 

outside of these ranges 
"Illegal Function Call" 

'If the character at 1n,1n is 
'A then return~;. 

'Return the color attribute of 
'the character in the u~per 
'left hand corner of the screen. 

Page I.!i-33 



Functions Prograffl!ller Guirle 

format: SGH(X) 

Purpose: To return the sign of X 

Remarks: If X>n, SGtllX) returns 1. 
If X=O, SGll(X) returns O. 
If X<O, SGH(Y) returns -1. 

Example: on SG!l(Xl+2 GOTO 1no,2no, 1on branches to 100. If x 
is negative, 2no if X is O and 300 if X is 
positive. 

Page I. !'i-34 

0 



0 

0 

flrogrammer Guide Functions 

Format: SHl{Xl 

Purpose: Returns the trigonometric sine of X in radians. 

Remarks: SHl(X) is calculated in single precision. 
COS(X)=SIN(X+~.1415~/2). 

Example: PRHIT srn, l. 5 l 
Ok 

Page I.5-35 



Functions Programmer Guide 

5.36 

Format: SPACE~(X) 

Purpose: To return a string of spaces of the length x. 
Remarks: The expression Xis rounded to an integer and must 

be in the range n to ?.55. 

Refer also to the SPC function. 

Example: 1n FOR I~ 1 TO 5 
20 XS: SPACE~(I) 
~n PRUIT XS; I 

Page t. ,;_~,_ 

l\n tlEXT I 
Rl!M 

1 

Ok 

2 
3 

4 

C 

C 

C 



0 

Programmer Guide Functions 

Format: SPC(I) 

Purpose: To print I blanks on the terminal. 

Remarks: SPC may only be usetl with PRHIT and LPRINT 
statements. I must be in the range n to 255. A ';' 
is assumed to follow the SPCII) comand. 

If I>width, I is changed to (I mod width) 

Example: PRI~T "OVER• SPC(15) "THERE" 
OVER THERE 
Ok 

Page I. 5-~7 



Functions 

5.38 

Format: 

Purpose: 

Remarks: 

Example: 

Page I. 'i-~A 

snRCXl 

To return the square root of x. 
)( must be >=O. 

10 FOR)(~ 10 TO 2'i STEP 5 
20 PRH!T X, snR(X) 
30 tlEXT 
RUM 

in 
15 
20 
25 

Ok 

3. lfi227R 
3.A729R4 
4.4721~/i 
5 

Progra1T1Tier Guide 

0 



Programmer Guide 

5.39 

0 
Format: 

Purpose: 

Remarks: 

Example: 

0 

0 

Functions 

STR~ (X) 

To return a string representation of the value of 
)(. 

Xis any numeric expression. 

Refer also to the VAL function. 

S PRIHT LEH(STR~(~A)) 
JO PRHJT LHl( u:W" ) 
RIii! 
~ ,, 

Page I. 'i-'.19 



Functions 

5.40 

Format: STRHlf'i~( I ,,1) 
STRH!f.~( I , X") 

Progra1J111er f.uide 

Purpose: To return a string of length I whose characters all 
have ASCII code J or the first character of X~ . 

Remarks: r , ,J are in the range n to 2~"i. 

X~ is any string expression. 

Example : 10 x~ = STRIHG~(J0,4"i) 

?age I .fi-4/\ 

20 PRHIT x~ "MmlTHL Y REPORT" x~ 
RIJM 
----------MOHTHLV REPORT---------­
Ok 

C 

(_ 



r r ogr al'lme r Gui de Functions 

0 

0 

Format: TAB{I) 

Purpose: Spaces to position I on the terminal. 

Remarks: If the current print position is already beyond 
space I, TAB goes to that position on the next 
line. Space 1 is the leftmost position, and the 
rightmost position is the width minus one. I must 
be in the range 1 to 2~~. TAB may only be used in 
PRIHT and LPRIHT statements. 

Example: In PRHIT "fW1E" TAR(2i;J "AMOllflT" : PRHIT 
20 RE/\[) A~,BS 
30 PRHIT M, T/1B(2~) B~ 
ftO [)ATA "G. T. JOHES","21;.nn" 
RIIM 
11/111[ AMOI IMT 

G. T. ,JOll[S 
Ok 

Page I.'i-41 



Functions 

5.42 

Format: 

Purpose: 

Remarks: 

Example: 

Page I. 5-42 

Progralll!ler Guide 

TMlfX) 

Returns the tangent of X in radians. 

TAtl(X) is calculated in single precision. 

10 Y • O*TAN(X)/2 

0 



PrograMmer Guide Functions 

0 

Format: USRr<digit>llXl 

Purpose: Calls the assembly language subroutine with the 
argument X. 

Remarks: <digit> is in the range Oto O and corresponds to 
the di git supplied with the DEF IJSR statement for 
that routine. If <digit> is omitted, USRO is 
assumed. 

Example: 40 B ,. T*Sltl(Y) 
50 C = lJSR(B/?.) 
nO D = IISR(B/J) 

Page I.'i-43 



Functions Programmer Guide 

5.44 

Format: VAL(XS) 

Purpose: To return the numerical value of string XS. 

Remarks: The VAL function also strips leading blanks, tabs, 
and linefeeds from the argument string. For example 

"AL(" -~) 

returns -3. 

Refer to the STRS function for numeric to string 
conversion. 

Example: 1n READ TITLES,CITVS,STATE~,ZIP~ 

Page I.5-44 

2(1 IF \IAUZIPS)<Qnonn OR VALIZIPS)>Qf\FiFiQ THDI PRHIT 
TITLES TAB(2S) "DIIT OF STATE" '.'10 IF 
VAL<ZIPS)>=!WlOl AMO VAL(ZIPS)<=!l0Al5 THEIi PRil!T 
TITLES TAB(21i) "LOUG BEACH" 

C 



0 

Programmer Guide Functions 

Format: IIARPTRS(variable) 

Purpose: Returns a character form of the address of a 
variable in memory. It is primarily for use with 
PLAY and DRAW in programs that will later be 
compiled. 

Remarks: 

VARPTRS is a new function in BASIC release 1.10. 

variable is the name of a variable existing in the 
program. 

VARPTRS returns a three-byte string in the form: 

Byte n Byte 1 Byte 2 

type low byte of high byte of 
variable variable 
address address 

type indicates the variable type: 

2 integer 

~ string 

4 single-precision 

R double-precision 

The returned value is the same as: 

CHRS( type )+Mr.I S(lf ARPTR( variable)) 

You can use VARPTRS to indicate a variable name in 
the command string for PLAY or DRAW. For example: 

Release 1.no 

PLAY"XAS;" 
PLAY"O=I;" 

1.10 Equivalent 

PLAY"X"+VARPTRS(AS) 
PLAY"O="+VARPTRS(I) 

Page I.5-45 



0 



PART II - ASSEMBLY LA~IGUAGE TOOLS 

SECTION 1 - MACRO ASSEHBLER 





0 

C 

Programmer Guide I\SSEMBLl:R 

MACRO ASSEMBLER 

Macro Assembler will create, on command, a listing file and a 
cross-reference file. The listing file contains the beginning 
relative addresses (offsets from segment base) assigned to 
each instruction, the machine code translation of each 
statement (in hexadecimal values), and the statement itself. 
And, the listing contains a symbol table which shows the 
values of all symbols, labels, and variables, plus the names 
of all macros. The listing file receives the default filename 
extension .LST. 

The cross reference file contains a compact representation of 
variables, labels, and symbols. The cross reference file 
receives the default filename extension .CRF. When this cross 
reference file is processed by CREF, the file is converted 
into an expanded symbol table that lists all the variables, 
labels, and symbols in slphabetical order, followed by the 
line number of in the source program where each is defined, 
foll owed by the line numbers where each is used in the 
program. The final cross reference listing receives the 
fil enarne extension • REF. ( Refer to the CREF chapter for 
further explanation and instructions. l 

I I. 1-1 



ASSEMBLER Programmer Guide 

0 

0 

I I. 1-?. 



C 

0 

Programmer Guide ASSEMBLER 

HITRODIJCTIO~ 

Features and Benefits of Macro Assembler 

nynalogic's Macro Assembler is a very powerful assembler for 
the Hyperion. Macro Assembler incorporates many features 
usually found only in large computer assemblers. Macro 
assembly, conditional assembly, and a variety of assembler 
directives provide all the tools necessary to derive full use 
and full power from your Hyperion. Even though Macro Assembler 
is more complex than any other microcomputer assembler, it is 
easy to use. 

Macro Assembler produces relocatable object code. Each 
instruction and directive statement is given a relative offset 
from its segment base. The assembled code can then be linked, 
using LHII<:, to produce relocatable, executable object code. 
Relocatable code can be loaded anywhere in memory. Thus, the 
program can execute where it is most efficient, not only in a 
fixed range of memory addresses. 

In addition, relocatable code means that programs can be 
created in modules, each of which can be assembled, tested, 
and perfected individually. This saves recoding time because 
testing and assembly is performed on smaller pieces of program 
code. Also, all modules can be error free before being linked 
together into larger modules or into the whole program. The 
program is not a huge monolith of code. 

II. 1-:'l 



no 

II. 1-4 

llacro Assembler 

yes 

LHJY 

part 
file 

PrograJT'l11er Gui de 

Individual modules 
can be edited and 
assembled until they 
work correctly 

When the individual 
modules are ready, 
they can be linked 
singly or into one 
or more larger modules 

( 

C 



0 

0 

Programmer Guide ASSEMBLfR 

Macro AsseMbler supports Microsoft's complete RnRn macro 
facility, which is Intel AnRn standard. The macro facility 
permits the writing of blocks of code for a set of 
instructions used frequently. The need for recoding these 
instructions each time they are needed is eliminated. 

This block of code is given a name, called a macro. The 
instructions are the macro definition. Each time the set of 
instructions is needed, instead of recoding the set of 
instructions, a simple "call" to the macro is placed in the 
source file. Macro Assembler expands the macro call by 
assembling the block of instructions into the program 
automatically. The macro call also passes parameters to the 
assembler for use during macro expansion. The use of macros 
reduces the size of a source module because the macro 
definitions are given only once, then other occurrences are 
one 1 i ne ca 11 s. 

Macros can be "nested", that is, one macro may be called from 
inside another macro, Nesting of macros is limited only by 
memory. 

The macro facility includes repeat, indefinite repeat, and 
indefinite repeat character directives for programming repeat 
block operations. The MACRO directive can also be used to 
alter the action of any instruction or directive by using its 
name as the macro name. When any instruction or directive 
statement is placed in the program, Macro Assembler checks 
first the symbol table it created to see if the instruction or 
directive is a macro name. If it is, Macro Assembler "expands" 
the macro call statement by replacing it with the body or 
instructions in the macro's definition. If the name is not 
defined as a macro, Macro Assembler tries to match the name 
with an instruction or directive. The MACRO directive also 
supports local symbols and conditional exiting from the block 
if further expansion is unnecessary. 

II.1-5 



ASSEMBLER 

II.1-li 

statement 
statement 
statement 
macro call 
statement 

name MACRO x 

EIIDM 
name X 

name 1,2 

nmM 

Programmer Guide 

When the assembler 
encounters a macro 
call, it finds the 
MACRO block and 
replaces the call 
with the block of 
statements that 
define the macro 

••---- Nested MACRO call: 
name defined else­
where as a macro, 
is "expanded" 
during assembly, 
as shown above. 0 

C 



0 

Programmer Guide ASSEMBLER 

Hacro Assembler supports an expanded set of conditional 
directives. Oirectives for evaluating a variety of assembly 
conditions can test assembly results and branch where 
required. llnneeded or unwanted portions of code will be left 
unassembled. Macro Assembler can test for blank or nonblank 
arguments, for defined or not-defined symbols, for 
equivalence, for first assembly pass or second, and Macro 
Assembler can compare strings for identity or difference. The 
conditional directives simplify the evaluation of assembly 
results, and make programming the tested code for conditions 
easier as well as more powerful. 

Macro Assembler's conditional assembly facility also supports 
conditionals inside conditionals ("nestinq"). Conditional 
assembly blocks can be nested up to 255 levels. 

II.1-7 



ASSEMBLER 

If the condition~ 
in the expression 
(shown by <exp 
true>) is true, 
the IF b 1 ock is 
assembled up to 
ELSE, then skips 
to EMO IF. If no 
ELSE, then simply 
assemble the 
whole conditional 
block 

IF ••• 

IF •.• 

C]g 
ELSE 

DJnIF 

DJDIF 

statement 
statement 
statement 
IF <exp true> 

ELSE 

EMO IF 
statement 
statement 

Programmer Guide 

j -If the condition 
in the expression 
is false, Macro 
Assembler skips to 
ELSE, then resumes 

J 
assembly at the next 
statement. If ELSE 
is not used, skips 
to EMDIF and resumes 
assembly with next 
statement. 

ires ting of conditionals 
is allowed; up to 2~~ 
1 evel s 0 



0 

0 

Programmer Guide ASSEMBLER 

Macro Assembler supports all the major AnRO directives found 
in Microsoft's HACRO-Rn Macro Assembler. This means that any 
conditional, macro, or repeat blocks prograT11111ed under MACRO-RO 
can be used under Macro Assembler. Processor instructions and 
some directives (eg., .PHASE, CSEG, OSEG) within the blocks, 
if any, will need to be converted to the RnAfi instruction set. 
All the major MACRO-An directives (pseudo-ops) that are 
supported under Macro Assembler will assemble as is, as long 
as the expressions to the directives are correct for the 
processor and the program. The syntax of directives is 
unchanged. Macro Assembler is upward compatible, with MACRO-An 
and with Intel's ASMRF, except Intel codemacros and macros. 

Macro Assembler provides some rel axed typing. Some RnRfi 
instructions take only one operand type. If a typeless operand 
is entered for an instruction that accepts only one type of 
operand (e.g., in the instruction PIISH rBXJ,rBXJ has no size, 
but PIISH only takes a worcl l, it seems wasteful to return an 
error for a lapse of memory or a typographical error. When the 
wrong type choice is given, Macro Assembler returns an error 
message but generates the "correct" code. That is, it always 
puts out instructions, not just ttOP's. For example, if you 
enter: 

you may have 
meant one of 
three instructions: 

MOIi AL, WOR;BL 

/\ 

12 
/ V AL,BYTF. 

0 
MW AL, <other> 

MO" AX,WORfJLBL 

PRR WORDLBL 

Macro Assembler generates instruction @ because it assumes 
that when you specify a register, you me~n that register and 
that size; therefore, the other operand is the "wrong size." 
Macro Assembler accordingly moclifies the "wrong" operand to 
fit the register size (in this case) or the size of whatever 
is the most likely "correct" operand in an expression. This 
eliminates some mundane debugging chores. An error message is 
still returned, however, because you may have misstated the 
operand the Macro Assembler assumes is "correct." 

II. 1-9 



ASSEMBLER Programmer r,uide 

Overview of Macro Assembler Operation 

The first task is to create a source file. Ilse FDLIN lthe 
resident editor in nos), to create the Macro Assembler source 
file. Macro Assembler assumes a default filename extension of 
.ASt1 for the source file. Creating the source file involves 
creating instruction and directive statements that follow the 
rules and constraints described in this manual. 

When the source file is ready, run Macro Assembler as 
described in Section II-~. Refer to Section II.~ for 
explanations of any messages displayed during or immediately 
after assembly. 

EDLIN 

messages 

~ 
,___ __ _;-MA~C-R0---8-,6 .- - -td 

I 

6 
I object I 
~ 

JJ .1-1.(l 

0 



0 

0 

Programmer Guide ASSEMBLER 

Macro Assembler is a two-pass assembler. This means that the 
source file is assembled twice. But slightly different actions 
occur during each pass. During the first pass, the assembler 
evaluates the statements and expands macro call statements, 
calculates the amount of code it will generate, and builds a 
symbol table where all symbols, variables, labels, and macros 
are assigned values. During the second pass, tha assembler 
fills in the symbol, variable, labels, and expression values 
from the symbol table, expands macro call statements, and 
emits the relocatable object code into a file with the default 
filename extension .OR,1. The .OB,1 file is suitable for 
processing with LIHY-. (The .OBJ file can be stored as part of 
the user's library of object programs, which later can be 
linked with one or more explanation and instructions). 

The source file can also he assembled without creating an .OBJ 
file. All other assembly steps are performed, but the object 
code is not sent to disk. Only erroneous source statements are 
displayed on the terminal screen. This practice is useful for 
checking the source code for errors. It is faster than 
creating an .OBJ file because no file creating or writing is 
performed. Modules can be test assembled quickly and errors 
corrected before the object code is put on disk. Modules that 
assemble with errors do not clutter the diskette. 

II.1-11 



ASSEMBLER 

source 
.ASM 

symbol -- def 
symbol -- def 
variable -- def 
variable -- def 
label -- def 
macro name 

PASS 2 

II.1-12 

statement 
statement 
macro call 

statement 

Programmer Guide 

1 
.._ ______________ exact amount 

of rode to 
be ~enerated 

symbol 
table 

0 

C 



Programmer Guide ASSEMBLER 

0 

0 

II.1-J.'.I 



ASSEMBLER Programmer Guide 

0 

I I. 1-14 



0 

Programmer Guide ASSEMBLER 

1,1 CREATING A MACRO ASSEHBLER SOURCE FILE 

To create a source file for Macro Assembler, you need to use 
an editor program, such as EDLIN, in Hyperion's DOS. You 
simply create a program file as you would for any other 
assembly or high-level programming language. Ilse the general 
facts and specific descriptions in this section and the three 
following sections when creating the file. 

In this section, you will find discussions of the statement 
format and introductory descriptions of its components. In 
Section l, you will find full descriptions of names: 
variables, labels, and symbols. In Section 4, you will find 
full descriptions of expressions and their components, 
operands and operators. In Section~. you will find full 
descriptions of the assembler directives. 

1.1.1 General Facts About Source Files 

Haming Your Source File 

When you create a source file, you will need to name it. A 
filename name may be any name that is legal for your operating 
system. Macro Assembler expects a specific three character 
filename extension, .ASM. Whenever you run Macro Assembler to 
assemble your source file, Macro Assembler assumes that your 
source filename has the filename extension .ASH. This is not 
required. You may name your source file with any extension you 
like. However, when you run Macro Assembler, you must remember 
to specify the extension. If you use .ASM, you will not need 
to specify the extension. (Because of this default action by 
Macro Assembler, it is impossible to omit the filename 
extension. When you assemble a source file without a filename 
extension, Macro Assembler will assume that the source has a 
.ASH extension because you would not be specifying an 
extension. When Macro Assembler searches the diskette for the 
file, it will not find the correct file and will either 
assemble the wrong fil~ or will return an error message 
stating that the file cannot be found.) 

II.1-\li 



ASSEMBLER Programmer r.uide 

Note, also, that Macro Assembler gives the object file it 
outputs the default extension • OB,!. To avoid confusion or the 
destruction of your source file, you will want to avoid giving 
a source file an extension of .OBJ. For similar reasons, you 
will also want to avoid the extensions .EXE, .LST, .CRF, and 
.REF. 

Legal Characters 

The legal characters for your symbol names are: 

A-Z 0-Q ? @ $ 

Only the numerals (O-Q) cannot appear as the first character 
of a name (a numeral must appear as the first character of a 
numeric value). Additional special characters act as operators 
or delimiters: 

[ J 

( ) 

< > 

II.1-16 

(colon) segment override operator 
(period) operator for field name of Record or 
Structure; may be used in a filename only if it 
is the first character. 
(square brackets) around register names to 
indicate value in address in register not value 
(data) in register 
(parentheses) operator in OllP expressions and 
operator to change precedence of operator 
evaluation 
(angle brackets) 
initialization values 
around parameters in 
indicate literals. 

operators used around 
for Records or Structure, 
IRP macro blocks, and to 

The square brackets and angle brackets are also 
used for syntax notation in the discussions of 
the assembler directives (section 1.4.2). When 
these characters are operators and not syntax 
notation, you are told explicitly; for example, 
"angle brackets must be coded as shown." 

0 

( 



0 

Programmer Guide ASSEMBLER 

Numeric Notation 

The default input radix for all numeric values is decimal. The 
output radix for all listings is hexadecimal for code and data 
items and decimal for line numbers. The output radix can only 
be changed to octal radix by giving the /0 switch when Macro 
Assembler is run (see Section l.!i.3, Command Switches). The 
input radix may be changed two ways: 

1. The .RADIX directive (see Section 1, 4.2,1, Memory 
Di rec ti ves) 

2, Special notation append to a numeric value: 

Radix 

Binary 

Octal 

Decimal 

Range Notation Example 

n-1 B n111n1nnB 

n-7 

"-9 

n or Tl!iO 
O (letter) f;?.Jn 

(none) 
or D 

O~A4 (default) 
A141l0 
(when .RADIX directive 
changes default radix 
to not decimal.) 

Hexadecimal n-o H nFFH 
A-F AnH 

(first character must 
be numeral in range 0-Q) 

II.1-17 



ASSEMBLER Progra1T111er Guide 

What's in a Source File? 

A source file for Macro Assembler consists of instruction 
statements and directive statements. Instruction statements 
are made of ROA6 instruction mnemonics and their operands, 
which co1T111and specific processes directly to the An8~ 
processor. Oirective statements are commands to Macro 
Assembler to prepare data for use in and by instructions. 

Statement format is described in Section 1.4.2.1. The parts of 
a statement are described in Sections 1.~-,.~ and in Sections 
~ - ~. Statments are usually placed in block of code assigned 
to a specific segment (code, data, stack, extra). The segments 
may appear in any order in the source file. Within the 
segments, generally speaking, statements may appear in any 
order that creates a valid program. Some exceptions to random 
ordering do exist, which will be discussed under the affected 
assembler directives. 

Every segment must end with an end segment statement (ENDS), 
every procedure must end with an end procedure statement 
(ENDP), and every structure must end with an end structure 
statement (EHDS). Likewise, the source file must end with an 
EtlD statement that tells Macro Assembler where program 
execution should begin. 

Section 1.3.1, Memory Organization, describes how segments, 
groups, the ASSIIME directive, and the SEG operator relate to 
one another and to your programming as a whole. This 
information is important and helpful for developing your 
programs. The information is presented in Section 4 as a 
prelude to the discussion of operands and operators. 

II.1-lA 

0 

0 



0 

0 

Programmer Guide ASSEMBLER 

1.1.2 Statement Line Format 

Statements in source files follow a strict format, which 
allows some variations. 

Macro Assembler directive statements consist of four "fields": 
Name, Action, Expression, Comment. For example: 

FOO DB OD5EH ;create variable FOO 

i i r ;containing the value ODliEH 

T 
Name Action Expression ;Comment 

Macro Assembler Instruction statements ususally consist of 
three "fields": Action, Expression, Comment. For Example: 

MOV ex.Fon ;here's the count number 

t i t 
Action Expression ;Comment 

An instruction statement may have a Uame field under certain 
circumstances; see the discussion of Names below. 

II.1-lQ 



ASSEMBLER Prograf!1111er Guide 

Names 

The name field, when present, is the first entry 
statement line. The name may begin in any column, 
mormally names are started in column one. 

on the 
although 

Hames may be any length you choose. However, Macro Assembler 
considers only the first ~l characters significant when your 
source file is assembled. 

One other significant use for names is with the MACRO 
directive. Although all the rules covering names, rlescribed in 
Section 1 apply the same to MACRO names, the discussion of 
macro names is better left to the sections on the macro 
facility. 

Macro Assembler supports the use of names in a statement line 
for three purposes: to represent code, to represent data, and 
to represent constants. 

To make a name represent cone, use: 

tlAME: followed by an directive, instruction, or nothing at 
all 

~JAME LABEL fJEAR (for use inside its own segment only) o 
WIME LABEL FAR (for use outside its own segment) 
EXTRN MAME:NEAR (for use outside its own module but inside 

its own segment only) 
EXTRN NAME:FAR (for use outside its own module and segment) 

To make a name represent data, use: 

11AME LABEL <size> (BYTE, WORD, etc.) 
MAME Dx <exp> 
EXTR~ MAME:<size> (BYTE, WORD, etc.) 

To make a name represent a constant, use: 

1JAME E(111 <constant> 
flAME = <constant> 
NAME SEGMENT <attributes> 
IIAME GROIIP <segment-names> 

II.1-2(1 



0 

Programmer Guide ASSEMBLER 

Comments 

Comments are never required for the successful operation of an 
assembly language program, but they are strongly recommended. 

If you use comments in your program, every comment on every 
line must be preceded by a semicolon. If you want to place a 
very long comment in your program, you can use the COMMEMT 
directive. The COMMDJT directive releases you from the 
required semicolon on every line (refer to COMMEHT in Section 
J.4.2.1). 

Comments are used to document the processing that is supposed 
to happen at a particular point in a program. When comments 
are used in this manner, they can be useful for debugging, for 
altering code, or for updating code. Consider putting comments 
at the beginning of each segment, procedure, structure, 
module, and after each line in the code that begins a step in 
the processing. 

Comments are ignored by Macro Assembler. Comments do not add 
to the memory required to assemble or to run your program, 
except in macro blocks where comments are stored with the 
code. Comments are not required for anything hut human 
understanding. 

Action 

The action field contains either an 80Rn instruction mnemonic 
or a Macro Assembler directive. Refer to Section 1.4.1 for 
some general discussion. The Macro Assembler directives are 
described in detail in Section 1.4.?. 

If the name field is blank, the action field will be the first 
entry in the statement format. In this case, the action may 
appear starting in any column, 1 through maximum line length 
(less columns for action and expression). 

The entry in the action field either directs the processor to 
perform a specific function or directs the assembler to 
perform one of its functions. Instructions command processor 
actions. An instruction my have the data and/or addresses it 
needs built into it, or data and/or addresses may be found in 
the expression part of an instruction. For example: 

I I. 1-21 



ASSEMBLER Programmer Guide 

! opcode! joperandj !data! ! data J 

I opcode I !operand! !data! l data l 
i. 

supplied \ 1 / 
supplied of found 

supplied= part of the instruction 

found= assembler inserts data and/or address from the 
information provided by expression in instruction 
statements. 

(opcode is the action part of an instruction) 

Directives give the assembler directions for I/0, memory 
organization, conditional assembly, listing and cross 
reference control, and definitions. 

II.1-22 

0 



0 

Programmer Guide ASSEMBLER 

Expressions 

The expression field contains entries which are operands 
and/or combinations of operands and operators. 

Some instructions take no operands, some take one, and some 
take two. For two operand instructions, the expression field 
consists of a destination operand and a source operand, in 
that order, separated by a comma. For example: 

I opcode ! I dest-oper and I I source-operand! 

For one operand instructions, the operand is a source or a 
destination operand, depending on the instruction. If one or 
both of the operands is omitted, the instruction carries that 
information in its internal coding. 

Source operands are immediate operands, register operands, 
memory operands, or Attribute operands. Destination operands 
are register operands and memory operands. 

For directives, the expression field usually consists of a 
single operand. For example: 

!directive! !operandj 

A directive operand is a data operand, a code (addressing) 
operand, or a constant, depending on the nature of the 
directive. 

For many instructions and directives, operands may be 
connected with operators to form a longer operand that looks 
like a mathematical expression. These operands are called 
complex. Use of a complex operand permits you to specify 
addresses or data derived from several places. For example: 

MOV FOO[BXJ,AL 

The destination operand is the result of adding the address 
represent by the variable FOO and the address found in 
register BX. The processor is instructed to move the value in 
register AL to the destination calculated from these two 
operand elements. Another example: 

MOV AX,FOn+~rBXJ 

In this case, the source operand is the result of adding the 
value represented by the symbol FOO plus 5 plus the value 
found in the BX register. 

I I.1-23 



ASSEMBLER Programmer Guide 

Macro Assembler supports the following operands and operators 
in the expression field (shown in order of precedence): 

Operands 

Immediate 
FIELD 

(incl. symbols) 
Register 
Memory 

1 abel 
variables 
THIS, 

simple 
indexed 
structures 

Attribute 
override 

PTR 
: ( seg) 
SHORT 
HIGH 
LOW 

va 1 ue returning 
OFFSET 
SEG 
THIS 
TYPE 
.TYPE 
LEtJGTH 
SIZE 

record specifying 
FIELD 
MASK 
WIDTH 

NOTE 

Operators 

LHIGTH, SIZE, WIDTH, MAS!<, 

[J. (). <> 

segment override (:) 

PTR, OFFSET, SF.G, TYPE, 

HIGH, LOW 

*, /, MOO, SHL, SHR 

+, -(unary), -(binary) 

En, NE, LT, LE, GT, GE 

NOT 

AND 

OR, XOR 

SHORT, • TYPE 

Some operators can be used as operands or as 
part of an operand expression. 

II.1-24 

0 

0 



C 

Programmer Guide ASSEMBLER 

1.2 NAMES: LABELS, VARIABLES AND SYMBOLS 

Names are used in several capacities throughout Macro 
Assembler, wherever any naming is allowed or required. 

tlames are symbolic representations of values. The values may 
be addresses, data, or constants. 

Names may be any length you choose. Hovever, Macro Assembler 
will truncate names longer than ~1 characters when your source 
file is assembled. 

Names may be defined and used in a number of ways. This 
section introduces you to the basic ways to define and use 
names. You will discover additional uses as you study the 
sections on Expression and Action, and as you use Macro 
Assembler. 

Macro Assembler supports three types of names in statement 
lines: labels, variables, and symbols. This section covers how 
to define and use these three types of names. 

0 1.2.1 Labels 

0 

Labels are names used as targets for JMP, CALL, and LOOP 
instructions. Macro Assembler assigns an address to each label 
as it is defined. When you use a label as an operand for JUMP, 
CALL, or LOO, Macro Assembler can substitute the attributes of 
the label for the label name, sending processing to the 
appropriate place. 

Labels are defined one of four ways: 

1. <name>: 

Ilse a name foll owed immediately by a col on. This defines 
the name as a MEAR 1 abel • <name>: may be prefixed to any 
instruction and to all directives that allow a Mame field. 
<name>: may also be placed on a line by itself. 

Examples: 

CLEAR SCREEN: MDV AL,20H 
Fnn: DB OFH 
SUBROUTHIE3: 

2. <name> LABEL NEAR 
<name> LABEL FAR 

II.1-2!i 



ASSEMBLER Programmer Guide 

Ilse the LABEL directive. Refer to the discussion of the 
LABEL directive in Section 1.4.2.1, Memory Directives. 

MEAR and FAR are discussed under Type Attribute below. 

Examples: 

FOO LABEL NEAR 
GOO LABEL FAR 

3. <name> PROC MEAR 
<name> PROC FAR 

4. 

Ilse the PROC directive. Refer to the discussion of the 
PROC directive in Section 1.4.2.1, Memory Directives. 

MEAR is optional because it is the default if you enter 
only <name> PROC. MEAR and FAR are discussed under the 
Type Attribute below. 

Example: 

REPEAT 
CHECYIMG 
FHID CHR 

PROC 
PROC 
PROC 

MEAR 

EXTRfJ <name>: MEAR 
EXTRM <name>:FAR 

:same as CHEC~IMG PROC MEAR 
FAR 

Ilse the EXTRN directive. 

MEAR and FAR are discussed under the Type Attribute below. 

Refer to the discussion of the EXTRtJ directive in Section 
1.4.2.1, Memory Directives. 

EXTR~I Fon: ~EAR 
EXTRN zon:FAR 

A label has four attributes: segment, offset, type, and the CS 
ASSIIME in effect when the label is defined. Segment is the 
segment where the label is defined. Offset is the distance 
from the beginning of the segment to the label's location. 
Type is either HEAR or FAR. 

Segment 

Labels are defined inside segments. The segment must be 
assigned to the CS segment register to be addressable. (The 
segment may be assigned to a group, in which case the group 
must be addressable through the CS register.) Therefore, the 
segment (or group) attribute of a symbol is the base address 

II.l-2fi 

C 

0 



Programmer Guide ASSEMBLER 

of the segment (or group) where it is defined. 

Offset 

The offset attribute is the number of bytes from the beginning 
of the label's segment to where the label is defined. The 
offset is a lfi-bit unsigned number. 

Type 

Labels are one to two types: NEAR or FAR. NEAR labels are used 
for references from within the segment where the label is 
defined. NEAR labels may be referenced from more than one 
module, as long as the references are from a segment with the 
same name and attributes and has the same CS AS~~E. 

FAR labels are used for references from segments with a 
different CS ASSUME or if there is more than li4K bytes between 
the label reference and the label definition. 

NEAR and FAR cause Macro Assembler to generate slightly 
different code. HEAR labels supply their offset attribute only 
(a 2 byte pointer). FAR labels supply both their segment and 
offset attributes (a 4 byte pointer) . 

II.1-27 



ASSEMBLER Progralllller Guide 

1.2.2 Variables 

Variables are names used in expression (as operands to 
instructions and directives). 

A variable represents an address where a specified value may 
be found. 

Variable look much like labels and are defined in some ways 
alike. The differences are important. 

Variables are defined three ways: 

1. <name> <define-dir> ;no colon! 

II.1-2~ 

<name> <struc-name> <expression> 
<name> <rec-name> <expression> 

<define-dir> is any of the five Define directives: 
DB,DW,DD,Dn,DT 

Example: 

START MOVE DW ? 

<struc-name> is a structure name defined by the STRIIC 
directive. 

<rec-name> is a record name defined by the RECORD 
directive. 

Examples: 

CORRAL STRIIC 

ENDS 
HORSE CORRAL <'SADDLE'> 

Note that HORSE will have the same size as the structure 
CORRAL. 

GARAGE RECORD 

SMALL GARAGE 

CAR:ll='P' 

1n OIIP(<'Z'>) 

Mote that SMALL will have the same size as the record 
GARAGE. 

See the Define, STRIIC, and RECORD directives in Section 

0 



Programmer Guide ASSEMBLER 

0 

0 

J.4.2.J., Memory Directives. 

2. <name> LABEL <size> 

Ilse the LABEL directive with one of the size specifiers. 

<size> is one of the following size specifiers: 

BYTE - specifies 1 byte 
WORD - specifies 2 bytes 
DWORD - specifies 4 bytes 
nWORD - specifies R bytes 
TBVTE - specifies 10 bytes 

Example: 

CIIRSOR LABEL WORD 

See LABEL directive in Section 1.4.2.1, Memory Directives. 

3. EXTRH <name>:<size> 

Use the EXTRN directive with one of the size specifiers described 
above. See EXTRtl directive in Section 1.4.2.J, Memory Directives. 

Example: 

EXTRtJ FOO:DWORO 

As do labels, variables also have the three attributes segment, 
offset, and type. 

Segment and offset are the same for variables as for labels. The 
type attribute is different. 

Type 

The type attribute is the size of the variable's location, as specified 
when the variable is define. The size depends on which Define directive 
was used or which size specifier was used to define the variable. 

Directive 

DB 
OW 
DD 
on 
DT 

Type 

BYTE 
WORD 
DWORD 
flWORD 
TBYTE 

Size 

1 byte 
2 bytes 
4 bytes 
R bytes 

1n bytes 

II.1-2Q 



ASSEMBLER Programmer Guide 

1.2.3 Symbols 

Symbols are names defined without reference to a Define 
directive or to code. Like variables, symbols are also used in 
expression as operands to instructions and directives. 

Symbols are defined in three ways: 

1. <name> Enif <expression> 

Ilse the EOll directive. See En!J directive in Section 
1.4.2.1, Memory Directives. 

<expression> may be another symbol, and instruction 
mnemonic, a valid expression, or any other entry (such as 
text or indexed references}. 

Examples: 

FOn E()U 7H 
znn EOIJ FOO 

?. <name> = <expression> 

Ilse the equal sign directive. See Equal Sign directive in 
Section 1.4.2.1, Memory Directives. 

<expression> may be any valid expression. 

Examples: 

GOO OFH 
GOO "+2 
GOO GOO+FOO 

J , EXTRH <name>:ABS 

I I. ! -JO 

Use the EXTRN directive with type ABS. See EXTR!l directive 
in Section 1.4.2,1, Memory Directives. 

Example: 

EXTRH BAZ:ABS 

BAZ must be defined by an Enll or 
expression. 

directive to a valid 



0 

0 

Programmer Guide ASSEMBLER 

SECTIOtl :I 

EXPRESSIONS: OPERANDS MID OPERATORS 

Section provided a brief introduction to expressions. 
Basically, expression is the term used to indicate values on 
which an instruction or directive peforms its functions. 

Every expression consists of at least one operand (a value). 
An expression may consist of two or more operands, Multiple 
operands are joined by operators. The result is a series of 
elements that look like a mathematical expression. 

This chapter describes the types of operands and operators 
that Macro Assembler supports. The discussion of memory 
organization in a Macro AsseMhler program acts as a preface to 
the descriptions of operands and operators, and as a link to 
topics discussed in Section~. 

I I. 1-31 



ASSEMBLER Programmer Guide 

1.3.1 MEMORY ORGANIZATION 

Most of your assembly language program is written in segments. 
In the source file, a segment is a block of code that hegins 
with a SEGMDIT rli rective statement and ends with an ENDS 
directive. In an assembled and linked file, a segment is any 
block of code that is addressed through the same segment 
register and is not more than ~4K hytes long. 

You should note that Macro Assembler leaves everything to do 
with segments to LJHV. Ll"K resolves all references. For 
that reason, Macro Assembler does not check (because it 
cvannot) if your references are enterer! with the correct 
distance type. lfalues such as OFFSET are also left to the 
linker to resolve. 

Although a segment may not be more than h~K bytes long, you 
may, as long as you observe the n4~ limit, divide a segment 
among two or more modules. (The SEGMDJT statement in each 
module must be the same in every aspect. 

When the modules are linked together, the several segments 
become one. References to labels, variables, and symbols 
within each module acquire the offset from the beginning of 
the whole segment, not just from the beginning of their 
portion of the whole segment. (All divisions are removed.) 

You have the option of grouping several segments into a group, 
using the GROIIP directive. When you group segments, you tell 
Macro Assembler that you want to be able to refer to all of 
these segments as a single entity. (This does not eliminate 
segment identity, nor does it make values within a particular 
segment less imemdiately accessible. It does make value 
relative to a group base.) The value of grouping is that you 
can refer to data items without worrying about segment 
overrides and about changing segment registers often. 

With this in mind, you should note that references within 
segments or groups are relative to a segment register. Thus, 
until linking is complete, the final offset of a reference is 
relocatable. For this reason, the OFFSET operator does not 
return a constant. The major purpose of OFFSET is to cause 
Macro Assembler to generate an immediate instruction; that is, 
to use the address of the value instead of the value itself. 



0 

Programmer Guide ASSEMBLER 

There are two kinds of referneces in a program: 

1. Code references - JMP, CALL, LOOPxx These 
references are relative to the address in the CS 
register. (You cannot override this assignment.) 

2. Data references - all other references - These 
references are usually relative to the OS register, 
but this assignment may be overridden. 

When you give a forward reference in a program 
statement, for example: 

MDV AX,<ref> 

Macro Assembler first looks for the segment of the reference. 
Macro Assembler scans the segment registers for the SEGMENT of 
the reference then the GROIJP, if any, of the reference. 

However, the use of the OFFSET operator always returns the 
offset relative to the segment. If you want the offset 
relative to a GROIIP, you must override this restriction by 
using the GROIJP name and the colon operator, for example: 

MOV AX, OFFSET <group-name>:<ref> 

If you set a segment register to a group with the ASSIIME 
directive, then you may also override the restriction on 
OFFSET by using the register name, for example: 

MDV AX,OFFSET DS:<ref> 

The result of both of these statements is the same. 

Code labels have four attributes: 

1. segment - what segment the label belongs to 

2. offset - the number of bytes from the beginning of 
the segment · 

~. type - MEAR or FAR 

4. CS ASSUME - the CS ASSIJME the label was coded under 

When you enter a NEAR JMP or ~EAR CALL, you are changing the 
offset (IP) in CS. Macro Assembler compares the CS AS~JME of 
the target (where the label is defined) with the current CS 
ASSIIME. If they are different, Macro Assembler returns an 
error (you must use a FAR JMP or CALL). 

II. 1-33 



ASSEMBLER Programmer Guide 

When you enter a FAR JMP or FAR CALL, you are changing both 
the offset (IP) in CS and the paragraph number. The paragraph 
number is changed to the CS ASSIIME of the target address. 

Let's take a co11W11on case. A segment called CODE; and a group 
(called DGROIJP) that contains three segments (called DATA, 
COHST, and STACY.). 

The program statements would be: 

DGROIIP GROIIP 
ASSIIME 
MOV 

DATA,CONST,STACY 
CS:CODE,DS:flGROIIP,SS:DGROIIP,ES:DGROIIP 
AX,DGROllP ;CS initialized by entry; 

;as soon as possible, especially 
;before an OS relative references 

As a diagram, this arrangement could be represented as 
foll OWS: 

-- -- -- -- -- cs 

1 ....... ~.~ .o. _E_ • ..I 
-- -- -- -- -- -- -- --os,Es,ss 

D A T A 

< 6l4K ..... ~ .D. ~ _s_ ~ ... 

. . . . . .......... . ? . i: !\ ~- ~- .. 
Given this arrangement, a statement like: 

MDV AX,<variable> 

causes Macro Assembler to find the best segment register to 
reach this variable. (The "best" register is the one that 
requires no segment overrides.) 

A statement like: 

MOY AX,OFFSET <variable> 

II.1-34 



0 

Programmer Guide ASSEMBLER 

tells Macro Assembler to return the offset of the variable 
relative to the beginning of the variable's segment. 

If this <variable> is in the COMST segment and you want to 
reference its offset from the beginning of DG5ROUP, you need a 
statement like: 

MDV AX ,OFFSET nGROllP: <variable> 

Macro Assembler is a two-pass assembler. During pass J, it 
builds a symbol table and calculates how much code is 
generated but does not produce object code. If undefined 
items are found (including forward references), asseumptions 
are made about the reference so that the correct number of 
bytes are generated on pass 1. Only certain types of errors 
are displayed, errors involving items that must be defined on 
pass 1. Ho listing is produced unless you give a /n switch 
when you run the assembler. The /0 switch produces a listing 
for both passes. 

On pass 2, the assembler uses the values defined in pass 1 to 
generate the object code. Definitions of references during 
pass 2 are checked against the pass 1 value, which is in the 
symbol table. Also, the amount of code generated during pass 
1 must match the amount generated during pass 2. If either is 
different, Macro Assembler returns a phase error. 

Because pass J must keep correct track of the relative offset, 
some references must be known on pass ,. If they are not 
known, the relative offset will not be correct. 

The following references must be known on pass 1: 

1. IF/IFE <expression> 
If <expression> is not known on pass l, Macro 
Assembler does not know to assemble the conditional 
block (or which part to assemble if ELSE is used). 
On pass 2, the assembler would know and would 
assemble, resulting in a phase error. 



ASSEMBLER Progranrner Guide 

2. <expression> DIIP( ••• ) 
This operand explicitly changes the relative offset, 
so <expression> must be known on pass 1, The value 
in parentheses need not be known because it does not 
affect the number of bytes generated. 

3. ,RADIX <expression> 
Because this directive changes the input radix, 
constants could have a different value, which could 
cause Macro Assembler to evaluate IF or DIIP 
statements incorrectly. 

The biggest problem for the assembler is handling forward 
references. How can it know the kind of a reference which it 
still has not seen the definition? This is one of the main 
reasons for two passes . And, unless Macro Assembler can tell 
from the statement containing the forward reference what the 
size, the distance, or any other of its attributes are, the 
assembler can only take the safe route, (generate the largest 
possible instruction in some cases except for segment override 
or FAR). This results in extra code that does nothing. 
(Macro Assembler figures this out by pass 2, but it cannot 
reduce the size of the instructions without causing an error, 
so it puts out HOP instructions (9nH).) 

For this reason, Macro Assembler includes a number of 
operators to help the assembler. These operators tell 11acro 
Assembler what size instruction to generate when it is faced 
with an ambiguous choice. As a benefit, you can also reduce 
the size of your program by using these operators to change 
the nature of the arguments to the instructions. 

I I. 1-30 

0 

( 



0 

0 

0 

Programmer Guide ASSEMBLER 

Some Examples 

MDV AX,FOO ;FOO= forward constant 

This statement causes Macro Assembler to generate a move from 
memory instruction on pass 1. By using the OFFSET operator, 
we can cause Macro Assembler to generate an immediate operand 
instruction. 

MDV AX,OFFSET FOO ' OFFSET says use the address of FOO 

Because OFFSET tells Macro Assembler to use the address of 
FOO, the assembler knows that the value is immediate. This 
method saves a byte of code. 

Similarly, if you have a CALL statement that calls to a label 
that may be in a different CS ASSUME, you can prevent problems 
by attaching the PTR operator to the label: 

CALL FAR PTR <forward-label> 

At the opposite extreme, you may have a JMP forward that is 
less than 127 bytes. You can save yourself a byte if you use 
the SHORT operator. 

JMP SHORT <forward-label> 

However, you must be sure that the target is indeed within 127 
bytes or Macro Assembler will not find it. 

The PTR operator can be used another way to save yourself a 
byte when using forward references. If you defined FOO as a 
forward constant, you might enter the statement: 

MOIi rBX) ,FOO 

You may want to refer 
case, you could enter 
equivalent): 

to FOO as a byte immediate. In this 
either of the statements (they are 

MOV BYTE PTR [BX),FOO 

MDV [BX),BVTE PTR FOO 

These statements tell Macro Assembler that FOO is a byte 
immediate. A smaller instruction is generated. 

II.1-:l7 



ASSEMBLER Programmer Guide 

1.3.2 OPERANDS 

An operand may be any one of three types: Immediate, 
Registers, or Memory operands. There is no restriction on 
comining the various types of operands. 

The following list shows all the types and the items that 
comprise them: 

II.1-~R 

Immediate 
Data items 

Sy111bol s 

Registers 

Memory operands 
[)irect 

Labels 
Variables 
Offset (fieldname) 

Indexed 
Base register 
Index register 
rconstant] 
+displacement 

Structure 

0 



0 

Programmer Gui de ASSEMBLER 

l. '.1.?.. 1 Irrmedi ate Operands 

Immediate operands are constant values that you supply when 
you enter a statement line. The value may be entered either 
as a data item or as a symbol. 

Instructions that take two operands permit an immediate 
operand as the source operand only (the second operand in an 
instruction statement). For example: 

MOV AX,9 

Data Items 

The default input radix is decimal. Any numeric values 
entered with numeric notation appended will be treated as a 
decimal value. Macro Assembler recognizes values in forms 
other than decimal when special notation is appended. These 
other values include ASCII characters as well as numeric 
values. 

~ Form 

Binary 

Octal 
xxxn 

flecimal 
xxxxxfl 

Hexadecimal 

ASCII 
.. xxu 

10 real 

1" real 

Symbols 

Format Example 

xxxxxxxxB n111nnn1B 

xxxn 7'.150 (letter O) 
412n 

xxxxx fi;51; (default) 
1nnnD /when .RADIX changes input 
to nondecimal) 

xxxxH OFFFFH (first digit must he 0-Q) 

'xx' 'OM' (more than two with DB only; 
both forms are synonomous) 

xx.xxE+xx 25.23E-7 (floating point format) 

x ... xR RF7fiDEA9R (first digit must be 0-Q; 
The total number of digits 
must be A, 11;, or ?.O; or Q, 
17, 21 if first digit is O) 

Symbols names equated with some form of constant information 
may be used as immediate operands. !Ising a symbol constant in 
a statement is the same as using a numeric constant. 
Therefore, using the sample statement above, you could enter: 

II.1-3Q 



ASSEMRLER Progral'llTler Guide 

MDV AX,FOO 

assume FOO was defined as a constant symbol. For example: 

FOO Enll Q 

1,3,2.2 Register Operands 

The ROR6 processor contains a number of registers. These 
registers are identified by two-letter symbols that the 
processor recognizes (the symbols are reserved\, 

The registers are appropriated to different tasks: general 
registers, pointer registers, counter registers, index 
registers, segment registers, and a flag register. 

The general registers are two sizes: R bit and 16 bit. All 
other registers are 16 bit. 

The general registers are both R bit anrl 16 bit registers. 
Actually, the 16 bit general registers are composed of a pair 
of R bit registers, one for the low byte (bits 0-7) and one 0 
for the high byte (bits R-l'i). Mote, however, that each R bit 
general register can be used independently from its mate. In 
this case, each R bit register contains bitso-7. 

Segment registers are initialized by the user and contain 
segment base values. The segment register names (CS, OS, SS, 
ES) can be used with the colon segment override operator to 
inform Macro Assembler than an operand is in a different 
segment than specified in an ASSIIME statement. ( See the 
segment override operation in~.,.!, Attribute Operators.) 

The flag register is one 16-bit register containing nine 1 bit 
flags (six arithmetic flags and three control flags). 

Each of the registers (except segment registers and flags) can 
be an operand in arithmetic and logical operations. 

Ir. 1-40 

0 



Programmer Guide ASSEMBLER 

Register/Memory Field Encodinq: 

---- ·---·-·-----. 
MOD=ll Register Mode 

R/M W=O W=l 

000 AL AX 
001 CL CX 
DlO DL DX 
011 BL BX 
100 AH SP 
101 CH BP 
110 DH SI 
Hi BH DI 

0 

II.1-41 



ASSEMBLER 

II.1-42 

Programmer Guide 

EFFECTIVE ADDRESS CALCULATION 

R/M MOD=OO MOD=Ol MOD=lO 

non rBXJ+[SI] fBX)+[SI]+DA [BXJ+[SI]+D16 
001 [BX)+[DI) [BX)+[DI)+DR rBxJ+roIJ+D1r; 
010 [BP)+[SI] fBPJ+rsIJ+DR [BP)+[SI]+D16 
Ol.1 rBP)+fDI] [BP]+[DIJ+DR fBP]+[DI]+Dl6 
100 [SI) rsIJ+DR SI +016 
101 [DI) [DI]+DR DI +D16 
l.10 DIRECT ADDRESS [BP]+DA BP +D16 
111 [BX) [BXl+DR BX +D16 

Note: DA= a byte value; Dlfi = a word value 

Other Registers: 

Segment: CS 
DS 
ss 
ES 

code seqment 
data seqment 
stack segment 
extra segment 

Flags: 

flag 

6 1-bit arithmetic flaQs 

CF 

AF 
ZF 
SF 

carry flag 

auxiliary flag 
zero flag 
sign flag 

HOTE 

3 1-bit contr 

DF direction flag 

TF trap flag 

The BX, BP, SI, and DI registers are also 
used as memory operands. The distinction 
is: when these registers are enclosed in 
square brackets [ J, they are memory 
operands, when they are not enclosed in 
square brackets, they are register 
operands. (See section 3.2.3, Memory 
Operands). 

C 

( 



C 

0 

Programmer Guide ASSEMBLER 

1.3.2.3 Memory Operands 

A memory operand represents an address in memory. When 
you use a memory operand, you direct Macro Assembler to 
an address to find some data or instruction. 

A memory operand always consists of an offset from a base 
address. 

Memory operands fit into three categories: those that use 
a base or index register (indexed memory operands), those 
that do not use a register (direct memory operands), and 
structure operands. 

Direct Memory Operands 

Direct memory operands do not use registers and consist 
of a single offset value. Direct memory operands are 
labels, simple variables, and offsets. 

Memory operands can be used as destination operands as 
well as source operands for instructions that take two 
operands. For example: 

MOV AX,FOO 
MOV FOO,CX 

II.1-43 



ASSEMBLER Progra1T111er Guide 

Indexed Memory Operands 

Indexed memory operands use base and index registers, 
constants, displacement values, and variables, often in 
combination. When you combine indexed operands, you 
create an address expression. 

Indexed memory operands use square brackets 
indexing (by a register or by registers) or 
(for example F00[5)). The square brackets 
like plus signs (+). Therefore, 

FOO[S] is equivalent to FOO+S 
5[FOOJ is equivalent to 5+FOO 

to indicate 
subscripting 
are treated 

The only difference between square brackets and plus 
signs occurs when a register name appears inside the 
square brackets. Then, the operand is seen as indexing. 

The types of indexed memory operands are: 

Base registers: 

Index registers: 

[constant] 

+Displacement 

(BX) [BP) 

BP has SS as its default segment register; all 
others have DS as default. 

[DIJ r.sn 
immediate in square brackets [AJ, rFOOJ 

R-bit or lfi-bit value. llsed only with another 
indexed operand. 

These elements may be combined in any order. The only restriction 
is that neither two base registers nor two indexed registers can be 
combined: 

[BX+BP) ; illegal 
[SI+DI] ; illegal 

Some examples of indexed memory operand combination: 

rBP+R] 
rsr+BxJr4J 
tfi[DI+BP+3J 
A[F00]-8 

More examples of equivalent forms: 

'i(BxJrsn 
BX+"i[SIJ 

II. 1-114 

0 

C 



Programmer Guide 

0 

0 

(BX+SI+'i] 
[BX]'i[SI] 

ASSEMBLER 

II. 1-45 



ASSEMBLER Progra111111er Guide 

Structure Operands 

Structure operands take the form <variable>,<field> 

<variable> is any name you give when coding a statement line that 
initializes a Structure field. The <variable> may be an anonymous 
variable, such as an indexed memory operand. 

<field> is a name defined by a DEFINE directive within a STRUC 
block. <field> is a typed constant. 

The period( . ) must be enclosed. 

Example: 

ZOO STRIJC 
GIRAFFE DB ? 
zoo mos 

LONG HECK ZOO <16> 

MOV AL,LOHG_NECY..GIRAFFE 

MDV AL,rBxJ.GIRAFFE ;anonymous variable 

The use of structure operands can be helpful in stack operations. Q 
If you set up the stack segment as a structure, setting BP to the 
top of the stack (BP equal to SP), then you can access any value in 
the stack structure by fieldname indexed through BP; for example: 

BP .FLD6 

~-------

FLD1 

FL03 I FLD2 
FLD4 

FLD6 I FLD5 

FLD7 

.,_SP 
\ 
I 
\ 
I 
\ 
I 
\ 

I 

'J 
I 

This method makes all values on the stack available all the time, 
not just the value at the top. Therefore, this method makes the 
stack a handy place to pass parameters to subroutines. 

I I. 1-41; 



0 

C 

Programmer Guide ASSEMBLER 

l,J,3 OPERATORS 

An operator may be one of four types: attribute, artihmetic, 
relational, or logical. 

Attribute operators are used with operands to override their 
attributes, return the value of the attributes, or to isolate 
fielsd of Records. 

Arithmetic, relational, and logical operators are used to combine 
or compare operands, 

l,J.3,1 Attribute Operators 

Attribute operators used as operands perform one of three 
functions: 

Override an operand's attributes, 

Return the values of operand attributes, 

Isolate record fields (record specific operators). 

The following list shows all the attribute operators by type: 

Override operators 
PTR 
colon (:) (segment override) 
SHORT 
THIS 
HIGH 
LOW 

Value returing operators 
SEG 
OFFSET 
TYPE 
.TYPE 
LENGTH 
SIZE 

RECORD specific operators 
Shift count (Field name) 
WIDTH 
MASK 

II,1-47 



ASSEMBLER Programmer r.uide 

Override operators 

These operators are used to override the segment, offset, type, 
or distance of variables and labels. 

Pointer (PTR) 

<attribute> PTR <expression> 

II.1-4R 

The PTR operator overrides the type (BYTE, WORD, DWORD) or the 
distance (HEAR, FAR) of an operand. 

<attribute> is the new attribute; the new type or new distance. 

<expression> is the operand whose attribute is to be overridden. 

The most important and frequent use for PTR is to assure that Macro 
Assembler understands what attribute the expression is supplosed 
to have. This is expecially true for the type attribute. Whenever 
you place forward references in your program, PTR will make clear 
the distance or type of the expression. This way you can avoid 
phase errors. 

The second use of PTr is to access data by type other than the J 
type in the variable definition. Most often this occurs in the 
structures. If the structure is defined as WORD buy you want to 
access an item as a byte, PTR is the operator for this. However, 
a much easier method is to enter a second statement that defines 
the structure in bytes, too. This eliminates the need to use PTR 
for every reference to the structure. Refer to the LABEL directive 
in Section ???4.2.1, Memory Directives. 

Examples: 

CALL WOR PTR [BX] rsIJ 
MOV BYTE l'TR ARRAY 

ADD RYTE PTR F00,9 



C 

0 

Programmer Guide ASSEMBLER 

Segment Override (:) (colon) 

<segment-register>:<address-expression> 
<segment-name>:<address-expression> 
<group-name>:<address-expression> 

The segment override operator overrides the assumed 
segment of an address expression (which may be a lable, a 
variable, or other memory operand). 

The colon operator helps with forward references by 
telling the asembler to what a reference is relative 
(segment, group, or segment register). 

Macro Assembler assumes that labels are addressable 
through the current CS register. Macro Assembler assumes 
that variable are addressable through the current DS 
register, or possibly the ES register, by default. If the 
operand is in another segment and you have not alerted 
Macro Assembler through the ASSIIME directive, you will 
need to use a segment override operator. Also, if you 
want to use a nondefault relative base (that is, not the 
default segment register), you will need to use the 
segment override operator for forward references. Note 
that if Macro Assembler can reach an operand through a 
nondefault segment register, it will use it, but hte 
reference cannot be forward in this case. 

<segment-register> is one of the four segment register 
names: CS, OS, SS, F.S. 

<segment-name> is a name defined by the SEGMENT 
directive. 

<group-name> is a name defined by the GROUP directive. 

Examples: 

MOV AX,Es:rBX+SI) 

M011 CSEG:FAR_LABEL,AX 

HOV AX,OFFSET Df,ROIIP:VARIABLE 

II.1-49 



ASSEMBLER Programmer Guide 

SHORT 

SHORT <label> 

II.1-50 

SHORT overrides NEAR distance attribute of lables used as 
targets for the JMP instruction. SHORT tells Macro 
Assembler that the distance between the JMP statement and 
the <label> specified as its operand is not more than 127 
bytes either direction. 

The major advantage of using the SHORT operator is to 
save a byte. Mormally, the <label> carries a 2-byte 
pointer to its offset in its segment. Because a range of 
256 bytes can be handled in a single byte, the SHORT 
operator eliminates the need for the extra byte (which 
would carry on or FF anyway). However, you must be sure 
that the target is within 127 bytes of the JMp 
instruction before using SHORT. 

Example: 

JMP SHORT REPEAT 

REPEAT: 0 

C 



0 

0 

Programmer Guide ASSEMBLER 

THIS 

THIS <distance> THIS <type> 

The THIS operator creates an operand. The value of the 
operand depends on which argument you give THIS. 

The argument to THIS may be: 

1. A distance (NEAR or FAR) 

2. A type (BYTE, WORD, or DWORD) 

THIS <distance> creates an operand with the distance 
attribute you specify, an offset equal to the current 
loaction counter, and the segment attribute (segment base 
address) of the enclosing segment. 

THIS <type> creates an operand with the type attribute 
you specify, an offset equal to the current location 
counter, and the segment attribute (segment base address) 
of the enclosing segment. 

Examples: 

TAG E()ll THIS BYTE same as TAG LABLE BYTE 

SPOT CHECK " THIS flEAR same as SPOT CHECK LABEL NEAR 

II.1-51 



ASSEMBLER Programmer Guide 

HIGH,LOW 

HIGH <expression> LOW <expression> 

II.1-52 

HIGH and LOW are provided for RORO assembly language 
compatibility. HIGH and LOW are byte isolation operators. 

HIGH isolates the high R bits of an absolut 1~-bit value 
or address expression. 

LOW isolates the low A bits of an absolut l~-bit value or 
address expression. 

Examples: 

MDV AH,HIGH WORD_VALIIE :get byte with sign bit 

MOVE AL,LOW OFFFFH 

0 

0 



C 

0 

0 

Programmer Guide ASSEMBLER 

Value Returning Operators 

These operators return the attribute values of the operands that 
follow them but do not override the attributes. 

The value returning operators take labels and variables as their 
arguments. 

Because variables in Macro Assembler 
need to use the value returning 
attributes, as follows: 

have three attributes, you 
operators to isolate single 

SEG 

SEG 
OFFSET 
TYPE 
Ln!GTH and SIZE 

SEG <label> 
SEG <variable> 

isolates the segment base address 
isolates the offset value 
isolates either type or distance 
isolate the memory allocation 

SEG returns the segment value (segment base address) of 
the segment enclosing the label or variable. 

Examples: 

MOV AX,SEG VARIABLE NAME 
MDV AX,<segment-varTable>:<variable> 

I I. 1-5~ 



ASSEMBLER Programmer Guide 

OFFSET 

OFFSET <label> OFFSET <variable> 

II.1-li4 

OFFSET returns the offset value of the variable or label 
within its segment (the number of bytes between the 
sement base address and the address where the label or 
variable is defined). 

OFFSET is chiefly used to tell the assembler that the 
operand is an immediate. 

NOTE 

OFFSET does not make the value a constant. Only 
LINK can resolve the final value. 

NOTE 

OFFSET is not required with uses 
DD directives. The assembler 
implicit OFFSET to variables 
expressions following OW and DD. 

Example: 

MOVE BX,OFFSET FOO 

of the OW or 
applies an 

in address 

0 

You must be sure that the GROUP directive precedes any reference 
to a group name, including its use with OFFSET. 



0 

0 

0 

Programmer Guide ASSEMBLER 

TYPE 

TYPE <label> 
TYPE <variable> 

If the operand is a variable, the TYPE operator returns a 
value equal to the number of bytes of the bariable type, 
as follows: 

BYTE = 1 
WORD = 2 
DWORD: 4 
OWORD = A 
TBYTE 10 
STRIIC: the number of bytes declared by STRlJC 

If the operand is a label, the TYPE operator returns ~EAR 
(FFFFH) or FAR (FFFEH). 

Examples: 

MDV AX,(TYPE FOO_BAR) PTR [BX+SI] 

I I. 1-55 



ASSEMBLER Programmer r.ui de 

LEtJGTH 

LEHGTH <variable> 

II.1-!i6 

LENGTH accepts only one variable as its argument. 

LEHGTH returns the number of type units (BYTE, WORD, 
DWORD, OWORD, TBYTE) allocated for that variable. 

If the variable is defined by a [lllP expression, LEIJr.TH 
returns the number of type units duplicated; that is, the 
number that precedes the first DIIP in the expression. 

If the variable is not defined by a DIIP expression, 
LEHGTH returns 1. 

Examples: 

FOO DW 1nn DIJP ( 1) 

MOVE CX, LEl!GTH FOO ; get number of e 1 ements 
;in array 
;LEHGTH returns 1nn 

!lAZ IJW 100 DUP(l,1"l DIIP(?)) 

LENGTH BAZ is still 100, 
regardless of the expression following DIIP. 

GOO DD(?) 

LENGTH GOO returns because only one unit is involved. 

0 

0 

0 



Programmer Guide ASSEMBLER 

SIZE 

O sIZE <variable> 

0 

C 

SIZE returns the total number of bytes allocated for a 
variable. 

SIZE is the product of the value of LENGTH times the 
value of TYPE. 

Example: 

FOO OW 100 DLIP(l) 

MOV BX,SIZE FOO ;get total bytes in array 

SIZE = LEMGTH X TYPE 
SIZE= 100 X WORD 
SIZE = 100 X 2 
SIZE= 200 

I I. 1-57 



ASSEMBLER Programmer Guide 

Record Specific operators 

Record specific operators used to isolate fields in a record. 

Records are defined by the RECORD directive (see Section 1.4.2.1, 
Memory Directives) . A record may be up to 1~ bits long. The record 
is defined by fields, which may be from ant to 16 bits long. To 
isolate one of the three characteristics of a record fields, you 
use one of the record specific operators, as follows: 

Shift count number of bits from low end of record to low end of 
field (number of bits to right shift the record to 
lowest bits of record). 

WIDTH the number of bits wide the field or record is (number 
of bits the field or record contains) 

MASK value of record if field contains its maximum value 
and all other fields are zero (all bits in field 
contain 1; all other bits contain n) 

In the following discussions of the record specific operators, the 
following symbols are used: 

II.1-5A 

FOO a record defined by the RECORD directive FOO RECORD 
FIELD1:3,FIELD2:~,FIELD3:7 

BAZ a variable used to allocate FOO BAZ FOO<>. 

FIELD!, FIELD2, and FIELD3 are the fields of the 
record FOO. 

0 



( 

0 

Programmer Guide 

Shift-count - (Record fieldname) 

<record-fieldname> 

ASSEMBLER 

The shift count is derived from the record fieldname to 
be isolated. 

The shift count is the number of bits the field must be 
right shifted to place the lowest bit of the field in the 
lowest bit of the record byte or word. 

If a ln-bit record (FOO) contains three fields (FIELD1, 
FIELD2, and FIELD3), the record can be diagrammed as 
fo,11 _ow~: . . . . . . . . . . . . . . 

F'-,1-1-1
-' -

1

1
1-'-F'-'-'i-'-'-'-I 

FIELD! FIELD2 FIELD3 

FIELD! has a shift count of 13. 
FIELD2 has a shift count of 7. 
FIELD3 has a shift count of 0, 

When you want to isolate the value in one of these 
fields, you enter its name as an operand. 

Example: 

MDV DX,RAZ 
MOV CL,FIELD2 
SHR DX,CL 

FIELD2 is now right shifted, ready for access. 

0 

II. 1-59 



ASSEMBLER Programmer Guide 

MASK 

MASK <record-fieldname> 

II.l-60 

MASK accepts a field name as its only argument. 

MASK returns a bit-mask defined by 1 for bits positions 
included by the field and O for bit positions not 
included. The value return represents the maximum value 
for the record when the field is masked. 

Using the diagram used for shift count, MASK can be 
diagrammed as: 

i.o i.u i_uj1.i 1.i1i 1i.1i.1 jo.io.i.u i.uio.i Q. io.'I .__ -- MASK 
1 I F I 8 I O 

The MASK of FIELD2 equals lFRnH. 

Example: 

MDV DX,BAZ 
AtJD DX,MASV FIELD2 

FIELD2 is now isolated. 

C 

0 



Programmer Guide ASSEMBLER 

WIDTH 

O wIDTH <record-fieldname> 
WIDTH <record> 

0 

0 

When a <record-fieldname> is given as the argument, WIDTH 
returns the width of a record field as the number of bits 
in the record field. 

When a <record> is given as the argument, WIDTH returns 
the width of a record as the number of bits in the 
record. 

!Ising the diagram under Shift count, WIDTH can be 
diagralj1lTied as: 

1
_ j_ i_ '!-;_;j _i _j_ -

1
_ i_i_j _i _j_j -..:

1 
WIDTH = 6 

The WIDTH of FIELD! equals 3. The WIDTH of FIELD2 equals 
6. The WIDTH of FIELD1 equals 7. 

Example: 

MOVE CL,WIDTH FIELD2 

The number of bits in FIELD2 is now in the count register. 

II.1-61 



ASSEMBLER Programmer Guide 

1.3.3.2 Arithmetic Operators 

Eight arithmetic operators proved the common mathematical functions 
(add, subtract, divide, multiply, modulo, negation), plus two shift 
operators. 

The arithmetic operators are used to combine operands to from an 
expression that results in a data item or an address. 

Except for+ and - (binary), operands must be constants. 

For plus (+), one operand must be a constant. 

For minus (-), the first (left) operand may be a nonconstant, or 
both operands may be nonconstants. But, the right may not be a 
nonconstant if the left is constant. 

* 
I 

MOD 

SHL 

II.1-62 

Multiply 

Divide 

Modulo. Divide the left operand by the right 
operand and return the value of the remainder 
(modulo). Both operands must be absolut. 

Example: 

MOV AX,tno MOD 17 

The value moved into AX will be OFH (decimal 15). 

Shift Left. SHL is followed by an integer which 
specifies the number of bit positions the value is 
to be left shifted. 

Example: 

MDV AX,01108 SHL 5 

The value moved into AX will be 0110000008 (OCOH) 

0 



0 

Programmer Guide ASSEMBLER 

- (Unary Minus) Indicates that following value is negative, as in a 
negative integer. 

Add. One operand must be a constant; one may 
nonconstant. 

be a 

Subtract the right operand from the left operand, 
The first (left) operand may be a nonconstant, or 
both operands may be nonconstants. But, the right 
may be a nonconstant only it the left is also a 
nonconstant and in the same segment. 

II.1-63 



ASSEMBLER Programmer Guide 

1.3.3,3 Relational Operators 

Relational operators compare two constant operands. 

If the relationship between the two operands matches the operator, 
FFFFH is returned. 

If the relationship between the two operands does not match the 
operator, a zero is returned. 

Relational operators are most often used with conditional 
directives and conditional instructions to direct program control. 

EO 

NE 

LT 

LE 

GT 

GE 

Equal. Returns true if the operands equal each 
other. 

Not Equal. Returns true if the operands are not 
equal to each other. 

Less Than. Returns true if the left operand is less 
than the right operand. 

Less than or Equal .Returns true if the left operand 
is less than or equal to the right operand 

Greater Than. Returns true if the left operand is 
greater than the right operand. 

Greater than or Equal. Returns true if the left 
operand is greater than or equal to the right 
operand. 

0 



C 

0 

Programmer Guide ASSEMBLER 

1,3.3.4 Logical Operators 

Logical operators compare two constant operands bitwise. 

Logical operators compare the binary values of corresponding bit 
positions of each operand to evaluate for the logical relationship 
defined by the logical operator. 

Logical operators can be used two ways: 

OR 

XOR 

1. To combine opera~ds in a logical relationship. In this 
case, all bits 1n the operands will have the same value 
(either onnn or FFFFH). In fact, it is best to use these 
values for true (FFFFH) and false (nnoo) for the symbols 
you will use as operands because in conditionals aything 
nonzero is true. 

2. In bitwise operations. In this case, the bits are 
different, and the logical operators act the same as the 
instructions of the same name. 

Logical NOT. Returns true if left operand is true 
and right is false or if right is true and left is 
false. Returns false if both are true or both are 
false. 

Logical AND. Returns true if both operators are 
true. Returns false if either operator is false or 
if both are false. Both operands must be absolute 
values. 

Logical OR. Returns true if either operator is true 
of it both are true. Returns false is both 
operators are false. Both operands must be absolute 
values. 

Exclusive OR. Returns true if either operator is 
true and the other is false. Returns false if both 
operatos are true or if both operators are false. 
Both operands must be absolute values. 

II.1-65 



ASSEMBLER Programmer Guide 

1,3,3.5 Expression Evaluation: Precedence of Operators 

Expressions are evaluated higher precedence operators first, then 0 
left to right for equal precedence operators. 

Parentheses can be used to alter precedence. 

For example: 

MOV AX,101B SHL 2*2 

MOV AX,101B SHL (2*2) 

MOV Ax,nn1o1nn0B 

MOV AX,Ol0l0000B 

SHL and * are equal precedence. Therefore, their functions are 
performed in the order the operators are encountered (left to 
right l. 

Precedence of Operators 

All operators in a single item have the same precedence, regardless 
of the order listed within the item. Spacing and line breaks are 
used for visual clarity, not to indicate functional relations. 

1, LENGTH, SIZE, WIDTH, MASV 
Entries inside: parenthesis ( ) 

angle brackets<> 
square brackets [] 

structure variable operand: <variable>.<field> 

2. segment override operator: colon {:) 

3. PTR, OFFSET, SEG, TYPE, THIS 

4. HIGH, LOW 

'i. 

Ii. 

7. 

8. 

~-

* /, MOOD, SHL, . 
+, - (both unary 

En, NE, LT, LE, 

Logical fJOT 

Logical AMD 

SHR 

and binary) 

GT, GE 

0 

Logical OR, XOR 10. 0 
11. SHORT, .TYPE 

II.1-lili 



0 

0 

0 

Programmer Guide ASSEMBLER 

SECTION 4 

ACTiml: HISTRUCTIONS AND DIRECTIVES 

The action field contains either an AOR6 instruction mnemonic or a 
Macro Assembler directive. 

Following a name field entry (if any), action field entries may 
begin in any column. Specific spacing is not required. The only 
benefit of consistent spacing is imporoved readability. If a 
statement does not have a name field entry, the action field is the 
first entry. 

The entry in the action field either directs the processor to 
perform a specific function or directs the assembler to perform one 
of its functions. 

I I. 1-li7 



ASSEMBLER Programmer Guide 

1.4.1 INSTRUCTIONS 

Instructions command processor actions. An instruction may have the 
data and/or addresses it needs built into it, or data and/or 
addresses may be found in the expression part of an instrucion. For 
example: 

I~ ! operand! I data! ! data l 
l op,ode! I operandi ~ ~ 
supplied su~plied dr found 

supplied= part of the instruction 

found= assembler inserts data and/or address from the information 
provided by expression in instruction statements. 

(opcode equates to the binary code for the action of an 
instruction) 

This manual does not contain detailed descriptions of the ROA6 
instruction mnemonics and their characteristics. For this, you will 
need to consult other text. For now, the following text exist: 

1. Morse, Stephen P. The l!OAfi Primer. Rochelle Park, MJ: 
Hayden Publishing Co., l9AO. 

2. Rector, Russell and George Alexy. The RORn Book. 
Berkeley, CA: Osbourne/McGraw-Hill, lORO 

~. The 80Afi Family User's Manual. Santa Clara, CA: Intel 
Corporation, l9AO 

II.1-68 

0 



0 

Programmer Guide ASSEMBLER 

1.4.2 DIRECTIVES 

Directives give the assembler directions for input and output, 
memory organization, conditional assembly, listing and cross 
reference control, and definitions. 

The directives have been divided into groups by the function they 
perform. Within each group, the directives are described 
alphabetically. 

The groups are: 

Memory Directives 
Directives in this group are used to organize memory. 
Because there 1s no "miscellaneous" group, the memory 
directives group contains some directives that do not, 
strictly speaking, organize memory, such as COMMENT. 

Conditional Directives 
Directives in this group are used to test conditions of 
assembly before preceding with assembly of a block of 
statements. This group contains all of the IF (and 
related) directives. 

Macro Directives 
Directives in this group are used to create blocks of 
code called macros. This group also includes some special 
operators and directives that are used only inside macro 
blocks. The repeat directives are considered macro 
directives for descriptive purposes. 

Listing Directives 
Directives in this group are used to control the format 
and, to some extent, the content of listings that the 
assembler produces. 

II. 1-69 



ASSEMBLER Programmer Guide 

Here below is an alphabetical list of all the directives that 
Macro Assembler supports: 

ASSUME EVEN IRPC .RADIX 
EXITM RECOR[) 

COMMEMT EXTERN LABEL REPT 
GROUP .LFCOMD .SALL 

DB .LIST SEGMENT 
DD IF .SFCmlD 
on IFB MACRO STRUC 
OT IFDEF SLIBTTL 
ow IFOIF MAME 

JFE .TFCOND 
ELSE IFIDN ORG TITLE 
mo IFNB %OUT 
ENDIF IFMDEF .XALL 
ENOM PAGE • XCREF 
ENDP IFl PROC • XLIST 
mos IF2 PUBLIC 
EOIJ IRP PURGE 

0 

II.1-70 



Programmer Guide ASSEMBLER 

( 1.4.2.1 Memory Directives 

ASSUME 

0 

ASSUME <seg-reg>:<seg-name>[, ••• ] 

or 

ASSUME tlOTHING 

ASSUME tells the assembler that the symbols in the 
segment or group can be accessed using this segment 
register. When the assembler encounters a variable, it 
automatically assembles the variable reference under the 
proper segment register. You may enter from 1 to 4 
arguments to ASSIIME. 

The valid <seg-reg> entries are: 

CS, OS, ES, and ss. 

The possible entries for <seg-name> are: 

1. the name of a segment declared with the SEGMnff 
directive 

2. the name of a group declared with the GROUP directive 

3. an expression: either SEG <variable-name> or SEG 
<label-name> (see SEG operator, Section 1.3.2) 

4, the key word NOTHHJG. ASSUME tlOTHHlG cancels all 
register assignments made by a previous ASSUME 
statement. 

II.1-71 



ASSEMBLER 

Example: 

II.1-72 

Programmer Guide 

If ASSIIME is not used or if NOTHING is entered for 
<seg-name>, each reference to variables, symbols, labels, 
and so forth in a particular segment must b prefixed by a 
segment register. For example, DS:FOO instead of simply 
FOO. 

ASSUME OS: DATA,SS: DATA,CS:CGROIJP ,ES: ~IOTHIN 

0 



Programmer Guide ASSEMBLER 

COMMEIJT 

( COMMENT<delim><text><delim> 

The first non-blank 
is the delimiter. 
comment block which 
of <delimiter>. 

character encountered after COMMENT 
The following <text> comprises a 

continues until the next occurrence 

Example: 

C 

(_ 

COMMENT permits you to enter comments about your program 
without entering a semicolon(;) before each line. 

If you use COMMENT inside a macro block, the comment 
block will not appear on your listing unless you also 
place the .LALL directive in you source file. 

Using an asterisk as the delimiter, the format of the 
comment block would be: 

COMMENT * 
any amount of text entered 
here as the comment block 

* ;return to normal mode 

II.1-73 



ASSEMBLER Programmer Guide 

DEFINE BYTEDEFIHE WORD 
OITTI!t~ 
OITTME OliADWORD 
OITTilt TEflBYTES 

<var name> 
<var name> 
<var name> 
<var name> 
<varname> 

II.1-74 

DB <exp>[,<exp>, ••• ] 
DW <exp>[ ,<exp>, ••• ] 
DD <exp>[,<exp>, •.. ~ 
on <exp>[,<exp>, ..• J 
DT <exp>[,<exp>, •.. ] 

The DEFIHE directives are used to define variables or to 
initialize portions of memory. 

If the optional <varname> is entered, the DEFINE 
directives define the name as a variable. If <varname> 
has a dolon, it becomes a NEAR label instead of a 
variable. (See also, Section l.2.1, Labels, and Section 
1.2.2, Variable.) 

The DEFHIE directives allocate memory in units specified 
by the second letter of the directive (each define 
directive may allocate one or more of its units at a 
time): 

DB allocates one byte (B bits) 
OW allocates one word (2 bytes) 
DD allocates two words (4 bytes) 
on allocates four words (R bytes) 
DT allocates ten bytes 

<exp> may be one or more of the following: 

1. a constant expression 

2. the character ? for indeterminate initialization. 
llsually the is used to reserve space without placing 
any particular value into it. (It is the equivalent 
of the DS pseudo-op in MAC RD-RO). 

J. an address expression (for DW and DO only) 

4. an ASCII string (longer than 2 characters for DR 
only) 

5. <exp>nllP(?) 
When this type of expression is the only argument to 
a define directive, the define directive produces an 
uninitialized datablock. This expression with the? 
instead of a value results in a smaller object file 
because only the segment offset is changed to 
reserve space. 

0 



Programmer Gui de ASSEMBLER 

fi. <exp>DIIP(<exp>r, ••• J) 
This expression, like item 5, produces a data block, 
but initialized with the value of the second <exp>. 
The first <exp> must be a constant greater than zero 
and must not be a forward reference. 

Example - Define Byte (DB): 

MIIM BASE 
FIL[ER 

mJE CHAR 
MIJLT CHAR 
MSG 

BUFFER 
TABLE 

MEW PAGE 
ARRJiY 

0 
Example -

ITEMS 
SEGVAL 

C 

BSIZE 
LOCATiml 
AREA 
CLEARED 
SERIES 

DISTAMCE 

DB 
DB 

DB 
DB 
DB 

lfi 
? 

'M' 
'MARC MIKE ZIBO PAUL BILL' 
'MSGTEST' , 13, 10 

DB l n DIIP (?) 
DB lOODIIP ( 5 DIJP ( 4), 7) 

;initialized with 
;indetermined value 

;message, carriage return, 
;and linefeed 
;indeterminate block 

;100 copies of bytes with values 4,4,4,4,4,7 
DB OCH ;form feed character 
DB 1,2,3,4,S,fi,7 

Define Word (OW): 

DW TABLE,TABLE+l0,TABLE+2n 
DW OFFFOH 
DW 4 * lW 
DW TOTAL + 1 
nw 100 DIJP!?l 
DW sn DIIP(O) 
DW 2 D11P(2,3 DIIP(BSIZE)) 
;two words with the byte values 
;2,BSIZE,BSIZE,BSIZE,2,BSIZE,BSIZE,BSIZE 
OW START TAB - EMD TAB 
;difference-of two laoels is a constant 

11.1-7,; 



ASSEMBLER 

Example - Define Ooubleword (DD): 

DBPTR DD TABLE 

SEC PER DAY DD 60*60*24 

LIST DD ' XY' , 2 DllP (?) 
HIGH DD 42Q4967295 
FLOAT OD fi.735E2 

Example - Define Ouadword (Dn): 

LOMG REAL DO J.1415Q7 
STRING DO 'AB' 
HIGH Dn 1R446744073709661615 
LOW DO -1R44fi74407J7096fil6l!i 
SPACER on 2 DIIP(?) 
FILLER DO 1 DIJP(?, ?) 

HEX REAL DO OFDCBA9A9A7fi'i4J210'iR 

Example - Define Tenbytes (DT): 

ACCllMIJLATOR OT 
STRING DT 
PACKED-DECIMAL DT 
FLOATIMG POHff DT 

II.1-76 

? 
'CD' 

12345fi7fl90 
3.14l'i92fi 

Progranwner Guide 

;16-bit OFFSET, then 16-bit( 
;SEG base value 
;arithmetic is performed 
;by the assembler 

;maximum 
; floating point 

;decimal makes it real 
;no more than 2 characters 
;maximum 
;minimum 
;uninitialized data 
;initialized with 
;indeterminate value 

() 
;no more than 2 characters 



0 

Programmer Guide ASSEMBLER 

Dm 

DID [<exp>] 

Examples: 

The END statement specifies the end of the program. 

If <exp> is present, it is the start address of the 
program. If several modules are to be linked, only the 
main module may specify the start of the program with the 
EtlD <exp> statement. 

If <exp> is not present, then no start address is passed 
to LINK for that program or module. 

END START ;START is a label somewhere in the program 

11.1-77 



ASSEMBLER Programmer Guide 

EnU 

<name> EOlJ <exp> 

Examples: 

II.1-78 

EOU assigns the value of <exp> to <name>. If <exp> is an 
external symbol, an error is generated. If <name> already 
has a value, an error is generated. If you want to be 
able to redefine a <name> in your program, use the equal 
sign (=) directive instead. 

In many cases, EOU is used as a primitive text 
substitution, like a macro. 

<exp> may be any one of the following: 

1. A symbol. <name> becomes an aliaa for the symbol in 
<exp>. Shown as an Alias in the symbol table. 

2. An instruction name. Shown as an Opcode in the symbol 
table. 

~. A valid expression. Shown as a Number or L (label) in 
the symbol table. 

4. Any other entry, including text, index references, 0 
segment prefix and operands. Shown as Text in the 
symbol table. 

FOO EOU BAZ ;must be defined in this 
;module or an error results 

B EOU [BP+R] ;index reference (Text) 
PR EQU DS: [BP+8J ;segment prefix 

;and operand (Text) 
CBD EOU AAD ;an instruction name 
(Opcode) 
ALL EOII DEFREC<2,~,4> ;DEFREC = record name 

; <2, 3, 4> = i ni ti a 1 va 1 ues 
;for fields of record 

EMP EOII 6 ;constant value 
FPV ErJU l:i.3E7 ;floating point (text) 



Programmer Gui de ASSEMBLER 

Equal Sign 

( <name> 

Examples: 

0 

0 

<exp> 

<exp> must be a valid expression. It is shown as a Number 
or L (label) in the symbol table (same as <exp> type 3 
under the Enll di rec ti ve above). 

The equal sign (=) allows the user to set and to redefine 
symbols. The equal sign is like the EOU directive, except 
the user can redefine the symbol without generating an 
error. Redefinition may take place more than once and 
redefinition may refer to a previous definition. 

FOO 
FOO Enll 

FOO 

FOO 

5 
fi; 

7 

F00+3 

;the same as FOO Enu 5 
;error, FOO cannot be 
; redifi ned by Enll 
;FOO can be redefined 
;only by another = 
;redefinition may refer 
;to a previous definition 

II.1-79 



ASSEMBLER 

II. 1-RO 

EVEN 

EVEN 

Examples: 

Programmer Guide 

The EVEN command causes the program counter to 
go to an even boundary; that is, to an address 
that begins a word. If the program counter is 
not al ready at an even boundary, EVEN causes 
the assembler to add a NOP instruction so that 
the counter will reach an even boundary. 

An error results if EVEN is used with a byte 
aligned segment. 

Before: The PC points to 0019 hex (2~ decimal) 

EVEM 

After: The PC points to lA hex (2fi decimal) 
0019 hex now contains an NOP 

instruction. 

0 



0 

Programmer Guide ASSEMBLER 

EXTRM 

EXTRN <name>:<type>[, ••• ] 

<name> is a symbol that is defined in another 
module. <name> must have been declared PUBLIC 
in the module where <name> is defined. 

<type> may be any one of the following, but 
must be a valid type for <name>: 

1. BYTE, WORO, or OWORO 

2. MEAR or FAR for 1 abel s or procedures 
(defined under a PROC directive) 

3. ABS for pure numbers (implicit size is 
WORD, but includes BYTE). 

Unlike the ROAO assembler, placement of the 
EXTRN directive is significant. If the 
directive is given with a segment, the 
assembler assumes that the symbol is located 
within that segment. If the segment is not 
known, place the directive outside all segments 
the use either: 

ASIJME <seg-reg>:SEG <name> 

or an explicit segment prefix. 

MOTE 

If a mistake is made and the symbol 
is not in the segment, LIMK will take 
the offset relative to the given 
segment, if possible. If the real 
segment is more tha ~4V. bytes away 
from the reference, LIIJK may find the 
definition. If the real segment is 
more than n4K bytes away, LINK will 
fail to make the link between the 
reference and the definition and will 
not return an error message. 

II.1-Rl 



ASSEMBLER 

II. 1-82 

Examples: 

In Same Segment: 

In Module 1: 

CSEG SEGMEMT 
PUBLIC TANG 

TAGM: 

CSEG ENDS 

In Module 2: 

CSEG SEGMHJT 
EXTRN TAGE:NEAR 

JMP TAGN 
CSEG mos 

Programmer Guide 

In Another Segment: 

In Module 1: 

CSEGA SEGMENT 
PIIBLIC TAGF 

TAGF: 

CSEGA mos 

In Module 2 

EXTRII TAGF:FAR 
CSEGV SEGMEHT 

CSEGB nms 0 



0 

Programmer Gui de ASSEMBLER 

GROIIP 

<name> GROIJP <seg-name>[, •.• ] 

The GROUP directive collects the segments named 
after GROUP (<seg-name>s) under one name. The 
GROIJP is used by LINK so that it knows which 
segments should be loaded together (the order 
the segments are named here does not influence 
the order the segments are loaded; that is 
handled by the CLASS designation of the SEGMENT 
directive, or by the order you name object 
modules in response to the LINK Object module 
prompt). 

A 11 segments in a GROUP must fit into li4k' bytes 
of memory. The assembler does not check this at 
all, but leaves the checking to LINK. 

<seg-name> may be one of the following: 

1. A segment 
directive. 
reference. 

name, assigned 
The name may 

by a SEGMENT 
be a forward 

2. An expression: either SEG <var> 
or SEG <label> 

Both of these entries resolve themselves to 
a segment name (see SEG operator, Section 
3.2) 

Once you have defined a group name, you can use 
the name: 

1. As an immediate value: 

MOV AX, DGROI IP 
MOV DS,AX 

DGROllP is the paragraph address of the base 
of DGROUP. 

2. In ASSIIME statement: 

ASSIIME DS: DGROIIP 

The DS register can now be used to reach 
any symbol in any segment of the group. 

I I. 1-83 



ASSEMBLER 

II. l-R4 

Programmer Guide 

1. As an operand prefix (for segment 
override): 

MDV BX,OFFSET OGROUP:FOO 
OW DGROI IP: FOO 
DD DGROIJP: FOO 

DGROIIP: forces the offset to be relative to 
DGROIIP, instead of to the segment in which 
FOO is defined. 

Example: ( llsi ng GROIIP to combine segments): 

In Module A: 

CGROIJP GROIIP XXX,YYY 
XXX SEGMDJT 

ASSUME CS:CGROUP 

XXX mos 
yyy SEGMEIIT 

yyy mos 
END 

In Module B: 

CGROIIP GROUP zzz 
zzz SEGMDJT 

ASSUME CS:CGROUP 

zzz ENDS 
EIJD 

0 



0 

0 

0 

Programmer Guide ASSEMBLER 

HJCLll[)E 

INCLIJl1E <filename> 

Examples: 

The HJCLlmE directive inserts source code from 
an alternate assembly language source file into 
the current source file during assembly. Use of 
the INCLIJDE directive eliminates the need to 
repeat an often-used sequence of statements in 
the current source file. 

The <filename> is any valid file specification 
for the operating system. If the device 
designation is other than the default, the 
source filename specification must include it. 
The default device designation is the currently 
logged drive or device. 

The included file is opened and assembled into 
the current source file i~mediately following 
the INCLUDE directive statement. when 
end-of-file is reached, assembly resumes with 
the next statement following the HICLIIDE 
directive. 

Nested includes are allowed (the file inserted 
with an HJCLIIDE statement may contain an 
HJCLIIDE di rec ti ve). However, this is not a 
recommended practice as a large amount of 
memory may be required. 

The file specified must exist. If the file is 
not found, an error is returned, and the 
assembly aborts. 

On a Macro Assembler listing, the letter C is 
printed between the assembled code and the 
source line on each line assembled from an 
included file. See Section J.~.4, Formats of 
Listings and Symbol Tables, for a description 
of listing file formats. 

HICLIJOE ENTRY 
rncu l[)E B: RECORD. TST 

I I. 1-RS 



ASSEMBLER 

II.1-Ali 

Programmer Guide 

LABEL 

<name> LABEL <type> 

By using LABEL to define a <name>, you cause 
the assebler to associate the current segment 
offset with <name>. 

The item is assigned a length of 1, 

<type> varies depending on the use of <name>, 
<name> may be used for code or for data. 

1. For code: 
operand) 

(for example, as a JMP or CALL 

<type> may be either NEAR or FAR. <name> cannot 
be used in data manipulation instructions 
without using a type override. 

If you want, you can define a NEAR label using 
the <name>: form (the LABEL directive is not 
used in this case). If you are defining a BYTE 
or WORD NEAR label, you can place the <name>: 
in front of a Define directive. 

When using a LABEL for code (NEAR or FAR), the 
segment must be addressable through the CS 
register. 

Example - For Code: 

SUBRTF LABF.L FAR 
SIJBRT: (first instruction) ;colon ~!EAR label 

0 



Programmer Guide 

2. 

0 

0 

0 

ASSEMBLER 

For data: 

<type may be BYTE, WORD, DWORD, 
<structure-name>, or <record-name>. When STRUC 
or RECORD name is used, <name> is assigned the 
size of the structure or record. 

Example - For Data: 

BARRAY LABEL BYTE 
ARRAY DW 100 DIIP (0) 

ADD 
ADD 

AL,BARRAY [99) 
AX,BARRAY rlJA] 

;ADD 100th byte to AL 
;ADD 50th word to AX 

By defining the array two ways, you can access 
entries either by byte or by word. Also, you 
can use this method for STRUC. If allows you to 
place your data in memory as a table, and to 
access it without the offset of the STRUC. 

Defining the array two way also permits you to 
avoid using the PTR operator. The double 
defining method is especially effective if you 
access the data different ways. It is easier to 
give the array a second name than to remember 
to use .PRT. 

II. 1-87 



ASSEMBLER 

I I. 1-88 

Programmer Guide 

MAME 

NAME <module-name> 

<module-name> must not be a reserved word. The 
module name may be any length, but Macro 
Assembler uses only the first six characters 
and truncates the rest. 

The module name is passed to LINK, but 
otherwise has no significance for the 
assembler. Macro Assembler does check if more 
than one module name has been declared. 

Every module has a name. Macro Assembler 
derives the module name from: 

1. a valid NAME directive statement 

2. If the module does not contain a NAME 
statement, Macro Assembler uses the first 
six characters of the TITLE directive 
statement. The first six characters must be 
legal as a name. 

Examples: 0 
~JAME CURSOR 

C 



0 

Programmer Guide ASSEMRLER 

ORG 

ORG <exp> 

Example: 

ExafTlpl e -

The location counter is set to the value of <exp>, 
and the assembler assigns genereated code starting 
with that value. 

All names used in <exp> must be known on pass,. The 
value of <exp> must either evaluate to an absolute 
or must be in the same segment as the location 
counter. 

ORG 12nH ; 2-byte ab sol ue value 
;maximum=nFFFFH 

ORG (+2 ;skip two bytes 

ORG to a boundary (conditional l: 

CSEG SEt;MDIT PAGE 
BF.GJfl ~ 

IF (C:-BEGPI) MOD 2,:;i; ;if not already on 

F.MDIG 

;2,:;i; byte boundary 
ORG (!:-BEGHl)+;:>'if;-((c;-BEGHI) 1100 ;:>'ifi) 

See Section 1.4.2.2, Conditional Directives, for an 
explanation of conditional assembly. 

!J .1-RO 



ASSEMBLER Programmer Guide 

PROC 

<procname> PROC [NEAR] 
or FAR 

RET 
<procname> DlDP 

The default, if no operand is specified, is 
NEAR, llse FAR if: 

the procedure name is an operating system 
entry point 

the procedure will be called from code 
which has another ASSUME CS value. 

The PROC block should contain a RET statement. 

The PROC directive serves 
device to make your 
understandable. 

as a structuring 
programs more 

C 

The PROC directive, through the NEAR/FAR 0 
option, informs CALLs to the procedure to 
generate a HEAR or a FAR CALL and RETs to 
generate a NEAR or a FAR RET. PROC is used, 
therefore, for coding simplification so that 
the user does not have to worry about NEAR or 
FAR for CALLS and RETs. 

A NEAR CALL or REDIRM changes the IP but not 
the CS register. A FAR CALL or RETURN changes 
both the IP and the CS registers. 

Procedures are executed either in-line, from a 
JMP, or from a CALL, 

PROCs ~ay be nested, which means that they are 
put in line. 

Combining the PUBLIC directive with a PROC 
statement ( both ,1EAR and FAR), per mi ts you to 
make external CALLS to the procedure or to make 
other external references to the procedure. 



Programmer Gui de 

Examples: 

0 

PIJBLIC 
FAR NAME PROC 

CALL 
RET 

FAR NAME ENDP 

PIIBLIC 
NEAR NAME PROC 

RET 
tJEAR NAME ENDP 

FAR NAME 
FAR­
NEAR NAME 

NEAR NAME 
tJEAR-

ASSEMBLER 

The second subroutine above can be called 
directly from a t!EAR segment (that is, a segmen 
addressable through the same CS and within 
641(): 

CALL NEAR NAME 

A FAR segment (that is, any other segment that 
is not a t!EAR segment) must call to the first 
subroutine, which then calls the second; an 
indirect call: 

CALL FAR tJAME 



ASSEMBLER Programmer Guide 

PllflLIC 

PllflLIC <symbol >r, ••• 1 

Examples: 

Place a PllflLIC directive statement in any module 
that contains symbols you wnat to use in other 
modules without defining the symbol again. PllllLIC 
makes the listed symbol(s), which are defined in the 
module where the PIIBLIC statement appears, available 
for use by other modules to be linked with the 
module that defines the symbol Cs). This information 
is passes to LI~v. 

<symbol> may be a number, a variable, a label 
including PRQC labels). 

<symbol> may not be a register naMe or a symbol 
defined (with Enif) by floating point numbers or by 
integers larger than 2 bytes. 

GETIMFO 

GETIMFO 

PIIBLIC 
PROC 
PIISH 
MOV 

POP 
RET 
D!OP 

GETHIFO 
FAR 
BP 
BP,SP 

BP 

;save caller's regicu·- · 
;get address parame 
;body of subroutine 
;restore caller's reg 
;return to caller 

Example - Illegal PIIBLIC: 

PIIBLIC PIE BAUl,HIGH VALIIE 
PIE BALO Enif - 'l.lllf"/;" 
HIGH "ALl'E En11 oqaaaaooo 

I I. 1-9? 



0 

0 

Programmer Guide ASSF.HRLFR 

Exa111ple: 

F.xal'lple: 

The default input base (or radix) for all constants 
is decimal .The .RADIX directive permits yooTo 
change the input radix to any base in the range 2 to 
lfi. 

<exp> is always in decimal radix, regardless of the 
current input radix. 

MOY 
.RADIX 
MOIi 

BX,nFFH 
11; 
RX,nFF 

The two MQVs in this example are identical. 

The .RADIX directive does not affect the generated 
code values p 1 aced in the • OR,J, . LST, or . CRF output 
fi 1 es. 

The .RAOJX directive does not affect the DD, on, or 
DT directives. tlumeric values entered in the 
expression of these directives are always evaluated 
as decimal unless a data type suffix is appended to 
the value. 

MIIM HAIIO 
HOT"llAND 
coot HMID 

.RADIX 
11T 
on 
DD 

Jfi 
77?. 
77-:,.n 
77?,H 

77?. = decimal 
77?, = octal here only 
now 77~ = hexadecil'lal 

II. 1 _01 



ASSEMBLER 

II.1-94 

Programmer Guide 

RECORD 

<recordname> RECORD <fieldname>:<width>[=<exp>],[ ••• ] 

<fieldname> is the name of the field. <width> 
specifies the number of bits in the field 
defined by <fieldname>. <exp> contains the 
initial (or default) value for the field. 
Forward references are not allowed in a RECORD 
statement. 

<fieldname> becomes a value that can be used in 
expressions. When you use <fieldname> in an 
expression, its value is the shift count to 
move the field to the far right. Using the MASK 
operator with the <fieldname> returns a bit 
mask for that field. 

<width> is a constant in the range l to 1~ that 
specifies the number of bits contained in the 
field defined by <fieldname>. The WinTH 
operator returns this value. If the total width 
of all declared fields is larger than 8 bits, 
then the assembler uses two bytes. Otherwise, 
only one byte is used. 

The first field you declare goes into the most 
significant bits of the record. Successively 
declared fields are placed in the succeeding 
bits to the right. If the fields you declare do 
not total exactly 8 bits or exactly lfi bits, 
the entire record is right shifted so that the 
last bit of the last field is the lowest bit of 
the record. Unused bits will be in the high end 
of the record. 

0 



Programmer Guide 

For Example: 

FOO RECORD HIGH:4,MID:3,LOW:3 

Initially, the bit map would be: 

ssi:~~=~~i~b~o~~ =ijjj =i i 

ASSEMBLER 

Totals bits >8 means use a word; but total bits 
<ln means right shift, place undeclared bits at 
high end of word. Thus: 

Cl n O O O O 1 1 1 1 n 0. n O O · <---MASK f i-~~~-i_,_·~~i;i~·:~DfL~! 
declared ----------~ WIDTH shift count 

<exp> contains the initial value for the field. 
If the field is at least 7 bits wide, the user 
can use an ASCII character as the <exp>. 

For example: 

HIGH:7='0' 

To initialize records, use the same method used 
for DB. The format is: 

[<name>] <recordname> <[exp] [, •.. ]> 
or 
[<name>J <recordname> 

DUP(<[expJr, ••• J>) 
[<exp> 

The name is optional. When given, name is a 
label for the first byte or word of the record 
storage area. 

The recordname is the name used as a label for 
the RECORD directive. 

The exp (both forms) contains the values you 
want placed into the fields of the record. In 
the latter case, the parentheses and angle 
brackets are required only around the second 
exp (following DUP). If [exp] is left blank, 
either the default values applies (the value 
given in the original record definition), or 
the value is indeterminant (when not 
initialized in the original record definition). 
For fields that are already initialized to 

II. 1-95 



ASSEMBLER Programmer Guide 

values you want, place consecutive commas to 
skip over (use the default values of) those 
fields. 



Programmer Guide 

0 

Examples: 

0 

ASSEMBLER 

For example: 

FOO <,, 7> 

From the previous example, the 7 would be 
placed into the LOW field of the record FOO. 
The fields HIGH and MIO would be left as 
declared (in this case, uninitialized). 

Records may be used in expressions (as an 
operand) in the form: 

recordname<[value[, ••• JJ> 

The value entry is optional. The angle brackets 
must be coded as shown, even if the optional 
values are not given. A value entry is the 
value to be placed into a field of the record. 
For fields that are already initialized to 
values you want, place consecutive commas to 
skip over (use the default values of) those 
fields, as shown above. 

FOO 

BAX 
JAME 

RECORD 

FOO 
FOO 

MOV 

AtJO 
MOV 
SHR 
MOV 

HIGH:5,MID:3,LOW:~ 

<> ;leave indeterminate here 
10 11llP( <lfi ,R>) ;HIGH=l/5 ,MID=R 
;LOW=? 

DX,OFFSET JANE[2] 
;get beginning record address 
DX,MASV. MID 
CL,MID 
DX,CL 
CL,WIDTH MID 

II.1-97 



ASSEMBLER 

II.1-9!1 

Programmer Guide 

SEGMDIT 

<segname> SEGMENT [<align>J [<combine>] [<'class'>] 

<segname> EtJDS 

At runtime, all instructions that generate code 
and data are in (separate) segments. Your 
program may be a segment, part of a segment, 
several segments, parts of several segments, or 
a combination of these. If a program has no 
SEGMEHT statement, and LIHK error (invalid 
object) will result at link time. 

The <segment name> must be an unique, legal 
name. The segment name must not be a reserved 
word. 

<align> may be PARA (paragraph - default), 
BYTE, WORD, or PAGE. 

<combine> may be PUBLIC, COMMON, AT <exp>, 
STACJ<, MEMORY, or no entry (which defaults to 
not combinable, called Private in the LINK 
manual). 

<class> name is used to group segments at link 
time. 

All three operands are passed to LIHK. 

The alignment tells the linker on what kind of 
boundary you want the segment to begin. The 
first address of the segment will be, for each 
aligment type: 

PAGE - address is xxxOOH (low byte is 0) 
PARA - address is xxxxOH (low nibble is O) 

bit map - xx xx O O O 0 
WORD - address is xxxxeH (e=even number;low 

bit is O) 
bit map - xx xx xx x 0 

BYTE - address is xxxxxH (place anywhere) 

C 

0 



Programmer Guide 

C 

0 

ASSEMBLER 

The combine type tells LHIK how to arrange the 
segments of a particular class name. The 
segments are mapped as follows for each combine 
type: 

None (not combinable or Private) 

El 
EJ 

Public and Stack 

B 

Common 

B 

Private segments are loaded 
separately and remain 
separate. They may be 
physically contiguous but 
not logically, even if the 
segments have the same 
name. Each private segment 
has its own base address. 

0 Public segments of the same 
name and class name are 
loaded contiguously. Offset 
is from beginning of first 
segment loaded through last 
segment loaded. There is 
only one base address for 
all public segments of the 
same name and class name. 
(Combine type stack is 
treated the same as public. 
However, the Stack Pointer 
is set to the first address 
of the first stack segment. 
LINK requires at least one 
stack segment.) 

0 Common segments of the same 
name and class name are 
loaded overlapping on 
another. There is only one 
base address for all ocmmon 
segments of the same name. 
The length of the common 
area is the length of the 
longest segment. 

II. 1-99 



ASSEMBLER 

rr. 1-10n 

Programmer Guide 

Memory 

Ostensibly, the memory combine type causes the 
segment(s) to be placed as the highest segments 
in memory. The first memory combinable segment 
encounter is placed as the highest segment in 
memory. Subsequent segments are treated the 
same as Common segments. 

NOTE 

This feature is not supported by 
LIMI(. LINK treats Memory segments the 
same as Public segments. 

AT <exp> 

The segment is placed at the PARAGRAPH address 
specified in <exp>. The expression may not be a 
forward reference. Also, the AT type may not be 
used to force loading at fixed addresses. 
Rather, the AT combine type permits labels and 
variables to be defined at fiexed offests 
within fixed areas of storage, such as ROM or 
the vector space in low memory. 

HOTE 

This restriction is imposed by LHJI< 
and DOS. 

Class names must be enclosed in quotation 
marks. Class names may be any legal naem. Refer 
to LINK for more discussion. 

Segment definitions may be nested. When 
segments are nested, the assembler acts as if 
they are not and handles them sequentially by 
appending the second part of the split segment 
to the first. At mos for the split segment, 
the assembler takes up the nested segment as 
the next segment, completes it, and goes on to 
subsequent segments. Overlapping segments are 
not permitted. 

0 

( 



C 

0 

0 

Programmer Guide 

For example: 

A SEGMENT A SEGMENT 

B SEGMENT B SEGMENT 

• B ENDS 
BENDS 
A SEGMENT 

A ENDS 

A ENDS 

The following arrangement is not a 11 owed: 

A SEGMENT 

B SEGMENT 

A ENDS 

BENDS 

Example: 

In module A: 

SEGA SEGMENT 
ASSUME 

SEGA ENDS 
END 

In module B: 

this is ille9al '. 

PUBLIC I CODE I 

CS:SEGA 

SEGA SEGMENT PUB[IC 'CODE' 
ASSUME CS:SEGA 

SEGA ENDS 
END 

; LINK adds this seament to same 
;named segment in module A {and 
;others) if class name is the same. 

ASSEMBLER 

II.1-101 



ASSEl1BLER 

II.1-102 

Programmer Guide 

STRIIC 

<structurename> STRIIC 

<structurename> DIDS 

The STRUC directive is very much like RECORD, 
except STRLIC has a multiple byte capability. 
The allocation and initialization of a STRIIC 
block is the same as for RECORD. 

Inside the STRlJC/n1os block, the Define 
directives (OB,DW,DO,Dn,oT) may be used to 
allocate space. The Define directives and 
comments set off by semicolons (;) are the only 
statement entries allowed inside a STRlJC block. 

Any label on a Define directive inside a 
STRIJC/ENDS block becomes a <fieldname> of the 
structure. (This is how structure fieldnames 
are defined.) Initial values given to 
fieldnames in the STRl~/E~DS block are default 
values for the various fields. These values of o 
the fields are one of two types: overridable or 
not overridable. A simple field, a field with 
only one entry (but not a OIIP expression), is 
overridable. A multiple field, a field with 
more than one entry is not overridable. For 
example: 

FOO DB l,?. 
BAZ DB 10 OIIP(?) 
zoo ns r; 

;is not overridable 
;is not overridable 
;is overridable 

If the <exp> following the Define directive 
contains a string, it may be overriden by 
another string. However, if the overriding 
string is shorter than the initial string, the 
assembler will pad with spaces. If the 
overriding string is longer, the assembler will 
truncate the extra characters. 



Programmer Gui de 

0 
Examples: 

ASSEMBLER 

Usually, structure fields are used as operands 
in some expression. The format for a reference 
to a structure field is: 

<variable>.<field> 

<variable> represents an anonymous variable, 
usually set up when the structure is allocated. 
To allocate a structure, use the structure name 
as a directive with a label (the anonymous 
variable of a structure reference) and any 
override values in angle brackets: 

FOO STRIICTURE 

Fon rnns 

GOO FOO <,7,,'JOE'> 

.<field> represents a label given to a DEFIHE 
directive inside a STRUC/ENDS block (the period 
must be coded as shown). The value of <field> 
will be the offset within the addressed 
structure. 

To define a structure: 

s 
FIELnl 
FIELD2 
FIELD3 
FIELD4 

STRUC 
DB 
DB 
DB 
DB 

1,2 
1n DUP(?) 
!i 
'DOBOSKY' 

;not overridable 
; not overr i dab 1 e 
;overri dabl e 
; overr i dab 1 e 

The Define directives in this example define 
the fields of the structure and the order 
corresponds to the order values are given in 
the initialization list when the structure is 
allocated. Every Define directive statement 
line inside a STRIJC block defines a field, 
whether or not the field is named. 

To allocate the structure: 

DBAREA S <,, 7, 'MIDY'> ;overrides 3rd and 4th 
; fields only 

I I. 1-103 



ASSEMBLER 

II.1-104 

To refer to a structure: 

MOV AL,rBxJ.FIELn1 
MOV AL,DBAREA.FIELD~ 

Programmer Guide 

0 



C 

0 

0 

Programmer Guide ASSEMBLER 

l.4.2.2 Conditional Directives 

Conditional directives allow users to design blocks of 
code which test for specific conditions then proceed 
accordingly. 

All conditionals follow the format: 

IFxxxx [argumentJ 

[ELSE 

. ] 
EHDIF 

Each IFxxxx must have a matching ENDIF to terminate the 
conditional. Otherwise, an 'llnterminated conditional' 
message is generated at the end of each pass. An ENDIF 
without a matching IF causes a Code R, Hot in conditional 
block error. 

F.ach conditional block may include the optional ELSE 
directive, which allows alternate code to be generated 
when the opposite condition exists. Only one ELSE is 
permitted for a given IF. An ELSE is always bound to the 
most recent, open IF. An ELSE is always bound to the 
most recent, open IF. A conditional with more than one 
ELSE or an ELSE without a conditional will cause a Code 
7, Already had ELSE clause error. 

Conditionals may be nested up to 255 levels. Any 
argument to a conditional must be known on pass 1 to 
avoid Phase errors and incorrect evaluation. For IF and 
IFE the expression ~ust involve values which were 
previously defined, and the expression must be Absolute. 
If the name is defined after an IFDEF or IFNDEF, pass 1 
considers the name to be undefined, but it will be 
defined on pass 2. 

The assembler evaluates the conditional statement to TRUE 
(which equals any non-zero value), or to FALSE (which 
equals 0000H). If the evaluation matches the condition 
defined in the conditional statement, the assembler 
either assembles the whole conditional block, or, if the 
conditional block contains the optional ELSE directive, 
assembles from IF to ELSE; the ELSE to EMDIF portion of 
the block is ignored. If the evaluation does not match, 
the assembler either ignores the conditional block 

II.1-105 



ASSEMBLER 

II.l-106 

Programmer Guide 

completely or, if the conditional block contains the 
optional ELSE directive, assembles only the ELSE to ENDIF 
portion; the IF to ELSE portion is ignored. 

0 

( 



0 

0 

Programmer Guide 

IF <exp> 

JFE <exp> 

ASSEMBLER 

If <exp> evaluates to nonzero, the statements 
within the conditional block are assembled. 

If <exp> evaluates too, the statements in the 
conditional block are assembled. 

!Fl Pass 1 Conditional 

If the assembler is in pass 1, the statements 
in the conditional block are assembled. !Fl 
takes no expression. 

IF2 Pass 2 Conditional 

If the assembler is in pass 2, the statements 
in the conditional block are assembled. IF2 
takes no expression. 

IFDEF <symbol> 

If the <symbol> is defined or has been declared 
External, the statements in the conditional 
block are assembled. 

IFIJDEF <symbol> 

If the <symbol> is not defined or not declared 
External, the statements in the conditional 
block are assembled. 

II.1-107 



ASSEMBLER 

IFB <arg> 

IFNB <arg> 

I I. 1-lOR 

Programmer Guide 

The angle brackets around <arg> are required. 

If the <arg> is 
angle brackets 
the statements 
assembled. 

blank ( none given) or null ( two 
with nothing in between, <>), 
in the conditional block are 

IFB (and IF~B) are normally used inside macro 
blocks. The expression following the IFB 
directive is typically a dummy symbol. When 
the macro is called, the rtunnny will be replaced 
by a parameter passed by the macro call. If 
the macro call does not specify a parameter to 
replace the dummy following IFB, the expression 
is blank, and the block will be assembled. 
(IFNB is the opposite case.) Refer to section 
4.2.~, Macro Directives, for a full 
explanation. 

The angle brackets around <arg> are required. 

If <arg> is not blank, the statements in the 
conditional block are assembled. 

IFBN (and IFB) are normally used inside macro 
blocks. The expression following the In!B 
directive is typically a dummy symbol. When 
the macro is called, the dummy will be replaced 
by a parameter passed by the macro call. If 
the macro call specifies a parameter to replace 
the dunnny following IFMB, the expression is not 
blank, and the block will be assembled. (IFB 
is the opposite case.) Refer to section 
1.4,2.3, Macro Directives for a full 
explanation. 

0 

0 



0 

0 

Programmer Guide ASSEMBLER 

IFIDN <argl>,<arg2> 

The angle brackets around <argl> and <arg2> are 
requird. 

If the string <argl> is identical to the string 
<arg2>, the statements in the conditional block 
are assembled. 

IFIDN (and IFDIF) are normally used inside 
macro blocks. The expression following the 
IFIDN directive is typically two dummy symbols. 
When the macro is called, the dummys will be 
replaced by parameters passed by the macro 
call. If the amcro call specifies two 
identical parameters to replace the dununys, the 
block will be assembled. (IFDIF) is the 
opposite case.) Refer to section 1.4.2.3, 
Macro Directives, for a full explanation. 

IFDIF <argl>,<arg2> 

ELSE 

The angle brackets around <argl> and <arg2> are 
required. 

If the string <argl> is different from the 
string <arg2>, the statements in the 
conditional block are assembled. 

IFDIF and <IFIDN> are normally used inside 
macro blocks. The expression following the 
IFDIF directive is typically two dummy symbols. 
When the macro is called, the dummys will be 
replaced by parameters passed by the macro 
callg. If the macro call specifies two 
different parameters to replace the dummys, the 
block will be asesmbled. (IFIDN is the opposite 
case.) 

The ELSE directive allows you to generate 
alternate code when the opposite condition 
exists. May be used with any of the 
conditional directives. Only one ELSE is 
allowed for each IFxxxx conditional directive. 
ELSF. takes no expression. 

II.1-109 



ASSEMBLER 

ENDIF 

11.1-110 

Programmer Guide 

This directive terminates a conditional block. 
An nmIF directive must be given for every 
IFxxxx directive used. ENDIF takes no 
expression. ENDIF closes the most recent, 
unterminated IF. 

0 

0 



0 

Programmer Guide ASSEMBLER 

l..4.2.3 Macro Directives 

The macro directives allow you to write blocks of code 
which can be repeated without recoding. The blocks of 
code begin with either the macro definition directive or 
one of the repetition directives and end with the EtlDM 
directive. All of the macro directives may be used 
inside a macro block. In fact, nesting of macros is 
limited only by memory. 

The macro directives of the Macro Assembler include: 

macro definition: 
MACRO 

termination: 
ENDM 
EXITM 

unique symbols within macro blocks: 
LOCAL 

undefine a macro: 
PIIRGE 

repetitions: 
REPT (repeat) 
IRP (indefinite repeat) 
IRPC (indefinite repeat character) 

The macro directives also include some special macro 
operators: 

,. 
., 
! 
% 

II.1-111 



ASSEMBLER 

II.1-112 

Programmer Guide 

Macro Defi ni ti on 

<name> MACRO [<dummy>, .•• ] 

EHDM 

The block of statements from the MACRO 
statement line to the E"DM statement line 
comprises the body of the macro, or the amcro's 
definition 

<name> is like a LABEL and conforms to the 
rules for forming symbols. After the macro has 
been defined, <name> is used to invoke the 
macro. 

A <dummy> is formed as any other name is 
formed. A <dummy> is a place holder that is 
replaced by a parameter in a one-for-one text 
substitution when the MACRO block is used. You 
should include all dummys used inside the macro 
block on this line. The number of dummys is 

C 

limited only by the length of a line. If you o 
specify more than one dummy, they must be 
separated by commas. Macro Assembler 
interprets a series of dummys the same as any 
list of symbol names. 

NOTE 

A dummy is always recognized 
exclusively as a durrmy. Even if a 
register name (such as AX or BH) is 
used as a dummy, it will be replaced 
by a parameter during expansion. 



Programmer Guide 

0 

0 

ASSEMBLER 

One alternative is to list no du1T1T1ys: 

<name> MACRO 

This type of macro block allows you to call the 
block repeatedly, even if you do not want or 
need to pass parameters to the block. In this 
case, the block will not contain any du1T1T1ys. 

A macro block is not assembled when it is 
encountered. Rather, when you call a macro, 
the assembler "expands" the macro call 
statement by bringing in and assembling the 
appropriate macro block. 

MACRO is an extremely powerful directive. With 
it, you can change the value and effect of any 
instruction mnemonic, directive, label, 
var i ab 1 e or symbo 1 • When Macro Assemb 1 er 
evaluates a statement, it first looks at the 
macro table it builds during pass 1, If it 
sees a name there that matches an entry in a 
statement, it acts accordingly, (Remember: 
Macro Assembler evaluates macros, then 
instruction mnemonics/directives.) 

If you want to use the TITLE, SlJBTTL, or NAME 
directives for the portion of your program 
where a macro block appears, you should be 
careful about the form of the statement. If, 
for example, you enter SUBTTL MACRO 
OEFIMITIONS, Macro Assembler will assemble the 
statement as a macro definition with SlJBTTL as 
the macro name and DEFHIITIOt-JS as the dummy. 
To avoid this problem, alter the word MACRO in 
some way; e.g., -MACRO, MACROS, and so on. 

II.1-113 



ASSEMBLER Programmer Guide 

Calling a Macro 

EXAMPLE: 

II.1-114 

To use a macro, enter a macro call statement: 

<name> [<parameter>, .•. ] 

<name> is the <name> of the MACRO block. A 
<parameter> replaces a <dummy> on a one-for-one 
basis. The number of parameters is limited only by 
the length of a line. If you enter more than one 
parameter, they must be separated by commas, spaces, 
or tabs. If you place angle brackets around 
parameters separated by commas, the assembler will 
pass all the items inside the angle brackets as a 
single parameter. For example: 

FOO l,2,1,4,!i 

passes five parameters to the macro, but: 

FOO <1,2,3,4,5> 

passes only one. 

The number of parameters in the macro call statement o 
need not be the same as the number of du111Rys in the 
MACRO definition. If there are more parameters than 
du111Rys, the extras are ignord. If there are fewer, 
the extra dummys will be made null. The assembled 
code will include the macro block after each macro 
call statement. 

GEN MACRO 
MDV 
ADD 
HOV 
ENDM 

XX,YY,ZZ 
AX,XX 
AX,YY 
ZZ,AX 

If you then enter a macro call statement: 

GEN DIICK,Dml,FOO 

assembly generates the statements: 

MO\/ AX,DLICK 
ADD AX,DON 
MDV FOO,AX 

On your program listing, these statements will be preceded by a 
plus sign to indicate that they came from a macro block. 



0 

0 



0 

0 



0 

0 

0 

Programmer Guide ASSEMBLER 

End Macro 

rnnM 
rnDM tells the assembler that the MACRO or Repeat 
block is ended 

Every MACRO, REPT, IRP, and IRPC must be terminated 
with the EIIDM directive. Otherwise, the 
'Unterminated REPT/IRP/IRPC/MACRO' message is 
generated at the end of each pass. An unmatched 
nmM al so causes an error. 

If you wish to be able to exit from a MACRO or 
repeat before expansion is completed, use EXITM. 

II.1-117 



ASSEMBLER 

Exit Macro 

EXITM 

Examples: 

II.1-Wl 

Programmer Guide 

The EXITM directive is used inside a MACRO or Repeat 
block to terminate an expansion when some condition 
makes the remaining expansion unnecessary or 
undesirable. Usually EXITM is used in conjunction 
with a conditional directive. 

When an EXITM is assembled, the expansion is exited 
immediately. Any remaining expansion or repetition 
is not generated. If the block containing the EXITM 
is nested within another block, the outer level 
continues to be expanded. 

FOO MACRO X 
X n 

REPT X 
X X+l 

IFE X-OFFH ;test x 
EXITM ;if true, exit REPT 
EMDIF 
DB X 
nJOM 
ENDM 

0 



0 

0 

Programmer Guide ASSEMBLER 

LOCAL 

Local <dummy>[<dummy> ••• ] 

Example: 

The LOCAL directive is allowed only inside a MACRO 
definition block. A LOCAL statement must precede all 
other types of statements in the macro definition. 

When LOCAL is executed, the assembler creates a 
unique symbol for each <dummy> and substitutes that 
symbol for each occurrence of the <dummy> in the 
expansion. These unique symbols are usually used to 
define a label within a macro, thus eliminating 
multiple-defined labels on successive expansions of 
the macro. The symbols created by the assembler 
range fr om ??OOOO to ??FFFF. llser s should avoid the 
form ??nnnn for their own symbols. 

oooo FIJM SEGMENT 
ASSUME CS:FIJN,OS:Fllfl 

FOO MACRO NUM,Y 
LOCAL A,B,C,D,E 

A: DB 7 
B: DB 8 
C: DB y 
D: ow Y+l 
E: ow NUM+l 

JMP A 
ENDM 
FOO OCOOH,OBEH 

oooo 07 + ??0000: DB 7 
0001 OB + ??0001: DB 8 
0002 BE + ??0002: DB OBEH 
0003 OOBF + ??0003: ow OBEH+l 
ooos ocni + ??0004: ow OCOOH+l 
0007 EB F7 + JMP ??0000 

FOO 03COH,OFFH 
ooo!l 07 + ??onnr;: DB 7 
00(1A 08 + ??0006: DB 8 
oooB FF + ??ooo7: DB OFFH 
none 0100 + ??onnA: DW OFFH+l 
oooE 03Cl + ??0009: OW o:icoH+l 
0010 EB F7 + ,JMP ??0005 
no12 FIIM ENDS 

mo 

II.1-119 



ASSEMBLER Programmer Guide 

PURGE 

PURGE <macro-name>[ ••. ] 

I I. 1-120 

PURGE deletes the definition of the macro(s) listed 
after it. 

PURGE provides two benefits: 

1. It frees text space of the macro body. 

2. It returns any instruction 
directives that were redefined 
their original function. 

mnemonics or 
by macros to 

'.l. It allows you to "edit out" macros from a macro 
library file. You may find it useful to create 
a file that contains only macro definitions. 
This method allows you to use macros repeatedly 
with easy access to their definitions. 
Typically, you would then place an IMCLllDE 
statement in your program file. Fol.lowing the 
INCLUDE statement, you could place a PURGE 
statement in your program file. Following the 
IMCLUDE statement, you could place a PURGE Q 
statement to delete any macros you will not use 
in this program. 

Examples: 

It is not necessary to PURGE a macro before 
redefining it. Simply place another MACRO 
statement in your program, reusing the macro 
name. 

IMCLUDE f1ACRO. LIB 
PURGE MACl 
MACl ;tries to invoke purged macro 

;returns a syntax error 

( 



0 

0 

Programmer Guide ASSEMBLER 

Repeat Directives 

The directives in this group allow the operations in a block 
of code to be repeated for the number of times you specify. 
The major differences between the Repeat directives and MACRO 
directive are: 

1. MACRO gives the block a name by which to call in the 
code wherever and whenever needed; the macro block 
can be used in many different programs by simply 
entering a macro call statement. 

2. MACRO allows parameters to be pased to the MACRO 
block when a MACRO is called; hence, parameters can 
be changed. 

Repeat directive parameters must be assigned as a part of the 
code block. If the parameters are known in advance and will 
not change, and if the repetition is to be peformed for every 
program execution, then Repeat directives are convenient. 
With the MACRO directive, you must call in the MACRO each time 
it is needed. 

Note that each Repeat directive must be matched with the ENDM 
directive to terminate the repeat block. 

II.1-121 



ASSEMBLER 

Repeat 

REPT <exp> 

EMDM 

Example : 

I I. 1-122 

Programmer Guide 

Repeat block of statements between REPT and ENDM 
<exp> times . <exp> is evaluated as a 1~-bit unsigned 
number. If <exp> contains an External symbol or 
undefined operands, an error is generated. 

X 0 
REPT 10 ;generates DB 1 - DB 10 

X X+l 
DB X 
ENDM 

assembles as: 

0000 X 0 
REPT 10 ;generates DB 1 - DB 10 

X X+l 
DB X 
rnnM 

onnn• 01 + DB X 
0001 ' 02 + OB X 
onn2• 03 + DB X 
non~· 04 + DB X 
0004' 05 + DB X 
nnoi;• 0/i + DB X 
(100/i' 07 + DB X 
0007' OR + DB X 
onnR' 09 + DB X 
000!1' OA + DB X 

END 



Programmer Guide ASSEMBLER 

0 

0 

Indefinite Repeat 

IRP <dummy>,<parameters inside angle brackets> 

EHDM 

Examples: 

Parameters must be enclosed in angle brackets. 

Parameters may be any legal symbol, string, numeric, 
or character constant. The block of statements is 
repeated for each parameter. Each repetition 
substitutes the next parameter for every occurrence 
of <dummy> in the block. If a parameter is null 
(i.e., <>), the block is processed once with a null 
parameter. 

IRP X,<1,2,3,4,5,6,7,A,9,10> 
DB X 
ENOM 

This example generates the same bytes (DB 1 - DB 10) 
as the REPT example. 

When IRP is used inside a MACRO definition block, 
angle brackets around parameters in the macro call 
statement are removed before the parameters are 
passed to the macro block. An example, which 
generates the same code as above, illustrates the 
removal of one level of brackets from the 
parameters: 

FOO MACRO 
IRP 
DB 
EHDM 
ENDM 

X 
Y,<X> 
y 

When the macro call statement 

FOO <1,2,3,4,5,6,7,8,9,10> 

is assembled, the ~aero expansion becomes: 

IRP 
OB 
ENOM 

Y,<1,2,3,4,~,6,7,R,9,10> 
y 

The angle brackets around the parameters are 

II.1-123 



ASSEMBLER 

II.1-124 

Programmer Guide 

removed, and all items are passed as a single 
parameter. 0 

0 

0 



( 

0 

C 

Programmer Guide ASSEMBLER 

Indefinite Repeat_Character 

IRPC <dummy>,<string> 

ENDM 

Example: 

The statements in the block are repeated once for each 
character in the string. Each repetition substitutes the 
next character in the string for every occurrence of 
<dummy> in the block. 

IRPC X,012~456789 
DB X+l 
ENDM 

This example generates the same code (DB 1 - DB 10) 
as the two previous examples. 

II.1-125 



ASSEMBLER Progrannner Guide 

Special Macro Operators 

Several special operators can be used in a macro block to select 
additional assembly functions. 

II,1-126 

Ampersand concatenates text or symbols. (The ~ may not 
be used in a macro call statement.) A dunnny parameter in 
a quoted string will not be substituted in expansion 
unless preceded immediately by&. To form a symbol from 
text and a dunnny, put & between them. 

For example: 

ERRGEN MACRO X 
ERROR&X PIISH BX 

MOV BX, '&X' 
JMP ERROR 
ENDM 

The call ERRGEM A wi 11 then gen er ate: 

ERRORA: PUSH B 
MOV BX, 'A' 
JMP ERROR 

In Macro Assembler, the ampersand will not appear in the 
expansion. One ampersand is removed each time a dunnny& or 
&dunnny is found. For complex macros, where nesting is 
involved, extra ampersands may be needed. You need to 
supply as many ampersands as there are levels of nesting. 

0 

( 



0 

Programmer Guide 

For example: 

Correct form 

FOO MACRO X 
IRP Z,<1,2,3> 

X&&Z DB Z 
EHDM 
EIJDM 

Incorrect form 

FOO 

X&Z 
DJDM 
DJDM 

MACRO X 
DB Z,<1,2,3> 
z 

ASSEMBLER 

When called, for example, by FOO BAZ, the expansion would 
be (correctly in the left column, incorrectly in the 
right): 

1. MACRO build, find dummies and change to dl 

IRP Z,<1,2,3> IRP Z,<1,2,3> 
dl&Z DB Z dlZ DB Z 

ENDM ENllM 

2. MACRO expansion, substitute parameter text for dl 

IRP Z,<1,2,3> !RP Z,<1,2,3> 
BAZ&Z DB Z BAZZ DB Z 

EflOM ENDM 

~. IRP build, find dummies and change to dl 

BAZ&dl DB dl BAZZ DB dl 

4. IRP expansion, substitute parameter text for dl 

BAZl DB 
BAZ2 DB 
BAZ3 DB 

1 
2 
3 

BAZZ 
BAZZ 
BAZZ 

DB 
DB 
DB 

1 
2 
3 

-;here it's an error, 
;multi-defined symbol 

II.1-127 



ASSEMBLER Programmer Guide 

<text> Angle brackets cause Macro Assembler to treat the text 
between the angle brackets as a single literal. Placing 
either the parameters to a macro call or the list of 
parameters following the IRP directive inside angle 
brackets causes two results: 

I I. 1-128 

1. All text within the angle brackets are seen as a 
single parameter, even if commas are used. 

2. Characters that have special functions are taken as 
literal characters. For example, the semicolon 
inside angle brackets <;> becomes a character, not 
the indicator that a comment follows. 

One set of angle brackets is removed each time the 
parameter is used in a macro. When using nested macros, 
you will need to supply as many sets of angle brackets 
around parameters as there are levels of nesting. 

In a macro or repeat block, a comment preceded by two 
semicolons is not saved as a part of the expansion. 

The default listing condition for macros is .XALL (see 
section 1.4.2.4, Listing [lirectives, below). llnder the o 
influence of .XALL, comments in macro blocks are not 
lisetd because they do not generate code. 

If you decide to place the .LALL listing directive in 
your program, then comments macro and repeat blocks are 
saved and listed. This can be the cause of an out of 
memory error. To avoid this error, place double 
semicolons before comments inside macro and repeat 
blocks, unless you specifically want a comment to be 
retained. 

An exclamation point may be entered in an argument to 
indicate that the next character is to be taken 
literally. Therefore, !; is equivalent to<;>. 

The percent sign is used only in a macro argument to 
convert the expression that follows it (usually a symbol) 
to a number in the current radix. [luring macro 
expansion, the number derived from converting the 
expression is substituted for the dummy. Using the % 
special operator allows a macro call by value. (Usually, ( 
a macro call is a call by reference with the text of the 
macro argument substituting exactly for the dummy.) 

The expression following the % must evaluate to an 



0 

C 

Programmer Guide 

absolute (non-relocatable) constant. 

Example: 

PRHITE MACRO 
'.tOIIT 
nmM 

SYMl EOU 
SYM2 EOIJ 

PRINTE 

MSG,N 
* MSG,N * 

100 
200 
<SYMl + SYM2 = >,%(SYM1 + SYM2) 

ASSEMBLER 

flormally, the macro call statement would cause the string 
(SYMl + SYM2) to be substituted for the dummy N. The 
result would be: 

%OUT * SYMl + SYM2 = (SYMl + SYM2) 

When the % is placed in front of the parameter, the 
assembler generates: 

%out * SYMl + SYM2 = ~00 * 

II .1-129 



ASSEMBLER Programmer Guide 

1.4.3 LISTING DIRECTIVES 

Listing directives perform two general functions: format control 
and listing control. Format control directives allow the 
programmer to insert page breaks and direct page headings. Listing 
control directives turn on and off the listing of all or part of 
the assembled file. 

PAGE 

PAGE r<length>J(,<width>J 
PAGE [+J 

PAGE with no arguments or with the optional [,+] argument 
causes the assembler to start a new output page. The 
assembler puts a form feed character in the listing file 
at the end of the page. 

The PAGE directive with either the length or width o 
arguments does not start a new listing page. 

Example: 

II.1-lJO 

The value of <length>, if included, becomes the new page 
length (measured in lines per page) and must be in the 
range 10 to 255. The default page length is 50 lines per 
page. 

The value of <width>, if included, becomes the new page 
width (measured in characters) and must be in the range 
60 to 132. The default page width is 80 characters. 

The plus sign (+) increments the major pge number and 
resets the minor page number to 1. Page numbers are in 
the form Major-minor. The PAGE directive without the + 
increments only the minor portion of the page number. 

PAGE+ ;increment Major, set minor to l 

PAGE 5R,6n ;page length=5R lines, 
;width=6n characters 

( 



0 

0 

Programmer Guide ASSEMBLER 

TITLE 

TITLE <text> 

Example: 

TITLE specifies a title to be listed on the first line of 
each page. The <text> may be up to ~n characters long. 
If more than one TITLE is given, an error results. The 
first six characters of the title, if legal, are used as 
the module name, unless a NAME directive is used. 

TITLF. PROGl -- 1st Program 

If the MAME directive is not used, the module name is now 
PROGl -- 1st program. This title text will appear at the 
top of every page of the listing. 

I I. 1-131 



ASSEMBLER Programmer Guide 

SIIBTITLE 

SUBTTL <text> 

Example: 

SUBTTL specifies a subtitle to be listed in each page 
heading on the line after the title. The <text> is 
truncated after 60 characters. 

Any nuJ'llber of SllBTTLs may be given in a program. Each 
time the assembler encounters SLIBTTL, it replaces the 
<text> from the previous SUBTTL with the <text> from the 
most recently encountered SUBTTL. To turn off SIJBTTL for 
part of the output, enter a Sl~TTL with a null string for 
<text>. 

SIIRTTL SPECIAL I/0 ROUTINE 

SIIBTTL 

0 

The fir st SIIBTTL causes the subtitle SPECIAL I /0 ROUTINE 0 
to be printed at the top of every page. The second 
SIIBTTL turns off subtitle (the subtitle line on the 
listing is left blank). 

0 

II.!-132 



Programmer Guide ASSEMBLER 

%011T 

( '.tOIJT <text> 

Example: 

0 

0 

The text is listed on the terminal during assembly. %0llT 
is useful for displaying progress through a long assembly 
or for displaying the value of conditional assembly 
switches. 

%011T will output on both passes. If only one printout is 
desired, use the !Fl or IF2 directive, depending on which 
pass you want displayed. See Section 4.2.2, Conditional 
Directives, for descriptions of the !Fl and IF2 
directives. 

%OUT *Assembly half done* 

The assembler will send this message to the terminal 
screen when encountered. 

IF1 
%OUT *Pass 1 started* 
DIDIF 

IF2 
'.tOIJT *Pass 2 started* 
END IF 

I I. 1-133 



ASSEMBLER 

.LIST 

.XLIST 

Example: 

I I. 1-134 

Programmer Guide 

.LIST lists all lines with their code (the default condition) • 

• XLIST suppresses all listing. 

If you specify a listing file following the Listing prompt, a listing 
file with all the source statements included will be listed. 

When .XLIST is encountered in the source file, source and object 
code will not be listed, .XLIST remains in effect until a ,LIST 
is encountered • 

• XLIST overrides all other listing directives. So, nothing will 
be listed, even if another listing directive (other than .LIST) 
is encountered. 

.XLIST ;listing suspended here 

0 
.LIST ;listing resumes here 

C 



Programmer Guide ASSEMBLER 

.SFCOND 

• LFCOND 

. TFCOMD 

0 .XALL 

• LALL 

• SALL 

0 

.SFCOND suppresses portions of the listing containing 
conditional expressions that evaluate as false . 

.LFCOHD assures the listing of conditional expressions 
that evaluate false. This is the default condition • 

.TFCOND toggles the current setting •• TFCOND operates 
independently from • LFCOND and .SFCOND. • TFcmm toggles 
the default setting, which is set by the presence or 
absence of the /X switch when running the assembler. 
When/Xis used, .TFCOHD will cause false conditionals to 
list. When /X is not used, .TFCONO will suppress false 
conditionals. 

.XALL is the default • 

• XALL lists source code and object code produced by a 
macro, but source lines which do not generate code are 
not listed • 

.LALL lists the complete macro text for all expansions, 
including lines that do not generate code. Comments 
preceded by two semicolons (;;) will not be listed • 

.SALL suppresses listing of all text and object code 
produced by macros. 

II.1-135 



ASSEMBLER 

I I .1-136 

.CREF 
-:-xclITT 

.CREF 

Programmer Guide 

.XCREF (<variable list>] 

Examples: 

.CREF is the default condition •• CREF remains 
in effect until Macro Assembler encounters 
,XCREF • 

• XCREF without arguments turns off the .CREF 
(default) directive •• XCREF remains in effect 
until Macro Assembler encounters .CREF. Use 
.XCREF to suppress the creation of cross 
references in selected portions of the file. 
Use .CREF to restart the creation of a cross 
reference file after using the .XCREF 
directive. 

If you include one or more variables following 
.XCREF, these variables will not be placed in 
the listing or cross reference file. All other 
cross referencing, however, is not affected by 
an ,XCREF directive with arguments. Separate 
the variables with commas, 

Neither .CREF nor .XCREF without arguments 
takes effect until you specify a cross 
reference file when running the assembler, 
.XCREF <variable list> suppresses the variables 
from the symbol table listing regardless of the 
creation of a cross reference file. 

, XCREF CIIRSOR, FOO, GOO,BAZ ,ZOO 
;these variables will not be 
;in the listing or cross reference file 



0 

0 

Programmer Guide ASSEMBLER 

Section 5 

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE 

Assembling with the Macro Assembler requires two types of 
commands: a command to invoke Macro Assembler and answers to 
command prompts. In addition, four switches control alternate 
Macro Assembler features. llsually, the user will enter all the 
commands to Macro Assembler on the keyboard. As an option 
commands, answers to the command prompts and any switches may 
be contained in a Batch file (see the Hyperion User Guide for 
Batch file instructions.). Some Command Characters are 
provided to assist the user while entering assembler commands. 

1.~.1 INVOKING MACRO ASSEMBLER 

Macro Assembler may be invoked two ways. By the first method, 
the user enters the commands as answers to individual prompts. 
By the second method, the user enters all commands on the line 
used to invoke Nacro Assembler. 

Su11111ary of Methods to invoke Macro Assembler 

MASM Method l 

Method 2 MASM <source>,<object>,<listing>,<cross-ref>[/switch] 

1.5.1 .1 ~ethod 1: MASH 

Enter: 

~ASM 

Macro Assembler will be loaded into memory. Then, Macro 
Assembler returns a series of four text prompts that appear 
one at a time. The user answers the prompts as commands to 
Macro Assembler to perform specific tasks. 

At the end of each line, you may enter one or more switches, 
each of which must be preceded by a slash mark. If a switch 
is not included, Macro Assembler defaults to not performing 
the function described for the switches in the chart below. 

II.1-137 



ASSEMBLER Progral11l\er Guide 

The command prompts are summarized here and described in 
detail in Section 1,2,2, Command Prompts, Following the 
summary of prompts is a summary of switches, which are 
described in more detail in Section 1.2.~. Switches . 

PROMPT RESPotlSES 

Source filename r .ASMJ: List .ASM file to be assembled. 
(no default: filename response 
required) 

Object filename [source.OBJ] List filename for relocatable 
object code. (default: 
source-filename.OBJJ 

Source listing [NIil. LST]: List filename for listing 
(default: no listing file) 

Cross reference rNLIL.CRF) List filename for cross 
reference file (used with CREF 
to create a cross reference 
listing), (default: no cross 
reference file) 

SWITCH ACTIOU 

/D Produces a listing on both assembler 
passes. 

/0 Show generated object code and offsets in 
octal radix on listing 

IX Suppress the listing of false 
conditionals. Also used with the .TFCOND 
directive. 

II.1-l~R 

0 

0 



Programmer Guide ASSEMBLER 

C 

0 

Co11111and Characters 

Macro Assembler provides two Command Characters. 

Ilse a single semicolon (;) followed immediately by a 
carriage return, at any time after responding to the 
first prompt (from Source filename on) to select 
default responses to the remaining prompts. This 
feature saves time and overrides the need to enter a 
series of carriage returns. 

Note: Once the semicolon has been entered, the user can no 
longer respond to any of the prompts for that 
assembly. Therefore, do not use the semicolon to 
skip over some prompts. For this, use carriage 
return. 

Example: Source filename (.ASH]: FllN<Rtn> 
Object filename [Flm.nBJJ: ;<Rtn> 

The remaining prompts will not appear, and Macro 
Assembler will use the default values (including no 
listing and no cross-reference file). 

To achieve exactly the same result, you could 
alternatively enter: 

Source filename [.ASM]: Flffl;<Rtn> 

This response produces the same files as the 
previous example. 

Ctrl+Brk Use Ctrl+Brk at any time to abort the assembly. If 
you enter an erroneous response, such as the wrong 
filename or an incorrectly spelled filename, you 
must press Ctrl+Brk to exit Macro Assembler then 
reinvoke Macro Assembler and start over. If the 
error has been typed and not entered, you may delete 
the erroneous characters, but for that line only. 

II.t-139 



ASSEMBLER Programmer Guide 

1.5,1,2 Method 2: MASH <filenames>[/switches] 

Enter: 

MASM <source>,<object>,<listing>,<cross-ref>[/switch] 

Macro Assembler will be loaded into memory. Then Macro 
Assembler immediately begins assembly. The entries following 
MIISM are responses to the co111Mand prompts. The entry fields 
for the different prompts must be separated by commas. 

where: <source> is the source filename. 

<object> is the name of the file to receive the 
relocatable output. 

<listing> is the name of the file to receive the 
listing. 

<cross-ref> is the name of the file to receive the 
cross-reference output. 

/switch are optional 
following any of the 
any of the commas 
shown). 

switches, 
response 

or after 

which may be placed 
entries (just before 
the <cross-ref>, as 

To select the default for a field, simply enter a 
second corrma without space in between (see the 
example below). 

Example: MASM Fll!!,,FIJM/D/X,FIIN 

This example causes Macro Assembler to be loaded, then causes 
the source file Flln.ASM to be assembled. Macro Assembler then 
outputs the relocatable object ocde to a file named FllM.OBJ 
(default caused by two commas in a row), creates a listing 
file named FllM.LST for both assembly passes but with false 
conditionals suppressed, and creates a cross-reference file 
named FIJN.CRF. If names were not listed for listing and 
cross-reference, these files would not be created. If listing 
file switches are given but no filename, the switches are 
ignored. 

I I. 1-140 

0 

0 

0 



Programmer Gui de ASSEMBLER 

1.5.2 MACRO ASSEMBLER COMMAND PROMPTS 

Macro Assembler is commanded by entering responses to four 
text prompts. When you have entered a reponse to the current 
prompt, the next appears. When the last prompts has been 
answered, Macro Assembler begins assembly automatically 
without further command. When assembly is finished, Macro 
Assembler exits to the operating system. When the operating 
system prompts is displayed, Macro Assembler has finished 
successfully. If the assembly is unsuccessful, Macro 
Assembler returns the appropriate error message. 

0 

Macro Assembler prompts the user for the names of source, 
object, listing, and cross-reference files. 

All comMand prompts accept a file specification as a response. 
You may enter: 

a filename only 
a device designation only 
a filename and an extension 
a device designation and a filename 

or a device designation, filename, and extension. 

You may not enter only a filename extension. 

Source filename [.ASM]: 
rrtertne""l'nename of your source program. Macro 

Assembler assumes by default that the filename 
extension is .ASM, as shown in square brackets in 
the prompt text. If your source program has any 
other filename extension, you must enter it along 
with the filename. Otherwise, the extension may be 
omitted. 

Object filename [source.OBJ]: 
Enter tfie"TITename you want to receive the generated 
object code. If you simply press the carriage return 
key when this prompt appears, the object file will 
be given the same name as the source file, but with 
the filename extension .OBJ. If you want your 
object file to have a different name or a different 
filename extension, you must enter your choice(s) in 
response to this prompt. If you want to change only 
the filename but keep the .OBJ extension, enter the 
filename only. To change the extension only, you 
must enter both the filename and the extension. 

II.1-141 



ASSEMBLER Progra11111er Guide 

Source listing [NllL. LST): 
nter the name of the file, if any, you want to ( 

receive the source listing. If you press the 
carriage return key, Macro Assembler does not 
produce this listing file. If you enter a filename 
only, the listing is created and placed in a file 
with the name you enter plus the filename extension 
.LST. You may also enter your own extension. 

The source listing file will contain a list of all 
the statements in your source program and will show 
the code and offsets generated for each statement. 
The listing will also show any error messages 
generated during the session. 

Cross reference [NUL.CRF]: 

II.1-142 

nter the name of the file, if any, you want to 
receive the cross reference file. If you press only 
the carriage return key, Macro Assembler does not 
produce this cross reference file. If you enter a 
filename only, the cross reference file is created 
and placed in a file with the name you enter plus 
the filename extension .CRF. You may also enter your 
own extension. 

The cross reference file is used as the source file Q 
for the CREF Cross Reference Facility. CREF 
converts this cross reference file into a cross 
reference listing, which you can use to aid you 
during program debugging. 

The cross reference file contains a series of 
control symbols that identify records in the file. 
CREF uses these control symbols to create a listing 
that shows all occurrences of every symbol in your 
program. The occurrence that defines the symbol is 
also identified. 

( 



0 

0 

Programmer Guide ASSEMBLER 

1.5.3 MACRO ASSEMBLER COMMAND SWITCHES 

The three switches control alternate assembler functions. 
Switches must be enetered at the end of a prompt response, 
regardless of which method is used to invoke Macro Assembler. 
Switches may be grouped at the end of any one of the 
responses, or may be scattered at the end of several. If more 
than one switch is entered at the end of one reponse, each 
switch must be preceded by the slash mark (/). You may not 
enter only a switch as a reponse to a command prompt. 

Switch 

ID 

Function 

Produce a source listing on both assembler passes. 
The listings will, when compared, show where in the 
program phase errors occur and will, possibly, give 
you a clue to why the errors occur. The /0 switch 
does not take effect unless you co11111and Macro 
Assembler to create a source listing (enter a 
filename in reponse to the source listing command 
prompt). 

/0 Output the listing in octal radix. The generated 
code and the offsets shown on the listing will all 
be given in octal. The actual code in the object 
file will be the same as if the /0 switch were not 
given. The /0 switch affects only the listing file. 

/X Suppress the listing of false conditionals. If your 
program contains conditional blocks, the listing 
file will show the source statements but no code if 
the condition evaluates false. To avoid the clutter 
of conditional blocks that do not use generated 
code, use the /X switch to suppress the blocks that 
evaluate false from your listing. 

The /X switch does not affect any block of code in 
your file that is controlled by either the .SFCOND 
or .LFCDND directives. 

II.1-143 



ASSEMBLER 

I I. 1-144 

Programmer Guide 

If your source program contains the .TFCO~D 
directive, the /X switch has the opposite effect. 
That is, normally the .TFCOND directive causes 
listing or suppressing of blocks of code that it 
controls. The first .TFCOND directive suppresses 
false conditionals, the second restores listing of 
false conditionals, and so on. When you use the /X 
switch, false conditionals are already suppressed. 
When Macro Assembler encounters the first .TFCOND 
directive, listing of false conditionals is 
restored. When the second .TFCOND is encountered 
(and the /X switch is used), false conditionals are 
again suppressed from the listing. 

Of course, the /X switch has no effect if no listing 
is created. See additional discussion under the 
.TFCOND directive in Section 1.4. 

The following chart illustrates the various effects 
of the conditional listing directives in combination 
with the /X switch. 

PSEUDO-OP 

(none) 

.SFCOND 

• LFCOflD 

.TFCOND 

.SFCOND 

.TFCOND 

.TFCOND 

.TFCOND 

NO a_ 

ON 

OFF 

mi 

ON 

OFF 

OFF 
ON 

OFF 

IL 
OFF 

OFF 

OFF 

OFF 

OFF 

ON 
OFF 

ON 

0 

0 



C 

C 

Programmer Guide 

Sumnary of Listing Symbols 

R 

E 

linker resolves entry to left of R 

External 

ASSEMBLER 

= segment name, group name, or segment variable used in MOV AX, 
<---->, DD<---->, JMP <---->, and so on. 

statement has an Enrr or= directive 

nn: statement contains a segment override 

nn/ REPxx or LOC~ prefix instruction. Example. 

003C F:1/A"> REP MOVSW ;move n.s:sr to ES:SI until CX=n 

+ 

T T 
= DllP expression; xx is the value in parentheses 

xx following DllP, for example: DUP(?) places ?? 
where xx is shown here 

line comes from a macro expansion 

C line comes from file named in INCLUDE directive statement. 

II.1-145 



ASSEMBLER Programmer Guide 

ENTX PASCAL entry for initializing programs 

nono STACK SEGMENT WORD STACI< 'STACK' 
= 0000 HEAPbeg Enl! THIS BYTE 
~Indicates Ef11J or directive---...i 

done ;Base of heap before init 
oonn 14 [ OB 2n 011p (?l 

?? ~shows value in parentheses f 

= 0014 
0014 

nooo 

__ ] t 
4 Indicates OUP expression-----1 

SKTOP 
STACK 

Ef111 
mos 

THIS BYTE 

MAHJSTARTIIP SEGMEMT I MEMORY I 

OGROUP GROUP OATA,STACK,CONST,HEAP,MEMORY 
ASSI IME CS :MAI~ISTARTlJP, OS: DGROIIP 

ES: DGROIJP ,SS: DGROIJP 

~JBLIC BEGxnn ;Main entry 

onnn ; 0 oonn BA ---- R BEGAxnn PROC PAR 
MOIi AX,DGROIJP 

;get assumed data segment 
value 
000;1 llE DR MOIi OS,AX ;Set DS seg 

T 
AC nl no22 R MOV CESX00 1ES \ T T I 
generated name action expression comment 

code 
offset 

oooc 26: AB lE 0002 MOV BX,ES:2 ;highest paragraph 

T segment override ______ J-1 

I I. 1-146 



Programmer Guide ASSEMBLER 

EHTX PASCAL entry for initializing programs 

28 08 0011 
0013 
no17 
0019 

Al FB 1noo 
7E 03 
BB 1000 

OOlC 

OOlC 01 E3 

OOJ.E DI E3 

nn20 01. E3 

nn22 Dl E:! 

macro 
block 

SMLSTK: 

+ 

+ 

+ 

+ 

SUB 
CMP 
JLE 
MDV 

REPT 
SHL 

EMDM 

SHL 

SHL 

SHL 

SHL 

these lines macro 

BX,AX ;Get #paras for DA 
BX,4096 ;More than 64~? 
SMLSTI<' ;No, use what we have 
BX,4096 ;Can only address 64Y. 

4 
BX,1 

;Convert para to offset 

BX,1 
;Convert para to offset 

BX,l 
;Convert para to offset 

BX,1 
;Convert para to offset 

BX,l 
;Convert para to offset 

from macro directives 
number of 

repetitions 

C 0024 8B E3 MOY SP,BX 
;Set stack to top of memory 

C 

0069 

OOliE 

nn?E 

oono 

EA 0000 FAR PTR STARTmain L ,JMP 

I · b1 -f-- l signal to linker 

L1inker resolves: indicates segment name, group 
or segment variable used in MDV AX,<---->; 
no<---->; JMP <----> etc. /See other 
example in this listing.) 

segment var, a e 

BEGxno ENOP 

MAHISTARTIIP mos 

ENTXCM SEGMENT WORD 'CODE' 
ASSUME CS:EHTXCM 
PIIBLIC rnoxnn, oosxnn 

name 

I I. 1-147 



ASSEMBLER Programmer Gui de 

EHTX PASCAL entry for initializing program 

onnn 
nnnn riA nnr10 ---- E 

STARTmain PROC 
CALL 

n•oxnn LABEL 

FAR ;This code remains 
ENTBGnn 
;call main program 

FAR 
;termination entry point 

nnni; QA noon E CALL EM[Wl 
;user system termination 

OOOA riA nonn E CALL rnovon 
;close all open files 

OOOF 9A nooo E ---. CALL DIOIJnf_' 
;file system termination 

!"t_1i1_J TJ 
linker External 
signal ; symbol 
goes with 
number to left: shows 

no ?.E no20 R STARTmain 

Ofl'.17 HITXCM 

II.1-14fl 

OOSOFF 

HIDP 

ENOS 
DID 

is in segment 
;return 

BEGX()O 

to DOS 0 

(__ 



C 

C 

0 

Programmer Guide ASSEMBLER 

Differences Between Pass 1 Listing and Pass 2 Listing 

If you give the /0 switch when you run Macro Assembler to assemble your 
file, the assembler produces a listing for both pases. The option is 
especially helpful for finding the source of phase errors. 

The following example was taken from a source file that was assembled 
without reporting any errors. When the source file was reassembled 
using the /0 switch, an error was produced on pass 1, but not on pass? 
(which is when errors are usually reported). 

Example: 

During Pass 1 a jump with a forward reference: 

nn11 7E rn ,!LE SMLSTV ;Mo, use what we have 
E r r or --- o: Symnbol not defined 

on1q bb 10(1(1 MOV sx,4no1; ;Can only address fidV 

n01c SHLSTK: REPT 4 

During Pass 2 this same instruction is fixed up and does not return an 
error: 

0017 7E 01 ,JU SMLSTK ;!lo, use what we have 
OOlCJ BR 1000 MOV BX,40oi; ;Can only address li4K 

Notice that the JLE instructions code now contains o~ instead of 00, a 
jump of 3 bytes. 

The same amount of code was producing during both passes, so there was 
no phase error. The only different is one of content instead of size, 
in this case. 

I I. 1-149 



ASSEMBLER PrograT11111er Guide 

1.5.4.3 Symbol Table Format 

The symbol table portionof a listing separates all "symbols" into their 
respective categories, showing appropriate descriptive data. This data 
gives you an idea how your program is using various symbolic values. llse 
this information to help you debug. 

Also, you can use a cross reference listing, produced by CREF, to help 
you locate uses of the various "symbols" in your program. 

On the next page is a complete symbol table listing. Following the 
complete listing, sections from different symbol tables are shown with 
explanatory notes. 

For all sections of symbol tables: this rule applies: if there are no 
symbolic values in your program for a particular category, the heading 
for the category will be omitted from the symbol table listing. For 
example, if you use no macros in your program, you will not see a macro 
section in the symbol table. 

II.1-1~0 

( 

0 

( 



Programmer Guide ASSl:MIILER 

( 
Assembler date PAGE Symbols - 1 
CALLER - SAMPLE ASSEMBLER ROIJTH!E (EXMPIM.ASM) 

Macros 

flame Length 

BIOSCALL ono2 
DISPLAY. 0005 
DOSCALL. 0002 
KEYBOARD ()()01 
LOCATE 0003 
SCROLL • ()004 

Structures and Records: 

Mame Width #fields 
Shi ft Width Mask Initial 

PARMLIST • OO!C 
BUFSIZE. onno 
MAMESIZE 0001 
IJAMETEXT 0002 

C TERMHJATOR OOIB 

Segments and Groups: 

f'ame Size Align combine class 

CSEG •• 0044 PARA PIIBLIC 'CODE' 
STACV. •• 0200 PARA STACK 'STACK' 
WORKAREA 00'.11 PARA PIJBLIC 'OATA' 

Symbols: 

Mame type Value Attr 

CLS ••• M PROC 003/; CSEG Length =OOOE 
MAXCHAR. Number 0019 
MESSG •• L BYTE OOlC WORKAREA 
PARMS. L OOlC OOClO WORKAREA 
RECEIVR. L FAR 0000 External 
START. F PROC 0000 CSEG Length =0036 

( Warning Severe 
Errors Errors 
0 0 

II.l.-151 



ASSEMBLER 

Macros: 

BIOSCALL. 
DISPLAY , 
DOSCALL . 
'<EYBOARD, 
LOCATE. 
SCROLL. • 

i 

Mame 

names of macros 

Programmer Guide 

Length4---number of 32 byte block 
macro occupies 

0002 in memory 
O(l(l5 
nno2 
non3 
nno:3 
f)(l04 

This section of the symbol table tells you the names of your macros and 
how big they are in ~2 byte block units. In this listing, the macro 
DISPLAY is 5 block long or (5 x ]2 bytes =l 160 bytes long. 

II.1-152 

0 

0 



Programmer Guide ASSEMBLER 

Structures and records: 

0 Examples for Structures 

( 

Name 

PARMLIST •• 

~

Bl1FSIZF. •• 
NAMESIZE • 
NAMETEXT • 
TERMINATOR 

field name of 
PARMLIST Structure 

Example for Records 
Name 

BAZ •• 
FLDl 
FLD2 
FLD:1 

BAZ! • 
BZl. 
822. 

number of 
bits in record 

Width # fields This line 
Shift Width Mask Initial .,__for fields 

~gg~~onn4~ (indented) 

0002 
0018 ~umber of fields in 

Structure 
Offset of field 
into structure 

The number of bytes 
wide of structure 

Width # fields This line 
Shift Width Mask Initial for fields 
nnoA 00()3 -----IJumber of fields in record 

ggg;~ ~gg~ 1 gg~~ ggrig+-initial value 
nn.no nnn3 0001..... onn3 

noB 0002 ~ MASV- of field 
nnn:i nooA n7rn 0400 (maximum value) 
nnoo 0003 0007 ono2 

shift number of bits 
count if field 

to right 

This section lists your Structures and/or Records and their fields. The 
upper line of column headings applies to Structure names, Record names, 
and to field names of Structures. The lower line of column headings 
applies to field names of records. 

For structures: 
Width (upper line) shows the number of bytes your Structure 
occupies in memory. 
# fields shows how many fields comprise your Structure. 

0 

II.J-153 



ASSEMBLER Programmer Guide 

For Records: 
Width (upper line) shows the number of bits the Record( 
occupies. 
# fields shows how many fields comprise your Record. 

For Fields of Structures: 
Shift shows the number of bytes the field is offset into the 
Structure. 
The other columns are not used for fields of Structures. 

For Fields of Records 

II.1 - 1<;4 

Shift is the shift count to the right 

Width (lower line) shows the number of bits this field 
occupies. 

Mask shows the maximum value of record, expressed in 
hexadecimal, if one field is masked and ANOed (field is set to 
all l's and all other fields are set to all n's). 

l'sing field BZl of the Record BAD above to illustrate: 

15 

WIDTH= D008 
- a_, 

shift count= 0003 
Initial shows the value specified as the initial value for the 
fleld, if any. 

When naming the field you specified: fieldname:M = value 

fieldname is the name of the field. # is the width of the 
field in bits. value is the initial value you want this field 
to hold. The symbol table shows this value as if it is placed 
in the field and all other fields are masked (equal n). Using 
the example and diagram from above: 

Initial = 0400 

initial 80H 
80H 128 decimal 

0 

0 



( 

( 

( 

Programmer Guide ASSEMBLER 

Segments and groups: 

Name Size align combine class 

AAAXOO • 
OGROIIP • 

DATA • 
STACY. 
CONST. 
HEAP • 
MEMORY 

called Private 
( in LINK section 

onoo WORD NONE 'CODE.,..._____..segment GROUP .,_ __________ roup 

gg~~ ~~~~ ~~:[~c :~6~~~: ~~gments 
0024 WORD PIIBLIC 'DATA' ~ 

()0(10 WORD PUBLIC 'MEMORY' DGROIIP 

ENTXCM • 
MAIN STARTUP 

For Groups: 

0(1nn WORD PUBLIC 'MEMORY' 
00~7 WORD MONE 'CODE' 
007E PARA NONE 'MEMORY' .,- -------

length statement line entries 
of 

segments 

the name of the group will appear under the Mame column, beginning in 
column 1 with the applicable Segment names indented 2 spaces. The word 
Group will appear under the size column. 

ror Segments: 
the segment names may appear in column 1 (as here) if you do not declare 
them part of a group. If you declare a group, the segment names will 
appear indented under their group name. 

For all Segments, whether pat of a group or not: 

Size is the number of bytes the Segment occupies. 

Align is the type of boundary where the segment begins: 

PAGE= page - address is xxxnoH (low byte= O); begins on a 
2~~ byte boundary. 
PARA= paragraph - address is xxxxnH (low nibble O); default 
WORD= word - address is xxxxeH (e = even number) 
low bit of low byte= 0) 
bit map - XX XX XX X r) 

BYTE= byte - address is xxxxxH (anywhere) 

Combine describes how LINK (Linker Utility) will combine the various 
segments. 

r:1 ass is the cl ass name under which LHJK wi 11 combine segments in 
.nemory. 

JI.1-15!-



ASSEMBLER Programmer Guide 

Symbols: 

Name Type Value Attr 

FOO. Humber onns 
FOOl Text 1.2~4 
F002 Number onos 
F003 Alias FOO 
F004 Text 5fBP]~DI] 
Fons Opcode 

Symbols: 

Name Type Value Attr 

BrnHnn L WORD no12 DATA Global 
BEGOno L FAR nnoo External 
BEGxno F PROC nnnn MAIN STARTIIP Global Length= OOfiE 
CEsxnn L WORD on22 DATA r,1 obal 
CLMEnr) L WORD non2 OATA Global 
CRCXCln L WORD 001C DATA Global 
CRoxno L WORD nn1E OATA Global 
CSXEOO L WORD 0000 DATA Global 
CIIRHOO L WORD 0014 DATA Global ) DOSOFF L WORD 0020 DATA 
Dosxon F PROC OOlE ENTXCM Global Length= 001!1 
EMDH0(1 L WORD 0016 DATA Global 
EMDonn L FAR nnno External 
rnnunn L FAR onoo External 
EMDxnn L FAR ono~ ENTXCM Global 
ENDYOO L DFAR oonn External 
ENTGnl) L FAR 0001) External 
FREXO() F PROC OnliE MAHI STARTUP Global Length= 0010 
HDRFOO L WORD 0006 DATA- Global 
HDRV(1(l L WORD 00(18 DATA Global 
HEAPBEG. BYTE 0000 STACK Enll statements 
INIIJ()Q L FAR noon External showing segment 
PNl.!Xnn L WORD 0004 DATA External 
RECF.C1Cl L WORD 0004 DATA Global 
REFEnn L WORO oooc DATA Global 
REPEOO L WORD QOOE DATA Global 
RF.SEf1n L WORO OOOA DATA Global 
SKTOP. BYTE 0014 STACK 
SMLSTV L NEAR 001c MAIN STARTUP 
STARTMAIN. F PROC 0000 ENTXrM Length= OOIE 
STKBOn L WORD Onlfl DATA Global 
STKHnn •. L WORD 001A DATA Global ( 

If Macro Assembler knows this length 
as one of the type lengths (BYTE, WORD, 
DWORD, nWAORO, TBVTE), it shows that 
type name here. 

II. 1-lli6 



Programmer Guide ASSEMBLER 

This section lists all other symbolic values in your program that do not 
a it under the other categories. 

Type shows the symbol's type: 
-- L = Label 

F = Far 
~l = Near 
PROC = Procedure 
Number 
Alias All defined by Enll or directive 
Text 
Opcode 

These entries may be combined to form the various types shown 
in the example. 

For all procedures, the length of the procedure is given after 
its attribute (segment) 

You may also see an entry under type like: 

L nn:n 

This etnry results from code such as the following: 

0 BAZ LABF.L FOO 

( 

where FOO is a STRIJC that is 31 bytes long. 

BAZ will be shown in the symbol table with the L nnJl entry. 
Basically, Number (and some other similar entries) indicates 
that the symbol was defined by an Enll or directive. 

Value (usually) shows the numeric value the symbol represents. (In some 
cases, the Value column wi 11 show some text -- when the symbol was 
defined by Em.r or = r!i rec ti ve. l 

Attr always shows the segment of the symbol, if known. Otherwise, the 
XEtr column is blank. Following the segment name, the table will show 
either External, Global or a blank (which means not declared with either 
the EXTRM or PUBLIC directive). The last entry applies to PROC types 
only. This is a length= entry, which is the length of the procedure. 

II.1-157 



ASSEMBLER Programmer Guide 

If type is Number , Opcode, Alias, or Text, the Symbols section of the 
listing wilTliestructurea dffferently~enever you see one of these 
four entries under type, the symbol was created by an EnlJ directive o 
an= directive. All information that follows one of these entries is 
considered its "value', even if the "value" is simply text. 

Each of the four types shows a value as shown: 

I I .1-1 'iA 

Humber shows a constant numeric value 

Opcode shows a blank. The symbol is an alias for an 
instruction mnemonic. Sample directive statement: FOO Enll ADD 

Alias shows a symbol name which the named symbol equals. 
Sample directive statement: FOO Eml BAX 

Text shows the "text" the symbol repreesnts. 
other operand to an Enll directive that does not 
other three categories above. Sample directive 
GOO Entr 'WOW' RAZ Enll DS:BrBX] ZOO Ef11J 1.234 

"Text" is any 
fit one of the 
statements: 

0 



O· 

) 

0 

Programmer Guide A5SEl1BLER 

Section n 

Macro Assembler Messages 

Most of the messages output by r1acro Assembler are error 
messages. The nonerror messages output by Macro Assembler are 
the banner messages, and the end of (successful) asse~bly 
message. These nonerror messages are classified here as 
operating messages. The error messages are classified as 
assembler errors, I/0 handler errors, and runtime errors. 

J .n.1 OPERATING MESSAGES 

Banner Message and Command Prompts: 

MACRO-~li v1 .n Copyright (Cl Microsoft, Inc. 

Source filename r.ASMJ: 
Object filename r source. OB,!): 
Source listing r~IIJL.LSTl: 
Cross reference Ollll,CRFl: 

End of Assembly Message: 

Warning 
Errors 
n 

Fatal 
Errors 
n 

(the system prompt) 

(n=number of errors) 

II.1-1,;o 



ASSF.f1BLER Programmer Gui de 

1,h,2 ERROR MESSAGES 

If the assembler encounters errors, error messages are output, 
along with the numbers of warning and fatal errors, and 
control is returned to your disk operating system. The 
message is output either to your terminal screen or to the 
listing file if you co~mand one to be created. 

~rror messages are divided into three categories: assembler 
errors, I/0 handler errors, and runtime errors. In each 
category, messages are listed in alphabetical order with a 
short explanation where necessary. At the end of this 
chapter, the error messages are listed in a single numerical 
order list but without explanations. 

Assembler Errors 

Already defined locally (Code 2~) 

Tried todefine a symbol as EXTERNAL that had already 
been defined locally. 

Already had ELSE clause (code 7) 

Attempt to define an ELSE clause within an existing 
F.LSE clause (you cannot nest ELSE without nesting 
IF ... nlDIF). 

Already have base register (Code 4~\ 

Trying to double base register. 

Already have index register (Code 47) 

Trying to double index address 

Block nesting error (Code O) 

II.1-JhO 

Hested procedures, segments, structures, macros, 
IRC, IRP, or REPT are ~ot properly terminated. An 
example of this error is close of an outer level of 
nesting with inner level(s) still open. 

0 



Programmer Guide ASSEMRLER 

Byte register is illegal (Code !iA) 

Ilse of one of the byte registers in context where it 
is illegal. For example, PIISH AL. 

Can't override ES segment (Code 67) 

Trying to override the ES segment in an instruction 
where this override is not legal. For example, 
store string. 

Can't reach with segment reg (Code fiR) 

There is no assume that makes the variable 
reachable. 

Can't use EVEN on BYTE segment (Code 7n) 

Seqment was declared to be byte segment and attempt 
to-use EIIHI was made. 

Q Circular chain of EOII aliases (Code 1:n) 

An alias Enu eventually points to itself. 

Constant was expected (Code 4?.) 

Expecting a constant and received something else. 

CS register illegal usage (Code SQ) 

Trying to use the CS register illegally. For 
example, XCHG CS,AX. 

Directive illegal in STRUC (Code 7P.) 

All statements within STRIIC blocks must either be 
C0!11Tlents preceded by a semicolon(;), or one of the 
Define directives. 

Q Division by nor overflow (Code 2Q) 

An expression is given that results in a divide by 
n. 

II.1-lfil 



ASSEMBLER Progran111er Guide 

DIIP is too large for linker (Code 74) 

Mesting of Ol!Ps was such that too large a record was 
created for the linker. 

Extra characters on line (Code l) 

This occurs when sufficient information to define 
the instruction directive has been received on a 
line and superfluous characters beyond are received. 

Field cannot be overridden (Code Rn) 

In a STRIIC initialization statement, you tried to 
give a value to a field that cannot be overridden. 

Forward needs override (Code 711 

This message not currently used 

Forward reference is illegal (Code 17) 

Attempt to forward reference something that must be 
defined in pass 1, 

Illegal register value (Code 5!i) 

The register value specified does not fit into the 
"reg" field (the reg field is greater than 7), 

Illegal size for item (Code ~7) 

Size of referenced item is illegal. For exmple, 
shift of a double word. 

Illegal use of external (Code :'l2) 

Ilse of an external in some il 1 egal manner. For 
example, DBM rn~(?) where Mis declared external. 

Illegal use of register (Code 4Q) 

I I. 1-16?. 

Ilse of a register with an instruction where there is 
no ROA6 or AnRA instruction possible. 

0 

C 



0 

0 

0 

Programmer Guide ASSEMBLER 

Illegal value for [JIJP count (Code 72) 

DIIP counts must be a constant that is not n or 
negative. 

Improper operand type (Code ,;2) 

Ilse of an operand such that the opcode cannot be 
generated. 

Index displ. must be constant (Code ,;4) 

Label can't have seg. override (Code 6~) 

Illegal use of segment override. 

Left operand must have segment (Code ~A) 

Ilse something in right operand that required a 
segment in the left operand. (For example, ":.") 

More values than defined with (Code ?fi) 

Too many fields given in REC or STRl!C allocation. 

Must be associated with code (Code 14~) 

Ilse of data related item where code item was 
expected. 

Must be associated with data (Code 44) 

llse of code related item where data related item was 
executed. For example, HOV AX,<code-label>. 

Hust be AX or AL (Code fiO) 

Specification of some register other than AX or AL 
where only these are acceptable. For example, the 
IN instruction. 

II.1-lfiJ 



ASSEMBLER Programmer Guide 

Must be index or base register (Code 4A) 

Instruction requires a base or index register and 
some other register was specified in square brackets 
[ ,. 

Must be declared in pass 1 (Code 13) 

Assembler expecting a constant value but got 
something else. An example of this might be a 
vector size being a forward reference. 

Must be in segment block (Code ~Q) 

Attempt to generate code when not in a segment 

Must be record field name (Code~~) 

Must be 

Must be 

Expecting a record field name but got something 
else. 

record or field name (Code 34) 

Expecting a record name or field nar,e and received 
something else. 

register (Code lA) 

Register unexpected as operand but user furnished 
symbol -- was not a register. 

Must be segment or group (Code 2n) 

Expecting segment or group and something else was 
specified. 

11ust be structure field name (Code 37) 

II.l-lfi4 

Expecting a structure field name but received 
something else. 

0 

C 



0 

0 

Programmer Guide ASSEMBLER 

Must be symbol type ( Code 22 J 

Must be WORD, nw, n11, BYTE, or TB but received 
something else. 

Must be var, label or constant (Code ~nl 

Expecting a variable, label, or constant but 
received something else. 

Must have opcode after prefix (Code nn) 

Ilse of one of the prefix instructions with out 
specifying any opcode after it. 

~ear JMP/CALL to different CS (Code n4) 

Attempt to do a ~'EAR jump or call to a location in a 
different CS ASSIJME. 

flo immediate mode (Code !iFJ 

Immediate mode specified or an opcode that cannot 
accept the immerliate. For example, PllSH. 

No or unreachable CS (Code n?) 

Trying to jump to a label that is unreachable. 

llormal type operand expected ( Code 41) 

Received STRIJCT, FIELOS, !W1ES, BYH, WORD, or DW 
when expecting a variable label. 

Not in conditional block (Code R) 

An DIOIF or F.LSE is specified without a previous 
conditional assembly directive active. 

Not proper align/combine type (Code 25) 

SEGME~T parameters are incorrect. 

I I. J - 1 ,;r:; 



ASSEMBLER Programmer Guide 

One operand must be canst (Code ~o) 

This is an illegal use of the addition operator. 

Only initialize list legal (Code 77) 

Attempt to use STRIIC name without angle brackets, < 
>. 

Operand combination illegal (Code li3) 

Specification of a two-operand instruction where the 
combination specified is illegal. 

Operands must be same or 1 abs (Corte 4n) 

Illegal use of the subtraction operator. 

Operand must have segment (Corte 4~) 

Illegal use of sEr, directive. 

Operand must have size (Code~~) 

Expected operand to have a size, hut it did not. 

Operand not in IP segment (Code ~1) 

Access of operand is impossible because it is not in 
the current IP segment. 

Operand types must match (Code ~l) 

Assembler gets different kinds or sizes of arguments 
in a case where they must match. For example, MOIi, 

Operand was expected (Code 27) 

I I .1-lfili 

Assembler is expecting an operand but an operator 
was received. 

C 

C 



Programmer Guide ASSEMBLER 

0 

0 

Operator was expected (Code ?A) 

Assembler was expecting an operator but an operand 
was received. 

Override is of wrong type (Code A1) 

In a STRIIC initialization statement, 
use the wrong size on override. 
'HELLO' for nw field. 

Override with DIIP is i 11 egal ( Code 7°) 

you tried to 
For exar,ple, 

In a STRIIC initialization statement, you tried to 
use n11p in an override. 

Phase error between passes (Code o) 

The program has ambiguous instruction directives 
such that the location of a label in the program 
changed in value between pass 1 and pass 2 of the 
assembler. An example of this is a forward 
reference coded without a segment override where one 
is required. There would be an additional byte (the 
code segment override) generated in pass 2 causing 
the next label to change. vou can use the /0 switch 
to produce a listing to aid in resolving phase 
errors between passes. 

Redefinition of symbol /Code 4) 

This error occurs on pass 2 and succeeding 
definitions of a symbol. 

Reference to mult defined (Code 26) 

The instruction references something that has been 
multi-defined. 

II.1-!li7 



ASSEMBLF'R Programmer Guide 

Register already defined (Code 2) 

This will only occur if the assembler has internal 
logic errors. 

Register can't be forward ref (Code R2) 

Relative jump out of range (Code 51) 

Relative jumps must be within the range -12R +127 of 
the current instruction, and the specific jump is 
beyond this range. 

Segment parameters are changed /Code 24) 

List of arguments to SEGMENT were not identical to 
the first time this segment was used. 

Shift count is negative (Code ~n) 

A shift expression is generated that results in a ( 
negative shift count. 

Should have been group name (Code 11) 

Expecting a group name but something other than this 
was given. 

Symbol already different kind (Code 15) 

Attempt to define a symbol differently from a 
previous definition. 

Symhol already external (Code 7:'l) 

Attempt to define a symbol as local that is already 
external. 

Symbol has no segment (Code 21) 

Trying to use a variable with SEG, and the variable ( 
has no known segment. 

II.1-lfiR 



0 

0 

0 

Programmer Guide ASSEMBLER 

Symool is multi-defined (Code 5) 

This error occurs on a symbol that is later 
redefined. 

Symbol is reserved word (Code lli) 

Attempt to use an assembler reserved word illegally. 
(For example, to declare MDV as a variable.) 

Symbol not defined (Code 9) 

A symbol is used that has no definition. 

Symbol type usage illegal (Code 14) 

Illegal use of a PIIBLIC symbol. 

Syntax error (Code 10) 

The syntax of the statement does not match any 
recognizable syntax. 

Type illegal in context (Code 11) 

The type specified is of an unacceptable size. 

llnknown symbol type (Code ?) 

Symbol statement has something in the type field 
that is unrecognizable. 

JJsage of ? (indeterminate) bad ( Code 7~) 

Improper use of the "?". For example, ? + i;. 

Value is out of range (Code 5r) 

Value is too large for expected use. For example, 
MDV AL,5nnn. 

Wrong type of register (Code 19) 

II.1-lli9 



ASSEMBLER 

II.1-170 

Directive or instruction 
register, but another was 
HJC CS. 

Programmer Guide 

expected one type of 
specified. For example, ( 

C 



0 

0 

0 



('· 

0 



PART II - ASSEMBLY LANGUAGE TOOLS 

SECTION 2 - LINK 





0 

Programmer Guide 

2 .1 HITROOIJCTION 

Features and Benefits of LINK 

LUii< is a relocatable linker designed to link together 
separately produced program files. 

For all the necessary and optional commands, l!flK prompts the 
user. The user's answers to the prompts are the commands for 
LJt.lK. 

The output fi 1 e from LIMV ( Run file) is not bound to specific 
memory addresses and, therefore, can be loaded and executed at 
any convenient address by the user's operating system. 

LHI!' uses a dictionary-indexed 1 ibrary search method, which 
substantially reduces link time for sessions involving library 
searches. 

LHJV is capable of linking files totaling '.-1P4V bytes 

LIMV combines several object modules into one relocatable load 
module, or Run file. 

As it combines modules, LIPIV resolves external references 
between object modules and can search multiple library files 
for definitions for any external references left unresolved. 

L HI!< a 1 so produces a 1 i st fi 1 e that shows external references 
resolved and any error messages. 

l!IIK uses available memory as much as possible. When 
available memory is exhausted, LHIK then creates a disk file 
and becomes a virtual linker. 

2.2 DEFINITIONS 

Three terms will appear in some of the error messages listed 
in Section ::i.o. These terms describe the underlying 
functioning of LINK. An understanding of the concepts that 
define these terms provides a basic understanding of the way 
LIHV works. 

LJ tl li' 

PagP. II.?-1 



L!t lK Progra1T1111er Gui de 

1. Segment 

A Segment is a contiguous area of memory up to n4V 
bytes in length. A Segment may be located anywhere 
in RnRn memory on a "paragraph" (lfi byte) boundary. 
The contents of a Segment are addressed by a 
Segment-register/offset pair. 

2. Group 

A r,roup is a collection of Seqments which fit within 
n4K bytes of memory. The Segments are named to the 
Group by the assembler, by the compiler, or by you. 
The Group name is given by you in the assembly 
language program. For the high-level languages 
(BASIC, FORTRAN, COBOL, Pascal), the naming is 
carried out by the compiler. 

The Group is used for addressing Segments in memory. 
Each r,roup is addressed by a single Segment 
register. The Segments within the Group are 
addressed by the Segment register plus an offset. 
LINK checks to see that the object modules of a 
Group meet the n4V byte constraint. 

3. Class 

Page II.2-2 

A Class is a collection of Segments. The naming of 
Segments to a Class controls the order and relative 
placement of Segments in memory. The Class name is 
given by you in the assembly language program. For 
the high-level languages (BASIC, FORTRAM, COBOL, 
Pascal), the naming is carried out by the compiler. 
The Segments are named to a Class at compile time or 
assembly time. The Segments of a Class are loaded 
into memory contiguously. The Segments are ordered 
within a Class in the order LitW encounters the 
Segments in the object files. One Class precedes 
another in memory only if a Segment for the first 
Class precedes all Segments for the second Class in 
the input to LIW. Classes may be loaded across i;4v 
byte boundaries. The Classes will be divided into 
Groups for addressing. 

0 

( 



C 

0 

0 

Programmer Guide 

How L HIK Cambi nes and Arranges Segments 

LPIV works with four combine types, which are declared in the 
source module for the assembler or compiler: private, public, 
stack, and common. LIMK does not automatically place memory 
combine type as the highest segments. 

LitJV. combines segments for these combine types as follows: 

Private 

0 c~:r 
G[3n 

Public 

~ on 
e3LJ 

COITITIOn 

00° 
CJLJ 

Private segments are loaded 
separately and remain separate. 
They may be physically contiguous 
but not logically, even if the 
segments have the same name. Each 
private segment has its own base 
address. 

Public segments of the same name and 
class name are loaded contiguously. 
Offset is from beginning of first 
segment loaded through last segment 
loaded. There is only one base address 
for all public segments of the same name 
and class name. /Combine types stack and 
memory are treated the same as puhlic. 
However, the Stack Pointer is set to the 
first address of the first stack segment.) 

Common segments of the same name and 
class name are loaded overlapping one 
another. There is only one base address 
for all common segments of the same name. 
The length of the common area is the 
length of the longest segment. 

Page II.?-~ 



LIW 

Placing segments in a r,roup in 
ac1dressing of items from a 
segments in that Group. 

Proqra1TF1er Guide 

the assembler provides offset 
single base adc1ress for all 

L ns,0GR0t"-"":"~-:~-~01-- "'"'" '"'" 
Any number of other segT'lents may intervene between segments of 
a group. Thus, the offset of FOO may be greater than the size 
of segments in group combined, but no larger than ~~v. 

An operand of or,ROl!P:FOO returns the offset of FfJn from the 
beginning of the first segment of nr,ROIIP I segment A here). 

Segments a re 
the segments 
then loads 
encountered, 

groupec1 hy c1eclared class names. Llfll( loads all 
belonging to the first class name encountered, 

all the segments of the next class name 
and so on until all classes have been loaded. 

If your program contains: 

A SEr,MDIT I FOO I 

A SEGMD1T I BAZ I 

C SF.mlFNT I BAZ I 

D SEGMHJT I zoo I 

F. SF.GMHIT 'FOO' 

They will be loaded as: 

'FOO' 
A 
F. 

'llAZ' 
B 
C 

'ZOO' 
n 

If you are writing assembly language programs, you can 
exercise control over the ordering of classes in memory by 
writing a dummy module and listing it first after the LHIV 
Object Modules prompt. The c1ummy module declares segments into 
classes in the order you want the classes loaded. 

Page II.2-4 

0 



0 

0 

Programmer Guide 

WARMHIG 

no not use this method with llASIC, COROL, FORTRAM, or Pasca 1 
programs. Allow the compiler and the linker to perform their 
tasks in the normal way. 

For example: 

A SEGMF.tlT 'COOE' 
A Hlf1S 
fl SEGMDIT I COIJST I 

B 01[1S 
C SEGMDJT 'OATA' 
C HHlS 
0 SEGMEMT 'STACV. I 

n nms 
E SEGMEMT 'MEMORY' 
E mos 

You should be careful to declare all classes to be used in 
your program in this module. If you do not, you lose absolute 
control over the ordering of classes. 

A 1 so, if you want Memory coMbi ne type to be 1 oaded as the 1 ast 
segments of your program, you can use this method. Simply add 
MEMORY between S1:GMn1T and 'MEMORY' in the E segment 1 i ne 
above. Mote, however, that these segments are loaded last only 
because you imposed this control on them, not because of any 
inherent capability in the linker or assembler operations. 

2.~ FILES THAT LINK USES 

Ll~'V. works with one or more input files, produces two output 
files, may create a virtual memory file, and may be directed 
to search one to eight library files. For each type of file, 
the user may give a three part file specification. The format 
for LHIK file specifications is: 

drv:filename.ext 

where: drv: is the drive designation. Permissible drive 
designations for LIMV are A: through O:. The colon 
is always required as part of the drive designation. 

filename is any legal filename of one to eight 
characters. 

ext is a one to three character extension to the 
filename. The period is always required as part of 
the extension. 

LIMY 

Page I I. 2-,; 



LHII' Programmer Guide 

Input Files 

If no extensions are given in the input (Object) file 
specifications, LHW recognizes by default: 

File 

Object 
Library 

Output Files 

Default Extension 

.OB,1 

.LIB 

LI"V appends to the output (Run and List) files the following 
default extensions: 

File Oefault Extension 

Run 
List 

2.4 VM.TMP File 

.EXE <may not be 

.MAD (T'lay be overridden) 
overridden) 

LH!V uses available mel'lory for the link session. If the files o 
to he linked create an output file that exceeds available 
memory, LI!IK creates a temporary file and names it Vt1.Tt1P. If 
LIM"'. needs to create IIM.TMP, it displays the message: 

''t1. TMP has been created 
no not change diskette in drive, <drv:> 

Once this message is displayed, the user must not remove the 
diskette from the default drive until the link session ends. 
If the diskette is removed, the operation of LIM"'. is 
unpredictable, and LIMV might return the error message: 

llnexpected end of file on "M.TMP 

LIW uses VII.Tt1P as a virtual memory. The contents of vr1.rnP 
are subsequently written to the file named following the Run 
File: prompt. 1111.TMP is a working file only and is deleted at 
the end of the linking session. 

Page Ir. ?-fi 



0 

0 

Programmer Guide 

WARNING 

Do not use VM.TMP as a file name for any file. If the user 
has a fi 1 e named VM. Tt1P on the default drive and L HIJI re qui res 
the l/t1.Tt1P file, LPJII will delete the VM.TMP on disk and 
create a new IIM.TMP. Thus, the contents of the previous VM.Tf1P 
file will be lost. 

2,5 RIINNUJG UNY. 

Running LIM'< requires two types of commands: a command to 
invoke LIMK and answers to command prompts. In addition, six 
switches control alternate LHIV features. llsually, the user 
wi 11 enter all the commands to Liflll on the terminal keyboard. 
As an option, answers to command prompts and any switches may 
be contained in a Response File. Some special comand 
characters are provided to assist the user while entering 
linker cornrnands. 

2.fi INVOKING LINK 

LIMV may be invoked three ways. By the first method, the user 
enters the commands as answers to individual prompts. By the 
second method, the user enters all commands on the line used 
to invoke LI~II'. By the third method, the user creates a 
Response File that contains all the necessary commands. 

Su1'11!1ary of Methods to invoke LHII< 

Method - LHIV 

Method? - LINV <filenames> [\switches] 

Method ~ - LINK @<filespec> 

LINV. 

Page II.2-7 



2,fi. l 

F.nter: 

LINK 

Progra111T1er Guide 

Method 1: LINK 

LUii'. will be loaded into memory. Then, LHW returns a series 
of four text prompts that appear one at a time. The user 
answers the prompts as commands to LHIK to perform specific 
tasks. 

At the end of each line, you may enter one or more switches, 
each of which must be preceded by a slash mark. If a switch 
is not included, LINK defaults to not performing the functions 
described for the switches in the chart below. 

The command prompts are summarized here and described in more 
detail in Section 2.7, Command Prompts. Following the summary 
of prompts is a summary of switches, which are described in 
more detail in Section 2.R, Switches. 

PROMPT RESPONSES 

Object Modules r .OB,IJ Li st .OBJ files to be linked, 
separated by a blank spaces or 
plus signs (+). If plus sign is 
last character entered, prrimpt 
will reappear. (Mo default: 
response required). 

Run File [Object-file.EXE): List filename for executable 
object code. (default: first 
Object filename.EXE). 

List File [Run-file.MAP]: List filename for listing 
(default: RllN filename) • 

libraries [ ]: List filenames to be searched, 
separated by blank spaces or 
plus signs (+). If plus sign is 
last character entered, prompt 
will reappear. (default: no 
search) 

Page II.2-R 

0 



Programmer Gui de 

SWITCH ACTION 

/DSALLOCATE Load data at high end of Data 
Se!llllent. Required for Pascal and 
FORTRAM programs. 

/Hir.H Pl ace Run file as high as 
possible in memory. Do not use 
with Pascal or FORTRMI programs. 

/Lif!HIIIMBERS Include 1 i ne numbers in List 
fi 1 e. 

/MAP List all global symbols with 
definitions. 

/PAIISE Halt linker session and wait for 
<Rtn>. 

/STACK:<number> Set fixed stack size in Run 
file. 

Conmand Characters 

LINK provides three command characters : 

+ Ilse the plus sign (+) to separate entries and to 
extend the current physical line following the 
Object Modules and Libraries prompts. (A blank 
space may be used to separate object modules.) 

Example: 

To enter a large number of responses (each of which 
may also be very long), enter a plus sign/carriage 
return at the end of the physical line (to extend 
the logical line). If the plus sign/carriage return 
is the last entry following these two prompts, LHIJI' 
will prompt the user for more modules names. When 
the Object Modules or Libraries prompt appears 
again, continue to enter responses. When all the 
modules to be linked have been listed, be sure the 
response line ends with a module name and a carriage 
return and not a plus sign/carriage return. 

Object Modules [.OB,JJ: FIIM TEXT TABLE 
CARE+<Rtn> 
Object Modules f.OBJ] 
FOO+FLIPFLOP+JIINOIIE+<Rtn> 
Object Modules [.OBJ]: CORSAIR<Rtn> 

LIIIV 

Page II. 2-9 



LH!V. Programer Guide 

Ilse a single semi col on (;) foll owed immediately by a 
carriage return at any time after the first prompt ( 
(from Run File on) to select default responses to 
the remaining prompts. This feature saves time and 
overrides the need to enter a series of carriage 
returns. 

~!OTE 

Once the semicolon has been entered, the user can no longer 
respond to any of the prompts for that link session. 
Therefore, do not use the semicolon to skip over some prompts. 
For this, use <Return>. 

Example: 

Object Modules r .OB,J]: FIIN TEXT TABLE CARE <CR> 
Run module rFIJN.EXE]: ;<CR> 

The remaining prompts will not appear, and LIMY will use the 
default values (including FIIM,MAP for the List File.) 

Ctrl+Brk Ilse Ctrl+Brk at any time to abort the link session. 

Page II.2-10 

If you enter an erroneous response, such as the 
wrong filename or an incorrectly spelled filename, o 
you must press Ctrl +Brk to exit LIW, then rei nvoke 
L HIV and start over. If the error has been typed 
but not entered, you may delete the erroneous 
characters, but for that line only. 



0 

Programmer Guide 

2.6.2 Method 2: LINK <filename>[/switches] 

Enter: LINK <object-list>,<runfile>, <listfile>, 

where: 

<lib-list>[/switch ••• J 

The entries following LHlk'. are responses to the 
comand prompts. The entry fields for the different 
prompts must be separated by commas. 

object list is a list of object modules, separated 
by plus signs 

runfile is the name of the file to receive the 
executable output 

L1stfile is the name of the file to receive the 
listing. 

Lib list is a list of library modules to be searched 

/switch are optional switches, which may be placed 
following any of the response entries (just before 
any of the commas or after the <lib list>, as 
shown). 

To select the default for a field, simply enter a 
second conrnand without spaces in between (see the 
example below). 

Example: LIM!< FIIM+ TD'T + TABLE+CARE/P /M., FllMLIST ,COB LIB. LIB 

This example causes LI~k'. to be loaded, then causes 
the object modules Flltl.OBJ, TEXT.OBJ, TABLE.OBJ, and 
CARE.OBJ to be loaded. LHW then pauses (caused by 
the /P switch). When the user presses any key, LHJV 
links the object modules, produces a global symbol 
map (the /M switch), defaults to FIIM.EXE run file, 
creates a list file named FPHLIST.MAP, and searches 
the library file COBLIB.LIA. 

LH!K 

Page II.2-11 



LINK Progra1T1T1er Gui de 

2.6.3 Method 3: LHIK @<filespec> 

Enter: LINK ~<filespec> 

where: filespec is the name of a Response File. A Response 
Fi 1 e contains answers to the LIN!<' prompts ( shown 
under method 1 for invoking), and may also contain 
any of the switches. Method ~ permits the user to 
conduct the LIii!< session without interactive 
(direct) user responses to the LHIK prompts. 

IMPORTANT 

Dage II.?-12 

Before using method 3 to invoke LINK, the user must 
first create the Response File. 

A Response File has text lines, one for each prompt. 
Responses must appear in the same order as the 
command prompts appear. 

IJse switches and Special Command Characters in the 
Response File the same way as they a~e used for 

0 responses entered on the terminal keyboard. 

When the LH!V session begins, each prompt will be 
displayed in turn with the responses from the 
response file. If the response file does not 
contain answers for all the prompts, either in the 
form of filenames or the semicolon special character 
or carriage returns, LI~IV wi 11 , after di splaying the 
prompt which does not have a response, wait for the 
user to enter a legal response. When a legal 
response has been entered, LINr continues the link 
session. 

Example: 

FUM TEXT TABLE CARE /PAIISE/MAP FIINLIST 
COBLIB.LIB 

This Response File will cause LINK to load the four 
files. LIN~ will pause before creating and producing 
a public symbol map to permit the user to swap 
diskettes ( see discussion under /PAIISE in Sec ti on 
~.4, Switches, before using this feature). When the 
user presses any key, the output files will be named 
FIIM.EYE and FllflLIST.MAP, LHIK will search the 
library file COBLIB.LIB, and will use the default 
settings for the flags. 



Programmer Gui de LI MY. 

0 

0 

2,7 COMMAND PROMPTS 

UI-IK is commanded by entering responses to four text prompts. 
When you have entered a response to the current prompt, the 
next appears, When the last prompt has been answered, UNI( 
begins linking automatically without further command. When 
the link session is finished, LIMY exits to the operating 
system. When the operating system prompt is displayed, LUii< 
has finished successfully. If the link session is 
unsuccessful, LHW returns the appropriate error message. 

UNY prompts the user for the names of object, run, list 
files, and for libraries. The prompts are listed in their 
order of appearance. For prompts which can default to preset 
responses, the default response is shown in square brackets 
(fJ) following the prompt. The Object Modules: prompt is 
followed by only a filename extension default response because 
it has no preset filename response and requires a filenaMe 
from the user. 

Object Mo<!_ules [.OBJ]: 

Enter a list of the object modules to be linked. 
L HW assumes by default that the fi 1 ename extension 
is .OBJ. If an object module has any other filename 
extension, the extension must be given here. 
Otherwise, the extension may he ommitted. 

Modules must be separated by plus signs (+), 

Remember that 
the order 
Defi ni ti ons). 
order in which 

LPlf'. loads Segments into Classes in 
encountered (see Section 2.?, 
1 lse this information for setting the 
the object modules are entered. 

Run File [First-Object-Filename.EXE]: 

The filename entered will be created to store the 
Run ( executab 1 e) fi 1 e that results from the 1 ink 
session. All Run files receive the filename 
extension .F.XE, even if the user specifies an 
extension <the user specified extension is ignored). 

If no response is entered to the Run File: prompt, 
LINY uses the first .filename entered in response to 
the Object llodul es: prompt as the R111! fil en a Me . 

Example: 

Run File rF 11 tl. EXE J: 8: PAYROLL/P 

This response directs LHJ\". to create the Run file 

Page I I. 2-13 



LUii<' Programmer Guide 

PAYROLL.EXE on drive B:. Also, LINY will pause, ( 
which allows the user to insert a new diskette to 
receive the Run file. The default response is the 
Run filename with the default filename extension 
.MAP. 

Libraries r. J: 

Page II.2-14 

The valid responses are one to eight lib'.ary 
filenames or simply a carriage return. (A carriage 
return only means no library search.) Library files 
must have been created by a library utility. LUii( 
assumes by default that the filename extension is 
.LIB for l ihrary files. 

Library filenames must be separated by blank spaces 
or plus signs (+). 

L It'I' searches the library files in the order listed 
to resolve external references. When it finrls the 
module that defines the external symbol, LHIK 
processes the module as another object module. 

If LIii"'. cannot find a l i hrary file on the diskettes 
in the disk drives, it returns the message: 

Cannot find library <library-name> 
Enter new drive letter: 

Simply press the letter for the drive designation 
(for example B). 

LIMV. does not search within each library file 
sequentially. LIW uses a method called dictionary 
indexed library search. This means that LIM!' finds 
definitions for external references by index access 
rather than searching from the beginning of the file 
to the end for each reference. This indexed search 
reduces substantially the link time for any sessions 
involving library searches. 

0 



Programmer Guide 

0 

2 ,8 SWITCHES 

The six switches monitor alternate linker functions. Switches 
must be entered at the end of a prompt response, regardless of 
which method is used to invoke LIHV , Switches may be grouped 
at the end of any one of the responses, or may be scattered at 
the end of several. If more than one switch is entered at the 
end of one response, each switch must be preceded by the slash 
marl: (/1, 

All switches may be abbreviated, from a single letter through 
the whole switch name. The only restriction is that an 
abbreviation must be a sequential sub-strinq from the first 
letter through the last entered; no gaps or tranpositions are 
allowed. For example: 

Legal 
ID 
;ns 
/DSA 
/OSALLOCA 

Illegal 
/DSL 
/OAL 
/OLC 
/fJSALLOCT 

/OSALLOCATE 

/HIGH 

Ilse of the /fJSALLOCATE switch directs LIW to load 
all data !OGroup) at the high end of the Data 
Segment. Otherwise, LHW loads all data at the low 
end of the nata Segment. At runtime, thens pointer 
is set to the lowest possible address and allows the 
entire OS segment to be used. Ilse of the 
/OSALLOCATE switch in combination with the default 
load low (that is, the /HIGH switch is not used), 
permits the user application to allocate aynamically 
any available memory below the area specifically 
allocated within nr,roup, yet to remain addressable 
by the same ns pointer. This dynamic allocation is 
needed for Pascal and FORTRA~' pro!)rams. 

~IOTE 

The user's application program may dynamically 
allocate up to ~~v bytes (or the actuijl amount 
available) less the amount allocated within nGroup. 

Ilse of the /HIGH switch causes LIW to pl ace the Run 
image as high as possible in memory. Otherwise, 
LIHV places the Run file as low as possible. 

NOTE 

Lll!Y 

Page IJ. 2- J i; 



LHIII Progra111111er Guide 

no not use the /HIGH switch with Pascal or FORTRAN 
prograr,s, 

/LINENI.IMBERS 

/MAP 

/PAUSE 

CAIITIOM 

Page 1r.2-1i; 

!lse of the /LHIDIIIMBERS switch directs LHJV to 
include in the List file the line numbers and 
addresses of the source statements in the input 
modules. Otherwise, line numbers are not included 
in the List file. 

NOTE 

~Jot all compilers produce object modules that 
contain line number information. In these cases, of 
course, LIN¥ cannot include line numbers. 

/MAP directs LHIY. to list all public 
symbols defined in the input modules. If 
not given, LitlV will list only errors 
includes undefined globals). 

(global) 
/MAP is 

(which 

The symbols are listed alphabetically. For each o 
symbol , L HI!<' 1 i sts its value and its segment: offset 
location in the Run file. The symbols are listed at 
the end of the List file. 

The /PAI ISE switch causes LI fir< to pause in the 1 ink 
session when the switch is encountered. Hormally, 
LHW performs the linking session without stop from 
beginning to end. The pause allows the user to swap 
the diskettes before L HIK outputs the Run (. F.XE l 
file. 

When LH11( encounters the /PAIJSE switch, it displays 
the message: 

About to generate .EXE file 
Change disks <hit any key> 

LHJK resumes processing when the user presses any 
key. 

no not swap the diskette which will receive the List 
fi 1 e, or the diskette used for the VM. TMP fi 1 e, if 
created. 



0 

0 

0 

PrograJ'11Tler Guide 

/STACK:<number> 

number represents any positive numeric value (in 
hexadecimal radix) up to~~~~~ bytes. If the /STACV 
switch is not used for a link session, LINV 
calculates the necessary stack size automatically. 

If a value from l to 'ill is entered, LIIIV uses 'iJ?.. 

All compilers and assemblers should provide 
information in the object modules that allow the 
linker to compute the required stack size. 

At least one object (input) module must contain a 
stack allocation statement. If not, LINV will 
return a WARMHIG: MO STACI'. STATEMEIIT error message. 

LHW 

Page II.2-17 



LHllt Programmer r,uide 

2.9 ERROR MESSAGES 

All errors cause the link session to abort. Therefore, after 
the cause is found and corrected, LI~r must he rerun. 

ATTEMPT TO ACCESS DATA OUTSIDE OF SEGMnJT BOIINDS, POSSIBLY BAD 
OBJECT MOD11LE 

Cause: probably a bad object file 

BAD NUMERIC PARAMETER 
Cause: Numeric value not in digits 

CANtlOT OPEN TEMPORARY FILE 
Cause: LH'K is unable to create the file VM,TMP 

because the disk directory is full. 
Cure: insert a new diskette. Do not change the 

diskette that will receive the list.MAP 
file. 

ERROR: DllP RECORD TOO COMPLEX 
Cause: mrp record in assembly language module is 

too complex. 
Cure: simplify DllP record in assembly language 

program. 

ERROR: FIXIIP OFFSET EXCEEDS FIELD WIDTH 
Cause: an assembly language instruction refers to 

an address with a short instruction 
instead of a long instruction. 

Cure: edit assembly· language source and 
reassemble 

INPUT FILE READ ERROR 
Cause: probably a bad object file 

INVALID OBJECT MODULE 
Cause: object module(s) incorrectly formed or 

incomplete (as when assembly was stopped 
in the middle). 

SYMBOL DEFINED MORE THAN ONCE 
Cause: LHII< found two or more modules that define 

a single symbol name. 

Page II.2-1P 



0 

Programmer r.uide 

PROGRAM SIZE OR NUMBER OF SEGMENTS EXCEEDS CAPACITY OF LINl<ER 
Cause: the total size may not exceed 1R4V bytes 

and the number of segments may not exceed 
2r;r; 

REnUESTED STACK SIZE EXCEEDS ~4K 
Cure: specify a size less than or equal to ~4~ 

bytes with the /STACV switch 

SEGMENT SIZE EXCEEDS 64K 
~4v bytes is the addressing system limit. 

SYMBOL TABLE CAPACITY EXCEEDED 
C;iuse: very many, very long naMes entered; 

exceeding approxiMately 2r;v bytes 

TOO MANY EXTERNAL SYMBOLS IN ONE MODIILE 

TOO MANY GROIIPS 

The limit is 2r;~ external symbols per 
module. 

The limit is 1n Groups 

TOO MANY LIBRARIES SPECIFIED 
The l i mi t is ri. 

TOO MANY PIIBLIC SYMBOLS 
The limit is 1n2a. 

TOO MANY SEGMHITS OR CLASSES 
The limit is 2r;~ (Segments and Classes 
taken together) 

UNRESOLVED EXTERNALS: <list> 

VM READ ERROR 
Cause: 

The external symbols listed have no 
defining module aMong the modules or 
libraries files specified. 

a disk problem; not Lr~v caused. 

LHW 

Page rr.2-10 



LHIK Progra1T111er Gui de 

WARNING: NO STACK SEGMENT 
Cause: none of the object modules specified 

contains a statement allocating stack 
space, but the user entered the /STACK 
switch. 

WARNHIG; SEGMENT OF ABSOLUTE OR IINKHOWN TYPE 
Cause: a bad object module or an attempt to link 

modules LI~~ cannot handle (e.g., an 
absolute object module). 

WRITE ERROR IN TMP FILE 
Cause: no more disk space remaining to expand 

VM. TMP file. 

WRITE ERROR ON RUN FILE 

Page I I. ?-20 

Cause: usually, not enough disk space for Run 
file. 

0 

( 



PART II - ASSEMBLY LANGUAGE TOOLS 

SECTION 3 - DEBUG 





0 

0 

PrograJT1mer Guide 

:'I. 1 HITRODllCTION 

DEBI JG is a debugging program used to provide a controlled 
testing environment for binary and executable object files. 
Note that text editors such as Hl:SCRmE are used to alter 
source files; f'lF.BJ JG is the counterpart for bi nary files. 
DF.BIIG elil'linates the need to reassemble a program to see if a 
problem has been fixed by a minor change. It allows you to 
alter the contents of a file or the contents of a CPIJ 
register, and then to immediately reexecute the program to 
check the validity of the changes. 

All nrn11r, comfllands l'lay be aborted at any time by pressing 
Ctrl +Brk. Ctrl +flumlock suspends the display, so that the user 
can read it before the output scrolls away. Entering any key 
other than Ctrl+Brk or Ctrl+t!umlock restarts the display. All 
of these c0111111ands are consistent l'lith the control character 
functions available at the nns coml'land level. 

~ • 2 HJVOCA TI OM 

To invoke nEBIIG, enter: 

f'lEBIIG r <fil espec> f <argl i st> JJ 

OE(lllr, 

For example, if a <filespec> is specified, then the following 
is a typical invocation: 

DEBIIG FILE.EYE. 

DEBI JG then 1 oads FI LF.. F.XE into memory starting at 1nn 
hexadecimal in the lowest available segment. The BY:CX 
registers are loaded with the number of bytes placed into 
memory. The DEBIIG prol'lpt is a right angle bracket (>). 

An <arglist> may be specified if <filespec> is present. These 
are filename parameters and switches that are to be passed to 
the program <filespec>. Thus, when <filespec> is loaded into 
memory, it is loaded as if it had been invoked with the 
command: 

<filespec> <arglist> 

Here, <filespec> is the file to be debugged, and the <arglist> 
1s the rest of the coml'land line that is used when <filespec> 
is invoked and loaded into memory. 

II. ~-l 



[lEBIIG Programmer Guide 

Jf no <filespec> is specified, then [l[BJJG is invoked as 
follows: 

DERIIG 

IJEBIIG then returns with the prompt, signaling that it is ready 
to accept user comands. Since no filename has been 
specified, current memory, disk sectors, or disk files can be 
worked on by invoking later comands. 

3.3 COMMAHDS 

Each IJERIIG command consists of a single letter followed by one 
or more parameters. Additionally, the control character and 
the special editing functions described in Section?. all apply 
inside [)EBIIG. 

If a syntax error occurs in a DFJlllG command, OEIJIIG reprints 
the comand line and indicates the error with an up-arrow r·i 
and the word error. 

For example: 

rlcs:1.on cs:nn 
error 

All commands and parameters may be entered in either upper or 
lower case. Any combination of upper and lower case may be 
used in commands. 

The [lF.FIIIG commands are summarizerl in Table -i.1 and are 
described in detail with examples following the description of 
command paramters. 

II.3-2 

C 



0 

0 

(_ 

Programmer Guide 

Table 3,1 - DEBUG Commands 

DEBIIG Command 

C<range> <address> 
D[<range>J 
E<address> [<list>] 
F<range> <list> 
G[=<address> [<address> ••• ] 
H<address> <address> 
!<value> 
L[<address> r<drive><record><record>ll 
M<range> <address> 
M<fil espec> 
O<value> <byte> 
n 
R[<register-name>J 
S<range> <list> 
T[=<address>Jf<value>l 
11~ <range> J 
wr<address> f<drive><record><record>JJ 

Function 

Compare 
Dump 
Enter 
Fi 11 
Go 
Hex 
Input 
Load 
Move 
•laMe 
Output 
nuit 
Reqister 
Search 
Trace 
11nassemble 
lfri te 

DERIIG 

II.3-3 



DEBIIG Prograrrmer Guide 

3.4 PARAMETERS 

As the su111111ary above shows, all DEBIIG commands accept 
paramters, except the nuit co111111and. Parameters may be 
separated by delimiters (spaces or commas), but a delimiter is 
required only between two consecutive hexadecimal values. 
Thus, the following co~mands are equivalent. 

dcs:inn un 
d cs: 1nn 11n 
d,cs:1nn,11n 

Also, entries may be ~ade in any combination upper or lower 
case. 

PARAMETER 

<drive> 

<byte> 

<record> 

<value> 

<address> 

DEFHJITiml 

A one digit hexadecimal value to indicate which 
drive a file will be loaded from or written to. 
The valid values are 0-3. These values 
designate the drives as follows: O=A:, l=B:, 
2=C:, 3=fl:. 

A two digit hexadecimal value to be placed in 
or read from an address or register. 

A 1 to 1 digit hexadecimal value used to 
indicate the logical record number on the disk 
and the number of disk sectors to be written or 
loaded. Logical records correspond to sectors. 
However, their numbering differs since they 
represent the entire disk space. 

A hexadecimal value up to four digits used to 
specify a port number or the number of times a 
command should repeat its function. 

A two part designation consisting of either an 
alphabetic segment register designation or a 
four digit segment address plus an offset 
value. The segment designation or segment 
address may be omitted, in which case the 
default segment is used. OS is the default 
segment for all corrmands except G, L, T. II, and 
W, for which the default segment is CS. All 
numeric values are hexadecimal. 

For example: 

cs:n1no 
n4BA:0100 

I I.1-4 

C 

0 

0 



Programmer r,uide 

<range> 

0 
<list> 

<string> 

The colon is required between a segment 
designation (whether numeric or alphabetic) and 
an offset. 

Two <address>s: e.g., <address> <address>; or 
one <address>, an L, and a <value>: e.g., 
<address> L <value> where <value> is the number 
of lines the COIT'flland should operate on; or 
simply <address>, and LRO is assumed. The last 
form can not be used if another hex value 
follows the <range>, since the hex value would 
be interpreted as the second <address> of the 
<range>. 

Examples: 

cs:100 nn 
CS: JOn L 10 
cs: 1nn 

The following is illegal: 

CS: 1nn CS: 1.1n 
~ error 

The limit for <range> is 1nnon hex. To specify 
a <value> of 1nnno hex within four digits, 
enter nnno (or n). 

A series of <byte> values or of <string> line. 
<list> must be the last parameters on the 
command line. 

Example: 

fcs:100 4?. 45 52 54 41 

Any number of characters enclosed in quote 
marks. Ouote marks may be either single (') or 
double ("). Within <string>s, the opposite set 
of quote marks may be used freely as literals. 
If the delimiter quote marks must appear within 
a <string>, the quote marks must be doubled. 
For example, the following strings are legal: 

'This is a "string" is okay.' 
'This is a ' 'string' ' is okay. ' 

However, this string is illegal: 
'This is a 'string' is not.' 

f1EBIIG 

II.3-5 



DEBIIG Programmer Gui de 

Similarly, these string are legal: 
"This is a 'string' is okay." ( 
"This is a ""string"" is okay." 

II.3-/; 

However, this string is illegal: 

"This is a "string" is not." 

~ote that the double quotations 
necessary in the following strings: 

are not 

"This is a "string" is not necessary." 
'This is a '"'string"" is not necessary.' 

The ASCII values of the characters in the 
string are used as a <list> of byte values. 

0 

(_ 



0 

0 

Programmer Guide OEBIJG 

MAME: -4:~1.•••••·••1-1111 
SYNTAX: C<range> <address> 

FIINCTJOH: C<">J'lpare the portion of memory specified by <range> 
to a portion of the same size beginning at 
<address>. 

C0"'1EMTS If the two areas of memory are identical, there is 
no display and OER11G returns with the 11S-DOS prompt. 
If there~ differences, they are displayed as: 

<address).> <bytel> <byte2> <address2> 

EXAMPLE: The following colflllands have the same effect: 

c1nn,1FF :100 

or 

c1nounn '.lnn 

Each command compares the block of memory from 100 
to lFFH with the block of memory from inn to 1FFH. 

II .:1-7 



nF.BIIG Programmer Guide 

SYNTAX: D~<range>J 

FUNCTION: Display the contents of the specified region of 
memory. 

COMMENTS: If a range of addresses is specified, the contents 
of the range are displayed. If the D command is 
entered without paramters, 12A bytes are displayed 
at the first address (DS:Jnn) after that displayed 
by the previous Dump comand. 

II.3-A 

The dump is displayed in two portions: a hexadecimal 
dump (each byte is shown in hexadecimal value) and 
an ASCII dump (the bytes are shown in ASCII 
characters). Monprinting characters are denoted by 
a period (.) in the ASCII portion of the display. 
Each display line shows sixteen bytes with a hyphen 
between the eighth and ninth bytes. At times, 
displays are split in this manner to fit them on the 
page. Each displayed line, except possibly the 
first, begins on a Jfi-byte boundary. 

If the user enters the command: 

des: 100 110 

DEBIIG displays: 

04BA:Ol00 42 4~ ~2 ~4 41 .•. 4E 44 BERTA T. BORLAND 

If the following co1?111and is entered: 

0 

the display is formatted as described above. Each 
line of the display begins with an address; 
incremented by J_fi from the address on the previous 
line. Each subsequent O (entered without 
parameters) displays the bytes immediately following 
those last displayed. 

C 

0 

0 



C 

0 

0 

Programmer Guide 

If the user enters the command: 

DCS: inn L 20 

the display is formatted as described above, but ?OH 
bytes are displayed. 

If the user enters the command: 

ncs:1nn 11,; 

the display is formatted as described above, but all 
the bytes in the range of lines from !OOH to ll~H in 
the CS segment are displayed. 

DEBUG 

lI. ~-0 



OEBIIG Progral'l!11er Guide 

NAME : :;swfifffi:E·:·:·:·:·:,·:·:·,:·:~;~'·F~ 

SYNTAX: E<address>r <list>] 

FUHCTION: Enter byte values into memory at the specified 
<address>. 

COMMENTS: If the optional <list> of values is entered, the 
replacement of byte values occurs automatically. 
/If an error occurs, no byte values are changed.) 
If the <address> is entered without the optional 
<list>, DEBIIG displays the address on the next line 
and waits for the user's input. At this point, the 
Enter corrrnand waits for you to pefonn one of the 
following actions: 

1. Replace a hyte value with a value the user 
types in. The user simply types the value 
after the current value. If the value typed in 
is not a legal hexadecimal value or if more 
than two digits are typed, the illegal or extra 
character is not echoed. 

C 

2 . Press the space bar to advance to the next o 
byte. To change the value, simply enter the 
new value as described in (l.) above. If the 

I I. 3- ln 

user spaces beyond an eight-byte boundary, 
DEBllG starts a new display line with the 
address displayed at the beginning. 

3. Type a hyphen (-l to return to the preceding 
byte. If the user decides to change a byte 
behind the current position, typing the hyphen 
returns the current position to the previous 
byte. When the hyphen is typed, a new 1 i ne is 
started with the address and its byte value 
displayed. 

4. Press the <Rtn> key to terminate the Enter 
command. The <Rtn> key may be pressed at any 
byte position. 

0 



C 

0 

0 

Programmer Gui de DEBIJG 

EXAMPLE: 

Assume the following command is entered: 

ECS:1nn 

OEBII(; rti splays: 

n4BA: n1 nn F.B. 

To change this value to 41, enter "41" as shown: 

n4BA:n1on EB.41 

To step through the subsequent bytes, press the 
space bar to see: 

04BA:nJ.OO EB.41 

To change BC to 42: 

n4BA:n1no EB.41 

10. 

1n. 

nn. BC. 

no. BC.42 

~ow, realizing that JO should he ~F; enter the 
hyphen as many times as needed to return to byte 
n1n1 (value 1n), then replace J.n with ~F: 

n11BA:n1nn rn.111 
OIIRA:n1n2 nn.­
n4BA:nJOl 10.f;F 

10. nn. RC.42-

Pressing the <Rtn> key ends the F.nter command and 
returns to the orn11r, command 1 evel. 

II.~-1) 



DEBIIG Progra1111T1er Guide 

SYNTAX: F<range> <list> 

FUNCTION: Fill the addresses in the <range> with the values in 
the <list>. 

COMMENTS: If the <range> contains more bytes than the number 
of values in the <list>, the <list> will be used 
repeatedly until all bytes in the <range> are 
filled. If the <list> contains more values than the 
number of bytes in the <range> the extra values in 
the <list> will be ignored. If any of the memory in 
the <range> is not valid <had or nonexistent>, the 
error will be propagated into all succeeding 
locations. 

EXAMPLE: Assume the following command is entered: 

Fn4BA:1nn Linn 42 4~ ~2 ;a 41 

nrn11r, fills memory locations 04RA:1nn through 
04BA:lFF with the bytes specified. The five values 
are repeated until all 1nnH bytes are filled. 

II.~-12 

C 

0 

(_ 



0 

Progral'lmer r,ui de DEBUG 

SYNTAX: r,r=<address>Jr <address> •.. ] 

FUNCTION: Execute the program currently in memory. 

COMMENTS: If the Go command is entered alone, the program 
executes as if the program had run outside OFRIIG. 

If =<address> is set, execution begins at the 
address specified. The equal sign (=) is required, 
so that orn11r, can distinguish the start =<address> 
from the breakpoint <address>es. 

With the other optional addresses set, execution 
stops at the first <address> encountered, regardless 
of that address' position in the list of addresses 
to halt execution, no matter which branch the 
program takes. When program execution reaches a 
breakpoint, the registers, flags, and decoded 
instruction are displayed for the last instruction 
executed. (The result is the same as if you had 
entered the Register command for the breakpoint 
address.) 

lip to ten breakpoints may be set. Breakpoints may 
be set only at addresses containing the first byte 
of an opcode. If more than 10 breakpoints are set, 
DEBIJG returns the BP Error message. 

The user stack pointer must be valid and have six 
bytes available for this conwnand. The G command 
uses an IRET instruction to cause a jump to the 
program under test. The user stackpoint is set, and 
the user Flags, Code Segment register, and 
Instruction Pointer are pushed on the user stack. 
(Thus, if the user stack is not valid or is too 
small, the operating system may crash.) An 
interrupt code (OCCH) is placed at the specified 
breakpoint address(es). When an instruction with the 
breakpoint code is encountered all breakpoint 
addresses are restored to their original 
instructions. If execution is not halted at one of 
the breakpoints, the interrupt codes are not 
replaced with the original instructions. 

II.~-1:1 



DERIIG Programmer !iui cte 

EXAMPLE: Assume the following command is entered: 

II.~-14 

GCS:?'ilin 

The program current in memory executes up to the 
address 7'i5C1 in the CS segment. Then DEBI IG di sp 1 ays 
registers and flags, after which the Go command is 
terminated. 

After a breakpoint has been encountered, if you 
enter the Go command again, then the program 
executes just as if the user had entered the 
filename at the MS-DOS command 1 evel. The only 
difference is that program execution begins at the 
instruction after the breakpoint rather than at the 
usual start address. 

C 



Programmer Guide 

SYNTAX: H<value> <value> 

FUNCTION: Perform hexadecimal 
parameters. 

arithmetic on the two 

COMMENTS: First, OEBIIG adds the two parameters, then subtracts 
the second parameter from the first. The result of 
the arithmetic is displayed on one line; first the 
sum, then the difference. 

EXAM PLE: Assume the following command is entered: 

0 NAHE: 

SYNTAX: 

HlOF HlA 

IJF:BIIG peforms the calculations and then returns the 
results: 

!<val ue> 

FUNCTION: Input and display one byte from the port specified 
by <value>. 

COMMEHTS: A 16-bit port address is allowed. 

EXAMPLE: Assume the following command is entered: 

I2F~ 

Assume also that the byte at the port is 42H. DF.BlfG 
inputs the byte and displays the value: 

42 

DEBIJG 

II.3-15 



DEBIIG Programmer Gui de 

NAME: MiaaPhP\EJWJm®k1#1Jr,VSl&@§GWtHJfrd1hltm;liN 
SYNTAX: L~<address> r<drive> <record> <record>]] 

FUNCTION: Load a file into memory 

COMMENTS: Set BX:CX to the number of bytes read. The file 
must have been named with either the OEBIIG 
invocation command or with the N command. Both the 
invocation and the N commands format a filename 
properly in the normal format of a file control 
block at CS:5C. 

If the L command is given without any parameters, 
11EBl!G 1 oads the file into memory beginning at 
address CS:100 and sets BX:CX to the number of bytes 
loaded. If the L command is given with an address 
parameter, loading begins at the memory <address> 
specified. If L is entered with all parameters, 
absolute disk sectors are loaded, not a file. The 
<record>s are taken from the <drive> specified (the 
drive designation is numeric here--O=A:, l=B:, 2=C:, 
etc. l; DEBIIG begins 1 oadi ng with the first <record> 
specified, and continues until the number of sectors 
specified in the second <record> have been loaded. 

EXAMPLE: Assume the following commands are entered: 

II.~-lf'i 

A:DEBIIG 
>~IF ILE.COM 

Now, to load FILE.COM, enter: 

L 

DEBIIG 1 cads the file and returns the DEfll!G prompt. 
Assume you want to load only portions of a file or 
certain records from a disk. To do this, enter: 

L04ba:1nn 2 nF nD 

DEBUG then 1 cads J Oil ( ,;n hex) records beginning with 
logical record number 1~ into memory beginning at 
address 04BA:n1on. When the records have been 
loaded, DEBIJG simply returns the prompt. 

0 



0 

0 

Programmer Guide 

If the file has a .EXE extension, then it is 
relocated to the load address specified in the 
header of the .EXE file: the <address> parameter is 
always ignored for .EXE files. Note that the header 
itself is stripped off the .EXE file before it is 
loaded into memory. Thus, the size of a .EXE file on 
disk will differ from its size in meMory. 

If the file named by the flame command or specified 
on invocation is a .HEX file, then entering the L 
command with no parameters causes loading of the 
file beginning at the address specified in the .HEX 
file. If the L command includes the option 
<address>, OEBI~ adds the <address> specified in the 
L command to the address found in the .HEX file to 
determine the start address for loading the file. 

DERIJG 

II.3-17 



DEBIJG Programmer Gui de 

NAME: 1wKrttt1rw®mtft11tJ:P4mtw1utW«Mt1ftl1@z,0111wtan1 
SYNTAX: M<range> <address> 

FIJNCTIOH: Move the block of memory specified by <range> to the 
location beginning at the <address> specified. 

COMMENTS: Overlapping moves (moves where part of the block 
overlaps some of the current addresses) are always 
performed without loss of data. Addresses that 
could be overwritten are moved first. The sequence 
for moves from higher addresses to lower addresses 
is to move the data beginning at the block's lowest 
address and working towards the highest. The 
sequence for moves from lower addresses to higher 
addresses is to move the data beginning at the 
block's highest address and working towards the 
lowest. 

Note that if the addresses in the block being moved 
will not have new data written to them, the data 
there before the move wi 11 remain; that is, the M 
command really copies the data from one area into 
another, in the sequence described, and writes over o 
the new addresses. This is why the sequence of the 
move is important. 

EXAMPLE: Assume you enter: 

II.~-lR 

MCS:1no 11n cs:~nn 

OEBIJG first moves address CS:lln to addresses 
CS:~1n, then CS:lnF to CS:~nF, and so on until 
CS:100 is moved to CS:~nn. You should enter the D 
command, using the <address> entered for the 11 
command, to review the results of the move 



0 

0 

PrograJT1mer Guide 

SYNTAX: N<filenal'le>[<filename> ••• J 

F!JNCTI ON: Set filenames 

COMMENTS: The Mame command performs two distinct functions, 
hoth having to do with filenames. First, Name is 
used to assign a filename for a later Load or Write 
command. Thus, if you invoke OEBIIG without naming 
any file to be debugged, then the 11<filename> 
command must be given before a file can be Loaded. 
Second, Harne is used to assign filename parameters 
to the file being debugged. In this case, Name 
accepts a list of parameters that are used by the 
file being dehugged. 

These functions overlap. Consider the following set 
of OEFll!G commands: 

>~'FILELEXE 
>L 
>f; 

Recause of the two pronged effect of the Name 
command, the following happens: 

1. (N)ame assigns the filename FILEl.EXE to the 
filename to be used in any later Load or Write 
commands. 

2. (H)ame also assigns the filename FILE.EXE to 
the first filename paral'leter to be used by any 
program that is later debugged. 

~. (L)oad loads FILE.EXE into memory. 

OEl3UG 

4. (G)o causes FILE.EXE to be executed with 
FILE.EXE as the single filename parameter (that 
is, FILE.EXE is executed as if FILE FILE.EXE 
had heen typerl at the coml'land level). 

II.3-19 



DEBIIG Programmer Guide 

A more useful chain of commands might go like this: 

>MFILEl .EXE 
>L 
>MFILE2.DAT FILE~.DAT 
>G 

Here, Mame sets FILEl.EXE as the filename for the 
subsequent Load command. The Load command loads 
FILEl.EXE into memory, and then the 1raP1e command is 
used a9ain, this time to specify the parameters to 
be used by FILEl.EXE. Finally, when the Go command 
is executed, FILEl.EXE is executed as if FILEJ 
FILE2.DAT FILE3.DAT had been typed at the MS-DOS 
command 1 evel. Mote that if a Write command were 
executed at this point, then FILEl.EXE -- the file 
being debu9ged -- would be saved with the name 
FILE2.DAT! To avoid such undesired results, you 
should always execute a Harne command before either a 
Load or a Write. 

There are four distinct regions of memory that can 
be affected by the trame command: 

CS:;c FCB for file 1 
CS:~C FCB for file 2 
CS:Rn Count of characters 
CS:Rl All characters entered 

A File Control Block (FCB) for the first filename 
paraneter given to the "ame command is set-up at 
CS:~C. If a second filename parameter is 9iven, 
then an FCB is setup for it beginning at CS:~C. The 
number of characters typed in the flame command 
(exclusive of the first character, "M") is given at 
the location CS:Rn. The actual stream of characters 
given by the t.rame coP1mand (again, exclusive of the 
letter "M") begins at CS:Al. Note that this stream 
of characters may contains switches and delimiters 
that would be legal in any command typed at the 
MS-DOS command level. 

0 



0 

0 

Programmer Guide 

EXAMPLE: A typical use of the 'lame comand would be: 

DEBUG PROG.COM 
-MPARAMl PARAM2/C 
-G 

In this case, 
memory as if 
entered: 

the Go command executes the file in 
the following command line had been 

PROG PARAMl PARAM2/C 

Testing and debuggin~ therefore reflect a normal 
runtime environment for PROr,.cm1. 

DEBIIG 

II. 3-21 



DEBIJG Programmer r,ui de 

SYNTAX: O<value> <byte> 

FUNCTION: Send the <byte> specified to the output port 
specified by <value>. 

COMMENTS: A 1~-bit port address is allowed. 

EXAMPLE: Enter: 

02FP 4F 

DEflllG outputs the byte value I\F to output port ?.Fq. 

SYNTAX: n 

FUNCTION: Tenni nate the debugger 

CO!f,1ENTS: Then command takes no parameters and exits OEBl!G 
without saving the file currently being operated on. 
You are returned to the HS-DOS command level. 

EXAMPLE: To end the debugging session, enter: 

!'<Rtn> 

II.'.1-22 

OEBUG is terminated, and control returns to the 
MS-DOS command level. 



0 

0 

PrograTTIMer r,uide 

SYNTAX: Rr<register-name>J 

FUNCTION: Display the contents of one or more CPII registers. 

COMMENTS: If no <register-name> is entered, the R command 
dumps the register save area and displays the 
contents of all registers and flags. 

If a register name is entered, the 1~-bit value of 
that register is displayed in hexadecimal, and then 
a colon appears as a prompt. The user then either 
enters a <value> to change the register, or simply 
presses the <Return> key if no change is wanted. 

The only valid <register-name>s are: 

AX BP SS 
BX SI CS 
ex DI IP 
nx OS PC 
SP ES F 

(IP and PC both refer to the instruction pointer.) 

Any other entry for <register-name> results in a BR 
Error message. 

If F is entered as the <register-name>, OEBIIG 
displays each flag with a two character alphabetic 
code. To alter any flag, enter the opposite two 
letter code. The flags are either set or clear. 

The flags with their codes for get and clear are 
listed below: 

FLAG NAME SET CLEAR 

Overflow OV tlV 

DEBUG 

Direction ON Decrement IJP Increment 

Interrupt EI Enabled DI Disabled 

Sign tlG Negative PL Plus 

Zero ZR NZ 

Auxiliary AC NA 
Carry 

I I. 3-23 



DEBIIG 

Parity 

Carry 

Programmer Guide 

PE Even PO Odd 

CY MC 

Whenever the user enters the command RF, the flags 
are displayed in the order shown above in a row at 
the beginning of a line. At the end of the list of 
flags, DEBIIG. displays a hyphen (-). You may enter 
new flag values as alphabetic pairs. The new flag 
values can be entered in any order. You are not 
required to leave spaces between the flag entries. 
To exit the R comand, press the <Return> key. 
Flags for which new values were not entered remain 
unchanged. 

If more than one value is entered for a flag, DEBUG 
returns a OF Error message. If you enter a flag 
code other than those shown above, DEBIIG returns a 
BF Error message. In both cases, the flags up to 
the error in the list are changed; flags at and 
after the error are not. 

At start up, the segment registers are set to the Q 
bottom of free memory, the Instruction Pointer is 
set to OlOOH, all flags are cleared, and the 
remaining registers are set to zero. 

EXAMPLE: Enter: 

II.3-24 

R 

OEBIIG displays all registers, flags, and the decoded 
instruction for the current location. If the 
location is CS:llA, then DEBUG might display: 

AX=OEnn BX-ODFF cs-nnn7 OX=O]FF SP=039D BP=nnnn 
SI=OO~C OI=nnon OS=04BA ES=04BA SS=04BA CS=04BA 
IP=OllA >IV IIP DI tJG NZ AC PE NC 
04BA: 011A CD21 !~IT 21 

If you enter: 

RF 

DEBUG displays the flags: 

NV LIP DI MG NZ AC PE MC -



0 

0 

Programmer Gui de DEBIIG 

Now enter any valid flag designation, in any order, 
with or without spaces. 

For example: 

NV UP DI MG NZ AC PE ~IC - PLEICY<Rtn> 

DEBIIG responds only with the DEBIIG prompt. To see 
the changes, enter either the R or RF command: 

RF 
NV I~ EI PL NZ AC PE CY -

Press <Rtn> to leave the flags this way, or to enter 
different flag values. 

II.~-2,:; 



DEBUG Programmer Guide 

NAME: 

SYNTAX: S<range> <1ist> 

FUNCTION: Search the range specified for the <list> of bytes 
specified. 

COMMENTS: The <1ist> may contain one or more bytes, each 
separated by a space or comma. If the <1ist> 
contains more than one byte, only the first address 
of the byte string is returned. If the <list> 
contains only one byte, a11 addresses of the byte in 
the <range> are displayed. 

EXAMPLE: If you enter: 

scs:1nn un a1 

DEBl!G might return the response: 

048A:n1n4 
n4BA:n1no 
> 

II.3-21i 

0 



0 

0 

Programmer Guide DEBUG 

NAME: 'iT:tiTdJ&lli NIW:IW;1llffVIJ;Jfi'.F{JS1fi;tffittwW£tz®lt 
SYNTAX: T(=<address>J[<value>J 

FUNCTION: Execute one instruction and display the contents of 
all registers, flags, and the decoded instruction. 

COMMENTS: If the original =<address> is entered, tracing 
occurs at the =<address> specified. The optional 
<value> causes flEBl!G to execute and trace the number 
of steps specified by <value>. 

The T command uses the hardware trace mode of the 
microprocessor. Consequently, the user may also 
trace instructions stored in ROM. 

EXAMPLE: Enter: 

T 

DEBUG returns a display of the registers, flags, and 
decoded instruction for that one instruction. 
Assume that the current position is n4BA:nJ1A; then 
DERIIG might return the display: 

AX=nEnn BX=nnFF CX=nnn7 DX=OlFF SP=039D BP=nnnn 
SI=nnsc OI=nnnn DS=04BA ES=04BA SS=n4RA CS=04BA 
IP=Ol lA ~1 11 IIP fl! NG ~IZ AC PE IJC 
n4RA:011A C021 INT 21 

Mow enter: 

T=OllA 10 

DEBUG executes sixteen (10 hex) instructions 
beginning at n11A in the current segment and then 
displays all registers and flags for each 
instruction as it is executed. The display scrolls 
away until the last instruction is executed. Then 
the display stops, and you can see the register and 
flag values for the last few instructions performed. 
Remember that <Ctrl+Mumlock> suspends the display at 
any point, so that you can study the registers and 
flags for any instruction. 

I I. ~-27 



fJEBl!G Progral'1111er Guide 

NAME: Iiliill:a.,i•--~--1 ( 
SYNTAX: 11[ <range>] 

FUNCTION: Disassemble bytes and display the source statements 
that correspond to them, along with addresses and 
byte values. 

COMMnJTS: The display of disassembled code looks like a 
listing for an asseribled file. If you enter the 11 
command without parameters, 2n hexadecinal bytes are 
disassembled at the first address after that 
displayed by the previous llnassemble command. If 
you enter the 11 comriand with the <range> parameters, 
then fJERIIG disassembles all bytes in the range. If 
the <range> is given as an <address> only, then ?OH 
bytes are disassembled, not AOH. 

EXAMPLE: Enter: 

1104BA:).On UO 

DEB!IG disassembles Hi bytes beginning at address 
!14BA:nJOO: 

04BA:0100 201i472 
04BA:!1J03 r,9 
04BA:0104 71ili5 
n,tBA:0106 207370 
04BA:0109 li5 
04BA:010A li3 
fJ4BA:010B li9 
OIIBA:OJ.OC fif; 

04BA:OIOD Ii!) 

04BA:010E fi3 
04BA:010F lil. 

If you enter: 
u04ba:0100 OJOP 

the display shows: 

MID 
DB 
,!BE 
AtJD 
DB 
DB 
DB 
DB 
DB 
flA 
[18 

048A 0100 ?nli472 AM[) 
OIIBA 0103 Ii!) DB 
04BA 0104 761i5 JBE 
o•BA 010" 2on70 Mm 

[SI+72J,AH 
li9 
OlliB 
[BP+DI+70J,OH 
6'i 
63 
i;o 

61i 
fjq 
li3 
Ii] 

fSI+72J,AH 
i;q 

OlliB 
rBP+DI+70] ,DH 

0 



0 

Programmer Guide DEBUG 

If the bytes in some addresses are altered, the 
disassembler alters the instruction statements. The 
II commaml can be entered for the changed locations, 
the new instructions viewed, and the disassembled 
code used to edit the source file. 

II. 3-29 



DEBllf, Programmer Guide 

NAME : ;~f.1.~~\iJ,iltt::w.>1i,·~~:t.1 .. ·:·;wfr~>1~V·:k_:,f_huZ&f::Y .. ~~-·~:.+t .. fi¼ 
SYNTAX: W(<address> (<drive> <record> <record>]] 

FUNCTION: Write the file being debugged to a disk file. 

COMME~TS: If only the W appears, BX:CX must already be set to 
the numher of bytes to be written; the file is 
written beginning from CS:100. If the W command is 
given with just an address, then the file is written 
beginning at that address. If a G or T command was 
used, BX:CX must be reset before using the Write 
command with out parameters. ( Mote that if a file is 
loaded and modified, the name, length, and starting 
address are all set correctly to save the modified 
file as long as the length has not changed.) 

The file must have been named either with 
invocation command or with the t! command 
above). Both the invocation and the tr 
format a file name properly in the normal 
a file control block at CS:~C. 

the !)E[)IIG 
(see Mame 
commands 

format of 

C 

If the W command is given with parameters, the write o 
begins from the memory address specified; (the drive 
designation is numeric here -- O=A:, l=B:, 2=C:, 
etc.); DEBIIG writes the file beginning at the 
logical record number specified by the first 
<record>; and continues until the number of sectors 
specified in the second <record> have been written. 

WARNING 

Writing to absolute sectors is EXTREMELY dangerous 
because the process bypasses the file handler. 

EXAMPLE: Enter: 

w 

DEBIIG writes out the file to disk then displays the 
nEBIJG prompt: 

w 
> 

II.:1-30 



0 

0 

Programmer Guide DEBIIG 

Another example: 

HCS: 100 l J7 28 

DEBIJG writes out the contents of memory, beginning 
with the address cs:1no to the disk in drive B:. 
The data written out starts in disk logical record 
number J7H and consists of 2BH records. When the 
write is complete, !1EBIIG displays the prompt: 

WCS: 1!10 l J7A 2fl 
> 

II. 3-31 



DEBIIG Progral!lfTler Guide 

3.5 ERROR MESSAGES 

During the DEBIIG session, you may receive any of the following 
error messages. Each error terminates the DEBIIG command with 
which it is associated, but does not terminate DEBUG itself. 

ERROR CODE 

BF 

BP 

RR 

DEFINITION 

Bad Flag 
The user attempted to alter a flag, but the 
characters entered were not one of the 
acceptable pairs of flag values. See the 
Register co1T111and for the list of acceptable 
flag entries. 

Too many Breakpoints 
The user specified more than ten breakpoints as 
parameters to the G collll'land. Reenter the Go 
command with ten or fewer breakpoints. 

Bad Register 
The user entered the R command with an invalid 
register name . See the Register command for the 
list of valid register names. 

OF Double Flag 
The user entered two values for one flag. The 
user may specify a flag value only once per RF 
command. 

0 



PART II - ASSEMBLY LANGUAGE TOOLS 

SECTION 4 - EDLIN 



C 



0 

0 

0 

Programmer Guide ErlLHI 

F.nLHI 

EnLI~ is a text editor used to edit files that are divided 
into lines. Each line may be up to ?~~ characters, the last 
character of each being the end of line character, the 
carriage return. Line numbers are not actually present in 
saved text, but when a file is displayed, lines are numhered 
dynamically. When a file is created or edited, line numbers 
begin at J and are incremented by one through the end of the 
file. When new lines are inserted between existing lines, all 
line numbers followinq the inserted text are automatically 
incremented by the number of lines inserted. When lines are 
deleted between existing lines, all line numbers following the 
deleted text are decremented automatically by the numher of 
lines deleted. Consequently, line numbers always run from 1 
through n (the last number). 

4. 1 HIIIOCAT IO~I 

To invoke EOLI~, enter: 

EnLHI <filespec> 

If the file specified exists, EPLIH loads the file into 
memory. If the whole file is loaded, EnL!H returns the message 
"End of input file" and an asterisk (*) prompt. If the file is 
"larger than memory", then l:PL!II fills 1/ll of available memory 
with the first part of the file and then returns the asterisk 
(*) prompt, but not the "F.nd of input file" messa!Je. /This is 
just like the Append command with no parameter. See Section 
ll. ~, "Interline Comands," for more information on Append. l 

vou may then edit the existing file. When you want to edit the 
part of a file that is not in memory, you must first write out 
to disk some of the file that is in memory, and then append 
lines into memory. (See the A and W comands. J 

If the file specified does not exist, EnLIH creates the file 
and returns the message HEW FILE. and then displays the 
asterisk (*) prompt, indicating that the editing session may 
begin. 



mu~, Progra1'1111er Guide 

IMPORTANT 

When creating a new file, be sure to 
specify on which drive the file should be 
saved. The col'1T!land to end the editing 
session and save the file does not allow 
parameters. Therefore, i.f the drTve is not 
designated durin9 EnLHI invocation, the 
file is saved on the default drive. 

r.nui1 commands bel on9 to two types: intraline and interline. 
Intraline commands perforM editing functions within a single 
line. The co1T111ands used to perform intraline editing are the 
control character functions and the special editing commands 
used in nos. The special editin9 functions are descrihed in 
more detail in the following section. Note, however, that 
these are the same colll!lands that are used at the nos col'll'!and 
level. The only difference between them is that the EOLIN 
commands operate on the line currently being edited, rather 
than the MS-OOS coJ111T1and line. 

4.2 HITRALINE COHHMJDS 

Intraline co!lll'lands include the special editing functions and 
the control character functions: only the special editing 
functions are discussed here. 

Table 4.1 sull11'1arizes 
nescriptions of the 
table. 

the commands, codes, and functions. 
special editing functions follow the 

JI .4-?. 

( 

( 



Programmer Guide EDLIM 

0 
Table 4.1 Special Editing Colll'lands 

Command 

Copy one character 

Copy up to character 

Copy Te111pl ate 

Skip one character 

0 
Skip up to character 

nuit !nput 

Insert 111ode 

flew Template 

0 

Code 

<F1> 
or 
-> 

<F?.> 

<F3> 

<Del> 

<FA> 

<F.sc> 

<Ins> 

<F"> 

Function 

Copy one character from 
the template to the new 
1 i ne 

Copy all characters from 
the template to the new 
line up to the character 
specified 

Copy all remaining 
characters in the 
template to the new line 

no not copy (skip over) a 
character in the template 

Do not copy (skip over) 
the characters in the 
te111plate up to the 
character specified 

void the current input; 
leaves the template 
unchanged 

Allows you to insert 
characters within a line; 
pressing <Ins> again 
exits insert mode 

Make the new line 
the new te111olate 

II.A-'! 



EnLHI Prograr.,mer r,uide 

Function: Copy one character from the template to the input 
buffer. 

Conrnents: Pressing the <Fl> key copies one character from the 
template to the input buffer. When the <FJ> key is 
pressed, one character is inserted in the buffer 
and insert node is automatically turned off if it 
was on. Ilse the <Fl> key to advance the cursor one 
column across the line. 

Example: Assume the screen shows: 

I I. 4-11 

I:*This is a sample file. 
J :* 

At the beginning of the intraline edit, the cursor 
is positioned at the beginning of the line 
(indicated hy the underline). Pressing the <Fl> key 
copies the first character IT) to the second of the 
two lines displayed: 

1:*This is a sample file 
<Fl> 1 :*T 

Fach time the <Fl> key is pressed, one more 
character appears: 

<F1> 1 *Th 
<Fl> 1 *ThT 
<F1> 1 *This 

0 



Programmer Guide EDL!t! 

0 

0 

Function: Copy Multiple characters up to a given character 

Com,ents: Pressing the <F7> key copies all characters up to a 
given character from the template to the input 
buffer. The given character is the next character 
typed and is not copied or shown on the screen. 
Pressin!J the <F2> key causes the cursor to !'love to 
the single character that is this col'll!land's only 
parameter. If the tE!f!lplate does not contain the 
specified character, nothin~ is copied. Pressing 
<F2> also automatically turns off insert mode if it 
is on. 

Example: Assul'le the screen shows: 

1:*This is a sample file. 
1 :* 

At the beginning of the intraline edit, the cursor 
is positionerl at the beginning of the line 
(indicated by the underline). Pressing the <F2> key 
copies all characters up to the character pressed 
immediately after the <F7> key. 

1:*This is a sample file. 
<F2>p 1 : *This is a sam 

I I. 4_i; 



EIJLifl PrograTlll!ler r,ui de 

Function: Copy template to input buffer 

Conwnents: Pressing <F~> copies all reMaining characters from 
the template to the input buffer. Regardless of the 
cursor position at the time the <F1> key is 
pressed, the rest of the line appears, and the 
cursor is positioned after the last character on 
the line. 

Example: Assume the screen shows: 

l:*This is a sample file. 
J.:* 

At the beginning of the intraline edit, the cursor 
is positioned at the beginning of the line 
(indicated by the underline). Pressing the <F~> key 
copies all characters from the template (shown in 
the upper line displayedl to the line with the 
cursor (the lower line displayed): 

1:*This is a sample file. 
<F~> 1:*This is a sample file._ 

Also, insert mode is automatically turned off if it 
was on. 

0 



0 

0 

0 

Programmer Guide 

Key: 

Function: Skip over one character in the template 

Coll'lllents: Pressing the <nel> key skips over one character in 
the template. Each time you press the <nel> key, 
one character is rleleted !not copied) from the 
template. The action of the <nel> key is similar to 
the <F1> key, except that <Oel> skips a character 
in the template rather than copies it to the input 
buffer. 

Example: Assume the screen shows: 

1:*This is a sample file. 
1 :* 

At the beginning of the intraline edit, the cursor 
is positioned at the beginning of the line 
(indicated by the underline). Pressing the <Del> 
key skips over the first character ("T"). 

]:*This is a sample file. 
<Del> 1:* 

The cursor position does not move, only the 
template is affected. To see how much of the line 
has been (skipped over), press the <F~> key, which 
moves the cursor beyond the last character of the 
line. 

1 *This is a sample file. 
l * 
, *nis is a sample file. 

EDLI!! 

Ir. 11-7 



EOLI~ Pro~rarmier r,uide 

V.ey: 

Function: Skip ~ultiple characters in the template 

Conwnents: Pressing the <F4> key skips over all characters up 
to a given character in the template. The given 
character is the next character typed, and is not 
copied and not shown on the screen. If the template 
does not contain the specified character, nothing 
is skipped over. The action of the <F4> key is 
similar to the <F2> key, except that <F4> skips 
over characters in the template rather than copies 
them to the input buffer. 

Example: Assume the screen shows: 

1 :*This is a sa~ple file. 
!:* 

At the beginning of the intraline edit, the cursor 
is positioned at the beginning of the line 
(indicated by the underline). Pressing the <~4> key 
skips over (deletes) all the characters 1n the 
template up to the character pressed after the <F~> 
key: 

l: *This is a sa~ple file. 
<F4>p !:* 

The cursor position does not move. To see how much 
of the line has been skipped over, press the <F~> 
key to copy the template. this moves the cursor 
beyond the last character of the line: 

l *This is a sample file. 
<F4>p J * 
<F2> 1 *ple file. 

1 * 

II,4-R 

0 

( 



0 

Programmer Guide 

Key: 

Function: nuit input and flush the input buffer 

Co111nents: Pressing the <F.sc> key flushes the input buffer, 
but it leaves the template unchanged. <Esc> also 
prints a back slash ( ), carriage return, and line 
feed, and turns insert mode off if it was on. The 
cursor is positioned at the beginning of the line. 
Pressing the <F~> key copies the template to the 
input buffer just as the line was before <F.sc> was 
pressed. 

Example: Assume the screen shows: 

!:*This is a sample file. 
l :* 

At the beginning of the intraline edit, the cursor 
is positioned at the beginning of the line 
(indicated by the underline). Assume you want to 
replace the line by typing: 

Sample File 
l:*This is a sample file. 
!:*Sample File 

Mow, to reedit the line, press <Esc>: 

1:*This is a sample file. 
<Esc> l:*Sample File 

1: 

EOLHJ 

<Rtn> can now be pressed to keep the original line 
or to perform any other intraline editing 
functions. If <F3> is pressed, the original 
template is copied to the input buffer: 

<F3> ):*This is a sample file. 

II.II-!" 



EnLHI Programer Guide 

l'.ey: 

Function: Enter insert mode or move from insert to replace 
mode 

Comments: The <Ins> key is a toggle switch which moves from 
replace mode (the default) to insert mode and back 
to replace mode when the <Ins> key is pressed a 
second time. 

On entry into insert mode the current position in 
the template is not changed. The cursor does move 
as each character is inserted. However, when you 
have finished inserting characters, the cursor is 
positioned at the same character as it was before 
the insertion began. Thus, characters are inserted 
before the character the cursor points to. 

Pressing the <Ins> key again causes exit from 
insert mode and entry into replace mode. All 
characters entered now overstrike and replace 
characters in the template. When you start to edit 
a line, this mode is in effect. F.ach character o 
typed replaces a character in the template. If the 
<Rtn> key is pressed, the remainder of the template 
is truncated. 

Example: Assume the screen shows: 

J:*This is a sample file. 
1 :* 

At the beginning of the intraline edit, the cursor 
is positioned at the beginning of the line 
(indicated by the underline). Assume you press the 
<F?> and "p" keys: 

<F2>p 
1:*This is a sample file. 
1:*This is a sam 

II .~--H' 



0 

Programmer Guide EDLIN 

Mow press the <Ins> key and insert the three 
characters 11 5 11, "au' and .. n .. : 

1 :*This is a sal'lpl e file. 
<F2>p l:*This is a sam 
<Ins>son l.:*This is a samson 

If you now press the <F~> key, the rest of the 
template is copied to the line: 

J:*This is a samson 
<n> l:*This is a samsonple file. 

If you were to press the <Rtn> key, instead, the 
remainder of the template would be truncated, and 
the input buffer ended at the end of the insert: 

<Ins>son<Rtn> !:*This is a samson 

Assume you then press the <ins> key and "ite" (thus 
entering replace mode), and then <F~>: 

1:*This is a sample file. 
<F2>p 1:*This is a sam 
<Ins>son !:*This is a samson 
<Ins>ite 1:*This is a samsonTte 
<F:1> 1 :*This is a samsoni te-fil e. 

If you type in characters that extend beyond the 
length of the template, the rel'laining characters in 
the template are automatically appended when you 
type <F~>. 

II.4-11 



EDLHI Programmer Guide 

Function: Create new teJ11plate 

COl!lllents: Pressing the <F~> key copies the current contents 
of the input buffer to the teJ11plate. The contents 
of the old template are then destroyed. Pressing 
<F~> outputs an at sign character (0), a carriage 
return, and a line feed. The input buffer is also 
emptied and insert J11ode is turned off. 

MOTE 

<F~> performs the same functions as 
the <Esc> key, except that the 
template is changed and an at sign 
character (~) is printed instead of 
a backslash(\). 

Example: Assume the screen shows: 

1:*This is a sample file. 
l :* 

II.4-12 

At the beginning of the intraline edit, the cursor 
is positioned at the beginning of the line 
/indicated by the underline). Assume that you enter 
<F2>p, <Ins>son, <Ins>ite, and then <F~>: 

1 :*This is a sample file. 
<F2>p 1 :*This is a sam 
<Ins>son 1 :*This is a samson 
<Ins>ite 1:*This is a samsonTte 
<F~> 1 :*This is a saJ11soni te-fi 1 e. 

At this point, assuJ11e that you want this line as 
the new template, so you press the <F~> key: 

<F~> J :*This is a samsonite file.@ 

Additional editing can now be done using the above 
new template. 

0 



C 

0 

( 

PrograMmer Guide 

4.3 IHTERLINE COMMAMOS 

Interline commands perform editing functions on whole lines at 
a time. The interline commands are summarized in the following 
list and are described in detail with examples following the 
description of command parameters. 

Table 4.? Interline Commands 

ComMand Purpose 

<line> F.dit Line 
A Append Lines 
[) f)elete Lines 
E End Editing 
I Insert Text 
L List Text 
n f'ui t Editing 
R Replace Text 
s Search Text 
w Write Lines 

EDLI~l 



EIJLHI Programmer r,uide 

4.3.1 Parameters 

F.ach interline command accepts some optional parameters. The 
following list of parameters indicates their form. The effect 
of a parameter depends on the command it is used with. 

PARAMETER 

<line> 

OEF HI IT I OIi 

<line> indicates a line number to be entered by 
the user. Line numbers must be separated from 
other line numbers, other parameters, and the 
comr,and. Ilse a comma or space to separate. 

<line> may be specified one of four ways: 

!lumber 

Period 

nny integer less than 1,,;i;:111.. If a 
number larger than the largest 
existing line number is specified, 
then <line> indicates the line after 
the last line number. 

(. l If a period is specified for 
<line>, then <line> indicates the 
current line number. The current line 
is the last line edited, and not 
necessarily the last line displayed. 
The current line is marked on your 
screen by an asterisk I*) between the 
line number and the first character. 

Octothorpe (#) The pound sign indicates the line 
after the last line number. Specifying 
# for <line> has the same effect as 
specifying a number larger than the 
last line number. 

<Rtn> A carriage return entered without any 
of the <iine> specifiers listed above 
directs F.OLIH to use a default value 
appropriate to the command. 

II .11.-111. 

() 

( 



0 

0 

Programmer Guide EDLIN 

? The question mark parameter directs EDLIN to ask 
the user if the correct string has been found. 
The question mark is used only with the Replace 
and Search commands. Before continuing, EDL HI 
waits for either a "Y" or <Rtn> for a yes 
response, or for any other key for a no 
response. 

<string> <string> represents text to be found, to be 
replaced, or to replace other text. The <string> 
parameter is used only with the Search and 
Replace coT1111ands. Each <string> must be 
terminated by a <Ctrl+Z> or a <Rtn> (see the 
Replace command for details). Mo spaces between 
a string and its command letter, unless you want 
spaces as part of a string. 

II.11-15 



EDLHI Programmer Guide 

Name: 

Syntax: [ < 1 i ne > J 

Function: Edit line 

Cornnents: When a line number is entered, EOLIM displays the 
line number and text, then, on the line below, 
reprints the line number. The line is then ready 
for editing. You may use any of the available 
intraline commands to edit the line. The existin~ 
text of the line serves as the template until the 
<Rtn> key is pressed. 

If no line number is entered (that is, only the 
<Rtn> key is pressed), the line after the current 
line, marked with an asterisk (*), is edited. If no 
changes of the current line are needed and the 
cursor position is at the beginning or end of the 
line, press the <Rtn> key to accept the line as is. 

WARMHIG 

If the <Rtn> key 
cursor is in the 
the remainder 
truncated. 

is pressed while the 
middle of the line, 

of the 1-ine is 

Example: Assume the following file exists and is ready to 
edit: 

l This is a sample file. 
2 used to deMonstrate 
~ the editing of line 
4 * four. 

II.4-lfi 

0 

0 



Programmer Guide 

0 

0 

To edit line 4, enter: 

4 

The contents of the line are displayed along with a 
cursor below the line: 

4:* four. 
4:* 

Now type: 

<Ins>number 4 number 
<F~><Rtn> 4 number-four. 

5 * 

EDLHJ 

II.4-J.7 



EDLI~ PrograJT1111er Guide 

Syntax: r<n>lA 

Function: Append lines from input file to editing buffer 

Co11111ents: Ilse this command for extremely 1 arge files that 

II.4-lA 

will not fit into memory all at one time. By 
writing out part of the editing buffer to the 
output file with the Write command, room is made 
for lines to be appended with the Append corrrnand. 
If A is typed without a parameter, lines are 
appended to the part of the file currently in 
memory until available memory is ~/4 full or until 
there are no ~ore lines to append. 

Ilse the W command to write out lines to the output 
file. If the parameter <n> is given, then <n> lines 
are appended to that part of the file that 
currently is in memory. If <n> is not given, then 
as much of the input file as possible is read into 
the editing buffer until the editing buffer is 
three quarters full. 0 



0 

Programmer Gui de 

Name: 

Syntax: r<line>Jr,<line>l D 

Function: Delete the specified lines and all lines in 
between. 

Conments: If the first <line> is omitted, the first <line> 
defaults to the current line (the line with the 
asterisk next to the line number). If the second 
<line> is omitted, then just the first <line> is 
deleted. When lines have been deleted, the line 
immediately after the deleted section becomes the 
current line and has the same line number as the 
first <line> had before the deletion occurred. 

Example: Assume the following file exists and is ready to 
edit: 

l: This is a sample file. 
2: llse: to demonstrate dynamic line numbers 
~= See what happens when you 
~: nelete and Insert 

2'i: (The O and I commands) 
2f;: (llse <Ctrl+C> to exit insert f'lode) 
27:*Line nuf'lbers 

To delete multiple lines, enter <line>,<line> O: 

'i, 24 D 

The result is: 

1: This is a sample file. 
2: tJse: to del'lonstrate rlynal'lic 1 ine numbers 
3: See what happens when you 
4: Oelete and Insert 
'i:*(The D and I commands) 
i;: Ilise <Ctrl+C> to exit insert !'lode) 
7:*Line numbers 

EDLJN 

I I. ll- t 0 



EDLIN 

II.4-?.n 

Prograll'll'ler Guide 

To delete a single line, enter: 

fi 0 

The result is: 

1: This is a sample file. 
2: Ilse: to demonstrate dynamic line numbers 
~: See what happens when you 
4: Delete and Insert 
~: (The D and I commands) 
f,:*Line numbers 

Next, delete range of lines from the following 
file: 

1: This is a sample file. 
2: Ilse: to demonstrate dynamic line numbers 
~:*See what happens when you 
4: Delete and Insert 
~:*(The D and I commands) 
f-: (Ilse <Ctrl+C> to exit insert model 
7: Line numbers 

To delete beginning with the current line, enter: 

,fi fl 

The result is: 

1 This is a sample file. 
2 Ilse: to demonstrate dynamic line numbers 
j *Line numbers 

0 



0 

0 

Programmer riuide 

Syntax: E 

Function: End the editing session 

Comnents: Save the edited file on disk, rename the original 
input file "filename.SAW", and then exit EDLIH to 
the DOS command level. If the file was created 
during the editing session, no .BAK file is 
created. 

Example: 

The E command takes no parameters. Therefore, you 
cannot tell EDLIN on which drive to save the file. 
The drive must be selected when the editing session 
is invoked. If the drive is not designated when 
EDLIH is invoked, the file is saved on the disk in 
the default drive. (It will still be possible to 
COPY the file to a different drive. However, this 
is done automatically if the drive. is designated 
during invocation.) 

You must be sure that the disk contains enough free 
space for the entire file to be written. If the 
disk does not contain enough free space, the write 
is aborted and the edited file is lost, although 
part of the file may be written out. 

The only possible command is: 

E<Rtn> 

After execution of the E command, 
returned to COMMANfl.COM and the DOS 
displayed. 

control is 
prompt is 

EDLIN 

II ,4-21 



EDL!M Programmer Guide 

Mame: 

Syntax: ~<line>J I 

Function: Insert line(sl of text immediately before the 
specified <line> 

Comments: If you are creating a new file, the I command must 
be given before text can be inserted. In this case, 
the· insert begins with line numher 1. 

EOLHI remains in insert mode until a <Ctrl+Z> or a 
<Ctrl+C> is entered. Successive line numhers appear 
automatically each time <Rtn> is pressed. When the 
insert is finished and insert mode has been exited, 
the <line>, which now immediately follows the 
inserted lines, hecomes the current line. All line 
numhers following the inserted section are 
incremented by the number of lines inserted. 

If <line> is not specified, the default is the 
current line number /the lines are inserted 
immediately before the current line). If <line> is Q 
an integer larger than the last line number, or if 
# is specified as <line>, the inserted lines are 
appended to the end of the file. In this case, the 
last line inserted becomes the current line. (This 
is the same as when the file is being created.) 

Example: Assume the following file exists and is ready to 
edit: 

1: This is a sample file. 
2: Ilse: to demonstrate dynamic line numbers 
~: See what happens when you 
4: Delete and Insert 
i;: (Then and I commands) 
Ii: (Ilse the <Ctrl+C> to exit insert mode) 
?:*Line numbers 

To insert text before a ~pecific line (not the 
current 1 i ne l, enter <line> I: 

4 I The result is 4: 

C 

II.4-22 



Programmer Guide 

0 

!low, enter the new text for lines 4 and I;: 

4: fool around with 
t;: those very useful COl'll'lands that 

Then to end the insertion, type: 

Fi· <Ctrl+Z> 

!low type L to list the file; the result is: 

l: This is a sample file. 
2: Ilse: to demonstrate dynamic line numbers 
1: See what happens when you 
4: fool around with 
~: those very useful comands that 
fi:*Oelete and Insert 
7: !Then and I commands) 
R: ( Ilse the <Ctr 1 +C> to exit insert mode) 
q: Line numbers 

To insert lines immediately before the current 
line, enter: 

The result is: 

Fi: 

How, insert the following text terminated with a 
<Ctrl+Z>: 

!low to List the file and see the result, type: 

L 

The result is: 

1: This is a sample file. 
2: Ilse: to demonstrate dynaMic 1 ine numbers 
3: See what happens when you 
4: fool around with 
~: those very useful commands that 
fi: perform the two major editing functions, 
?:*Delete and Insert 
R (The D and I coMmands) 
~ (Use the <Ctrl+C> to exit insert mode) 

J.O Line nuMber s 

EDLifl 

I I. 11-23 



E!lLHI 

I I. 4-?./\ 

Programer r:uide 

To append new lines to the end of the file, enter: 

11 I 

This produces the following: 

11: 

Mow, enter the following new lines: 

11: The insert command can place new lines 
12: anywhere in the file; there's no space 

problems. 
!~: because the line numbers are dynamic; 
14: They'll slide all the way to i;i;i;:n. 

End insertion by typing <Ctrl+C>. The new lines 
will appear at the end of all previous lines in the 
file. flow enter the list command: 

L 

The result is: 

!: This is a sample file. Q 
2: Ilse: to demonstrate dynamic line numbers 
~: See what happens when you 
4: fool around with 
<;; those very useful commands that 
Ii: perform the two major editing functions, 
?:*Delete and Insert 
A: (The D and I cotTltTlands) 
9: (Ilse the <Ctrl+C> to exit insert mode) 

J.n: Line numbers 
11: The insert command can place new lines 
!2: anywhere in the file; there's no space 

problems. 
1~: because the line numbers are dynamic; 
14: They'll slide all the way to r;i;i;:n. 

C 



0 

0 

0 

Programmer Guide 

Harne: 

Syntax: r<line>Jr,<line>] L 

Function: List the specified range of lines, including the 
two lines specified. 

Co11111ents: If the first <line> is omitted, the first <line> 
defaults to the current line. If the second <line> 
is omitted, 2~ lines are listed; the eleven lines 
before <line>, the <line>, and the eleven lines 
after <line>. The current line remains unchanged. 
If the current line is one of the lines listed, it 
contains an asterisk between the line number and 
the first character. 

Example: Assume the following file exists and is ready to 
edit: 

1: This is a sample file. 
2: Ilse: to demonstrate dynamic line numbers 
~: See what happens when you 
4: nelete and Insert 
~: (The D and I commands) 

15:*The current line contains an asterisk. 

2fi: (Ilse the <Ctrl+C> to exit insert mode) 
27: Line numbers 

EOLIM 

To list a range of lines without reference to the 
current line, enter <line>,<line> L: 

2,5 L 

The result is: 

2: Ilse: to demonstrate dynamic line numbers 
3: See what happens when you 
4: Delete and Insert 
5: (The D and I commands) 

II.4-25 



F.flLHI 

II.4-26 

Progral'lfTler Guide 

To list a range of lines beginning with the current 
line, enter ,<line> L: 

,21' L 

The result is: 

15:*The current line contains an asterisk. 

26: (Ilse <Ctrl+C> to exit insert mode) 

To list a range of 2] lines around a specified 
line, enter <line>, L: 

1~, L 

The result is: 

13: The specified line is listed first in the 
range. 

14: The current line remains unchanged by the L 
command. 

l~:*The current line contains an asterisk. 

35: <Ctrl+C> exits interline insert command 
mode. 

To list a range of 23 line centered around the 
current line, enter only L: 

L 

0 

C 



PrograJ11mer Guide 

0 

0 

The result is: 

2: Use: to demonstrate dynamic line numbers 
3: See what happens when you 
4: Delete and Insert 
5: (Then and I commands) 

13: The specified line is listed first in the 
range. 

14: The current line remains unchanged by the L 
command. 

15:*The current line contains an asterisk. 

24: <Ctrl+C> exits interline insert command 
mode. 

EDLIH 

I I. 4-27 



EDLIN Progranwner Guide 

Syntax: n 

Function: nuit the editing session, do not save any editing 
changes, and exit to the DDS operating system. 

Corrments: Mo .BAK file is created. The n command takes no 
parameters. It is simply a fast means of exiting an 
editing session. As soon as then command is given, 
EDLIM displays the message: 

Example: 

II. 4-?A 

Abort edit (Y/N)? 

Press "Y" to quit the editing session; press "H" 
(or any other key except <Ctrl+C>) if you decide to 
continue the editing session. 

Assume the following file exists and is ready to 
edit: 

1: This is a sample file. 
?.: Ilse: to demonstrate dynaP1ic line numbers 
~: Compare the before and after 
4: See what happens when you 
;: Delete and Insert 
f;: Line numhers 

Mow, to delete line~. enter: 

~ D 

To list the file, enter "L": 

1: This is a sample file. 
?. Ilse: to demonstrate dynaP1ic line nuP1bers 
~ See what happens when you 
4 Delete and Insert 
5 Line numbers 

0 



Programmer Guide 

C 

C 

flow, to keep the changes and to quit the editing 
session, enter: 

n 

The result is: 

Abort edit (Y/N)? 

EDLIM 

Enter "V" to exit to the operating system command 
level: 

Abort edit (Y/N)?Y 
A: 

I I.4-2<1 



EDLIN Programmer Guide 

Name: 

Syntax: r<line>Jf ,<line>J f?J R<stringl><Ctrl+Z><string2> 

Function: Replace all occurrences of <string!> in the 
specified range with <string2>. 

Colllllents: As each occurrence of <stringl> is found, it is 
replaced by <string2>. Each line in which a 
replacement occurs is displayed. If a line contains 
two or more replacements of <string!> with 
<string2>, then the line is displayed once for each 
occurrence. When all occurrences of <stringl> in 
the specified range are replaced by <string2>, the 
R command terminates and the asterisk prompt 
reappears. 

If a second string is to be given as a replacement, 
then <string!> must be terminated with a <Ctrl+Z>. 
If the <string2> is to be omitted, the· <stringl> 
may be terminated with either a combination 
<Ctrl+Z><Rtn>, or simply a <Rtn>. <string2> must 
also be terminated with a <Ctrl+Z><Rtn> combinaTiori 
or with a simple <Rtn>. If <string!> is omitted, 
then the replacement is terminated immediately. If 
<string2> is omitted, then <string!> is deleted 
from all lines in the range. If the first <line> is 
omitted in the range argument (as in ,<line>) then 
the first <line> defaults to the line after the 
current line. If the second <line> is omTf.tecf (as 
in <line> or <line>,) the second <line> defaults to 
e. Therefore, this is the same as <line>,#. 
Remember that# indicates the line after the last 
line of the file. 

If the question mark (?) parameter is given, the 
Replace command stops at each line with a string 
that matches <string>, displays the line with 
<string2> in place, and then displays the prompt 
"O.K.?". If the user presses "Y" or the <Rtn> key, 
then <string2> replaces <stringl>, and the next 
occurrence of <string!> is found. Again, the 
"O.Y.?" prompt is displayed. This process continues 
until the end of the range or until the end of the 
file. After the last occurrence of <string]> is 
found, EDLI~ returns the asterisk prompt. 

I I. 4-~n 

C 

C 



PrograJ11J11er Guide 

Example: 

0 

0 

If you press any key besides "Y" or <Rtn) after the 
"o.,.?" prompt, the <string!) is left as it was in 
the line, and the replace goes to the next 
occurrence of <string!). If <string!) occurs more 
than once in a line, each occurrence of <string)) 
is replaced individually, and the "O.K.?" prompt is 
displayed after each replacement. In this way, only 
the desired <string!) is replaced, and you prevent 
replacement of eJ11bedded strings. 

Assume the following file exists and is ready to 
edit: 

1: This is a sample file. 
2: Ilse: to demonstrate dynaJ11ic 1 ine nuJ11bers 
~: See what happens when you 
A: fool around with 
~: those very useful coJ11mands that 
~· perform the two major editing functions, 
7: Delete and Insert 
A: (Theo and I commands) 
Q· (Ilse <Ctrl+C) to exit insert mode} 

)fl: Line numbers 
11: The insert command can place new lines 
12: anywhere in the file; there's no space 

problems 
1:1: because the line numbers are dynamic; 
14: They'll slide all the way to ~5~:l:l 

To replace all occurrences of <stringl) with 
<string2) in a specific range, enter: 

2,1? Rand<Ctrl+Z)or<Rtn) 

The result is: 

5: those very useful commors that 
7: nelete or Insert 
R· (Then or I commands} 
R· (The O or I coJ11mors) 

11: The insert comJ11or can place new lines 

EnLI!l 

II.4-:11 



EOLitl Programmer Guide 

~iote that in the above replacement, some unwanted 
substitutions have occurred. To avoid these, and 
confirm each replacement, the same original file 
can be used: 

~: those very useful commands that 

7: Oelete and Insert 
A: (Then and I commands) 

11: The insert command can place new lines 

only with a slightly different command. this time, 
to replace only certain occurrences of the first 
<string> with the second <string>, enter: 

2? Rand<Ctrl+Z>or<Rtn> 

The result is : 

~= those very useful commands that 
0.1'.? N 
7: Delete or Insert 
0.1t.? Y 
A: (The Dor commands) 
o.v .? y 
A: (The Dor commors) 
n.v.? 11 

11: The insert commor can place new lines 
O.!t.? M 
* 

Now, enter the List command IL) to see the result 
of all these changes: 

~: those very useful commands that 

7: Delete or Insert 
A: (Then or I commands) 

11: The insert command can place new lines 

0 



0 

0 

0 

Programmer Guide 

Mame: 

Syntax: r<line>Jr ,<line>J [?] S<string> 

Function: Search the specified range of lines for the 
specified string. 

Co1T111ents: The <string> must be terminated with a <Rtn>. The 
first line that matches <string> is displayed and 
becomes the current line. The Search command 
terminates when a match is found. If no line 
contains a match for <string>, the message "Hot 
found" is displayed. 

If the optional parameter, question mark (?), is 
inclurted in the command, ErlLIM displays the first 
line with a matching string; it then prompts the 
user with the message "O.~.?". If the user presses 
either the "Y" or <Rtn> key, the 1 i ne becomes the 
current line and the search teminates. If the user 
presses any other key, the search continues until 
another match is founrt, or until all lines have 
been searched (then the "Mot found" message is 
displayed l. 

If the first <line> is omitted (as in ,<line> 
S<string>), the first <line> defaults to the line 
after the current line. If the second <line> is 
oiiiftted (as in <line> S<string> or 
<line>,S<string>), the second <line> defaults to*, 
which is the same as <line>,* S<string>. If 
<string> is omitted, no search is made and the 
command terminates immediately. 

Example: Assume the following file exists and is ready to 
edit: 

1: This is a sample file. 
2: Use: to demonstrate dynamic line numbers 
~: See what happens when you 
4: fool around with 
5: those very useful commands that 
~· perform the two major editing functions, 
7: Delete and Insert 
~: (The D and I commands) 
<i: (Use <Ctrl+C> to exit insert mode) 

1n: Line numbers 
J.l: The insert command can place new lines 
12: anywhere in the file; there's no space 

problems 

E!lLIH 

I I. 4-~3 



EDLIN 

II.4-'.14 

Progra111T1er Guide 

13: because the line numbers are dynamic 
14:*They'll slide all the way to n553'.1 

To search for the first occurrence of a string, 
enter: 

2,12 Sand<Rtn> 

The result is: 

~: those very useful commands that 

To get the "and" in line 7, modify the search 
command by entering: 

<Oel><F~>,12 Sand<Rtn> 

The search then continues from the li~e after the 
current line (line 5), since no first line is 
given. The result is: 

7: Delete and Insert 

To Search through several occurrences of a string 
until the correct string is found, enter: 

1, ? Sand 

The result is: 

5: those very useful commands that 
0.K.? 

Continue: 

7: Delete and Insert 
0.Y.? 

Now press "Y" to terminate the search: 

0.1'.?Y 
* 

0 

( 



Programmer Guide EDLIN 

0 

0 

Syntax: r <n > )W 

Function: Write lines from the editing buffer to the output 
file 

C011111ents: The Write command is used when editing files that 
are larger than available memory. By executing the 
Write, lines are written out to the output file and 
room is made in the input buffer for more lines to 
be appended from the input file. If Wis typed with 
no <n> parameter, then lines are written until 
memory is 1/4 full, 

If the <n> parameter is given, then <n> lines are 
written out. Note that lines are written out 
beginning with the start of the file; subsequent 
lines in the edit,ngbuffer are renumbered 
beginning with one. A later Append command will 
append lines to any remaining lines in the editing 
buffer. 

II.4-35 



EDLHJ Prograrrmer Guide 

4.4 ERROR MESSAGES 

EDLHI error messages occur either when you try to invoke EDLIM 
or during the actual editing session. 

4.4.1 Errors When Invoking EDLIN 

Cannot edit .BAV file--rename file 

Cause: The user attempted to edit a file with the 
filename extension .BA~ •• BAY. files cannot be 
edited because the extension is reserved for 
backup copies. 

Cure: If the user needs the .BAY file for editing 
purposes, the user must either REMAME the file 
with a different extension or COPY the .BAV file 
but with a different filename extension. 

Ho room in di rectory for file 

Cause: When the user attempted to create a new file, 
either the file directory was full or the user 
specified an illegal disk drive or an illegal 

0 filename. 

Cure: Check the EDLIN invocation command line for 
illegal filename and illegal filename and illegal 
disk drive entries. If the command is no longer 
on the screen and if the user has not yet entered 
a new coJT1mand, the EDLIN invocation command can 
be recovered by pressing the <F3> key. 

If the invocation command line contains no 
illegal entries, run the CHKDSK program for the 
specified disk drive. If the status report shows 
the disk directory full, remove the disk and 
insert and format a new disk. If the CHYDSY. 
status report shows the disk directory is not 
full, check the EnLrn invocation command for an 
illegal filename or illegal disk drive 
designation. 

I I.4-31i 



Programmer Guide EDLIN 

0 

4.5 Errors while Editing 

Entry Error 

Cause: The last command entered contained a syntax 
error. 

Cure: Reenter the command with the correct syntax. 

Line too 1 ong 

Cause: During Replace command mode, the string given as 
the replacement causes the line to expand beyond 
the limit of 254 characters. EDLIN aborts the 
Replace command. 

Cure: Divide the long line into two lines, then retry 
the Replace command. 

Disk Full--file write not completed 

Cause: The user gave the End command, but the disk did 
not contain enough free space for the whole file. 
EnLI~I aborts the E command and returns the user 
to the operating system. Some of the file may 
have heen written to the disk. 

Cure: Only a portion (at most) of the file will have 
been saved. The user should probably delete 
whatever file was saved and restart the editing 
session. None of the file not written out will be 
available after this error. Always be sure that 
the disk has sufficient free space for the file 
to be written, before you begin your editing 
session. 



C 

0 

CJ 



PART II - ASSEMBLY LANGUAGE TOOLS 

SECTION 5 - CREF 





0 

0 

Programmer Guide 

~.,.1 Features and Benefits 

The CRF.F Cross Reference Facility can aid you in debugging 
your assembly language programs. CRF.F produces an alphabetical 
listing of all the symbols in a special file produced by your 
assembler. With this listing, you can quickly locate all 
occurrences of any symbol in your source program by line 
number. 

The CREF produced listing is meant to be used with the symbol 
table produced by your assembler. 

The symbol table listing shows the value of each symbol, and 
its type and length, and its value. This information is needed 
to correct erroneous symbol definitions or uses. 

The cross reference listing produced by CREF provides you with 
the locations, speeding your search and· allowing faster 
debugging. 

~.1.2 Overview of CREF Operation 

CRF.F produces a file with cross references for symbolic names 
in your program. 

First, you must create a cross reference file with the 
assembler. Then, CREF takes this cross reference file, which 
has the filename extension .CRF, and turns it into an 
alphabetical listing of the symbols in the file. The cross 
reference listing file is given the default filename extension 
.REF. 

Beside each symbol in the listing, CRF.F lists the line numbers 
in the source program where the symbol occurs in ascending 
sequence. The line number where the symbol is defined is 
indicated by a octothorpe sign (Rl, 

CREF 

I I .~-1 



CRF.F Programer r,uide 

Assembler 
CREF 

FOO 20 64 123# 145 . . . 
GAD 21 45# 49 120 .. . 

C 



0 

0 

Pr ogr aJ11J11er Gui de 

!i. 2 RIINN HIG CREF 

Running CRF"F requires two types of C01'11'1ands: a coml'land to 
invoke CRFF and answers to co1'11'1and prompts. vou will enter all 
the comands to CRFF on the keyboard. Some special coJ11mand 
characters exist to assist you while entering CREF comands. 

Refore you can use CRF.F to create the cross reference listing, 
you Must first have created a cross reference file using your 
asseMbler. This step is reviewed in Section~.?.~. 

s;.2.1 Creating a Cross Reference File 

A cross reference file is created during an assembly session. 

To create a cross reference file, answer the fourth assembler 
col11T'land prompt with the name of the file you want to receive 
the cross reference file. 

The fourth assembler prompt is: 

Cross reference P111L. CRn: 

If you do not enter a filename in response to this prompt, or 
if you in any other way use the default response to the 
proJ11pt, the assel'lhler will not create a cross reference file. 
Therefore, you J11Ust enter a filename. vou May also specify 
which drive or device you want to receive the file and what 
filename extension you want the file to have, if different 
from .CRF. If you change the filenaJ11e extension froJ11 .CRF to 
anything else, you l'lUSt rememher to specify the filename 
extension when naJ11ing the file in response to the first CRFF 
proMpt lsee Section ~.?.~l. 

Hhen you have given a filename in response to 
asseJ11bler prompt, the cross reference file will be 
during the assembly session. 

the fourth 
generated 

Vou are now ready to convert the cross reference file produced 
by the asseJ11hler into a cross reference listing using CRFF. 

CREF 



CREF Programer r.uide 

5,2,2 Invoking CREF 

CRF.F may be invoked two ways. Ay the first method, you enter 
the commands as answers to individual prompts. Ay the second 
method, you enter all commands on the line used to invoke 
CRF.F. 

Summary of Methods to invoke CRF.F 

tlethod 1 CRF.F 

Method? CREF <crffile>,<listing> 

0 

C 



Programmer Guide 

5.2.3 Method 1: CREF 

Q F.nter: 

C 

0 

CREF 

CRF.F will be loaded into memory. Then, CREF returns a series 
of two text prompts that appear one at a time. vou answer the 
prompts to command CREF to convert a cross reference file into 
a cross reference listing. 

Command Prompts 

Cross reference r.CRFl: 

Enter the name of the cross reference file you want 
CREF to convert into a cross reference listing. The 
name of the file is the name you gave your 
assembler when you directed it to produce the cross 
reference file. 

CREF assumes that the filename extension is .CRF. 
If you do not specify a filename extension when you 
enter the cross reference filename, CREF will look 
for a file with the name you specify and the 
filename extension .CRF. If your cross reference 
file has a different extension, specify the 
extension when entering the filename. 

See Section~-~, Format of CREF Compatible Files, 
for a description of what CREF expects to see in 
the cross reference file. You will need this 
information only if your cross reference file was 
not produced by a Microsoft assembler. 

Listing rcrffile.REFl: 

Enter the name you want the cross reference listing 
file to have. CRF.F will automatically give the 
cross reference listing the filename extension 
.REF. 

If you want your cross reference listing to have 
the same filename as the cross reference file but 
with the filename extension .REF, simply press the 
carriage return key when the Listing prompt 
appears. If you want your cross reference listing 
file to be named anything else and/or to have any 
other filename extension, you must enter a response 
following the Listing prompt. 

CP.EF 



CREF Programmer Gui de 

If you want the listing file placed on a drive or 
device other than the defualt drive, specify the 
drive or device when enterin9 your response to the 
Listing pro111pt. 

Special Command Characters 

Ilse a single se111icolon (;) followed im111ediately by 
a carriage return at any time after responding to 
the cross reference prompt to select the default 
response to the Listing prompt. This feature saves 
time and overrides the need to answer the Listing 
prompt. 

If you use the semicolon, CREF gives the listing 
file the filename of the cross reference file and 
the default filename extension .REF. 

Example: 

Cross reference r.CRF]: F!IM; 

CRF.F will process the cross reference file named Q 
Fl IM .CRF and output a listing file name Fl It!. REF. 

<Ctrl+C> Ilse <Ctrl+C> at any time to abort the CRF.F 
session. If you enter an erroneous response, (the 
wrong filename), or an incorrectly spelled 
filena111e, you 111ust press <Ctrl+C> to exit CRF.F then 
reinvoke CREF and start over. If the error has been 
typed but not entered, you may delete the erroneous 
characters, but for that line only. 

C 

II.li-fi 



Pro gr al'lmer Gui de 

5.2.4 Method 2: CREF <crffile>,<listing> 

( Enter: 

0 

0 

CREF <crffile>,<listing> 

CREF will be loaded into memory. Then, CRF.F immediately 
procedes to convert your cross reference file into a cross 
reference listing. 

The entries following CREF are responses to the command 
prompts. The crffile and listing fields must be separated by a 
corrma. 

where: crffile is the name of a cross reference file 
produced by your assembler. CREF assu1T1es that the 
filenal'le extension is .CRF, which you may override 
by specifying a different extension. If the file 
named for the crffile does not exist, CREF will 
display the message: 

Fatal I/0 Error J.1n 
in File: <crffile>.CRF 

Control then returns to your operating system. 

listing is the name of the file you want to receive 
the cross reference listing of symbols in your 
program. 

To select the default filename and extension for 
the listing file, enter a semicolon after you enter 
the crffile name. 

Example: 

CREF Fllf'; <Rtn> 

This example causes CRF.F to process the cross 
reference file Fl~.CRF and to produce a listing 
file named Fll",REF. 

CREF 

II.'i-7 



CREF Programmer Guide 

To give the listing file a different name, 
extension, or destination, siMply specify these 
differences when entering the cornMand line. 

CREF Fl~,B:WORV.ARG 

this example causes CREF to process 
reference file named Rllfl.CRF am1 to 
listing file named WORV.ARG, which will 
on the diskette in drive B:. 

5.2,5 Format of Cross Reference Listings 

the cross 
produce a 
be pl aced 

The cross reference listing is an alphabetical list of all the 
symbols in your prograM. 

Each page is headed with the title of the program or program 
module. 

Then comes the list of syMbols. Following each symbol name is 
a list of the line numbers where the symbol occurs in your 
prograM. The line number for the definition has a octothorpe 
sign (~) appended to it. 

On the next page is a cross reference listing as an example: 0 



Programmer Guide CREF 

CREF ( vers no. J (date) 

0 EHTX PASCAL entry for initializing pro gr ams comes from 
TITLE directive 

Symbol Cross Reference (/1 is c!efinition) Cref-1 

AAAxnn ':17# ';IA 

BEGHnn A3 AMI J 'i4 17f; 
BErionn 1';1 JF.2 
Brnxnn 11';1 12"JI lf;4 ??.1 

CF.SXM 07 Q()JI 
CU1En" ,;7 f;Ail 
CO()E '>.7 lP.2 
C0t1ST. ,n4 rn4 1ni; 1J(1 
CRCxnn O'.l 0/lf ?!'1 2)'i 
CRnxnn oi; OF,/1 ?lF. 
CSXEM i;i; F,F,i/ 140 
CltRHnn A5 Af;/1 1,;i; 

DATA • f;4JI F,11 1nn l ,n 
[lr,R011P 1 ln/1 111 111 11] 177 1',~ 17) 17? 

0 
DOSOFF OAJ/ 1011 l (l(l 
rinsxn(I 1 All 2n11J1 710 

EHDHnn A7 AA/I Jt:;A 
n1oonn ~:!* 101; 

EJ.10t1nn 11JI J.07 
El-'OX"" 1AII 104i/ 
rnovnn 12!1 )OF, 
DITGnn ';10/1 J A7 
EIITYCM 1A2# 1R'.l 221 

FRExnn 1F,0 nnfl 17A 

HDRFnn 71 72/1 l 'il 
HDR 11nn 71 ?II/I 1 'i2 
HF.AP • 42 411 11n 
HEAl'RF.G. 'ill/I l'i';I 17? 
HEAPLOW. 111 171 

HII11nn • ~J 11,1 

MAIM STARTIIP. 1(10JI 111 lAf\ 
MFMQRV • 112 11A<' /IA /lO 1 no 1,n 

0 



CREF Progranrner Guide 

Pf!IIX/111 l,Q 7n J!in 

RECEnn Al A2# 
REFEnn 77 7RJi 
REPEnn 70 An# 
RESF.nn 75 7"# 14A 

svrop, i;a;i 

SMLSTV pi; 1'.l?# 
STACV, r:.111 r;,3 ,;n 11 n 
STARTIIAIH. )fi1JI lAfi# 2no 
srvsno R!l Qn,11 14f; 
STVHnn. QI nu 1,;n 

C 



Programmer Guide CREF 

0 

0 

0 

c;,J ~RROR MESSAGES 

All errors cause CRF.F to abort. Control is returned to your 
operating system. 

All error Messages are displayed in the format: 

Where: 

Fatal !/0 Frror <error nuMber> 
in File: <filenaMe> 

filename is the name of the file where the error 
occurs. 

error number is one of the numbers in the following 
Tfst of errors. 

11umber Error 

in, Hard data error 
I lnr ecover ah 1 e disk I/0 error 

1n? Device naMe error 
Illegal device specification (for example 
Y:FOCJ.CRF) 

1n:1 Internal error 
Report to Dyna logic Info-Tech Corporation 

,n,t Internal error 
Report to Dynalogic Info-Tech Corporation 

,nc; !levi ce offl i ne 
nisk drive door open, no printer attached, 
and so on. 

,n,:; Internal error 
Report to Dynalogic Info-Tech Corporation 

lnA [lisk full 

pn File not found 

11) fli sk is write protected 

11 ;:> Internal error 
Report to flynal ogi c Info-Tech Corporation 

11;! Internal error 
Reoort to Dynaloqic Info-Tech Corporation 

I I c;. l 1 



CRF.F Prograr,mer r.uide 

,,~ Internal error 
Report to nynalogic Info-Tech Corporation 

11,; Internal error 
Report to nynalogic Info-Tech Corporation 

0 

C 

I I<;. 1?. 



Programmer Guide CREF 

0 

0 

0 

5.4 FORMAT OF CREF COMPATIBLE FILES 

CREF will process files other than those generated by Macro 
Assembler as long as the file conforms to the format that CREF 
expects. 

5.4.1 General Description of CREF File Processing 

In essence, CRF.F reads a stream of bytes from the corss 
reference file (or source file), sorts them, then emits them 
as a printable listing file (the .REF file). The symbols are 
held in memory as a sorted tree. References to the symbols are 
held in a linked list. 

CREF keeps track of line numbers in the source file by the 
number of end-of-line characters it encounters. Therefore, 
every line in the source file must contain at least an 
end-of-line character fsee chart below). 

CREF attempts to place a heading at the top of every page of 
the listing. The name it uses as a title is the text passed by 
your assembler from a TITLE (or similar) directive in your 
source program. The title must be followed by a title symbol 
(see chart below). If CREF encounters more than one title 
symbol in the source file, it uses the last title read for all 
page headings. If CREF does not encounter a title symbol in 
the file, the title line on the listing is left blank. 

5.4.2 Format of Source Files 

CREF uses the first three bytes 
specification data. The rest of 
series of records that either 
identifies the type of record. 

First Three Bytes 

of the source file as format 
the ifle is processed as a 
begin or end with a byte that 

(The PAGE directive in your assembler, which takes arguments 
for the page length and line length, will pass this 
information to the cross reference file.) 

JT .li-B 



CREF 

First Byte 

Second Byte 

Third Byte 

Programmer Guide 

The number of lines to be printed per page (page 
length range is from J to 2~5 lines). 

The number of characters per line (line length 
range is from J to 1~2 characters). 

The Page Symbol (n7) that tells CREF that the two 
preceding bytes define listing page size. 

If CREF does not see these first three bytes in the file, it 
uses default values for page size (page length: ~R lines; line 
length: An characters). 

Control Symbols 

The two charts show the types of records that CREF recognizes 
and the byte values and placement it uses to recognize record 
types. 

Records have a Control Symbol (which identifies the record 
type) either as the first byte of the record or as the last 
byte. 

0 

( 



0 

0 

( 

Programmer Guide 

Records That Begin with a Control Symbol 

Byte Value Control Symbol Subsequent Bytes 

01 Reference symbol Record is a reference 
to a symbo 1 name 
(1 to Rn characters) 

02 Oefi ne symbo 1 Record is a definition 
of a symbol name 
(1 to Pn characters) 

n4 End of line (none) 

n~ End of file lAH 

Records That End with a Control Symbol 

Byte Value Control Symbol Preceding Bytes 

OF, Title defined Record is titled text 
(1 to AO characters) 

n7 Page 1 ength/ One byte for page 1 engtl 
1 i ne 1 ength followed by one byte 

for 1 i ne length 

For all record types, the byte value represents a control 
character. as follows: 

01 Ctrl +A 
n2 Ctrl+B 
04 Ctrl+O 
ns Ctrl+E 
OF; Ctrl +F 
07 Ctrl+G 

CRF.F 

I I. S-15 



CREF Progral'lmer Guide 

The Control Symbols are defined as follows: 

Reference symbol 

Record contains the nal'le of 
referenced. The name may be 
characters long. Additional 
truncated. 

a symbol that is 
from 1 to PO ASCII 

characters are 

Define symbol 

End of line 

End of file 

Record contains the name of a 
defined. The name may be from 
characters long. Additional 
truncated. 

symbol that is 
1 to 110 ASCII 

characters are 

Record is an end of line symbol character only (04H 
or Ctrl+n). 

Record is the end of file character (lAH). 

Title defined 

ASCII characters of the title to be printed at the 
top of each listing page. The title may be from l. 
to Rn characters long. Additional characters are 
truncated. The last title definition record 
encountered is used for th title placed at the top 
of all pages of the listing. If a title definition 
record is not encountered, the title line on the 
record is not encountered, the title line on the 
listing is left blank. 

Page length/line length 

The first byte of the record contains the number of 
lines to be printed per page (range is from 1 to 
2i;~ lines). The second byte contains the number of 
characters to be printed per line !range is from 1 
to 1~2 characters). The default page length is ~R 
lines. The default line length is Rn characters. 

II.Ii-Hi 

C 



Programmer Guide CREF 

Summary of CRF File Record Contents 

0 
byte contents lenath of record 

n, symbol na111e ?-RJ bytes 

n2 symbol name 2-RJ bytes 

n4 J byte 

n!i lA 2 bytes 

title text nfi 2-Rl bytes 

PL LL n7 ~ bytes 

0 

0 

II.t;-J7 



0 

0 



PART II - ASSEMBLY LANGUAGE TOOLS 

SECTION 6 - EXE2BIN 





0 

0 

0 

Programmer Guide EXE?BI~ 

6.1 EXE2BIN 

Format: EXE2BIH filespec rd:JrfilenameJr.extJ 

Purpose: Convert files from .EXE format to binary format 

Remarks: The first para~eter is the input file; if no 
extension is given, it defaults to .EXE. The 
second parameter is the output file. If no drive is 
given, the drive of the input file is used; if no 
filename is given, the filename of the input file 
is used; if no extension is given, .RI~ is used. 

The input file must be in valid .EXE format 
produced by the 1 inker. The "resident", or actual 
code and data part of the file, must be less than 
fi4V. There must be no STACV segment. Two kinds of 
conversion are possible depending on the specified 
i ni ti a 1 CS: IP: 

1, !f CS:IP is not specified, a pure binary 
conversion is assumed. If segment fix-ups are 
necessary, the following prompt appears: 

Fix-up needed - base segment (hex): 

By typing a legal hexadecimal number and then 
<Rtn>, execution will continue. 

2. If CS:IP is specified as 1nnH, then it is 
assumed the file is to be run as a .COM file 
ORGed at \OOH, and the first 1nnH of the file 
is to be deleted. tJo segment fix-ups are 
allowed, as .COM files must be segment 
relocatable. 

If CS:IP does not meet one of these criteria or 
meets the .COM file criterion, but has segment 
fix-ups, the following error message is displayed: 

File cannot be converted 

~ote that to produce standard .COM files with the 
Macro Assembler, one must both ORG the file at 1nnH 
and specify the first location as the start address 
/this is done in the FMO statement). 

I I. fi. 1 



E)(E?BHI 

For example: 

ORr, 
START: 

F.:~lf'I 

Programmer Guide 

1nnH 

ST.A.RT 

0 



PART III - APPENDICES 

APPEHDIX A - ASCII CHARACTER CODES 





r>rogral'l!ler <;uide Appendix A 

0 
ASCII Code Character 

nnn II IL 

nn, Q snH 

M? • STY 

nn~ • F y 

nn11 • F:OT 

nor; + Pin 

nn,:; • AO' 

nn7 REL 

0 (\OP RS 

nnn HT 

(\1('1 LF 

n,, "T 

012 FF 

('lJ:l CR 

1)111 ~ so 
n,r; ~ SI 

n,~ ~ nLF. 
1)17 .. f\C1 

(11 ll t nc2 
n,n !! oc~ 

n?n 1i nc11 

Page A-1 



Appendix A 

ASCII Code 

f'l?l 

nn 

n2-:i 

n?4 

n2r:; 

n;,,; 

n27 

n2R 

n?Q 

()'.lf'I 

()'.ll 

n:i2 

()'.l:l 

n:l4 

n·H; 

n:11. 

n:11 

n?R 

()~!) 

n4n 

041 

n42 

()4:l 

Page A-?. 

Pro9ral'ITler Guide 

Character --------------------....t1,..-
§ 

1 

MV 

SVM 

F.TB 

CAIi 

EM 

SIIB 

ESCAPE 

FS 

GS 

RS 

IIS 

SPACE 

# (octothorpel 

~ (dollar sign) 

,; (percent) 

P. (ampersand) 

' (apostrophe} 

(right parenthesis) 

(left parenthesis) 

* (asterisk) 

+ (plus sign) 

1, 



r>rogr a1T1mer Gui de Appendix A 

ASCII Code Character 

(1411 , ( coMma) 

f145 - (hyphen) 

f14fi (period) 

f147 I (slash) 

n11p n 

(140 ,. 
nr;n 2 

nr;, "'.l 

nr;;, ll 

nr;~ r; 

nr;11 fi 

C ni;r; 7 

nr;,; R 

or;7 0 

nr;11 (colon) 

n50 (semi-colon) 

n,;n < r, ess than l 

(1fiJ (equal sign) 

Ofi? > (greater than) 

n,;~ ? (question mark) 

(1fill 0 rat sign) 

()fi'i A 

C 
ni;,; B 

Page A-~ 



Appendix A Progrannner r,uide 

ASCII Code Character 

ni:;7 C ( 
ni:;p [l 

ni:;!) E 

n7n F 

n71 r, 

072 H 

n7:1 

n74 J 

075 V 

n7i:; L 

nn 11 

07R M 0 
n70 0 

nRn p 

n,q1 n 

()A? R 

('IR:l s 
f1Rtt T 

f1R~ II 

nP.!i II 

f1R7 w 

OPR X 

0119 V 

MO z C 
noi r /left bracket) 

Page A-4 



Proqral'll'ler r.uide Appendix A 

ASCII Code Character 

0 nn;'* !backslash) 

(1Cl:1 J (right bracket) 

ng4 • (caret) 

nni; < 11 ess than l 

nn,; I (apostrophe) 

M7 a 

MA b 

nno C 

inn rl 

1 n, e 

1(1? f 

Jn~ g 

,n4 h 

1_nc; 

l()i:; j 

,n7 k 

10ft 

,no m 

1Jn n 

11). 0 

11? p 

111 Q 

0 
11 I\ r 

111; s 

riage A-C:. 



Appendix A Prograrrmer Guide 

ASCII Code Character J 
11/; t 

l 

117 u 

1rn V 

110 w 

12n X 

121 y 

1?? z 

l?'.l (1 eft curlicue l 

12A (line) 

1?1; (right curlicue) 

]2/; - (non-trivial blank\ ,~. 
1?7 DF.L 

, ....... 
12R ~ 

1_2 0 ii 

pn ' e 

1'11 a 
, '.)? ii 

1 '11 ' a 

);l4 a 
1 ~i; ~ 

1:,i; 
A 

e 

11"7 e 
11A ' e 

' 

Page A- P-



Progra!'1Tl1er r.uide Appendix A 

ASCII Code Character 

0 1:vi 1 

140 
,. 
1 

141 ' 1 

14? A 
14~ ,\ 

144 E 

141i CE 

1.ll/, ,f_ 

147 0 

1/IA 0 

J/10 0 

0 li;O u 
11;1 u 

, 1;? V 

, c;1 1:i 

1c;11. ii 

tc;r:; ¢ 

1c;1, £ 

1'i7 T 

lliR Pt 

150 f 

, 
1,:;n a 

l F;l 
, 
1 

Page A-7 



Appendix A Programmer Guide 

IISCII Code Character 

Jli2 ' 0 

' 1 Ii< u 

1/i/l ii 

1/i<; 11 

1/ili ~ 

11i7 2 
1/iA 

1,;n r-

17n -, 

171 , /2 

l 7? 1 ;n 

1n 0 
17n « 

17i; » 

171i 

177 ::::::: 

17P i:~~ 

170 

1 Pl) --i 

1P1 9 

1P? -ll 

lP< 

HM =, 

0 age 11-P. 



0 rograflll!ler r,uide Appendix JI 

IISCJI Code Character 

0 1AI; =!I 

lAf; 

1R7 "" 

1AA "' 

1PO _JJ 

10n "" 
101 

10? L 

10? .J.. 

104 T 

101; I-

0 10,:; 

107 + 

10P I= 

100 I!-

?nn I!, 

:,n1 I? 

~n? db 

2n~ 'i1' 

2n4 r,, 

?ni; 

2n,:; JL ,r 

0 ?07 ,,!; 

Page A- 0 



Appendix A Programmer Guide 

ASCII Code Character 

?,nA JL C 
2no =;= 

21n 

?11 IL 

?.l? .. 
?1:, F 

?.1 II ,,. 

?.1 i; * 
?.l" "" 
217 -' 

21A r 

21. n • 0 
?.?.n -
2?1 I 

?.22 I 

??1 -
2?11 .., 

?.?I; ~ 

?.?" r 

??1 .. 
??A r 

22° IJ" 

?:,n µ 

0 

Page /\-1n 



Programmer r.uide Appendix A 

ASCII Code Character 

0 ?~1 T 

2~?. 0 

:>1~ -ir 

2~4 n 

?.1'i 0 

23'- (X) 

?.37 0 

?.3R 

230 n 

240 -

241 ± 

0 242 ~ 

?.4~ ! 

244 f 

241; J 

?Mi 

21\7 "' 

?.4R 

211!> 

2'i0 

21;1 ..J 

252 

0 
2'i:l 

21i4 • 
?."Ii (blank 'FF' l 

Page A-ll 



C 

0 



PART III - APPENDICES 

APPENDIX B - BASIC DISK 1/0 



L 



0 

Pro9ramer Guide Appenrlix B 

Disk 1/0 procedures for the beginning RASIC user are examined 
in this appendix. If you are new to bASIC or if you're 
getting errors, read through these procedures and program 
examples to make sure you're using all the disk statements 
correctly. 

Wherever a fi l ename is required in a disk command or 
statement, use a name that conforms to your operating system's 
requirements for filenames. (Will our system appends a default 
. BAS to fi 1 enames? l 

B.1 - PROGRAM FILE COMMANDS 

Here is a review of the commands and statements used in 
program file manipulation. 

SAVE <filename>r,AJ 

LOAD <filename>r,RJ 

Rim <filename>(,R] 

Writes to disk the program that is 
currently residing in memory. 
Optional A writes the program as a 
series of ASCII characters. 
(Otherwise, BASIC uses a compressed 
binary format.) 

Loads the program from disk into 
memory. Optional R runs the program 
immediately. LOAD always deletes the 
current contents of memory and closes 
all fi 1 es before LOADi ng. If R is 
included, however, open data files 
are kept open. Thus programs can be 
chained or loaded in sections and 
access the same data files. 

RUN <filename> l cads the program from 
disk into memory and runs it. RIIN 
deletes the current contents of 
memory and closes all files before 
loading the program. If the R option 
is included, however, all open data 
files are kept open. 

Page B-J 



Appendix 8 Programmer Guide 

11ERGE <filename> Loads the program from disk into 
memory but does not delete the 
current contents of memory. The 
program line numbers on disk are 
merged with the line numbers in 
memory. If two lines have the same 
number, only the line from the disk 
program is saved. After a MERGF. 
command, the "merged" program resides 
in memory, and ~ASIC returns to 
command level. 

VILL <filename> neletes the file from the disk. 
<filename> may be a program file, or 
a sequential or rannom access data 
file. 

l'AME <old filename> AS <new filename> 

8.2 PROTECTED FILES 

To change the name of a disk file, 
execute the MAME statement, MAME 
<oldfile> AS <newfile>. NAMF. may be 
used with program files, random 
files, or sequential files. 

If you wish to save a program in an encoded binary format, use 
the "Protect" option with the SA"E command. For example: 

SAVE "MVPROG",P 

A program saved this way cannot be listen or edited. You may 
also want to save an unprotected copy of the program for 
listing ann editing purposes. 

8.:1 DISY. DATA FILES - SEOIIEMTIAL AND RANDOM I/0 

There are two types of nisk data files that may be created and 
accessed by a BASIC program: sequential files and random 
access files. 

Page B-? 

0 

C 



0 

0 

0 

Programmer Guide Appendix B 

B.~.1 Sequential Files 

Sequential files are easier to create than random files but 
are limited in flexibility and speed when it comes to 
accessing the data. The data that is written to a sequential 
file is stored, one item after another (sequentially), in the 
order it is sent and is read back in the same way. 

The statements and functions that are used with sequential 
files are: 

OPHI 
PRUIT# 
HIPIIT# 
WRITE:# 
PRH!T# IISHIG 
LIME H!PIIT/1 
CLOSE 
EOF 
LOC 

The following proqram steps are required to create a 
sequential file and access the data in the file: 

1. OPEM the file in "O" mode. 

OPEN "0",#1 ,"OATA" 

?. Write data to the file using the PRH1Tii statement. 
rnRITF.# may be used instead.) 

PRH!T/11. ,A~;R~;C~ 

~. To access the data in the file, you must CLOSE the 
file and reOPEM it in "I" mode. 

CLOSE J!1 
OPF.fl "I",#1,"f'IATA" 

Page B-1 



Append;x B Programmer Gu;de 

4. Use the ItlPIIT# statel'lent to read data from the 
sequent;a1 f;le ;nto the program. 

It1Pl1Tfl1, x~, Y~.z~ 

Program B-1 ;s a short progral'l that creates a sequent;a1 f;le, 
"DATA", from ;nfomatfon you ;nput at the termfoal. 

Page B-4 

1n OPEN "O" ,#1, "DATA" 
?.n HIPIIT "MME" ;Ill: 
21i IF 11.(="!lOflE" THEIi DIil 
:rn HIPI.IT "flEPARTMEMT" ;D~ 
4n ItJPIIT "DATF. HIREn" ;H~ 
~n PRINT#l,M~;",";O~;",";H! 
lin PRHIT:GOTO 20 
RIii! 
MAME? MICVEY MOIISF. 
DEPARTMEMT? Allfl!O/"ISIIAL AIDS 
DATE HIRED? 01/12/7?. 

MAME? SHERLOCI<'. HOLMES 
DEPARTMENT? RESEARCH 
DATE HIRED? 12/0~/~li 

IIAME? ERF.f!EEZER SCROOGE 
DEPARTMHIT? ACCOIIMTIMG 
DATE HIRED? n4/27/7R 

MAME? SIIPER MMIN 
flF.PARTMEHT? MAIIITFJIAt!CF. 
llATE HIRED? nA/J~/7R 

11AME? etc. 

PROGRAM B-1 - CREATE A SErJIIENTIAL DATA FILE 

C 

0 

( 



Programl'ler r.ui de Appendix n 

0 

0 

0 

~low look at Program B-2. It accesses the file "nATA" that was 
createrl in Progral'l R-1 and displays the name of everyone hired 
in 1'l7fl. 

1n OPDI "I",#1,"nATA" 
20 HIPIIT#1,N~,£J~,H~ 
~n IF RIGHT~(H~,2)="7R" THF.H PRI~T H~ 
4n GOTO 2n 
RllN 
EBENEEZER SCROOGE 
SIIPER MAt'fl 
Input past end in 2n 
Ok 

PROGRN4 8-2 - ACCESSING A SEnllEffTIAL FILE 

Pro CJ ram B-?. reads, sequenti a 11 y, every i tern in the file. When 
all.the rlata has been rearl, line ?.n causes an "Input past end" 
error. To avoid gettinCJ this error, insert line 1~ which uses 
the F.OF function to test for enrl-of-file: 

!~ IF EOF(l) THEN F.flO 

and change line 4n to GOTO 1~ 

A program that creates a sequential file can also write 
formatted rlata to the disk with the PRUIT/I IISP'G statement. 
For example, the statement: 

PRIMT/!l ,IISIH[.;"##fil.i!R," ;A,B,C,£J 

could be used to write numeric data to disk without explicit 
delimiters. The comma at the end of the format string serves 
to separate the items in the disk file. 

The LOC function, when used with a sequential file, returns 
the number of sectors that have been written to or read from 
the file since it was OPE~erl. A sector is a ]?fl-byte block of 
data. 

Page B-i; 



Appendix R Programer Guide 

B.~.1.1 Adding Data to a Sequential File 

If you have a sequential file residing on disk and later want 
to add more data to the end of it, you cannot simply open the 
file in "O" mode and start writing data. As soon as you open 
a sequenti a 1 fi 1 e in "O" node, you destroy its current 
contents. The following procedure can be used to add data to 
an existing file called "NAMES". 

1, OPEN "HAMES" in "I" mode. 

2. OPEN a second file called "COPY" in "O" mode. 

1, Read in the data in "HAMES" and write it to "COPY", 

II, CLOSE "IIAMES" and V. ILL it. 

'i. Hrite the new information to "COPY". 

i;. Rename "COPY" as "l'At1ES" and CLOSE. 

7. i1ow there is a file on disk called "IIAMES" that 
includes all the previous data plus the new data you just 
added. 

Program B-~ illustrates this technique. It can be used to 
create or add onto a file called HAMES. This program also 
illustates the use of LHIE HIPIITI' to read strin9s with 
embedded commas from the disk file. Remember, L H1F It!PIIT /I 
will read in characters from the disk until it sees a carriage 
return (it does not stop at quotes or collTllasl or until it has 
read ?'i'i characters. 

Dage 8-li 

C 

0 

( 



Programmer Guide Appendix 0 

0 

0 

1 n OM FRROR GOTO ,nnn 
,in OPEM "I" ,*J, "HAl1ES" 
~n REM IF FILE EXISTS, WRITE IT TO "COPY" 
4(1 OPFM "O",#?,"COPV" 
1';(1 IF F.OF ( 1 ) THDI on 
f;n LINE JIIPIIT*1 ,M, 
7n PRIMT#2,M 
FlO GOTO i:;n 
on CLOSE i!J 
100 VILL "MAMES" 
1 Jn REM ADfl tlEW DJTRIES TO FILE 
120 !MPIIT "MAt1E" ;M~ 
nn IF fl~="" THEN WO 'CARRIAGE RF.TJIRM EXITS HIPIIT LOOP 
14n LitJE HJPIIT "AflDRESS? ";A$ 
1r;n LHIE HIPIIT "BIRTHflAY? ";8$ 
lf;O PRPITll2,M$ 
17n PRHIT/1? ,A$ 
lllO PRHIT#? ,8$ 
1°n PRIIIT:GOTO 120n 
20n CLOSE 
?ni:; RF.M CHAIIGE FILDIAME RACII' TO "MAr1F.S" 
21n MAME "COPY" AS "MAMfS" 
wnn IF F.RR=<;'." AtlO ERL=2n THEM OPEM "O" ,II?, "COPY": RES11t1E 1 ;,n 
2n1n ON ERROR GOTO n 

PROGRAM B-'.1 - ADDING DATA TO A SEnlJEMTIAL FILE 

The error trapping routine in line ;,nnn traps a "File does not 
exist" error in 1 i ne 2n. If this happens, the statements that 
copy the file are skipped, and "CnPV" is created as if it 1~ere 
a new file. 

Page B-7 



Appendix B PrograJ111T1er r,ui de 

8.3,2 Random Files 

Creating and accessing random files requires more program 
steps than sequential files, but there are advantages to using 
random files. One advantage is that random files require less 
room on the disk, because BASIC stores them in a packed hinary 
format. IA sequential file is stored as a series of ASCII 
characters.) 

The biggest advantaqe to random files is that data can be 
accessed randomly, i .e., anywhere on the disk -- it is not 
necessary to read through all the information, as with 
sequential files. This is possible because the information is 
stored and accessed in distinct units called records and each 
record is numbered. 

The statements and functions that are used with random files 
are: 

Page B-R 

OPf.N 
FIELn 
LSET /RSET 
GET 
PIJT 
CLOSE 
LDC 
Mk'IS 
CVI 
MKSS 
CVS 
Mlo'.n'-
CVD 

C 

0 



0 

Programmer Guide Appendix B 

B.3.2.1 Creating a Random File 

The following program steps are required to create a random 
file. 

1. OPEN the file for random access ("R" mode). This example 
specifies a record length of ~2 bytes. If the record 
length is omitted, the default is l?R bytes. 

OPEM "R",/11,"FILE",~2 

2, Ilse the FIELD statement to allocate space in the random 
buffer for the variables that will be written to the 
random fileg. 

0 FIELO #1 20 AS N$, 4 AS A$, A ASP$ 

0 

~. Ilse LSET to move the data into the random buffer. 
Numeric values must he made into strings when placed in 
the buffer. To do this, use the "make" functions: Mr!$ 
to make an integer value into a string, Ml<'S$ for a single 
precision value, and t1VD$ for a double precision value. 

LSET tJ$=X$ 
LSET A$-Ml<'S$(AMT) 
LSF.T P$=TEL~ 

4. Write the data from the buffer to the disk using the PIIT 
statement. 

PIJT 111 ,CODE% 

Page B-0 



Appendix B Programmer Guide 

Look at Program B-4. It takes information that is input at 
the terminal and writes it to a random file. Each time the 
Pl IT statement is executed, a record is written to the file. 
The two-digit code that is input in line ~n becomes the record 
number. 

Note 

Do not use a FI ELDed string variable in an HIPIIT or LET 
statement. This causes the pointer for that variable to point 
into string space instead of the random file buffer. 

Page B-ln 

Jn OPEN "R",#1,"FILE",~2 
2n FIELD ,1,2n AS~~. 4 AS ASS, A AS PS 
~n HIPIIT "2-0tGIT CODE" ,CODE% 
40 H!PIIT "!IAME"; XS 
'ifJ HIPIIT "/1,MOllfJT" ;AMT 
fin Jt.lPIIT "PHONE";TEL~:PRHJT 
?n LSET M$=XS 
Afl LSET AS=MKSS(AMT) 
on LSET P~=TEL$ 
1nn PllT #},CODE% 
J 10 GOTO :in 

PROGRAM B-4 - CREATE A RANDOM FILE 

0 

( 



0 

0 

C 

Programmer Guide Appendix B 

B.3.2.2 Access a Random File 

The following program steps are required to access a 
random file: 

J . OPEH the file in "R" mode. 

OPF.M "R" ,#1, "FILE", .'~? 

2. Ilse the FIELD statement to allocate space in 
the random buffer for the variahles that will 
be read from the file. 

FIELD fl 2n ASH~, 4 AS A~, A ASP~ 

Note: 

In a program that performs both input and 
output on the same random file, you can often 
use just one OPEH statement and one FIELD 
statement. 

J. Ilse the GET statement to move the desired 
record into the random buffer. 

GET #1 ,COOF.o/. 

A, The data in the buffer may now be accessed by 
the program. ~1umeric values must he converted 
back to numhPrs using the "convert" functions; 
C11 I for integers, CVS for single precision 
values, and c11ri for double precision values. 

Program B-~ accesses the random file "FILF." that was 
created in Program R-4, BY inputting the three-digit 
code at the terminal, the information associated with 
that code is read from the file and displayed. 

Page B-11 



Appendix B 

Dage B-12 

10 OPEN "R",#1,"FILE",:!2 
20 FIELD #J, 20 AS MS, 4AS AS, RAS PS 
:lO H!PIJT "2-£lIGIT COOE" ;CODE% 
40 GET #1, CODE% 
i;o PRUIT M~ 
fiO PRitJT IISHIG ""S###.##";CVS(A~) 
70 PRINT PS:PRINT 
RO GOTO :lO 

PROGRAM B-!i • ACCESS A RANDOM FILE 

Programmer Guide 

The LDC function, with random files, returns the 
"current record number". The current record number 
is one plus the last record nuMber that was used in 
a GET or PIIT statement. For exaMple, the statement 

IF LOC(J l>'iO THEtl Ell() 

ends program execution if the current record number 
in fileHl is higher than 'iO. 

Program B-fi is an inventory program that illustrates 
random access. In this program, the record number 
is used as the part number, and it is assumed the 
inventory will contain no more than 100 different 
pqrt numbers. Lines 900-QfiO initialize the data file 
by writing chrS(2'i'i) as the first character of each 
record. This is used later (line 270 and line 500) 
to determine whether an entry already exists for 
that part number. 

Lines l:l0-220 display the different inventory 
functions that the program performs. When you type 
in the desired fucntion number, line 2:lO branches to 
the appropriate subroutine. 

C 

C 



0 

0 

Programmer Guide Appendix B 

120 OPEM"R" ,#1, "HIVEM.DAT" ,30 
12'i FIELD#l,1 AS FS,30 AS 0$,2 AS 0$,2 AS RS,4 ASP$ 
BO PRHIT:PRIMT "FIIMCTIO,IS:":PRHJT 
13'i PRINT 1,"INITIALIZE FILE: 
14f1 PRUIT 2, "CREATE A MEW EMTRY" 
1i:;n PRUIT 3, "DISPLAY INVENTORY FOR mJE PART" 
160 PRINT 4, "AOD TO STOCV" 
170 PRIMT 'i,"SIJBTRACT FROM STOCI'" 
lRO PRIMT 6, "DISPLAY ALL ITEMS flELOW REORDER LE"EL" 
22n PRHIT: PRPJT: HIPIIT"Fll!ICTIOM" ;FIINCTIOM 
225 IF (FIJIJCTIOll<J )OR(FIIMCTIOM>6) 
THDJ PRHIT "flAD Fll,ICTIOM '-HIMBER": GO TO 130 

230 ON FIIMCTI 0"' GOSI IB onn, 2i:;n, ion, 4Rn, 56(1, fiRn 
240 GOTO 22n 
2'i0 REM BllILD IJEW ENTRY 
2fi0 GOSIIB R40 
270 IF ASC(F~)<>2'i'i THEIi HlPIIT"OVERWRITE";M: 

IF A$<>"Y" THEM RET!IRN 
2RO LSET FS=CHR$(0) 
200 HIPIIT "DESCRIPTIOW' ;DESCS 
300 LSET D$=0ESC$ 
310 IMPIIT "OllAIJTITY IM STOCV.";Oo/. 
320 LSET OS=MKI$(R%) 
:no IIIPIJT "REORDER LEVEL"; Rt 
340 LSET R$=MKIS(R%) 
350 IIJPIJT "UNIT PRICE";P 
360 LSET P$-MKS$(P) 
370 PIJT#l,PART'.t 
3PO RETIIRN 
300 REM DISPLAY DJTRY 
400 GOSIIB R4n 
410 IF ASC(F$)=?.55 THEM PRUIT "NIJLL EMTRY":RETIIRN 
420 PRUIT IISHIG "PART NUMBER ###";PART% 
430 PRINT IJ$ 
44n PRUIT IISH1G "nllAMTITY m1 HAND #,J/###";C 11 I(ns) 
45n PRINT IISIMG "REORDER LEVEL ####/l";CI/I(R$) 
460 PRIMT IISH!G "1.IMIT PRICE ~$#//>##: ;CVS(P$) 
470 RETIIRM 
4PO REM AOD TO STOCK 
400 GOSIIB R4f1 
'inn IF ASC(F~l=?.55 THEM PRH!T "MIILL EMTRY":RETIIRII 
'iJO PRUIT D~:HIPIIT "OIIANTITY TO ADD ";Ao/. 
'i?.O f11=C 11 I(ns)+A% 
'i30 LSET O~=MVIS(n~) 
540 Dl!T/11,PART'.t 
'i'iO RETIIR'-l 
'ifiO REM REMOVE FROM STOCV 
i;70 GOS!IB R40 
'iRO IF ASC(F'.t)=25'i THDJ PRIMT "MIILL HJTRY":RETIIRM 
r;cin PRINT 0$ 
600 HIPLIT "OIIAMTITY TO SIIBTRACT" ;S% 
610 Oo/,=CVI(O$) 

Page B-13 



Appendix B 

Page B-14 

Progra1T1111er Guide 

l>?.O IF (O%-S%)<n THEM PRIMT "OIILY";fl%;" P! STOC!-'.":GOTO t;(lf\ 
l>:10 <1%=0'1,-S',f, 
1>40 IF flo/,=<CVI(R'l,) THEIi PRINT "011A~ITITV 11nw";flo/,; 

"REORDER LEVEL" CYI(R~) 
1>50 LAST n~=HKIS(O%) 
l>FiO PIIT/il, PARTo/, 
1>70 RETIIRM 
l>An OISPLAY ITEMS BELOH REOROER LEVEL 
fiOO FOR I-1 TO 10n 
710 GET/il, I 
no IF CIII(O~)<C11I(RS) THEM PRHIT OS;" OIIMITITY"; 

C"I(OS) TAB('iO) "REORDER LEVEL" 
7:10 NEXT I 
740 RF.TIIRM 
A40 INPUT "PART MUMBER";PART% 
A'i(1 IF(PART%<1)0R(PART%>100) THEM PRitlT "B/IJ1 Pf\RT JIIIM!lF.R": 

GOTO AAO F.LSE (;ET/11 ,PART%:RETIIR~I 
AClO END 
cion REM INITIALIZE FILE 
ClJ.O INPUT "ARE VOii SIIRE";B'l,:JF BS<>"Y" THEIi RETIIRM 
920 LSF.T F$-CHR~(2~'i) 
0:10 FOR 1+1 TO ,no 
Cl4[1 PIIT/!1, I 
oi;n MEXT I 
01,n RJ:"TIIRM 

PROGRAM B-fi - HJVENTORY 
0 

C 



PART III - APPENDICES 

APPENDIX C - SUMMARY OF BASIC ERROR CODES 
AND ERROR MESSAGES 





!>rograr.mer Guide Appendix C 

CODE NLIMBER MESSAGE 

!IF ,. IIF.XT without For 
A variable in a l!EXT statement does not 
correspond to any previously executed, 
unmatched FOR statement variable. 

SN 2 Syntax error 
A 1 i ne is encountered that contains some 
incorrect sequence of characters (such as 
unmatched parentheses, misspelled command 
statement, incorrect punctuation, etc.). 

or 

RG 3 RETIIRN without GOSIIB 
A RETIIRN statement is encountered for which 
there is no previous, unmatched GOSI/B 
statement. 

OD 4 Out of data 
A READ statement is executed when there are no 
DATA statements with unread data remaining in 
the program. 

FC i; Illegal function ca 11 
A parameter that is out of range is passed to a 
math or string function. An FC error may al so 
occur as the result of: 

1 l a negative or unreasonably large 
subscript; 

2) a negative or zero argul'lent with LOG 

~) a negative argument to Sf1R 

4) a negative mantissa with a non-integer 
exponent 

Page C-1 



Progral'l!ller Gui de Jl.ppendix C 

CODE NUMBER MESSAGE 

Ii) a call to a IISR function for which the 
starting address has not yet been given 

Ii) an improper argument to MI!l~, LEFT$, 
RIGHT$, IMP, Ol!T, WAIT, PEEY., POVE, TAB, 
SPC, STRINGS, SPACE~, INSTR, or ON ••• GOTO. 

ov f:. Overflow 
The result of a calculation is too large to be 
represented in BASIC's number format. If 
underflow occurs, the result is zero and 
execution occurs without an error. 

OM 7 nut of memory 
A program is too large, has too many FOR loops 
or GOSI IB s, too many variables, or expressions 
that are too complicated. 

Ill A llndefined line 0 
A 1 i ne reference in a GOTO, GOSIIB, 
IF .•• THDI ••. ELSE or DELETE is to a nonexistent 
1 i ne. 

BS q Subscript out of range 
An array element is referenced either with a 
subscript that is outside the dimensions of the 
array, or with the wrong number of subscripts. 

DD 1n Redimensioned array 
Two DIM statements are given for the same 
array, or a DIM statement is given for an array 
after the default dimension of 10 has been 
established for that array. 

Page C-2 



PrograT11fller Guide Appendix C 

0 
CODE t!IJMBER MESSAGE 

/n 11 Division by zero 
A division by zero is encountered in an 
expression, or the operation of involution 
results in zero being raised to a negative 
power. Machine infinity with the sign of the 
numerator is supplied as the result of the 
division, or positive machine i nfi ni ty is 
supplied as the result of the involution, and 
execution continues. 

ID 12 I 11 egal direct 
A statement that is illegal in direct mode is 
entered as a direct mode command. 

TM D Type mismatch 
A string variable name is assigned a numeric 
value or vice versa; a function that expects a 

0 
numeric argument is given a string argument or 
vice versa. 

OS 14 Out of string space 
String variables have caused BASIC to exceed 
the amount of free memory remaining. BASIC 
will allocate string space dynamically, until 
it runs out of memory. 

LS l 'i String too long 
An attempts is made to create a string more 
than 2'i~ characters long. 

ST lf. String formula too complex 
A string expression is too long or too complex. 
The expression should be broken into sma 11 er 
expressions. 

0 

Page C-J 



Programmer Gui de Appendix C 

C 
CODE NUMBER MESSAGE 

CM 17 Can't continue 
An attempt is made to continue a program that: 

1) has halted due to an error 

2) has been modified during a break in 
execution, or 

:l) does not exist. 

IIF JR llndefi ned user function 
A llSR function is called before the function 
definition (OEF statement) is given. 

l<l Mo RESUME 
An error trapping routine is entered but 
contains no RESIIME statement. 

20 RESIIME without error 
A RESIIME statement is encountered before an 0 
error trapping routine is entered. 

21 Unprintable error 
An error message is not available for the error 
condition which exists. This is usually caused 
by an ERROR with an undefined error code. 

?.2 Missing operand 
An expression contains an operator with no 
operand following it. 

23 Line buffer overflow 
An attempt is made to input a line that has too 
many characters. 

26 FOR without NEXT 
A FOR was encountered without a matching NEXT. 

2<l WHILE without WEND 
A WHILE statement does not have a matching 
wrno. 

Page C-4 



PrograT1111er Guide Appendix C 

CODE NUMBER MESSAGE 

3n WEND without WHILE 
A WEND was encountered without a matching 
WHILE. 

5n Field overflow 
A FIELn statement is attempting to allocate 
more bytes than were specified for the record 
length of a random file. 

51 Internal error 
An internal malfunction has occurred in BASIC. 
Report to nynalogic the conditions under which 
the message appeared. 

52 Bad fi 1 e number 
A statement or command references a file with a 
file number that is not OPEN or is out of the 

0 range of file numbers specified at 
initialization. 

53 File not found 
A LOAD, KILL or OPEN statement references a 
file that does not exist on the current disk. 

'i4 Bad file mode 
An attempt is made to use PIJT, GET, or LOF with 
a sequential file, to LOAD a random file or to 
execute an QPF.M with a file mode other than I, 
0, or R. 

,;i; File al ready open 
A sequential output mode OPE~' is issued for a 
file that is already open; or a KILL is given 
for a file that is open. 

,;7 Disk I /0 error 
An I/0 error occurred on a disk I/0 operation. 
It is a fatal error, i.e., the operating system 
cannot recover from the error. 

0 

Page C-5 



Prograrrrner Guide Appendix C 

( 

CODE NUMBER MESSAGE 

i;µ File already exists 
The filename specified in a NAME statement is 
i den ti cal to a filename already in use on the 
disk. 

fil Disk full 
All disk storage space is in use. 

fi2 Input past end 
An HlPUT statement is executed after all the 
data in the file has been INPIIT, or for a null 
(empty) file. To avoid this error, use the EDF 
function to detect the end of file. 

Ii? Bad record number 
In a PUT or GET statement, the record number is 
either greater than the maximum allowed (~27fi7) 
or equal to zero. 

Fill Bad file name 0 
An illegal form is used for the filename with 
LOAO, SAVE, KILL, or OPHI (e.g., a filename 
with too many characters). 

f;F, Direct statement in file 
A direct statement is encountered while LOADing 
an ASCII-format file. The LOAO is teminated. 

Fi7 Too many fi 1 es 
An attempt is made to create a new file (using 
SAVE or OPEM) when all 25~ directory entries 
are full. 

Page C-" 



PART III - APPENDICES 

APPENDIX D - MATHEMATICAL FUNCTIONS IN BASIC 





Programmer Gui de Appendix D 

Derived Functions 

Functions that are not intrinsic to BASIC may be calculated as follows. 

FllNCTION BASIC EntlIVALENT 

SECANT SEC(X)=J/COS(X) 

COSECMIT CSC(X)=1 /SIM(X) 

COT AUGE NT COT(X)=l/TAN(X) 

HIIIERSE SIME ARCSIN(X)=ATNIX/SnR(-X*X+l)) 

0 HJVERSE COSINE ARCCOS(X)=-ATN (X/SnR(-X*X+l))+J.~70A 

IPJVERSE SECAHT ARCSEC(X)=AnJ(X/SnR(-X*X+1 )) 
+SGN(SGN(X)-l)*J.570P 

HJIIF.RSE COSF.CAHT ARCCSC(X)=ATN(X/SnR(X*X-1)) 
+(SGM(X)=l )*l .~70A 

Hl"F.RSE COTAflGn!T ARCCOT(X)=ATN/X)+1.~70A 

HYPERROLIC SHI[ SI l'H ( X) = ( EXP ( X )-EXP ( -X l) /? 

HYPERBOLIC COSIME COSH(X) =(EXP(Y)+EXP(-X))*2+1 

HYPERBOLIC TAMGEMT TANH(X)=EXP(-X)/EXP(X)+EYP(-X))*?+l 

HYPERBOLIC SECANT CSCH/Y.)=2/(EXP(X)+EXPI-X)) 

HYPERBOLIC COSECAtIT COTH(X)=EXP(-X)/(EXP(X)-EXP(-X))*2+1 

Ill"ERSE HYPERROLIC 
SIIIE ARCSIIIH(X)=LOG(X+SnR(X*X+l)) 

C 

Page 0-1 



Appendix D Drogramer Guide 

FUNCTION BASIC EnUIVALENT 

~ 
'= 

INVERSE HYPERBOLIC 
COSINE ARCCOSH(X)=LOG(X+SnR(X*X-1)) 

IIIVERSE HYPERBOLIC 
TAtJr;EMT ARCTAtlH(X)=LOG( ( 1.+X)/( 1-X) )/2 

ItlVERSE HYPERBOLIC 
SF.CAIJT ARCSECH(X)=Lor,rrsnR(-X*X+l)+l)/X) 

INVERSE HYPERBOLIC 
COSECMIT ARCCSCH(X)=LQr,( (SGN(X)*SC1R(X*X+1 )+l )/X 

INVERSE HYPERROLIC 
COTAMGF.NT ARCCOTH(X)=LOGIIX+l)/(X-J )/2 

0 

Page D-? 



PART III - APPENDICES 

APPENDIX E - ALPHABETICAL SUMMARY OF 
BASIC COMMANDS, FUNCTIONS AND STATEMENTS 





0 

0 

0 

Programmer Guide 

APPHIDIX E 

ALPHABETICAL SIIMMARY OF 
BASIC COHMAflDS, I FIJHCTIO,JS & STATEMrnTs 

ABS 
ASC 
ATN 
AUTO 
BEEP 
BLOAD 
BSAIIE 
CALL 
CDBL 
CHAIN 
CHR~ 
CI~IT 
CIRCLE 
CLEAR 
CLOSE 
CLS 
COLOR (A) 
COLOR (G) 
COM(nl 
COHMOM 
COMT 
cos 
CSIIG 
CSRLIN 
C"I ,c11s,c11D 
DATA 
DATE~ 
DEF FM 
DEF SEG 
DEF IISR 
DEFINT 
DELETE 
!lIM 
ORAi~ 
E!lIT 
EMO 
EOF 
ERASE 
ERR & ERL 
ERROR 
EXP 
FIELD 
FILES 
FIX 
FOR .•• HEXT 
FRf. 
GET (A) 
GET (r,) 
GOSIIB 
GOTO 
HEB 
IF •.• ELSE 
IF ••• GOTO 
IF ••• THnl 

I. 5-1 
I.5-2 
I.5-< 
I.3-1 
I.4-J 
I .4-2 
I .11-11 

I.4-" 
I .5-4 
I.4-P 
I.5-" 
I. 5_i; 

r. 4-J n 
I. ~-2 

I .4-l 2 
!.4-13 
I.4-14 
I.4-11; 
I.4-!f; 
I. 4-17 
I.3-1 
I.~-7 
I.5-P 

I .4-J P 
I.5-? 

l.4-JO 
I.4-?!1 
I.4-22 
I.4-21; 
I.4-2F 
I.4-24 

I .3-4 
I.4-27 
I.4-2P. 
I.3-i; 

I.4-:n 
I· "-1 n 
I.4-~1 
I .'1-3? 
I. 4-13 
I. "-l J 
I.4-~<; 
I. 3_,; 

I.'i-1.2 
I.4-3Fi 
I.5-D 
I.4-3P 
I.4-,o 
I.4-t\ 1 

I.4-t\2 
I. 5-111 
I.4-43 
I.4-'1~ 
I,t1- 113 

Appendices 

E-1 



Appendices 

HWEYS 
WP 
INPIIT 
INPIJTll 
INPIJTS 
IMSTR 
HIT 
KEY 
KILL 
LEFB 
LEH 
LET 
LIME 
LHJE HIPUT 
LINE INPIITll 
LIST 
LUST 
LOAD 
LDC 
LOCATE 
LOF 
LOG 
LPOS 
LPRIMT 
LPRINT IJS!MG 
LSET t. RSET 
MERGE 
MID5 
MKIS,r1VS~,MV0S 
tlAME 
NEW 
OCH m, COM(n) 
ON ERROR GOTO 
ON l<'EY 
OM ••• GOSUB 
ON ••• GOTO 
OPEii 
OPEM COMl: 
OPTI Oil BASE 
OIIT 
PAHIT 
PEE!'. 
PLAY 
POTPT 
POVE 
POS 
PRESET 
flRHIT 
PRHIT e IISJtiG 
PRINT IISHJG 
PRHJT# 
PSET 
PIIT (A) 

Programmer Guide 

I.4-41; 
I.5-11; 
I .4-4.fi 
I.4-47 
I. 5-lfi 
I. 5-17 
I.5-JR 
I.4-49 
I.3-7 

r.s-1° 
r.s-2n 
I.4-52 
I.4-53 
I.4-55 
I. 4_,;1, 
I. 3-R 
I.3-Cl 

I.3-! (' 
I. 5-21 
J.4-57 
I. Ii-?? 
J.i;-23 
J.'i-24 
r.4_i;q 
I.,t_i;o 
I.4-i;n 
I. 3-11 
I.1i-21i 
J.!i-2/; 
I.3-12 
I.:!-P 
J.5-27 
I.4-fil 
I.4-1,3 
I.4-fiS 
I.4-/;4 
I.4-fi4 
I .4-f;7 
I.4-711 
I. 4-7:l 
I. 4-74 
J.4-75 
J.li-?P 
I .4-77 
r.i;-20 
J.4-70 
I.t;-30 
I.4-qn 
r .A-An 
J.ll-R7 
I .4-R2 
I.4-R7 
I.4-RQ 
I .it-01 

E-2 

0 

0 



0 

Prr,grammer Guide 

E-3 

PIIT (G) 
RANDOMIZE 
READ 
REM 
RHJl!M 
RESTORE 
RESIJl1E 
RETIIRll 
RIGHH 
RNO 
RUM 
SAVE 
SCREEH - Statement 
SCREEN - Function 
SGH 
Sit! 
SOll!ID 
SPACE~ 
SPC 
snR 
STOP 
STR~ 
STRINGS 
SWAP 
SYSTEM 
TAB 
TAN 
TIMB 
TROtl/TROFF 
USR 
VAL 
VARPTR.t 
WAIT 
WHILE. .• WEM!l 
WIOTH 
WRITE 
HRITEP. 

I,4-92 
I.4-95 
I.4-9fi 
I.4-11/l 
I.3-111 
I.4-99 

I.4-100 
I. 4-1.nJ 
I. 'i-31 
I.'i-~2 
I.3-15 
I.'.'-lfi 

I.4-102 
I.'i-:l'.~ 
I,'i-~4 
I. 5-:>5 

I.4-J.04 
I.5-~6 
I . 5-37 
I.5-:>8 

I. 11-lO'i 
I. 5-19 
I.5-4(1 

I.4-l.(lfi 
I.3-17 
I.'i-41 
I.'i-42 

I.4-1'17 
I.~-18 
I.5-4~ 
I. 5-4/l 
I . 5-45 

I .4-100 
I.4-1.lO 
I.4-111 
I.11-lD 
J .4-1111 

Appendices 



0 

() 



0 

0 



0 

0 

0 



1 0 

0 

0 



C 

0 

0 


	Hyperion - Programmer Guide 1
	Hyperion - Programmer Guide 2
	Hyperion - Programmer Guide 3
	Hyperion - Programmer Guide 4
	Hyperion - Programmer Guide 5
	Hyperion - Programmer Guide 6
	Hyperion - Programmer Guide 7
	Hyperion - Programmer Guide 8



