Hyperion™
Programmer
Guide

nnnnnnnnnnnnn

Bytec Management Corporation

Ottawa, Canada K2E 7M6

BYTEC PROGRAM LICENSE AGREEMENT

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS
BEFORE OPENING THIS SOFTWARE PACKAGE. OPENING THIS SOFTWARE PACK-
AGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS. IF YOU
DO NOT AGREE WITH THEM, YOU SHOULD PROMPTLY RETURN THE PACKAGE
UNOPENED AND YOUR MONEY WILL BE REFUNDED.

Bytec Management Corporation provides this program and licenses its use in the United States
and Canada. You assume responsibility for the selection of the program to achieve your

intended results obtained from the program.

LICENSE
You may:
a. use the program on a single Bytec microcomputer;

b. copy the prngram into any machine readable or printed
form for backup or medification purposes in support of
your use of the program on the single Bytec micro-
computer (Certain programs, however, may include
mechanisms to limit or inhibit copying. They are marked
“copy protected”.);

c. modify the program andlor merge it into another
program for your use on the single Bytec microcomputer.
(Any portion of this program merged into another
program will continue to be lu?ﬂ.‘l to the terms and
conditions of this Ag): and,

d. transfer the program and license to another party if the
other party agrees o accept the terms and conditions of
this Agreement. If you transfer the program, you must at
the same time either transfer all copies whether in
printed or machine-readable form to the same pary or
destroy any copies not transferred; this includes all
meodifications and portions of the program contained or
merged into other programs.

You must reproduce and include the copyright notice on any
copy, modification or portion merged into another program.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER
THE PROGRAM, OR ANY COPY, MODIFICATION OR
MERGED PORTION, IN WHOLE OR IN PART, EXCEPT
AS EXPRESSLY PROVIDED FOR IN THIS LICENSE.

IF YOU TRANSFER POSSESSION OF ANY COPY, MOD-
IFICATION OR MERGED PORTION OF THE PROGRAM
TO ANOTHER PARTY, YOUR LICENSE 1S AUTOMATI-
CALLY TERMINATED.

TERM

The license is effective until terminated. You may terminate it
at any other time by destroying the program together with all
copies, modifications and merged portions in any form. [uwill
also terminate upon conditions set forth elsewhere in the
Agreement or if you fail 10 comply with any term or
condition of the Agreement. You agree qun such termina-
tion 1o destroy the ri:rugr.\m together with all copies, mod-
ifications and merged portions in any form.

LIMITED WARRANTY

THE PROGRAM IS PROVIDED “"AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF
THE PROGRAM IS WITH YOU. SHOULD THE PROG-
RAM PROVE DEFECTIVE, YOU (AND NOT BYTEC
MANAGEMENT CORPORATION OR AN AUTHORIZED
BYTEC COMPUTER DEALER) ASSUME THE ENTIRE
COST OF ALL NECESSARY SERVICING, REFAIR OR
CORRECTION. SOME STATES OR PROVINCES DO
NOT ALLOW THE EXCLUSION OF IMPLIED WARRAN-
TIES, SO THE ABOVE EXCLUSION MAY NOT APPLY
TO YOU. THIS WARRANTY GIVES YOU SPECIFIC
LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER
RIGHTS WHICH VARY FROM STATE TO STATE OR
PROVINCE TO PROVINCE.

Bytec Management Corporation does not warrant that the
functions contained in the program will meet your require-
ments or that the operation of the program will be uninter-
rupted or error free.

However, Bytec Management Corporation warrants the dis-
kette(s) on which the program is furnished, to be free from
defects in materials and workmanship under normal use for a
period of ninety (30) days from the date of delivery 1o you as
evidenced by a copy of your bill of sale.

LIMITATIONS OF REMEDIES

Bytec Management Corporation’s entire liability and your
exclusive remedy shall be:

1. the replacement of any diskette(s) not meeting Bytec
Management Corporation’s “Limited Warranty” and
which is returned 1o Bytec Management Corporation or
an Authorized Bytec Computer Dealer with a copy of
your bill of sale, or

2. il Bytec Management Corporation or the dealer is unable
to deliver a replacement diskette(s) which is free of
defects in materials or workmanship, you may terminate
this Agreement by returning the program and your
money will be refunded.

IN NO EVENT WILL BYTEC MANAGEMENT COR-
PORATION BE LIABLE TO YOU FOR ANY DAMAGES,
INCLUDING ANY LOST PROFITS, LOST SAVINGS OR
OTHER INCIDENTAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OR INABILITY TO
USE SUCH PROGRAM EVEN IF BYTEC MANAGEMENT
CORPORATION OR AN AUTHORIZED BYTEC COMPU-
TER DEALER HAS BEEN ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY
OTHER PARTY.

SOME STATES OR PROVINCES DO NOT ALLOW THE
LIMITATION OR EXCLUSION OF LIABILITY OF IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES 50 THE
ABOVE LIMITATION OR EXCLUSION MAY NOT APP-
LY TOYOU.

GENERAL

You may not sublicense, assign or transfer the license or the
program except as expressly provided in this Agreement.
Any attempt otherwise to sublicense, assign or tr.ms%:r any of
the rights, duties or obligations hereunder is void.

This Agreement will be governed by the laws of the Province
of Ontario, Canada.

Should you have any questions concerning this Agreement,
you may contact Bytec Management Corporation by writing
to Customer Support Division, Bytec Management Corpora-
tion, 8 Colonnade Road, Ottawa, Ontario, Canada, K2E 7M6.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS
AGREEMENT, UNDERSTAND IT AND AGREE TO BE
BOUND BY ITS TERMS AND CONDITIONS. YOU
FURTHER AGREE THAT IT IS THE COMPLETE AND
EXCLUSIVE STATEMENT OF THE AGREEMENT BE-
TWEEN US WHICH SUPERCEDES ANY PROPOSAL, OR
PRIOR AGREEMENT, ORAL OR WRI'TTEN, AND ANY
OTHER COMMUNICATIONS BETWEEN US RELATING
TOTHESUBJECT MATTER OF THIS AGREEMENT.

annnas nnn n

Nynalogic Info-Tech Corporation 1is committed to providing
Hyperion users with an optimal balance between IBM({tm) PC
compatibility and enhanced capability.

The GW-BASIC(tm) provided with all Hyperions produced during
the first quarter of calendar year 1983 does not meet our
criteria for either compatibility or enhanced capability.
Microsoftf/tm) Corporation, producers of the GW-BASIC, were
unable to meet stated delivery deadlines for the IBM(tm)} ©C
compatible version.

We will therefore aladly upgrade the BASIC supplied with
these early Hyperions, at no charge to the owner. You will
qualify for this free upgrade if:

1. This notice was present 1in your Hyperion
Programmer Guide;

m AN} =a

2. VYour Hyperion Programmer Diskette contains
GWBASIC.COM, instead of the compatible
BASICA.COM;

= AMD --

2, You have returned your Hyperion Warranty
Certificate, completed by the authorized
NDynalogic Nealer from whom you purchased your
Hyperion.

Most proarams written in the dinterim GW-BASIC will run
without change both on the IRM({tm) PC and on Hyperions using
the eventual BASICA version.

The contents of your current Hyperion Programmer Guide will
also be vreplaced when the BASIC version 1is replaced by
Dynalogic.

For those proarammers who will be writing BASIC code before
the upgrade, we have enclosed a list of differences between
the documented and actual actions of the interim version.

Maturally, Dynalogic reqrets any inconvenience this may cause
Hyperion users. We will be delivering the upgrade package as
soon as Microsoftftm) make their compatible BASIC available.

Hyperion is a trademark of Nynalogic Info-Tech Corporation.

IBM is a trademark of International Business Machines Corporation.
GW-BASIC is a trademark of Microsoft Corporation.

Microsoft is a trademark of Microsoft Corporation.

CC’

3 Starting BASIC:

For the interim version, the command GWBASIC must be

used from DOS to

initiate BASIC,

instead of the command

BASICA.
2. Statements and Functions:
Statement |As Documented Current GWBASIC
/function
LINE Optional attibute Attribute not optional
LINE Attribute out of range Attribute out of range
automatically changed results in error
to default message
PSET Optional attibute Attribute not optional
PSET Attribute out of range Attribute out of range
automatically changed results in error
to default message
PRESET Nptional attibute Attribute not optional
PRESET Attribute out of range Attribute out of range
automatically changed results in error
to default message
CIRCLE Optional color Color not optional
CIRCLE Color out of range Color out of range
automatically changed results in error
to default message
VEY OFF Syntax error incorrectly
reported if keys on
SCREEM Screen change to mode N Screen change to mode N
retains current width sets width to AN
CHRS$(n) Outputs a blank space for
any n < 3?
oM COM Hot available in current
COM OM GWBASIC version
OPEM “COMY:..."
BLOAD & Add extension .BAS to lise exact filename as
RSAVE filename before disk specified
search or save

2, ¥eyboard Input (IMVEYS) Differences:

It should be possible to detect the presence of an
extended key scan code by testing for LEM{IMYEY$)=2. 1In the
current version, that test fails.

As well, the possible extended key scan codes in the

current version are limited to those 1isted below. This Tlist
should be used instead of the 1ist given in Appendix G.

Extended ¥ey Scan Codes:

Code Meaning Code Meaning
1" Home 12 Ctr1 + Home
an I'p Arrow
24 Pg Up
20 Left Arrow 2 Ctrl + Left Arrow
2R Right Arrow A Ctr1 + Right Arrow
14 End 5 Ctrl + End
n Down Arrow
25 Pg Dn 26 Ctr1 + Pg Dn
18 Ins
127 Del ;
Q Tab 1 Shift + Tab
a, Comressed Save Incompatibility:

The current GW-BASIC can not correctly read IBM BASIC
programs from a diskette if they were saved in the compressed
{non-ASCIT) form.

To transfer an IBM BASIC program to the current
GW-BASIC on the Hyperion, SAVE the proaram from the TBM BASIC
using the ",A" option of the SAVE command. This SAVEs the
program in its original pure text form. This ASCII file can
then be LNDANed into the current Hyperion GW-BASIC.

5. Error Codes:

The current GW-BASIC reports certain error conditions
with different error code numbers than the IBM PC version.
This will affect only those programs that test for specific
error code conditions.

HYPERION PROGRAMMER GUIDE

Published by: Dynalogic Info-Tech Corporation
NA February 1083
Version N2

This manual describes programs supplied under license.
{c) Copyright 1982, A3 Microsoft Corporation
and Dynalogic Info-Tech Corporation
A1l Rights Reserved.

Federal Communication Commission Compliance

The Hyperion is subject to Federal Communication Commission
(FCC) rules. The certification process 1is underway. The
Hyperion will comply with the appropriate FCC rules prior to
final delivery to buyers or centers of distribution. The
Hyperion will also have Canadian Standards Association (CSA)
approval, and will conform with the Government of Canada
telecommunications interconnect requirements (CS-N3).

The Hyperion generates and uses radio frequency energy and, if
not installed and wused according to the manufacturer's
instructions, may cause interference to radio and television
reception. The Hyperion has been type tested and found to
comply with the 1limits for a Class B computing device in
accordance with the specifications in Subpart J of Part 15 of
FCC Rules, which are designed to provide reasonable protection
against such interference in a residential installation.
However, there 1is no guarantee that interference will not
occur in a particular installation. If this equipment does
cause interference to radio or television reception: riorient
the receiving antenna; relocate the computer; plug the
computer into a different branch outlet; consult an
experienced radio/television technician; or consult the
booklet, How to Identify and Resolve Radio-TV Interference
Problems, prepared by the FCC and available from the II.S.
Government Printing 0Office, Washington, D.C. 2n402, Stock No.
nNA-NON-NN34~7-4.

Trademarks

Hyperion is a trademark of Dynalogic Info-Tech Corporation.

MS-DOS is a trademark of Microsoft Corporation.

Microsoft is a trademark of Microsoft Corporation.

MULTIPLAN is a trademark of Microsoft Corporation.

IBM is a trademark of International Business Machines
Corporation.

Disclaimer

The information in this manual has been carefully prepared and
checked for completeness and accuracy. There is, however,
always the possibility of omission or error. In such an
event, Dynalogic Info-Tech Corporation cannot assume 1iability
for any damages resulting from the use of this manual.

Programmer Guide Table of Contents

PART 1 - BASIC INTERPRETER

SECTION 1 - GENERAL INFORMATION ABOUT BASIC

SECTINM TITLE PAGE

1.1 Starting BASIC 8
1.2 Modes of fperation I.
1.3 Line Format I.
1.4 Line Mumbers Is
1.5 Character Set Le
1.6 Constants I.
1.A.1 Single and Double Precision Form
for Mumeric Constants
7 Variables
it Variable Mames and
Declaration Characters I.1-6

7.2 Array Variables 1.1-7
R Type Conversion 1.1-8
9 Expressions and Operators I.1-0
Q.1 Arithmetic Operators 1.1-1
9.1.1 Integer Division and

Modulus Arithmetic 1.1-11
1.2 Overflow and Division by Zero I.1-11
1:2 Relational Operators I.1-12
2 Logical Operators 1.1-13
3 Functional Operators 1.1-15
A String Operations I.1-1%
n Error Messages 1.1-1A

SECTION 2 - THE BASIC FULL SCREEM EDITOR

The BASIC Full Screen Editor I.2-1
il Inputting the BASIC Program 1.2-1
.2 Altering Lines with the Editor 1.2-2
#3 Changing a BASIC Program 1.2-5
.4 The EDIT Statement 1.2-h

Table of Contents

DO

W~ NnHwr—= 2

" s s 8 " 8 % o

A A) A) A L)) A W)) W) W) W) W W
. .
el el el e el e e o el = s = T I T TSR O,)

I

* & & 8 8 8 s & 8 = & % & % @

SR - T - -

R Nl et el et et el e e = J0=+ T [0 B - NN Y X T

if

SECTION 3 - BASIC COMMANDS

AUTN
CLEAR
COMT
DELETE
EDIT
FILES
VILL
LIST
LLIST
LOAD
MERGE
NAME
HEW
RENIIM
RIIM
SAVE
SYSTEM
TROM/TROFF

SECTION 4 - BASIC STATEMENTS & VARIABLES

BEEP

BLOAD

BSAVE

CALL

CHAIN

CIRCLE

CLOSE

CLS

COLOR {Alpha Mode)
COLOR {Graphic Mode)
COM(n)

COMMON

CSRLIN

DATA

DATES

DEF FM
DEFINT/SMG/DBL/STR
DEF SEG

DEF SR

DIM

DRAW

END

ERASE

ERR & ERL

ERROR

W= AN WM —D

P N S ?:%.:.r‘h-n-n.n-a [

L I e T e e O e e e e e
] L)
A A A T PO P PO P PO PO R R e b e e

W=DV NAMND oD EWND

Programmer Guide

Programmer Guide Table of Contents

4.2 FIELD 1.4-35
4.27 FOR...MEXT 1.4-3R
4,28 GET (Files) I1.4-3R
4.29 GET (Graphics) 1.4-39
4.30 GOS!YB. ..RETIRM [.4-41
4,31 GOTO 1.4-42
4,32 IF...THEMI ...ELSE] and IF GOTO 1.4-43
4,33 INKEYS 1.4-458
4,34 IMPUT 1.4-4F
4,35 INPUT# 1.4-48
4.3f KEY I.4-49
4,37 LET 1.4-52
4.3R LIME [.A-R2
4,30 LINE INPHT 1.4-KRk
4.4n LINE IMPUTH# 1.4-5R
4.4 LOCATE 1.4-R7
4,42 LPRIMT and LPRIMT NSIMG I.n-50
4.43 LSET and RSET 1.4-AD
4.44 OM COM(n) 1.4-R1
4.45 OM ERROR GOTO 1.4-62
4.4k OM...GOSIIB and OM...GOTOD 1.4-R4
4.47 OM KEY 1.4-65
4,48 OPEM 1.4-67
4.49 OPEM “"COM1:" 1.4-70
4.50 OPTIOM BASE 1.4-73
4.51 onT 1.4-74
4.52 PAINT I.4-75
4,53 PLAY 1.4-77
4.54 POKE 1.4-79
4,55 PRINT 1.4-80
4.h6 PRIMT NSIMG 1.4-R2
4.57 PRINT# and PRINT# 1ISING 1.4-87
4,58 PSET 1.4-89
4.59 PRESET 1.4-90
4.60 PUT (Files) 1.4-01
4.R1 PUT (Graphics) 1.4-92
4.62 RAMDOMT ZE 1.4-95
4.R3 READ [.4-9R
4,64 REM 1.4.9R
4.R5 RESTORE 1.4-99
4.6R RESIIME I.4-100
4.R7 RETIRM 1.4-101
4,RA SCREEM I.4-1n2
4.R9 SOIMD 1.4-1n4
a.7n sToP 1.4-108
4.71 SWAP [.4-106
4.72 TIMES 1.4-107
4.73 WAIT I.4-1n0
4.74 WHILE...WEMD I.4-110
4.75 WIDTH 1.4-111
4.76 WRITE 1.4-113
4.77 WRITE# 1.4-114

iii

Table of Contents

DR

e e+ % s = .

® 0+ s s s 8

IR

PO P P PO PO PO DD bt bt b bed et et b ik ek bk D D = TNUN S T N

ATannnmaaaaanoaananannanaananannannan
N HE O~ IDOoODINE WD

5.27

iv

SECTION 5 - BASIC FUNCTIONS

ABS
ASC
ATNM
CDBL
CHR®
CINT
cos
CSHG
Cvi,Cvs,CvD
EOF
EXP
FIX
FRE
HEXS
INP
INPUTS
INSTR
INT
LEFTS
LEM
Loc
LOF
LOG
LPOS
MIDS
MKIS, MKSS, MKDS
0cTs
PEE¥
POINT
POS
RIGHTS
RND
SCREENM
SGM
SIM
SPACES
SPC
SOR
STRS
STRINGS
TAB
TAM
I1SR
VAL
VARPTRS

= 8 % & % 8 8% 8 % s & 3 8 = = @ B & & = &
L O T T T O T T T T T I e e]

i.ﬂJl.ﬂ..ﬂU‘lJ‘J'I-.ﬂ.ﬂJ"U"IJ’T-.BJ’l-.I'\J’!JlJ'I'.ﬂJ"IJ\f?mﬂmmﬂﬂnmﬂmm.ﬂﬂmnmmmmﬂﬂmm
AAhabBLAEDE MWW WADWD LWL WO NN RI MNP R = pa p = DO I T B DR =

MW= DU NAE VNN DOD NI ARWNNEO 0D T A N —=D

L L I L e e e R e e R e R R e e e e e e L L e e e e e L e R e B B

® & a2 ® & ® * = &2 %8 & % 2z =

Programmer Guide

Programmer Guide Table of Contents

PART II - ASSEMBLY LANGUAGE TOOLS

SECTION 1 - MACRO ASSEMBLER

Macro Assembler 11.1-1
Introduction 11.1-2
1.1 Creating a Macro Assembler
Source Files 11.1-15
1.1.1 General Facts About Source Files I1.1-1%
Maming Your Source File I1.1-1%
Legal Characters I1.1-1A
Numeric Motation 11.1-17
What's in a Source File? I1.1-1R
1.1.2 Statement Line Format IT.1-19
Mames I1.1-2n
Comments IT.1-21
Action I1.1-71
Expressions I1.1-23
1.2 Names: Labels, Variables and Symbols II.1-25
1.2.1 Labels 11.1-25
Segment 11.1-26
Nffset 11.1-27
Type 11.1-27
l.2.2 Variables 11.1-28
Type 1T.1-29
1.2.3 Symbols I1.1-30
1.3 Expressions: Operands and Operators II.31
1.3.1 Memory Organization I11.1-32
1 1 I Oper ands I1.1-3R
1.3.2.1 Immediate Operands IT.1-39
1.3.2.2 Register Operands 11.1-40
Other Registers 11.1-42
1.3.2.3 Memory Operands 11.1-42
Direct Memory Operands 11.1-43
Indexed Memory Operands 11.1-44
Structure Operands 11.1-46
1.3.3 Operators 11.1-47
1.3.3.1 Attribute Operators 11.1-47
Override Operators I1.1-48
Record Specific Operators 11.1-58
1.3.3.2 Arithmetic Operators 11.1-62
1.3.3.3 Relational Operators 11.1-A4
1.2.2.4 Logical Operators I1.1-A5
1.3.3.k Expression Evaluation:
Precedence of Operators 11.1-hA
1.4 Action: Instructions and Directives I1I.1-R7
1.4.1 Instructions I1.1-fR
].4,2 Directives I1.1-A9
1.4.2.1 Memory Directives 11.1-71

Table of Contents Programmer Guide

1.4.2.2 Conditional Directives 11.1-105
1.4.2.3 Macro Directives 11.1-111
1.4.3 Listing Directives I1.1-13n
1.5 Assembling a Macro Assembler

Source File 11.1-137
1.5.1 Invoking Macro Assembler 11.1-137
1.5:141 Method 1: MASM 11.1-137
1.5.1.2 Method 2: MASM <filenames>[/switches] II.1-140
1.5.2 Macro Assembler

Command Prompts 11.1-141
1.5.3 Macro Assembler

Command Switches 11.1-142
1.5.4 Symbol Table Format/II.1-150
1.6 Macro Assembler Messages IT.1-159
1.A.1 Operating Messages 11.1-189
1.A.2 Error Messages I1.1-160

Section 2 - LINK

2.1 Introduction - Features and Benefits of LINK/II.2-1
2.2 Definitions 11.2-1
2.3 Files that LINK uses I1.2-5
2.4 VM.TMP File 11.2-6
2.5 Running LIM¥K I1.2-7
2.6 Invoking LINMK 11.2-7
2.h.1 Method 1: LINK 11.2-R
2.6.2 Method 2: LIM¥ <filename>l/switches] 1I.2-11
2.6.3 Method 2: LIMK G<filespec> 11.2-12
2.7 Command Prompts I1.2-13
2.8 Switches 11.2-1%
2.0 Error Messages 11.2-18

Section 3 - DEBUG

3.1 Introduction 11.3-1
3.2 Invocation 11.3-1
.3 Commands 11.3-2
.4 Parameters 11.3-4
Compare 11.3-7
Dump 11.3-8
Enter I1.3-10
Fill 11.3-12
Go 11.3-13
Hex 11.3-15
Load 11.3-1A
Move I1.3-18

vi

Programmer Guide Table of Contents

Mame 11.3-19
OQutput 11.2-22
nuit 11.3-22
Register 1T.3-23
Search 11.3-26
Trace 11.3-27
Unassemble I1.3-2R
Write 11.3-30
3.5 Error Messages I1.3-32

Section 4 - EDLIN

4.1 Invocation 11.4-1
4.2 Intraline Commands 11.4-2
4.3 Interline Commands IT.4-13
4,3,1 Parameters 11.4-14
4.4 Error Messages 11.4-3A
4.5 Errors while Editing 11.4-3A

Section 5 - CREF

5.1 Introduction I1.5-1
8.1.1 Features and Benefits I1.5-1
5.1.2 Overview of CREF operation II1.5-1
5.2 Running CREF IT.5-3
5.2.1 Creating a Cross Reference File 11.5-3
5.2.2 Invoking CREF I1.5-4
5.2.3 Method 1: CREF 11.5-5
5.2.4 Method 2: CREF <crffile>,<listing> 11.5-7
5.2.5 Format of Cross Reference Listings I1.5-R
5.3 Error Messages I1.5-11
5.4 Format of CREF Compatible Files I1.5-13
5.4.1 General Description of

CREF File Processing IT.5-13
5.4.2 Format of Source Files IT.5-13

Section 6 - EXE2BIN

6.1 EXE2BIN I1.6-1

vii

APPENDIX A
APPEMDIX B
APPENDIX C

APPENDIX D
APPEMDIX E

PART III - APPENDICES

ASCII Character Codes A-1
BASIC DISKF 1/0 B-1
Summary of BASIC Error Codes

and Error Messages C-1
Mathematical Functions in BASIC n-1
Alphabetical Summary of BASIC Commands, Functions
and Statements

Programmer Guide Information

1.1 STARTING BASIC

Start NOS, as described in the Hyperion !'ser Guide. Remove
the Hyperion liser Diskette from drive A, and insert the
Hyperion Programmer Diskette. Enter the command: "BASICA",
and press the Return key. BASIC will display the version, the
release number, and the number of free bytes.

1.2 MODES OF OPERATION

After BASIC is initialized, it types the prompt "Ok". "Ok"
means BASIC is at command level, that is it is ready to accept
commands. At this point, BASIC may be used in either of two
modes: the direct mode or the indirect mode.

In the direct mode, BASIC statements and commands are not
preceded by 1line numbers. They are executed as they are
entered. Results of arithmetic and logical operations may be
displayed immediately and stored for later use, but the
instructions themselves are lost after execution. This mode
is useful for debugging and for using BASIC as a "calculator"
for quick computations that do not require a complete program.

The indirect mode is the mode used for entering programs.
Program lines are preceded by 1ine numbers and are stored in
memory. The program stored in memory is executed by entering
the RIM command.

1.3 LINE FORMAT

Program 1ines in a BASIC program have the following format.
Square brackets indicate optional entries, angle brackets
indicate data entered by the programmer.

nnnnn BASIC statement[:BASIC statement...] <Rtn>

At the programmer's option, more than one BASIC statement may
be placed on a 1ine, but each statement on a line must be
separated from the last by a colon.

A BASIC program line always begins with a 1ine number, ends
with a carriage return, and may contain a maximum of 255
characters.

It is possible to extend a logical line over more than one
physical 1ine by use of automatic return feature. It allows
you to continue typing a 1logical 1line on the next physical
line without entering a <Rtn>. When you reach the end of the

Page I.1-1

Information Programmer Guide

physical 1ine, the Hyperion automatically returns the cursor
to the lTeft-most position of the next Tine. Entering <Rtn> is
the signal to BASIC that the end of a 1logical 1line has been
reached.

1.4 LINE NUMBERS

Every BASIC program line begins with a 1line number. Line
numbers indicate the order in which the program lines are
stored in memory and are also used as references when
branching and editing. Line numbers must be in the range N to
f5570. A period (.) may be used in EDIT, LIST, AITOD and
DELETE commands to refer to the current line.

1.5 CHARACTER SET

The BASIC character set is comprised of alphabetic characters,
numeric characters and special characters.

The alphabetic characters in BASIC are the upper case and
lower case letters of the alphabet.

The numeric characters in BASIC are the digits 0 through O,

The following special characters and keys are recognized by
BASIC:

Character

Blank

= Equal sign or assignment symbol

+ Plus sign

- Minus sign

* Asterisk or multiplication symbol
/ Slash or division symbol

llp arrow or exponentiation symbol

{ Left parenthesis
) Right parenthesis
% Percent

- 0

Page 1.1-2

Programmer Guide Information

_esee————

Nctothorpe

s Nollar sign

! Fxclamation point

I Left bracket

1 Right bracket

¥ Comma

4 Period, or decimal point

: Apostrophe

: Semi-colon
Colon

& Ampersand

? Nuestion mark

< Less than

> Greater than

\ Rackslash, or integer division symbol

f At-sign

_ Inderline

<RubQut> Neletes last character typed

<Esc> gsg?pes Edit Mode subcommands (See Section

<Tab> Moves print position to next tab stop (Tab
stops are every eight columns.)

<Rtn> Terminates input of a Tine

esesesee—s—s———ee——————

Page 1.1-3

Information Programmer Ruide

1.6 CONSTANTS

Constants are the actual values BASIC wuses during execution.
There are two types of constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric
characters enclosed in double quotation marks. Examples of
string constants:

"HELLO"
"$25, 000, 00"
"Mumber of Employees”

NMumeric constants are positive or negative numbers. Mumeric
constants in BASIC cannot contain commas. There are five
types of numeric constants:

1. Integer Constants

Whole numbers between -3276R and +32767. Integer
constants do not have decimal points.

2. Fixed Point Constants

Positive or negative real numbers, i.e., numbérs that
contain decimal points.

3. Floating Point Constants

Positive or negative numbers represented in exponential
form (similar to scientific notation). A floating point
constant consists of an optionally signed integer or fixed
point number (the mantissa) followed by the letter E and
an optionally signed integer (the exponent). The
allowable range for floating point constants is 10-38 to
10+28, Examples:

235.0RRE-7 = .0NNN235988
2359ER = 2359000000

(Double precision floating point constants use the letter
D instead of E. See Section 1.5.1.)

4. Hex Constants
Hexadecimal numbers with the prefix &H. Examples:

&H76 = Decimal 118
£H32F = Decimal R15

Page 1.1-4

Programmer Guide Information

5. Octal Constants
Octal numbers with the prefix &0 or &. Examples:

£0347 = Decimal 231
&1224 = Decimal AARAB

1.6.1 Single and DNouble Precision Form for Mumeric
Constants.

Numeric constants may be either single precision or double
precision numbers. With double precision, the numbers are
stored with 16 digits of precision, and printed with up to 16
digits.
A single precision constant is any numeric constant that has:
1. seven or fewer digits, or
2. exponential form using E, or
3. a trailing exclamation point (!)
A double precision constant is any numeric constant that has:
1. eight or more digits, or

?. exponential form using D, or

2, a trailing number sign (#).

Examples:
Single Precision Constants Nouble Precision Constants
4R, 0 AMKARO2RT]
-1.M0E-NA -1,00432D-NAK
aana,n MR0, N#
22.5! TRRA321,1234

1.7 VARIABLES

Variables are names used to represent values that are used in
a BASIC program. The value of a variable may be assigned
explicitly by the programmer, or it may be assigned as the
result of calculations 1in the program. Before a variable is
assigned a value, its value is assumed to be zero.

Page I.1-5

Information Programmer Guide

1.7.1 Variable Names and Declaration Characters

BASIC variable names may be any Jlength, however, only the
first 40 characters are significant. The characters allowed
in a variable name are letters and numbers, and the decimal
point is allowed. The first character must be a Tletter.
Special type declaration characters are also allowed -- see
below.

A variable name may not be a reserved word, although BASIC
will allow embedded reserved words. If a variable begins with
FM, it 1is assumed to be a call to a user-defined function.
Reserved words include all BASIC commands, statements,
function names and operator names.

Variables may represent either a numeric value or a string of
text. String variable names are written with a dollar sign ($)

as the last character. For example: AS = "SALES REPORT". The
dollar sign is a variable type declaration character, that is,
it "declares" that the variable will represent a string.
Numeric variable names may declare integer, single or double
precision values. The type declaration characters for these
variable names are as follows:

% Integer variable

! Single precision variable

Double precision variable

The default type for a numeric variable name is single
precision.

Examples of BASIC variable names follow:

PI# declares a double precision value
MIMIMUM! declares a single precision value
LIMITY declares an integer value

ME declares a string value

ABC represents a single precision value

There is a second method by which variable types may be
declared. The BASIC statements DEFIMT, DEFSTR, DEFSMG and
DEFNBL may be included 1in a program to declare the types for
certain variable names. These statements are described in
detail in section 5.

Page I.1-6

Programmer Guide Information

1.7:2 Array Variables

An array is a group or table of values referenced by the same
variable name. Each element in an array 1is referenced by an
array variable that 1is subscripted with an integer or an
integer expression. An array variable name has as many
subscripts as there are dimensions in the array. For example
V(1n) would reference a value in a one-dimension array, T(1,4)
would reference a value in a two-dimension array, and so on.
The maximum number of dimensions for an array is 285. The
maximum number of elements per dimension is 327A7.

1.7.3 Space Requirements

VARIABLES: BYTES

INTEGER 2

SIMGLE PRECISION 4

DOYBLE PRECISION R

ARRAYS: BYTES

INTEGER 2 per element
SIMGLE PRECISIOM 4 per element
DOUBLE PRECISION R per element

STRIMGS:

3 bytes overhead plus the present contents of the string.

Page 1.1-7

Information Programmer Guide

1.8 TYPE CONVERSION

When necessary, BASIC will convert a numeric constant from
one type to another. The following rules and examples should
be kept in mind.

1. If a numeric constant of one type 1is set equal to a
numeric variable of a different type, the number will be
stored as the type declared in the variable name. (If a
string variable is set equal to a numeric value or vice
versa, a "Type mismatch" error occurs.)

Example:

10 A% = 23.42
20 PRINT A%
RIM

23

2. During expression evaluation, all of the operands 1in an
arithmetic or relational operation are converted to the
same degree of precision, i.e. that of the most precise
operand. Also, the result of an arithmetic operation is
returned to this degree of precision:

Example:

10 D# = R#/7

20 PRIMT D#

RIM
LART14P2RAT142ARR7]

The arithmetic was performed in double precision and the
result was returned in D# as a double precision value.

n D =67
20 PRINT D
RUM

.RK7143

The arithmetic was performed in double precision and the
result was returned to D (single precision variable),
rounded and printed as a single precision value.

1. Logical operators (see Section 5) convert their operands
to integers and return an integer result. Operands must
be in the range -327AR to 22767 or an “Overflow" error
occurs.,

Page 1.1-8

Programmer Guide Information

4, When a floating point value is converted to an integer,
the fractional portion is rounded.

1n C% = 55.88
20 PRIMT C%
RIIM

5h

5. If a double precision variable is assigned a single
precision value, only the first seven digits, rounded, of
the converted number will be valid. This is because only
seven digits of accuracy were supplied with the single
precision value. The absolute value of the difference
between the printed double precision number and the
original single precision value will be less than R.3E-R
times the original single precision value.

Example:

10 A=2.0

20 B# = A

AN PRIMT A; B#

RUN

2.n4 2.N30090061R53N2T

1.9 EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, or a
variable, or it may combine constants and variables with

operators to produce a single value.

Operators perform mathematical or 1logical operations on
values. The operators provided by BASIC may be divided into
four categories:

1. Arithmetic
2. Relational
2, Logical

4, Functional

Page 1.1-9

Information Programmer Guide

1.9.1 Arithmetic Operators

The arithmetic operators, in order of precedence, are:

OPERATOR OPERATIOM SAMPLE EXPRESSIOM
i Exponentiation XX
- Negation -X
* / Multiplication, Floating Y*y
Point Division ¥
+,- Addition, Subtraction N+Y

_-——————————]
To change the order in which the operations are performed, use

parentheses, Operations within parentheses are performed
first. Inside parentheses, the usual order of operations is
maintained.

Here are some sample algebraic expressions and their BASIC

counterparts.
% X-Y/1
YY/z X*Y /1
X+Y/1 (X+Y)/2Z
(x2)Y {2y
o X*(v"2)
X(-Y) X*(-v)

Two consecutive operators must be separated by parentheses.

Page 1.1-10

Programmer Guide Information

1.9.1.1 Integer Division and Modulus Arithmetic

Two additional operators are available 1in BASIC: Integer
division and modulus arithmetic.

Integer division is denoted by the backslash (\). The
operands are rounded to integers (must be in the range -327fR
to 32767) before the division is performed, and the quotient
is truncated to an integer.

Example:

104 = 2
25,6R\f,00 = 3

The precedence of integer division is just after
multiplication and floating point division.

Modulus arithmetic is denoted by the operator MOD. It gives
the integer value that is the remainder of an integer
division. For example:

10,4 MOD A = 2 (1n/4=2 with a remainder 2)
25.AR MOD .00 = § (2A/7=2 with a remainder &)

The precedence of modulus arithmetic is just after integer
division.

1.9.1.2 Overflow and Division by Zero

If, during the evaluation of an expression, a division by zero
is encountered, the "Division by =zero" error message is
displayed, machine infinity with the sign of the numerator is
supplied as the result of the division, and execution
continues. If the evaluation of an exponentiation results in
zero being raised to a negative power, the "Division by zero"
error message is displayed, positive machine infinity is
supplied as the result of the exponentiation, and execution
continues.

If overflow occurs, the "Overflow" error message is displayed,

machine 1infinity with the algebraically correct sign is
supplied as the result, and execution continues.

Page 1.1-11

Information Programmer Guide

1.9.1.3 Relational Operators

Relational operators are used to compare two values. The
result of the comparison is either "true" (-1) or "false" (0).
This result may then be used to make a decision regarding
program flow. (See IF, Section 5.)

_ —_—
Operator Relation Test Expression |
= Equality X=Y
<> Inequality Xy
< Less than X<y
> Greater than 0y
<= Less than or equal to X<=Y
»= Greater than or equal to X>=Y

- — |
{The equal sign is also used to assign a value to a variable.

See LET, Section 5.)

When arithmetic and relational operators are combined 1in one
expression, the arithmetic is always performed first. For
example, the expression

X+Y < (T-1)/Z

is true if the value of X plus Y is less than the value of T-1
divided by Z. More examples:

IF SIN(X) <0 GOTO 1000
IF I MOD J <> N THEM ¥=K+1

Page I.1-12

Programmer Guide Information

1.9.2 Logical Operators

Logical operators perform tests on multiple relations, bit
manipulation, or Boolean operations. The logical operator
returns a bitwise result which is either "true" (not zero) or
"false" (zero). In an expression, 1logical operations are
performed after arithmetic and relational operations. The
outcome of a 1logical operation is determined as shown in the
following table. The operators are listed in order of

precedence.
HOT

X MOT X

1 n

n 1
AND

£ 3 X AND Y

1 1 1

1 0 n

n 1 0

n 0 n
OR

X X X OR Y

1 1 1

1 n 1

4] 1 1

0 0 n
X0R

X Y X _XOR_ Y

5 i

1 0 1

0 1 1

0 0 0
mp

X N X _IMP_Y

1 1 1

1 0 0

n 1 1

0 n 1
ENV

X N X EQV ¥

1 1

1 0 0

0 1 n

0 0 1

Paoe 1.1-13

Information Programmer Guide

Just as the relational operators can be combined to make
decisions regarding program flow, 1logical operators can
connect two or more relations and return a true or false value
to be used in a decision (see IF, Section 2.2f). For example:

IF D<200 AND F<4 THEM A0
IF I>10 OR ¥<n THEM 50
IF NOT P THEM 10

Logical Operators work by converting their operands to sixteen
bit, signed, two's complement integers in the range -227AR to
+32767. (If the operands are not in this range, an error
results.) If both operands are supplied as 0 or -1, logical
operators return 0 or -1. The given operation is performed on
these integers in bitwise fashion, i.e., each bit of the
result is determined by the corresponding bits in the two
operands.

Thus, it 1is possible to use logical operators to test bytes
for a particular bit pattern. For instance, the AND operator
may be used to "mask" all but one of the bits of a status byte
at a machine 1/0 port. The OR operator may be used to "merge"
two bytes to create a particular binary value. The following
examples will help demonstrate how the logical operators work.

63 AMD 16=16h f3 = binary 111111 and 16 = binary 10000,
so A2 AMD 16A=1A

15 AMD 14=14 15 = binary 1111 and 14 = binary 1110, so
15 AMD 14=14 (binary 1110)

-1 AMD R=8 -1 = binary 1111111111111111 and R =
binary 100N, so -1 AMD R = 8

4 0R 2=R 4 = binary 100 and 2 = binary 10, so 24 OR
2 = f (binary 11n)

10 0R 1Nn=10 10 = binary 1010, so 1010 OR 1n1N=1010
(1in)

-1 OR -2=-1 -1 = binary 1111111111111111 and -2 =

1111111111111110, so -1 OR -2 = -1. The
bit complement of sixteen zeros is sixteen
ones, which is the two's complement
representation of -1.

MOT X=-(X+1) The two's complement of any integer is the
bit complement plus one.

Page 1.1-14

Programmer Guide Information

1.9.3 Functional Operators

A function is used in an expression to call a predetermined
operation that is to be performed on an operand. BASIC has
"intrinsic" functions that reside 1in the system, such as SNR
(square root) or SIM (sine). A1l of BASIC's intrinsic
functions are described in Section 5.

BASIC also allows "user defined" functions that are written by
the programmer. See DEF FMN, Section 5.

1.9.4 String Operations
Strings of test may be concatenated using +. For example:

10 AS="FILE" : B$="MAME"
20 PRINT AS + BS

30 PRINT "MEW" + AS + BS
RUM

FILEMAME

MEW FILEMNAME

Strings may be compared using the same relational operators
that are used with numbers:

= <> < > <= >=

String comparisons are made by taking one character at a time
from each string and comparing the ASCII codes. If all the
ASCII codes are the same, the strings are equal. If the ASCII
codes differ, the lower code number precedes the higher. If,
during string comparison, the end of one string is reached,
the shorter string is said to be smaller. Leading and trailing
blanks are significant. Examples:

I{M‘I (IIaBII

"FILEMAME" = "FILENAME"

nx&u > n x#ll

II[:L n > I'CL U

Ilkgll > IIKG "

“SMYTH" < "SMYTHE"

Bs < "0/12/78" WHERE BS = "8/12/78"

Thus, string comparisons can be used to test string values or

to alphabetize strings. All string constants wused in
comparison expressions must be enclosed in quotation marks.

Page 1.1-15

Information Programmer Guide

1.10 ERROR MESSAGES
If BASIC detects an error that causes program execution to

terminate, an error message 1is printed. For a complete list
of BASIC error codes and error messages, see Appendix C.

Page [.1-16

Oroarammer (uide Screen Fditor

2.1 The BASIC Full Screen Fditor

The time saving benefift of the Full Screen Fditor durina
program development cannot be over emphasized. To that end,
it is suggested that a sample program be entered and each edit
command practiced until it hecomes second nature.

In the following discussion of edit commands, the term
"cursor" refers to the "blinking" line appearing just to the
right of the Tlast character typed. This marks the next
position at which a character is to be inserted or deleted.

The dynamic nature of editinq anywhere on the screen makes it
difficult to provide clear examples of command usage in
printed text; therefore, the best way of getting the "feel"
for the editing process 1is to try editing a few 1ines while
studying the edit commands that follow.

?2.1.1 Inputting the BASIC Program

Any Tine of text typed while BASTC is in Direct Mode will be
processed by the Full Screen Fditor. BASTC is always in
Nirect Node after the prompt 0¥ and until a P!™ command is
given.

Any line of text typed that begins with a numeric character
(digit) is considered a Program statement and will be
processed in one of four ways:

1. A new Tline is added to the program. This occurs if the
line number is legal (range is N thru &5%29) and at Teast
one nen-hlank character follows the line numher in the
Tine,

2. An existing line is modified. This occurs if the line
number matches the line number of an existing line in the
program. This 1ine is replaced with the text of the
newly entered line.

2, An existing 1line 1is deleted. This occurs if the line
number matches the 1ine number of an existing line and
the entered 1ine contains NMLY a line number.

. An error is produced,

a) Tf an attempt is made to delete a non-existent line,

an "Undefined 1ine number"” error message is
displayed.

I.2-1

Screen Fditor Programmer Guide

b} If program memory is exhausted, and a line is added
to the program, the error; "Nut of Memory" is
displayed and the line is not added.

At the programmer's option, more than one BASIC statement may
he placed on a line, but each statement on a line must bhe
separated from the last hy a colon (:).

A BASIC program line always begins with a 1ine number, ends
with @ carriage return, and may contain a maximum of 25R
characters.

It is possible to extend a logical line over more than one
physical 1ine by use of the automatic return feature. This
feature automatically returns the cursor to the left marqin of
the next 1ine when you approach the ®nth column of a physical
line. When <Rtn> is finally entered, the entire logical 1line
is passed to BASIC for storage in the program.

Nccasionally, RASIC may return to Nirect Mode with the cursor
positioned on a 1ine containing a message issued by BASIC such
as "0v", When this happens the line is automatically erased.
This is provided as a courtesy to the programmer. If the line
were not erased and the programmer typed <Rtn>, the message
would be given to BASIC and a "Syntax Error" would surely
result., PBASIC messages are terminated by HFY 'FF' to
distinguish them from user text.

2.1.2 Altering Lines with the Editor
Fditing existing lines on the Screen is achieved by moving the
cursor on the screen to the place requiring change and then
performing nne of the following four functions:

1. Overtyping characters already there.

?. Deleting characters to the left of the cursor.

?. Deletina characters to the right of the cursor.

4., Tnserting characters at the cursor while pushing
characters following the cursor to the right.

k. Adding, or appendina, characters to the end of the
current logical line.

1.2-7

Proarammer Guide

Screen Fditor

The Full Screen Fditor recnanizes 0 special or numeric key-pad
keys, the back-space key, the ESC key, plus the CTRL key for
moving the cursor to a location on the screen, inserting

characters,

or deleting characters. The keys and their ASCII

decimal values are:

Home

Ctr1+Home

Ctrl+—

Ctrl+ «—

End

Ctr1+End

Moves the cursor to the upper left hand corner of
the screen. (ASCII decimal value - 11)

Clears the screen and positions the cursor in the
upper left hand corner of the screen. {ASCTI
decimal value - 12)

Moves the cursor up one Tine., (ASCIT decimal value
- an)

Moves the cursor one position down. (ASCIT
decimal value - 31)

Moves the cursor one position Tleft. When the
cursor is advanced beyond the left of the screen,
it will be moved to the right side of the screen
on the preceeding Tline. (ASCTI decimal value -
7n)

Moves the cursor one position right. When the
cursor is advanced beyond the right of the screen,
it will be moved to the left side of the screen on
the next 1ine down. (ASCTI decimal value - ?°)

Hoves the cursor right to the next word. The next
word is defined as the next character to the right
of the cursor in the set T[A...Z1 or f[n,,.,0],
(ASCII decimal value - 14)

Moves the cursor left to the previous word. The
next word is defined as the next character to the
left of the cursor in the set [A..Z1 or TFn,.0],
{ASCII decimal value - N?2)

Hoves the cursor to the end of the Logical Line.
Characters typed from this position are appended
to the line. (ASCII decimal value -

Nepressing the CTRL and EMD key erases to the End
of Logical Line from the current cursor position.
A11 physical Full Screens are erased until the
terminating carriage return s found. (ASCII
decimal value - NR)

[.72-3

Screen Fditor Programmer Guide

Ins Toggles Insert Mode. If Insert Mode is off, turns
it on. If on, then turns it off. (ASCII decimal
value - 1R)

Insert Mode is indicated by the blinking cursor
blotting the lower half of the character position.
In Graphic Modes, the normal cursor covers the
whole character position. When 1Insert Mode is
active only the 1lower half of the character
position is blotted.

When in Insert Mode, characters following the
cursor are moved to the right as typed characters
are 1inserted at the current cursor position.
After each keystroke, the cursor moves one
position to the right. Line folding is observed.
That is, as characters advance off the right side
of the screen they are inserted from the 1left on
subsequent lines.

When out of Insert Mode, characters typed will
replace existing characters on the line.

Tab When out of Insert Mode, depressing the TAB key
moves the cursor over characters wuntil the next
tab stop dis reached. Tab stops occur every R
character positions. (09)

When in Insert Mode, depressing the TAB key causes
blanks to be inserted from the current cursor
position to the next tab stop. Line folding is
observed as above.

Nel Neletes one character immediately to the right of
the cursor for each depression. A1l characters to
the right of the one deleted are then moved one
position left to fi1l in the one deleted. If a
Togical line extends beyond one physical line,
characters on subsequent lines are moved 1left one
position to fi11 in the previous space, and the
character in the st column of each subsequent
line is moved up to the end of the preceeding
line. (ASCII decimal value - 12%)

Rub Out Causes the 7last character typed to be deleted, or
deletes the character to the left of the cursor.
A11 characters to the right of the cursor are
moved left one position. Subsequent characters
and 1ines within the current Tlogical 1line are
moved up as with the DEL key. [(ASCII decimal
value - NR)

I.2-4

Programmer Guide

Fsc When typed anywhere in the 1ine causes the entire
logical line to be erased. (ASCII decimal value
- 71)

Ctr1+Brk Returns to Direct Mode, without saving any changes
that were made to the current line being edited.
{ASCII decimal value - N2?)

Other Control Characters may be used in BASIC:

Ctr1+MumLock Pauses, suspending program execution. Pressing
any key resumes program execution.

Ctri+G Sounds the speaker in the Hyperion.

Ctr1+H Neletes the last character typed (i.e. RubOut).

2.1.3 Changing a BASIC Program

Modifying existing programs is achieved by displayinag program
lines on the screen with the LIST statement. List the range
of 1ines to be edited, (See the LIST statement, section R).
Position the cursor at the line to be edited, modify the Tine
using the keys described in "Altering Lines with the Editor".
Type <Rtn> to store the modified 1ine in the program.

MOTE: A program line is not actually modified within the BASIC
program until <Rtn> is entered. Therefore, when several lines
need alteration, it is sometimes easier to move around the
screen making corrections to several lines at once, and then,
go back to the first line changed and enter <Rtn> at the
heginning of each T1ine and by doing so store the modified 1ine
in the program.

Mote that it is not necessary to move the cursor to the end of
the logical 1line before pressing <Rtn>. The Full Screen
Fditor remembers where each logical 1line ends and transfers
the whole 1line even if the carriage return is typed at the
beginning of the line.

To truncate a 1line at the current cursor position, enter

Screen Fditor

1.2-%

Screen Fditor Proarammer Guide

CTRL+EMD followed by <Rtn>.

SYMTAX ERRORS

When a Syntax Frror is encountered during program execution,
BASIC automatically enters ENIT at the 1line that caused the
error. For example:

1N A = 2812

RIM

?Syntax Error in 1N
mn A= 2812

The Full Screen Editor has displayed the 1line in error and
positioned the cursor under the digit 1., The user moves the
cursor right to the dollar sign (¢} and changes it to an
up-arrow ("), followed by a carriage return. The corrected
line is now stored back in the program.

In this example, storing the Tine back in the proaram causes
all variables to be lost. Had the programmer wanted to
examine the contents of some variable before making the
chanage, BREAY would be typed to return to DNirect Mode. The
variables would be preserved since no program line was
changed, and after the programmer was satisfied, the 1line
could be edited and the proaram re-run.

2.1.4 The EDIT Statement

With the Full Screen Editor, the FDIT statement simply
displays the 1ine specified and positions the cursor under the
first digit of the 1ine number. The 1ine may then be modified
using the keys described in "Altering Lines with the Fditor".

].7-6

Programmer Guide Commands

Format: AUTO [<line numher>l,<increment>11

Purpose: To generate a 1ine number automatically after every
carriage return.

Remarks: AMITO begins numbering at <line number> and
increments each subsequent Tine number hy
<increment>., The default for both values is 1n. If
<line number> is followed by a comma but
<increment> is not specified, the last increment
specified in an AUTO command is assumed.

If ANTO generates a 1ine number that is already
being used, an asterisk is printed after the number
to warn the user that any input will replace the
existing 1ine. However, typing a carriage return
immediately after the asterisk will save the line
and generate the next 1ine number.

AT is terminated by typing Ctrl+Brk. The line in
which Ctrl+Rrk 1is typed is not saved. After
Ctr1+BRrk is typed, BASIC returns to command level.

Example: AI'TD 1nn &0 Generates line numbers 10N, 180,
00 ...
AITO Generates line numbers 10, 20,
an, an ..,

Page 1.2-1

Commands Programmer Guide

3.2

Format: CLFAR T,l<expression1> 1l <expression?>71

Purpose: To set all numeric variables to zero, all string
variables to null, and to close all open files;
and, optionally, to set the end of memory and the
amount of stack space.

Remarks: <expression’> is a memory location which, if

specified, sets the highest loncation available for
use by BASIC-2n,

<expression?> sets aside stack space for BRASIC.
The default is ?56 hytes or one-eighth of the
availahle memory, whichever is smaller.

MOTE: Hyperion RASIC allocates string space dynamically.
An "Nut of string space error" occurs only if
there is no free memory left for DASTC to use.

The CLEAR statement performs the following
actions:

Closes all files
Clears all COMMOM and user variables
Resets the stack and string space
Releases all disk buffers

Example: CLEAR
CLEAR ,327R9
CLEAR ,,2000

CLEAR ,3274R, 700N

Page I.3-7

Programmer Guide Commands

2.3

Format: cont

Purpose: To continue program execution after a Ctrl1+Brk has
been entered, or a STOP or FMD statement has been
executed.

Remarks: Fxecution resumes at the point where the break
occurred. If the break occurred after a prompt
from an INPUT statement, execution continues with
the reprinting of the prompt {? or prompt strinal.

COMT is usually used in conjuction with STOP for
debuaging. When execution is stopped, intermediate
values may be examined and changed using direct
mode statements. Execution may be resumed with
COMT or a direct mode 60T0, which resumes
execution at a specified 1ine number. COMT may be
used to continue execution after an error.

COMT is invalid if the program has been edited
during the break. Fxecution cannot be COMTinued if
a direct mode error has occurred during the break.

Example: See example in STOP, Section I.A4,

Page 1.3-7

Commands Programmer Guide

Format: NELFETEM<1ine number>1T-<1ine number>1
Purpose: To delete program lines.
Remarks: PASIC always returns to command level after a

NFLETF is executed. If <line number> does not
exist, an “I1legal function call" error occurs.

A period “." may be used instead of a 1ine numher
to indicate the current line.
Example:
NFLETF An Nelete line AN
NELETE aAn.ipn Neletes lines AN through NN,
inclusive
NFELETE-AN Neletes all lines up to and

including line 40.

Page I.3-4

Programmer Guide Commands

3.5

Format: ENIT <line number>
Purpose: To edit a specified line.

Remarks: With the Full Screen FEditor, the FDIT statement
simply displays the 1ine specified and positions
the cursor under the first digit of the line
number. The line may then be modified wusing the
keys described in "Altering Lines with the
Fditor".

<1ine number> is the program 1ine number of a line
existina in the program. If there is no such line,
an "indefined Line number" error message is
displayed.

The "." always gets the Tast line referenced by an
EDIT statement, LIST command, or Frror message.
Remember, if you have just entered a 1ine and wish
to go back and edit it, the command "ENIT ." will
enter EDIT at the current 1line. (The line number
symbol “." always refers to the current line).

Page 1.3-KR

Commands Programmer Guide

AR

Format: FILES [filespec]

Purpose: This command displays the names of files on a
specified diskette. It 1is similar to the 'DIR'
command in DNS.

Remarks: [filespec] is a string expression for the file
specification. If [filespec] is not entered, all
files on the source drive will be listed.

If [filespec] is included, all files matching the
filename are listed. FILES allows the DOS
'wildcard' feature to be used: '?' may be
substituted for any single character, or '*' may
be used as a substitute for a string of
characters.

If a drive is included in the filename, the files
which match the [filespec] on that drive are
listed. Otherwise, the source drive is the
default drive.

Example: FTLES
This displays all files on the default source
drive.
FILES “"*.COM"
This displays all files with the extension '.COM'
on the default source drive.
Files "B:*.*"

This displays all files on drive B.

FILES "TE¥T??.COM"

This displays all files on the default source
drive whose filenames begin with TEYT followed by
two or less other characters, and an extension of
'L.COM'.

Page 1.3-A

Programmer Guide Commands

3.7

Format: VILL <filename>

Purpose: To delete a file from a disk.

Remarks: If a FVILL statement is given for a file that is
currently OPEM, a "File already open" error
occurs.

VILL is used for all types of disk files: program
files, random data files and sequential data
files.

Example: 2nn VILL "DATAM"

See also Appendix B.

Page I1.3-7

Commands Programmer Guide

32.R

Format 1: LIST l<line number>]
Format 2: LIST l<1ine number>l-T<line number>11]

Purpose: To list all or part of the program currently in
memory at the terminal.

Remarks: BASIC always returns to command level after a LIST
is executed.

Format 1: If <1ine number> is omitted, the program
is Tisted beginning at the 7lowest 1line number.
{Listing is terminated either by the end of the

program or by typing Ctrl+Brk.) If <line number>

;g included, BASIC will 1ist only the specified
ine.

Format 2: This format allows the following
options.

', I1f only the first number is specified, that
line and all higher-numbered lines are listed.

P

1f only the second number 1is specified, all
lines from the beginning of the proaram
through that line are listed.

?, If both numbers are specified, the entire
range is listed.

Example: Format 1:

LIST Lists the program currently in
memory.

Format 2:

LTST 15N- Lists al1l 1lines form 180 to the
end.

LIST -1nnn Lists al1l 1lines from the Jlowest

number through 100N,

LIST 18n-10nn Lists lines 160 through 100N,
inclusive.

Dane [.?-9

Programmer Guide Commands

3.9

Format: LLIST F<line number>l-T<line number>111

Purpose: To 1ist all or part of the program currently in
memory at the 1ine printer.

Remarks: LLIST assumes a 122-character wide printer.
BASIC always returns to command 1level after an
LLIST is executed. The options for LLIST are the
same as for LIST, Format 2.

HOTE: LLIST and LPRINT are not included 1in all
implementations of BASIC.

Example: See the examples for LIST, Format 2.

Page 1.3.¢0

Cormands Programmer Guide

Format: LOAD <file spec> I,R]

Purpose: To load a BASIC program into memory from disk and
to optionally run the proaram.

Remarks: <file spec> is a wvalid string expression
containing the device and file name. The device
must be 4 characters in length. The file name may
be 7 to R characters in length.

When ',R' is specified, the program will begin
execution from the first statement after loading.

LOAD closed all open files and deletes all
variables and program lines currently residing in
memory before it 1loads the designated program.
However, if the "R: option is used with LOAD, the
program is R'IM after it is L0DADed, and all open
data files are kept open. Thus, LOAD with the “R"
option may be used to chain several programs (or
segments of the same proaram). Information may be
passed between the programs wusing their disk data

files.
Rules:

1., If the device identifier 1is omitted and the
filename is less than 1 character or greater
than / characters in length, a "Bad File Mame"
error is issued and the load is aborted.

2. If the ,R option is omitted, BASTC returns to
Direct Mode after the program is Jloaded. If
the ,R option is specified, the program is
executed after loading.

2. R <file spec> is equivalent to LOAD <file
spec>,R

Example:

LOAD"MEM" 'Load program MEMI, do not run it.

LOAD"THMENT" ;R 'Load and run the program INVEMT,

RIM"IHVENTY 'Same as LOAD"IMVENT",R

LOAP"CAST ;" 'Load the next Program encountered.

Page 1.3-1n

Programmer Guide Commands

Format: MERGE <filename>

Purpose: To merge a specified disk file into the program
currently in memory.

Remarks: <filename> is the name used when the file was
SAVEd. If the filename is less than 1 character or
greater than ®? characters in length, a "Rad File
Mame" error is issued and the MERGE is aborted.

If the program being merged was not saved in ASCII
with a ,A option, a "Bad File Mode" error is
issued. The program in memory remains unchanged.

1f any 1lines in the disk file have the same 1line
numbers as lines in the proaram in memory, the
1ines from the file on disk will replace the
corresponding lines in memory. (I"ERREing may he
thought of as "inserting" the program lines on
disk into the program in memory.)

BASIC always returns to command level after
executing a MERGE command.

Example: MERGFE "SHBRTH"

Page 1.3-11

Commands Programmer Guide

212

Format: MAME <old filename> AS <new filename>
Purpose: To change the name of a disk file.

Remarks: <0ld filename> must exist and <new filename> must
not exist; otherwise an error will result. After a
HAME command, the file exists on the same disk, in
the same area of disk space, with the new name.

Example: 0Ok
HMAME. "AACT" AS “LEDGER"
0k

Tn this example, the file that was formerly named
ACCTS will now be named LEPNGER.

Page [.3-17

Proarammer Guide Commands

3.13

Format: HEW

Purpose: To delete the prooram currently in memory and
clear all variables.

Remarks: MEW is entered at command level to clear memory

before entering a new program. BASIC always
returns to command level after a '"FW is executed.

Page I.2-12

Commands Programmer Guide

Format: REMIM T<new number>1l,M<old number>1r,<increment>111
Purpose: To renumber proaram lines.

Remarks: <new number> is the first line number to be used
in the new sequence. The default is 0. <old
number> is the 1ine in the current program where
renumbering is to begin. The default is the first
line of the program. <increment> is the increment
to be used in the new sequence. The default is 1n.

REMIM also changes all 1line number references
following GOTO, GOS!'B, THEM, OM...GOTO, QM...GOS!'B
and ERL statements to reflect the new 1line
numbers. If a nonexistent line number appears
after one of these statements, the error message
"lindefined 1ine xxxxx 1in yyyyy" 1is printed. The
incorrect 1ine number reference (xxxxx) is not
changed by REMUM, but Tine number yyyyy may be
changed.

MOTE: REMIIM cannot be used to change the order of
program lines (for example, REMUM J1R,30 when the
program has three 1ines number 1N, 20 and 3N} or
to create line numbers greater than FRARR29, An
"I1Megal function call” error will result.

Example: REMIM Renumbers the entire program.
The first new 1ine number
will be 10, Lines will
increment by 1n,

REMUM 20 R(Renumbers the entire program.
The first new line number
will be 30N, Lines will
increment by &N,

REMIM 1nnn,000,20 Renumbers the lines from
ann up so they start with
line number 100N and
increment by 20,

Page [.3-14

Programmer Guide Commands

3.15

Format: RN <filename>l ,R]
Purpose: To load a file from disk into memory and run it.

Remarks: <filename> is the name used when the file was
SAVEd,

RIM closes all open files and deletes the current
contents of memory before loading the designated
program. However, with the "R" option, all data
files remain OPEM.

Example: RIM "MEWFIL",R

See also Appendix B.

Page I.3-1K8

Commands

3.1A

Format:

burpose:

Remarks:

Example:

Page I.3-1A

Programmer Guide

SAVE <filename>l,A | ,P]

To save a program file on disk.

<filename> is quoted string that conforms to DNOS
requirements for filenames. If <filename> already
exists, the file will be written over.

I'se the A option to save the file in ASCII format.
Otherwise, BASIC saves the file in a compressed
binary format. ASCII format takes more space on
the disk, but some disk access requires that files
be in ASCII format. For instance, the MERGE
command requires an ASCII format file, and some
operating system commands such as LIST may require
an ASCII format file.

llse the P option to protect the file by saving it
in an encoded binary format. When a protected file
is later RUM (or LOADed), any attempt to 1ist or
edit it will fail.

SAVE"COM2" ,A
SAVE"PROG",P

See also Appendix B.

—

Programmer Guide Commands

Format: SVSTEM
Purpose: Exits BASIC and returns to DOS.

Remarks: SYSTEM closes all files before it returns to D0S.
Your BASIC program is not saved.

Dage 1.3217

Commands Programmer Guide

Format: TROM
TROFF
Purpose: To trace the execution of program statements.

Remarks: As an aid 1in debugaing, the TROM statement
fexecuted in either the direct or indirect mode)
enables a trace flag that prints each line number
of the program as it 1is executed. The numbers
appear enclosed 1in square brackets. The trace flag
is disabled with the TROFF statement (or when a MFW
command is executed).

Example:
TROM
0k
LIST
10 ¥=1n
20 FOR J=1 T0 2
an L=K + 1n
an PRIMT J;¥;L
BN ¥=¥+1n
RN MEXT
700 END
nk
RN
rinirznIraniran] 1 1n 2n
FENITRNTFANTTANT 2 20 30
TENITANIT 707
0k
TROFF
ov

Page 1.2-1R

Programmer Guide

Format:

Purpose:

Example:

Statements

BrrEP

The BEFP statement sounds the speaker at RPN Hz for
1/4 seconds.

2A30 IF ¥ < 20 THEM BEEP '¥X is out of range.

Page 1./-1

Statements Programmer Guide

4,2

Format: BLOAD <file spec> ,<offset>]

Purpose: The RLNAD statement allows a file to be 1narded
anywhere in user memory.

Remarks: <file spec> Is a valid string expression
containing the device and file name. The
device must be 4 characters in length. The
file name may be 1 to R characters in length.

<offset> Is a wvalid numeric expression
returning an unsigned Inteqer in the range N to
FfRR?R, This is the offset into the segment
declared by the last DEF SER statement at which
loading is to start.

Action: If the BLOAD statement is entered in direct mode,
the file names will be displayed on the screen
followed by a period (.) and a sinqle Tletter
indicating the type of file. This 1is followed
by the message "Skipped." for the files not
matching the named file, and "Found." when the
named file is found. Types of files and their
letter are:

.A For Binary Basic Programs.

.b For Protected Binary Rasic Programs.
A For Ascii Basic Programs.

.M For Memory Image files.

N For DNata Files.

To see what files are on a cassette tape, enter;
LOAP"FO0" or some other name that 1is known not to
be on the tape. A1l file names will then be
displayed.

Mote that Ctr1+Brk may be typed at any time
during BLOAD or LOAD. between files or after a
time-out period, Basic will exit the search and
return to DNirect Mode. Previous memory contents
remain unchanged.

If the BLOAD command 1is executed in a Basic

program, the file names skipped and found are not
displayed on the Screen.

Page 1.4-7

Programmer fuide

Rules:

Example:

1n

Statements

If device is omitted, the source drive is

assumed.

If the device identifier s omitted and the
filename is less than 1 character or greater
than R characters 1in 1length, a "Bad File
Mame" error is issued and the load s

abor ted.

If the device identifier is specified and the

filename is omitted, the MEXT
file encountered is loaded.

Memory Image

If offset is omitted, the offset specified at

BSAVE s assumed. That s,

the file is

loaded into the same Tlocation it was saved

from.

If offset is specified, a DNFF
should be executed before the
offset is given, BASIC assumes
to BLDAD at an address other
saved. The last known DEF SER
be used.

SEG statement
RLOAD. When
the user wants
than the one
address will

CANTINM: BLOAD does not perform an address

range check. That s, it
BLOAD anywhere in memory. The

is possible to
user must not

BLOAD over BASIC's stack, BASIC Program or

BASIC's variable area.

'Load a machine language program at R0:FANO

70 DEF SEG

'Restore Seament to BASIC's DS.

3N BLOAD"PROGI",BHFANN 'Load PROG! into the DS.

10 'load the screen buffer from disk.

20 DEF SEG= &HBANN
an BLOAP"PICTIRE",N

'Point segment at screen buffer.
'Load file PICTIRE into screen.

Mote that the DEF SEG statement in 20 and the
offset of N in 21 s wise. This guarantees
that the correct address is used.

The BSAVE example in the next section illustrates
how PICTI'RE was saved.

Page I.4-7

Statements Programmer Guide

Format: BSAVE <file spec>,<offset>,<length>

Remarks: <file spec> is a valid string expression
containing the device and file name. The
device must be 4 characters in length. The
file name may be 1 to R characters in lenath.

<offset> is a valid numeric expression
returning an unsigned Integer 1in the range 0 to
RERIR, This 1is the offset 1into the seament
declared by the last DEF SEG to start saving
from.

<length> is a valid numeric expression
returning an unsigned Integer in the range 1 to
RRE?R, This 1is the length of the memory image
to be saved.

Rules:
1. If device 1is omitted, the D0S default
diskette drive is used.

48 If filename is 1less than 1 character or
greater than # characters in lenath, a "Bad
File Mame" error is issued and the save is
abor ted.

2, If offset is omitted, a "Bad File Mame" error
is issued and the save is aborted. A DEF SEG
statement should be executed before the
BSAVE. The 1last known DEF SEG address s
always used for the save.

4. If length 1is omitted, a "Bad File Mame" error
is issued and the save is aborted.

Example:
1N 'Save the screen buffer on disk.
20 DEF SEG= AHBRNN 'Point segment at screen buffer.
an RSAVE"PICTIRE",n,1R2R4 'Save screen buffer in file PICTURE

Hote that the DEF SEG statement in 20 and the

offset of N in 2 4is wise. This guarantees
that the correct address is used.

Page 1.4-4

Programmer Guide Statements

4.4

Format: CALL <variable name>l(<argument 1ist>)]
Purpose: To call an assembly language subroutine.

Remarks: The CALL statement is one way to transfer program
flow to an external subroutine. (See also the ISR
function, Section 1.%)

<variable name> contains the address that is the
starting point in memory of the subroutine.
<variable name> may not be an array variable name.
<argument 1ist> contains the variables or
constants, separated by commas, that are passed to
the external subroutine.

Invocation of the CALL statement causes the
following to occur:

1. For each parameter in the argument list; the 2
byte offset into the NS of the parameter's
location is pushed onto the stack.

?. The return address Code segment [CS1, and
offset are pushed onto the Stack.

2, Control is transferred to the user's routine
via the segment address given in the last DEF
SEG statement, and offset given in <variable
name>.

The user's routine now has control. Parameters may
be referenced by moving the Stack pointer T[SP]1 to
the Base Pointer FBP1 and adding a positive offset
to MBP1.

Page I.4-5

Statements Programmer Guide

Rules:
1. The CALLed routine may destroy any registers.

2. The CALLed program MUST know how many
parameters were passed. Parameters are
referenced via a positive offset being added to
[BP1. (Assuming the called routine moved the
current stack pointer into BP, ie: MOV BP,SP).

That is, the Tocation of pl is at 8[BP]1, p2? is
at ATBP1, p3 is at 4rBpPl, ...etc.

The CALLed routine must do a RET <n> where <n>
is the number of parameters in the argument
Tist *2. This is necessary in order to adjust
the stack to the point at the start of the
calling sequence.

. Values are returned to BASIC by including the
variable name which will receive the result in
the argument 1ist.

4, 1f the arqgument 1is a string, the parameter's
offset points to 2 bytes called the "String
Descriptor. Byte N of the string descriptor
contains the 1length of the string (N to 2&R),
Bytes 1 and ?, respectively, are the Tower and
upper R bits of the string starting address in
string space.

CAITIOM: If the argument is a string literal
in the program, the string descriptor will
point to program text. Be careful not to alter
or destroy your program this way. To avoid
unpredictable results, add +"" to the string
Titeral in the program. Example:

2n A$ = “BASIC"+""

This will force the string literal to be copied
into string space. Now the string may be
modified without affecting the program.

5. Strings may be altered by user routines but the
length MIST MNOT be changed! BASIC cannot
correctly erase strings if their lengths are
modified by external routines.

Page 1.4-%f

Programmer Guide Statements

Example: 100 DEF SEG=2HRNNO
110 FON=N
120 CALL FON(A,BS,C)

Line 10N sets the segment to RNNN Hex. FNN is set
to zero so that the call to FNO will execute the
subroutine at location RNNNYH,

The following sequence of RPRF assembly language
demonstrates access of the parameters passed and
storing a return result in the variable 'C'.

MOVE BP,SP ;Get the current Stack posn in BP.
MOVE BXY,ATBP1 ;Get address of Bf in dope.

MOVE CL,TBY] ;het length of Bt in CL.

MNVE DY,1MBY1 ;Get addr of BS text in DX.

MOV SI,”lBP] ;het address of 'A' in SI.
MOV DI,afBP] :Get pointer to 'C' in DI,
MOVS WORD ;Store variable 'A' in 'C'.
RET A ;:Restore Stack, return.

BEWARE!: the called program must know the variable
type for numeric parameters passed. In the above
example, the instruction; MOVS WORD will copy only
2 bytes. This is fine if wvariables A and C are
Integer. We would have to copy 4 bytes if they were
Single Precision and copy R bytes if they were
Nouble Precision.

Page 1.4-7

Statements Programmer Guide

4.5

Format: CHAIM T[MERGE) <filename>[,l<1ine number exp>]
[,ALLIM ,DELETE<range>1]

Purpose: To call a program and pass variables to it from the
current program.

Remarks: <filename> is the name of the program that is
called. Example:

CHAIN"PROGY"

<line number exp> is a line number or an expression
that evaluates to a T1ine number in the called
program. It is the starting point for execution of
the called program. If it s omitted, execution
begins at the first line. Example:

CHATH"PROG", 100N

<line number exp> 1is not affected by a REMIM
command.

With the ALL option, every variable in the current
program is passed to the called program. If the ALL
option is omitted, the current program must contain
a COMMOM statement to T1ist the variables that are
passed. Example:

CHAIN"PROG1", 100N, ALL

If the MERGE option 1is included, it allows a
subroutine to be brought into the BASIC program as
an overlay. That is, a MERGE operation is performed
with the current program and the called program.
The called program must be an ASCII file if it is
to be MERGEd. Example:

CHAIM MERGE"QVERLAY",1nnn

After an overlay 1is brought in, it is usually
desirable to delete it so that a new overlay may be
brought in. To do this, use the DELETE option.
Example:

CHATM HERGE"OVERLAY2",1nnN,NELETF 1NNN-KNNN

The 1ine numbers 1in <range> are affected by the
REMIM command.

Page T.4-P

Programmer Guide Statements

MOTE: The CHAIM statement with MERGE option leaves the
files open and preserves the current OPTIOM BASE
setting.

NOTE: If the MERGE option 1is omitted, CHAIM does not

preserve variable types or user-defined functions
for any use by the chained program. That is, any
DEFINT, DEFSMG, DEFDBL, DEFSTR, or DEFFM statements
containing shared variables must be restated in the
chained program.

Page I.4-0

Statements Proarammer Guide

4.8

Format: CIRCLE {x,y),rl,colorT, start,endl,aspect]]]

Purpose: To draw an ellipse on the screen with center (x,y)
and radius r

Remarks:

(x,y) are the coordinates of the center of
the ellipse. The coordinates may be
given in either absolute or relative
form.

r is the radius (major axis) of the
ellipse in points.

color is & number which specifies the
color of the ellipse, in the range N
to 2. Tn medium resolution, color
selects the color from the current
palette as defined by the COLOR
statement. N is the background
color. The default is the
foreground color, number 2. In high
resolution, a color of N indicates
black, and the default of 1
indicates white.

start, end are angles in radians and may range
from -2*pI to 2%PT where
pl=2_ 181807,

aspect is a numeric expression.

start and end specify where the drawing
of the ellipse will begin and end. The angles are
positioned in the standard mathematical way, with n
to the right and going counterclockwise.

If the start or end angle is negative the ellipse
will be connected to the center point with a line,
and the angles will betreated as if they were
positive {note that this is not the same as adding

?*PI). The start angle may be greater or less than
the end angle.

Page I.4-1n

Programmer Guide Statements

The aspect ratio affects the ratio of the x-radius
to the y-radius. For example, the IBM aspect ratio
of 2/5 in high resolution indicates that the
vertical axis of the screen is ?/5 as long as the
horizontal axis. This ratio is not equal to
RAN/200 simply because pixels are higher than they
are wide. The default aspect ratios for each of
the four graphic modes are as follows:

MODE Screen Ratio
IBM medium resolution (220 x 2nn) 1 /R
IBM high resolution (/4N x 2nn) ? 2/%
Hyperion medium resolution (220 x 250) 1M 1

Hyperion high resolution {ARAN x P?RN) 1np 1/2

If the aspect ratio of 2/F is wused with IBM high
resolution (screen=?}, then the ? vertical pixels
have the same 1length as the 5 horizontal pixels.
For example:

CIRCLE (1nn,12n),2n,1,0,A.7R,2/5

produces a perfect circle with its centre at
(1nn,12n). Changing the aspect ratio from 2/5 to a
number greater than 1 would produce an elipse with
the radius measured in points in the vertical
direction. \lhen the aspect is less than one, the
radius given is the x-radius, i.e. the radius is
measured in horizontal pixels. If the aspect ratio
is greater than one the radius 1is measured in
vertical pixels.

CIRCLE (20n,on), 35,3, .1/3

produces an elipse with a horizontal radius of 3%
pixels.

Page 1.4-]1

Statements Drogrammer Guide

4.7

Format: CLNSEMT#1<file number>l,1#1<file number...>1]
Purpose: To conclude I/0 to a disk file.

Remarks: <file number> is the number under which the file
was NPEMed. A CLOSE with no arguments closes all
open files.

The association between a particular file and file
number terminates upon execution of a CLOSE. The
file may then be refPEVed using the same or a
different file number; likewise, that file number
may now he reused to OPEM any file.

A CLOSE for a sequential output file writes the
final buffer of output.

The E¥D statement and the MEW command always CLONSE
all disk files automatically. [STOP does not close
disk files.)

Example: See Appendix R.

Page 1.4-12

Programmer Guide

4.8

Format:

Purpose:

Rules:

Example:

Statements

CLS

The CLS statement erases the current active screen
page. (See the Screen statement.)

1. If the Screen is in Alpha Mode, the active
page is cleared to the currently selected
Background Color. {See the COLOR
statement).

2. If the Screen is in Graphics medium or Hi-res
mode, the entire Screen buffer is cleared to
Black.

2. The Screen may be also be cleared by
depressing the Ctr1+L or Ctr1+Home keys.

4. MNOTE: The SCREEM and WIDTH statements will
force a Screen clear if the resultant Screen
mode created is different than the mode
currently in force.

1 CLS 'Clears the screen.

page 1.4-13

Statements

4.9

Format:

Purpose:

Remarks:

Page 1.4-14

Programmer Guide

CNLOR lforeground] I ,lbackgroundl]

The COLOR statement selects the Foreground,
Background and Border screen display colors.

If the Screen Board Imitation setting in the DNS
MOPE command is set to COLOR Board imitation:

Foreground color: N -black
1-15 .white
Background color: 0 ~-black
1-7 -white

If the Screen Board Imitation is set to Monochrome Board
imitation with IBM alpha mode (SCREEN 0):

Foreground Color Font

n,2-7,32,34-39 R4 AR-7] White on Black

1,32,65 l'nder1ined

f,1N-1K,40,42.47,72,74-79 Intensified

a,41,73 linder1ined, Intensifieu

1, 1R-27,4R §N-KRK RN, A2-R7 Blinking

17,49, 8] Blinking, !Inderlined

24,26-31,5A,RR.A2 AR, ON-QK BRlinking, Intensified

25,87 ,R0 Blinking, !Inderlined,
Intensified

If the Screen Board Imitation is set to Monochrome

Board imitation with Hyperion alpha mode (SCREEM
1nn):

Foreground Text Color Font

n,2-7 White on Black

1 lInder11ined

R,10-158 Intensified

a lInder1ined, Intensified

16,18-23 Blinking

17 Blinking, Underlined

24,2R-21 Blinking, Intensified

25 Blinking, Underlined,
Intensified w1

Add 22 to the above numbers Superscripted v

Add A4 to the above numbers Subscripted

Programmer Guide Statements

4.10

Format: COLOR [background]

where: background = 0 (black), 1-7 (dark grey),
q-14 (1ight grey), 15 (white).

Other parameters are ignored and do not return
errors.

Purpose: The COLOR statement is used in medium resolution
graphics to set the background color.

Remarks: The foreground color is the last used foreground
color or an explicit setting in PSET, PRESET, LIME,
CIRCLE, PAIMT, or DRAW, and ranges 0 for black, !
for dark arey, 2 for light grey, and 2 for white.

In graphics, the COLOR statement has meaning for
medium resolution only (SCREEM 1 or SCREEM 101).
Attempts to use COLOR in high resolution (SCREEM 2
or SCREEM 1n02) will result in an "I1legal function
call” error.

Any values entered outside the range o to 255 will

result in an "Illegal Function call" error.
Previous values will be retained.

page 1.4-15

Statements Programmer Guide

Format: CoM(n) OM
COM(n) OFF
COM(n) STOP

Purpose: Enables or disables trapping of communcations
activity to the specified communications adapter.

Remarks: n is the number of the communications adapter
(1 of 2)

A COM(n)OM statement must be executed to allow
trapping by the OM COM(n) statement. After

COM(n)OM, if a non-zero Tine number is specified in
the OM COM(n) statement, BASIC checks to see if any
characters have come in to the communications
adapter every time a new statement is executed.

If COM{n) ds OFF, no trapping takes place and any
communication activity is not remembered even if it
does take place.

If a COM(n)STOP statement has been executed, no
trapping can take place. However , any
communications activity that does take place is
remembered so that an immediate trap occurs when
COMIn)OM is executed.

Page 1.,4-1A

Programmer Guide Statements

Format: COMMOM <1ist of variables>
Purpose: To pass variables to a CHAINed program.

Remarks: The COMMOM statement is wused in conjunction with
the CHAIM statement. COMMOM statements may appear
anywhere in a program, though it 1is recommended
that they appear at the beginning. The same
variable cannot appear in more than one COMMOM
statement. Array wvariables are specified by
appending "()" to the variable name. If all
variables are to be passed, use CHAIV with the ALL
option and omit the COMMON statement.

Example:
100 COMMOM A,B,C,D(),GS$
110 CHAIN “"PRDG3",1N

Page 1.4-17

Statements Programmer Guide

4,13

Format: x = CSRLIM

Function: The CSRLIM function returns the current 1line (or
row) position of the cursor.

Rules: X is a numeric variable receiving the value
returned. The value returned will be in the
range 1 to 24.

x = POS(0) will return the column location of
the cursor. A value in the range 1 to 4N or
1 to AN depending upon the current WIDTH.

Example:
1N ¥ = CSRLIM 'Record current line.
20 X = POS(n) ‘'Record current column.
30 LOCATE 24,1 :PRINT "HELLO" 'Print HELLO on last line.
40 LOCATE Y,X ‘'Restore position to old line, column.

Page 1.4-1R

Programmer Guide Statements

2,14

Format: NATA <1ist of constants>

Purpose: To store the numeric and string constants that are
accessed by the program's READ statement(s). (See
READ, Section 1-4,)

Remarks: DATA statements are nonexecutable and may be placed
anywhere in the program. A DATA statement may
contain as many constants as will fit on a 1line
(separated by commas), and any number of DATA
statements may be used in a program. The RFAD
statements access the DATA statements in order (hy
1ine number) and the data contained therein may be
thought of as one continuous 1ist of Jitems,
regardless of how many items are on a line or where
the lines are placed in the proaram.

<1ist of constants> may contain numeric constants
in any format, i.e., fixed point, floating point or
integer. (Mo numeric expressions are allowed in the
Tist.) String constants in DATA statements must be
surrounded by double quotation marks only if they
contain commas, colons or significant 1leading or
trailing spaces. Otherwise, quotation marks are not
needed.

The variable type {numeric or string) given 1in the
READ statement must agree with the corresponding
constant in the DATA statement.

See Also: See examples in READ.

DATA statements may be reread from the beginning by
use of the RESTORE statement.

Page I.4-10

Statements Programmer Guide

Format: As a variable:
x& = DATES
As a statement:
DATES = x$
Purpose: Sets or retrieves the date.
Remarks: For the variable (v$ = DATES):

As 1N-character string of the form mm-dd-yyyy is
returned. Here, mm represents two digits for the
month, dd is the day of the month (also 2 digits),
and yyyy is the year. The date may have been set by
DOS prior to entering BASIC.

For the statement (DATES = X§):

X% is a string expression which is used to set the
current date. You may enter x% in any one of the
following forms:

mm-dd-yy
mm/dd/yy
mm-dd-yyyy
mm/dd/yyyy

The year must be in the range 1280 to 2099, If you
use only one digit for the month or day, a n (zero)
is assumed in front of it. If you give only one
digit for the year, a zero is appended to make it
two digits. If you give only two digits fro the
year, the year is assumed to be 19yy.

Page I.4-20

Programmer Guide Statements

Example: Ok
10 DATES= “R/17/82"
20 PRINMT DATES
RUNM
NA-17-19R2
0k

In the example we set the date to August 17th,
1087, Motice how, when we read the date back using
the DATES function, a zero was included in from of
the month to make it two digits, and the year
became 19A42. Also, the month, day, and year are
separated by hyphens even though we entered them as
slashes.

Caution: Changing DATES within BASIC resets the Hyperion's
internal clock. This should be avoided. See the
DATE command in the Hyperion liser Guide for more
information.

Page [.4-21

Statements Programmer Guide

Format: DEF FM<name>[{ <parameter 1ist>)1=<function
definition>

Purpose: To define and name a function that is written by
the user.

Remarks: <pame> must be a legal variable name. This name,
preceded by FM, becomes the name of the function.

<parameter 1ist> is comprised of those variable
names in the function definition that are to be
replaced when the function is called. The items in
the 1ist are separated by commas.

<function definition> is an expression that
per forms the operation of the function. It is
limited to one 1ine. Variable names that appear in
this expression serve only to define the function;
they do not affect program variables that have the
same name. A variable name wused in a function
definition may or may not appear in the parameter
list. If 1is does, the value of the parameter is
supplied when the function is called. Otherwise,
the current value of the variable is used.

The variables in the parameter 1ist represent, on
a one-to-one basis, the argument variables or
values that will be given in the function call.

liser -defined functions may be numeric or string. If
a type is specified in the function name, the value
of the expression is forced to that type before it
is returned to the calling statement. If a type is
specified in the function name and the argument
type does not match, a "Type mismatch" error
occurs.

A DEF FN statement must be executed before the
function it defines may be called. If a function is
called before it has been defined, an "lindefined
user function" error occurs. DEF FN is illegal in
the direct mode.

Page 1.4-22

Programmer Guide Statements

Example: &

410 DEF FNAB(X,Y)=X3/Y"2
420 T=FNAB(I,J}

Line iln defines the function FNAB. The function is
called in 1ine 420n.

Page 1.4-23

Statements Programmer Guide

Format: NEF<type> <range(s)>

Purpose: To declare variable types as integer, single
precision, double precision, or string.

Remarks: A DEFtype statement declares that the variable
names beginning with the letter(s) specified will
be that type variable. However, a type declaration
character always takes precedence over a DEFtype
statement in the typing of a variable.

If no type declaration statements are encountered,
BASIC assumes all variables without declaration
characters are single precision variables.

Examples:
10 DEFNBL L-P A1l variables beginning with the
letters L, M, M, N, and P will be
double precision variables.

1n DEFSTR A A11 variables beginning with the
letter A will be string variables.

1N DEFIMT I-M,W-Z A11 variables beginning with

the letters I, J, ¥, L, M, N, W, X,
¥, Z will be integer variables.

Page 1.4-24

Programmer Guide Statements

411“

Format: DEF SEGR l=<address>]

Purpose: The DEF SEG statement assigns the current value to
be used by a subsequent RLNAD, BSAVE, PEFv,
POVE, CALL, or user defined function call.

Remarks: <address> is a valid numeric expression returning
an unsigned Integer 1in the range N to ARR3R,

The address specified 1is saved for use as the
seqment required by the BLOAD, BSAVE, PEF¥, POVE
and CALL statements.

Rules:
1. Any value entered outside of this range will
result in an "I1legal Function Call" Error.
The previous value is retained.

?. If the address option is omitted, the segment
to be used is set to Basic's Data Segment.
This is the initial default value.

3. If the address option is given, it should be
a value based wupon a 1A byte boundary. For
the BLNAD, BRBSAVE, PEEV, POVE, or CALL
statements, the value is shifted left 4 bits
to form the Code Segment address for the
subsequent call instruction. BASIC does not
perform additional checking to ensure that
the resultant seqment + offset value is
valid.

A, MOTE: DEF and SEG MIST be separated by a
space! OQOtherwise, Basic would interpret the
statement; DNEFSEG=10N to mean: "assign the
value 1n0 to the variable DEFSEG".

Example:
10 DEF SEG=&HRRND 'Set segment to Screen buffer.

20 DEF SFG 'Restore segment to BASIC's DS.

Page 1.4-25

Statements Programmer Guide

4,19

Format: DEF 1ISRM<digit>1=<inteaer expression>

Purpose: To specify the starting address of an assembly
Tanguage subroutine, which 1is 1later called by the
ISR function.

Remarks: <digit> may be any digit from 0 to 9. The digit
corresponds to the number of the USR routine whose
address is being specified. If <digit> is omitted,
DEF USRN is assumed. The value of <integer
expression> is the starting address of the SR
routine.

Any number of DEF 1SR statements may appear in a
program to redefine subroutine starting addresses,
thus allowing access to as many subroutines as
necessary.

Example:
200 DEF 1ISRN=24000
210 X=USRN(Y"?/2.R0)

Page T.4-2R

Programmer Guide Statements

4.20

Format: DIM <1ist of subscripted variables>

Purpose: To specify the maximum values for array variable
subscripts and allocate storage accordingly.

Remarks: If an array variable name is wused without a NIM
statment, the maximum value of its subscriptis) is
assumed to be N, If a subscript is used that is
greater than the maximum specified, a "Subscript
out of range" error occurs. The minimum value for a
subscript is always 0N, unless otherwise specified
with the OPTIOM BASE statement (see Section ??7).

The DIM statement sets all the elements of the
specified arrays to an initial value of zero.

Example:
10 DIM A(20) '21 elements from 0 to 20
20 FOR I=0 TO 2n
AN READ A(I)
an MEXT 1

Page 1.4-27

Statements Programmer Guide

4.21

Format: DRAW <string>
Purpose: Draws an object as specified by <string>

Remarks: You use the DRAK statement to draw using a
“"graphics definition Tlanguage". The Tlanguage
commands are contained 1in the string expression
<string>. The string defines an object, which is
drawn when BASIC executes the DRAW statement.
Nuring execution, BASIC examines the value of
<string> and interprets single letter commands from
the contents of the string. These commands are
detailed below:

The following movement commands begin movement from
the last point referenced. After each command, the
last point referenced is the last point the command
draws.

Hove up.

Move down.

Move left.

Move right.

Move diagonally up and right.
Move diagonally down and right.
Move diagonally down and left.
Move diagonally up and left.

TomyMmmor o
I I 333333

n in each of the preceding commands indicates the
distance to move. The number of points moved is n
times the scaling factor (set by the S command).

M x,y Move absolute or relative. If x has a plus
sign (+) or a minus sign (-) in front of it,
it is relative. Otherwise, it is absolute.

B Move, but do not plot any points.
M Move, and return to original position when
finished.

An Set angle n. n may be from 0 to 3 (0 is 0
degrees, 1 is on, 2 is 1PN, 3 is 27N).

Cn Set color n. n may be from 0 to ? in medium
resolution, and from 0 to 1 in high
resolution. In medium resolution, n selects
the color from the current palette as

Page 1.4-28

Programmer Guide Statements

defined by COLOR. Background is N, default
is foreground color number 3. In high
resolution, M s black and 1 (default)
indicates white.

Sn Sets scale factor. n may be from 1 to 255;
n divided by four is the scale factor. The
scale factor multiplied by the distances
given with I, D, L, R, E, F, G, H, and M
gives the actual distance moved. The

default value is 4, so the scale factor is
1

¥ variable
Executes substring, allowing a second string
from within a string.

The aspect ratio of the screen determines the
spacing of the horizontal, vertical and diagonal
points. For example, the IBM standard aspect ratio
of 4/5 in medium resolution, indicates that the
vertical axis of the screen is 4/5 as long as the
horizontal axis. This information can be used to
determine how many vertical points are equal in
length to how many horizontal points. The default
aspect ratios from each of the four graphic modes
are as follows:

Mode Screen Ratio
IBM medium res. (220 x 2nn) 1 a/5
IBM high res. (RANx200N) 2 2/5
Hyperion medium res. {2320x250) 1n1 1

Hyperion high res. (640x250) n? 1/2

The aspect ratio of 4/5 indicates that 4 vertical
pixels have the same length as 5 horizontal pixels.

For example, to draw a square box with 2n
horizontal pixels, it would require 20 x {4/%) or
1A vertical pixels. That is:

DRAW "1I1FR2;ND1AL2N"

produced a square in IBM medium resolution (screen
1)

DRAW "t110R20D1NL20"

produces a square in Hyperion high resolution
{screen 102).

Page 1.4-29

Statements Programmer Guide

4,22

Format: EMD

Purpose: To terminate program execution, close all files,
and return to command level.

Remarks: EMD statements may be placed anywhere in the
program to terminate execution. IInlike the STOP
statement, EMD does not cause a BREAY message to be
printed. An EMD statement at the end of a program
is optional. BASIC always returns to command level
after an EMD is executed.

Example: 20 IF ¥>100N THEM END ELSE GOTO 20

Page I.4-30

Programmer Guide Statements

4,23

Format: ERASE <1ist of array variables>
Purpose: To eliminate arrays from a program

Remarks: Arrays may be redimensioned after they are ERASEd,
or the previously allocated array space in memory
may be wused for other purposes. If an attempt is
made to redimension an array without first ERASEing
it, a "Redimensioned array" error occurs.

Example: 300 DIM B(15n),A(12)

450 FRASE A8
46N DIM B(00)

Page [.4-1]

Statements Programmer Guide

4.24

When an error handling subroutine is entered, the
variable ERR contains the error code for the error,
and the variable ERL contains the line number of
the 1ine in which the error was detected. The ERR
and ERL variables are wusually used in IF...THEM
statements to direct program flow in the error trap
routine.

If the statement that caused the error was a direct
mode statement, ERL will contain fRR35, To test if
an error occurred in a direct statement, use IF
ARR3AR = ERL THEM ...

Otherwise, use

IF ERR = error code THEM ...
IF ERL = line number THEM ...

If the line number is not on the right side of the
relational operator, it cannot be renumbered by
REMIM. Because ERL and ERR are reserved variables,
neither may appear to the left of the equal sign in
the LET (assignment) statement. BASIC's error codes
are listed in Appendix C.

The ERROR statement can be used to assign
user -defined error codes to the ERR variable.

Page 1.4-72

Programmer Guide Statements

Format: ERROR <integer expression>

Purpose:
1) To simulate the occurrence of a BASIC error; or
2) to allow error codes to be defined by the user.

Remarks: The value of <integer expression> must be greater
than 0 and less than 255. If the value of <integer
expression> equals an error code already in use by
BASIC, the ERROR statement will simulate the
occurrence of that error, and the corresponding
error message will be printed. (See Example 1.)

To define your own error code, use a value that is
greater than any used by BASIC's error codes. These
are 1isted in Appendix C. (It is preferable to use
the highest available values, so compatibility may
be maintained when more error codes are added to
BASIC.) This user-defined error code may then be
conveniently handled in an error trap routine.
(See Example 2.)

If an ERROR statement specifies a code for which no
error mesage has been defined, BASIC responds with
the message 1INPRIMTABLE ERROR. Fxecution of an
ERROR statement for which there is no error trap
routine causes an error message to be printed and
execution to halt.

Example 1:
LIST
10 S =10
2N T =~H”
3N ERROR S + T
an END
Ok
RUM
String too long in line 20

Or, in direct mode:

0k

ERROR 15 {you type this line)
String too long (BASIC types this line)
0Ok

Page 1.4-33

Statements Programmer Guide

Example 2: .

170 ON ERROR GOTO 4nn
120 INPUT "WHAT IS YOIR BET":B
130 IF B > 5000 THEM ERROR 21N

ann Iﬁ ERR = 21N THEM PRINT "HOUSE LIMIT IS ssnnn"
A1n IF ERL = 13n THEM RESIME 120

.

Page 1.4-34

Programmer Guide Statements

4,26

Format: FIELD[#1<file number>,<field width> AS <string
variable>...

Purpose: To allocate space for variables in a random file
buffer.

Remarks: To get data out of a random buffer after a GET or
to enter data before a PUT, a FIELD statement must
have been executed.

<file number> 1is the number under which the file
was 0OPEMed., <field width> is the number of
characters to be allocated to <string variable>.
For example,

FIELD 1, 20 AS M$, 10 AS ID$, 40 AS ADDS

allocates the first 20 positions (bytes) in the
random file buffer to the string variable Mg, the
next 1N positions to ID%, and the next 40 positions
to ADDS. FIELD does MOT place any data in the
random file buffer. (See LSET/RSET and GET.)

The total number of bytes allocated in a FIELD
statement must not exceed the record 1length that
was specified when the file was OPEMed. Otherwise,
a "Field overflow" error occurs. (The default
record length is 12R.)

Any number of FIELD statements that have been
executed are in effect at the same time.

Example: See Appendix B.

MOTE: No not use a FIELDed variable name in an
IMPUT or LET statement. Once a variabTe name 1Js
FTELDed, 7t points to the correct place in the
random file buffer. If a subsequent IMPUT or LET
statement with that variable name is executed, the
variable's pointer is moved to string space.

Page 1.4-3%8

Statements Programmer Guide

s
4.27 :

Format:

FOR <variable>=x TO y [STEP x]

MEXT l<variable>]1l,<variable>...]

Purpose: To allow a series of instructions to be performed
in a loop a given number of times.

Remarks: <variable> is used as a counter. The first numeric
expression (x) is the initial value of the counter.
The second numeric expression {y) is the final
value of the counter. The program lines following
the FOR statement are executed until the MEXT
statement 1is encountered. Then the counter is
incremented by the amount specified by STEP. A
check is performed to see if the wvalue of the
counter is now greater than the final value (y). If
it is not greater, BASIC branches back to the
statement after the FOR statement and the process
is repeated. If it is greater, execution continues
with the statement following the MEXT statement.
This 1is a FOR...MEXT loop. If STEP is not
specified, the increment is assumed to be one. If
STEP is negative, the final value of the counter is
set to be less than the initial value. The counter
is decremented each time through the loop, and the
loop is executed until the counter is less than the
final value.

The body of the 1loop is skipped if the initial
value of the loop times the sign of the step
exceeds the final value times the sign of the step.

Nested Loops

FOR...MEXT loops may be nested, that is, a
FOR...NEXT loop may be placed within the context of
another FOR...MEXT loop. When Tloops are nested,
each loop must have a unique variable name as its
counter. The MEXT statement for the inside 1loop
must appear before that for the outside 1loop. If
nested Toops have the same end point, a single MEXT
statement may be used for all of them.

Page I.4-3A

Programmer Guide Statements

The wvariable(s) in the ME¥T statement may be
omitted, in which case the MEXT statement will
match the most recent FOR statement. If a MEXT
statement is encountered before its corresponding
FOR statement, a "MEXT without FOR" error message
is issued and execution is terminated.

Example 1:
10 k=10
20 FOR I=1 TD X STEP 2
an PRIMT I;
an v=¢+10
50 PRINT ¥
A0 MEXT
RHM

120

3n

an

N

AN

o~ nw

0k

Example 2: 10 J=n
20 FOR I=1 TO 2
an PRIMT I
40 MEXT 1

In this example, the loop does not execute because
the initial value of the 1loop exceeds the final
value.

Example 3:
10 I=R
20 FOR I=1 TO I=R
an PRINT 1
an MEXT
RIIM
12248780910
0k

In this example, the loop executes ten times. The
final value for the loop variable 1is always set
before the initial value is set. (Mote: Previous
versions of BASIC set the initial value of the Toop
variable before setting the final value; i.e., the
above loop would have executed six times.)

Page 1.4-37

Statements Programmer Guide

4.28

Format: GET T#1<file number>l, <record number>]

Purpose: To read a record from a random disk file into a
random buffer.

Remarks: <file number> 1is the number under which the file
was (PFMed. If <record number> is omitted, the next
record (after the 1last GET) 1is read into the
buffer. The largest possible record number is
A27R7.

Example: See Appendix B.

NOTE: After a GET statement, IMPUT# and LIME INPUT# may
be done to read characters from the random file
buffer. If a FIFLD statement was used to assign
variable names to the random buffer, these names
should not be used in the subsequent IMPUT
statement.

Page 1.4-3R

Programmer Guide Statements

4.29

Format: GETIx1,y1)-(x2,y2),<arrayname>
Purpose: Reads points from an area of the screen.

Remarks: (x1,y1)(x2,y?)
are coordinates 1in either absolute or
relative form.

<arrayname> is the name of the array you want to
hold the information.

GET reads the colors of the points within the
specified rectangle into the array. The specified
rectangle has points Ix1,y1) and (x2,y2) as
opposite corners. (This is the same as the
rectangle drawn by the LIME statement using the B
option.)

GET and PIT can be used for high speed object
motion in graphics mode. You might think of GET and
PIIT as "bit pump" operations which move bits onto
{PuT) and off of (GET) the screen.

PIIT and GET are also used for random access files,
but the syntax of the file-oriented statements is
different.

The array is used simply as a place to hold the
image and must be numeric; it may be any precision,
however. The required size of the array, in ;bytes,
is:

A+INT((x*<bitsperpixel+7)/R)*y

where x and y are the lengths of the horizontal and
vertical sides of the rectangle, respectively. The
value of <bitsperpixel> 1is 2 in medium resolution,
and 1 in high resolution.

For example, suppose we want to use the GET
statement to get a 1N by 12 image in medium
resolution. The number of bytes required is
A+INT((10*2+47)/R)*12, or 40 bytes. The bytes per
element of an array are:

* 2 for integer

* 4 for single-precision
* A for double-precision

page 1.4-39

Statements Programmer Guide

Therefore, we could use any integer array with at
least 20 elements.

The information from the screen 1is stored in the
array as follows:

1. two bytes giving the x dimension in bits
?. two bytes giving the y dimension in bits
2. the data itself

It is possible to examine the x and y dimensions
and even the data itself if an integer array is
used. The x dimension is in element 0 of the array,
and the y dimension is in element 2. Yeep in mind,
however, that integers are stored low byte first,
then high byte; but the data is actually
transferred high byte first, then low byte.

The data for each row of points in the rectangle is
left justified on a byte boundary, so if there are
less than a multilple of eight bits stored, the
rest of the byte will be filled with zeros.

PUT and GFT work significantly faster in medium
resolution when x1 MOD 4 is equal to zero, and in
high resolution when x1 MOD 8 is equal to zero.
This 1is a special case where the rectangle
boundaries fall on the byte boundaries.

Page I.4-40

Programmer Guide Statements

Format: GOSUB <1ine number>

RETHRM
Purpose: To branch to and return from a subroutine.
Remarks: <line number> is the first line of the subroutine.

A subroutine may be called any number of times in a
program, and a subroutine may be called from within
another subroutine. Such nesting of subroutines is
limited only by available memory.

The RETIRM statement(s) in a subroutine cause BASIC
to branch back to the statement following the most
recent GOS!B statement. A subroutine may contain
more than one RETIRM statement, should Tlogic
dictate a return at different points in the
subroutine. Subroutines may appear anywhere in the
program, but it is recommended that the subroutine
be readily distinguishable from the main program.
To prevent inadvertant entry into the subroutine,
it may be preceded by a STOP, EMD, or GOTO
statement that directs a program control around the
subroutine.

Example:
10 GOS!B 4n
20 PRINT "BACK FROM SIBROUTIME"
an EMD
40 PRINT "SUBROUTIME"
RN PRINT " INM";
A0 PRINT " PROGRESS"
70 RETURM
RUN
SUBROUTIME IM PROGRESS
BECV FROM SUBRONTIME
0

Page 1.4-41

Statements Programmer Guide

4.31

Format: GOTO <1ine number>

Purpose: To branch unconditionally out of the normal program
sequence to a specified 1ine number.

Remarks: <line number> must exist, or an "lindefined 1ine
number" error will be returned. If <line number> is
an executable statement, that statement and those
following are executed. If it s a nonexecutable
statement, execution proceeds at the first
executable statement encountered after <line
number>.

Example:
LIST
1n READ R
20 PRIMT "R =":R,
A A = 2,14%R72
an PRINT "AREA ="3;A

50 GOTO 1N

60 DATA 5,7,12

Ok

RUN

R=65& AREA = 7R.5%
R=7 AREA = 153.8A
R =12 AREA = 452.1f
?0ut of data in 10

0k

Page 1.4-42

Programmer Guide Statements

4.32

Format: IF <expression> THEM <statement(s) or <1ine number>
FELSE <statement(s) or <1ine number>]

Format: IF <expression> GOTO <line number> TELSE
<statement(s) or <line number>]

Purpose: To make a decision regarding program flow based on
the result returned by an expression.

Remarks: If the result of <expression> is not zero, the THEM
or GOTO clause is executed. THEM may be followed by
either a line number for branching or one or more
statements to be executed. GOTO s always followed
by a Tine number. If the result of <expression> is
zero, the THEN or GOTO clause is ignored and the
FLSE clause, if present, is executed. Execution
continues with the next executable statement. BASIC
allows a command before THEM.

Nesting of IF Statements

IF...THEN...ELSE statements may be nested. MNesting
is 1imited only by the length of the 1line. For
example:

IF X>Y THEM PRIMT "“GREATER" ELSE IF Y>X THEM PRIMT
"LESS THAM" ELSE PRINT “EnVAL"

is a legal statement. If the statement does not
contain the same number of ELSE and THEM clauses,
each ELSE 1is matched with the closest unmatched
THEN. For example

IF A=B THEM IF B=C THEM PRINT "“A=C" ELSE PRIMT
“AcxC"

will not print "A<>C" when A<>B.

If an IF...THEM statement is followed by a 1line
number in the direct mode, an "lindefined 1ine"
error results unless a statement with the specified
line number had previously been entered in the
indirect mode.

NOTE: When using IF to test equality for a value that is
the result of a floating point computation,
remember that the internal representation of the
value may not be exact. Therefore, the test should

Page 1.4-43

Statements Programmer Guide

be against the range over which the accuracy of the
value may vary. For example, to test a computed
variable A against the value 1.0, use:

IF ABS (A-1.0)<1.0PE-f THEM ...

this test returns true 9f the value of A is 1.0
with a relative error of less than 1.0E-G.

Example 1: 200 IF I THEM GET#1,I

This statement GETs record number I if I is not
Zero.

Example 2:
100 IF(1<20)AND(I>10) THEM DB=1970-1:GOTO 20N

110 PRINT “OUT OF RANGE"

.
.

In this example, a test determines if I is greater
than 1n and less than 2n. If I is in this range, NB
is calculated and execution branches to 1ine 30N,
If 1 is not in this range, execution continues with
line 110.

Example 3: 210 IF IOFLAG THEM PRINT A$ ELSE LPRINT AS

This statement causes printed output to go to
either the terminal or the 1ine printer, depending
on the value of a variable (IOFLAG). If IOFLAG is
zero, output goes to the 1line printer, otherwise
output cgoes to the terminal.

Page I.4-44

Programmer Guide Statements

4.33

Format:
Purpose:
Action:

Example:

Remarks:

INKEYS

To read a single character from the keyboard.

Returns either a one-character string containing a
character read from the terminal or a null string
if no character is pending at the terminal. Mo
characters will be echoed and all characters are
passed through to the program except for Ctr1+Brk,
which terminates the program.

1000 'TIMED IMPUT SUBRONTINE

1010 RESPOMSES=""

1020 FOR I%=1 TO TIMELIMIT%

1030 AS=IMKEYS : IF LEN({A%)=0 THEM 10A0
1040 IF ASC(A$)=13 THEM TIMEQUTS=0 : RETURM
1050 RESPOMSE $=RESPONSES+AS

1NAN NEXT 1%

1n70 TIMEOUT%=1 : RETURM

See Appendix A for a 1ist of extended keyboard scan

codes that can be read into a two-byte IMKEYS
variable.

page 1.4-45

Statements Programmer Guide

4.34

Format: INPUT[; 1M <"prompt string“>;1<1ist of variables>

Purpose: To allow input from the terminal during program
execution.

Remarks: When an INPIT statement is encountered, program
execution pauses and a question mark is printed to
indicate the program 1is waiting for data. If
<"prompt string"> 1is included, the string is
printed before the question mark. The required data
is then entered at the termnial.

A comma may be used instead of a semicolon after
the prompt string to suppress the question mark.
For example, the statement IMPUT "ENTER
BIRTHNDATE" ,B¢ will print the prompt with no
question mark.

If IMPUT is immediately followed by a semicolon,
then the carriage return typed by the user to input
data does not echo a carriage return/line feed
sequence.

The data that 1is entered is assigned to the
variable(s) given in <variable list>. The number of
data items supplied must be the same as the number
of variables 1in the 1ist. Data items are separated
by commas.

The variable names in the 1ist may be numeric or
string variable names (including subscripted
variables). The type of each data item that is
input must agree with the type specified by the
variable name. (Strings input to an IMPUT statement
need not be surrounded by quotation marks.)

Responding to IMPUT with too many or too few items,
or with the wrong type of value (numeric instead of
string, etc.) causes the message "?Redo from start"
to be printed. Mo assignment of input values is
made until an acceptable response is given.

Page 1.4-4f

Programmer Guide Statements

Example:
10 IMPUT X
20 PRINT X "SPIARED IS" %72
an END
RUM
? 5 {The 5 was typed in by the user
in response to the question mark.)
5 SNIIARED IS 25
Ok

LIST

10 PI=3.14

20 IMPUT "WHAT IS THE RADINS";R

AN A=PI*R"2

40 PRIMT “THE AREA OF THE CIRCLE IS";A
B0 PRINT

RN GOTO 20

0k

RN

WHAT IS THE RADIUS? 7.4 (liser types 7.4)
THE ARFA OF THE CIRCLE IS 171.946

WHAT IS THE RADINS?
etc.

Page 1.4-47

Statements Programmer Guide

4.35

Format: IMPUT#<file number>,<variable list>

Purpose: To read data items from a sequential disk file and
assign them to program variables.

Remarks: <file number> is the number used when the file was
OPEMed for input. <variable 1ist> contains the
variable names that will be assigned to the items
in the file. (The variable type must match the
type specified by the variable name.) With IMNPUT#,
no question mark is printed, as with IMPUT,

The dtaa items in the file should appear just as
they would if data were being typed in response to
an INPIT statement. With numeric wvalues, 1leading
spaces, carriage returns and 1line feeds are
ignored. The first character encountered that is
not a space, carriage return or line feed is
assumed to be the start of a number. The number
terminates on a space, carriage return, 1line feed
or comma.

If BASIC is canning the sequential data file for a
string item, leading spaces, carriage returns, and
Tine feeds are also 1ignored. The first character
encountered that is not a space, carriage return,
or Tine feed is assumed to be the start of a string
item. If this first character is a quotation mark
("), the string item will consist of all characters
read between the first quotation mark and the
second. Thus, a quoted string may not contain a
quotation mark as a character. If the first
character of the string is not a quotation mark,
the string is an unguoted string, and will
terminate on a comma, carriage or 1line feed (or
after 255 characters have been read). If end of
file is reached when a numeric or string item is
being INPUT, the item is terminated.

Example: See Appendix B.

Page 1.4-4R

Programmer Guide

Statements

4.36
Format:
YEY <key number>,<string expression>
VEY LIST
¥EY OM
KEY OFF
Purpose: The KEY statement allows Function keys to be
designated "Soft ¥eys".
Remarks: Any one or all of the ten Special Function Veys

may be assigned

a 15 byte string which, when the

¥ey is depressed, will be input to Basic.
Initially, the Soft FKeys are assigned the
following values:

F1 - LIST F2 - RIM

F3 - LDAD F4 - SAVE

F& - CONT FE =~ ,"LPT1:"

F7 - TROM FR - TROFF

Fa - KEY F10 - SCREEM n,0,0

<key number> is the ¥Fey number. An Expression returning

an unsigned Integer

<string expression>
string expression.

KEY OM

KEY OFF Erases

KEY LIST Lists all

This is the initial

the Soft FKey display from the

in the range 1 to 10.

is the Key assignment text. Any valid

setting. Causes the Key
values to be displayed on the 25th
Line. When the Width is 4n, 5 of the
1n Soft Keys are displayed. When the
width is AN, all 10 are displayed.
In either width, only the first 7
characters of each value are
displayed.

25th
line.

10 Soft Key values
screen. A1l 15 characters
value are displayed.

the
each

on
of

Page 1.4-49

Statements Progr ammer Guide

KEY <key number>,<string expression>
Assigns the string expression to
the Soft Yey specified (1 to 10).

Rules:

1. [If the vatue-returned for <key number> is not in the
range 1 to 10, an "Il1legal Function
Call" Error is taken. The previous
Key string assignment is retained.

2. The ¥ey assignment string may be 1 to 15
characters in Tlength. If the string
is Tlonger than 15 characters, the
first 15 characters are assigned.

3. Assigning a null string {string of Tlength 0) to a
Soft Vey disables the Function ¥ey as a
Soft Key.

4. When a Soft Key is assigned, the INKEYS
function returns one character of the
soft key string per invocation. If the
Soft Key is disabled, IMKEYS returns
a string of length 2. The first
character is binary zero, the second is
the Key Scan Code.

Example:

50 KEY OM
Display the Soft Keys onm the 25th Line.

200 KEY OFF
Erase Soft Key display.

1n KEY 1,"MENU"+CHRS$(13)

Assigns the string 'MEMU'<carriage return>
to soft key 1. Such assignments might be
used for rapid data entry. This example
might bhe used 1in a program to select a
menu display when entered by the user.

Page I.4-50

Programmer Guide Statements

2(1 "'EY] s nn
Would erase Soft Key 1.

The following routine initializes the first &
soft keys:

1 KEY OFF 'Turn off key display during init.
10 DATA KEY1,KEV2,KEY3,KEY4, KEYS

20 FOR I=1 TO A:READ SOFTKEYSS(I)

30 KEY I1,SOFTKEYSS(I)

40 MEXT I

50 KEY OM 'now display new softkeys.

Page 1.4-51

Statements

Format:
Purpose:

Remarks:

Example:

Page T.4-R?

FLETY <variable>=<expression>

Programmer Guide

To assign the value of an expression to a variable.

Motice the word LET

i.e., the equal

siqn is sufficient when assigning an expression to
a variable name.

1n
120
120
14n

11n
190
12n
1an

LET N=12

LET E=1272
LET F=12"4
LET SUM=D+F+F

or

n=12
E=12"2
F=12"4
SHM=D+E+F

Programmer Guide Statements

4.3R

Format:

Remarks:

LINE is the most powerful of the araphics
statement. It allows a group of pixels to be
controlled with a single statement.

LINE [fx1,y1)] -(x2,y2),attributel bl f17
The simplest form of line is:
LINE -(x?,y?),attribute

This will draw from the last point to the point
{x?,y?) in the foreground attribute.

We can include a starting point also:

LIME {n,n)-(310,100) 1 ‘draw diagonal l1ine down screen
LIME (n,1nn)-(210,1NN),1 ‘draw bar across screen

We can append the attribute to draw the line in:
LIME (1n,1n)-{2n,72n),? ‘'draw in color ?!

1n CLS

20 LIME ~(rnd*10,rnd*100) rnd*3

an G0 TO 20 ‘draw lines forever using random attribute
1n FOR x=0 TO 3140

20 LINE (x,0n)-{x,100),x AHD 1

an MEXT

(draw alternating pattern - 1ine on line off)

The final argument to line is ",b" -- box or ",bf"
filled box. The syntax indicates we can leave out

the attribute arqument and include the final
argument as follows:

LINE (n,n)-(100,100) 1. h ‘draw box in foreground

or include it:

LINE fn,ni-(20n,200),2,bf ‘filled box attribute 2

The ",b" tells RASIC to draw a rectangle with the
points [x1,y') and (x2,y2) as opposite corners.
This avoids giving the four LIME commands:

LIME (x1,y1)-(x?,y1)
LIME (x1,y1)-Ix1,y?)

Page I1.4-KR2

Statements Programmer Guide

LINE (x2,y1)-(x2,y?)
LIME (x1,y2)-Ix2,y2)

which perform the equivalent function.

The ",bf" means draw the same rectangle as “,b"
but also fill in the interior points with the
selected attribute.

When out of range coordinates are given the 1line
command the coordinate which is out of range is
given the closest 1legal value. 1In other words,
negative values become zero, y values greater than
100 become 199 and x values greater than 219 in
medium res become 219 and greater than A2 in hi
resolution become A0,

In the examples and syntax the coordinate form
STEP{xoffset,yoffset) is not shown. However this
form can be used wherever a coordinate is used.
Mote that all of the graphics statements and
functions update the "more recent point used". In
a line command 1if the relative form is- used on the
second coordinate it 1is relative to the first
coordinate. The only other way "the most recently
used" point 1is changed is that SCREEM and CLS
initialize it to be the point in the middle of the
screen (160,100) for medium and (220,100} for hi
resolution.

The graphics commands have been fully optimized to
take advantage of the AanAR, They are
significantly faster than other machines.

Last Example:

n CLS
20 LIME -(rnd*R30,rnd*100) ynd*?,bf
an 6o TO 20

Page 1.4-5a

Programmer Guide Statements

4.39

Format: LIME IMPHT[;MM "<prompt>";l<stringvar>

Purpose: Reads an entire line (up to 254 characters) from
the keyboard into a string variable, ignoring
delimiters.

Remarks: "“<prompt>" is a string constant that is displayed
on the screen before input s
accepted. A question mark is not
printed unless it is part of the
prompt string.

<strinqvar> is the name of the string variable or
array element to which the line will
be assigned. A11 input from the end of
the prompt to the <Rtn> is assigned to
<stringvar>. Trailing blanks are
ignored.

If LIME TIMPUT s immediately followed by a
semicolon, then pressina <Rtn> to end the input
line does not produce a carriage return/line feed
sequence on the screen. That is, the cursor remains
on the same line as your response.

You can exit LIMF IYPIT by pressing <Ctri1+Brk>.
BASIC returns to command level and displays Ok. Vou
may then enter COMT to resume execution at the LIME
INPUT,

Example: See example in "LIME INPIIT# - Statement"

Page I.4-5R

Statements Programmer Guide

4.4an

Format: LIME THPIT#<file number>,<string variable>

Purpose: To read an entire 1ine (up to 2?52 characters),
without delimiters, from a sequential disk data
file to a string variahle.

Remarks: <file number> is the number under which the file
was OPFMed. <string variable» is the variable name
to which the Tline will be assiqned. LIME IMPIT#
reads all characters in the sequential file up to a
carriage return/line feed sequence, and the next
LIME IMPUT# reads all characters up to the next
carriage return. (If a 1line feed/carriage return
sequence is encountered, it is preserved.)

LIME IMPUIT# is especially useful if each line of a
data file has been broken into fields, or if a
BASIC-AN program saved in ASCII mode is being read
as data by another program.

Example: 10 OPEM "0",1,"LIST"
20 LINE IMPUT “CIISTOMER IHFORMATION? “;CS
a0 PRINT #1, C¢
4n CLOSE 1
5N OPEM “I",1,"LIST"
&0 LTME INPUT #1, C$
70 PRINT CS
R0 CLOSE 1
RIM
CUSTOMER IMFORMATION? LIMDA JOMES — 234,4 MEMPHIS
LINDA JOMES 234,4 MEMPHIS
Ok

Page I.4-5R

Programmer Guide Statements

4.41

Format: LOCATE Trowl [, Tfcoll T, Tcursor] T, Tlstartl
M,stop] 171

Purpose: The LOCATE statement moves the Cursor to the
specified position on the active Screen. Optional
parameters turn the blinking cursor on and off and
define the start and stop raster lines for the

cursor.
Remarks
YOW Is the Screen Line number. A numeric
expression returning an unsigned Integer
in the range 1 to 24.
col Is the Screen Column number. A numeric

expression returning an unsigned Integer
in the range 1 to AN or 1 to 80,
depending upon Screen Width.

cursor Is a boolean value indicating whether
the cursor 1is wvisible or not. n for
off, non-zero for on.

start/stop Is the cursor starting and ending

scan lines. If start = stop, cursor
becomes invisible (stop-start <1). If
stop - start = 1, cursor becomes
underbar. If stop - start > 1, cursor

becomes block.

stop Is the cursor stop scan Tline. A numeric
expression returning an unsigned Integer
in the range 0 to 21.

Action: Moves the cursor to the specified position.
subsequent PRIMT statements begin placing
characters at this location. Optionally may be
used to turn the blinking cursor on or off, or
change the size of the blinking cursor.

Page I.4-R7

Statements Programmer Guide

Rules:
1. Any values entered outside of these ranges
will result in an "Illegal Function Call"
Frror. Previous values are retained.

?. Any parameter may be omitted. Omitted
parameters assume the old value.

2. If the start scan line parameter is given and
the stop scan line parameter is omitted, stop
assumes the start value. This produces a
single scan 1ine cursor.

A. Cursor Blink is not selectable and always
blinks 1A times a second.

5. The 25th 1line 1is reserved for Soft Vey
display and may not be written over, even if
Soft vey display is Off.

Example:
10 LOCATE 1,1 Moves to the home position in
the upper left hand corner.

2N LOCATE ,,1 Make the blinking cursor
visible, position remains
unchanged.

an LOCATE %,1,1,0,7 Move to Line 5, column 1, turn
cursor on, cursor will cover
entire character cell starting
at scan line N and ending on
scan line 7.

Page I.4-5R

Programmer Guide

4.42

Format:

Purpose:

Remarks:

Statements

LPRINT T<1ist of expressions>1l;]
LPRIMNT NSIMG <string exp>;<list of expressions>l;]

To print data at the line printer.

Same as PRINT and PRIMT USIMG, except output goes
to the line printer (the PRM device).

LPRIMT assumes a 132?-character-wide printer.
For a description of the <string exp> parameter of

the LPRINT NSIMG statement see the PRINT USIMG
statement.

Page I.4-59

Statements Programmer Guide

4,43

Format: LSET <string variable>
RSET <string variable>

<string expression>
<string expression>

Purpose: To move data from memory to a random file buffer
(in preparation for a PI'T statement).

Remarks: If <string expression> requires fewer bytes than
were FIFLDed to <string wvariable>, LSET
left-justifies the string in the field, and RSFT
right-justifies the string. (Spaces are used to pad
the extra position.) If the string is too 1long for
the field, characters are dropped from the right.
Humeric values must be converted to strings before
they are LSET or RSFT. See the Mv1g, MvSe MRS
functions.

Example: 160 LSET AS=MVSS{AMT)
See also Appendix B.

WOTE:: LSET or RSET may also be used with a non-fielded
string variable to left-justify or right-justify a
?tring in a qiven field. For example, the program
ines

110 AS=SPACE<(20)
120 RSET As=Mg

right-justify the string NS in a 20-character

field. This can be very handy for formatting
printed output.

Page I.4-60

Programmer Guide Statements

a.44 ;

Format: 0N COMIn) 6BNS!B<Tine>

Purpose: Sets up a line number for RASIC to trap to when

there is information coming into the communications
buffer.

Remarks: n is the number of the ocmmunication adapter
(1 of 2).

<line> 1is the line number of the beginning of the
trap routine. Setting <line equal to N
(zero) disables trapping of communications
activity for the specified adapter.

A COM(n) OM statement must be executed to activate
this statement for adapter n. After COM(n) OHM, if a
non-zero line number is specified in the OM COM{n)
statement then every time the program starts a new
statement, BSIC checks to see if any characters
have come in to the specified communications
adapter. If so, BASIC performs a GOSHR to the
specified <line>.

If COM(n} OFF is executed, no trapping takes place
for the adapter. Even 1if communications activity
does take place, the event is not remembered.

If a COM(n) STOP statement is executed, no trapping
takes place for the adapter. However, any
characters bheing received are remembered so an
immediate trap takes place when COMIn) 0N {s
executed.

When the trap occurs an automatic COM(n) STNP is
executed so recursive traps can never take place.

The RETIRMN from the trap routine automatically does
a COM{n) OM wunless an explicit COM(n) OFF was
performed inside the trap routine.

Event trapping does not take place when BASIC is
not executing a program. When an error trap
{resulting from an ON ERROR statement) takes place
all trapping 1is automatically disabled (including
ERROR, STRIG(n), PEM, COM(n), and ¥FY(n)).

Typically the communications trap routine reads an
entire message from the communications 1ine before

Page I.4-R]

Statements Programmer Guide

returning back. It is not recommended that you use
the communications trap for single character
messages since at high baud reates the overhead of
trapping and reading for each individual character
may allow the interrupt buffer for communication to
over flow.

You may use RETURM<line> if you wnat to go bak to
the RASIC program at a fixed 1ine number. llse of
this non-local return must be done with care,
however, since any other GOSIBs, WHILEs, or FORs
that were active at the time of the trap will
remain active.

Example: 150 QM COM(1) GOS!UR son
1A0 CONM(1) OM

0N REM incoming characters.

Ran Rl:lelRN nn

This example sets up a trap routine for the first
cormunications adapter at line &NN,

Page 1.4-R?

Programmer Guide Statements

4.45

Format: OM ERROR GOTO <line number>

Purpose: To enable error trapping and specify the first Tine
of the error handling subroutine.

Remarks: ONnce error trapping has been enabled all errors
detected, including direct mode errors (e.qg.,
Syntax errors), will cause a jump to the specified
error handling subroutine. If <line number> does
not exist, and "lindefined 1line" error results. To
disable error trapping, execute an OM ERROR GOTO N,
Subsequent errors will print an error message and
halt execution. An OM ERROR GOTD N statement that
appears in an error trapping subroutine causes
BASIC-80n to stop and print the error message for
the error that caused the trap. It 1is recommended
that all error trapping subroutines execute an OM
ERROR GOTO N 1if an error is encountered for which
there is no recovery action.

NOTE: If an error occurs during execution of an error
handling subroutine, the BASIC error message is
printed and execution terminates. Error trapping
does not occr within the error handling subroutine.

Example: 10 OM ERROR GNTO 100N

Page 1.4-fR

Statements orogrammer Guide

4,46

Format: 04 <expression> GOTO <1ist of line numbers>
NM <expression> GNSIIB <list of 1ine numbers>

Purpose: To branch to one of several specified 1ine numbers,
depending on the value returned when an expression
is evaluated.

Remarks: The value of <expression> determines which Tine
number in the T1ist will be used for branching. For
example, if the value 1is three, the third Tline
number in the 7ist will be the destination of the
branch. (If the value is a non-integer, the
fractional portion is rounded.)

In the OM...GNSI'B statement, each line number in
the 1ist must be the first 1line number of a
subroutine.

If the value of <expression> is zero or greater
than the number of items in the 1ist (but less than

or equal to ?5R), BASIC continues with the next \
executable statement. If the value of <expression>

is neqative or gqreater than 258, an "Illegal
function call" error occurs.

Example: 10N OM L-1 ROTO 150,300,320, 300

Page I.4-Al

Programmer Guide Statements

4.47

Format: NM YEY(n)GOSUB<1ine>

Purpose: Sets up a line number for BASIC to trap to when the
specified function key or cursor control key is

pressed.
Remarks: n is a numeric expression in the range 1 to
14 indicating the key to be trapped, as
follows:

1-1n function keys F1-F1n
11 Cursor !lp

12 Cursor Left

12 Cursor Right

14 Cursor Down

<line> 1is the line number of the beginning of the
trapping routine for the specified key.
Setting <line> equal to N disables trapping
of the key.

A VEY(n)OM statement must be executed to activate
this statement. After VEY(n)OM, if a non-zero line
number is specified in the OM KEY(n) statement then
every time the program starts a new statement,
BASIC checks to see if the specified key was
pressed. If so, BASIC performs a GOSI'B to the
specified <line>.

If a YEY(n)NFF statement is executed, no trapping
takes place for the specified key. Fven if the key
is pressed, the event is not remembered.

If a VEV(n)STOP statement is executed, no trapping
takes place for the specified key. However, it the
key is pressed the event is remembered, so an
immediate trap takes place when VEV(n)OM is
executed.

When the trap occurs an automatic VEV(n)STOP is
executed so recursive traps can never take place.
The RETIRM from the trap routine automatically does
a VEY(n)OM unless an explicit VEY(n)NOFF was
performed inside the trap routine.

Event trapping does not take place when BASIC is

not executing a program. When an error trap
(resulting form an OM ERROR statement) takes place

Page 1.4-RE

Statements Programmer Guide

all trapping 1is automatically gisabled (including
ERRNR, COM(n), and ¥F¥in)).

¥ey trappina may not work when other keys are
pressed before the specified key. The key that
caused the trap cannot be tested wusing IMPITE or
INYEVS, so the trap routine for each key must be
different if a different function is desired.

You may use RETIIRM<1ine> if you want to go back to
the BASIC program at a fixed line number. llse this
non-local return with care, however, since any
other GNSI'Bs, WHILEs, or FORs that were active at
the time of the trap will remain active.

VEYIn)OM has no effect on whether the softkey
values are displayed at the hottom of the screen.

Example: The following is an example of a trap routine for
function key 5.

100 N ¥EY({R) GOSIB 2nn
110 YEY(R) 0OM

200 REM function key 5 pressed

200 RETURM 1an

Page 1.4-6h

Programmer Guide Statements

4.48

Format: OPEM [<dev>] <filename> [FOR <mode>1 AS [#]1<file
number> [LEH=<Irecl>]

Purpose: To establish addressability between a physical
device and an I/0 buffer in the data pool.

Remarks: <dev> is optionally part of the filename string and
may be one of the following:

A: Drive A

B: Drive B

Gz Ram disk

n: Hard disk

PRH Line Printer - Qutput Only.

COM Screen - Output Only

VYBD: Veyboard - Input Only

SCRM: Screen - OQutput Only

LPT1: Line Printer Output Only

COM1: RS?32 serial communications -
Input, Output, or random only.

<filename> is a valid string 1literal or variable
optionally containing a <dev>. If <dev> is omitted,
disk A: is assumed. Refer to "“DISK FILES" for
naming conventions.

<mode> determines the initial positioning within
the file and the action to be taken if the file
does not exist. The valid modes and actions taken
are:

IMPUT Position to the beginning of an existing
fite. A "File not found" error is aiven
if the file does not exist.

ouTPIT Position to the beginning of the file. If
the file does not exist, one is created.

APPEMD Position to the end of the file. If the
file does not exist, one is created.

DEFAILT If the FOR <mode> clause is omitted, the
initial position is at the beginning of
the file. If the file is not found, one
is created. This is the Random I/0 mode.
That is, records may be read or written
at will at any position with the file.

Page I.4-R7

Statements Programmer Guide

<file number> is an integer expression returning a
number in the range ' thru 15. The numher is used
to associate an 1/0 buffer with a disk file or
device. This association exists until a CLNSE or
CLOSE <file number> statement is executed.

<lrec!> is an integer expression in the range 2 to
3?7fR. This value sets the record length to be used
for random files (see the FIELD statement). If
omitted, the record 1length defaults to 128 byte
records.

Action: When a disk file is OPEMed FOR APPEMD, the position
is initially at the end of the file and the record
number is set to the 1last record of the file
(LOB(x)/12R). PRINT, WRITE, or PUT will then extend
the file. The program may position elsewhere in the
file with a GET statement. If this 1is done, the
mode is changed to random and the position moves to
the record indicated.

Once the position 1is moved from the end of the
file, additional records may be appended to the
file by exeucting a GET #x,LOF(x)/<lrecl>
statement. This positions the file pointer at the
end of the file in preparation for appending.

Rules:

1. Any values entered outside of the ranges given
will result in an "I1legal Function Call"
error. The file is not opened.

?. [If the file is opened as IMPIIT, attempts to
write to the file will result in a "Bad File
Mode" error.

3. If the file is opened as OUTPUT, attempts to
read the file will result in a "Bad File Mode"
error.,

4. At any one time, it 1is possible to have a
particular disk filename OPEM under more than
one file number. This allows different modes to
be used for different purposes. Or, for program
clarity, to use different file numbers for
different modes of access. Each file number has
a different buffer, so several records from the
same file may be kept in memory for quick
access.

A file may MOT be opened FOR OUTPUT, however,

Page I.4-RR

Programmer Guide Statements

on more than one file number at a time.

R. If the LEM=<1recl> option is used, lrecl may
not exceed the value set by the /S:<lrecl>
switch option to the command.

Examples: 1N OPEM “A:MYDATA" FOR OUTPUT AS #1
1N OPEM "¥YBD:" FOR IMPUT AS #2
10 OPEM "R:IMVEMT.DAT" FOR APPEMD AS #1
10 OPEM “"C:nlIICX" AS #1 'for random I/0 on RAM disk

Page 1.4-69

Statements Programmer Guide

4.49

Format: OPEM "COM1:<speed>,<parity>,<data>,<stop>" AS [#]
<file number>

Purpose: Allocates a buffer for I/0 in the same manner as
OPEM for disk files.

Remarks:
COM1: Is the name of the Hyperion serial
communications device.

speed Is a TJiteral integer specifying the
transmit/receive baud rate. Valid speeds
are: 110, 180, 300, AON, 1200, 1R8N0,
2400, 4800, 9ANN, 19200.

parity Is a one character literal specifying the
Parity for Transmit and Receive as
follows:

0 opo, 0dd Transmit/Receive Parity
checking.

E EVEN, Even Transmit/Receive Parity
checking.

H MOME, Mo Transmit Parity, Mo Receive
Parity checking.

data Is a literal integer indicating the
number of transmit/receive data bits.
Valid values are: 7 or R.

NOTE: 8B data bits with any parity is
illegal.

stop Is a Tliteral integer indicating the
number of stop bits. Valid values are 1
or 2. If omitted then 110 bps transmits
two stop bits, all others transmit one
stop bit.

file number Is an integer expression returning a
valid file number. The number 1is then
associated with the file for as long as
it is OPEM and is used to refer other COM
1/0 statements to the file.

Page 1.4-70

Programmer Guide Statements

DEFAIILTS: Missing parameters invoke the following
defaults:
speed - 300 bps, parity - EVEM, data - 7,
stop -2 if 110 bps else 1.

MOTE: The COM1: device may be OPEMed to
only one file number at a time.

Any coding errors within the File Mame String will
result in a "Bad File Mame" error. Mo indication
as to which parameter is in error is given.

A "Device Timeout" error will occur if Data Set
Ready (DSR) 1is not detected. Refer to hardware
documentation for proper cabling instructions.

Example: 10 OPEM "COM1: " AS 1

File 1 is opened for communication with all
defaults. Speed at 300 bps, Even Parity, 7 data
bits, and one stop bit.

20 OPEM "COM1:2400 " AS #2

File 2 1is opened for communication at 2400 bps.
Parity and number of data bits are defaulted.

10 OPEN “COM1:1200,N,R" AS #1

File number 1 is opened for Asynchronous I1/0 at
12n0 bits/second, no parity is to be produced or
checked, and 8 bit bytes will be sent and received.

Communications I/0

Since the communication port is opened as a file,
all Input/Output statements that are valid for disk
files are valid for COM.

COM sequential input statements are the same as
those for disk files. They are: IMPUT#<file
number>, LINE IMPUT#<file number>, and the IMPUTS
variable.

COM sequential output statements are the same as
those for disk, and are: PRINT#<file number>, and
PRINT#<file number> lISIMG.

Refer to IMPUT and PRIMT sections for details of
coding syntax and usage.

Page 1.4-71

Statements Programmer Guide

COM 1I/0 Functions

The most difficult aspect of asynchronous
communication is being able to process characters
as fast as they are received. At rates above 2400
bps., it is necessary to suspend character
transmission from the Hyperion Tong enough to
“catch up". This can be done by sending XOFF
(Ctr1+NumLock) to the host and XOMN (any key) when
ready to resume.

BASIC provides three functions which help in
determining when an ‘"over-run" condition is
eminent. These are given below, where x is the
file number specified.

LOC(x) Returns the number of characters in the
input queue waiting to be read. The
input queue can hold more than ?25%
characters (determined by the /C:
switch)., If there are more than 255
characters in the queue, LOC(x) returns
255, Since a string is limited to 255
characters, this practical limit
alleviates the need for the programmer to
test for string size before reading data
into it. If fewer than 255 characters
remain in the queue, LOC{x) returns the
actual count.

LOF(x) Returns the amount of free space in the
input queue. That 1s, /C:<size>-LOC(x).
lise of LOF may be used to detect when the

input queue is getting full. In
practicality, LOC is adequate for this
purpose.

EQF (x) If true (-1), indicates that the input

queue is empty. Returns false (0) if any
characters are waiting to be read.

Page 1.4-72

Programmer Guide Statements

4,50

Format: PPTINM BASF n
where n is 1 or N

Purpose: To declare the minimum value for array subscripts.
Remarks: The default base is n. If the statement
OPTIOM RASF 1

is executed, the lowest value an array subscript
may have is one.

Page J.a-72

Statements

4,81

Format:

Purpose:

Remarks:

Example:

Page 1.4-74

Programmer Guide

onT 1,4

where I and J are integer expressions in the range
N to ARRIR, 1 is a machine port number, and J is
the data to be transmitted.

To send a byte to a machine output port.

OIT is the complementary statement to the IMP
function.

N0 OIT 19748, 228
Tn assembly language, this is equivalent to:
MOV DY, 12248

Hov AL,?25
T py,AL

Programmer Guide Statements

Format: PAIMT(x,y)l,<paint>l, <boundary>1]

Purpose: Fills in an area on the screen with the selected
color. Oinly used in graphics modes {Screen 1,2,101
or 12},

Remarks: (x,y) are the coordinates of a point within
the area to be filled in. The
coordinates may be given in ahsolute or
relative form. This point will be used
as a starting point.

<paint>» is the color to be painted with, in the
range N 'to . In medium resolution, this
color is the color from the current
palette as defined by the COLOR
statement. N is the background color.
The default 1is the foreground color,
color number 2. In high resolution,
<paint> equal to N (zero) indicates
black, and the default of 1 (one)
indicates white.

<boundary> is the color of the edges of the figure
to be filled in, in the range N to ? as
described above.

The fiqure to be filled in is the figure with edges
of <boundary> color. The figure is filled in with
the color <paint>.

Since there are only two colors in high resolution
it doesn't make sense for <paint> to be different
from <boundary>. Since <boundary> is defaulted to
equal <paint> we don't need the third parameter in
high resolution mode.

In high resolution this means "blacking out" an
area until black 1is hit, or "whiting out" an area
until white is hit.

In medium resolution we can fill in with color !
with a border of color 2.

The starting point of PAINT must be inside the
figure to be painted. If the specified point
already has the color <boundary> then PAINT will
have no effect. If <paint> is omitted the

Page 1.4-7%

Statements Programmer Guide

foreground color is used (? in medium resolution, 1
in high resolution). PATMT can paint any type of
figure, but “jagged" edges on a figure will
increase the amount of stack space required by
DATMT. So if a 1ot of complex painting is being
done you may want to use CLFAR at the beginning of
the proaram to increase the stack space available.

The PAIMT statement allows scenes to be displayed
with very few statements. This can be a very useful
capability.
Example: R SCREEM 1
10 LIME (n,n)-(1nN,1RN),2,B
20 PAINT (50,50),1,2

The PAIMT statement in 1line 20 fills in the box
drawn in line 1N with color 1.

page 1.4-76

Programmer Guide Statements

4.53

Format: PLAY <string expression>

REMARKS: PLAY implements a concept similar to DRAW by
embedding a string expression into the string data
type.

The single character commands in PLAY are:

A-G T#,+,-1 Play the note. A "#Y or "M

afterwards means sharp, and "-" means
flat.
L <n> Length - Sets the 1length of each note.

L4 is a quarter note, L1 1is a whole
note, etc. n may range from 1 to f4

The length may also follow the note when
it is desired to change the 1length only
for the note. In this case, AlA is
equivalent to L1AA.

MF Music Foreground. Music (PLAY
statement) and SOIUND are to run in
Foreground. That is, each subsequent
note or sound will not start wuntil the
previous note or sound is finished.
This is the initial default.

MB Music Background. Music (PLAY
statement) and SOIND are to run in
Background. That is, each note or sound
is placed in a buffer allowing the BASIC
program to continue execution while
music plays in the background. Up to 3?
notes f(or rests) can be played in
background at a time.

MM Music Mormal. Each note will play
7/Rths of the time determined by L
{1ength).

ML Music Legato. Each note will play the
full period set by L (length).

MS Music Staccato. Fach note will play
3/4ths of the time determined by L
(1ength).

Page 1.4-77

Statements Programmer Guide

M o<n> Play note n. n may range from 0 to B84,
In the 7 possible octaves, there are R4
notes. M=0N means rest.

0 <n> fictave - Sets the current octave. There
are 7 octaves (N...AR).

P <n> Pause. P may range from 1 to A4.

T <n> Tempo - Sets the number of L4's in a

second. n may range from 212 to 255,
Default is 120.

Dot or Period. After each note causes
the note to play 2/2 times the period
determined by L (length) times T
(tempo). Multiple dots may appear after
a note. The period is scaled
accordingly. (Example: A. 3/2, A.. 9/4,
A... 27/R etc.). Dots may appear after
a pause (P) and scale the pause Tlength
as described above.

X <string> Execute substring

Because of the slow clock interrupt
rate, some notes will not play at higher
tempos; e.g. LAA at T2R5. Which
note/tempNo combinations these are must
be determined through experimentation.

Page I1.4-7R

Programmer Guide Statements

4.54

Format: POVE I,J
where I and J are integer expression

Purpose: To write a byte into a memory location.

Remarks: The integer expression 1 s the address of the
memory location to be POKEd. The integer expression
Jd is the data to be PO¥Ed. J must be in the range I
to 255. I must be in the range 0 to ARRR3A,

Data may be PO¥Ed into memory locations above 327fR
by supplying a negative number for I. The value of
1 is computed by subtracting ARR2A from the desired
address. For example, to POVE data into location
48nNnN, 1 = ARNNN-ARR3AR, or -2NR3A

The complementary function to PO¥E 1is PEEK, The
argument to PEEY is an address from which a byte is
to be read.

POVE and PEE¥ are useful for efficient data
storage, loading assembly language subroutines, and
passing arguments and results to and from assembly
Tanguage subroutines.

Example: 10 POKE &HSAON,&HFF

Page I.4-70

Statements Programmer Guide

4,55

Format: PRIMNT T<1list of expressions>1l;]
Purpose: To output data at the terminal.

Remarks: If <list of expressions> is omitted, a blank Tine
is printed. If <1ist of expressions> 1is included,
the values of the expressions are printed at the
terminal. The expressions in the 1ist may be
numeric and/or string expressions. (Strings must be
enclosed in quotation marks.)

Print Positions

The position of each printed item is determined by
the punctuation used to separate the items in the
list. BASIC divides the 1ine into print zones of 14
spaces each. In the 1list of expressions, a comma
causes the next zone. A semicolon causes the next
value to be printed immediately after the 1last
value. Typing one or more spaces between
expressions has the same effect as typing a
semicolon.

If a comma or semicolon terminates the Tist of
expression, the next PRIMT statement begins
printing on the same 1ine, spacing accordingly. If
the 1ist of expressions terminates without a comma
or a semicolon, a carriage return is printed at the
end of the line. If the printed 1ine is longer than
the terminal width, BASIC goes to the next physical
Tine and continues printing.

Printed numbers are always followed by a space.
Positive numbers are always preceded by a space.
Megative numbers are preceded by a minus sign.
Single precision numbers that can be represented
with A or fewer digits in the unscaled format no
less accurately than they can be represented in the
scaled format, are output wusing the unscaled
format. For example, 1n7-7 is output as .NNNNNN1
and 1n"-8 is output as 1E-NB. Double precision
numbers that can be represented with 16 or fewer
digits in the unscaled format no 1less accurately
than they can be represented in the scaled format,
are output using the unscaled format. For example,
1n-15 is output as .onNnApNANNNNNNN]. and 1D16 s
output as 1D-1A.

Page I.4-8n

Programmer Guide Statements

A question mark may be used in place of the word
PRIMT in a PRINT statement.

Example 1: 10 X=5
20 PRINT X+5, X-5, X*(-5), X5
an END
RUM
n n -25 3125
Ok

In this example, the commas in the PRIMT statement
cause each value to be printed at the beginning of
the next print zone.

Example 2: LIST
10 INPUT X
2n PRINT X "SOUARED IS" X~2 “AMD";
an PRINT X “CHBED IS" ¥7R
an PRINT
50 GOTO 1N
0k
RiM
? 0
o SNUARED IS /1 AMD o CIBED IS 779

7121
21 SNUARFd IS 441 AMD 21 CUBED IS 92R]

?

In this example, the semicolon at the end of Tine
20 causes both PRINT statements to be printed on
the same 1line, and line 4n causes a blank line to
printed before the next prompt.

Example 3: 10 FOR X =1 TO &
20 J=J0+K
30 K=v4+10
an 233K
50 NEXT X
0k
RIM
R In 1n 2n 18 3N 20 40 2R 5N
ok

In this example, the semicolons in the PRINT
statement cause each value to be printed
immediately after the preceding value. (Don't
forget, a number is always followed by a space and
positive numbers are preceded by a space.) In Tline
an, a question mark is used instead of the word
PRIMT.

Page 1.4-R]

Statements Programmer Guide

4.56

Format: PRINT USIMNG <string exp>;<list of expressions>r;l

Purpose: To print strings or numbers using a specified
format.

Remarks: <list of expressions> is comprised of the string
expressions or numeric expressions that are to be
printed, separated by semicolons. <string exp> is a
string literal (or variable) comprised of special
formatting characters. These formatting characters
(see below) determine the field and the format of
the printed strings or numbers.

String Fields

When PRINT !SIMG is used to print strings, one of
three formatting characters may be used to format
the string field:

5 Specifies that only the first character
in the given string is to be printed.

"\n spaces\" Specifies that 2+n characters from the
string are to be printed. If the
backslashes are typed with no spaces,
two characters will be printed; with one
space, three characters will be printed,
and so on. If the string is longer than
the field, the extra characters are
ignored. If the field is longer than the
string, the string will be
left-justified in the field and padded
with spaces on the right. Example:

10 A%="LOOv" :R&="0NT"

a0 PRINT USIMG "!1";AS;BS

AN PRINT USIMG "\ \";A%;B¢

an PRINT USIMG "\ \";AS;B&;"11"
RIIM

Lo

LooronT

Loox out !

Page 1.4-R2

Programmer Guide Statements

e o Specifies a variable 1length string
field. When the field is specified with
"&", the string is output exactly as
input. Example:

10 A$="L00¥":Rs="01IT"
20 PRINT IISING "1";AS;
an PRINT ISING “&";B$
RIIM

LT

Humeric Fields

When PRINT USING is used to print
numbers, the following special
characters may be used to format the
numeric field:

A number sign is used to represent each
digit position. Digit positions are
always filled. If the number to be
printed has fewer digits than positions
specified, the number will be
right-justified (preceded by spaces) in
the field.

. A decimal point may be inserted at any
position in the field. If the format
string specifies that a digit is to
precede the decimal point, the digit
will always be printed (as 0 if
necessary). Mumbers are rounded as
necessary.

PRIMT LISING "#4 ##": 79
n.78

PRINT ISING "###,##" ;087 A54
QA7 . AR

PRINT USIMG "##.## ";10.2,8,2,AA,789,.234
10.20 5.3n h6.70 n.22

In the last example, three spaces were
inserted at the end of the format string
to separate the printed values on the
Tine.

+ A plus sign at the beginning or end of
the format string will cause the sign of
the number (plus of minus) to be printed
before or after the number.

Page 1.4-82

Statements Programmer Guide

- A minus sign at the end of the format
field will cause negative numbers to be
printed with a trailing minus sign.

PRIMT NSING "+##,## ";-AR.0K,2.4,55,f,-.0
-AR. 05 +2.40 +55.60 -n.90

PRINT USING “## 4#. “;_AR,QR 22.440,-7.01
AR.OG. 22.45 7.0l

ek A double asterisk at the beginning of
the format string causes leading spaces
in the numeric field to be filled with
asterisks. The ** also specifies
positions for two more digits.

PRINT IISING "**#,# ":12,30,.n,0, 76K,1
*12.4 *.n,0 7AR,1

€< A double dollar sign causes a dollar
sign to be printed to the immediate left
of the formatted number. The 8%
specifies two more digit positions, one
of which is the dollar sign. The
exponential format cannot be wused with
£%. Negative numbers cannot be used
unless the minus sign trails to the

right.
PRINT ISING “&&###,##" 456,78
£4RR,. 7R
s The **¢ at the beginning of a format

string combines the effects of the above
two symbols. Leading spaces will be
asterisk-filled and a dollar sian will
be printed before the number. **§
specifies three more digit positions,
one of which is the dollar sign.

PRINT [ISING “**<## #4":2,34
*kK62, 30

% A comma that is to the left of the
decimal point in a formatting string
causes a comma to be printed to the left
of every third digit to the left of the
decimal point. A comma that s at the
end of the format string is printed as
part of the string. A comma specifies
another digit position. The comma has no
effect if used with the exponential

Page 1.4-84

Programmer Guide Statements

(="

) format.

PRINT IISIMG "# ##":1234 .8
1,224,580

PRINT NSING "#### 8¢ ":1234.5

123450,
b Four carats (or up-arrows) may be placed
after the digit position characters to
specify exponential format. The four
carats allow space for E+xx to be
printed. Any decimal point position may
be specified. The significant digits are
left-justified, and the exponent is
adjusted. linless a leading + or trailing
+ or - is specified, one digit position
will be used to the left of the decimal
point to print a space or a minus sign.

PRINT IISIMG "##, ##°777":234 ,RA
2.35EN2

PRIMT IISIMG ".####°7""-";RARRRA
LRRROE+NA

PRIMT HSING “+,##77""".123
+12E+N3

The underscore in the format string
causes the next character to be output
as a literal character.

PRINT NSING " 144 ## 1":72.34
112.34! I =

The 1iteral character itself may be an
underscore by placing " "in the format
string.

Note: If the number to be printed 1is larger
than the specified numeric field, a
percent sign is printed 1in front of the
number. If rounding causes the number to
exceed the field, a percent sign will be
printed in front of the rounded number.

PRINT USING "##.##";111.22
#111.22

PRINT USIMG ",##";.009
%1.00

Page I.4-R5K

Statements Programmer Guide

If the number of digits specified
exceeds 24, an "Il1legal function call"
error will result.

Page 1.4-R6

Programmer Guide Statements

4.57

Format: PRINT#<filenumber>,[USING<string exp>;1<1ist of exps>
Purpose: To write data to a sequential file.

Remarks: <file number> is the number used when the file was
OPEMed for output. <string exp> is comprised of
formatting characters as described in PRINT UISING.
The expressions in <list of expressions> are the
numeric and/or string expressions that will be
written to the file.

PRINT# does not compress data on the disk. An image
of the data is written to the disk, Jjust as it
would be displayed on the terminal with a PRINT
statement. For this reason, care should be taken to
delimit the data on the disk, so that it will be
input correctly from the disk.

In the 1list of expressions, numeric expressions
should be delimited by semicolons. For example,

PRINT#1,A;B;C3X;Y;2Z

(1f commas are used as delimiters, the extra blanks
that are inserted between print fields will also be
written to disk.)

String expressions must be separated by semicolons
in the 1ist. To format the string expressions
correctly on the disk, use explicit delimiters in
the 1ist of expressions.

For example, let A$="CAMERA" and B$="03A04-1". The
statement

PRINT#1,AS;BS$

would write CAMERA93AN4-1 to the disk. Because
there are no delimiters, this could not be input as
two separate strings. To correct the problem,
insert explicit delimiters into the PRINT#
statement as follows:

page 1.4-R7

Statements Programmer Guide

PRINT#1,AS;",":BS

The image written to disk is

CAMERA,93A04-1

which can be read back into two string variables.
If the strings themselves contain commas,
semicolons, significant leading blanks, carriage
returns, or 1line feeds, write them to disk
surrounded by explicit quotation marks, CHR&(34).

For example, let AS="CAMERA, AUTOMATIC" and BS="
a3rN4-1", The statement

PRINT#1,A%;BRS

would write the following image to disk:

CAMERA, ANTOMATIC a3pNa-]

and the statement

INPIIT#] ,AS,BS

would input "CAMERA" to AS and "AUTOMATIC
93ANA-1" to Bf. To separate these strings properly
on the disk, write double quotes to the disk image
using CHRS(34). The statement
PRINT#1,CHR#(34);A$:CHRS(34);CHRS(34) ;BS;CHRS(34)

writes the following image to disk:

"CAMERA, AUTOMATIC"," Q3A0N4-1"
and the statement

INPUT#1,A%,BS

would 1input "CAMERA, AUTOMATIC" to A$ and "
Q3Rna-1" to BS.

The PRINT# statement may also be used with the
NSING option to control the format of the disk
file. For example:

PRINT#1,NISTMG" S##4 44 "15V L

For more examples using PRINT#, see Appendix B.

See also WRITE#, Section I.4.

Page I.4-8R

Programmer Guide Statements

4.58

Format: PSET (xcoordinate , ycoordinate) I , attribute]
Purpose: PSET sets a point, and defines its attribute.

Remarks: The first argument to PSET is the coordinate of
the point to PSET. Coordinates always can come in
one of two forms:

PSET (x offset, y offset) or
(absolute x, absolute y)

The first form is a point relative to the most
recent point referenced. The second form 1is more
common and directly refers to a point without
regard to the last point referenced. Examples
are:

PSET (1n,10) absolute form
PSET (10,n) offset 10 in x and N in y
PSET (n,N) origin

Mote that when BASIC scans coordinate values it
will allow them to be beyond the edge of the
screen, however values outside the integer range
(-327A8 to 327A7) will cause an overflow error.

Mote that (n,Nn) is always the upper left hand
corner. It may seem strange to start numbering y
at the top so the bottom left corner is (0,249) in
both Hyperion high-resolution and medium
resolution (screen 1n1 and 1n2), but this is
standard.

PSET allows the attribute arqument to be left off
and it 1is defaulted to 2 in medium resolution and
1 in high resolution, since these are the
foreground attributes for those modes.

Example:
10 FOR i=0 TO 10N
20 PSET (,1)
3N NEXT 'draw a diagonal line
an FOR i=10n TO 0 STEP -1
50 PSET (1,i),0
AN MEXT ‘clear the Tine

Page [.4-Ro

Statements Programmer Guide

4,59

PRESET has an identical syntax to PSET. The only
difference is that if no third parameter 1is given
for the backround color zero is selected. When
a third argument is given, PRESET is identical
to PSET.

Line 50 in the example above could be:
50 PRESET (1,i)

If an out of range coordinate is given to PSET or
PRESET no action is taken nor is an error given.
If an attribute greater than 4 is given this will
result in illegal function call. Attribute value
2 will be treated 1ike N in hi-resolution, and 3
will be treated 1ike 1 for compatibility with
medium resolution.

Page I.4-0n

Programmer Guide Statements

4.60

Format: PIT T#1<file number>[,<record number>]

Purpose: To write a record from a random buffer to a random
disk file.

Remarks: <file number> is the number under which the file
was OPEMed. If <record number> is omitted, the
record will have the next available record number
(after the last PIT). The largest possible record
number is 327A7. The smallest record numbher is 1.

Example: See Appendix B.

MOTE: PRINT#, PRIMT# |ISING, and WRITE# may be used to put
characters in the random file buffer before a PUT
statement.

In the case of WRITE#, BASIC pads the buffer with
spaces up to the carriage return. Any attempt to
read or write past the end of the buffer causes a
"Field overflow" error.

Page 1.4-91

Statements Programmer Guide

4,61

Format: PIT(x,y),<array>,<action>]
Purpose: Writes colors onto a specific area of the screen.

Remarks: (x,y) are the coordinates of the top Teft
corner of the image to be transferred.

<array> is the name of a numeric array containing
the information to be transferred. See
"GET - Statement (Graphics)" for more
information on this array.

<action> 1is one of:

PSET
PRESET
XOR

OR

AMD

XOR is the default.

PIUT is the opposite of GET in the sense that it
takes data out of the array and puts it onto the
screen. However it also provides the option of
interacting with the data already on the screen by
the use of the action.

PSET as an action simply stores the data from the
array onto the screen, so this is the true opposite
of GET.

PRESET is the same as PSET except a negative image
is produced. That is, a value of 0 in the array
causes the corresponding point to have a color
number 3, and vice versa; a value of 1 in the array
causes the corresponding point to have a color
number 2, and vice versa.

AMD is used when you want to transfer the image
only if an 1image already exists under the
transferred image.

OR is used to superimpose the image onto the
existing image.

XOR is a special mode which may be used for

Page 1.4-02

Programmer Guide Statements

animation. XOR cuases the points on the screen to
be inverted where a point exists in the array
image. XOR has a unique property that makes it
especially useful for animation: when an image is
PUT against a complex background twice, the
background is restored unchanged. This allows you
to move an object around without obliterating the
background.

In medium resolution modes, AMD, ¥OR, and OR have
the following effects on color:

AND
array value
n 1 2.
n{n n n n
s
r{f1ln 1 n 1
C
elz2|n n 2 2
e
nj3]n 1 2 3
OR

array value

o 1 2 3
ngn 1 2 3
s
rlt1}]1 1 3 2
c
ej21?2 3 2 2
]
n I3 2 3 13

Page 1.4-92

Statements Programmer Guide

XOR

array value

n 1 2 &
ngn 1 2 2
s
ry1j1r n 3 2
c
el]2]2 30 1
e
nl3f§3 2 1 0

Animation of an object can be performed as follows:
1. PUT the object on the screen {with XOR).
2. Recalculate the new position of the object.

3. PUT the object on the screen (with XOR) a
second time at the old location to remove the
old image

4, Go to step 1, this time putting the object at
the new location.

Movement done this way leaves the background unchanged.
Flicker can be reduced by minimizing the time between step 4
and 1, and making sure there is enough time delay between
steps 1 and 3. If more than one object 1is being animated,
every object should be processed at once, one step at a time.

If it is not important to preserve the background, animation
can be performed using the PSET action verb. But you should
remember to have an image area that will contain the "before"
and "after" images of the object. This way the extra area will
effectively erase the old image. This method may be somewhat
faster than the method using XOR described above, since only
one PUT is required to move an object (although you must PUT a
larger image).

If the image to be transferred is too large to fit on the
screen, an "I1legal function call" error occurs.

Page I.4-94

Programmer Guide Statements

4.62

Format: RANDOMIZE [<expression>]
Purpose: To reseed the random number generator.

Remarks: If <expression> is omitted, BASIC suspends program
execution and asks for a value by printing

Random Mumber Seed (-3276R to 227A7)?
before executing RANDOMIZE.

If the random number generator is not reseeded, the
RMD function returns the same sequence of random
numbers each time the program is RIM. To change the
sequence of random numbers every time the program
is RIM, place a RANDOMIZE statement at the
beginning of the program and change the argument
with each RUM.

Example: 10 RANDOMIZE
20 FOR I=1 TO &
30 PRINT RMD;
an MEXT 1
RUM
Random Number Seed (-32768 to 32767)? 3 (user
types 3)
.2226007 ,5941419 ,2414202 .2013798 5.3R174RE-02
0k
RUN
Random Number Seed (-32768 to 22767)? 4 (user
types 4) for new sequence>
.62R98R ,7R5A0N5 .55R1KA1 .775797 .7R34011

0k
RUM
Random Number Seed (-3276R to 327A7)? 3 (user
types 3)
2226007 . 5941419 .2414202 .2013798 5.36174RE-N2
0k

Page 1.4-95

Statements Programmer Guide

4,63

Format: READ <1ist of variables>

Purpose: To read values from a DATA statement and assign
them to variables. (See DATA.)

Remarks: A READ statement must always be used in conjunction
with a DATA statement. READ reads values on a
one-to-one basis. READ statement variables may be
numeric or string, and the values read must agree
with the variable types specified. If they do not
agree, a "Syntax error" will result.

A single READ statement may access one or more DATA
statements (they will be accessed in order), or
several READ statements may access the same DATA
statement. If the number of wvariables in <list of
variables> exceeds the number of elements in the
DATA statement(s), an OUT OF DATA message is
printed. If the number of variables specified is
fewer than the number of elements in the DATA
statement(s), subsequent READ statements will begin
reading data at the first unread element. If there
are no subsequent READ statements, the extra data
is ignored.

To reread DATA statements from the start, use the
RESTORE statement (See RESTORE.)

Example 1: .

80 FOR I=1 TO 10
an READ A(1)

100 MEXT 1
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4,00,3.16,3.37

This program segment READs the values from the DATA
statements into the array A. After execution, the
value of A(1)} will be 3.08, and so on.

Page 1.4-96

Programmer Guide Statements

Example 2:
LIST
10 PRINT “CITY",. “STATE™, * ZIP*
20 READ C%,S%,Z
an DATA "DENVER,", COLORADD, 80211
40 PRIMT C$,S8,Z

Ok

RUM

CITY STATE ZIP
DEMVER, COLORADO aN211
Ok

This program READs string and numeric data from the
DATA statement in line 3N,

Page 1.4-97

Statements Programmer Guide

4.64

Format: REM <remark>

Purpose: To allow explanatory remarks to be inserted in a
program.

Remarks: REM statements are not executed but are shown
exactly as entered when the program is Tisted.

REM statements may be branched into (from a GOTO or
GOSUB statement), and execution will continue with
the first executable statement after the REM
statement.

Remarks may be added to the end of a 1line by
preceding the remark with a single quotation mark
instead of REM.

WARMIMG: Do not use this in a data statement as it
would be considered legal data.

Example:
120 EOR I=1 T0 20 "CALCHLATE AVERAGE VELOCITY

130 SUM=SUM=V(I)
140 MEXT 1

.

Page 1.4-08

Programmer Guide

4.65

Format:

Purpose:

Remarks:

Example:

Statements

RESTORE l<line number>]

To allow DATA statements to be reread from a
specified line.

After a RESTORE statement is executed, the next
READ statement accesses the first item in the first
DATA statement in the program. If <line number> is
specified, the next READ statement accesses the
first item in the specified DATA statement.

10 READ A,B,C

2n RESTORE

an READ D,E,F

4n DATA K7, 6R, 79

Page I1.4-99

Statements Programmer Guide

4.66

Format: RESIME
RESIME n
RESHME MEXT
RESIIME <1ine number>

Purpose: To continue program execution after an error
recovery procedure has been performed.

Remarks: Any one of the four formats shown above may be
used, depending upon where execution is to resume:

RESIIME or RESIMF 0
Execution resumes at the statement which
caused the errvor.

RESUME MEXT
Execution resumes at the statement
immediately following the one which
caused the error.

RESIME <Tine number>
Execution resumes at <line numbher>

A RESIIME statement that is not in an error trap
routine causes a "RESUMF without error" message to
be printed.

Example: 10 OM ERROR GOTO onn

-

ann IF (ERR=230) AMD (ERL=9n) THEM PRINT "TRY
AGAIN":RESIME AN

Page I.4-100

Programmer Guide Statements

4.67

Format: RETURM <1ine>
Purpose: To bring you back from a subroutine.

Remarks:
line is the 1ine number of the program line you
wish to return to.

Although you can use RETIIRM <line> to return from
any subroutine, this enhancement was added to allow
non-local returns from the event trapping routines.
From one of these routines you will often want to
go back to your program at a fixed line number,
while still elimipating the GOS!UB entry the trap
created. 'lse non-local RETURM with care: any
GNSIIRs, WHILEs, or FORs that were active at the
time of the trap will remain active.

Page I1.4-101

Statements Programmer Guide

4.68

Format: SCREEM [model I, Tburst] [, lapagel I,vpagel 1]

Purpose: The Screen statement sets the screen attributes.

Remarks:
mode a valid numeric expression returning an
unsigned Integer value 0, 1 or 2. Valid

Modes are:

N - Alpha mode at current width (4n or
any, and IBM attribute
interpretation.

1 - 320x2nN medium resolution Graphics
mode.

2 - 640200 high resolution Graphics
mode.

10n - Alpha mode at current width (40 or
an) and Hyperion attribute

interpretation.

101 - 220 x 250 medium resolution
qgraphics mode.

1n2 - AAN x 250 high resolution graphics
mode.

burst ignored parameter . On other machines
using this BASIC, a value of 0 forces
color screens to black and white only.
Mon-zero values enable color images.

apage Active page. Valid in alpha only. A
numeric expression returning an unsigned
Integer in the range 0 to 7 for width
4n, or 0 to 2 for Width AN, Selects the
page to be written to.

vpage Visual Page. Valid in alpha only. Same
values as apage above, selects which
page is to be displayed on the screen.
May be different than the active page.

If all parameters are legal, the new screen mode is stored,
the screen is erased, Foreground color is set to white,
background color is set to Black.

If the new screen mode 1is the same as the previous mode,
nothing is changed.

Page I.4-102

Programmer Guide

If the mode
specified,
for viewing

Rules:

Example:

Note:

Statements

is Alpha, and only <apage> and <vpage> are
the affect is that of changing display pages

1. Any values entered outside of these ranges
will result in an "Illegal Function Call"
Error. Previous values are retained.

2. Any parameter may be omitted. Omi tted
parameters assume the old value.

1n SCREEM n,n,0,0 'Select Alpha mode,
'Active and visual page to N,
2n SCREEM ,,1,2 'Mode unchanged,
'use active page 1, but
'display page 2.

3n SCREEM 102 ‘Switch to high res graphic mode.
40 SCREEM 101 'Switch to medium res graphics mode.
50 SCREEM ,0 'Medium res graphics, color off.

If the screem 1 or 1M1 1is currently selected
{medium resolution graphics), width A0 forces
screen 2 or 10?2, respectively.

If screen 2 or 102 1is currently selected (high

resolution graphics), width 40 forces screen 1 or
101, respectively.

Page 1.4-103

Statements Programmer Guide

Format: SOUMD freq,duration

Purpose: The SOIIND statement generates sound through the
speaker.

Remarks: freq is the desired frequency in Hertz. A
valid numeric expression returning an unsigned
Integer 1in the range 37 to 327A7.

duration 1is the desired duration in Clock ticks.
A valid numeric expression returning an unsigned
Integer in the range 0 to A5535.

Clock ticks occur 1R.2 times per second.

Rules: 1, If the duration is zero, any current SOUND
statement that is running is turned off. If
no SOUMD statement is running, SOUND x,0 has
no effect.

Example: 2500 SOUND RND*1000+37,2 'Creates random sounds.

Page 1.4-104

Programmer Guide Statements

4.70

Format: STOP

Purpose: To terminate program execution and return to
command level.

Remarks: STOP statements may be used anywhere in a program
to terminate execution. When a STOP is encountered,
the following message is printed:

Break in line nnnnn

Unlike the END statement, the STOP statement does
not close files.

BASIC always returns to command level after a STOP
is executed. Execution is resumed by issuing a CONT
command (see Section 1.3)

Example:
10 INPUT A,B,A
20 K=A"2%R 2:L=B 3/.2h
an STOP
40 M=C*¥+10N:PRINT M
RIM
214253
BREAK IM 2n
0k
PRINT L
30.7692
Ok
CONT
115.9
0Ok

Page 1.4-105

Statements Programmer Guide

Format: SWAP <variable>,<variable>
Purpose: To exchange the values of two variables.

Remarks: Any type of variable may be SWAPed (integer, single
precision, double precision, string), but the two
variables must be of the same type or a "“Type
mismatch" error results.

Example:

LIST

1n As=" ONE " : BS=" ALL " : C&="FOR"
20 PRINT AS CS BS
3N SHAP AS, BS
an PRINT AS C% BS
RUN
Ok

OME FOR ALL

ALL FOR ONE
0k

Page I.4-10A

Programmer Guide Statements

4.72

Format: As a statement:

TIMES = <string expression) To set the current
time.

As a variable:

<string expression> = TIMES To get the current
time.

Purpose: The TIME® statement may be used to set or retrieve
the current time.

Remarks: The current time is fetched and assigned to the
string variable if TIMES is the expression in a LET
or PRIMT statement.

The current time is reset if TIMES is the target of

a string assignment.

1. If <string expression> is not a valid string,
a "Type mismatch" error will result.

?. For <string expression> = TIMES, TIMES returns
an / character string in the form "hh:mm:ss"
where hh is the hour (PN to 22), mm is the
minutes (PN to K9), and ss is the seconds (0N
to 50).

2. For TIMES = <string expression>, <string
expression> may be one of the following forms:

a) "hh" Set the hour. Minutes and seconds
default to nn.

b) "hh:mm" Set the hour and minutes. Seconds
default to nn,

c) "hh:mm:ss" Sets the hour, minutes and
seconds.

If any of the values are out of range, an

“I11egal Function Call" error is issued. The
previous time is retained.

Page [.4-107

Statements Progr ammer Guide

Example:
TIMES = "nR.nn"
Ok
PRINT TIMES
n/:nn:na
ok

The following program displays the current date and
time on the 25th 1line of the screen and will
“chime" on the hour in the manner broadcast by WHWV,

10 KEY OFF:SCREEM N:WINTH 4n:CLS

20 LOCATE 25,5

an PRINT DATES,,TIMES

an SEC = VAL(MINS(TIMES,7,2))

50 IF SEC = SSEC THEM 20 FLSE SSEC = SEC
AN IF SEC = 0 THEM 1010

70 IF SEC = 30 THEM 1020

a0 IF SEC < 57 THEM 20

1000 SOUMD 10n0,2:60T0 20
1010 SOUND 2000,R:GOTO 20
1020 SOUHD 40N, 4 :GOTHD 20

Note: Changing TIMES within BASIC resets the Hyperion's
internal clock. This should be avoided. See the
TIME command in the Hyperion llser Guide for more
information.

Page I.4-1NR

Programmer Guide Statements

4.73

Format: WAIT <port number>, II,1]
where I and J are integer expressions

Purpose: To suspend program execution while monitoring the
status of a machine input port.

Remarks: The WAIT statement causes execution to be suspended
until a specified machine input port develops a
specified bit pattern. The data read at the port is
exclusive OR'ed with the integer expression 1, and
the AlD'ed with I. If the result is zero, BASIC
loops back and reads the data at the port again. If
the result is nonzero, execution continues with the
next statement. If J is omitted, it is assumed to
be zero.

CAUTION: It is possible to enter an infinite Toop with the
WAIT statement, in which case it will be necessary

to perform a system restart (power off, then back
on).

Example: 100 WAIT 22,2

Page 1.4-1n9

Statements Programmer Guide

4.74

Format: WHILE <expression>

[<loop statements>]
.~ HEND

Purpose: To execute a series of statements in a loop as long
as a given condition is true.

Remarks: If <expression> is not zero {i.e., true), <loop
statements> are executed until the WEMD statement
is encountered. RASIC then returns to the WHILF
statement and checks <expression>. If it is still
true, execution resumes with the statement
following the WEMD statement.

WHILE/WEMD loops may be nested to any 1level. Fach
WEMD will match the most recent WHILE. An unmatched
WHILE statement causes a "WHILE without WEND"
error, and an unmatched WEMD statement causes a
"WEMD without WHILE" error.

Example:
an 'BUBBLE SPNRT ARRAY AS
100 FLIPS=1 'FORCE OME PASS THRII LOOP
110 WHILE FLIPS
115 FLIPS=N
120 FOR I=1 TO J-1
120 IF AS$ (I)>A&{I+1) THEM
SWAP AS (I),AS(I+1):FLIPS=1
140 MEXT 1
180 WEND

Page I.4-110

Programmer Guide Statements

4.75

SRR

Format: WIDTH <size>
WIDTH <file no.>,<size>
WIDTH <dev>,<size>

Purpose: To set the printed line width in number of
characters for the terminal or line printer.

Remarks: <size> is the new width. It is a valid numeric
expression with a value in the range 1 to ?55. The
default width is 72 characters.

<file no.> is a valid numeric expression in the
range 1 to 4. This is the number of an OPEMed
device file.

<dev> is a valid string expression vreturning the
device identifier. Valid devices are: SCRM:, and
LPTLs.

If <value> is 255, the line width dis "infinite,"
that is, BASIC never inserts a carriage vreturn.
However, the position of the cursor of the print
head, as given by the P0S of LPNS function, returns
to zero after position 2K5.

Action: WIDTH <size>
or
WIDTH "SCRM:",<size>

Sets the Screen width. Only 40 or AN column width
is allowed.

HOTE: Changing the screen width causes the screen
to be cleared.

If the Screen is in Medium Resolution Graphics Mode
(SCREEM 1), WIDTH ®0 forces the screen into High
Res Graphics Mode (SCREEM ?).

If the Screen is in High Resolution Graphics Mode
[SCREEM 2), WIDTH a4n forces the screen into Medium
Res Graphics Mode (SCREEM 1).

WIDTH "LPT1:",<size>

llsed as deferred width assignment for the Line
Printer. This form of width stores the new width
value without actually changing the current width
setting. A subsequent OPEM “LPT1:" FOR OUTPUT AS
<number> will use this value for width while the

Page 1.4-171

Statements Programmer Guide

file is open.
WIDTH <file no.>,<size> (

If the file is open to LPT1:, the Line Printer's
width is 1immediately changed to the new size
specified. This allows the width to be changed at
will while the file is open. This form of WIDTH has
meaning only for LPT1:.

Rules: 1. Valid widths for the Screen are 40 and 8n.
Valid widths for the Line Printer are 1 to 255,

Any value entered outside of these ranges will
result in an "ITlegal Function CA11" error. The
previous value is retained.

2. Width has no affect for the ¥eyboard (XYBD:).

3. The maximum printer width of many printers is
AN, However, WINDTH does not complain about
values between 80 and 255.

4. Specifying WIDTH 255 for the Line Printer
(LPT1:) disables 1line folding. This has the
effect of infinite width.

. Changing SCREEM mode affects Screen width only
when moving between SCREEM 2 and SCREEM 1 or
SCREENM N,

Example:
10 WIDTH "LPT1:",75
20 OPEM “LPT1:" FOR OUTPUT AS #1

AN20 WIDTH #1,40

In the preceeding example, 1ine 10 stores a Line
Printer width of 75 characters per Tline.

Line 20 opens the file #1 to the LIne Printer and
sets the width to 75 for subsequent PRINT #1,...
statements. Line AN20 changes the current Line
Printer width to 40 characters per line.

SCREEM 1,1 Set Screen to Medium res. Color Graphics.
WIDTH 8N Change Screen to Hi-res. Graphics. (
WIDTH 4n Change Screen back to Medium res.

SCREEN n,1 Changes Screen to RNx25 Alpha Color Mode.

Page I.4-112

—

Programmer Guide Statements

Format: WRITET<1ist of expressions>]
Purpose: To output data at the terminal.

Remarks: If <list of expressions> is omitted, a blank 1line
is output. If <list of expressions> is included,
the values of the expressions are output at the
terminal. The expressions in the 1list may be
numeric and/or string expressions, and they must be
separated by commas.

When the printed items are output, each item will
be separated from the last by a comma. Printed
strings will be delimited by quotation marks. After
the last item in the 1ist is printed, BASIC inserts
a carriage return/line feed.

WRITE outputs numeric values wusing the same format
as the PRINT statement.

Example:
10 A=A0N:B=00:C$="THAT'S ALL"
20 WRITE A,B,CS
RN
’0, Qn,"THAT'S ALL"
0k

page 1.4-113

Statements Programmer Guide

4.77

Format: WRITE#<file number>,<1ist of expressions>
Purpose: To write data to a sequential file.

Remarks: <file number> is the number under which the file
was OPEMed in "0" mode. The expressions in the list
are string or numeric expressions, and they must be
separated by commas.

The difference between WRITE# and PRINT# is that
WRITE# inserts commas between the items as they are
written to disk and delimits strings with quotation
marks. Therefore, it is not necessary for the user
to put explicit delimiters in the 1ist. A carriage
return/line feed sequence is inserted after the
last item in the list is written to disk.
WRITE# outputs data to a sequential file only,
while PRINT# may be used with a sequential or
random file.

Example: Let AS="CAMERA" and BS$="93fN4-1", The statement: (
WRITE#1,A%,B4
writes the following image to disk:
|‘CA'4ERAII = " 936“&_1 n
A subsequent IMPUT# statement, such as:

INPUT31,AS,BS

would input "CAMERA" to A$ and "93AN4-1" to BS.

Page I.4-114

Prograrmer Guide Functions

h.1

Format: ARS(x)
Purpose: Returns the absolute value of the expression x.
Remarks: X may be any numeric expression

The absolute value of a number is always positive
or zero.

Example: (¥
PRIMT ABS(7*(-R))
2R

o

The absolute value of -3% is positive 35.

bage 1.5-1

Functions Programmer Guide

5.2

Format: ASC(x%)

Purpose: Returns the ASCII code for the first character of
string xS.

Remarks: x$ may be any string expression

The result of the ASC function is a numerical value
that is the ASCII code of the first character of
the string x¢. (See "Appendix A. ASCII Character
Codes" for ASCII codes.) If x$& is null, an
"I11egal function call" error is returned.

The CHR¢ function 1is the 1inverse of the ASC
function, and it converts the ASCII code to a
character.

Example: (¥

10 ¥% = “TEST"
20 PRIMT ASCIY¥%)
RItM

fan

0¥

This example shows that the ASCII code for a
capital T is 84. Print ASC("TEST") would work just
as well.

Page 1.F-?

Programmer Guide Functions

Format: ATMIx)
Purpose: PReturns the arctangent of x.

Remarks: x may be a numeric expression of any numeric type,
but the evaluation of ATH 1is always performed in
single precision.

The ATH function returns the angle whose tangent is
x. The result 1is a value in radians in the range
-PI/? to PI/2, where PI=2,141R07,

If you want to convert radians to dearees, multiply
by 18n/P1,

Example: (Vv
ORINT ATM(?)
1.2400AR
ﬂlr‘

1N pI=2,141802
20 RADTANS=ATH(1)
N DEGREES=RADTANS*12Nn/P1
An PRINT RANTAMS PERRFES
Rim

.7ac2q02 AL
nv.

The first example shows the use of the ATM function
to calculate the arctangent of 2. The second
example finds the anale whose tangent s 1. It is
. 7782082 radians, or AR dearees.

Page I.R-7

Functions Proarammer Guide

5.4

Format: CnBL(x)
Purpose: Converts x to a double-precision number.

Remarks: x may be any numeric expression.

Rules for converting from one numeric precision to
another are followed as explained in Type
Conversion, section 1.2. Refer also to the CIMT and
CSMG functions for converting numbers to integer
and single-precision.

FExample: (¥
1N A = ABA,R7
2n PRTMT A:CNBLIAY
Rim
ARA RT ARA _R7NN1A27730A
nv

The value of CPBL/AY is only accurate to the second
decimal place after rounding. The extra dinits
have no meaning. This is because only two decimal
places of accuracy were supplied with A,

Page 1.5-4

Programmer Guide Functions

5.5

Format: CHRS(n)
Purpose: Converts an ASCIT code to its character equivalent.
Remarks: n must be in the range N to 2%R%,

The CHRE function returns the one-character string
with ASC'T code n. (ASCII codes are Tlisted in
“Appendix 6. ASCIT Character Codes.") CHRS is
commonly used to send a special character to the
screen or printer. For instance, the BFL
character, which beeps the speaker, might be
included as CHR(?) as a preface to an error
message (instead of using BFFP). Look under "ASC
Function", earlier in this section, to see how to
convert a character back to its ASCII code.

Example: 0¥
PRTMT CHR&(RR)
B
v

The next example sets function key F! to the string
"ANTO" joined with Enter. This is a good way to
set the function keys so the Fnter is automatically
done for you when you press the function key.

nv
VEV 1 "ANTO"+CHRS(13)
ov

The followina example is a program which shows all
the displayable characters, along with their ASCII
cndes, on the screen in AN-column width.

n CLS

20 FNR I=1 to 2Rk

an ' jgnore nondisplayable characters

A0 TF (I>A AND 1<14) QR 17>27 AMD J<32) THEM 100
&n COLOR n,7 ' black on white

AN PRINT NSTHR "#4". T+ ' 2_.digit ASCII code

70 COLOR 7,0 ' white on black

AN PRINT " n; CHR!{I]; " ||;

on IF POSIN)>75 THEM PRIMT ' go to next line

1NN MEYT 1

bage I.R-5

Functions Programmer Guide

Format: CINTIx)
Purpose: Converts x to an integer

Remarks: x may be any numeric expression. If x is not in
the range -22767 to 23?7A7, an “Overflow" error
occurs.

x is converted to an integer by rounding the
fractional portion.

See the FIY and IMT functions, both of which also
return integers. See also the CDBL and CSMG
functions for converting numbers to single- or
double-precision.

Example: O¥
PRINT CIMT(AR,RT}
3
ov
PRINT CINMT(-?,RQ)
-2

ov

Nbserve in both examples how rounding occurs.

Page J.K-R

Programmer Guide Functions

5.7

Format: CoS(x)
Purpose: PReturns the trigonometric cosine function.

Remarks: x 1is the angle whose cosine is to be calculated.
The value of x must be in radians. To convert from
degrees to radians, multiply the degrees by PI/190,
where PI=3.1A15802,

The calculation of C0S(x) is performed in single
precision.

Example: 0V
10 PI=3,141507
20 PRINT COS/PIN
N NEGREFS=18N
AN RANTANS=NEGREES*PI/1PN
RN PRIMT CNS(RADIANS)
RIIM
=3
-]
ov

This example shows, first, that the cosine of PI
radians is equal to -'. Then it calculates the
cosine of 1”N dearees by first converting the
degrees to radians (180 dearees happens to be the
same as P! radians).

Page 1.5-7

Functions Programmer Guide

f.R

Format: CSMGIx)
Purpose: Converts x to a single-precision number.

Remarks: x 1is a numeric expression which will be converted
to single-precision.

The rules outlined under "How BASIC Converts
Mumbers from One Precision to Another" in Chapter 2
are used for the conversion.

See the CINT and CDBL functions for converting
numbers to the integer and double-precision data

types.

Example: N¥
1N A# = 075,3421222¢#
2N PRIMT A#; CSHGIA#)
RIIM
a75,3421272 076,341
ov

The value of the double-precision number A# is

rounded at the seventh digit and returned as
CSMGIA#).

Page I1.5-8

Programmer Guide Functions

5.9

Format: CVI(?-byte string)
C¥S{A-byte string)
cvn{a-byte string!}

Purpose: Converts string variable types to numeric variable
types, after the string variable has been created
using M1, etc.

Remarks: Mumeric values that are read from a random file
must he converted from strings into numbers. CVI
converts a two-byte string to an integer. CVS
converts a four-hyte string to a sinale-precision
number. CVN converts an eight-byte strina to a
double-precision number.

The C¥I,CVvS, and CVN functions do MOT chanae the
bytes of the actual data. They only change the way
RASIC interprets those bytes.

See also MrIe, MvSs, M¥NE in this section, and
Appendix B.

Example: 70 FIELD #1,4 AS M&, 12 AS B¢
an GET #1
on v=CvslHt)

This example uses a random file (#1) which has
fields defined as in 1line 70, Line A0 reads a
record from the file. Line @n uses the C¥S function
to interpret the first four bytes (Me) of the
record as a single-precision number. Me was
probably originally a number which was written to
the file usina the NSt function.

bage I.5-°

Functions Programmer Guide

Format: EOF{ filenum)
Purpose: Indicates an end of file condition.

Remarks: Filenum is the number specified on the O0PEN
statement.

The EOF function is useful for avoiding an “Input
past end" error. FOF returns -1 (true) if end of
file has been reached on the specified file. A N
{zero) is returned if end of file has not been
reached.

EOF is meaningful only for a file opened for
sequential input from diskette or cassette, or for
a communications file. A -1 for a communications
file means that the buffer is empty.

Example: 1N OPEM “DATA" FOR IMPUT AS #1
20 C=n
20 IF EOF{1)} THEM EMD
4n THPUT #1 MIC)
&0 C=C+1: GOTO 2N

This example reads information from the sequential

file named DATA. Values are read into the array M
until end of file is reached.

Page [.5-1N

Programmer Guide

Format:
Purpose:

Remarks:

Example:

Functions

E¥P(x)

Calculates the exponential function.
X may be any numeric expression

This function returns the mathematical number e
raised to the x power. e is the base for natural
logarithms. An overflow occurs if x is greater than
AR, nN2nR0,

0¥

mnys=2

20 PRIMT E¥P{¥-1)
RIm

2.71R212

o

This example calculates e raised to the (2-1)
power, which is simply e.

Page I.R-11

Functions Prograrmer Guide

5.12

Format: FI¥tx)
Purpose: Truncates x to an integer.
Remarks: x may be any numeric expression.

FIX removes all digits after the decimal point and
returns the value of the digits to the left of the
decimal point.

The difference between FIY and I™T is that FIY does
not return the next lower number when x is
neqative.

Example: OV
PRIMT FIX(AR.R7)
AR
nv
PRIMT FIX(-2.R0)
&2
nlr‘

Mote that. FIY does not round the decimal part when
converting to an integer.

Page 1,5-17

Proarammer Guide Functions

5.13

Format: FRE(x)
FRE(x%)
Purpose:

Returns the number of bytes in memory that are not
being used by BASIC. This number does not include
the size of the reserved portion of the interpreter
workarea [normally 2.5 to Av-hytes).

Remarkss x and x¢ are dummy arquments.

Since strings 1in BASIC can have variable lengths
feach time you do an assianment to a string its
length may change), strings are manipulated
dynamically. For this reason, string space may
become fragmented.

FRE with any string value causes a housecleaning
before returning the number of free bytes.
Housecleaning is when RASIC collects all of its
useful data and frees up unused areas of memory
that were once used for strings. The data is
compressed so you can continue until you really run
out of space.

BASIC automatically does a housecleaning when it is
running out of usable workarea. You might want to
use FRE("") periodically to get shorter delays for
each housecleaning. Be patient: housecleaning may
take a while.

CLEAR,n sets the maximum number of bytes for the
BASIC workspace. FRE returns the amount of free
storage in the BASIC workspace. If nothing is in
the workspace, then the value returned by FPE will
be ?2.5¢ to A¥-bytes (the size of the reserved
interpreter workarea) smaller than the number of
bytes set by CLEAR.

Example: 0V
PRINT FRF(M)
1ARA2
nv

The actual value returned by FRE on your computer
may differ from this example.

Page I.5-1%

Functions Programmer Guide

Format: HEXS(n)

Purpose: Returns a strina which represents the hexadecimal
value of the decimal aroument.

Remarks: n 1is a numeric expression in the range -??7AfR to
REETE

1f n is negative, the two's complement form is
used. HEXS(-n) equals HFYS(FRRIA_pn),

NCTe is the function for octal conversion.

Example: The following example uses the HEYS function to
figure the hexadecimal representation for the two
decimal values which are entered.

ov
10 IPIT X
20 AS = HEYS(Y)
30 PRINT X “DECIMAL IS " AS “ HEXADECIMAL"
RIM
?
22 DECIMAL 1S 20 HFYADFCIMAL
nv
RiIM
2 1023
1023 DECTMAL IS 2FF HEYANECIMAL
ov

Page I.5-14

Programmer Guide Functions

5.18

Format: Mpin)
Purpose: Returns the byte read from port n.
Remarks: n must be in the range N to ARR?S,

IMp s the complementary function to the 0UT
statement (see "0O!I'T Statement" in this chapter).

mp performs the same function as the IM
instruction in assembly language. Refer to the IBM
Personal Computer Technical Reference manual for a
description of valid port numbers (I/0 addresses).

Exampie: 1NN A=INP(?5R)

This instruction reads a byte from port 2?55 and
assigns it to the variable A.

Page I.5-15

Functions Programmer Guide

5.6 LM

Format: nS=INPHTS(xM,M#1fiTenum])

Purpose: Returns a string of x characters, read from the
keyboard or from file number filenum.

Remarks: n is the number of characters to be read from the
file.

filenum 1is the file number used on the OPEM
statement. If filenum is omitted, the keyboard is
read.

If the keyboard is used for input, no characters
will be displayed on the screen. A1l characters
(including control characters) are passed through,
except Ctr1+Brk, which 1is used to interrupt the
execution of the INPITS function. When responding
to IMPITS from the keyboard, it is not necessary to
press <Rtn>.

The IMPUT® function enables you to read characters
from the keyboard which are significant to the
BASIC Screen Line Editor, such as RubOut (ASCIT
decimal value - AR}, If you want to read these
special characters, you should use INPITS or
IMKEYS.

For communications files, the IMPUTS function is
preferred over the IMPUT# and LINE IMPUT#
statements, since all ASCII characters may be
significant in communications.

Example: The following program 1lists the contents of a
sequential file in hexadecimal:

10 OPEM "DATA" FOR IMPUT AS #1
20 1IF EOF(1) THEM 50

30 PRINT HEXS(ASC(IMPUTS(1,#1)));
4n GOTO 20

50 PRINT

AN END

The next example reads a single character from the
keyboard in response to a question.

100 PRINT "TYPE P TO PROCEED OR S TO STOP"
110 ¥S=INPHTS(1)

120 IF xs&="P" THEM RNO

120 IF X$="S" THEM 700 ELSE 1nn

Page I.5-1R

—

Programmer Guide Functions

Format:

Purpose:

Remarks:

Example:

INSTR(Tn, 1xS,yS)

Searches for the first occurrence of string y$ in x&
and returns the position at which the match is found.
The optional offset n sets the position for starting
the search in xS§.

n is a numeric expression in the range 1 to 255.

X%, y$ may be string variables, string expressions
or string constants.

If n>LEM(x%), or if x& is null, or if y$ cannot be
found, IMSTR returns 0. If y$ is null, IMSTR returns
n{or 1 if n is not specified).

If n is out of range, an "I1legal function call” error
will be returned.

ov
10 A$ = "ABCDEB"
zn BS = IlBll
a0 PRINT INSTR(AS,BS);INSTR(4,AS,BS)
RIN
2 A
ov

This example searches for the string "B" within the
string "ABCDEB". When the string is searched from
the beginning, "B" is found at position 2; when the
search starts at position 4, "B" is found at
position 6.

page 1.5-17

Functions Programmer Guide

Format: IMT(x}

Purpose: Returns the largest integer that 1is 1less than or
equal to x.

Remarks: x 1is any numeric expression.

This is called the "floor" function in some other
programming languages.

See the FIX and CIMT functions, which also return
integer values.

Example: OV
PRINT INT(45.67)
a5

ov
PRINT INT(-7.80)
=
ov

This example shows how IMT truncates positive

integers, but rounds negative numbers upward (in a
negative direction).

Page 1.h-1R

Programmer Guide

5.19

Format:

Purpose:

Remarks:

Example:

Functions

LEFTS(x$,n)

Returns the leftmost n characters of xS%.
x$ is any string expression.

n is a numeric expression which must be in the
range N to 255. It specifies the number of
characters which are to be in the result.

If n is greater than LEM(x$), the entire string
(x8) is returned. If n=N, the null string (length
zero) is returned.

Also see the MINS and RIGHTS functions.

o

10 AS = "CUSTNMER SIIPPORT"
2n Bt = LEFTS(AS,R)

an PRIMT Bg

RUM

SUPPORT

114

In this example, the LEFTS function is used to

extract the first eight characters from the string
"CIISTOMER SHPPORT".

Page 1.5-10

Functions Programmer Guide

5.20

Format: LEN(x%)
Purpose: Returns the number of characters in xt.
Remarks: x& is any string expression.

linprintable characters and blanks are included in
the count on the number of characters.

Example: 10 X$ = "DYMALOGIC"
20 PRIMT LEM({X%)
RIM
4]

oK
There are 9 characters in the string "DYMALOGIC".

Page 1.5-20

Programmer Guide Functions

5.21

Format: LoC(filenum)
Purpose: Peturns the current position in the file.

Remarks: filenum 1is the file number used when the file was
opened.

With random files, LOC returns the record number of
the last record read or written to a random file.

With sequential files, LOC returns the number of
records read from or written to the file since it
was opened. (A record is a 172 byte block of data.)
When a file 1is opened for sequential input, BASIC
reads the first sector of the file, so LOC will
return a 1 even before any input from the file.

For a communications file, LOC returns the number
of characters in the input buffer waiting to be
read. The default size for the input huffer is 25F
characters, but you can chanage this with the /C:
option on the BASIC command. If there are more than
255 characters in the buffer, LOC returns ?AR6,
Since a string is Timited to 255 characters, this
practical Timit alleviates the need for you to test
for string size before reading data into it. If
fewer than 286 characters remain in the buffer,
then LOC returns the actual count.

Example: 200 IF LOC(?)>50 THEM STOP

This first example stops the program if we've gone
past the 5Nth record in the file.

NN oHT #1,L0C(1)

The second example could be used to re-write the
record that was just read.

Page 1.R-21

Functions Programmer Guide

5.22

Format: LOF{ filenum)

Purpose: Returns the numher of bytes allocated to the file
(1ength of the file).

Remarks: filenum is the file number used when the file was
opened.

For diskette files created by BASIC, LOF will
return a multiple of 128, For example, if the
actual data in the file is 257 bytes, the number
RA will be returned. For diskette files created
outside BASIC (for example, by using EDLIM), LOF
returns the actual number of bytes allocated to the
file.

For communications, LOF returns the amount of free
space in the input buffer. That is,
size-L0OC(filenum)}, where size is the size of the
communications buffer, which defaults to 25 but
may be changed with the /C: option on the BASIC
command. 'lse of LOF may be used to detect when the
input buffer is getting full. In practicality, LOC
is adequate for this purpose.

Example: These statements will get the 1last record of the
file named BIG, assuming BRIG was created with a
record length of 1728 bytes:

1N OPEM “BIG" AS #1
?n GET #1,LOF(1)/12R

Page 1.5-22

Programmer Guide Functions

.23

Format: LOG(x)
Purpose: Returns the natural logarithm of x.

Remarks: x must be a numeric expression which is greater
than zero.

The natural logarithm is the logarithm to the base
e.

Example: The first example calculates the lngarithm of the
expression 45/7:

ov

PRIMT LOG(45/7)
1.8ANTR2

ov

The second example calculates the Tlogarithm of e
and of e2:

nv
£= 2.71R282
¥
? LOG(F)

1

o¥
? LOG(E*E)

2
o¥

Page I.5-22

Functions Programmer Guide

5.24

Format: LPOS(n)

Purpose: Returns the current position of the print head
within the printer buffer for LPT1:.

Remarks: n indicates which printer is being tested, as
follows:

N or 1 LPT):

? LPT1:
K] LPTA:

The LPNS function does not necessarily give the
physical position of the print head on the printer.

Example: In this example, if the 1ine length is more than &0
characters long we send a carriage return character
to the printer so it will skip to the next line.

100 IF LPOS(0)>A0 THEM LPRIMT CHRS(13)

Page I1.5-24

Programmer Guide Functions

5.25

Format: MIDS(<strfng expl>,nl,m])=¢<string exp?>

where 1<n<255 and N<m<255 and <string expl> and
<string exp2> are string expressions.

Purpose: To replace a portion of one string with another
string.

Remarks: The characters 1in <string expl>, beginning at
position n, are replaced by the characters in
<string exp2>. The optional m refers to the number
of characters from <string exp2> that will be used
in the replacement. If m is omitted, all of <string
exp2> is used. However, regardless of whether m is
omitted or included, the replacement of characters
never goes beyond the original length of <string
expl>.

Example: 10 AS="VAMSAS CITY, MD"
20 MINS(AS,14)="KS"
an PRIMT AS
RIM
YANSAS CITY, ¥S

Page I.5-25

Functions Programmer Guide

5.26

Format: MKIS (integer expression)
MrS$ (single-precision expression)
MKDS (double-precision expression)

Purpose: To convert numeric values to string values.

Remarks: Any numeric value that is placed in a random file
buffer with an LSET or RSET statement must be
converted to a string. MKIS converts an integer to
a 2-byte string. MvSS converts a single-precision
number to a 4-byte string. M¥DS converts a
double-precision number to an 8-byte string.

These functions differ from STRS in that they do
not actually change the bytes of the date, just the
way BASIC interprets those bytes.

Refer also to the CVI, C¥S, CVYD Functions.

Example: 90 AMT=(K+T)
100 FIELD #1, 8 AS DS, 20 AS NS
110 LSET DS§ = MYSE(AMT)
120 LSET NS = AS
130 PUT #1

page 1.5-2A

—

Programmer Guide Functions

5.27

Format: OCTS(X)

Purpose: To return a string which represents the octal value
of the decimal argument.

Remarks: X is a numeric expression in the range of -327A8 to
RRR3R.

If X is negative, the two's complement form is
used. That s, 0CTS(-X) 1is the same as
OCTS{ARR2A-X).

Refer to the HEX$& function for hexadecimal
conversion.

Example: PRINT OCT&(24) '

an
0k

Page 1.5-27

Functions Programmer Guide

5.28

Format: PEEK(T)}

Purpose: To return the byte read from the indicated memory
position.

Remarks: I is an dinteger in the range 0 to A5535. I is the
offset from the current segment as defined by the
DEF SEG statement, and indicates the address of the
memory location to be read. (Refer to DEF SEG
Statement)

The returned value will be an integer in the range
0 to 255.

PEEK is the complementary function to the POKE
statement.

Example: A=PEE¥{&HSA00)

Page 1.5-2R

Programmer Guide Functions

5.29

Format:

Purpose:

Remarks:

Example:

POIMT(x,y)

To return the color of the specified point on the
screen.

(x,y) are the coordiantes of the point.
Coordinates must be in absolute form.

10 SCREEN 2
20 IF POINT (1,1) = 0 THEM PRESET (1,1)

Page [.5-29

Functions Programmer Guide

5.30

Format: POS(I)

Purpose: To return the current cursor column position.

Remarks: The current horizontal (column) position of the
cursor is returned. The returned value will be in
the range of 1 to 40 or ! to 80, depending on the
current WIDTH setting.

Example: IF PDSIY)>AN THEM PRINT CHRS(13)

Page 1.5-30

Programmer Guide Functions

5.31

Format: nt = RIGHTS(x&,I)
Purpose: To return the rightmost n characters of string xS.
Remarks: x$% is any string expression.

If I=LEM(xS), x% will be returned. If I=N, the null
string (length zero) is returned.

Example:
10 AS="0TTAWA, ONTARIO"
20 PRINT RIGHTS(AS,7)
RitM
ONTARIOD
0k

Also see the MIDS and LEFTE functions.

Page I.5-31

Functions Programmer Guide

Format: RMDI{X)]
Purpose: To return a rundom number between 0 and 1.

Remarks: The same sequence of random numbers 1is generated
each time the program 1is RUMN unless the random
number generator is reseeded. (see RANDOMIZE).
However, X,0 always restarts the same sequence for
any given X.

X>N or X omitted generates the next random number
in the sequence. X=N repeats the last number
generated.

Example: 10 FOR I=1 TO &
20 PRINT INT{RMD*10N);
an NEXT
RUM
12 AR5 RA 72 170
0k

Page I.5-3?

Programmer Guide Functions

5.33

Format: X = SCREEM(row,col [,2])

Purpose: The SCREEM Function returns the ordinal of the
character from the screen at the specified row
(1ine) and column.

Remarks: x is a numeric variable receiving the ordinal
returned.

row 1is a valid numeric expression returning an
unsigned Integer in the range 1 to ?4.

col is a valid numeric expression returning an
unsigned Integer in the range 1 to 40 or 1 to RN
depending upon the width.

z is a vlid numeric expression returning a
boolean result.

The ordinal of the character at the specified
coordinates is stored in the numeric variable. If
the optional parameter <z> is given and non-zero,
the color attribute for the character 1is returned

instead.
Rules:

1. Any values entered outside of these ranges
will result in an "I1legal Function Call"
error.

Example:
100 X = SCREEM (1n,1n) 'If the character at 10,10 is

'A then return AR5,

110 X = SCREEM (1,1,1) 'Return the color attribute of

'the character in the unper
‘left hand corner of the screen.

Page 1.5-33

Functions Programmer Guide

Format: SGM(X)
Purpose: To return the sign of X
Remarks: If X>n, SGMIX) returns 1.
If X=0, SGM(X) returns 0.
If X<n, SGM(¥) returns -1.
Example: OM SGM(X)+2 GOTO 1n0,200,30N branches to 100. If X

is negative, 200 if X is 0 and 300 if X is
positive.

Page 1.5-34

Programmer Guide Functions

5.35

Format: SIN(X)
Purpose: Returns the trigonometric sine of X in radians.

Remarks: SIM(X) s calculated in single precision.
COS(X)=SIN(X+3.14158/2).

Example: PRINMT SIM(1.5)
0k

Page 1.5-35

Functions

5.36

Format:

Purpose:

Remarks:

Example:

Page 1.R-2R

SPACES(X)

Programmer Guide

To return a string of spaces of the length X.

The expression X is rounded to an integer and must

be in the range N to 255.
Refer also to the SPC function.

1IN FOR I =1T05K
20 X8 = SPACES(I)
an PRINT XS;1
AN NEXT I
RIN
1
2
3
q
R
0k

Programmer Guide Functions

Format: SPC(I)

Purpose: To print I blanks on the terminal.

Remarks: SPC may only be used with PRINT and LPRINT
statements. I must be in the range N to 255. A ';'
is assumed to follow the SPC(I) command.

If I>width, I is changed to (I mod width)

Example: PRIMT "OVER" SPC(15) "THERE"
g:ER THERE

Page I.5-37

Functions

5.38

Format:
Purpose:
Remarks:

Example:

Page 1.5-28

SNR(X)

To return the square root of X.

X must be >=0.

10 FOR X = 10 TO 25 STEP &

20 PRIMT ¥, SPR(X)

3an MEXT
RUM

10

15

20

25
0k

3.1/2278
3.R729R4

4,47213R
5

Programmer Guide

Programmer Guide Functions

5.39

Format: STRS(X)

Purpose: To return a string representation of the value of
X

Remarks: X is any numeric expression.
Refer also to the VAL function.
Example: 5 PRIMT LEM{STRS&(24))
1N PRIMT LEM(“34")
RIM

|
a

Page I1.5-39

Functions Programmer fuide

Format: STRIMGS(I,0)
STRIMGS(I,XS)

Purpose: To return a string of length T whose characters all
have ASCII code .1 or the first character of ¥&.

Remarks: I,J are in the range N to 255,
¥¢ is any string expression.
Example: 10 X& = STRINGS(1N,45)

20 PRIMT X¢ "MOMTHLY REPORT" Xt
RUM

Page 1.5-40

Programmer Guide Functions

5.41

Format: TAB(1)
Purpose: Spaces to position I on the terminal.

Remarks: If the current print position is already beyond
space I, TAB goes to that position on the next
Tine. Space 1 is the leftmost position, and the
rightmost position is the width minus one. I must
be in the range 1 to 255. TAB may only be used in
PRINT and LPRINT statements.

Example: 10 PRINT “MAME" TAB(25) "AMOUMT" : PRINT
20 READ AS,BS
30 PRINT AS TAB(25) BS
AD DATA “"G. T. JOMES","2R.00"

RUM

MAME AMDUMT
G. T. JOMES £2R.00
Nk

Page I1.5-41

Functions Programmer Guide

5.42

Format: TAMIX)
Purpose: Returns the tangent of X in radians.
Remarks: TAM(X) is calculated in single precision.

Example: 10 Y = N*TAN(X)/2

page 1.5-42

Programmer Guide Functions

5.43

Format: USRM<digit>1(X)

Purpose: Calls the assembly 1language subroutine with the
argument X.

Remarks: <digit> is in the range 0 to @ and corresponds to
the digit supplied with the DEF 1ISR statement for
that routine. If <digit> is omitted, USRD is
assumed.

T*SIN(Y)
ISR(B/?)
1ISR(B/3)

Example: 40
50
0

= s o« OO
nnwu

Page I1.5-43

Functions

5.44

Format:
Purpose:

Remarks:

Example:

page 1.5-44

Programmer Guide

VAL(XS)

To return the numerical value of string XS.

The VAL function also strips leading blanks, tabs,
and linefeeds from the argument string. For example

VAL(" -3)
returns -3.

Refer to the STRS function for numeric to string
conversion.

10 READ TITLES,CITVS,STATES,ZIPS

20 IF VAL(ZIPS$)<annnn NR VAL(ZIPS)>06RAQ THEM PRIMT
TITLES TAB(25) “ouT OF STATE* 30 IF
VAL<ZIPS)>=9NR01 AND VAL(ZIPS)<=00R15 THEM PRIMT
TITLES TAB(25) "LONG BEACH"

£

Proarammer Guide Functions

5.45

Format: VARPTRS(variable)

Purpose: Returns a character form of the address of a
variable in memory. It is primarily for use with
PLAY and DRAW 1in programs that will later be
compiled.

Remarks:
VARPTRS is a new function in BASIC release 1.10.

variable is the name of a variable existing in the
program.

VARPTRS returns a three-byte string in the form:

Byte N Byte 1 Byte 2

type Tow byte of high byte of
variable variable
address address

type indicates the variable type:

2 integer

3 string

4 single-precision

8 double-precision

The returned value is the same as:
CHRS(type)+MKISIVARPTR(variable))

You can use VARPTRS to indicate a variable name in
the command string for PLAY or DRAW. For example:

Release 1.00 1.10 Equivalent
PLAY"XAS;" PLAY"X"+VARPTRS(AS)
PLAY"0=1I;" PLAY"0="+VARPTRS(T)

Page I1.5-1%

Programmer Guide ASSEMBLER

MACRO ASSEMBLER

Macro Assembler will create, on command, a 1isting file and a
cross-reference file. The 1isting file contains the beginning
relative addresses (offsets from segment base) assigned to
each 1instruction, the machine code translation of each
statement (in hexadecimal values), and the statement itself.
And, the 1listing contains a symbol table which shows the
values of all symbols, 1labels, and variables, plus the names
of all macros. The 1isting file receives the default filename
extension .LST.

The cross reference file contains a compact representation of
variables, labels, and symbols. The cross reference file
receives the default filename extension .CRF. When this cross
reference file 1is processed by CREF, the file is converted
into an expanded symbol table that Tists all the variables,
labels, and symbols in slphabetical order, followed by the
Tine number of in the source program where each 1is defined,
followed by the line numbers where each is used in the
program. The final cross reference 1isting receives the
filename extension .REF. (Refer to the CREF chapter for
further explanation and instructions.)

Ir.1-1

ASSEMBLER Programmer Guide

source
SR,
v > listing
MACRO-86 .LST
S
1isting
o R

CREF

=
object
.0BJ =i
e

I1.1-2

—

Programmer Guide ASSEMBLER

INTRODUCTION

Features and Benefits of Macro Assembler

Nynalogic's Macro Assembler is a very powerful assembler for
the Hyperion. Macro Assembler incorporates many features
usually found only in large computer assemblers. Macro
assembly, conditional assembly, and a variety of assembler
directives provide all the tools necessary to derive full use
and full power from your Hyperion. Even though Macro Assembler
is more complex than any other microcomputer assembler, it is
easy to use.

Macro Assembler produces relocatable object code. Each
instruction and directive statement is given a relative offset
from its segment base. The assembled code can then be Tinked,
using LIM¥, to produce relocatable, executable object code.
Relocatable code can be loaded anywhere in memory. Thus, the
program can execute where it is most efficient, not only in a
fixed range of memory addresses.

In addition, relocatable code means that programs can be
created in modules, each of which can be assembled, tested,
and perfected individually. This saves recoding time because
testing and assembly is performed on smaller pieces of program
code. Also, all modules can be error free before being linked
together into larger modules or into the whole program. The
program is not a huge monolith of code.

11.1-3

ASSEMBLER Programmer Guide

A
JL;:———;, J, F
HOD 1 MDD 2 MOD 3
Individual modules
can be edited and
4 Macro Assembler assembled until they
A work correctly

When the individual
modules are ready,
they can be linked
singly or into one
or more larger modules

full or part
program file

I1.1-4

Programmer Guide ASSEMBLER

Macro Assembler supports Microsoft's complete RNRND macro
facility, which is 1Intel R0RN standard. The macro facility
permits the writing of blocks of code for a set of
instructions used frequently. The need for recoding these
instructions each time they are needed is eliminated.

This block of code is given a name, called a macro. The
instructions are the macro definition. Each time the set of
instructions 1is needed, instead of recoding the set of
instructions, a simple "call" to the macro is placed in the
source file. Macro Assembler expands the macro call by
assembling the block of dnstructions into the program
automatically. The macro call also passes parameters to the
assembler for use during macro expansion. The use of macros
reduces the size of a source module because the macro
definitions are given only once, then other occurrences are
one line calls.

Macros can be "nested", that is, one macro may be called from
inside another macro. Mesting of macros is limited only by
memory.

The macro facility includes repeat, indefinite repeat, and
indefinite repeat character directives for programming repeat
block operations. The MACRO directive can also be used to
alter the action of any instruction or directive by using its
name as the macro name. When any instruction or directive
statement is placed in the program, Macro Assembler checks
first the symbol table it created to see if the instruction or
directive is a macro name. If it is, Macro Assembler "expands"
the macro call statement by replacing it with the body or
instructions in the macro's definition. If the name is not
defined as a macro, Macro Assembler tries to match the name
with an instruction or directive. The MACRD directive also
supports local symbols and conditional exiting from the block
if further expansion is unnecessary.

[1.1-5

ASSEMBLER Programmer Guide

statement
statement
statement
macro call When the assembler
statement > encounters a macro

call, it finds the
MACRO block and
replaces the call
with the block of
* statements that

define the macro
name MACRO x
EHDM t}
name MACRD x
name 1,2 4————— Nested MACRO call:
_______ name defined else-
_______ where as a macro,
_______ is "expanded"
_______ during assembly,
EMDM as shown above.

11.1-6

Programmer Guide ASSEMBLER

Macro Assembler supports an expanded set of conditional
directives. Directives for evaluating a variety of assembly
conditions can test assembly results and branch where
required. linneeded or unwanted portions of code will be left
unassembled. Macro Assembler can test for blank or nonblank
arguments, for defined or not-defined symbols, for
equivalence, for first assembly pass or second, and Macro
Assembler can compare strings for identity or difference. The
conditional directives simplify the evaluation of assembly
results, and make programming the tested code for conditions
easier as well as more powerful.

Macro Assembler's conditional assembly facility also supports
conditionals inside conditionals ("nesting"). Conditional
assembly blocks can be nested up to 255 levels.

I1.1-7

ASSEMBLER

If the condition —

in the expression
{shown by <exp
true>) is true,
the IF block is
assembled up to
ELSE, then skips
to EMDIF. If no
ELSE, then simply
assemble the
whole conditional
block

statement
statement
statement
IF <exp true>

EMDIF
statement
statement

4y

X}

Programmer Guide

~If the condition

in the expression
is false, Macro

Assembler skips to
ELSE, then resumes

assembly at the next

statement. If ELSE
is not used, skips

to EMDIF and resumes

assembly with next
statement.

1] .
IF =i
Mesting of conditionals
IF i is allowed; up to 2R%
------ Tevels
EMDIF
ELSE
ENDIF
EMDIF

IT.1-8

Programmer Guide ASSEMBLER

Macro Assembler supports all the major RNAD directives found
in Microsoft's MACRO-80 Macro Assembler. This means that any
conditional, macro, or repeat blocks programmed under MACRO-R0
can be used under Macro Assembler. Processor instructions and
some directives (eg., .PHASE, CSEG, DSEG) within the blocks,
if any, will need to be converted to the R08F instruction set.
ATl the major MACRO-R0 directives (pseudo-ops) that are
supported under Macro Assembler will assemble as is, as Tlong
as the expressions to the directives are correct for the
processor and the program. The syntax of directives is
unchanged. Macro Assembler is upward compatible, with MACRO-RN
and with Intel's ASMRF, except Intel codemacros and macros.

Macro Assembler provides some relaxed typing. Some R808A
instructions take only one operand type. If a typeless operand
is entered for an instruction that accepts only one type of
operand (e.g., 1in the instruction PUSH [BX1,[BX] has no size,
but P!SH only takes a word), it seems wasteful to return an
error for a lapse of memory or a typographical error. When the
wrong type choice 1is given, Macro Assembler returns an error
message but generates the “correct" code. That is, it always
puts out instructions, not just MNOP's. For example, if you
enter:

Mov AL HOR LBL

you may have
meant one of v AL,BYTE PRR WORDLBL
three instructions:
HO AL, <other>
D" AX,WORDLBL

Macro Assembler generates instruction (:) because it assumes
that when you specify a register, you mean that register and
that size; therefore, the other operand is the "wrong size."”
Macro Assembler accordingly modifies the ‘“wrong" operand to
fit the register size (in this case) or the size of whatever
is the most 1ikely ‘“correct" operand in an expression. This
eliminates some mundane debugging chores. An error message is
still returned, however, because you may have misstated the
operand the Macro Assembler assumes is "correct."

I1.1-9

ASSEMBLER Programmer Guide

Overview of Macro Assembler Operation

The first task is to create a source file. Ilse FDLIN (the
resident editor in DDS), to create the Macro Assembler source
file. Macro Assembler assumes a default filename extension of
.ASM for the source file. Creating the source file involves
creating instruction and directive statements that follow the
rules and constraints described in this manual.

When the source file is ready, run Macro Assembler as
described in Section II-5. Refer to Section II.A for
explanations of any messages displayed during or immediately
after assembly.

EDLIN ———

£

messages e Ch 5
—1 MACRO-86
| .
Ch 6
I object]
| asw |

I1.1-10

Programmer Guide ASSEMBLER

Macro Assembler is a two-pass assembler. This means that the
source file is assembled twice. But slightly different actions
occur during each pass. During the first pass, the assembler
evaluates the statements and expands macro call statements,
calculates the amount of code it will generate, and builds a
symbol table where all symbols, variables, labels, and macros
are assigned values. During the second pass, tha assembler
fills in the symbol, variable, labels, and expression values
from the symbol table, expands macro call statements, and
emits the relocatable object code into a file with the default
filename extension .0B1. The .0BJ file 1is suitable for
processing with LINK. (The .0BJ file can be stored as part of
the user's 1library of object programs, which 1later can be
linked with one or more explanation and instructions).

The source file can also he assembled without creating an .0BJ
file. A1l other assembly steps are performed, but the object
code is not sent to disk. Only erroneous source statements are
displayed on the terminal screen. This practice is useful for
checking the source code for errors. It is faster than
creating an .0BJ file because no file creating or writing is
per formed. Modules can be test assembled quickly and errors
corrected before the object code is put on disk. Modules that
assemble with errors do not clutter the diskette.

I1.1-11

ASSEMBLER Programmer Guide

source
.ASM
statement
statement
b macro call
MACRO-66 » | —aee-
l statement
symbol -- def 4
symbol -- def :
variable --def | | c;meeaaea
variable -- def
label -- def
macro name
"""""""""" < exact amount
of wde to
be aenerated
PASS 2
source

.ASM

=
object
.0Bd

I1.1-12

Programmer Guide ASSEMBLER

I1.1-13

ASSEMBLER Programmer Guide

11.1-14

Programmer Guide ASSEMBLER

1.1 CREATING A MACRO ASSEMBLER SOURCE FILE

To create a source file for Macro Assembler, you need to use
an editor program, such as EDLIM, in Hyperion's D0S. You
simply create a program file as you would for any other
assembly or high-level programming language. lise the general
facts and specific descriptions in this section and the three
following sections when creating the file.

In this section, you will find discussions of the statement
format and introductory descriptions of its components. In
Section 3, you will find full descriptions of names:
variables, labels, and symbols. In Section 4, you will find
full descriptions of expressions and their components,
operands and operators. In Section R, you will find full
descriptions of the assembler directives.

1.1.1 General Facts About Source Files
Maming Your Source File

When you create a source file, you will need to name it. A
filename name may be any name that is legal for your operating
system. Macro Assembler expects a specific three character
filename extension, .ASM. Whenever you run Macro Assembler to
assemble your source file, Macro Assembler assumes that your
source filename has the filename extension .ASM. This is not
required. You may name your source file with any extension you
like. However, when you run Macro Assembler, you must remember
to specify the extension. If you use .ASM, you will not need
to specify the extension. (Because of this default action by
Macro Assembler, it is impossible to omit the filename
extension. When you assemble a source file without a filename
extension, Macro Assembler will assume that the source has a
.ASM extension because you would not be specifying an
extension. When Macro Assembler searches the diskette for the
file, it will not find the correct file and will either
assemble the wrong file or will return an error message
stating that the file cannot be found.)

I1.1-15

ASSEMBLER Programmer fuide

Mote, also, that Macro Assembler gives the object file it
outputs the default extension .0B:1. To avoid confusion or the
destruction of your source file, you will want to avoid giving
a2 source file an extension of .0BJ. For similar reasons, you
will also want to avoid the extensions .EXE, .LST, .CRF, and
.REF.

Legal Characters
The legal characters for your symbol names are:

A-Z 00 ? @ _ %
Only the numerals (N-9) cannot appear as the first character
of a name (a numeral must appear as the first character of a
numeric value). Additional special characters act as operators
or delimiters:

H {colon) segment override operator

- (period) operator for field name of Record or
Structure; may be used in a filename only if it
is the first character.

[1 (square brackets) around register names to
indicate value in address 1in register not value
(data) in register

() (parentheses) operator in DUP expressions and
operator to change precedence of operator
evaluation

< > (angle brackets) operators used around
initialization values for Records or Structure,
around parameters in IRP macro blocks, and to
indicate literals.

The square brackets and angle brackets are also
used for syntax notation 1in the discussions of
the assembler directives (section 1.4.2). When
these characters are operators and not syntax
notation, you are told explicitly; for example,
"angle brackets must be coded as shown."

I1.1-16

Programmer Guide ASSEMBLER

Humeric Motation

The default input radix for all numeric values is decimal. The
output radix for all listings is hexadecimal for code and data
items and decimal for line numbers. The output radix can only
be changed to octal radix by giving the /0 switch when Macro
Assembler is run (see Section 1.5.3, Command Switches). The
input radix may be changed two ways:

1. The .RADIX directive (see Section 1.4.2.1, Memory
Directives)

2. Special notation append to a numeric value:

Radix Range MNotation Example
Binary n-1 B Nn111n100B
Octal n-7 N or 73RN
0 (letter) A21N
Decimal n-q {none) 93R4 (default)
or D a14an

{when .RADIX directive
changes default radix
to not decimal.)

Hexadecimal n-Q H NFFH
A-F RNH
(first character must
be numeral in range 0-9)

11.1-17

ASSEMBLER Programmer Guide

What's in a Source File?

A source file for Macro Assembler consists of instruction
statements and directive statements. Instruction statements
are made of BNR6 instruction mnemonics and their operands,
which command specific processes directly to the R086
processor. Directive statements are commands to Macro
Assembler to prepare data for use in and by instructions.

Statement format is described in Section 1.4.2.1. The parts of
a statement are described in Sections 1.3-1.A and in Sections
3 - 5. Statments are usually placed in block of code assigned
to a specific segment (code, data, stack, extra). The segments
may appear in any order in the source file. Within the
segments, generally speaking, statements may appear 1in any
order that creates a valid program. Some exceptions to random
ordering do exist, which will be discussed under the affected
assembler directives.

Every segment must end with an end segment statement (ENDS),
every procedure must end with an end procedure statement
{EMDP), and every structure must end with an end structure
statement (EMDS). Likewise, the source file must end with an
EMD statement that tells Macro Assembler where program
execution should begin.

Section 1.3.1, Memory Organization, describes how segments,
groups, the ASSIME directive, and the SEG operator relate to
one another and to your programming as a whole. This
information is important and helpful for developing your
programs. The information 1is presented in Section 4 as a
prelude to the discussion of operands and operators.

IT.1-1R

Programmer Guide ASSEMBLER

1.1.2 Statement Line Format

Statements in source files follow a strict format, which
allows some variations.

Macro Assembler directive statements consist of four "fields":
Mame, Action, Expression, Comment. For example:

Foo DB ND&EH ;create variable FOO
I T scontaining the value NDAEH
Name Action Expression ;Comment

Macro Assembler Instruction statements ususally consist of
three "fields": Action, Expression, Comment. For Example:

MoV CX,Fon ;here's the count number
Action Expression ;Comment

An instruction statement may have a Mame field under certain
circumstances; see the discussion of Mames below.

I1.1-19

ASSEMBLER Programmer Guide

Mames

The name field, when present, 1is the first entry on the
statement 1ine. The name may begin in any column, although
mormally names are started in column one.

Mames may be any length you choose. However, Macro Assembler
considers only the first 31 characters significant when your
source file is assembled.

One other significant use for names is with the MACRO
directive. Although all the rules covering names, described in
Section 3 apply the same to MACRO names, the discussion of
macro names 1is better left to the sections on the macro
facility.

Macro Assembler supports the use of names in a statement line
for three purposes: to represent code, to represent data, and
to represent constants.

To make a name represent code, use:

HMAME: followed by an directive, instruction, or nothing at
all

NAME LABEL MEAR (for use inside its own segment only)

HAME LABEL FAR (for use outside its own segment)

EXTRN MAME:NEAR (for use outside its own module but inside
its own segment only)

EXTRN MAME:FAR (for use outside its own module and segment)

To make a name represent data, use:

MAME LABEL <size> (BYTE, WORD, etc.)
HAME Dx <exp>
EXTRM MAME:<size> (BYTE, WORD, etc.)

To make a name represent a constant, use:

MAME EONII <constant>

MAME = <constant>

NAME SEGMENT <attributes>
HAME GROIIP <segment-names>

I71.1-20

Programmer Guide ASSEMBLER

Comments

Comments are never required for the successful operation of an
assembly language program, but they are strongly recommended.

If you use comments in your program, every comment on every
1ine must be preceded by a semicolon. If you want to place a
very long comment in your program, you can use the COMMEMT
directive. The COMMENT directive releases you from the
required semicolon on every line (refer to COMMEMT in Section
1.4.2,1),

Comments are used to document the processing that is supposed
to happen at a particular point in a program. When comments
are used in this manner, they can be useful for debugging, for
altering code, or for updating code. Consider putting comments
at the beginning of each segment, procedure, structure,
module, and after each line 1in the code that begins a step in
the processing.

Comments are ignored by Macro Assembler. Comments do not add
to the memory required to assemble or to run your program,
except in macro blocks where comments are stored with the
code. Comments are not required for anything but human
understanding.

Action

The action field contains either an 80Rf instruction mnemonic
or a Macro Assembler directive. Refer to Section 1.4.1 for
some general discussion. The Macro Assembler directives are
described in detail in Section 1.4.2.

If the name field is blank, the action field will be the first
entry in the statement format. In this case, the action may
appear starting in any column, 1 through maximum line Tength
{Tess columns for action and expression).

The entry in the action field either directs the processor to
perform a specific function or directs the assembler to
perform one of its functions. Instructions command processor
actions. An instruction my have the data and/or addresses it
needs built into it, or data and/or addresses may be found in
the expression part of an instruction. For example:

I1.1-21

ASSEMBLER

[opcode] [operand] [datal
fdata}

[opcode] [operand| [data]

supplied

supplied of found

supplied = part of the instruction

found = assembler inserts data and/or address

information provided by expression
statements.

Programmer Guide

from the

instruction

(opcode is the action part of an instruction)

Directives give the assembler directions for
listing

organization, conditional assembly,
reference control, and definitions.

IT.1-22

1/0, memory
and cross

Programmer Guide ASSEMBLER

Expressions

The expression field contains entries which are operands
and/or combinations of operands and operators.

Some instructions take no operands, some take one, and some
take two. For two operand instructions, the expression field
consists of a destination operand and a source operand, in
that order, separated by a comma. For example:

[opcode| [dest-operand] , [source-operand]

For one operand instructions, the operand is a source or a
destination operand, depending on the instruction. If one or
both of the operands is omitted, the instruction carries that
information in its internal coding.

Source operands are immediate operands, register operands,
memory operands, or Attribute operands. Destination operands
are register operands and memory operands.

For directives, the expression field usually consists of a
single operand. For example:

[directive| |operand]

A directive operand is a data operand, a code (addressing)
operand, or a constant, depending on the nature of the
directive.

For many instructions and directives, operands may be
connected with operators to form a longer operand that 1looks
like a mathematical expression. These operands are called
complex. llse of a complex operand permits you to specify
addresses or data derived from several places. For example:

MoV FOOrBx1,AL

The destination operand 1is the result of adding the address
represent by the variable FAN and the address found in
register BX. The processor is instructed to move the value in
register AL to the destination calculated from these two
operand elements. Another example:

MoV AX,FON+R[BX]
In this case, the source operand is the result of adding the

value represented by the symbol FON plus 5 plus the value
found in the BX register.

I1.1-23

ASSEMBLER Programmer Guide

Macro Assembler supports the following operands and operators
in the expression field (shown in order of precedence):

Operands Operators

Immediate LENGTH, SIZE, WIDTH, MASK,
FIELD
(incl. symbols) £ (). o
Register
Memory segment override (:)
label
variables PTR, OFFSET, SEG, TYPE,
THIS,
simple
indexed HIGH, LOW
structures
Attribute * [/, MOD, SHL, SHR
override
PTR +, -{unary), -(binary)
:(seg)
SHORT EN, ME, LT, LE, GT, GE
HIGH
LOW NOT
value returning
OFFSET AND
SEG
THIS OR, XOR
TYPE
.TYPE SHORT, .TYPE
LENGTH
SIZE
record specifying
FIELD
MASK
WIDTH

HOTE

Some operators can be used as operands or as
part of an operand expression.

17.1-24

Programmer Guide

1.2 NAMES: LABELS, VARTIABLES AND SYMBOLS

Mames are used 1in several capacities throughout Macro
Assembler, wherever any naming is allowed or required.

Hames are symbolic representations of values. The values may
be addresses, data, or constants.

Mames may be any length you choose. Hovever, Macro Assembler
will truncate names Tonger than 21 characters when your source
file is assembled.

Mames may be defined and used in a number of ways. This
section introduces you to the basic ways to define and use
names. You will discover additional uses as you study the
sections on Expression and Action, and as you use Macro
Assembler.

Macro Assembler supports three types of names in statement
lines: labels, variables, and symbols. This section covers how
to define and use these three types of names.

1.2.1 Labels

Labels are names used as targets for JMP, CALL, and LOOP
instructions. Macro Assembler assigns an address to each label
as it is defined. When you use a label as an operand for JUMP,
CALL, or L0O, Macro Assembler can substitute the attributes of
the label for the Tabel name, sending processing to the
appropriate place.

Labels are defined one of four ways:

1. <name>:
llse a name followed immediately by a colon. This defines
the name as a MEAR label. <name>: may be prefixed to any
instruction and to all directives that allow a MName field.
<name>: may also be placed on a line by itself.
Examples:
CLEAR SCREEN: MOV AL,20H
Fon: = DB OFH
SUBROUTIMEZ:

2. <name> LABEL MEAR
<name> LABEL FAR

ASSEMBLER

11.1-25

ASSEMBLER Programmer Guide

llse the LABEL directive. Refer to the discussion of the
LABEL directive in Section 1.4.2.1, Memory Directives.

MEAR and FAR are discussed under Type Attribute below.
Examples:

FOO LABEL NEAR
GOD LABEL FAR

<name> PROC MEAR
<name> PROC FAR

Use the PROC directive. Refer to the discussion of the
PROC directive in Section 1.4.2.1, Memory Directives.

MEAR is optional because it is the default if you enter
only <name> PROC. MNEAR and FAR are discussed under the
Type Attribute below.

Example:

REPEAT PROC MEAR

CHECKING PROC :same as CHECYING PROC MEAR

FIMD CHR PROC FAR

EXTRM <name>:MEAR
EXTRN <name>:FAR

llse the EXTRN directive.
MEAR and FAR are discussed under the Type Attribute below.

Refer to the discussion of the EXTRM directive in Section
1.4.2.1, Memory Directives.

EXTRM FON:NEAR
EXTRN ZON:FAR

A label has four attributes: segment, offset, type, and the CS
ASSIIME in effect when the label is defined. Segment is the
segment where the 1label is defined. Offset is the distance
from the beginning of the segment to the label's Tocation.
Type is either NEAR or FAR.

Segment

Labels are defined inside segments. The segment must be
assigned to the CS segment register to be addressable. (The
segment may be assigned to a group, in which case the group
must be addressable through the CS register.) Therefore, the
segment (or group) attribute of a symbol is the base address

I1.1-26

Programmer Guide ASSEMBLER

of the segment (or group) where it is defined.

Offset

The offset attribute is the number of bytes from the beginning
of the label's segment to where the 1label is defined. The
offset is a 1A-bit unsigned number.

Type

Labels are one to two types: NEAR or FAR. MEAR labels are used
for references from within the segment where the 7label is
defined. MEAR 1labels may be referenced from more than one
module, as long as the references are from a segment with the
same name and attributes and has the same CS ASSIME.

FAR labels are used for references from segments with a
different CS ASSUME or if there is more than Af4K bytes between
the l1abel reference and the label definition.

MEAR and FAR cause Macro Assembler to generate slightly
different code. MEAR labels supply their offset attribute only
(a 2 byte pointer). FAR labels supply both their segment and
offset attributes (a 4 byte pointer).

11.1-27

ASSEMBLER Programmer Guide

1.2.2 Variables

Variables are names used in expression (as operands to
instructions and directives).

A variable represents an address where a specified value may
be found.

variable look much 1ike labels and are defined 1in some ways
alike. The differences are important.

Variables are defined three ways:

1. <name> <define-dir> ;no colon!
<name> <struc-name> <expression>
<name> <rec-name> <expression>

<define-dir> is any of the five Define directives:
DB,DW,ND,DN, DT

Example:
STARI_NO“E W ?

<struc-name> is a structure name defined by the STRIC
directive.

<rec-name> is a record name defined by the RECORD
directive.

Examples:

CORRAL STRIIC

.
.

ENDS
HORSE CORRAL <'SADDLE *>

Mote that HORSE will have the same size as the structure
CORRAL.

GARAGE RECORD CAR:R="p'
SMALL GARAGE n pHP(<'z'>)

Mote that SMALL will have the same size as the record
GARAGE.

See the Define, STRIC, and RECORD directives in Section

IT.1-2R

Programmer Guide ASSEMBLER

1.4.2.1, Memory Directives.

2. <name> LABEL <size>
llse the LABEL directive with one of the size specifiers.
<size> is one of the following size specifiers:
BYTE - specifies 1 byte
WORD - specifies 2 bytes
DWORD - specifies 4 bytes
NWORD - specifies 8 bytes
TBYTE - specifies 10 bytes
Example:
CIIRSOR LABEL WORD

See LABEL directive in Section 1.4.2.1, Memory Directives.

1. EXTRM <name>:<size>

Use the EXTRN directive with one of the size specifiers described
above. See EXTRM directive in Section 1.4.2.], Memory Directives.

Example:
EXTRM FOD:DWORD

As do labels, variables also have the three attributes segment,
offset, and type.
Segment and offset are the same for variables as for labels. The
type attribute is different.
Type
The type attribute is the size of the variable's location, as specified

when the variable is define. The size depends on which Define directive
was used or which size specifier was used to define the variable.

Directive Type Size
DB BYTE 1 byte
DW WORD 2 bytes
DD DWORD 4 bytes
Do NWORD R bytes
DT TBYTE 10 bytes

I1.1-29

ASSEMBLER Programmer Guide

1.2.3 Symbols

Symbols are names defined without reference to a Define {
directive or to code. Like variables, symbols are also used in 3
expression as operands to instructions and directives.

Symbols are defined in three ways:

1. <name> ENll <expression>

llse the EOIl directive. See EN) directive in Section
1.4.2.1, Memory Directives.

<expression> may be another symbol, and instruction
mnemonic, a valid expression, or any other entry (such as
text or indexed references).
Examples:

Fon EOU 7H

nn Enil Fon

?. <name> = <expression>

lise the equal sign directive. See Equal Sign directive in (
Section 1.4.2.1, Memory Directives. '

<expression> may be any valid expression.

Examples:
G = NFH
GOon = £+2
GO0 = GDO+FOD

3, EXTRM <name>:ABS

lIse the EXTRN directive with type ABS. See EXTRM directive
in Section 1.4.2.1, Memory Directives.

Example:
EXTRN BAZ:ABS

BAZ must be defined by an ENU or = directive to a valid
expression.

I1.1-30

Programmer Guide ASSEMBLER

SECTION 3
EXPRESSIONS: OPERANDS AMD OPERATORS

Section 1 provided a brief introduction to expressions.
Basically, expression is the term used to indicate values on
which an instruction or directive peforms its functions.

Every expression consists of at Tleast one operand (a value).
An expression may consist of two or more operands. Multiple
operands are joined by operators. The result is a series of
elements that look Tike a mathematical expression.

This chapter describes the types of operands and operators
that Macro Assembler supports. The discussion of memory
organization in a Macro Assembler program acts as a preface to
the descriptions of operands and operators, and as a link to
topics discussed in Section 2.

I1.1-31

ASSEMBLER Programmer Guide

1.3.1 MEMORY ORGANIZATION

Most of your assembly language program is written in segments.
In the source file, a segment is a block of code that hegins
with a SEGMEMT directive statement and ends with an ENDS
directive. In an assembled and linked file, a segment is any
block of code that is addressed through the same segment
register and is not more than F4k bytes long.

You should note that Macro Assembler Teaves everything to do
with segments to LIM¥. LIYK resolves all references. For
that reason, Macro Assembler does not check (because it
cvannot) if your references are entered with the correct
distance type. “alues such as OFFSET are also left to the
linker to resolve.

Although a segment may not be more than A4¥ bytes long, you
may, as long as you observe the A4¥ limit, divide a segment
among two or more modules. (The SEGMEMT statement in each
module must be the same in every aspect.

When the modules are 1linked together, the several segments
become one. References to 1labels, variables, and symbols
within each module acquire the offset from the beginning of
the whole segment, not just from the beginning of their
portion of the whole segment. (A1l divisions are removed.)

You have the option of grouping several segments into a group,
using the GROIP directive. When you group segments, you tell
Macro Assembler that you want to be able to refer to all of
these segments as a single entity. (This does not eliminate
segment identity, nor does it make values within a particular
segment less imemdiately accessible. It does make value
relative to a group base.) The value of grouping is that you
can refer to data items without worrying about segment
overrides and about changing segment registers often.

With this 1in mind, you should note that vreferences within
segments or groups are relative to a segment register. Thus,
until linking is complete, the final offset of a reference is
relocatable. For this reason, the OFFSET operator does not
return a constant. The major purpose of OFFSET is to cause
Macro Assembler to generate an immediate instruction; that is,
to use the address of the value instead of the value itself.

11.1-32

Programmer Guide ASSEMBLER

There are two kinds of referneces in a program:

1. Code vreferences - JMP, CALL, LOOPxx - These
references are relative to the address in the CS

register. (You cannot override this assignment.)
2. Data references - all other references - These

references are usually relative to the DS register,
but this assignment may be overridden.

When you give a forward reference in a program
statement, for example:

MOV AX,<ref>

Macro Assembler first looks for the segment of the reference.
Macro Assembler scans the segment registers for the SEGMENT of
the reference then the GROUP, if any, of the reference.
However, the use of the OFFSET operator always returns the
offset relative to the segment. If you want the offset
relative to a GROUP, you must override this restriction by
using the GROUP name and the colon operator, for example:
MOV AX, OFFSET <group-name>:<ref>

If you set a segment register to a group with the ASSUME
directive, then you may also override the restriction on
OFFSET by using the register name, for example:
MOV AX,OFFSET DS:<ref>
The result of both of these statements is the same.
Code labels have four attributes:

1. segment - what segment the label belongs to

2. offset - the number of bytes from the beginning of
the segment

a. type - MEAR or FAR

a, CS ASSUME - the CS ASSUME the label was coded under
When you enter a NEAR JMP or MEAR CALL, you are changing the
offset (IP) in CS. Macro Assembler compares the CS ASSIUME of
the target (where the 1label is defined) with the current CS

ASSIME. If they are different, Macro Assembler returns an
error (you must use a FAR JMP or CALL).

I1.1-32

ASSEMBLER Programmer Guide

When you enter a FAR JWP or FAR CALL, you are changing both
the offset (IP) in CS and the paragraph number. The paragraph
number is changed to the CS ASSIIME of the target address.

Let's take a common case. A segment called CODE; and a group
(called DGROUP) that contains three segments (called DATA,
COMST, and STACK).

The program statements would be:

DGROIIP GROIIP DATA,CONST,STACY
ASSUME CS:CODE,DS:DGROUP,SS:DGROUP,ES:DGRONIP
MOV AX,DGROLIP ;CS initialized by entry;
;as soon as possible, especially
;before an DS relative references

As a diagram, this arrangement could be represented as

follows:
it EE TR N O T BhEE TR SeiEE mam SRR TR S
l.......‘?.‘?.". EI
= i el s e, S [Sl i [e S o i s PR SR
LR LN
< 64K CONST
LS TACK

Given this arrangement, a statement like:

MOV AX,<variable>
causes Macro Assembler to find the best segment register to
reach this variable. (The "best" register is the one that
requires no segment overrides.)
A statement like:

MOV AX,0FFSET <variable>

11.1-34

Programmer Guide ASSEMBLER

tells Macro Assembler to return the offset of the variable
relative to the beginning of the variable's segment.

If this <variable> is in the COMST segment and you want to
reference its offset from the beginning of DGSROUP, you need a
statement like:

MOV AX,OFFSET DGROUP:<variable>

Macro Assembler 1is a two-pass assembler. During pass 1, it
builds a symbol table and calculates how much code is
generated but does not produce object code. If undefined
items are found (including forward references), asseumptions
are made about the reference so that the correct number of
bytes are generated on pass 1. Only certain types of errors
are displayed, errors involving items that must be defined on
pass 1. Mo 1isting is produced unless you give a /D switch
when you run the assembler. The /D switch produces a 1listing
for both passes.

On pass 2, the assembler uses the values defined in pass 1 to
generate the object code. Definitions of references during
pass 2 are checked against the pass 1 value, which is in the
symbol table. Also, the amount of code generated during pass
1 must match the amount generated during pass 2. If either is
different, Macro Assembler returns a phase error.

Because pass 1 must keep correct track of the relative offset,
some references must be known on pass 1. If they are not
known, the relative offset will not be correct.

The following references must be known on pass 1:

1. IF/IFE <expression>
If <expression> 1is not known on pass 1, Macro
Assembler does not know to assemble the conditional
block (or which part to assemble if ELSE s wused).
On pass 2, the assembler would know and would
assemble, resulting in a phase error.

IT.1-35

ASSEMBLER Programmer Guide

2. <expression> DUP(...)
This operand explicitly changes the relative offset,
so <expression> must be known on pass 1. The value
in parentheses need not be known because it does not
affect the number of bytes generated.

3. .RADIX <expression>
Because this directive changes the input radix,
constants could have a different value, which could
cause Macro Assembler to evaluate IF or DIIP
statements incorrectly.

The biggest problem for the assembler 1is handling forward
references. How can it know the kind of a reference which it
still has not seen the definition? This 1is one of the main
reasons for two passes. And, unless Macro Assembler can tell
from the statement containing the forward reference what the
size, the distance, or any other of its attributes are, the
assembler can only take the safe route, (generate the largest
possible instruction in some cases except for segment override
or FAR). This results in extra code that does nothing.
(Macro Assembler figures this out by pass 2, but it cannot
reduce the size of the instructions without causing an error,
so it puts out MOP instructions {QnH).)

For this reason, Macro Assembler includes a number of
operators to help the assembler. These operators tell Macro
Assembler what size instruction to generate when it is faced
with an ambiguous choice. As a benefit, you can also reduce
the size of your program by using these operators to change
the nature of the arguments to the instructions.

IT.1-36

Programmer Guide ASSEMBLER

Some Examples

MOV AX,FO0 ;FO0 = forward constant
This statement causes Macro Assembler to generate a move from
memory instruction on pass 1. By wusing the OFFSET operator,
we can cause Macro Assembler to generate an immediate operand
instruction.

MOV AX,OFFSET FOO ' OFFSET says use the address of FOO
Because OFFSET tells Macro Assembler to use the address of
FOO, the assembler knows that the value is immediate. This
method saves a byte of code.

Similarly, if you have a CALL statement that calls to a label
that may be in a different CS ASSUME, you can prevent problems
by attaching the PTR operator to the label:

CALL FAR PTR <forward-label>
At the opposite extreme, you may have a JMP forward that is
less than 127 bytes. VYou can save yourself a byte if you wuse
the SHORT operator.

JMP SHORT <forward-label>

However, you must be sure that the target is indeed within 127
bytes or Macro Assembler will not find it.

The PTR operator can be used another way to save yourself a
byte when using forward references. If you defined FOO as a
forward constant, you might enter the statement:

Mov TBX],F00
You may want to refer to FO0O0 as a byte immediate. In this
case, you could enter either of the statements (they are
equivalent):

Mov BYTE PTR [BX],F00

Mov [BX],BYTE PTR FOO

These statements tell Macro Assembler that FOO is a byte
immediate. A smaller instruction is generated.

I1.1-37

ASSEMBLER Programmer Guide

1.3.2 OPERANDS

An operand may be any one of three types: Immediate,
Registers, or Memory operands. There 1is no restriction on
comining the various types of operands.

The following 1ist shows all the types and the items that
comprise them:

Immediate
Nata items
Symbols

Registers

Memory operands
Direct
Labels
Variables
Nffset (fieldname)

Indexed
Base register
Index register
lconstant]
+displacement

Structure

IT.1-3R

Programmer Guide ASSEMBLER

1.3.2.1 Immediate Nperands

Immediate operands are constant values that you supply when
you enter a statement line. The value may be entered either
as a data item or as a symbol.

Instructions that take two operands permit an immediate
operand as the source operand only (the second operand in an
instruction statement). For example:

MOV AX,Q

Data Items

The default input radix 1is decimal. Any numeric values
entered with numeric notation appended will be treated as a
decimal value. Macro Assembler recognizes values in forms
other than decimal when special notation is appended. These
other values include ASCII characters as well as numeric
values.

Data Form Format Example

Binary XXXXXXXXB N111N0N1B

Octal xxx0 7350 (letter 0)
xxxN a12n

Decimal xxxxx ARR5 (default)

xxxxxD 100D (when .RADIX changes input
to nondecimal)

Hexadecimal xxxxH NFFFFH {first digit must be n-9)

ASCII 'xx' 'OM' (more than two with DB only;
mEat both forms are synonomous)

10 real xX.XXE+xx 25.23E-7 (floating point format)

1A real X...XR AF7ADEAOR (first digit must be 0-9;

The total number of digits
must be 8, 1A, or 20; or 9,
17, 21 if first digit is n)

Symbols
Symbols names equated with some form of constant information
may be used as immediate operands. llsing a symbol constant in

a statement is the same as using a numeric constant.
Therefore, using the sample statement above, you could enter:

I1.1-39

ASSEMBLER Programmer Guide

MOV AX,FOO
assume FOO was defined as a constant symbol. For example:

FOO ENII @

1.3.2.2 Register Operands

The BORG processor contains a number of registers. These
registers are identified by two-letter symbols that the
processor recognizes (the symbols are reserved).

The registers are appropriated to different tasks: general
registers, pointer registers, counter registers, index
registers, segment registers, and a flag register.

The general registers are two sizes: R bit and 1A bit. All
other registers are 16 bit.

The general registers are both 8 bit and 16 bit registers.
Actually, the 16 bit general registers are composed of a pair
of 8 bit registers, one for the low byte (bits 0-7) and one
for the high byte (bits R-18). Mote, however, that each 8 bit
general register can be used independently from its mate. In
this case, each R bit register contains bitso-7.

Segment registers are initialized by the user and contain
segment base values. The segment register names (CS, NS, SS,
ES) can be used with the colon segment override operator to
inform Macro Assembler than an operand 1is in a different
segment than specified 1in an ASSIME statement. (See the
segment override operation in 2.3.1, Attribute Operators.)

The flag register is one 1A-bit register containing nine 1 bit
flags (six arithmetic flags and three control flags).

Each of the registers (except segment registers and flags) can
be an operand in arithmetic and logical operations.

IT.1-40

Programmer Guide

Register/Memory Field Encoding:

MOD=11
R/M W=0 W=1
000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH SI
il BH DI

Register Mode

ASSEMBLER

IT.1-41

ASSEMBLER Proarammer Guide

EFFECTIVE ADDRESS CALCILATION

RfM MOD=00 MOD=01 MOD=10 {
onn BXJ1+[SI] TBX)+[SI1+DA} IBX1+[SI]+D16

0ol [BX]1+[DI] [BX]+TDI]+Da [BX1+[DI1]+D16

n10 [BPJ+ISI] TBPJ+[S1]+D8) [BP]+[SI]+D1A

011 [BP]+IDI] [BP1+[DI1+DA| TBP]+[DIJ+D1A

100 [SI] [SI1]+D8 S1 +D16

101 [D1] [DI1]+DA DI +D16

110 DIRECT ADDRESS| [BP]+DA BP +D16

111 [BX] [BX1+DB BX +D16

Note: DR = a byte value; D1A = a word value

Other Registers:

Segment: CS code segment

DS data segment

SS stack segment

ES extra segment
Flags: 6 1-bit arithmetic flags | 3 1-bit contro] ﬂagD

CF carry flag DF direction flag
flag

AF auxiliary flag TF trap flag

ZF zero flag

SF sign flag

MOTE

The BX, BP, SI, and DI registers are also
used as memory operands. The distinction
is: when these registers are enclosed in
square brackets [1, they are memory
operands, when they are not enclosed in
square brackets, they are register
operands. (See section 3.2.3, Memory
Operands).

I1.1-42

Programmer Guide ASSEMBLER

1.3.2.3 Memory Operands

A memory operand represents an address 1in memory. When
you use a memory operand, you direct Macro Assembler to
an address to find some data or instruction.

A memory operand always consists of an offset from a base
address.

Memory operands fit into three categories: those that use
a base or index register (indexed memory operands), those
that do not use a register (direct memory operands), and
structure operands.

Direct Memory Operands

Direct memory operands do not use registers and consist
of a single offset value. Direct memory operands are
Tabels, simple variables, and offsets.

Memory operands can be used as destination operands as
well as source operands for instructions that take two
operands. For example:

MOv AX,FOO
Mov Fo0,CX

I1.1-43

ASSEMBLER Programmer Guide

Indexed Memory Operands

Indexed memory operands use base and index registers,
constants, displacement values, and variables, often in
combination. When you combine indexed operands, you
create an address expression.

Indexed memory operands use square brackets to indicate
indexing (by a register or by registers) or subscripting
{for example FOO[5]). The square brackets are treated
1ike plus signs (+). Therefore,

FOO[5] is equivalent to FOO0+5
5[F00] is equivalent to 5+F00

The only difference between square brackets and plus
signs occurs when a register name appears inside the
square brackets. Then, the operand is seen as indexing.
The types of indexed memory operands are:

Base registers: [Bx1 [8P]

BP has SS as its default segment register; all
others have DS as default.

Index registers: [pI1 [sIl
[constant] immediate in square brackets [8]1, [F0O0]

+Displacement R-bit or 1A-bit value. !lsed only with another
indexed operand.

These elements may be combined in any order. The only restriction
is that neither two base registers nor two indexed registers can be
combined:

[BX+BP] ; illegal
[SI+DI] ; illegal

Some examples of indexed memory operand combination:
[BP+8]
[SI+BX1r4]
16[DI+BP+3]
ArFo0]-8
More examples of equivalent forms:

R[BXIISI]
BX+5[SI]

I1.1-44

Programmer Guide ASSEMBLER

[BX+SI+5]
[BX]A[SI]

I1.1-45

ASSEMBLER Programmer Guide

Structure Operands

Structure operands take the form <variable>,<field>

<variable> is any name you give when coding a statement 1ine that
initializes a Structure field. The <variable> may be an anonymous
variable, such as an indexed memory operand.

<field> is a name defined by a DEFINE directive within a STRUC
block. <field> is a typed constant.

The period (.) must be enclosed.

Example:
200 STRUC
GIRAFFE DB ?
Z00 EMDS

LONG_HECK 200 <16>

MoV AL,LGHG_ﬁECK.GIRAFFE

MOV AL,[BX].GIRAFFE ;anonymous variable
The use of structure operands can be helpful in stack operations.
If you set up the stack segment as a structure, setting BP to the

top of the stack (BP equal to SP), then you can access any value in
the stack structure by fieldname indexed through BP; for example:

BP .FLD6
Bp ¥ < sp
FLD1 \
/
FLD3 I FLD2)
. { FLD6 FLiM FLDS '2
/
FLD7 \}
N /

This method makes all values on the stack available all the time,
not just the value at the top. Therefore, this method makes the
stack a handy place to pass parameters to subroutines.

IT.1-46

Programmer Guide ASSEMBLER

1.3.3 OPERATORS

An operator may be one of four types: attribute, artihmetic,
relational, or logical.

Attribute operators are used with operands to override their
attributes, return the value of the attributes, or to isolate
fielsd of Records.

Arithmetic, relational, and logical operators are used to combine
or compare operands.

1.3.3.1 Attribute Operators

Attribute operators used as operands perform one of three
functions:

Override an operand's attributes,
Return the values of operand attributes,

Isolate record fields (record specific operators).

The following list shows all the attribute operators by type:

Override operators
PTR
colon (:) (segment override)
SHORT
THIS
HIGH
LOW

Value returing operators
SEG
OFFSET
TYPE
.TYPE
LENGTH
SIZE

RECORD specific operators
Shift count (Field name)
WINTH
MASK

I1.1-47

ASSEMBLER Programmer Guide

Override operators

These operators are used to override the segment, offset, type, |
or distance of variables and labels.

Pointer (PTR)
<attribute> PTR <expression>

The PTR operator overrides the type (BYTE, WORD, DWORD) or the
distance (MEAR, FAR) of an operand.

<attribute> is the new attribute; the new type or new distance.

<expression> is the operand whose attribute is to be overridden.

The most important and frequent use for PTR is to assure that Macro

Assembler understands what attribute the expression is supplosed
to have. This is expecially true for the type attribute. Whenever
you place forward references in your program, PTR will make clear
the distance or type of the expression. This way you can avoid
phase errors.

The second use of PTr is to access data by type other than the

type in the variable definition. Most often this occurs in the

structures. If the structure is defined as WORD buy you want to
access an item as a byte, PTR is the operator for this. However,
a much easier method is to enter a second statement that defines
the structure in bytes, too. This eliminates the need to use PTR
for every reference to the structure. Refer to the LABEL directive
in Section ??74.2.1, Memory Directives.

Examples:

CALL WOR PTR [BX] ISI]
MOV BYTE PTR ARRAY

ADD RYTE PTR F00,9

IT.1-48

Programmer Guide ASSEMBLER

Segment Override (:) (colon)

<segment-register>:<address-expression>
<segment-name>:<address-expression>
<group-name>:<address-expression>

The segment override operator overrides the assumed
segment of an address expression (which may be a lable, a
variable, or other memory operand).

The colon operator helps with forward references by
telling the asembler to what a reference is relative
(segment, group, or segment register).

Macro Assembler assumes that 1labels are addressable
through the current CS register. Macro Assembler assumes
that variable are addressable through the current DS
register, or possibly the ES register, by default. If the
operand is in another segment and you have not alerted
Macro Assembler through the ASSIME directive, you will
need to use a segment override operator. Also, if you
want to use a nondefault relative base (that is, not the
default segment register), you will need to use the
segment override operator for forward references. MNote
that if Macro Assembler can reach an operand through a
nondefault segment register, it will wuse 1it, but hte
reference cannot be forward in this case.

<segment-register> is one of the four segment register
names: CS, DS, SS, ES.

<segment-name> 1is a name defined by the SEGMENT
directive.

<group-name> is a name defined by the GROUP directive.
Examples:

MOV AX,ES:[BX+SI]

MOV CSEG:FAR_LABEL,AX

MOV AX,OFFSET DGROUP:VARIABLE

I1.1-49

ASSEMBLER Programmer Guide

SHORT
SHORT <label>

SHORT overrides NEAR distance attribute of lables used as
targets for the JMP instruction. SHORT tells Macro
Assembler that the distance between the JMP statement and
the <label> specified as its operand is not more than 127
bytes either direction.

The major advantage of using the SHORT operator is to
save a byte. MNormally, the <label> carries a 2-byte
pointer to its offset in its segment. Because a range of
256 bytes can be handled in a single byte, the SHORT
operator eliminates the need for the extra byte (which
would carry 0N or FF anyway). However, you must be sure
that the target is within 127 bytes of the JMp
instruction before using SHORT.

Example:

JMP SHORT REPEAT

REPEAT:

11.1-50

Programmer Guide ASSEMBLER

THIS
THIS <distance> THIS <type>

The THIS operator creates an operand. The value of the
operand depends on which argument you give THIS.

The argument to THIS may be:
1. A distance (NEAR or FAR)
2. A type (BYTE, WORD, or DWORD)

THIS <distance> creates an operand with the distance
attribute you specify, an offset equal to the current
loaction counter, and the segment attribute (segment base
address) of the enclosing segment.

THIS <type> creates an operand with the type attribute
you specify, an offset equal to the current Tocation
counter, and the segment attribute (segment base address)
of the enclosing segment.

Examples:
TAG ENU THIS BYTE same as TAG LABLE BYTE
SPOT_FHECK = THIS MNEAR same as SPOT_CHECK LABEL NEAR

11.1-51

ASSEMBLER Programmer Guide

HIGH,LOW
HIGH <expression> LOW <expression>

HIGH and LOW are provided for R0OARD assembly language
compatibility. HIGH and LOW are byte isolation operators.

HIGH isolates the high 8 bits of an absolut 1A-bit value
or address expression.

LOW isolates the low 8 bits of an absolut 16-bit value or
address expression.

Examples:
MOV AH,HIGH WORD_VALIE :get byte with sign bit
MOVE AL,LOW NFFFFH

IT.1-52

Programmer Guide ASSEMBLER

Value Returning Operators

These operators return the attribute values of the operands that
follow them but do not override the attributes.

The value returning operators take labels and variables as their
arguments.

Because variables in Macro Assembler have three attributes, you
need to use the value returning operators to isolate single
attributes, as follows:

SEG isolates the segment base address
OFFSET isolates the offset value
TYPE isolates either type or distance

LEMGTH and SIZE isolate the memory allocation

st6

SEG <label>
SEG <variable>

SEG returns the segment value (segment base address) of
the segment enclosing the label or variable.

Examples:

MOV AX,SEG VARIABLE MAME
MOV AX,<segment-variable>:<variable>

I1.1-53

ASSEMBLER Programmer Guide

OFFSET

OFFSET <label> OFFSET <variable>
OFFSET returns the offset value of the variable or label
within its segment (the number of bytes between the
sement base address and the address where the 7label or
variable is defined).

OFFSET is chiefly used to tell the assembler that the
operand is an immediate.

NOTE

OFFSET does not make the value a constant. Only
LINK can resolve the final value.

NOTE
OFFSET is not required with uses of the DW or
DD directives. The assembler applies an
implicit OFFSET to wvariables in address
expressions following DW and DD.
Example:
MOVE BX,0FFSET FON

You must be sure that the GROUP directive precedes any reference
to a group name, including its use with OFFSET.

IT.1-54

Programmer Guide ASSEMBLER

TYPE

TYPE <label>
TYPE <variable>

If the operand is a variable, the TYPE operator returns a
value equal to the number of bytes of the bariable type,

as follows:
BYTE =1
WORD = 2
DWORD = 4
OWORD = 8
TBYTE = 10

STRUC = the number of bytes declared by STRUC

If the operand is a label, the TYPE operator returns MEAR
(FFFFH) or FAR (FFFEH).

Examples:

MOV AX,(TYPE FOO_BAR) PTR [BX+SI]

I1.1-55

ASSEMBLER Programmer Guide

LEMGTH
LENGTH <variable>
LENGTH accepts only one variable as its argument.

LEMGTH returns the number of type units (BYTE, WORD,
DWORD, OWORD, TBYTE) allocated for that variable.

If the variable is defined by a DIIP expression, LENGTH
returns the number of type units duplicated; that is, the
number that precedes the first DIIP in the expression.

If the wvariable 1is not defined by a DIIP expression,
LENGTH returns 1.

Examples:
FOO DW 100 DUP(1)
MOVE CX,LEMGTH FOO ;get number of elements

;in array
sLEMGTH returns 100

BAZ DW 100 DUP(1,1n DIIP(?}))

LEMGTH BAZ 1is still 100,
regardless of the expression following DIP.

GO0 DD (7)

LEMGTH GOO returns 1 because only one unit is involved.

I1.1-56

Programmer Guide ASSEMBLER

SIZE
SIZE <variable>

SIZE returns the total number of bytes allocated for a
variable.

SIZE is the product of the value of LENGTH times the
value of TYPE.

Example:
FOO DW 100 DUP(1)

MOV BX,SIZE FOO ;get total bytes in array

SIZE = LEMGTH X TYPE
SIZE = 100 X WORD
SIZE = 100 X 2

SIZE = 200

I1.1-57

ASSEMBLER Programmer Guide

Record Specific operators
Record specific operators used to isolate fields in a record.

Records are defined by the RECORD directive (see Section 1.4.2.1,
Memory Directives). A record may be up to 16 bits long. The record
is defined by fields, which may be from ont to 16 bits 1long. To
isolate one of the three characteristics of a record fields, you
use one of the record specific operators, as follows:

Shift count number of bits from low end of record to low end of
field (number of bits to right shift the record to
lowest bits of record).

WIDTH the number of bits wide the field or record is (number
of bits the field or record contains)

MASK value of record if field contains its maximum value

and all other fields are zero (all bits in field
contain 1; all other bits contain n)

In the following discussions of the record specific operators, the
following symbols are used:

FOO a record defined by the RECORD directive FOO RECORD
FIELD1:3,FIELD2:A,FIELD3:7

BAZ a variable used to allocate FOO BAZ FOD < >.

FIELD1, FIELD2, and FIELD? are the fields of the
record F0O.

I1.1-58

Programmer Guide ASSEMBLER

Shift-count - (Record fieldname)
<record-fieldname>

The shift count is derived from the record fieldname to
be isolated.

The shift count 1is the number of bits the field must be
right shifted to place the lowest bit of the field in the
Towest bit of the record byte or word.

If a 1A-bit record (FOD) contains three fields (FIELD1,

FIELD2, and FIELD3), the record can be diagrammed as
follows:

i e s e e o A P O
FIELD1 FIELD2 FIELD3

FIELD1 has a shift count of 13.
FIELD?2 has a shift count of 7.
FIELD3 has a shift count of 0.

When you want to isolate the value in one of these
fields, you enter its name as an operand.

Example:
MOV DX,BAZ
MoV CL,FIELD2
SHR DX,CL

FIELD2 is now right shifted, ready for access.

11.1-59

ASSEMBLER Programmer Guide

MASK

MASK <record-fieldname>
MASK accepts a field name as its only argument.
MASK returns a bit-mask defined by 1 for bits positions
included by the field and 0 for bit positions not
included. The value return represents the maximum value
for the record when the field is masked.

Using the diagram used for shift count, MASK can be
diagrammed as:

|ﬂ'ﬂ ’ﬂ|l’l-|J.‘J.lm|Qlalnlglnlu'u < - —MASK
The MASK of FIELD2 equals 1FANH.
Example:

MOV DX,BAZ
AMD DX,MASK FIELD2

FIELD2 is now isolated.

I1.1-60

Programmer Guide ASSEMBLER

WIDTH

WIDTH <record-fieldname>

WIDTH <record>

When

a <record-fieldname> is given as the argument, WIDTH

returns the width of a record field as the number of bits
in the record field.

When

a <record> 1is given as the argument, WIDTH returns

the width of a record as the number of bits in the
record.

llsing the diagram under Shift count, WIDTH can be

diagrammed as: |

- |:a:i‘_i‘_i o '|:i:i:i“_i:i:i:

The WIDTH of FIELD1 equals 3. The WIDTH of FIELD2 equals
6. The WIDTH of FIELD3 equals 7.

Example:

MOVE CL,WIDTH FIELD2

The number of bits in FIELDZ is now in the count register.

IT.1-61

ASSEMBLER Programmer Guide

1.3.3.2 Arithmetic Operators

Eight arithmetic operators proved the common mathematical functions
(add, subtract, divide, multiply, modulo, negation), plus two shift
operators.

The arithmetic operators are used to combine operands to from an
expression that results in a data item or an address.

Except for + and - (binary), operands must be constants.
For plus (+), one operand must be a constant.
For minus (-), the first (left) operand may be a nonconstant, or

both operands may be nonconstants. But, the right may not be a
nonconstant if the left is constant.

* Multiply
/ Divide
Mon Modulo. Divide the 1left operand by the right

operand and return the value of the remainder
(modulo). Both operands must be absolut.

Example:

MOV AX,100 MOD 17
The value moved into AX will be OFH (decimal 15).

SHL Shift Left. SHL is followed by an 1integer which

specifies the number of bit positions the value is
to be Teft shifted.
Example:

MOV AX,0110B SHL 5
The value moved into AX will be N110000008 (0OCOH)

I1.1-62

Programmer Guide ASSEMBLER

- (Unary Minus) Indicates that following value is negative, as in a
negative integer.

+ Add. One operand must be a constant; one may be a
nonconstant.

- Subtract the right operand from the 1left operand.
The first (left) operand may be a nonconstant, or
both operands may be nonconstants. But, the right
may be a nonconstant only it the left is also a
nonconstant and in the same segment.

11.1-63

ASSEMBLER Programmer Guide

1.3.3.3 Relational Operators
Relational operators compare two constant operands.

If the relationship between the two operands matches the operator,
FFFFH is returned.

If the relationship between the two operands does not match the
operator, a zero is returned.

Relational operators are most often used with conditional
directives and conditional instructions to direct program control.

EO Equal. Returns true 1if the operands equal each
other.

NE Not Equal. Returns true if the operands are not
equal to each other.

LT Less Than. Returns true if the left operand is less
than the right operand.

LE Less than or Equal.Returns true if the left operand
is less than or equal to the right operand

GT Greater Than. Returns true if the left operand is
greater than the right operand.

GE Greater than or Equal. Returns true if the Teft
operand is greater than or equal to the right
operand.

IT1.1-64

Programmer Guide ASSEMBLER

1.3.3.4 Logical Operators
Logical operators compare two constant operands bitwise.

Logical operators compare the binary values of corresponding bit
positions of each operand to evaluate for the logical relationship
defined by the logical operator.

Logical operators can be used two ways:

1. To combine operands in a logical relationship. In this
case, all bits in the operands will have the same value
(either 0NN or FFFFH). In fact, it is best to use these
values for true (FFFFH) and false (nn0n) for the symbols
you will use as operands because in conditionals aything
nonzero is true.

2. In bitwise operations. In this case, the bits are
different, and the logical operators act the same as the
instructions of the same name.

HOT Logical MOT. Returns true if 1left operand is true
and right is false or if right is true and left is
false. Returns false if both are true or both are
false.

AMD Logical AMD. Returns true if both operators are
true. Returns false if either operator is false or
if both are false. Both operands must be absolute
values.

OR Logical OR. Returns true if either operator is true
of it both are true. Returns false is both
operators are false. Both operands must be absolute
values.

XOR Exclusive OR. Returns true 1if either operator is
true and the other is false. Returns false if both
operatos are true or if both operators are false.
Both operands must be absolute values.

I1.1-65

ASSEMBLER Programmer Guide

1.3.3.5 Expression Evaluation: Precedence of Operators

Expressions are evaluated higher precedence operators first, then
Teft to right for equal precedence operators.

Parentheses can be used to alter precedence.
For example:
MOV AX,1N1B SHL 2*2 = MOV AX,NN101000R
MOV AX,101B SHL (2*2) = MOV AX,N101000NB
SHL and * are equal precedence. Therefore, their functions are

performed in the order the operators are encountered (left to
right).

Precedence of Operators
A1l operators in a single item have the same precedence, regardless

of the order listed within the item. Spacing and 1ine breaks are
used for visual clarity, not to indicate functional relations.

1. LENGTH, SIZE, WIDTH, MAS¥
Entries inside: parenthesis ()
angle brackets < »
square brackets []
structure variable operand: <variable>.<field>
2. segment override operator: colon (:)
3. PTR, OFFSET, SEG, TYPE, THIS
4, HIGH, LOW
5. *, /, MODD, SHL, SHR
6. +, - (both unary and binary)
7. EN, NE, LT, LE, GT, GE
8. Logical MOT
a9, Logical AMD
10. Logical OR, XOR

11. SHORT, .TYPE

I11.1-66

Programmer Guide ASSEMBLER

SECTION 4
ACTION: INSTRUCTIONS AND DIRECTIVES

The action field contains either an ROARG instruction mnemonic or a
Macro Assembler directive.

Following a name field entry (if any), action field entries may
begin in any column. Specific spacing is not required. The only
benefit of consistent spacing is imporoved readability. If a
statement does not have a name field entry, the action field is the
first entry.

The entry in the action field either directs the processor to

perform a specific function or directs the assembler to perform one
of its functions.

11.1-A7

ASSEMBLER Programmer Guide

1.4.1 INSTRUCTIONS

Instructions command processor actions. An instruction may have the
data and/or addresses it needs built into 1it, or data and/or
addresses may be found in the expression part of an instrucion. For

example:
|.opcode| {operand| [data] [data]
{opcade] [oEerang {addr |addr|

supplied sup’;'l'ied Ir found
supplied = part of the instruction

found = assembler inserts data and/or address from the information
provided by expression in instruction statements.

{opcode equates to the binary code for the action of an
instruction)

This manual does not contain detailed descriptions of the R0NA6
instruction mnemonics and their characteristics. For this, you will
need to consult other text. For now, the following text exist:

1. Morse, Stephen P. The 8086 Primer. Rochelle Park, MJ:
Hayden Publishing Co., I9A0.

2. Rector, Russell and George Alexy. The RORG Book.
Berkeley, CA: Osbourne/McGraw-Hill, 19R0

3. The 808~ Family \User's Manual. Santa Clara, CA: Intel
Corporation, 19A0

I1.1-68

Programmer Guide ASSEMBLER

1.4.2 DIRECTIVES

Directives give the assembler directions for input and output,
memory organization, conditional assembly, 1isting and cross
reference control, and definitions.

The directives have been divided into groups by the function they
perform. Within each group, the directives are described
alphabetically.

The groups are:

Memory Directives
Directives in this group are wused to organize memory.
Because there is no "miscellaneous" group, the memory
directives group contains some directives that do not,
strictly speaking, organize memory, such as COMMENT.

Conditional Directives
Directives in this group are used to test conditions of
assembly before proceding with assembly of a block of
statements. This group contains all of the IF (and
related) directives.

Macro Directives
Directives in this group are used to create blocks of
code called macros. This group also includes some special
operators and directives that are used only inside macro
blocks. The repeat directives are considered macro
directives for descriptive purposes.

Listing Directives
Directives in this group are used to control the format
and, to some extent, the content of listings that the
assembler produces.

11.1-69

ASSEMBLER

Here below is an alphabetical
Macro Assembler supports:

ASSUME EVEN IRPC
EXITM

COMMENT EXTERN LABEL
GROUP .LFCOMND

DB .LIST

] IF

DN IFB MACRO

DT IFDEF

DW IFDIF MAME
IFE

ELSE IFIDM ORG

END IFNB %0UT

ENDIF IFNDEF

ENDM PAGE

ENDP IF1 PROC

ENDS IF2 PUBLIC

EON IRP PURGE

11.1-70

Programmer Guide

1ist of all the directives that

+RADIX
RECORD
REPT
.SALL
SEGMENT
.SFCOMD
STRUC
SUBTTL

. TFCOND
TITLE

«XALL
- XCREF
+XLIST

Programmer Guide

ASSEMBLER

1.4.2.1 Memory Directives

ASSUME

ASSUME <seg-reg>:<seg-name>[,...]

or

ASSUME MOTHING

ASSUME tells the assembler that the symbols in the
segment or group can be accessed using this segment
register. When the assembler encounters a variable, it
automatically assembles the variable reference under the
proper segment register. You may enter from 1 to 4
arguments to ASSI!IME.

The valid <seg-reg> entries are:
Cs, NS, ES, and SS.
The possible entries for <seg-name> are:

1. the name of a segment declared with the SEGMENT
directive

2. the name of a group declared with the GROUP directive

3. an expression: either SEG <variable-name> or SEG
<label-name> (see SEG operator, Section 1.3.2)

4, the key word NOTHING. ASSUME MOTHIMG cancels all

register assignments made by a previous ASSUME
statement.

I1.1-71

ASSEMBLER Programmer Guide

If ASSUME is not used or if NOTHING is entered for
<seg-name>, each reference to variables, symbols, labels,
and so forth in a particular segment must b prefixed by a
segment register. For example, DS:FO0 instead of simply
Foo.

Example:
ASSIIME DS:DATA,SS:DATA,CS:CGROUP,ES:NOTHIN

IT.1-72

Programmer Guide ASSEMBLER

COMMENT
(COMMENT<delim><text><delim>

The first non-blank character encountered after COMMENT
is the delimiter. The following <text> comprises a
comment block which continues until the next occurrence
of <delimiter>.

COMMENT permits you to enter comments about your program
without entering a semicolon (;) before each line.

If you use COMMEMNT inside a macro block, the comment
block will not appear on your listing unless you also
place the .LALL directive in you source file.

Example:

Using an asterisk as the delimiter, the format of the
comment block would be:

COMMENT =
any amount of text entered
here as the comment block
\ . * sreturn to normal mode

I1.1-73

ASSEMBLER Programmer Guide

NDEFIME BYTEDEFIME WORD
DEFTNE DOUBLEWORD

DEFINE OUADWORD

DEFTNE TEWBYTES

<varname> DB <exp>[,<exp>,...]
<varname> DW <exp>[,<exp>,...]
<yarname>)] <exp>[,<exp>,...]
<varname> Do <exp>{,<exp>,...]
<varname> DT <exp>l,<exp>,...]

The DEFIME directives are used to define variables or to
initialize portions of memory.

If the optional <varname> 1is entered, the DEFINE
directives define the name as a variable. If <varname>
has a dolon, it becomes a MNEAR Tlabel instead of a
variable. (See also, Section 1.2.1, Labels, and Section
1.2.2, variable.)

The DEFIME directives allocate memory in units specified
by the second 1letter of the directive (each define
directive may allocate one or more of its units at a
time):

DB allocates one byte (8 bits)

DW allocates one word (2 bytes)
DD allocates two words (4 bytes)
D0 allocates four words (8 hytes)
DT allocates ten bytes

<exp> may be one or more of the following:
1. a constant expression

2. the character ? for indeterminate initialization.
lisually the is used to reserve space without placing
any particular value into it. (It is the equivalent
of the DS pseudo-op in MACRO-RN).

3. an address expression (for DW and DD only)

4, an ASCII string (longer than 2 characters for DR
only)

R. <exp>DIIP(?)
When this type of expression is the only argument to
a define directive, the define directive produces an
uninitialized datablock. This expression with the ?
instead of a value results in a smaller object file
because only the segment offset is changed to
reserve space.

I1.1-74

Programmer Guide ASSEMBLER

6. <exp>DiP(<exp>l,...]1)
This expression, 1ike item 5, produces a data block,
but initialized with the value of the second <exp>.
The first <exp> must be a constant greater than zero
and must not be a forward reference.

Example - Define Byte (DB):

HIM BASE DB 16

FILTER DB ? ;initialized with
sindetermined value

OME CHAR DB ‘M

MULT CHAR DB 'MARC MIKE ZIBO PAUL BILL'

MSG DB 'MSGTEST', 13,10 ;message, carriage return,
;and linefeed
BUFFER DB 1N Dup(?) sindeterminate block
TABLE DB 100DUP(5 DUP(4),7)
;100 copies of bytes with values 4,4,4,4,4,7
HEW PAGE DB OCH ;form feed character
ARRAY DB 1,2,3,4,5,A,7

Example - Define Word (DW):

ITEMS W TABLE, TABLE+10, TABLE+20
SEGVAL DW NFFFOH

BSIZE DW 4 * 128

LOCATION DW TOTAL + 1

AREA W 100 DIP(?)

CLEARED DW &0 DUP(D)

SERIES DW 2 DUP(2,3 DIP(BSIZE))

;two words with the byte values

;?2,BSIZE,BSIZE,BSIZE,?,BSIZE,BSIZE,BSIZE
NISTAMCE Dw START TAB - EMD TAB

;difference of two labels is a constant

I1.1-75

ASSEMBLER

Example - Define Doubleword (DD):

DBPTR
SEC_PER_DAY
LIST

HIGH
FLOAT

il
)]
DD

DD
DD

TABLE
60*60*24
'XY',2 DUP(?)

4294967295
R.735E2

Example - Define Ouadword (DN):

LONG REAL
STRIYG
HIGH

LOW
SPACER
FILLER

HEX_REAL

Do
bn
no
Do
pn
on

nn

.141597

|AB|
1R44A744073709661615
-1RA4RTAADTITNGRA1615
2 bup(?)

1 DUP(?,?)

OFNCBAGACR7RRA3210AR

Example - Define Tenbytes (DT):

ACCUMILATOR
STRING

nT
DT

PACKEN-DECTMAL DT
FLOATING_POINT DT

I1.1-76

?

ch.
1234567890
3.1415926

Programmer Guide

:16-bit OFFSET, then 16-bit/
;SEG base value ?
;arithmetic is performed
;by the assembler

smaximum
;floating point

;decimal makes it real

;no more than 2 characters
ymaximum

sminimum

;uninitialized data
sinitialized with
;indeterminate value

;no more than 2 characters

Programmer Guide ASSEMBLER

END

END [<exp>]
The END statement specifies the end of the program.
If <exp> 1is present, it 1is the start address of the
program. If several modules are to be 1linked, only the

main module may specify the start of the program with the
END <exp> statement.

If <exp> is not present, then no start address is passed
to LINK for that program or module.

Examples:

END START ;START is a label somewhere in the program

I11.1-77

ASSEMBLER

E0Y

<name> EQU

Programmer Guide

<exp>

EOU assigns the value of <exp> to <name>. If <exp> is an
external symbol, an error is generated. If <name> already
has a wvalue, an error is generated. If you want to be
able to redefine a <name> in your program, use the equal
sign (=) directive instead.

In many cases, EQU s wused as a primitive text
substitution, 1ike a macro.

<exp> may be any one of the following:

1.

2.

Examples:

11.1-78

A symbol. <name> becomes an aliaa for the symbol in
<exp>. Shown as an Alias in the symbol table.

An instruction name. Shown as an Opcode in the symbol
table.

A valid expression. Shown as a Mumber or L (label) in
the symbol table.

Any other entry, including text, index references,
segment prefix and operands. Shown as Text in the
symbol table.

FOO ENU BAZ smust be defined in this
;module or an error results
B ENU [BP+R] ;index reference (Text)
PR EOU DS:[BP+8] ;segment prefix
;and operand (Text)
CBD EOQU AAD ;an instruction name
(Opcode)
ALL EOI DEFREC<2,3,4> ;DEFREC = record name

;€2,3,4> = initial values
;for fields of record
EMP EOII 6 ;constant value
FPV ENU 6.3E7 ;floating point (text)

Programmer Guide ASSEMBLER

Equal Sign
(<name> = <exp>

<exp> must be a valid expression. It is shown as a Mumber
or L (Tabel) in the symbol table (same as <exp> type 3
under the ENIl directive above).

The equal sign (=) allows the user to set and to redefine
symbols. The equal sign is 1like the EOU directive, except
the user can redefine the symbol without generating an
error. Redefinition may take place more than once and
redefinition may refer to a previous definition.

Examples:
FOO = 5 ;the same as FOO ENU 5
FOO EOU Ay ;error, FOO cannot be
;redifined by ENI
FOO = 7 ;FO0 can be redefined
;only by another =
FOO = FOD+3 ;redefinition may refer

;to a previous definition

11.1-79

ASSEMBLER Programmer Guide

EVEN

EVEN
The EVEN command causes the program counter to
go to an even boundary; that is, to an address
that begins a word. If the program counter is
not already at an even boundary, EVEM causes
the assembler to add a MOP instruction so that
the counter will reach an even boundary.

An error results if EVEN is used with a byte
aligned segment.

Examples:
Before: The PC points to 0019 hex (25 decimal)
EVEM
After: The PC points to 1A hex (26 decimal)

0N19 hex now contains an MOP
instruction.

I1.1-80

Programmer Guide ASSEMBLER

EXTRM

EXTRN <name>:<type>[,...]

<name> is a symbol that is defined in another
module. <name> must have been declared PUBLIC
in the module where <name> is defined.

<type> may be any one of the following, but
must be a valid type for <name>:

1. BYTE, WORD, or DWORD

2. MEAR or FAR for 1labels or procedures
(defined under a PROC directive)

3. ABS for pure numbers (implicit size is
WORD, but includes BYTE).

Unlike the A0R0 assembler, placement of the
EXTRN directive is significant. If the
directive is given with a segment, the
assembler assumes that the symbol is located
within that segment. If the segment is not
known, place the directive outside all segments
the use either:

ASUME <seg-reg>:SEG <name>
or an explicit segment prefix.
MOTE

If a mistake is made and the symbol
is not in the segment, LIMK will take
the offset relative to the given
segment, if possible. If the real
segment is more tha A4¥ bytes away
from the reference, LIMK may find the
definition. If the real segment is
more than AR4X bytes away, LINK will
fail to make the 1ink between the
reference and the definition and will
not return an error message.

11.1-81

ASSEMBLER

I1.1-82

Examples:

In Same Segment:

Programmer

In Another Segment:

In Module 1:

CSEG SEGMEMNT
PUBLIC TANG

TAGH:

CSEG ENDS

In Module 2:

CSEG SEGMENT
EXTRN TAGE:NEAR

.

JMP TAGN
CSEG ENDS

In Module 1:

CSEGA SEGMENT
PUBLIC TAGF
TAGF:

CSEGA EMDS

In Module 2

EXTRM TAGF:FAR
CSEGV SEGMEMT

CSEGB ENDS

Guide

Programmer Guide ASSEMBLER

GROLIP
<name> GROUP <seg-name>[,...]

The GROUP directive collects the segments named
after GROUP (<seg-name>s) under one name. The
GROUP is used by LINK so that it knows which
segments should be Toaded together (the order
the segments are named here does not influence
the order the segments are loaded; that is
handled by the CLASS designation of the SEGMENT
directive, or by the order you name object
modules in response to the LINK Object module
prompt).

A1l segments in a GROUP must fit into A4k bytes
of memory. The assembler does not check this at
all, but leaves the checking to LINK.
<seg-name> may be one of the following:

1. A segment name, assigned by a SEGMENT
directive. The name may be a forward
reference.

2. An expression: either SEG <var>

or SEG <label>
Both of these entries resolve themselves to
a segment name (see SEG operator, Section
3.2)

Once you have defined a group name, you can use
the name:

1. As an immediate value:

MOV AX,DGROIIP
MOV DS,AX

DGROUP is the paragraph address of the base
of DGROUP.

2. In ASSYIME statement:
ASSIIME DS:DGROLUP

The DS register can now be wused to reach
any symbol in any segment of the group.

11.1-83

ASSEMBLER Programmer Guide

2. As an operand prefix (for segment
override):

MoV BX,0FFSET DGROUP:FOO
DW DGROVIP:FOO
DD DGROIP:FOO

DGROIIP: forces the offset to be relative to
DGROIIP, instead of to the segment in which
FOO is defined.

Example: (lsing GROUP to combine segments):
In Module A:

CGROUP GROIIP XXX, YYY
XXX SEGMENT
ASSUME CS:CGROUP

XXX ENDS

YYY SEGMENT

YYY ENDS
END

In Module B:

CGROIIP GROUP 211
11 SEGMENT
ASSIME CS:CGROUP

.

172 ENDS
EMD

I1.1-R4

Programmer Guide ASSEMBLER

INCLIIDE
INCLUDE <filename>

The IMCLIDE directive inserts source code from
an alternate assembly language source file into
the current source file during assembly. lUse of
the IMCLUDE directive eliminates the need to
repeat an often-used sequence of statements in
the current source file.

The <filename> is any valid file specification
for the operating system. If the device
designation is other than the default, the
source filename specification must include it.
The default device designation is the currently
logged drive or device.

The included file is opened and assembled into
the current source file immediately following
the INCLUDE directive statement. when
end-of-file is reached, assembly resumes with
the next statement following the IMCLUDE
directive.

Mested includes are allowed (the file inserted
with an TIMCLIDE statement may contain an
INCLIDE directive). However, this is not a
recommended practice as a large amount of
memory may be required.

The file specified must exist. If the file is
not found, an error 1is vreturned, and the
assembly aborts.

On a Macro Assembler 1isting, the letter C is
printed between the assembled code and the
source 1ine on each 1ine assembled from an
included file. See Section 1.5.4, Formats of
Listings and Symbol Tables, for a description
of listing file formats.

Examples:

INCLUDE ENTRY
INCLIIDE B:RECORD.TST

IT.1-R5

ASSEMBLER Programmer Guide

LABEL
<name> LABEL <type>

By using LABEL to define a <name>, you cause
the assebler to associate the current segment
offset with <name>.

The item is assigned a length of 1.

<type> varies depending on the use of <name>.
<name> may be used for code or for data.

1. For code: (for example, as a JMP or CALL
operand)

<type> may be either NEAR or FAR. <name> cannot
be used in data manipulation instructions
without using a type override.

If you want, you can define a MEAR Tlabel using
the <name>: form (the LABEL directive 1is not
used in this case). If you are defining a BYTE
or WORD NEAR label, you can place the <name>:
in front of a Define directive.

When using a LABEL for code (NEAR or FAR), the
segment must be addressable through the CS
register.

Example - For Code:

SUBRTF LABEL FAR
SUBRT: (first instruction) ;colon = MEAR label

I1.1-RA

Programmer Guide

ASSEMBLER

For data:

<type may be BYTE, WORD, DWORD,
<structure-name>, or <record-name>. When STRUC
or RECORD name is used, <name> is assigned the
size of the structure or record.

Example - For Data:

BARRAY LABEL BYTE
ARRAY DW 100 DUP (0)

ADD AL,BARRAY [99] ;ADD 100th byte to AL
ADD AX,BARRAY [9R] ;ADD 50th word to AX

By defining the array two ways, you can access
entries either by byte or by word. Also, you
can use this method for STRUC. If allows you to
place your data in memory as a table, and to
access it without the offset of the STRUC.

Defining the array two way also permits you to
avoid using the PTR operator. The double
defining method is especially effective if you
access the data different ways. It is easier to
give the array a second name than to remember
to use .PRT.

11.1-87

ASSEMBLER Programmer Guide

HAME
MAME <module-name>

<module-name> must not be a reserved word. The
module name may be any 1length, but Macro
Assembler uses only the first six characters
and truncates the rest.

The module name 1is passed to LINK, but
otherwise has no significance for the
assembler. Macro Assembler does check if more
than one module name has been declared.

Every module has a name. Macro Assembler
derives the module name from:

1. a valid NAME directive statement
2. If the module does not contain a NAME
statement, Macro Assembler uses the first
six characters of the TITLE directive
statement. The first six characters must be
legal as a name.
Examples:

NAME CURSOR

11.1-88

Programmer Guide ASSEMBLER

ORG

ORG <exp>
The location counter 1is set to the value of <exp>,
and the assembler assigns genereated code starting
with that value.
A11 names used in <exp> must be known on pass 1. The
value of <exp> must either evaluate to an absolute
or must be in the same segment as the location
counter.

Example:
0RG 1204 ;2-byte absolue value

smaximum=NFFFFH

ORG €42 ;skip two bytes

Example - NRG to a boundary (conditional):

CSEG SEGMENT PAGE
BEGTM = £

.

IF ($-BEGIM) MOD 25A ;if not already on
;25A byte boundary
ORG ({&-BEGIM)+25A-((S-BEGIN) MOD 25A)
EMDIG

See Section 1.4.2.2, Conditional Directives, for an
explanation of conditional assembly.

I1.1-R0

ASSEMBLER

I1.1-90

Programmer Guide

PROC

<procname> PROC [MEAR]
or FAR

RET
<procname> EMNDP

The default, if no operand is specified, is
NEAR. llse FAR if:

the procedure name is an operating system
entry point

the procedure will be called from code
which has another ASSUME CS value.

The PROC block should contain a RET statement.

The PROC directive serves as a structuring
device to make your programs more
under standable.

The PROC directive, through the MEAR/FAR
option, informs CALLs to the procedure to
generate a MEAR or a FAR CALL and RETs to
generate a MNEAR or a FAR RET. PROC is used,
therefore, for coding simplification so that
the user does not have to worry about NEAR or
FAR for CALLs and RETs.

A NEAR CALL or RETIRM changes the IP but not
the CS register. A FAR CALL or RETURM changes
both the IP and the CS registers.

Procedures are executed either in-line, from a
JMP, or from a CALL.

PROCs may be nested, which means that they are
put in line.

Combining the PUBLIC directive with a PROC
statement (both MEAR and FAR), permits you to
make external CALLs to the procedure or to make
other external references to the procedure.

Programmer Guide ASSEMBLER

Examples:
PUBLIC FAR NAME
FAR NAME PROC FAR™
- CALL NEAR MAME
RET -
FAR_MAME ENDP
PIIBLIC NEAR NAME
NEnR_MAME PROC MEAR™
RET

MEAR_NAME ENDP

The second subroutine above can be called
directly from a MEAR segment (that is, a segmen
addressable through the same CS and within
fAK):

CALL NEAR_NAME
A FAR segment (that is, any other segment that
is not a MEAR segment) must call to the first
subroutine, which then calls the second; an
indirect call:

CALL FAR_MAME

IT.1-91

ASSEMBLER Programmer Guide

PIRLIC
PUBLIC <symbol>l,...1 f
Place a PIBLIC directive statement in any module
that contains symbols you wnat to use in other
modules without defining the symbol again. PIBLIC
makes the listed symbol(s), which are defined in the
module where the PIBLIC statement appears, available
for use by other modules to be 1linked with the
module that defines the symbol(s). This information
is passes to LINv,
<symbol> may be a number, a variable, a label
including PROC labels).
<symbol> may not be a register name or a symbol
defined (with ENI) by floating point numbers or by
integers larger than 2 bytes.
Examples:
PIBLIC GETIMFO
GETINFO PROC FAR
PUSH BP ;save caller's regic’
MOV Bp,SP ;get address parame
sbody of subroutine
POP BP srestore caller's reg
RET sreturn to caller

GETINFD EMDP
Example - I1legal PIBLIC:
PIUBLIC PIE_BALD,HIGH VALIE

PIE BALD Enil 2,141F%
HIGH VALNE ENII LUGLLLLLE]

11.1-92

Programmer Guide ASSEMBLER

The default input base (or radix) for all constants
is decimal.The .RADIX directive permits you 1o
change the input radix to any base in the range ? to
1A.

<exp> is always 1in decimal radix, regardless of the
current input radix.

Example:
MOV BX,NFFH
.RADIX 1A
MOV BX, NFF
The two MOVs in this example are identical.
The .RANI¥ directive does not affect the generated
code values placed in the .0RI, .LST, or .CRF output
files.
The .RADIX directive does not affect the DD, DN, or
DT directives. MNumeric values entered in the
expression of these directives are always evaluated
as decimal unless a data type suffix is appended to
the value.
Example:
.RADI¥ 1A
MM HAMD DT 773 ;772 = decimal
HOT HAMD on 7730 ;772 = octal here only
COOL_HAMD DD 773H :now 773 = hexadecimal

11.1-03

ASSEMBLER Programmer Guide

RECORD

<recordname> RECORD <fieldname>;<width>[=<exp>],[...]

<fieldname> is the name of the field. <width>
specifies the number of bits in the field
defined by <fieldname>. <exp> contains the
initial (or default) wvalue for the field.
Forward references are not allowed in a RECORD
statement.

<fieldname> becomes a value that can be used in
expressions. When you use <fieldname> in an
expression, its value 1is the shift count to
move the field to the far right. Using the MASK
operator with the <fieldname> returns a bit
mask for that field.

<width> is a constant in the range 1 to 1A that
specifies the number of bits contained in the
field defined by <fieldname>. The WIDTH
operator returns this value. If the total width
of all declared fields is larger than 8 bits,
then the assembler uses two bytes. Otherwise,
only one byte is used.

The first field you declare goes into the most
significant bits of the record. Successively
declared fields are placed in the succeeding
bits to the right. If the fields you declare do
not total exactly B bits or exactly 16 bits,
the entire record is right shifted so that the
last bit of the last field is the lowest bit of
the record. Unused bits will be in the high end
of the record.

I1.1-94

Programmer Guide ASSEMBLER

For Example:
FOO RECORD HIGH:4,MID:3,LOW:3

In1t1a17y, the b1t map would be:
1 O
<HIGH->|<MID> 4L0'vl

Totals bits >8 means use a word; but total bits
<1h means right shift, place undeclared bits at
high end of word. Thus:

00000011.1100.00 0 . <---MASK

e o o e ey o o e
r. not <HIGH-> <MID>kL0OW>
declared [z ~lShT¥T count
<exp> contains the initial value for the field.
If the field is at least 7 bits wide, the user
can use an ASCII character as the <exp>.

For example:
HIGH:7='0'

To initialize records, use the same method used
for DB. The format is:

[<name>] <recordname> <[exp] [,...]>

or

[<name>] <recordname> [<exp>
DUP(<[expll,...]>)

The name 1is optional. When given, name is a
label for the first byte or word of the record
storage area.

The recordname is the name used as a label for
the RECORD directive.

The exp (both forms) contains the values you
want placed into the fields of the record. In
the latter case, the parentheses and angle
brackets are required only around the second
exp (following DUP). If [exp] is left blank,
either the default values applies (the value
given in the original record definition), or
the value is indeterminant (when not
initialized in the original record definition).
For fields that are already initialized to

I1.1-95

ASSEMBLER Programmer Guide

values you want, place consecutive commas to
skip over (use the default values of) those
fields.

I1.1-96

Programmer Guide ASSEMBLER

For example:
FOO <,,7>

From the previous example, the 7 would be
placed into the LOW field of the record FOO.
The fields HIGH and MID would be Jleft as
declared (in this case, uninitialized).

Records may be wused in expressions (as an
operand) in the form:

recordname<lvaluel,...J71>

The value entry is optional. The angle brackets
must be coded as shown, even if the optional
values are not given. A value entry is the
value to be placed into a field of the record.
For fields that are already initialized to
values you want, place consecutive commas to
skip over (use the default values of) those
fields, as shown above.

Examples:
FOO RECORD HIGH:5,MID:3,L0W: 2
BAX FoO <> ;leave indeterminate here
JANE FOo 10 DUP{<1A,R>) ;HIGH=16,MID=R
;LOW=?
MOV DX,0FFSET JANE[2]
;get beginning record address
AND DX,MASK MID
MoV CL,MID
SHR DX,CL
Mov CL,WIDTH MID

I1.1-97

ASSEMBLER Programmer Guide

SEGMENT

<segname> SEGMENT [<align>] [<combine>] [<'class’'>]

<segname> ENDS

At runtime, all instructions that generate code
and data are in (separate) segments. Your
program may be a segment, part of a segment,
several segments, parts of several segments, or
a combination of these. If a program has no
SEGMENT statement, and LIMK error (invalid
object) will result at 1ink time.

The <segment name> must be an unique, legal
name. The segment name must not be a reserved
word.

<align> may be PARA (paragraph - default),
BYTE, WORD, or PAGE.

<combine> may be PUBLIC, COMMON, AT <exp>,
STACk, MEMORY, or no entry (which defaults to
not combinable, called Private in the LINK
manual).

<class> name is used to group segments at link
time.

A1l three operands are passed to LIMK.

The alignment tells the Tinker on what kind of
boundary you want the segment to begin. The
first address of the segment will be, for each
aligment type:

PAGE - address is xxx00OH (Tow byte is 0)
PARA - address is xxxxOH (low nibble is 0)
bitmap - xxxx00D00

WORD - address is xxxxeH {e=even number;low
bit is 0)
bitmap - x x x x xxx0
BYTE - address is xxxxxH (place anywhere)

I1.1-98

Programmer Guide ASSEMBLER

The combine type tells LIMK how to arrange the
segments of a particular class name. The
segments are mapped as follows for each combine
type:

None (not combinable or Private)

—— 0 Private segments are loaded
A A separately and remain
separate. They may be
A'l0 physically contiguous but
A not logically, even if the
segments have the same
name. Each private segment
has its own base address.

Public and Stack

o Public segments of the same
A name and class name are
loaded contiguously. Offset
is from beginning of first
: segment loaded through last
A segment loaded. There is
only one base address for
all public segments of the
same name and class name.
(Combine type stack s
treated the same as public.
However, the Stack Pointer
is set to the first address
of the first stack segment.
LIMK requires at least one
stack segment.)

Common

; 0 Common segments of the same
A name and class name are
lToaded overlapping on
another. There 1is only one
base address for all ocmmon
segments of the same name.
The length of the common
area is the 1length of the
Tongest segment.

AI

I1.1-99

ASSEMBLER Programmer Guide

Memory

Ostensibly, the memory combine type causes the
segment(s) to be placed as the highest segments
in memory. The first memory combinable segment
encounter is placed as the highest segment in
memory. Subsequent segments are treated the
same as Common segments.

NOTE

This feature is not supported by
LIMK. LINK treats Memory segments the
same as Public segments.

AT <exp>

The segment is placed at the PARAGRAPH address
specified in <exp>. The expression may not be a
forward reference. Also, the AT type may not be
used to force 1loading at fixed addresses.
Rather, the AT combine type permits labels and
variables to be defined at fiexed offests
within fixed areas of storage, such as ROM or
the vector space in low memory.

NOTE

This restriction is Jimposed by LIMK
and DOS.

Class names must be enclosed in quotation
marks. Class names may be any legal naem. Refer
to LINK for more discussion.

Segment definitions may be nested. When
segments are nested, the assembler acts as if
they are not and handles them sequentially by
appending the second part of the split segment
to the first. At ENDS for the split segment,
the assembler takes up the nested segment as
the next segment, completes it, and goes on to
subsequent segments. Overlapping segments are
not permitted.

IT.1-100

Programmer Guide ASSEMBLER

For example:

A SEGMENT A SEGMENT
B SEGMENT B SEGMENT
B ENDS .
: B ENDS
. A SEGMENT
A ENDS .
A ENDS

The following arrangement is not allowed:

A SEGMENT

B SEGMENT

A ENDS : this is illeqal!
B ENDS

Example:
In module A:

SEGA SEGMENT PUBLIC 'CODE'
ASSUME CS:SEGA

SEGA ENDS
END

In module B:

SEGA SEGMENT PUBLIC 'CODE'
ASSUME CS:SEGA
. 3 LINK adds this seament to same
;named segment in module A (and
2 ;others) if class name is the same.
SEGA ENDS
END

11.1-101

ASSEMBLER Programmer Guide

STRIIC
<structurename> STRIIC
<structurename> ENDS

The STRUC directive is very much T1ike RECORD,
except STRUC has a multiple byte capability.
The allocation and initialization of a STRIC
block is the same as for RECORD.

Inside the STRUC/EMDS block, the Define
directives (DB,DW,DD,DN,DT) may be used to
allocate space. The Define directives and
comments set off by semicolons (;) are the only
statement entries allowed inside a STRUC block.

Any label on a Define directive inside a
STRUC/EMDS block becomes a <fieldname> of the
structure. (This is how structure fieldnames
are defined.) Initial values given to
fieldnames in the STRIC/EMDS block are default
values for the various fields. These values of
the fields are one of two types: overridable or
not overridable. A simple field, a field with
only one entry (but not a DIIP expression), is
overridable. A multiple field, a field with
more than one entry is not overridable. For

example:
FOO DB 1,2 ;is not overridable
BAZ DB 10 DIIP(?) ;is not overridable
00 DB 5 ;is overridable

If the <exp> following the Define directive
contains a string, it may be overriden by
another string. However, if the overriding
string is shorter than the initial string, the
assembler will pad with spaces. If the
overriding string is longer, the assembler will
truncate the extra characters.

IT.1-102

Programmer Guide

Examples:

ASSEMBLER

lJsually, structure fields are used as operands
in some expression. The format for a reference
to a structure field is:

<variable>.<field>

<variable> represents an anonymous variable,
usually set up when the structure is allocated.
To allocate a structure, use the structure name
as a directive with a 1label (the anonymous
variable of a structure reference) and any
override values in angle brackets:

FOO STRUCTURE

FOO ENDS
GO0 FOO <,7,,'JOE'>

.<field> represents a label given to a DEFIME
directive inside a STRUC/ENDS block (the period
must be coded as shown). The value of <field>
will be the offset within the addressed
structure.

To define a structure:

S STRUC

FIELD1 DB 1.2 ;not overridable
FIELD2 DB 10 DUP(?) ;not overridable
FIELD3 DB 5 ;overridable
FIELD4 DB 'DOBOSKY' ;overridable

The Define directives in this example define
the fields of the structure and the order
corresponds to the order values are given 1in
the initialization 1ist when the structure is
allocated. Every Define directive statement
line inside a STRUC block defines a field,
whether or not the field is named.

To allocate the structure:

DBAREA S <,,7,"ANDY'> ;overrides 3rd and 4th
;fields only

IT.1-103

ASSEMBLER Programmer Guide

To refer to a structure:

MOV AL,[BX].FIELD3
MOV AL,DBAREA.FIELD2

IT.1-104

Programmer Guide ASSEMBLER

1.4.2.2 Conditional Directives

Conditional directives allow users to design blocks of
code which test for specific conditions then proceed
accordingly.

A11 conditionals follow the format:

IFxxxx [argument]

[ELéE

.

.
EMDIF

Each IFxxxx must have a matching ENDIF to terminate the
conditional. Otherwise, an ‘'linterminated conditional'
message is generated at the end of each pass. An ENDIF
without a matching IF causes a Code R, Mot in conditional
block error.

Each conditional block may include the optional ELSE
directive, which allows alternate code to be generated
when the opposite condition exists. Only one ELSE is
permitted for a given IF. An ELSE is always bound to the
most recent, open IF. An ELSE is always bound to the
most recent, open IF. A conditional with more than one
ELSE or an ELSE without a conditional will cause a Code
7, Already had ELSE clause error.

Conditionals may be nested up to 255 Tlevels. Any
argument to a conditional must be known on pass 1 to
avoid Phase errors and incorrect evaluation. For IF and
IFE the expression must dinvolve values which were
previously defined, and the expression must be Absolute.
If the name is defined after an IFDEF or IFNDEF, pass 1
considers the name to be undefined, but it will be
defined on pass 2.

The assembler evaluates the conditional statement to TRUE
(which equals any non-zero value), or to FALSE (which
equals ONPOH). If the evaluation matches the condition
defined in the conditional statement, the assembler
either assembles the whole conditional block, or, if the
conditional block contains the optional ELSE directive,
assembles from IF to ELSE; the ELSE to EMDIF portion of
the block is ignored. If the evaluation does not match,
the assembler either ignores the conditional block

I1.1-105

ASSEMBLER Programmer Guide

completely or, if the conditional block contains the
optional ELSE directive, assembles only the ELSE to EMDIF
portion; the IF to ELSE portion is ignored.

I1.1-106

Programmer Guide

IF <exp>

IFE <exp>

IF1

IF2

If <exp> evaluates to nonzero,

ASSEMBLER

the statements

within the conditional block are assembled.

If <exp> evaluates to 0, the statements in the

conditional block are assembled.

Pass 1 Conditional

If the assembler is in pass 1,

in the conditional block are
takes no expression.

Pass 2 Conditional
If the assembler is in pass 2,

in the conditional block are
takes no expression.

IFDEF <symbol>

the statements
assembled. IF1

the statements
assembled. IF2

If the <symbol> is defined or has been declared

External, the statements in
block are assembled.

IFMDEF <symbol>

the conditional

If the <symbol> is not defined or not declared
External, the statements in the conditional

block are assembled.

I1.1-107

ASSEMBLER Programmer Guide

IFB <arg>
The angle brackets around <arg> are required.

If the <arg> is blank (none given) or null (two
angle brackets with nothing in between, <>},
the statements in the conditional block are
assembled.

IFB (and IFNB) are normally used inside macro
blocks. The expression following the IFB
directive is typically a dummy symbol. When
the macro is called, the dummy will be replaced
by a parameter passed by the macro call., If
the macro call does not specify a parameter to
replace the dummy following IFB, the expression
is blank, and the block will be assembled.
(IFNB is the opposite case.) Refer to section
4.2.3, Macro Directives, for a full
explanation.

IFNB <arg>
The angle brackets around <arg> are required.

If <arg> is not blank, the statements in the
conditional block are assembled.

IFBN (and IFB) are normally used inside macro
blocks. The expression following the IFMB
directive is typically a dummy symbol. When
the macro is called, the dummy will be replaced
by a parameter passed by the macro call. If
the macro call specifies a parameter to replace
the dummy following IFMB, the expression is not
blank, and the block will be assembled. (IFB
is the opposite case.) Refer to section
1.4.2.3, Macro Directives for a full
explanation.

I1.1-108

Programmer Guide ASSEMBLER

IFIDN <argl>,<arg2>

The angle brackets around <argl> and <arg2> are
requird.

If the string <argl> is identical to the string
<arg2>, the statements in the conditional block
are assembled.

IFIDM {and 1IFDIF) are normally used inside
macro blocks. The expression following the
IFIDM directive is typically two dummy symbols.
When the macro is called, the dummys will be
replaced by parameters passed by the macro
call. If the amcro call specifies two
identical parameters to replace the dummys, the
block will be assembled. (IFDIF) is the
opposite case.) Refer to section 1.4.2.3,
Macro Directives, for a full explanation.

IFDIF <argl>,<arg2>

The angle brackets around <argl> and <arg2> are
required.

If the string <argl> 1is different from the
string <arg2>, the statements in the
conditional block are assembled.

IFDIF and <IFIDN> are normally used inside
macro blocks. The expression following the
IFDIF directive is typically two dummy symbols.
When the macro is called, the dummys will be
replaced by parameters passed by the macro
callg. If the macro call specifies two
different parameters to replace the dummys, the
h1ock]wi11 be asesmbled. (IFIDM is the opposite
case.

ELSE

The ELSE directive allows you to generate
alternate code when the opposite condition
exists. May be used with any of the
conditional directives. Only one ELSE is
allowed for each IFxxxx conditional directive.
ELSE takes no expression.

IT.1-1n9

ASSEMBLER Programmer Guide

ENDIF

This directive terminates a conditional block.
An EMDIF directive must be given for every
IFxxxx directive used. ENDIF takes no

expression. EMDIF closes the most recent,
unterminated IF.

II.1-110

Programmer Guide ASSEMBLER

1.4.2.3 Macro Directives

The macro directives allow you to write blocks of code
which can be repeated without recoding. The blocks of
code begin with either the macro definition directive or
one of the repetition directives and end with the ENDM
directive. A1l of the macro directives may be used
inside a macro block. In fact, nesting of macros is
limited only by memory.

The macro directives of the Macro Assembler include:

macro definition:
MACRO

termination:
ENDM
EXITM

unique symbols within macro blocks:
LOCAL

undefine a macro:
PURGE

repetitions:
REPT (repeat)
IRP (indefinite repeat)
IRPC (indefinite repeat character)

The macro directives also include some special macro
operators:

2o

2R cmves

I1.1-111

ASSEMBLER Programmer Guide

Macro Definition
<name> MACRO [<dummy>,...]

.

ENDM

The block of statements from the MACRO
statement 1line to the EHDM statement Tline
comprises the body of the macro, or the amcro's
definition

<name> is 1ike a LABEL and conforms to the
rules for forming symbols. After the macro has
been defined, <name> is wused to invoke the
macro.

A <dummy> 1is formed as any other name is
formed. A <dummy> is a place holder that is
replaced by a parameter in a one-for-one text
substitution when the MACRO block is used. You
should include all dummys used inside the macro
block on this line. The number of dummys is
limited only by the Tlength of a line. If you
specify more than one dummy, they must be
separated by commas. Macro Assembler
interprets a series of dummys the same as any
list of symbol names.

NOTE

A dummy s always recognized
exclusively as a dummy. Even if a
register name (such as AX or BH) is
used as a dummy, it will be replaced
by a parameter during expansion.

I1.1-112

Programmer Guide ASSEMBLER

One alternative is to 1ist no dummys:
<name> MACROD

This type of macro block allows you to call the
block repeatedly, even if you do not want or
need to pass parameters to the block. In this
case, the block will not contain any dummys.

A macro block 1is not assembled when it is
encountered. Rather, when you call a macro,
the assembler ‘“expands" the macro call
statement by bringing in and assembling the
appropriate macro block.

MACRO is an extremely powerful directive. With
it, you can change the value and effect of any
instruction mnemonic, directive, label,
variable or symbol. When Macro Assembler
evaluates a statement, it first 1looks at the
macro table it builds during pass 1. If it
sees a name there that matches an entry 1in a
statement, it acts accordingly. (Remember:
Macro Assembler evaluates macros, then
instruction mnemonics/directives.)

If you want to use the TITLE, SUBTTL, or NAME
directives for the portion of your program
where a macro block appears, you should be
careful about the form of the statement. If,
for example, you enter SUBTTL MACRO
DEFIMITIONS, Macro Assembler will assemble the
statement as a macro definition with SUBTTL as
the macro name and DEFIMITIONS as the dummy.
To avoid this problem, alter the word MACRO in
some way; e.g., -MACRO, MACROS, and so on.

I1.1-113

ASSEMBLER Programmer Guide

Calling a Macro
To use a macro, enter a macro call statement:
<name> [<parameter>,...]

<name> is the <name> of the MACRO block. A
<parameter> replaces a <dummy> on a one-for-one
basis. The number of parameters is limited only by
the length of a 1line. If you enter more than one
parameter, they must be separated by commas, spaces,
or tabs. If you place angle brackets around
parameters separated by commas, the assembler will
pass all the items inside the angle brackets as a
single parameter. For example:

FO0 1,2,3,4,5

passes five parameters to the macro, but:
FOO <1,2,3,4,5>

passes only one.

The number of parameters in the macro call statement
need not be the same as the number of dummys in the
MACRO definition. If there are more parameters than
dummys, the extras are ignord. If there are fewer,
the extra dummys will be made null. The assembled
code will include the macro block after each macro
call statement.

EXAMPLE:
GEN MACRO XX,YY,ZZ
MoV AX, XX
ADD AX,YY
MOV 7Z,AX
ENDM

If you then enter a macro call statement:
GEN DIICK,DOM,F00
assembly generates the statements:
MOY AX,DUCK
ADD AX,DON
MOV F0O,AX
On your program listing, these statements will be preceded by a
plus sign to indicate that they came from a macro block.

11.1-114

Programmer Guide ASSEMBLER

End Macro
EMDM

ENDM tells the assembler that the MACRO or Repeat
block is ended

Every MACRO, REPT, IRP, and IRPC must be terminated
with the ENDM directive. Otherwise, the
'Unterminated REPT/IRP/IRPC/MACRD' message is
generated at the end of each pass. An unmatched
ENDM also causes an error.

If you wish to be able to exit from a MACRO or
repeat before expansion is completed, use EXITM.

11.1-117

ASSEMBLER Programmer Guide

Exit Macro
EXITM

The EXITM directive is used inside a MACRO or Repeat
block to terminate an expansion when some condition
makes the remaining expansion unnecessary or
undesirable. Usually EXITM is wused in conjunction
with a conditional directive.

When an EXITM is assembled, the expansion 1is exited
immediately. Any remaining expansion or repetition
is not generated. If the block containing the EXITM
is nested within another block, the outer Tlevel
continues to be expanded.

Examples:
FOO MACRO X
X = n
REPT X
X = X+1

IFE X-0FFH ;test x
EXITM ;if true, exit REPT
EMDIF

DB X

EMDM

ENDM

IT.1-118

Programmer Guide ASSEMBLER

LOCAL
Local <dummy>[<dummy>...]

The LOCAL directive is allowed only 1inside a MACRO
definition block. A LOCAL statement must precede all
other types of statements in the macro definition.

When LOCAL is executed, the assembler creates a
unique symbol for each <dummy> and substitutes that
symbol for each occurrence of the <dummy> in the
expansion. These unique symbols are usually used to
define a label within a macro, thus eliminating
multiple-defined 1abels on successive expansions of
the macro. The symbols created by the assembler
range from 2?0000 to ??FFFF. lsers should avoid the
form ??nnnn for their own symbols.

Example:

nono FIN SEGMENT
ASSIME CS:FUM,DS:FIN
FOO MACRO NUM,Y
LOCAL A,B,C,D,E

A: DB 7
B: DB 8
C DB Y
D: DH Y+1
s DW NUM+1
JMP A
ENDM

FOO 0NCOOH, DBEH

nnng - 07 + 770000: DB 7
0001 08 + 7?0001: DB 2}
0on2 BE + 7?70002: DB NBEH
0003 0OBF + 7?20003: DW 0BEH+1
oons 0cny + ??20004: DW OCOOH+1
0007 EB F7 + JMP 2?0000
FOO 0N3COH,0FFH
nnna 07 + 2700N5: DB 7
000A 08 + 7?20006: DB 8
onnB FF + ?2720007: DB 0FFH
0onc 0100 + 2720008: DW OFFH+1
0npE NAC1 + 7?70009: DW N3ACOH+1
nol0 EB F7 + JMP 770005
nn1z FlIM ENDS
EMD

11.1-119

ASSEMBLER

PURGE

PURGE

11.1-120

Programmer Guide
<macro-name>[...]

PURGE deletes the definition of the macro(s) listed

after it.

PURGE provides two benefits:

1. It frees text space of the macro body.

2. It returns any instruction mnemonics or
directives that were redefined by macros to
their original function.

3. It allows you to "edit out" macros from a macro
library file. You may find it useful to create
a file that contains only macro definitions.
This method allows you to use macros repeatedly
with easy access to their definitions.
Typically, you would then place an INCLUDE
statement in your program file. Following the
INCLUDE statement, you could place a PURGE
statement in your program file. Following the
INCLUDE statement, you could place a PURGE
statement to delete any macros you will not use
in this program.

It is not necessary to PURGE a macro before
redefining it. Simply place another MACRO
statement in your program, reusing the macro
name.

Examples:
IMCLUDE MACRO.LIB
PURGE MAC1
MAC1 ;tries to invoke purged macro

sreturns a syntax error

Programmer Guide ASSEMBLER

Repeat Directives

The directives in this group allow the operations in a block
of code to be repeated for the number of times you specify.
The major differences between the Repeat directives and MACRO
directive are:

1. MACRO gives the block a name by which to call in the
code wherever and whenever needed; the macro block
can be used in many different programs by simply
entering a macro call statement.

2. MACRO allows parameters to be pased to the MACRD
block when a MACRO is called; hence, parameters can
be changed.

Repeat directive parameters must be assigned as a part of the
code block. If the parameters are known 1in advance and will
not change, and if the repetition is to be peformed for every
program execution, then Repeat directives are convenient.
HWith the MACRO directive, you must call in the MACRO each time
it is needed.

Mote that each Repeat directive must be matched with the ENDM
directive to terminate the repeat block.

I1.1-121

ASSEMBLER

Repeat

REPT <exp>

.

EHDM

Example:

I1.1-122

Programmer Guide

Repeat block of statements between REPT and ENDM
<exp> times. <exp> is evaluated as a 16-bit unsigned
contains an External symbol or
undefined operands, an error is generated.

number. If

<exp>

assembles
nono

npnn' - Nl
nnpL' 02
nnnz' 03
nnn3' n4
oona' n§
nnos' N
oong' N7
nno7' NR
onnR' N9
nona' NA

X
X

as:

>

++++++

REPT
DB
ENDM

REPT
De
ENDM
DB
ng
DB
DB
DB
DB
DB
DB
DB
DB

0

10 ;generates DB 1 - DB 10
X+1

X

0 y
1n ;generates DB 1 - DB 10 |
X+1

X

M > >< < € 3¢ >€ >¢ > 24 >4

Programmer Guide

Indefinite Repeat

IRP <dummy>,<parameters inside angle brackets>

EMDM

Examples:

Parameters must be enclosed in angle brackets.

Parameters may be any legal symbol, string, numeric,
or character constant. The block of statements is
repeated for each parameter. Each repetition
substitutes the next parameter for every occurrence
of <dummy> in the block. If a parameter is null
(i.e., <>), the block is processed once with a null
parameter.

IRP X,<1,2,3,4,5,6,7,8,9,10>
DB X
ENDM

This example generates the same bytes (DB 1 - DB 10)
as the REPT example.

When IRP is used inside a MACRO definition block,
angle brackets around parameters in the macro call
statement are removed before the parameters are
passed to the macro block. An example, which
generates the same code as above, illustrates the
removal of one level of brackets from the
parameters:

Foo MACRO X

IRP Y,<X>
DB Y
ENDM

ENDM

When the macro call statement
Fo0 <1,2,3,4,5,6,7,8,9,10>

is assembled, the macro expansion becomes:

IRP Y,<1,2,3,4,5,6,7,8,9,1M
DB Y
EMDM

The angle brackets around the parameters are

I1.1-123

ASSEMBLER

ASSEMBLER Programmer Guide

removed, and all Jitems are passed as a single
parameter.

IT.1-124

Programmer Guide ASSEMBLER

Indefinite Repeat Character

IRPC <dummy>,<string>

.

ENDM
The statements in the block are repeated once for each
character in the string. Each repetition substitutes the
next character in the string for every occurrence of
<dummy> in the block.
Example:
IRPC X,0123456789
DB X+1
ENDM

This example generates the same code (DB 1 - DB 10)
as the two previous examples.

I1.1-125

ASSEMBLER Programmer Guide

Special Macro Operators

Several special operators can be used in a macro block to select
additional assembly functions.

{ Ampersand concatenates text or symbols. (The & may not
be used in a macro call statement.) A dummy parameter in
a quoted string will not be substituted 1in expansion
unless preceded immediately by &. To form a symbol from
text and a dummy, put & between them.

For example:

ERRGEN MACRO X
ERROR&X PIISH BX
MOV BX, ' &X'
JMP ERROR
ENDM

The call ERRGEM A will then generate:

ERRORA: PUSH B
MoV BX,'A’
JMP ERROR

In Macro Assembler, the ampersand will not appear in the
expansion. One ampersand is removed each time a dummy& or
&dummy is found. For complex macros, where nesting is
involved, extra ampersands may be needed. You need to
supply as many ampersands as there are levels of nesting.

11.1-126

Programmer Guide ASSEMBLER

For example:

Correct form Incorrect form
Fon MACRD X FOO MACRO X

IRP 1,¢1,2,3 DB 1,<1,2,3>
X&&Z DB z X&Z z

EMDM ENDM

EMDM EMDM

When called, for example, by FOO BAZ, the expansion would
be (correctly in the Tleft column, incorrectly in the
right):

1. MACRO build, find dummies and change to dl

IRP Z,<1,2,3> IR Z,<1,2,3>
d1&z DB z d12 DB z
ENDM ENDM

2. MACRO expansion, substitute parameter text for di

IRP 2,¢1,2, 3> IRP Z2,¢1,2,3>
BAZ&Z DB z BAZZ DB z
EMDM ENDM

2. IRP build, find dummies and change to dl
BAZ&d1 DB d1 BAZZ ne dl

4. IRP expansion, substitute parameter text for dl

BAZ1 DB 1 BAZZ DB 1
BAZ2 DB 2 BAZZ 0B 2
BAZ3 DB 3 BAZZ nB 3

shere it's an error,
ymulti-defined symbol

IT.1-127

ASSEMBLER Programmer Guide

<text> Angle brackets cause Macro Assembler to treat the text
between the angle brackets as a single 1literal. Placing
either the parameters to a macro call or the 1list of
parameters following the IRP directive inside angle
brackets causes two results:

1. A1l text within the angle brackets are seen as a
single parameter, even if commas are used.

2. Characters that have special functions are taken as
literal characters. For example, the semicolon
inside angle brackets <;> becomes a character, not
the indicator that a comment follows.

One set of angle brackets is removed each time the
parameter is used in a macro. When using nested macros,
you will need to supply as many sets of angle brackets
around parameters as there are levels of nesting.

- In a macro or repeat block, a comment preceded by two
semicolons is not saved as a part of the expansion.

The default listing condition for macros 1is .XALL (see
section 1.4.2.4, Listing Directives, below). linder the
influence of .XALL, comments in macro blocks are not
Tisetd because they do not generate code.

If you decide to place the .LALL 1isting directive in
your program, then comments macro and repeat blocks are
saved and listed. This can be the cause of an out of
memory error. To avoid this error, place double
semicolons before comments inside macro and repeat
blocks, unless you specifically want a comment to be
retained.

! An exclamation point may be entered in an argument to
indicate that the next character 1is to be taken
literally. Therefore, !; is equivalent to <;>.

% The percent sign is used only in a macro argument to
convert the expression that follows it (usually a symbol)
to a number 1in the current radix. During macro
expansion, the number derived from converting the
expression is substituted for the dummy. Using the %
special operator allows a macro call by value. ({Usually,
a macro call is a call by reference with the text of the
macro argument substituting exactly for the dummy.)

The expression following the % must evaluate to an

11.1-128

Programmer Guide ASSEMBLER

absolute (non-relocatable) constant.

Example:

PRINTE MACRO MSG,M
#ouT * MSG,MN *

EMDM
SYM1 EOU 100
Sym2 EOl 200

PRINTE <SYM1 + SYM2 = >,%(SYM1 + SYM2)
Mormally, the macro call statement would cause the string
{SYM1 + SYM2) to be substituted for the dummy N. The
result would be:
%OUT * SYM1 + SYM2 = (SYM1 + SYM2)

When the % is placed in front of the parameter, the
assembler generates:

%out * SYM1 + SYM2 = 300 *

I1.1-129

ASSEMBLER Programmer Guide

1.4.3 LISTING DIRECTIVES

Listing directives perform two general functions: format control
and 1listing control. Format control directives allow the
programmer to insert page breaks and direct page headings. Listing
control directives turn on and off the 1isting of all or part of
the assembled file.

PAGE

PAGE [<length>][,<width>]

PAGE [+]
PAGE with no arguments or with the optional [,+] argument
causes the assembler to start a new output page. The
assembler puts a form feed character in the listing file
at the end of the page.
The PAGE directive with either the 1length or width
arguments does not start a new 1isting page.
The value of <length>, if included, becomes the new page
length (measured in lines per page) and must be in the
range 10 to 255. The default page length is 50 lines per
page.
The value of <width>, if included, becomes the new page
width (measured in characters) and must be in the range
A0 to 132. The default page width is B0 characters.
The plus sign (+) increments the major pge number and
resets the minor page number to 1. Page numbers are in
the form Major-minor. The PAGE directive without the +
increments only the minor portion of the page number.

Example:

PAGE + ;increment Major, set minor to 1

PAGE 58,60 ;page Tength=58 lines,
;width=h0 characters

11.1-130

Programmer Guide ASSEMBLER

TITLE
TITLE <text>

TITLE specifies a title to be listed on the first line of
each page. The <text> may be up to A0 characters Tlong.
If more than one TITLE is given, an error results. The
first six characters of the title, if legal, are used as
the module name, unless a NAME directive is used.

Example:

TITLE PROG1 -- 1st Program

.

If the MAME directive is not used, the module name is now
PROG1 -- 1st program. This title text will appear at the
top of every page of the 1isting.

11.1-131

ASSEMBLER Programmer Guide

SUBTITLE

SUBTTL <text>

SUBTTL specifies a subtitle to be listed in each page
heading on the 1line after the title. The <text> is
truncated after 60 characters.

Any number of SUBTTLs may be given in a program. Each
time the assembler encounters SUBTTL, it replaces the
<text> from the previous SUBTTL with the <text> from the
most recently encountered SUBTTL. To turn off SUBTTL for
part of the output, enter a SIBTTL with a null string for
<text>.

Example:

SIIBTTL SPECIAL I/0 ROUTIME

SUBTTL

The first SUBTTL causes the subtitle SPECIAL I/0 ROUTINE
to be printed at the top of every page. The second
SIBTTL turns off subtitle (the subtitle 1line on the
listing is left blank).

I1.1-132

Programmer Guide ASSEMBLER

$0UT
20T <text>

The text is listed on the terminal during assembly. %OUT
is useful for displaying progress through a long assembly
or for displaying the value of conditional assembly
switches.

%0IT will output on both passes. If only one printout is
desired, use the IF1 or IF2 directive, depending on which
pass you want displayed. See Section 4.2.2, Conditional
Directives, for descriptions of the IF1 and IF2
directives.

Example:
%Z0UT *Assembly half done*

The assembler will send this message to the terminal
screen when encountered.

IF1
%Z0UT *Pass 1 started*
ENDIF

IF2

%0UT *Pass 2 started*
ENDIF

11.1-133

ASSEMBLER Programmer Guide

LIST
JXLIST

LLIST 1lists all lines with their code (the default condition).
.XLIST suppresses all Tisting.

If you specify a 1isting file following the Listing prompt, a listing
file with all the source statements included will be listed.

When .XLIST is encountered in the source file, source and object
code will not be listed. .XLIST remains in effect until a .LIST
is encountered.

.XLIST overrides all other 1isting directives. So, nothing will
be listed, even if another 1isting directive (other than .LIST)
is encountered.

Example:

.XLIST ;1isting suspended here

LLIST ;1isting resumes here

11.1-134

Programmer Guide ASSEMBLER

.SFCOND

.SFCOND suppresses portions of the Tisting containing
conditional expressions that evaluate as false.

.LFCOND
.LFCOMD assures the 1listing of conditional expressions
that evaluate false. This is the default condition.

.TFCOMD
.TFCOND toggles the current setting. .TFCOND operates
independently from .LFCOND and .SFCOND. .TFCOMD toggles
the default setting, which is set by the presence or
absence of the /X switch when running the assembler.
When /X is used, .TFCOND will cause false conditionals to
list. When /X 1is not used, .TFCOND will suppress false
conditionals.

. XALL
LXALL is the default.
.XALL 1ists source code and object code produced by a
macro, but source lines which do not generate code are
not listed.

.LALL
.LALL 1ists the complete macro text for all expansions,
including lines that do not generate code. Comments
preceded by two semicolons (;;) will not be listed.

.SALL

.SALL suppresses listing of all text and object code
produced by macros.

I1.1-135

ASSEMBLER Programmer Guide

.CREF

.CREF
.XCREF [<variable 1ist>]

.CREF is the default condition. .CREF remains
in effect wuntil Macro Assembler encounters
.XCREF.

.XCREF without arguments turns off the .CREF
{default) directive. .XCREF remains in effect
until Macro Assembler encounters .CREF. lise
.XCREF to suppress the creation of cross
references in selected portions of the file.
llse .CREF to restart the creation of a cross
reference file after using the .XCREF
directive.

If you include one or more variables following
.XCREF, these variables will not be placed in
the 1isting or cross reference file. A1l other
cross referencing, however, is not affected by
an .XCREF directive with arguments. Separate
the variables with commas.

Neither .CREF nor .XCREF without arguments
takes effect until you specify a cross
reference file when running the assembler.
.XCREF <variable 1ist> suppresses the variables
from the symbol table listing regardless of the
creation of a cross reference file.

Examples:
.XCREF CURSOR,F00,G00,BAZ,Z00

;these variables will not be
;in the 1isting or cross reference file

11.1-136

Programmer Guide ASSEMBLER

Section 5
ASSEMBLING A MACRO ASSEMBLER SOURCE FILE

Assembling with the Macro Assembler requires two types of
commands: a command to invoke Macro Assembler and answers to
command prompts. In addition, four switches control alternate
Macro Assembler features. llsually, the user will enter all the
commands to Macro Assembler on the keyboard. As an option
commands, answers to the command prompts and any switches may
be contained in a Batch file (see the Hyperion llser Guide for
Batch file instructions.). Some Command Characters are
provided to assist the user while entering assembler commands.

1.5.1 INVOKING MACRO ASSEMBLER

Macro Assembler may be invoked two ways. By the first method,
the user enters the commands as answers to individual prompts.
By the second method, the user enters all commands on the line
used to invoke Macro Assembler.

Summary of Methods to invoke Macro Assembler

Method 1 MASM

Method 2 MASM <source>,<object>,<listing>,<cross-ref>[/switch]

1.5.1.1 Method 1: MASM
Enter:
MASM

Macro Assembler will be loaded into memory. Then, Macro
Assembler returns a series of four text prompts that appear
one at a time. The user answers the prompts as commands to
Macro Assembler to perform specific tasks.

At the end of each 1line, you may enter one or more switches,
each of which must be preceded by a slash mark. If a switch
is not included, Macro Assembler defaults to not performing
the function described for the switches in the chart below.

11.1-137

ASSEMBLER Programmer Guide

The command prompts are summarized here and described in
detail in Section 1.2.2, Command Prompts. Following the
summary of prompts is a summary of switches, which are
described in more detail in Section 1.2.3, Switches.

PROMPT RESPOMNSES

Source filename l.ASM1: List .ASM file to be assembled.
{no default: filename response
required)

Object filename [source.0BJ]| List filename for relocatable
object code. (default:
source-filename.0BJ]

Source listing [NUL.LST]: List filename for listing
(default: no 1isting file]

Cross reference [NUL.CRF] List filename for Cross
reference file (used with CREF
to create a cross reference
Tisting). (default: no cross
reference file)

SWITCH ACTION

/D Produces a 1listing on both assembler
passes.

/0 Show generated object code and offsets in
octal radix on listing

/X Suppress the listing of false
conditionals. Also used with the .TFCOND
directive.

I7.1-13R

Programmer Guide ASSEMBLER

Command Characters
Macro Assembler provides two Command Characters.

: lise a single semicolon (;) followed immediately by a
carriage return, at any time after responding to the
first prompt (from Source filename on) to select
default responses to the remaining prompts. This
feature saves time and overrides the need to enter a
series of carriage returns.

Hote: Once the semicolon has been entered, the user can no
longer respond to any of the prompts for that
assembly. Therefore, do not use the semicolon to
skip over some prompts. For this, wuse carriage
return.

Example: Source filename [.ASM]: FIIN<Rtn>
Object filename [FUMN.NBJ1: ;<Rtn>

The remaining prompts will not appear, and Macro
Assembler will use the default values (including no
listing and no cross-reference file).

To achieve exactly the same result, you could
alternatively enter:

Source filename [.ASM]: FUM;<Rtn>

This response produces the same files as the
previous example.

Ctr1+Brk Use Ctr1+Brk at any time to abort the assembly. If
you enter an erroneous response, such as the wrong
filename or an incorrectly spelled filename, you
must press Ctr1+Brk to exit Macro Assembler then
reinvoke Macro Assembler and start over. If the
error has been typed and not entered, you may delete
the erroneous characters, but for that line only.

I1.1-139

ASSEMBLER Programmer Guide

1.5.1.2 Method 2: MASM <filenames>[/switches]

Enter:
MASM <source>,<object>,<1isting>,<cross-ref>[/switch]

Macro Assembler will be Tloaded into memory. Then Macro
Assembler immediately begins assembly. The entries following
MASM are responses to the command prompts. The entry fields
for the different prompts must be separated by commas.

where: <source> is the source filename.

<object> is the name of the file to receive the
relocatable output.

<listing> is the name of the file to receive the
listing.

<cross-ref> is the name of the file to receive the
cross-reference output.

/switch are optional switches, which may be placed
following any of the response entries (just before
any of the commas or after the <cross-ref>, as
shown).

To select the default for a field, simply enter a
second comma without space in between (see the
example below).

Example: MASM FuM, ,FUN/D/Y,FUN

This example causes Macro Assembler to be loaded, then causes
the source file FUM.ASM to be assembled. Macro Assembler then
outputs the relocatable object ocde to a file named FlUMN.0BJ
{default caused by two commas in a row), creates a 1listing
file named FUM.LST for both assembly passes but with false
conditionals suppressed, and creates a cross-reference file
named FUN.CRF. If names were not 1listed for 1listing and
cross-reference, these files would not be created. If listing
file switches are given but no filename, the switches are
ignored.

11.1-140

—

Programmer Guide ASSEMBLER
1.5.2 MACRO ASSEMBLER COMMAND PROMPTS

Macro Assembler 1is commanded by entering responses to four
text prompts. When you have entered a reponse to the current
prompt, the next appears. When the last prompts has been
answered, Macro Assembler begins assembly automatically
without further command. When assembly is finished, Macro
Assembler exits to the operating system. When the operating
system prompts is displayed, Macro Assembler has finished
successfully. If the assembly is unsuccessful, Macro
Assembler returns the appropriate error message.

Macro Assembler prompts the user for the names of source,
object, listing, and cross-reference files.

A1l command prompts accept a file specification as a response.
You may enter:

a filename only
a device designation only
a filename and an extension
a device designation and a filename
or a device designation, filename, and extension.

You may not enter only a filename extension.

Source filename [.ASM]:

Enter the filename of your source program. HMacro
Assembler assumes by default that the filename
extension is .ASM, as shown in square brackets in
the prompt text. If your source program has any
other filename extension, you must enter it along
with the filename. Otherwise, the extension may be
omi tted.

Object filename [source.0BJ]:

Enter the fiTename you want to receive the generated
object code. If you simply press the carriage return
key when this prompt appears, the object file will
be given the same name as the source file, but with
the filename extension .0BJ. If you want your
object file to have a different name or a different
filename extension, you must enter your choice(s) in
response to this prompt. If you want to change only
the filename but keep the .0BJ extension, enter the
filename only. To change the extension only, you
must enter both the filename and the extension.

11.1-141

ASSEMBLER Programmer Guide

Source 1isting [NUL.LST]:

Enter the name of the file, if any, you want to
receive the source 1listing. If you press the
carriage return key, Macro Assembler does not
produce this listing file. If you enter a filename
only, the listing is created and placed in a file
with the name you enter plus the filename extension
.LST. You may also enter your own extension.

The source 1listing file will contain a 1ist of all
the statements in your source program and will show
the code and offsets generated for each statement.
The 1listing will also show any error messages
generated during the session.

Cross reference [MUL.CRF]:

Enter the name of the file, if any, you want to
receive the cross reference file. If you press only
the carriage return key, Macro Assembler does not
produce this cross reference file. If you enter a
filename only, the cross reference file is created
and placed in a file with the name you enter plus
the filename extension .CRF. You may also enter your
own extension.

The cross reference file is wused as the source file
for the CREF Cross Reference Facility. CREF
converts this cross reference file into a cross
reference 1isting, which you can wuse to aid you
during program debugging.

The cross reference file contains a series of
control symbols that identify records in the file.
CREF uses these control symbols to create a listing
that shows all occurrences of every symbol in your
program. The occurrence that defines the symbol is
also identified.

11.1-142

Programmer Guide ASSEMBLER

1.5.3 MACRO ASSEMBLER COMMAND SWITCHES

The three switches control alternate assembler functions.
Switches must be enetered at the end of a prompt response,
regardless of which method 1is used to invoke Macro Assembler.
Switches may be grouped at the end of any one of the
responses, or may be scattered at the end of several. If more
than one switch is entered at the end of one reponse, each
switch must be preceded by the slash mark (/). You may not
enter only a switch as a reponse to a command prompt.

Switch Function

/D Produce a source listing on both assembler passes.
The 1istings will, when compared, show where in the
program phase errors occur and will, possibly, give
you a clue to why the errors occur. The /D switch
does not take effect unless you command Macro
Assembler to create a source listing (enter a
filename in reponse to the source 1listing command
prompt).

/0 Qutput the 1isting in octal radix. The generated
code and the offsets shown on the listing will all
be given in octal. The actual code in the object
file will be the same as if the /0 switch were not
given. The /0 switch affects only the 1isting file.

/X Suppress the 1isting of false conditionals. If your
program contains conditional blocks, the 1listing
file will show the source statements but no code if
the condition evaluates false. To avoid the clutter
of conditional blocks that do not use generated
code, use the /X switch to suppress the blocks that
evaluate false from your listing.

The /X switch does not affect any block of code in

your file that is controlled by either the .SFCOND
or .LFCOND directives.

I1.1-143

ASSEMBLER Programmer Guide

If your source program contains the .TFCOMD
directive, the /X switch has the opposite effect.
That s, normally the .TFCOND directive causes
listing or suppressing of blocks of code that it
controls. The first .TFCOMD directive suppresses
false conditionals, the second restores listing of
false conditionals, and so on. When you use the /X
switch, false conditionals are already suppressed.
When Macro Assembler encounters the first .TFCOND
directive, 1listing of false conditionals is
restored. When the second .TFCOMD is encountered
(and the /X switch is used), false conditionals are
again suppressed from the listing.

Of course, the /X switch has no effect if no 1isting
is created. See additional discussion under the
.TFCOMD directive in Section 1.4.

The following chart illustrates the various effects
of the conditional Tisting directives in combination
with the /X switch.

PSEUDO-0P NO /X X

(n?ne) O? OfF
.SF%UND O%F D%F
.LF%UND Oé DéF
.TF%OND Oé OéF
.SF%OND O%F D%F
.TFéOND OéF Dé
.TF?UMD 0? OTF
.TFCOND [}I;‘F 01:1

11.1-144

P

o
1]

Programmer Guide ASSEMBLER

Summary of Listing Symbols

R = Tinker resolves entry to left of R

E = External

——— = segment name, group name, or segment variable used in MOV AX,
€am==>, DD <eeeo>, JOMP <---->, and so on.

= = statement has an ENIl or = directive

nn: = statement contains a segment override

nn/ = REPxx or LOC¥ prefix instruction. Example.

003C F2/AR REP MQOVSW ;move NS:SI to ES:SI until CX=0

r = DUP expression; xx is the value in parentheses
XX following DUP, for example: DUP(?) places ??
where xx is shown here

+
"

line comes from a macro expansion

line comes from file named in IMCLUDE directive statement.

I1.1-145

ASSEMBLER

Programmer Guide

ENTX PASCAL entry for initializing programs

nonn
= 0000

STACK SEGMENT WORD STACK 'STACK'
HEAPbeg Ent! THIS BYTE

4 Indicates ENU or = directive——— ¢

done ;Base of heap before init
anon 14 [DB 20 DUP (?)
7? e—shows value in parentheses
N
4 Indicates DUP expressio
= 014 SKTOP En THIS BYTE
0014 STACK ENDS
nnoon MAINSTARTIP SEGMENT 'MEMORY'
DGROUP GROUP DATA,STACK,CONST,HEAP ,MEMORY
ASSIIME CS:MAINSTARTUP,DS:DGROIP
ES:DGROUP,SS:DGROIIP
PUBLIC BEGXPN ;Main entry
onnn H
nonn BB ---- R BEGAXNN PROC PAR
Mov AX,DGROIP
;get assumed data segment
value
non3 RE DR Mov DS,AX ;Set DS seg
(f AC N6 _NN22 R MOV CESXnN,ES
generated name action expression comment
code
offset
000C 26: 8B 1E 0NN2 MoV BX,ES:2 ;highest paragraph

11.1-146

segment override

Programmer Guide

ENTX

no11
0013
nni7
no19

on1c

nnic
NN1E
nn2o

nnz22

noz4

0069

0ONAE

nn7e
oono

2B
a1
7E
BB

D1
DI
D1

D1

8B

EA

ASSEMBLER

PASCAL entry for initializing programs

D8

FB 1000
n3

1000

SMLSTK:

E3
E3
E3

E3

macro
block

E3

these Tines
from macro

suB BX,AX ;Get #paras for D&
CMp BX,4n96 ;More than R4X?
JLE SMLSTK ;Mo, use what we have
MOV BX,4096 ;Can only address 6A4K
» REPT 44—
SHL BX,1
;Convert paraj to offset
ENDM
SHL BX,1
;Convert para|to offset
SHL B¥,1
;Convert parajto offset
SHL B¥,1
;Convert para|to offset
SHL BY,1
;Convert para|to offset
macro number of
directives repetitions
Mov SP,BX

noon ——-- E JMP
ignal to linker

linker resolves: indicates segment name, group name
or segment variable used in MOV AX,<-==->;
ND <¢==u=d>; JMP <-a--> etc. (See other
example in this listing.)

BEGXNN

ENDP

MAIMSTARTUP

ENTXCM

;Set stack to top of memory

.

FAR PTR STARTmain

segment variable

EMDS

SEGMENT WORD 'CODE'
ASSIME CS:ENTXCM

PIBL

IC EMDXNN,DOSXNN

IT.1-147

Programmer Guide

FAR ;This code remains

;call main program

;termination entry point
suser system termination
;close all open files

;file system termination

;return to NOS

ASSEMBLER
ENTX PASCAL entry for initializing program
nono STARTmain PROC
nnnn A NONN ——--- E CALL ENTBGON
nong EMDXNN LABEL FAR
nNNs - OA NNON --—- E CALL EMDON
ONODA 9A 00NN ---- E CALL ENDYNN
nnonF g NO00 ---- E CALL ENDUNN
0014 €7 06 NO20 R 0NON MOV DOSOFF, 0
offset)= |~

linker External

signal; symbol

goes with

number to Teft: shows DOSOFF is in segment
nn 2E 0020 R STARTmain EMDP
nnaz ENTXCM ENDS

END BEGXND

11.1-148

Programmer Guide ASSEMBLER

Differences Between Pass 1 Listing and Pass 2 Listing

If you give the /D switch when you run Macro Assembler to assemble your
file, the assembler produces a listing for both pases. The option is
especially helpful for finding the source of phase errors.

The following example was taken from a source file that was assembled
without reporting any errors. When the source file was reassembled
using the /D switch, an error was produced on pass 1, but not on pass ?
(which is when errors are usually reported).

Example:

During Pass 1 a jump with a forward reference:

nni7 7 0N JLE SMLST¥ ;Mo, use what we have
Error --- a: Symnbol not defined
0n19 bb 1000 Mov BX,4n0s :Can only address R4V
nnic SMLSTK: REPT a

Durina Pass 2 this same instruction is fixed up and does not return an
error:

no17 7E n2 JLE SMLSTK ;No, use what we have
nn1e BB 1000 MOV BX,409f :Can only address A4

Notice that the JLE instructions code now contains N3 instead of 00, a
Jjump of 3 bytes.
The same amount of code was producing during both passes, so there was

no phase error. The only different is one of content instead of size,
in this case.

11.1-149

ASSEMBLER Programmer Guide

1.5.4.3 Symbol Table Format

The symbol table portionof a listing separates all "symbols" into their
respective categories, showing appropriate descriptive data. This data
gives you an idea how your program is using various symbolic values. lise
this information to help you debug.

Also, you can use a cross reference listing, produced by CREF, to help
you locate uses of the various "symbols" in your program.

On the next page is a complete symbol table 1listing. Following the
complete listing, sections from different symbol tables are shown with
explanatory notes.

For all sections of symbol tables: this rule applies: if there are no
symbolic values 1in your program for a particular category, the heading
for the category will be omitted from the symbol table 1isting. For
example, if you use no macros in your program, you will not see a macro
section in the symbol table.

IT.1-150

o~

Programmer Guide ASSEMBLER

Assembler date PAGE Symbols - 1
CALLER - SAMPLE ASSEMBLER ROUTIME (EXMPIM.ASM)

Macros
Hame Length

BIOSCALL nnnz
DISPLAY: &« « & &« s = nonns
DOSCALL: & « » « & & nnng
KEYBOARD nnn3
LOCATE onn3
SCROLL: & = « w & 5 = non4

Structures and Records:

Mame Width #fields
Shift Width Mask Initial

PARMLIST noic

BUFSIZE. onnn
MAMESIZE onni
MAMETEXT nnnz
TERMIMNATOR D01B

Segments and Groups:
Mame Size Align combine class
CSEG & s # 5 % & 5 % nnaa PARA PIBLIC 'CODE"'

STACK. nz00 PARA STACK 'STACK'
WORKAREA 0021 PARA PUBLIC 'DATA'

Symbols:
Mame type Value Attr
CLS: 5.5 %55 6 & 4 M PROC 003A CSEG Length =00NE
MAXCHAR. Number 0019
MESSGs « & & & & % & L BYTE o001C WORKAREA
PARMS:: » & 4 i o & s L 001C 0000 WORKAREA
RECEIVR. . . . « . . L FAR nono External
START. .+ « « « « . . F PROC 00NO CSEG Length =0036

Warning Severe
Errors Errors
0 0

II.1-151

ASSEMBLER

Macros:

BIOSCALL. « « « « + &

DISPLAY . . . « . . .
DOSCALL« « &
KEYBOARD.
LOCATE. + « &« o« & & &

SCROLL. « « ¢ « « + &

names of macros

Programmer Guide

Length g— _number of 32 byte block
macro occupies

nnnz in memory

noos

nnnz

nona

nnnz

nong

This section of the symbol table tells you the names of your macros and
how big they are in 32 byte block units. In this 1listing, the macro
DISPLAY is 5 block long or (5 x 32 bytes =) 160 bytes long.

11.1-152

Programmer Guide ASSEMBLER

Structures and records:

Examples for Structures

Name Width # fields This 1ine
Shift Width Mask Initial ¢——for fields
PARMLIST . +« noic nnn4 {indented)
BUFSTZE. . « « « & nnno,
NAMESIZE nonl
NAMETEXT . . . e nnnz
TERMINATOR N01B Mumber of fields in

Structure
field name of 0ffset of field
PARMLIST Structure into structure
The number of bytes
wide of structure

Example for Records

Name Width # fields This line
Shift Width Mask Initial for fields
BAZ: v @ i e & ok ’-vnnoa 0003 «——————Humber of fields in record
FIDL 2 o 5 o0 = » nnne nnnz onco onan
ELD2 & v o % w npo3 nno2 nnas nOOND 4—initial value
FLEDXw & o e 2w nono onn3 nno onn3
BAZ] [000B | 0002 A — MASK of field
BZli 5 2 5 8 5 & nnna nong n7F8 nann (maximum value)
BZ2uvs: w = 0 & @ noon non3 0007 nnnz
number of shift number of bits
bits in record— count if field
to right

This section lists your Structures and/or Records and their fields. The
upper line of column headings applies to Structure names, Record names,
and to field names of Structures. The lower 1line of column headings
applies to field names of records.

For structures:
Width (upper 1line) shows the number of bytes your Structure
occupies in memory.
fields shows how many fields comprise your Structure.

I1.1-153

ASSEMBLER Programmer Guide

For Records:
Width (upper 1line) shows the number of bits the Record{
occupies.
fields shows how many fields comprise your Record.

For Fields of Structures:
Shift shows the number of bytes the field is offset into the
structure.
The other columns are not used for fields of Structures.

For Fields of Records
Shift is the shift count to the right

Width (lower 1ine) shows the number of bits this field
occupies.

Mask shows the maximum value of record, expressed in
hexadecimal, if one field is masked and ANDed (field is set to
all 1's and all other fields are set to all n's).

I'sing field BZ1 of the Record BAZl above to illustrate:

0000011111111000
LTI reriyoed
15 1o 43 o

WIDTH = 0008 shift count = 0003

Initial shows the value specified as the initial value for the
Field, if any.

When naming the field you specified: fieldname:# = value

fieldname is the name of the field. # is the width of the
field in bits. value is the initial value you want this field
to hold. The symbol table shows this value as if it is placed
in the field and all other fields are masked (equal 0). llsing
the example and diagram from above:

000002000 0000/000 Initial = 0400
SEENNEENERNENEE R D
initial = 80H
80H = 128 'decimal

11.1-154

—

Programmer Guide ASSEMBLER

Segments and groups:

Name Size align combine class
called Private
/r in LINK section

ARAXDD & v 4 4 & . oonn WORD NONE 'CODE@q———segment
DGROIIP « v o & « & & GROUP & -group
DATA & s & & & » = onza WORD PUBLIC 'DATA'
STACK. « & & o & & N014 WORD STACK 'STACY' segments
CONSTw: 5 o 5 & o = nono - WORD PUBLIC 'COMST' of
HEAP 5% @ % @ ¢ % nnO0 WORD PUBLIC 'MEMORY' DGROUP
MEMORY noNnN WORD PUBLIC 'MEMORY'
ENTXCM n037 WORD MONE 'CODE*
MAIM_STARTUP 007E PARA NONE 'MEMORY '
length statemeJ; Tine entries
of
segments

For Groups:

the name of the group will appear under the Mame column, beginning in
column 1 with the applicable Segment names indented 2 spaces. The word
Group will appear under the size column.

ror Segments:

the segment names may appear in column 1 (as here) if you do not declare
them part of a group. If you declare a group, the segment names will
appear indented under their group name.

For all Segments, whether pat of a group or not:

Size is the number of bytes the Segment occupies.

Align is the type of boundary where the segment begins:

PAGE = page - address is xxxNOH (low byte = 0); begins on a
256 byte boundary.

PARA = paragraph - address is xxxxNH (low nibble = 0)}; default
WORD = word - address is xxxxeH (e = even number)

lTow bit of low byte = 0)

bitmap - Xx X x X x X x 0

BYTE = byte - address is xxxxxH (anywhere)

Combine describes how LIMK (Linker Utility) will combine the wvarious
segments.

Class is the class name under which LINMK will combine segments in
Memory.

IT.1-158

ASSEMBLER

Symbols:

Mame

FO04 . . .

s ® 8 a
I I T

Symbols:

BEGHM .,
BEGOND

BEGXNN ., . .+ . . . &

CESXnn .,
CLNEND .
CRCXON .
CRDXNN .
CSXENN .
CIRHON
DOSOFF .
posxon
EMDHOO .
ENDOPN
ENDUND .
ENDXDN
ENDYON
ENTGNN
FREXON
HDRF 0N
HDRVQOD
HEAPBEG.
ININOND .
PHNLIXON
RECEDQ .
REFEON
REPEON .
RESEDPN
SKTOP. . .
SMLST¥ . .
STARTMAIN.
STKBON , .
STKHNN .

" s = &8 % & % s ® = & & s w = w8 = & w o

s & & = & = & = = % = = @

s ® 4 = & = &8 8 & = @

11.1-156

P

D R

Type

Mumber
Text
Number
Alias
Text
Opcode

Programmer Guide

Value Attr {

onns
1.234
onng

FOO
5[BPIIDI]

Value Attr

nn1z DATA Global

nnno External

nono MAIN STARTIP Global Length = ONARE
nn22 DATA Global

nnn2 DATA Global

noic DATA Global

NO1E NATA Global

nooon DATA Global

onia DATA Global

nnz20 DATA

ON1E ENTXCM Global Length = n019
0n16 DATA Global

onne External
onon External
nnns ENTXCM Global

anan External
noon External

ONGE MAIM STARTUP Global Length = NO1n
nnog DATA™ Global

nong DATA Global

nono STACK #=—————¢ ENI] statements
onon External| showing segment
nona DATA External
noo4 DATA Global
nooc DATA Global
NONE DATA Global
NNOA DATA Global
noila STACK ¢#———
no1c MAIM STARTUP
nonn ENTXCM Length = OD1E

nnia DATA Global

NN1A DATA Global

If Macro Assembler knows this length (
as one of the type lengths (BYTE, WORD,
DWORD, NWAORD, TBYTE), it shows that
type name here.

Programmer Guide ASSEMBLER

This section lists all other symbolic values in your program that do not
fit under the other categories.

Type shows the symbol's type:
L = Label
F = Far
N = Near
PROC = Procedure
Number
Alias A1l defined by ENU or = directive
Text
Opcode

mwu

These entries may be combined to form the various types shown
in the example.

For all procedures, the length of the procedure is given after
its attribute (segment)

You may also see an entry under type like:
L 0031
This etnry results from code such as the following:
BAZ LABEL FOO
where FOO is a STRUC that is 31 bytes long.
BAZ will be shown in the symbol table with the L NN31 entry.
Basically, Number (and some other similar entries) indicates
that the symbol was defined by an ENIl or = directive.
Value (usually) shows the numeric value the symbol represents. (In some

cases, the Value column will show some text -- when the symbol was
defined by ENIl or = directive.)

Attr always shows the segment of the symbol, if known. Otherwise, the
AEEr column is blank. Following the segment name, the table will show
either External, Global or a blank (which means not declared with either
the EXTRM or PUBLIC directive). The last entry applies to PROC types
only. This is a length = entry, which is the length of the procedure.

I1.1-157

ASSEMBLER Programmer Guide

If type is Number , Opcode, Alias, or Text, the Symbols section of the
1isting wilT be structured differently. Whenever you see one of these
four entries under type, the symbol was created by an ENI directive oﬁ
an = directive. A1l information that follows one of these entries is
considered its "value', even if the "value" is simply text.

Each of the four types shows a value as shown:
Mumber shows a constant numeric value

Opcode shows a blank. The symbol is an alias for an
instruction mnemonic. Sample directive statement: FOO ENII ADD

Alias shows a symbol name which the named symbol equals.
Sample directive statement: FOO EOU BAX

Text shows the "text" the symbol repreesnts. "Text" is any
other operand to an ENU directive that does not fit one of the
other three categories above. Sample directive statements:
GOO ENU "WOW' BAZ ENII DS:8[BX) Z00 ENU 1.234

I1.1-15R

Programmer Guide ASSEMBLER

Section 6

Macro Assembler Messages

Most of the messages output by Macro Assembler are error
messages. The nonerror messages output by Macro Assembler are
the banner messages, and the end of (successful) assembly
message. These nonerror messages are classified here as
operating messages. The error messages are classified as
assembler errors, I1/0 handler errors, and runtime errors.

1.6.1 OPERATIMG MESSAGES

Banner Message and Command Prompts:

MACRO-8A v1.0 Copyright (C) Microsoft, Inc.
Source filename [.ASM1:
Object filename [source.nNBJ]:

Source listing MMUL.LSTI:
Cross reference THUL.CRF1:

End of Assembly Message:

HWarning Fatal
Errors Errors
n n {n=number of errors)

(the system prompt)

I1.1-1ka

ASSEMBLER Programmer Guide

1.A.2 ERROR MESSAGES

If the assemhler encounters errors, error messages are output,
alono with the numbers of warning and fatal errors, and
control is returned to your disk operating system. The
message is output either to your terminal screen or to the
listing file if you command one to be created.

Frror messages are divided into three categories: assembler
errors, I1/0 handler errors, and runtime errors. In each
category, messages are listed in alphabetical order with a
short explanation where necessary. At the end of this

chapter, the error messages are listed in a single numerical
order Tist but without explanations.

Assembler Errors

Already defined locally (Code 22)
Tried todefine a symbol as EXTERMAL that had already
been defined locally.

Already had ELSE clause (code 7)
Attempt to define an ELSE clause within an existing
ELSE clause (you cannot nest ELSE without nesting
IF...EMDIF).

Already have base register (Code 4AR)

Trying to double base register.

Already have index register (Code 47)

Trying to double index address

Block nesting error (Code N)

Hested procedures, segments, structures, macros,
IRC, IRP, or REPT are not properly terminated. An
example of this error 1is close of an outer level of
nesting with inner level(s) still open.

I1.1-160

Programmer Guide ASSEMBLER

Byte register is illegal (Code 5R)
lise of one of the byte registers in context where it
is illegal. For example, PUSH AL.

Can't override ES segment (Code 67)
Trying to override the ES segment in an instruction
where this override 1is not Tlegal. For example,
store string.

Can't reach with segment reg (Code AR)
There is no assume that makes the variable
reachable.

Can't use EVEN on BYTE segment (Code 7n)
Segment was declared to be byte segment and attempt
to use EVEM was made.

Circular chain of ENll aliases (Code R?)

An alias ENU eventually points to itself.

Constant was expected (Code 42)

Expecting a constant and received something else.

CS register illegal usage (Code 59)
Trying to use the CS register illegally. For
example, XCHG CS,AX.

Directive illegal in STRUC (Code 7R)
A1l statements within STRIC blocks must either be
comments preceded by a semicolon (;), or one of the
Define directives.

Division by 0 or overflow (Code 29)

An expression 1is given that results in a divide by

.

I1.1-1A1

ASSEMBLER Programmer Guide

DUP is too large for linker (Code 74)
Mesting of D!IPs was such that too large a record was
created for the linker.

Extra characters on 1ine (Code 1)
This occurs when sufficient information to define

the instruction directive has been received on a
1line and superfluous characters beyond are received.

Field cannot be overridden (Code 80)

In a STRIC initialization statement, you tried to
give a value to a field that cannot be overridden.

Forward needs override (Code 71)

This message not currently used

Forward reference is illegal (Code 17)

Attempt to forward reference something that must be
defined in pass 1.

I11egal register value (Code 55)
The register value specified does not fit into the
“reg" field (the reg field is greater than 7).
I11egal size for item (Code 57)
Size of referenced item 1is illegal. For exmple,
shift of a double word.
I11egal use of external (Code 32)
llse of an external 1in some 1illegal manner. For
example, DB M DIIP(?) where M is declared external.
I111egal use of register (Code 49)

llse of a register with an instruction where there is
no RANBA or BNRR instruction possible.

11.1-162

Programmer Guide ASSEMBLER

I111egal value for DUP count (Code 72)
DIIP counts must be a constant that is not N or
negative.

Improper operand type (Code 52)
lise of an operand such that the opcode cannot be
generated.

Index displ. must be constant (Code 54)

Label can't have seg. override (Code 65K)

I11egal use of segment override.

Left operand must have segment (Code 3R)
llse something 1in right operand that required a
segment in the left operand. (For example, ":.")
More values than defined with (Code 7R)

Too many fields given in REC or STRIC allocation.

Must be associated with code (Code 14K)

llse of data related item where code item was
expected.

Must be associated with data (Code 44)

llse of code related item where data related item was
executed. For example, MOV AX,<code-label>.

Must be AX or AL (Code AD)
Specification of some register other than AX or AL

where only these are acceptable. For example, the
IN instruction.

11.1-1A3

ASSEMBLER Programmer Guide

Must be index or base register (Code 48)
Instruction requires a base or 1index register and
some other register was specified in square brackets
[

Must be declared in pass 1 (Code 12)
Assembler expecting a constant value but got
something else. An example of this might be a
vector size being a forward reference.

Must be in segment block (Code f9)

Attempt to generate code when not in a segment

Must be record field name (Code 33)

Expecting a record field name but got something
else.

Must be record or field name (Code 34)
Expecting a record name or field name and received
something else.

Must be register (Code 1R)
Register unexpected as operand but user furnished
symbol -- was not a register.

Must be segment or group (Code 20)
Expecting segment or group and something else was
specified.

Must be structure field name (Code 37)

Expecting a structure field name but received
something else.

IT.1-1A4

Programmer Guide

Must be symbol type (Code 22)

ASSEMBLER

Must be WORD, DW, O0ll, BYTE, or TB but received

something else.

Must be var, label or constant (Code 3R)

Expecting a variable, 1label, or constant but

received something else.

Must have opcode after prefix (Code fR)

llse of one of the prefix instructions without

specifying any opcode after it.

Mear JMP/CALL to different CS {Code f4)

Attempt to do a MEAR jump or call to a location in a

different CS ASSUME.

Mo immediate mode (Code &F)

Immediate mode specified or an opcode that cannot

accept the immediate. For example, PUSH.

Mo or unreachable CS (Code A2)

Trying to jump to a label that is unreachable.
Mormal type operand expected (Code 41)

Received STRUCT, FIELDS, MAMES, BYTE, WORD,

when expecting a variable label.

Mot in conditional block (Code R)

or DW

An EMDIF or ELSE is specified without a previous

conditional assembly directive active.

Mot proper align/combine type (Code 25)

SEGMENT parameters are incorrect.

I11.1-1RR

ASSEMBLER Programmer Guide

One operand must be const (Code 39)

This is an illegal use of the addition operator.

Only initialize 1ist legal (Code 77)

Attempt to use STRIC name without angle brackets, <
>.

Operand combination i1legal (Code A3)

Specification of a two-operand instruction where the
combination specified is illegal.

Nperands must be same or 1 abs (Code 4n)

I11egal use of the subtraction operator.

Operand must have segment (Code 42)

I11egal use of SER directive.

Operand must have size (Code 37)

Expected operand to have a size, hut it did not.

Operand not in IP segment (Code K1)
Access of operand is impossible because it is not in
the current IP segment.
Operand types must match (Code 21)
Assembler gets different kinds or sizes of arguments
in a case where they must match. For example, MOV.
Operand was expected (Code 27)

Assembler is expecting an operand but an operator
was received.

IT1.1-16AA

Programmer Guide ASSEMBLER

Operator was expected (Code 28)

Assembler was expecting an operator but an operand
was received.

Override is of wrong type (Code R1)

In a STRIC initialization statement, you tried to
use the wrong size on override. For example,
'"HELLD' for NW field.

Override with DIIP is illegal (Code 79)

In a STRUC initialization statement, you tried to
use DUP in an override.

Phase error between passes (Code 6)

The program has ambiguous instruction directives
such that the location of a 1label 1in the program
changed in value between pass 1 and pass 2 of the
assembler. An example of this is a forward
reference coded without a segment override where one
is required. There would be an additional byte (the
code segment override) generated in pass 2 causing
the next label to change. You can use the /D switch
to produce a 1listing to aid in resolving phase
errors between passes.

Redefinition of symbol (Code 4)

This error occurs on pass 2 and succeeding
definitions of a symbol.

Reference to mult defined (Code 2A)

The instruction references something that has been
multi-defined.

I1.1-1A7

ASSEMBLFR Programmer Guide

Register already defined (Code 2)
This will only occur if the assembler has internal
logic errors.

Register can't be forward ref (Code 82)

Relative jump out of range (Code 53)
Relative jumps must be within the range -128 +127 of
the current instruction, and the specific Jjump is
beyond this range.

Segment parameters are changed (Code 24)
List of arguments to SEGMEMT were not identical to
the first time this segment was used.

Shift count is negative (Code 2n)
A shift expression is generated that results in a
negative shift count. \

Should have been group name (Code 13}
Expecting a group name but something other than this
was given.

Symbol already different kind (Code 15)
Attempt to define a symbol differently from a
previous definition.

Symhol already external (Code 7R3)
Attempt to define a symbol as local that is already
external.

Symbol has no segment (Code 21)

Trying to use a variable with SEG, and the variable
has no known segment.

IT.1-16R

Programmer Guide ASSEMBLER

Symbol is multi-defined (Code &)
This error occurs on a symbol that is later
redefined.

Symbol is reserved word (Code 16)

Attempt to use an assembler reserved word illegally.
(For example, to declare MOV as a variable.)

Symbol not defined (Code 9)

A symbol is used that has no definition.

Symbol type usage illegal (Code 14)

I11egal use of a PIBLIC symbol.

Syntax error (Code 10)

The syntax of the statement does not match any
recognizable syntax.

Type illegal in context (Code 11)

The type specified is of an unacceptable size.
linknown symbol type (Code 2)

Symbol statement has something in the type field

that is unrecognizable.

lisage of ? (indeterminate) bad (Code 75)
Improper use of the "?". For example, ? + &.
value is out of range {Code 50)
Value is too large for expected use. For example,

MOV AL,5000.

Wrong type of register (Code 19)

I1.1-1A9

ASSEMBLER Programmer Guide

Directive or instruction expected one type of
register, but another was specified. For example,
INC CS.

11.1-170

G

NGUAC

—

Programmer Guide LIpw

2.1 INTRODUCTION
Features and Benefits of LINK

LIMK is a relocatable 1linker designed to 1link together
separately produced program files.

For all the necessary and optional commands, LIMK prompts the
user. The user's answers to the prompts are the commands for
LIMY,

The output file from LIM¥ (Run file) is not bound to specific
memory addresses and, therefore, can be loaded and executed at
any convenient address by the user's operating system.

LIMY uses a dictionary-indexed 1ibrary search method, which
substantially reduces link time for sessions involving library
searches.

LINv is capable of linking files totaling 2R4¥ bytes

LIMY combines several object modules into one relocatable load
module, or Run file.

As it combines wmodules, LIM¥ resolves external references
between object modules and can search multiple library files
for definitions for any external references left unresolved.

LIMK also produces a list file that shows external references
resolved and any error messages.

LINK uses available memory as much as possible. When
available memory is exhausted, LIMK then creates a disk file
and becomes a virtual Tlinker.

2.2 DEFINITIONS

Three terms will appear in some of the error messages 1listed
in Section 2.9, These terms describe the underlying
functioning of LIMX. An understanding of the concepts that
define these terms provides a basic understanding of the way
LIM¥ works.

Page I1.2-1

LIMK Programmer Guide

1. Segment

A Segment is a contiguous area of memory up to R4V
bytes in length. A Segment may be lTocated anywhere
in RNRAR memory on a "paragraph" (1A byte) boundary.
The contents of a Segment are addressed by a
Segment-register/offset pair.

2. Group

A Group is a collection of Segments which fit within
faK bytes of memory. The Segments are named to the
Group by the assembler, by the compiler, or by you.
The Group name 1is given by you 1in the assembly
language program. For the high-level 1languages
(BASIC, FORTRAM, COBOL, Pascal), the naming is
carried out by the compiler.

The Group is used for addressing Segments in memory.
Each Group is addressed by a single Segment
register. The Segments within the Group are
addressed by the Segment register plus an offset.
LIMK checks to see that the object modules of a
Group meet the fa¥ byte constraint.

3. Class

A Class is a collection of Seqments. The naming of
Segments to a Class controls the order and relative
placement of Segments in memory. The Class name is
given by you in the assembly 1language program. For
the high-level 1languages (BASIC, FORTRAM, COBOL,
Pascal), the naming is carried out by the compiler.
The Segments are named to a Class at compile time or
assembly time. The Segments of a Class are loaded
into memory contiguously. The Segments are ordered
within a Class 1in the order LIN encounters the
Segments in the object files. One Class precedes
another in memory only if a Segment for the first
Class precedes all Segments for the second Class in
the input to LIM¥. Classes may be loaded across AdV
byte boundaries. The Classes will be divided into
Groups for addressing.

Page II.2-2

Programmer Guide LINK

How LINK Combines and Arranges Segments

LINV works with four combine types, which are declared in the
source module for the assembler or compiler: private, public,
stack, and common. LIMK does not automatically place memory
combine type as the highest segments.

LINY combines segments for these combine types as follows:

Private

n Private segments are loaded

A A separately and remain separate.
They may be physically contiguous
AN but not Togically, even if the

Al segments have the same name. FEach
private segment has its own base
address.

Public

n Public segments of the same name and

A class name are loaded contiguously.

— A= Offset is from beginning of first

seqment Toaded through last segment

A loaded. There is only one base address
for all public segments of the same name
and class name. (Combine types stack and
memory are treated the same as public.
However, the Stack Pointer is set to the
first address of the first stack segment.)

Common

0 Common segments of the same name and

A class name are loaded overlapping one

— - another. There is only one base address
for all common segments of the same name.
A' The length of the common area is the
length of the longest segment.

Page 11.2-7

LINv Programmer Guide

Placing segments in a Group in the assembler provides offset
addressing of items from a single base address for all
segments in that Group.

NS:DGROIP ———=XXY¥OH N -- relative offset
A

T —

B

|~ — ——F0N
C

L— Any number of other segments may intervene between segments of
a group. Thus, the offset of FNN may be greater than the size
of segments in group combined, but no larger than AAv,

An operand of DGROI'P:FN0 returns the offset of FAN from the
beginning of the first segment of NGROIP (seqment A here).

Segments are grouped by declared class names. LIMY Toads all
the segments belonging to the first class name encountered,
then 1loads all the segments of the next class name
encountered, and so on until all classes have been loaded.

If your program contains:

A SEGMEMT 'F0O'
B SEGMEMT 'BAZ'
C SEGMFNT 'BAZ'
D SEGMEMT 'Zo0'
E SEGMENT 'F0O'

They will be loaded as:

'FOO'
A
F

'BAZ’
8
c

'zo0!
D

If you are writing assembly language programs, you can
exercise control over the ordering of classes in memory by
writing 2 dummy module and 1isting it first after the LIMW
Object Modules prompt. The dummy module declares segments into
classes in the order you want the classes loaded.

Page II.2-4

Programmer Guide LIMY

WARMIMG

Do not use this method with BASIC, COBOL, FORTRAM, or Pascal
programs. Allow the compiler and the linker to perform their
tasks in the normal way.

For example:

A SEGMENT 'CODE'

A ENDS

B SEGMENT 'COMST'
B ENDS

C SEGMENT 'DATA’

C ENDS

D SEGMENT *STACK'
D EMDS

E SEGMENT 'MEMORY"
E ENDS

You should be careful to declare all classes to be used in
your program in this module. If you do not, you lose ahsolute
control over the ordering of classes.

Also, if you want Memory combine type to be loaded as the last
segments of your program, you can use this method. Simply add
MEMORY between SEGMEMT and 'MEMODRY' in the E segment 1line
above. Mote, however, that these segments are loaded last only
because you imposed this control on them, not because of any
inherent capability in the linker or assembler operations.

2.2 FILES THAT LIMK USES

LIM¢ works with one or more input files, produces two output
files, may create a virtual memory file, and may be directed
to search one to eight library files. For each type of file,
the user may give a three part file specification. The format
for LIMK file specifications is:

drv:filename.ext

where: drv: is the drive designation. Permissible drive
designations for LINK are A: through 0:. The colon
is always required as part of the drive designation.

filename is any 1legal filename of one to eight
characters.

ext is a one to three character extension to the

filename. The period 1is always required as part of
the extension.

Page I11.2-R

LInv Programmer Guide

Input Files

If no extensions are given 1in the input (Object) file
specifications, LIMY recoqnizes by default:

File Default Extension
Object .0Bd
Library .LIB

Output Files

LINK appends to the output (Run and List) files the following
default extensions:

File Nefault Extension
Run FXE (may not be overridden)
List .MAP (may be overridden)

2.4 VM.TMP File

LIMY uses available memory for the link session. If the files
to be Tlinked create an nutput file that exceeds available
memory, LI'K creates a temporary file and names it VYM.THMP. If
LIMY needs to create VM.THMP, it displays the message:

YM.TMP has been created
Do not change diskette in drive, <drv:>

Once this message is displayed, the user must not remove the
diskette from the default drive until the 1ink session ends.
If the diskette is removed, the operation of LIMY is
unpredictable, and LIM¢Y might return the error message:

linexpected end of file on VM.TMP
LIM¥ uses VII.TMP as a virtual memory. The contents of VM.TMP
are subsequently written to the file named following the Run

File: prompt. VM.TMP is a working file only and is deleted at
the end of the 1linking session.

Page I1.?7-f

Programmer Guide LIMK

WARNING

Do not use VM.TMP as a file name for any file. If the user
has a file named VM.THP on the default drive and LIMV requires
the YM.TMP file, LIN¥ will delete the VM.TMP on disk and
create a new VM.TMP. Thus, the contents of the previous VM.THP
file will be lost.

2.5 RUNNING LINK

Running LIM¥ requires two types of commands: a command to
invoke LINK and answers to command prompts. In addition, six
switches control alternate LIMV features. Ilsually, the user
will enter all the commands to LIM¥ on the terminal keyboard.
As an option, answers to command prompts and any switches may
be contained in a Response File. Some special command
characters are provided to assist the user while entering
linker commands.

2.6 INVOKING LINK

LIN¥ may be invoked three ways. By the first method, the user
enters the commands as answers to individual prompts. By the
second method, the user enters all commands on the line used
to invoke LIN¥, By the third method, the user creates a
Response File that contains all the necessary commands.

Surmmary of Methods to invoke LINK

Method 1 - LINK
Method 2 - LIM¥ <filenames> [\switches]

Method 2 - LINK @<filespec>

Page II.2-7

LIMK Programmer Guide

2.6.1 Method 1: LINK
Enter:
LINK

LIN% will be loaded into memory. Then, LINY returns a series
of four text prompts that appear one at a time. The user
answers the prompts as commands to LIMK to perform specific
tasks.

At the end of each Tine, you may enter one or more switches,
each of which must be preceded by a slash mark. If a switch
is not included, LIMK defaults to not performing the functions
described for the switches in the chart below.

The command prompts are summarized here and described in more
detail in Section 2.7, Command Prompts. Following the summary
of prompts is a summary of switches, which are described in
more detail in Section 2.8, Switches.

PROMPT RESPONSES

Object Modules [.0BJ] List .0BJ files to be Tinked,
separated by a blank spaces or
plus signs (+). If plus sign is
last character entered, prompt
will reappear. (Mo default:
response required).

Run File [Object-file.EXE]: | List filename for executable
object code. (default: first
Object filename.EXE).

List File [Run-file.MAP]: List filename for listing
(default: RUN filename).

Libraries [1: List filenames to be searched,
separated by blank spaces or
plus signs (+). If plus sign is
last character entered, prompt
will reappear. (default: no
search)

- — #

Page II.2-R

Programmer Guide LIN¥

SWITCH ACTION
e —
/DSALLOCATE Load data at high end of Data

Segment. Required for Pascal and
FORTRAM programs.

/HIGH Place Run file as high as
possible in memory. Do not use
with Pascal or FORTRAM programs.

JLIMEMIIMBERS Include 1line numbers in List
file.

/MAP List all global symbols with
definitions.

/PAISE Halt linker session and wait for
<Rtn>.

/STACK: <number> Set fixed stack size in Run
file.

e

Command Characters
LIMK provides three command characters:

+ llse the plus sign (+) to separate entries and to
extend the current physical line following the
Object Modules and Libraries prompts. (A blank
space may be used to separate object modules.)

To enter a large number of responses (each of which
may also be very long), enter a plus sign/carriage
return at the end of the physical line (to extend
the logical line). If the plus sign/carriage return
is the last entry following these two prompts, LIMK
will prompt the user for more modules names. When
the Object Modules or Libraries prompt appears
again, continue to enter responses. When all the
modules to be 1inked have been listed, be sure the
response 1ine ends with a module name and a carriage
return and not a plus sign/carriage return.

Example:
Object Modules [.0BJ]: FUM TEXT TABLE
CARE+<Rtn>
Object Modules [.08J]

FOO+FLIPFLOP+JVUNNUE+<RtN>
Object Modules [.0BJ]: CORSAIR<Rtn>

Page 11.2-2

LIMY Programmer Guide

: llse a single semicolon (;) followed immediately by a
carriage return at any time after the first prompt
{from Run File on) to select default responses to
the remaining prompts. This feature saves time and
overrides the need to enter a series of carriage
returns.

MOTE

Once the semicolon has been entered, the user can no Tlonger
respond to any of the prompts for that 1ink session.
Therefore, do not use the semicolon to skip over some prompts.
For this, use <Return>.

Example:

Object Modules [.0BJJ: FUN TEXT TABLE CARE <CR>
Run module TFIM.EXE]: ;<CR>

The remaining prompts will not appear, and LIMY will use the
default values (including FIIN.MAP for the List File.)

Ctr1+Brk Use Ctrl1+Brk at any time to abort the link session.
If you enter an erroneous response, such as the
wrong filename or an incorrectly spelled filename,
you must press Ctr1+Brk to exit LIMY, then reinvoke
LIMY and start over. If the error has been typed
but not entered, you may delete the erroneous
characters, but for that line only.

Page 1I1.2-1n

Programmer Guide LIMK

2.6.2 Method 2: LINK <filename>[/switches]

Enter: LIMK <object-list>,<runfile», <listfile>,
<1ib-list>[/switch...]

The entries following LIMY are responses to the
command prompts. The entry fields for the different
prompts must be separated by commas.

where: object 1ist is a 1ist of object modules, separated
by plus signs

runfile is the name of the file to receive the
executahle output

Listfile is the name of the file to receive the
listing.

Lib 1ist is a 1ist of library modules to be searched

/switch are optional switches, which may be placed
following any of the response entries (just before
any of the commas or after the <1ib list>, as
shown}.

To select the default for a field, simply enter a
second command without spaces in between (see the
example below).

Example: LIMK FUM+TEXT+TABLE+CARE/P/M, ,FUMLIST,COBLIB.LIB

This example causes LIM¥ to be loaded, then causes
the object modules FIIN.0BJ, TEXT.0BJ, TABLE.OBJ, and
CARE.OBJ to be loaded. LIMY then pauses (caused by
the /P switch). When the user presses any key, LIN¥
Tinks the object modules, produces a global symbol
map (the /M switch), defaults to FUM.EXE run file,
creates a list file named FIIMLIST.MAP, and searches
the Tibrary file COBLIR.LIB.

Page I1I1.2-11

LINK Programmer Guide

2.6.3 Method 3: LIMK @<filespec>
Enter: LIMK R<filespec>

where: filespec is the name of a Response File. A Response
File contains answers to the LIMK prompts (shown
under method 1 for invoking), and may also contain
any of the switches. Method 23 permits the user to
conduct the LINY session without interactive
(direct) user responses to the LINK prompts.

IMPORTANT

Before using method 3 to invoke LINK, the user must
first create the Response File.

A Response File has text lines, one for each prompt.
Responses must appear in the same order as the
command prompts appear.

llse switches and Special Command Characters in the
Response File the same way as they are used for
responses entered on the terminal keyboard.

When the LIM¥ session begins, each prompt will be
displayed in turn with the responses from the
response file. If the response file does not
contain answers for all the prompts, either in the
form of filenames or the semicolon special character
or carriage returns, LIM will, after displaying the
prompt which does not have a response, wait for the
user to enter a legal response. When a legal
response has been entered, LINK continues the 1link
session.

Example:

FUN TEXT TABLE CARE /PAUSE/MAP FUMNLIST
COBLIB.LIB

This Response File will cause LINK to Toad the four
files. LIM¥ will pause before creating and producing
a public symbol map to permit the user to swap
diskettes (see discussion under /PAIISE in Section
2.4, Switches, before using this feature)}. When the
user presses any key, the output files will be named
FUIM.EYE and FIMLIST.MAP, LINK will search the
library file COBLIB.LIB, and will use the default
settings for the flags.

page I1.72-12

Programmer Guide LIMv

2.7 COMMAND PROMPTS

LTH¥ is commanded by entering responses to four text prompts.
When you have entered a response to the current prompt, the
next appears. When the last prompt has been answered, LIMK
begins 1inking automatically without further command. When
the 1ink session is finished, LIMY exits to the operating
system. When the operating system prompt is displayed, LIMNK
has finished successfully. If the 1link session s
unsuccessful, LIM¥ returns the appropriate error message.

LIM¥ prompts the user for the names of object, run, Tist
files, and for 1libraries. The prompts are listed in their
order of appearance. For prompts which can default to preset
responses, the default response is shown 1in square brackets
(T1) following the prompt. The Object Modules: prompt is
followed by only a filename extension default response because
it has no preset filename response and requires a filename
from the user.

Object Modules [.0BJ]:

Enter a 1list of the object modules to be linked.
LIM¥ assumes by default that the filename extension
is .0BJ. If an object module has any other filename
extension, the extension must be given here.
Otherwise, the extension may be ommitted.

Modules must be separated by plus signs (+).
Remember that LIMK 1loads Segments into Classes in
the order encountered (see Section 2.7,
Definitions). llse this information for setting the
order in which the object modules are entered.
Run File [First-Object-Filename.EXE]:

The filename entered will be created to store the
Run (executable) file that results from the 1ink
session. A1l Run files receive the filename
extension .EXE, even if the user specifies an
extension (the user specified extension is ignored).
If no response is entered to the Run File: prompt,

LIMY uses the first.filename entered in response to
the Object Modules: prompt as the RIM filename.

Example:
Run File TFUN.EXE]: B:PAYROLL/P

This response directs LI to create the Run file

Page 11.2-13

LIMK Programmer Guide

PAYROLL.EXE on drive B:. Also, LIMK will pause, :
which allows the user to insert a new diskette to (
receive the Run file. The default response is the

Run filepame with the default filename extension
MAP.

Libraries [1:

The valid responses are one to eight library
filenames or simply a carriage return. (A carriage
return only means no library search.) Library files
must have been created by a library utility. LINK
assumes by default that the filename extension is
.LIB for library files.

Library filenames must be separated by blank spaces
or plus signs (+).

LIM searches the library files in the order listed
to resolve external references. When it finds the
module that defines the external symbol, LIMK
processes the module as another object module.

If LINY cannot find a library file on the diskettes
in the disk drives, it returns the message:

Cannot find library <library-name>
Enter new drive letter:

Simply press the letter for the drive designation
{for example B).

LIMY does not search within each 1library file
sequentially. LIMY uses a method called dictionary
indexed library search. This means that LIM¢¥ finds
definitions for external references by index access
rather than searching from the beginning of the file
to the end for each reference. This indexed search
reduces substantially the 1ink time for any sessions
involving library searches.

Page 11.2-14

Programmer Guide LIty

2.8 SWITCHES

The six switches monitor alternate linker functions. Switches
must be entered at the end of a prompt response, regardless of
which method is used to invoke LINv. Switches may be grouped
at the end of any one of the responses, or may be scattered at
the end of several. If more than one switch is entered at the
end of one response, each switch must be preceded by the slash
mark (/).

A11 switches may be abbreviated, from a single letter through
the whole switch name. The only restriction is that an
abbreviation must be a sequential sub-string from the first
letter through the last entered:; no gaps or tranpositions are
allowed. For example:

Legal IMegal

/D /DSL

/DS /DAL

/DSA /DLC

/DSALLOCA /DSALLOCT
/DSALLOCATE

lise of the /NSALLOCATE switch directs LIM to load
all data (DGroup) at the high end of the Data
Segment. Otherwise, LIMY Toads all data at the low
end of the Data Segment. At runtime, the DS pointer
is set to the lowest possible address and allows the
entire DS segment to be used. ll'se of the
/NSALLOCATE switch in combination with the default
load low (that 1is, the /HIGH switch is not wused),
permits the user application to allocate dynamically
any available memory below the area specifically
allocated within DNGroup, yet to remain addressable
by the same DS pointer. This dynamic allocation is
needed for Pascal and FORTRAM programs.

MOTE
The user's application program may dynamically

allocate up to R¥ bytes (or the actual amount
available) less the amount allocated within DGroup.

/HIGH
lise of the /HIGH switch causes LIMY to place the Run
image as high as possible in memory. ONtherwise,
LIMY places the Run file as low as possible.

NOTE

Page I7.2-1KR

LINv Programmer Guide

No not use the /HIGH switch with Pascal or FORTRAM
programs.

/LIMENUMBERS

Ise of the /LINEMIIMBERS switch directs LIM to
include in the List file the 1line numbers and
addresses of the source statements in the input
modules. 0Otherwise, 1ine numbers are not included
in the List file.

NOTE

Mot all compilers produce object modules that
contain 1ine number information. In these cases, of
course, LINV cannot include 1ine numbers.

/MAP directs LINK to 1ist all public [(global)
symbols defined in the input modules. If /MAP is
not given, LIM¥ will 1list only errors (which
includes undefined globals).

The symbols are 1listed alphabetically. For each
symbol, LIMK 1ists its value and its segment:offset
Tocation in the Run file. The symbols are listed at
the end of the List file.

/PAUSE

The /PAIISE switch causes LINK to pause in the 7Tink
session when the switch 1is encountered. MNormally,
LIM¥ performs the 1inking session without stop from
beginning to end. The pause allows the user to swap
the diskettes before LIMK outputs the Run (.EXE)
file.

When LIMY encounters the /PAISE switch, it displays
the message:

About to generate .EXE file
Change disks <hit any key>

LIMK resumes processing when the user presses any
key.

CANTIOM
Do not swap the diskette which will receive the List

file, or the diskette used for the VM.TMP file, if
created.

Page II.2-1f

Programmer Guide LIMY

/STACK: <number>

number represents any positive numeric value (in
hexadecimal radix) up to RRR3A bytes. If the /STAC¥
switch is not wused for a 1link session, LIM¥
calculates the necessary stack size automatically.

If a value from 1 to 511 is entered, LINV uses 512.
A11 compilers and assemblers should provide
information in the object modules that allow the
Tinker to compute the required stack size.

At least one object (input) module must contain a

stack allocation statement. If not, LIMV will
return a WARMIMG: MO STACY. STATEMEMT error message.

Page I1.2-17

LInK Programmer Guide

2.9 ERROR MESSAGES

A1l errors cause the link session to abort. Therefore, after
the cause is found and corrected, LIMY must be rerun.

ATTEMPT TO ACCESS DATA OUTSIDE OF SEGMEMT BOIINDS, POSSIBLY BAD
0OBJECT MODVLE
Cause: probably a bad object file

BAD NUMERIC PARAMETER
Cause: Mumeric value not in digits

CANMOT OPEN TEMPORARY FILE

Cause: LIMK is unable to create the file VM.TMP
because the disk directory is full.

Cure: insert a new diskette. Do not change the
diskette that will receive the Tist.MAP
file.

ERROR: DUP RECORD TOO COMPLEX

Cause: DIIP record in assembly language module is
too complex.

Cure: simplify DIUP record 1in assembly language
program.

ERROR: FIXUP OFFSET EXCEEDS FIELD WIDTH
Cause: an assembly language instruction refers to
an address with a short instruction
instead of a long instruction.
Cure: edit assembly Tlanguage source and
reassemble

INPUT FILE READ ERROR
Cause: probably a bad object file

INVALID OBJECT MODULE
Cause: object modulels) incorrectly formed or
incomplete (as when assembly was stopped
in the middle).

SYMBOL DEFINED MORE THAM ONCE
Cause: LIMK found two or more modules that define
a single symbol name.

Page II.2-1R

Programmer Guide LINK

PROGRAM SIZE OR NUMBER OF SEGMENTS EXCEEDS CAPACITY OF LINKER

Cause: the total size may not exceed 384V bytes
and the number of segments may not exceed
258

RENUESTED STACK SIZE EXCEEDS 64K
Cure: specify a size less than or equal to A4K
bytes with the /STACV switch

SEGMENT SIZE EXCEEDS 64K
f4v bytes is the addressing system limit.

SYMBOL TABLE CAPACITY EXCEEDED
Cause: very many, very Jlong names entered;
exceeding approximately 25v bytes

TOO MANY EXTERNAL SYMBOLS IM ONE MODILE
The T1imit 1is 2kF external symbols per
module.

TOO MANY GROIIPS
The Timit is 10 Groups

TOO MANY LIBRARIES SPECIFIED
The Timit is R,

TOD MANY PUBLIC SYMBOLS
The limit is 1n24,

TOO MAMY SEGMEMTS OR CLASSES
The 1imit is ?25f (Segments and Classes
taken together)

IINRESOLVED EXTERNALS: <list>
The external symbols 1listed have no
defining module among the modules or
libraries files specified.

VM READ ERROR
Cause: a disk problem; not LIMVY caused.

pPage J1.7-10

LIMK Programmer Guide

WARNING: NO STACK SEGMENT
Cause: none of the object modules specified
contains a statement allocating stack
space, but the user entered the /STACK

switch.

WARNIMG; SEGMENT OF ABSOLUTE OR IINKMOWN TYPE
Cause: 2 bad object module or an attempt to Tink
modules LIMY cannot handle (e.g., an
absolute object module).

WRITE ERROR IN TMP FILE

Cause: no more disk space remaining to expand
VM. THP file.

WRITE ERROR ON RUN FILE

Cause: usually, not enough disk space for Run
file.

Page I11.7-20

Programmer Guide DERNG

2.1 IMTRODUCTION

DEBIG is a debugging program used to provide a controlled
testing environment for binary and executable object files.
Mote that text editors such as IM:SCRIRE are used to alter
source files; DEBIG is the counterpart for binary files.
NEBUG eliminates the need to reassemble a program to see if a
problem has been fixed by a minor change. It allows you to
alter the contents of a file or the contents of a CPll
register, and then to immediately reexecute the program to
check the validity of the changes.

A1l DEBI'G commands may be aborted at any time by pressing
Ctri+Brk. Ctrl+MumLock suspends the display, so that the user
can read it before the output scrolls away. Entering any key
other than Ctr1+Brk or Ctrl+MumLock restarts the display. Al
of these commands are consistent with the control character
functions available at the NNS command level.

2,2 INVOCATIOM
To invoke DEBIIG, enter:

NERNG T<filespec> [<arglist>1]

For example, if a <filespec> is specified, then the following
is a typical invocation:

DEBNG FILE.EYE

DERIG then Tloads FILE.EXE into memory starting at 100
hexadecimal in the 1lowest available segment. The BY:CX
registers are loaded with the number of bytes placed into
memory. The DEB'G prompt is a right angle bracket (>).

An <arglist> may be specified if <filespec> is present. These
are filename parameters and switches that are to be passed to
the program <filespec>. Thus, when <filespec> 1is loaded into
memory, it is Toaded as if it had been invoked with the
command:

<filespec> <arglist>
Here, <filespec> is the file to be debugged, and the <arglist>

is the rest of the command line that s used when <filespec>
is invoked and loaded into memory.

I1.241

DEBIG Programmer Guide

If no <filespec> is specified, then DEBIIG 1is invoked as
follows:

DEBIIR

DEBIG then returns with the prompt, signaling that it is ready
to accept user commands. Since no filename has been
specified, current memory, disk sectors, or disk files can be
worked on by invoking later commands.

3.3 COMMAMDS

Each DEBIIG command consists of a single letter followed by one
or more parameters. Additionally, the control character and
the special editing functions described in Section 2 all apply
inside DEBIG.

If a syntax error occurs in a DEBIG command, DEBIG reprints
the command 1ine and indicates the error with an up-arrow (7)
and the word error.

For example:

dcs: 100 ¢s:11n
" error

A1 commands and parameters may be entered in either upper or
Tower case. Any combination of upper and lower case may be
used in commands.

The DERUG commands are summarized in Table 2.1 and are

described in detail with examples following the description of
command paramters.

11.2-2

Programmer Guide DERIG

Table 3.1 - DEBUG Commands

DEBIIG Command Function
C<range> <address> Compare
Dl <range>] Dump
E<address> [<list>] Enter
F<range> <list> Finl

Gl =<address> [<address>...] Go
H<address> <address> Hex
I<value> Input

L[<address> [<drive><record><record>11 Load
M<range> <address> Move
M<filespec> Hame
D<value> <byte> flutput

n nuit

Rl <register-name>] Register
S<range> <list> Search
Tl=<address>1l<value>] Trace

Il <range>] linassemble
Wl<address> [<drive><record><record>]1 Write

I1.3-3

DEBIG Programmer Guide

3.4 PARAMETERS

As the summary above shows, all DEBIG commands accept
paramters, except the 0Nuit command. Parameters may be
separated by delimiters (spaces or commas), but a delimiter is
required only between two consecutive hexadecimal values.
Thus, the following commands are equivalent.

des:10n 110
dcs: 100 110
d,cs:10n,110

Also, entries may be made in any combination upper or lower

case.

PARAMETER DEFINITION

<drive> A one digit hexadecimal value to indicate which
drive a file will be loaded from or written to.
The valid values are 0-3. These values
designate the drives as follows: 0=A:, 1=B:,
2=C:, 3=D:.

<hyte> A two digit hexadecimal value to be placed in
or read from an address or register.

<record> A1l to 3 digit hexadecimal wvalue used to
indicate the logical record number on the disk
and the number of disk sectors to be written or
loaded. Logical records correspond to sectors.
However, their numbering differs since they
represent the entire disk space.

<value> A hexadecimal value up to four digits used to
specify a port number or the number of times a
command should repeat its function.

<address> A two part designation consisting of either an

alphabetic segment register designation or a
four digit segment address plus an offset
value. The segment designation or segment
address may be omitted, in which case the
default segment is used. DS s the default
segment for all commands except G, L, T. U, and
W, for which the default segment is CS. All
numeric values are hexadecimal.

For example:

CS:n1nn
N4BA: 0100

11.3-4

Programmer Guide

<range>

<list>

<string>

The colon is required between a segment
designation (whether numeric or alphabetic) and
an offset.

Two <address>s: e.g., <address> <address>; or
one <address>, an L, and a <value>: e.g.,
<address> L <value> where <value> is the number
of lines the command should operate on; or
simply <address>, and LRN is assumed. The last
form can not be wused if another hex value
follows the <range>, since the hex value would
be interpreted as the second <address> of the
<range>.

Examples:

CS:1n0 11n
CS:1n0 L 10
CS:10n

The following is illegal:

CS:100 CS:11n
* error

The 1imit for <range> is 1000N hex. To specify
a <value> of 1nNNNN hex within four digits,
enter NONO (or N),

A series of <byte> values or of <string> line.
<list> must be the last parameters on the
command line.

Example:
fcs:100 42 45 R2 R4 41

Any number of characters enclosed in quote
marks. Ouote marks may be either single (') or
double ("). Within <string>s, the opposite set
of quote marks may be used freely as literals.
If the delimiter quote marks must appear within
a <string>, the quote marks must be doubled.
For example, the following strings are legal:

'This is a "string" is okay.'
'This is a ''string'' is okay.'

However, this string is illegal:
'This is a 'string' is not.'

I

NEBIIG

I.3-5

DEBIIG Programmer Guide

Similarly, these string are legal:
“This is a 'string' is okay."
“This is a ""string"" is okay."
However, this string is illeqal:
"This is a "string" is not."

Mote that the double quotations are not
necessary in the following strings:

"This is a ''string'' is not necessary."
'This is a ""string"" is not necessary.'

The ASCII values of the characters in the
string are used as a <list> of byte values.

I1.3-6

Programmer Guide

MAME :
SYNTAX:

FHUNCTION:

COMMENTS

EXAMPLE:

C<range> <address>

Compare the portion of memory specified by <range>
to a portion of the same size beginning at
<address>.

If the two areas of memory are identical, there is
no display and DEBIIG returns with the MS-DOS prompt.
If there are differences, they are displayed as:
<address!> <bytel> <byte?> <address?>

The following commands have the same effect:

C10N,1FF 200

or
c10oL1NN 200

Each command compares the block of memory from 100
to 1FFH with the block of memory from 2NN to 3FFH.

DEBIIG

11.3-7

NEBUG Programmer Guide

NAME :

SYNTAX: Dl<range>]

FUMCTION: Display the contents of the specified region of
memory .

COMMENTS: If a range of addresses 1is specified, the contents
of the range are displayed. 1f the D command is
entered without paramters, 12R bytes are displayed
at the first address (DS:1nn) after that displayed
by the previous Dump command.

The dump is displayed in two portions: a hexadecimal
dump (each byte is shown in hexadecimal value) and
an ASCII dump (the bytes are shown in ASCII
characters). Monprinting characters are denoted by
a period (.) in the ASCII portion of the display.
Fach display 1line shows sixteen bytes with a hyphen
between the eighth and ninth bytes. At times,
displays are split in this manner to fit them on the
page. Each displayed 1line, except possibly the
first, begins on a 1A-byte boundary.

If the user enters the command:

des:100 110

DEBIIG displays:

NABA:MION 42 45 R2 R4 41 ... 4E 44 BERTA T. BORLAND
If the following command is entered:

n

the display is formatted as described above. Fach
line of the display begins with an address;
incremented by 16 from the address on the previous
line. Fach subsequent D (entered without

parameters) displays the bytes immediately following
those last displayed.

IT.2-8

Programmer Guide DEBUG

If the user enters the command:
DCS:100 L 20

the display is formatted as described above, but ?0H
bytes are displayed.

If the user enters the command:
DCS: 100 115
the display is formatted as described above, but all

the bytes in the range of 1ines from 100H to 11RH in
the CS segment are displayed.

11.32-0

DEBIIG Programmer Guide

NAME: Er _
SYMTAY: FE<address>[<list>]

FUMCTION: Enter byte values into memory at the specified
<address>.

COMMENTS: If the optional <list> of values is entered, the
replacement of byte values occurs automatically.
(If an error occurs, no byte values are changed.)
If the <address> is entered without the optional
<list>, DEBIIG displays the address on the next 1line
and waits for the user's input. At this point, the
Enter command waits for you to peform one of the
following actions:

1. Replace a bhyte value with a value the user
types in. The user simply types the value
after the current value. If the value typed in
is not a legal hexadecimal value or if more
than two digits are typed, the illegal or extra
character is not echoed.

2. Press the space bar to advance to the next
byte. To change the value, simply enter the
new value as described in (1.) above. If the
user spaces beyond an eight-byte boundary,
DEBUG starts a new display 1ine with the
address displayed at the beginning.

3. Type a hyphen (-) to return to the preceding
byte. If the user decides to change a byte
behind the current position, typing the hyphen
returns the current position to the previous
byte. When the hyphen is typed, a new line is
started with the address and its byte value
displayed.

A, Press the <Rtn> key to terminate the Enter

command. The <Rtn> key may be pressed at any
byte position.

I1.3-10

Programmer Guide

EXAMPLE:

Assume the following command is entered:

ECS:1nn

NERIG displays:

NABA:NINN EB.

To change this value to 41, enter "41" as shown:
N4BA:N10N EB.4]_

To step through the subsequent bytes, press the
space bar to see:

N4BA: 0100 EB.4) 10. on., BC.

To change BC to 42:

N4BA:N1MN EB.41 1n, nn. BC.42_

Mow, realizing that 10 should bhe AF; enter the
hyphen as many times as needed to return to byte
nn1 (value 1n), then replace 10 with AF:

N4BA:N1ON ER. 41 mn. nn, BC.42-

NARA:N1INZ NN, -

NABA:NINT 10.FF

Pressing the <Rtn> key ends the FEnter command and
returns to the DFBIG command level.

IT

DEBUG

.31

DEBIG Programmer Guide

MAME :

SYNTAX: F<range> <list>

FUNCTION: Fil1 the addresses in the <range> with the values in
the <list>.

COMMENTS: If the <range> contains more bytes than the number
of values in the <1ist>, the <list> will be wused
repeatedly until all bytes in the <range> are
filled. If the <list> contains more values than the
numher of bytes in the <range> the extra values in
the <1ist> will be ignored. If any of the memory in
the <range> is not valid <bad or nonexistent>, the
error will be propagated into all succeeding
locations.

EXAMPLE: Assume the following command is entered:
FN4BA:10N L 100 42 4R R2 KA 41
DEBIR fills memory 1locations NARA:1nN through

N4BA:1FF with the bytes specified. The five values
are repeated until all 100H bytes are filled.

11.3-12

——

Programmer Ruide DEBUG

NAME :

SYNTAX: GF=<address>1l <address>...]
FUNCTION: Execute the program currently in memory.

COMMENTS: If the Go command is entered alone, the program
executes as if the program had run outside DFBIIG.

If =caddress> 1is set, execution begins at the
address specified. The equal sign (=) 1is required,
so that DEB!G can distinguish the start =<address>
from the breakpoint <address>es.

With the other optional addresses set, execution
stops at the first <address> encountered, regardless
of that address' position in the 1ist of addresses
to halt execution, no matter which branch the
program takes. When program execution reaches a
breakpoint, the registers, flags, and decoded
instruction are displayed for the last instruction
executed. (The result is the same as 1if you had
entered the Register command for the breakpoint
address.)

Ip to ten breakpoints may be set. Breakpoints may
be set only at addresses containing the first byte
of an opcode. If more than 10 breakpoints are set,
DEBIG returns the BP Error message.

The user stack pointer must be valid and have six
bytes available for this command. The G command
uses an IRET dinstruction to cause a jump to the
program under test. The user stackpoint is set, and
the user Flags, Code Segment register, and
Instruction Pointer are pushed on the user stack.
(Thus, if the user stack is not valid or 1is too
small, the operating system may crash.) An
interrupt code (NCCH) is placed at the specified
breakpoint address(es). When an instruction with the
breakpoint code is encountered all breakpoint
addresses are restored to their original
instructions. If execution is not halted at one of
the breakpoints, the interrupt codes are not
replaced with the original instructions.

I1.3-13

DEBIIG Programmer Guide

EXAMPLE: Assume the following command is entered:
GCS: 7550

The program current in memory executes up to the
address 7550 in the CS segment. Then DEBIG displays
registers and flags, after which the Go command is
terminated.

After a breakpoint has been encountered, if you
enter the Go command again, then the program
executes just as 1if the user had entered the
filename at the MS-DOS command Tlevel. The only
difference is that program execution begins at the
instruction after the breakpoint rather than at the
usual start address.

I1.2-14

Programmer Guide DEBUG

NAME :
SYNTAX:

i

H<value> <value>

FINCTION: Perform hexadecimal arithmetic on the two

parameters.

COMMENTS: First, DEBIIG adds the two parameters, then subtracts

EXAMPLE:

NAME :
SYNTAX:

the second parameter from the first. The result of
the arithmetic is displayed on one 1ine; first the
sum, then the difference.

Assume the following command is entered:

H19F 1NA

DEBIG peforms the calculations and then returns the
results:

N2Aa NN9K

R R

I<value>

FUNCTION: Input and display one byte from the port specified

by <value>.

COMMEMTS: A 16-bit port address is allowed.

EXAMPLE:

Assume the following command is entered:
12FR

Assume also that the byte at the port is 42H. DEBIIG
inputs the byte and displays the value:

A2

11.3-15

DEBIIG Programmer Guide

NAME :

SYNTAX: Ll<address> l<drive> <record> <record>]]
FUNCTION: Load a file into memory

COMMENTS: Set BX:CX to the number of bytes read. The file
must have been named with either the DEBUG
invocation command or with the N command. Both the
invocation and the N commands format a filename
properly in the normal format of a file control
block at CS:5C.

If the L command is given without any parameters,
NEBIG Tloads the file into memory beginning at
address CS:100 and sets BX:CX to the number of bytes
loaded. If the L command is given with an address
parameter, loading begins at the memory <address>
specified. If L is entered with all parameters,
absolute disk sectors are loaded, not a file. The
<record>s are taken from the <drive> specified (the
drive designation is numeric here--n=A:, 1=B:, 2=C:,
etc.)}; DEBIG begins loading with the first <record>
specified, and continues until the number of sectors
specified in the second <record> have been loaded.

EXAMPLE: Assume the following commands are entered:

A:DEBUG
>NFILE.COM

Mow, to load FILE.COM, enter:
L

DEBIG Toads the file and returns the DEBUG prompt.
Assume you want to Tload only portions of a file or
certain records from a disk. To do this, enter:

LNaba:100 2 NF AD

DEBUG then loads 1n9 (AD hex) records beginning with
Togical record number 15 into memory beginning at
address 04BA:N10N, When the records have been
loaded, DEBIG simply returns the prompt.

I1.3-1A

Programmer Guide DERIIG

If the file has a .EXE extension, then it is
relocated to the 1load address specified in the
header of the .EXE file: the <address> parameter is
always ignored for .EXE files. MNote that the header
jtself is stripped off the .EXE file before it is
loaded into memory. Thus, the size of a .EXE file on
disk will differ from its size in memory.

If the file named by the Mame command or specified
on invocation is a .HEX file, then entering the L
command with no parameters causes 1loading of the
file beginning at the address specified in the .HEX
file. If the L command includes the option
<address>, DEBIG adds the <address> specified in the
L command to the address found in the .HEY¥ file to
determine the start address for loading the file.

11.3-17

DEBIIG Programmer Guide

MAME :

SYNTAX: M<range> <address>

FUNCTION: Move the block of memory specified by <range> to the
location beginning at the <address> specified.

COMMENTS: Overlapping moves (moves where part of the block
overlaps some of the current addresses) are always
performed without 1loss of data. Addresses that
could be overwritten are moved first. The sequence
for moves from higher addresses to Tlower addresses
is to move the data beginning at the block's Towest
address and working towards the highest. The
sequence for moves from Jlower addresses to higher
addresses is to move the data beginning at the

block's highest address and working towards the
lowest.

Mote that if the addresses in the block being moved
will not have new data written to them, the data
there before the move will remain; that is, the M
command really copies the data from one area into
another, in the sequence described, and writes over
the new addresses. This is why the sequence of the
move is important.

EXAMPLE: Assume you enter:
MCS:100 110 CS:5NN
DEBNG first moves address (CS:110 to addressgs
CS:51n, then CS:10F to CS:RNF, and so on until
CS:1nn is moved to CS:5MN, You should enter the D

command, using the <address> entered for the M
command, to review the results of the move

I17.3-1R

P—

Programmer Guide

NAME :
SYNTAX:

M<filename>T<filename>...]

FUNCTION: Set filenames

COMMENTS: The Mame command performs two distinct functions,

hoth having to do with filenames. First, MName is
used to assign a filename for a later Load or Write
command. Thus, if you invoke DEBIG without naming
any file to be debugged, then the IN<filename>
command must be given before a file can be Loaded.
Second, Hame is used to assign filename parameters
to the file being debugged. In this case, HMHame
accepts a 1ist of parameters that are used by the
file being debuaged.

These functions overlap. Consider the following set
of DEB!UG commands:

SNFILE1.EXE
>L
>6

Because of the two pronged effect of the MName
command, the following happens:

1. (M)ame assigns the filename FILE1.F¥E to the
filename to be used in any later Load or MWrite
commands.

2. (M)ame also assigns the filename FILE.EXE to
the first filename parameter to be used by any
program that is later debugged.

3. (L)oad loads FILE.EXE into memory.
4, (G)o causes FILE.EXE to be executed with
FILE.EXE as the single filename parameter (that

is, FILE.EXE is executed as if FILE FILE.EXE
had heen typed at the command level).

I1

NEBUG

.3-19

DEBIIG Programmer Guide

A more useful chain of commands might go like this:

>MFILEL1.EXE

>L

>MFILE2.DAT FILER.DAT
>6

Here, Mame sets FILE1.EXE as the filename for the
subsequent Load command. The Load command Toads
FILE1.EXE into memory, and then the Mame command is
used again, this time to specify the parameters to
be used by FILE1.EXE. Finally, when the Go command
is executed, FILE1.EXE 1is executed as if FILE]
FILE2.DAT FILE3.DAT had been typed at the MS-DPOS
command level. Mote that if a Write command were
executed at this point, then FILE1.EXE -- the file
being debuqged -- would be saved with the name
FILE2.DAT! To avoid such undesired results, you
should always execute a MName command before either a
Load or a Write.

There are four distinct regions of memory that can
be affected by the Yame command:

CS:5C FCB for file 1

CS:AC FCB for file 2

CS:An Count of characters
CS:R1 A11 characters entered

A File Control Block (FCB) for the first filename
parameter given to the MYName command is set-up at
CS:5C. If a second filename parameter is given,
then an FCB is setup for it beginning at CS:RC. The
number of characters typed in the Mame command
(exclusive of the first character, "M") is given at
the location CS:R0N. The actual stream of characters
given by the Mame command (again, exclusive of the
letter "N") begins at CS:R1. MNote that this stream
of characters may contains switches and delimiters
that would be legal in any command typed at the
MS-DOS command level.

11.2-20

Programmer Guide NEBIIG

EXAMPLE:

A typical use of the Hame command would be:

DEBUG PROG.COM
-MPARAM1 PARAMZ/C
-G

In this case, the Go command executes the file in
memory as if the following command 1ine had been
entered:

PROG PARAM1 PARAM2/C

Testing and debugging therefore reflect a normal
runtime environment for PROG.COM.

11.3-21

DEBIIG Programmer Guide

NAME :
SYNTAX: O<value> <byte>

FUNCTION: Send the <byte> specified to the output port
specified by <value>.

COMMENTS: A 1A-bit port address is allowed.
EXAMPLE: Enter:
02FR aF

DEBUG outputs the byte value 4F to output port 2F8.

NAME :

SYNTAX: N

FUNCTION: Terminate the debugger

COMMENTS: The 1 command takes no parameters and exits DEBIIG
without saving the file currently being operated on.
You are returned to the MS-DOS command level.

EXAMPLE: To end the debugging session, enter:

N<Rtn>

DEBUG is terminated, and control returns to the
MS-DOS command level.

11.3-22

Programmer Guide DEBUG

MAME :
SYNTAX:
FUNCTION:
COMMENTS:

Rl <register-name>]

Display the contents of one or more CP!l registers.

If no <register-name> is entered, the R command
dumps the register save area and displays the
contents of all registers and flags.

If a register name is entered, the 1f-bit value of
that register is displayed in hexadecimal, and then
a colon appears as a prompt. The user then either
enters a <value> to change the register, or simply
presses the <Return> key if no change is wanted.

The only valid <register-name>s are:

AX BP SS
BX SI CS
Cx pr 1Ip
DX DS PC
s ES F

(IP and PC both refer to the instruction pointer.)

Any other entry for <register-name> results in a BR
Error message.

If F is entered as the <register-name>, DEBIG
displays each flag with a two character alphabetic
code. To alter any flag, enter the opposite two
letter code. The flags are either set or clear.

The flags with their codes for get and clear are
listed below:

FLAG NAME SET CLEAR
Overflow ov MV
Direction DN Decrement 1P Increment
Interrupt EI Enabled DI Disabled
Sign NG Megative PL Plus
Zero IR MZ
Auxiliary AC NA
Carry

I1.3-23

DEBLIG Programmer Guide

Parity PE Even PO 0dd
Carry CY MC

Whenever the user enters the command RF, the flags
are displayed in the order shown above in a row at
the beginning of a 1ine. At the end of the list of
flags, DEB!IIG displays a hyphen (-). You may enter
new flag values as alphabetic pairs. The new flag
values can be entered in any order. You are not
required to leave spaces between the flag entries.
To exit the R command, press the <Return> key.
Flags for which new values were not entered remain
unchanged.

If more than one value is entered for a flag, DEBUG
returns a DF Error message. If you enter a flag
code other than those shown above, DEB!IG returns a
BF Error message. In both cases, the flags up to
the error in the 1ist are changed; flags at and
after the error are not.

At start up, the segment registers are set to the
bottom of free memory, the Instruction Pointer is
set to 0I0ODH, all flags are cleared, and the
remaining registers are set to zero.

EXAMPLE: Enter:

R

DEBIIG displays all registers, flags, and the decoded
instruction for the current location. If the
lTocation is CS:1]A, then DEBUG might display:
AX=0ENN BX-NOFF CS-NON7 NDX=N1FF SP=N3aD BP=NNNN
SI=00AC DI=0NON DS=N4BA ES=04BA SS=04BA CS=04BA
IP=011A MV 1IP DI NG NZ AC PE NC

N4BA:011A (D21 INT 21

If you enter:

RF

DEBUG displays the flags:

NV UP DI NG NZ AC PE NC - _

11.3-24

Programmer Guide DEBIIG

Mow enter any valid flag designation, in any order,
with or without spaces.

For example:
NV UP DI MG MZ AC PE MC - PLEICY<Rtn>

DEBIIG responds only with the DEBIG prompt. To see
the changes, enter either the R or RF command:

RF
NV 1P EI PL NZ AC PE CY - _

Press <Rtn> to leave the flags this way, or to enter
different flag values.

11.3-2%

DEBUG Programmer Guide

NAME : g ;
SYNTAX: S<range> <list>

FUNCTION: Search the range specified for the <1ist> of bytes
specified.

COMMENTS: The <list> may contain one or more bytes, each
separated by a space or comma. If the <list>
contains more than one byte, only the first address
of the byte string is returned. If the <list>
contains only one byte, all addresses of the byte in
the <range> are displayed.

EXAMPLE: Tf you enter:
SCS:1nn 11n 41
DEBI!G might return the response:
N4BA:N10N4

N4BA:N1ND
>

I1.2-26

Programmer Guide

NAME :
SYNTAX:
FUNCTION:

COMMENTS:

EXAMPLE:

Tl=<address>1[<value>]

Execute one instruction and disptay the contents of
all registers, flags, and the decoded instruction.

If the original =<address> 1is entered, tracing
occurs at the =<address> specified. The optional
<value> causes DEB!'zG to execute and trace the number
of steps specified by <value>.

The T command uses the hardware trace mode of the
microprocessor. Consequently, the user may also
trace instructions stored in ROM.

Enter:
T

DEBUG returns a display of the registers, flags, and
decoded instruction for that one instruction.
Assume that the current position is NABA:0]1A; then
DEBUG might return the display:

AX=NENN BX=0OFF CX=NON7 DX=01FF SP=039D BP=0N0ON
SI=N0KC DNI=NNNN DS=N4BA ES=N4BA SS=N4BA CS=04BA
IP=N11A MV 1IP NI NG MZ AC PE MC

NABA:011A CD21 INT 21

Mow enter:
T=011A 10

DEBUG executes sixteen (10 hex) instructions
beginning at 011A in the current segment and then
displays all registers and flags for each
instruction as it is executed. The display scrolls
away until the last instruction 1is executed. Then
the display stops, and you can see the register and
flag values for the last few instructions performed.
Remember that <Ctrl+NumLock> suspends the display at
any point, so that you can study the registers and
flags for any instruction.

IT

DEBLIG

L3-27

DEBIG Programmer Guide

NAME :

SYNTAX: U[<range>]

FUNCTION: Disassemble bytes and display the source statements
that correspond to them, along with addresses and
byte values.

COMMENTS: The display of disassembled code 1looks 1like a
listing for an assembled file. If you enter the 1l
command without parameters, 20 hexadecimal bytes are
disassembled at the first address after that
displayed by the previous !Inassemble command. If
you enter the I! command with the <range> parameters,
then DEBIG disassembles all bytes in the range. If
the <range> is given as an <address> only, then 20nH
bytes are disassembled, not A0H.

EXAMPLE: Enter:
1IO4BA: 100 L10O

DEB!UG disassembles 1f bytes beginning at address
N4ABA:N100:

04BA:0100 206472 AMD [SI+721,AH
04BA:0]103 69 DB A9

04BA:N104 7665 JBE 016B
NABA:N106 207370 AMD [BP+DI+701,DH

NABA:0109 65 DB 65
04BA:01DA A3 DB 63
NABA:D1NB RO 0B fa
NABA:NINC AR DB 66
N4BA:01ND RO DB fQ
04BA:01NE A3 NB A3
04BA:MOF A1 nB 61

If you enter:
uMdba:nN1nNn N1NR

the display shows:
N4BA:DIND 2NR472 AND TSI+721,AH
NABA: 01N RO DB A0

N4BA:NINA 766K JBE 0168
NABA:DINA 207370 AND TBP+DI+70],DH

IT.3-28

DEBIUIG

Programmer Guide

If the bytes in some addresses are altered, the
disassembler alters the instruction statements. The
Il command can be entered for the changed locations,
the new instructions viewed, and the disassembled

code used to edit the source file.

I1.3-29

DEBIIG Programmer Guide

MAME :

.

SYNTAX: Wl<address> [<drive> <record> <record>]]
FUNCTION: Write the file being debugged to a disk file.

COMMENTS: If only the W appears, BX:CX must already be set to
the number of bytes to be written; the file is
written beginning from CS:100. If the W command is
given with just an address, then the file is written
beginning at that address. If a G or T command was
used, BX:CX must be reset before wusing the Write
command without parameters. (Mote that if a file is
Toaded and modified, the name, length, and starting
address are all set correctly to save the modified
file as long as the Tength has not changed.)

The file must have been named either with the NEBHG
invocation command or with the I command (see MName
above). Both the invocation and the M commands
format a file name properly in the normal format of
a file control block at CS:AC.

If the W command is given with parameters, the write
begins from the memory address specified; (the drive
designation is numeric here -- 0N=A:, 1=B:, 2=C:,
etc.); DEBIIG writes the file beginning at the
logical record number specified by the first
<record>; and continues until the number of sectors
specified in the second <record> have been written.

WARNING
Writing to absolute sectors is EXTREMELY dangerous
because the process bypasses the file handler.
EXAMPLE: Enter:
W

DEBIG writes out the file to disk then displays the
NEBIIG prompt:

W
>

11.3-30

Programmer Guide DEBHG

Another example:
WCS:100 1 37 2B

DEBUG writes out the contents of memory, beginning
with the address CS:100 to the disk in drive B:.
The data written out starts in disk logical record
number 37H and consists of 2BH records. When the
write is complete, DEBUG displays the prompt:

WCS:100 1 378 2R
>

11.3-31

DEBIIG Programmer Guide

3.5 ERROR MESSAGES

During the DEBIUG session, you may receive any of the following
error messages. Each error terminates the DEBIG command with
which it is associated, but does not terminate DEBIG itself.

ERROR CODE DEFINITION

BF Bad Flag
The user attempted to alter a flag, but the
characters entered were not one of the
acceptable pairs of flag values. See the
Register command for the 1list of acceptable
flag entries.

BP Too many Breakpoints
The user specified more than ten breakpoints as
parameters to the G command. Reenter the Go
command with ten or fewer breakpoints.

BR Bad Register
The user entered the R command with an invalid
register name. See the Register command for the
Tist of valid register names.

DF Double Flag
The user entered two values for one flag. The
user may specify a flag value only once per RF
command.

I1.3-32

Programmer Guide EDLIM

EDLIN

EDLIM is a text editor used to edit files that are divided
into lines. Fach 1ine may be up to 255 characters, the last
character of each being the end of 1ine character, the
carriage return. Line numbers are not actually present in
saved text, but when a file is displayed, lines are numbered
dynamically. When a file 1is created or edited, 1ine numbers
begin at 1 and are incremented by one throuch the end of the
file. When new 1lines are inserted between existing lines, all
1ine numbers following the inserted text are automatically
incremented by the number of lines inserted. When lines are
deleted between existing 1ines, all Tine numbers following the
deleted text are decremented automatically by the number of
lines deleted. Consequently, 1line numbers always run from 1
through n (the last number).

4,1 IMVOCATION
To invoke ENLIM, enter:
EDLIM <filespec>

If the file specified exists, FEPLIM loads the file into
memory. If the whole file is loaded, FNLIM returns the message
"End of input file" and an asterisk (*) prompt. If the file is
"larger than memory", then EDLIN fills /4 of available memory
with the first part of the file and then returns the asterisk
{*) prompt, but not the "Fnd of input file" messaqe. (This is
just 1ike the Append command with no parameter. See Section
4,7, "Interline Commands," for more information on Append.)

Vou may then edit the existing file. When you want to edit the
part of a file that is not in memory, you must first write out
to disk some of the file that is in memory, and then append
lines into memory. (See the A and W commands.)

If the file specified does not exist, ENLIM creates the file
and returns the message MEW FILE. and then displays the
asterisk (*) prompt, indicating that the editing session may
begin.

IT.441

EDLIM Programmer Guide

IMPORTANT

When creating a new file, be sure to
specify on which drive the file should be
saved. The command to end the editing
session and save the file does not allow
parameters. Therefore, if the drive is not
designated during ENLIM invocation, the
file is saved on the default drive.

ENLIM commands belong to two types: intraline and dinterline.
Intraline commands perform editing functions within a single
line. The commands used to perform intraline editing are the
control character functions and the special editing commands
used in DNS. The special editing functions are described in
more detail 1in the following section. Mote, however, that
these are the same commands that are used at the DNOS command
level. The only difference between them 1is that the EDLIM
commands operate on the 1ine currently being edited, rather
than the MS-DDS command line.

4.2 INTRALTNE COMMAHMDS

Intraline commands include the special editing functions and
the control character functions: only the special editing
functions are discussed here.

Table 4.1 summarizes the commands, codes, and functions.
NDescriptions of the special editing functions follow the
table.

11.4-2

Programmer Guide EDLIN

Table 4.1 Special Editing Commands

Command Code Function

Copy one character <F1> Copy one character from
or the template to the new
=3 Tine

Copy up to character <F2> Copy all characters from

the template to the new
Tine up to the character
specified

Copy Template <F3> Copy all remaining
characters in the
template to the new line

Skip one character Do not copy (skip over) a
character in the template

Skip up to character <Fa> Do not copy (skip over)
the characters in the
template up to the
character specified

Nuit Tnput <Esc> Void the current input;
leaves the template
unchanged

Insert mode <Ins> Allows you to insert

characters within a Tine;
pressing <Ins> again
exits insert mode

Mew Template <FR> Make the new line

the new template

11.4-2

ENLIN Programmer Guide

Key:

Function: Copy one character from the template to the input
buffer.

Comments: Pressing the <F1> key copies one character from the
template to the input buffer. When the <F1> key is
pressed, one character 1is inserted in the buffer
and insert mode is automatically turned off if it
was on. llse the <F1> key to advance the cursor one
column across the line.

Example: Assume the screen shows:

1:*This is a sample file.
1%

At the beainnina of the intraline edit, the cursor
is positioned at the beginning of the 1line
{indicated by the underline). Pressing the <F1> key
copies the first character (T) to the second of the
two 1ines displayed:

1:*This is a sample file
<F15 LT

Fach time the <F1> key is pressed, one more
character appears:

<F1> 1:*Th

<F1> 1:*%ThT
<F1> 1:*This_

11.4-4

Programmer Guide

Key:

Function:

Comments:

Example:

Copy multiple characters up to a given character

Pressing the <F?> key copies all characters up to a
given character from the template to the input
buffer. The given character is the next character
typed and is not copied or shown on the screen.
Pressing the <F2> key causes the cursor to move to
the single character that is this command's only
parameter. If the template does not contain the
specified character, nothina 1is copied. Pressing
<F2> also automatically turns off insert mode if it
15 on.

Assume the screen shows:

1:*This is a sample file.
Tk

At the beginning of the intraline edit, the cursor
is positioned at the beginning of the 1ine
(indicated by the underline). Pressing the <F2> key

copies all characters up to the character pressed
immediately after the <F2> key.

1:*This is a sample file.
<F2>p 1:*This is a sam_

EDLIM

11.4-5

EDLINM Programmer Guide

Key:

Function: Copy template to input buffer

Comments: Pressing <F3> copies all remaining characters from
the template to the input buffer. Regardless of the
cursor position at the time the <F3> key is
pressed, the rest of the line appears, and the
cursor is positioned after the last character on
the line.

Example: Assume the screen shows:

1:*This is a sample file.
JiN

At the beginning of the intraline edit, the cursor
is positioned at the beginning of the Tine
(indicated by the underline). Pressing the <F3> key
copies all characters from the template (shown in
the upper 1line displayed) to the line with the
cursor (the lower line displayed):

1:*This is a sample file.
<F3> 1:*This is a sample file._

Also, insert mode is automatically turned off if it
was on.

I1.4-F

Programmer Guide ENLINM

Yey:

Function: Skip over one character in the template

Comments: Pressing the key skips over one character in
the template. Each time you press the key,
one character is deleted (not copied) from the
template. The action of the key is similar to
the <F1> key, except that skips a character
Enf%he template rather than copies it to the input

urrer.

Example: Assume the screen shows:

1:*This is a sample file.

1:%
At the beginning of the intraline edit, the cursor
is positioned at the beginning of the Tline
{indicated by the underline). Pressing the
key skips over the first character ("T").

1:*This is a sample file.
 1:%

The cursor position does not move, only the
template is affected. To see how much of the line
has been (skipped over), press the <F2> key, which
moves the cursor beyond the last character of the
Tine.

1:*This is a sample file.
1:*
1:¥his is a sample file._

11.4-7

EDLIM Programmer Guide

Vey:

Function: Skip multiple characters in the template

Comments: Pressing the <Fa> key skips over all characters up
to a given character in the template. The given
character is the next character typed, and is not
copied and not shown on the screen. If the template
does not contain the specified character, nothing
is skipped over. The action of the <F4> key is
similar to the <F2> key, except that <F4> skips
over characters in the template rather than copies
them to the input buffer.

Example: Assume the screen shows:

1:*This is a sample file.

1:%
At the beginning of the intraline edit, the cursor
is positioned at the beginning of the 1line
(indicated by the underline). Pressing the <Fa> key
skips over [deletes) all the characters 1in the
template up to the character pressed after the <Fa>
key:

1:*This is a sample file.
<Fa>p 1:*

The cursor position does not move. To see how much
of the 1ine has been skipped over, press the <F¥
key to copy the template. this moves the cursor
beyond the last character of the line:

1:*This is a sample file.

<Fd>p 1:%
<F2> 1:*ple file.
1:% -

IT1.4-R

Programmer Guide

Key:

Function:

Comments:

Example:

nuit input and flush the input buffer

Pressing the <Fsc> key flushes the input buffer,
but it leaves the template unchanged. <Esc> also
prints a back slash (), carriage return, and line
feed, and turns insert mode off if it was on. The
cursor is positioned at the beginning of the Tine.
Pressing the <F2> key copies the template to the
input buffer just as the 1ine was before <FEsc> was
pressed.

Assume the screen shows:

1:*This is a sample file.

1:%
At the beginning of the intraline edit, the cursor
is positioned at the beginning of the 1line
(indicated by the wunderline). Assume you want to
replace the line by typing:

1:*This is a sample file.
Sample File 1:*Sample File

Mow, to reedit the line, press <Esc>:

1:*This is a sample file.
<Esc> 1:*Sample File

1:
<Rtn> can now be pressed to keep the original line
or to perform any other intraline editing
functions. If <F3> 1is pressed, the original
template is copied to the input buffer:

<F3> 1:*This is a sample file.

I

EDLIM

I.4-0

EDLIN Programmer Guide

Yey:

Function: Enter insert mode or move from insert to replace
mode

Comments: The <Ins> key is a toggle switch which moves from
replace mode (the default) to insert mode and back
to replace mode when the <Ins> key is pressed a
second time.

On entry 1into insert mode the current position in
the template is not changed. The cursor does move
as each character is inserted. However, when you
have finished inserting characters, the cursor is
positioned at the same character as it was before
the insertion began. Thus, characters are inserted
before the character the cursor points to.

Pressing the <Ins> key again causes exit from
insert mode and entry into replace mode. A1l
characters entered now overstrike and replace
characters in the template. When you start to edit
a line, this mode 1is 1in effect. Fach character
typed replaces a character in the template. If the
<Rtn> key is pressed, the remainder of the template
is truncated.

Example: Assume the screen shows:

1:*This is a sample file.

1:%
At the beginning of the intraline edit, the cursor
is positioned at the beginning of the line
{indicated by the underline). Assume you press the
<F?> and "p" keys:

1:*This is a sample file.
<F2>p 1:*This is a sam_

11.4-10

Programmer Guide

Mow press the <Ins> key and insert the three
characters "s", "o", and "n":

1:*This is a sample file.
<F2>p 1:*This is a sam
<Ins>son 1:*This is a samson_

If you now press the <F3> key, the rest of the
template is copied to the line:

1:*This is a samson
<F3> 1:*This is a samsonple file._

If you were to press the <Rtn> key, instead, the
remainder of the template would be truncated, and
the input buffer ended at the end of the insert:
<Ins>son<Rtn> 1:*This is a samson

Assume you then press the <ins> key and "ite" (thus
entering replace mode), and then <F3>:

1:*This is a sample file.
<F2>p 1:*This is a sam
<Ins>son 1:*This is a samson
<Ins>ite 1:*This is a samsonite
<F2> 1:*This is a samsonite file.

If you type in characters that extend beyond the
length of the template, the remaining characters in
the template are automatically appended when you
type <F3>.

EDLIM

I1.4-11

EDLIN

Key:

Function:

Comments:

Example:

11.4-12

Programmer Guide

Create new template

Pressing the <FA> key copies the current contents
of the input buffer to the template. The contents
of the old template are then destroyed. Pressing
<FR> outputs an at sign character (R), a carriage
return, and a line feed. The input buffer is also
emptied and insert mode is turned off.

HOTE

<F5> performs the same functions as
the <Esc> key, except that the
template is changed and an at sign
character () is printed instead of
a bhackslash (\).

Assume the screen shows:

1:*This is a sample file.
Lo¥

At the beginning of the intraline edit, the cursor
is positioned at the beginning of the 1line
{indicated by the underline). Assume that you enter
<F2>p, <Ins>son, <Ins>ite, and then <F3>:

1:*This is a sample file.
<F2>p 1:*This is a sam_
<Ins>son 1:*This is a samson
<Ins>ite 1:*This is a samsonite
<F1> 1:*This is a samsonite file._

At this point, assume that you want this 1line as
the new template, so you press the <F&5> key:

<F&> 1:*This is a samsonite file.®

Additional editing can now be done using the above
new template.

Programmer Guide

4.3 INTERLINE COMMAMDS

Interline commands perform editing functions on whole lines at
a time. The interline commands are summarized in the following
Tist and are described in detail with

description of command parameters.

Table 4.7

Interline Commands

examples following the

Command

Purpose

<1ine>

EWnXD Dr=m3 >

Fdit Line
Append Lines
Delete Lines
End Editing
Insert Text
List Text
nuit Editing
Replace Text
Search Text
Write Lines

EDLIN

ENLIM Programmer Guide

4.3.1 Parameters

Fach interline command accepts some optional parameters. The
following 1ist of parameters indicates their form. The effect
of a parameter depends on the command it is used with.

PARAMETER NEFIMITION

<line> <line> indicates a line number to be entered by
the user. Line numbers must be separated from
other 1ine numbers, other parameters, and the
command. !lse a comma or space to separate.

<line> may be specified one of four ways:

Mumber any integer less than FRRRA, If a
number Targer than the Tlargest
existing 1line number is specified,
then <1ine> indicates the 1line after
the last 1ine number.

Period {.) If a period is specified for
<line>, then <line> indicates the
current line number. The current line
is the 1last 1line edited, and not
necessarily the last 1ine displayed.
The current line 1is marked on your
screen by an asterisk (*) between the
1ine number and the first character.

Octothorpe (#) The pound sign indicates the 1ine
after the last line number. Specifying
for <line> has the same effect as
specifying a number Tlarger than the
last line number.

<Rtn> A carriage return entered without any
of the <line> specifiers listed above
directs EDLIMN to use a default value
appropriate to the command.

I1.4-14

Programmer Guide

<string>

The question mark parameter directs EDLIM to ask
the user if the correct string has been found.
The question mark is used only with the Replace
and Search commands. Before continuing, EDLIM
waits for either a "Y' or <Rtn> for a yes
response, or for any other key for a no
response.

<string> represents text to be found, to be
replaced, or to replace other text. The <string>
parameter is used only with the Search and
Replace commands. Each <string> must be
terminated by a <Ctr1+Z> or a <Rtn> (see the
Replace command for details). Mo spaces between
a string and its command letter, unless you want
spaces as part of a string.

EDLIM

IT.4-15

EDLIN Programmer Guide

Name :

Syntax: l<line>]
Function: Edit line

Comments: When a line number is entered, EDLIN displays the
line number and text, then, on the 1line below,
reprints the 1line number. The 1ine is then ready
for editing. You may use any of the available
intraline commands to edit the line. The existing
text of the 1ine serves as the template until the
<Rtn> key is pressed.

If no 1ine number is entered (that is, only the
<Rtn> key is pressed), the l1ine after the current
line, marked with an asterisk (*), is edited. If no
changes of the current 1ine are needed and the
cursor position is at the beginning or end of the
line, press the <Rtn> key to accept the line as is.

WARMNIMNG

If the <Rtn> key is pressed while the
cursor is in the middle of the line,
the remainder of the 1ldine is
truncated.

Example: Assume the following file exists and is ready to
edit:

1: This is a sample file.
2: used to demonstrate

3: the editing of line
4:* four.

I1.4-16

Programmer Guide EDLIM

To edit 1ine 4, enter:
4

The contents of the 1ine are displayed along with a
cursor below the line:

4:* four.
A%
Mow type:
<Ins>number 4: number_
<Fa><Rtn> 4: number four.
L H

I1.4-17

EDLIN Programmer Guide

Name:

Syntax: [<n>1A
Function: Append lines from input file to editing buffer

Comments: !'se this command for extremely Jlarge files that
will not fit into memory all at one time. By
writing out part of the editing buffer to the
output file with the Write command, room is made
for lines to be appended with the Append command.
If A is typed without a parameter, lines are
appended to the part of the file currently in
memory until available memory is /4 full or until
there are no more lines to append.

llse the W command to write out lines to the output
file. If the parameter <n> is given, then <n> lines
are appended to that part of the file that
currently is in memory. If <n> is not given, then
as much of the input file as possible is read into
the editing buffer until the editing buffer is
three quarters full.

I1.4-1R

Programmer Guide

MName:

Syntax:

Function:

Comments:

Example:

F<1ine>1M,<line>1 D

Delete the specified 1ines and all 1lines in
between.

If the first <1ine> is omitted, the first <line>
defaults to the current l1ine (the 1ine with the
asterisk next to the 1ine number). If the second
<line> is omitted, then just the first <line> is
deleted. When 1lines have been deleted, the 1ine
immediately after the deleted section becomes the
current 1ine and has the same 1line number as the
first <line> had before the deletion occurred.

Assume the following file exists and 1is ready to
edit:

1: This is a sample file.

2: llse: to demonstrate dynamic 1ine numbers
2: See what happens when you

4: Delete and Insert

2;: {(The D and T commands)
26: (llse <Ctr1+C> to exit insert mode)
27:*Line numbers

To delete multiple lines, enter <line>,<1ine> N:
R,24 D
The result is:

1: This is a sample file.

2: lse: to demonstrate dynamic line numbers
2: See what happens when you

4: Delete and Insert

R:*(The D and I commands)

A: (llse <Ctr1+C> to exit insert mode)
7:*Line numbers

IT

EDLIN

.A-10

EDLIN Programmer Guide

To delete a single 1line, enter:
6D
The result is:

1: This is a sample file.

2: llse: to demonstrate dynamic 1ine numbers
2: See what happens when you

4: Delete and Insert

§5: (The D and 1 commands)

R:*Line numbers

Mext, delete range of 1lines from the following
file:

1: This is a sample file.

?2: Use: to demonstrate dynamic 1ine numbers
2:*See what happens when you

A4: NDelete and Insert

f:*(The D and I commands)

f: (lise <Ctr14C> to exit insert mode)

7: Line numbers

To delete beginning with the current 1ine, enter:
LD

The result is:
1: This is a sample file.

2: llse: to demonstrate dynamic line numbers
3:*Line numbers

11.4.20

Programmer Guide

Syntax:

Function:

Comments:

Example:

E

End the editing session

Save the edited file on disk, rename the original
input file "filename.BA¥", and then exit EDLIM to
the DOS command level. If the file was created
during the editing session, no .BAKk file is
created.

The E command takes no parameters. Therefore, you
cannot tell EDLIN on which drive to save the file.
The drive must be selected when the editing session
is invoked. If the drive is not designated when
EDLIM is invoked, the file is saved on the disk in
the default drive. (It will still be possible to
COPY the file to a different drive. However, this
is done automatically if the drive .is designated
during invocation.)

You must be sure that the disk contains enough free
space for the entire file to be written. If the
disk does not contain enough free space, the write
is aborted and the edited file 1is lost, although
part of the file may be written out.

The only possible command is:
E<Rtn>
After execution of the E command, control is

returned to COMMAND.COM and the D0OS prompt s
displayed.

11

EDLIN

.a-21

EDLIM Programmer Guide

Mame :

Syntax: [<1ine>] 1

Function: Insert 1line(s) of text immediately before the
specified <1ine>

Comments: If you are creating a new file, the I command must
be given before text can be inserted. In this case,
the insert begins with 1ine number 1,

EDLIM remains in insert mode until a <Ctr1+Z> or a
<Ctr14C> is entered. Successive 1ine numbers appear
automatically each time <Rtn> is pressed. When the
insert is finished and insert mode has been exited,
the <line>, which now immediately follows the
inserted lines, becomes the current line. A11 1line
numhers following the inserted section are
incremented by the number of 1lines inserted.

If <line> is not specified, the default is the
current line number (the lines are inserted
immediately before the current line). If <line> is
an integer larger than the last line number, or if
is specified as <line>, the inserted 1lines are
appended to the end of the file. In this case, the
last Tine inserted becomes the current line. (This
is the same as when the file is being created.)

Example: Assume the following file exists and is ready to
edit:

1: This is a sample file.

2: lise: to demonstrate dynamic line numbers
2: See what happens when you

4: Delete and Insert

R: (The D and I commands)

A: {llse the <Ctr1+C> to exit insert mode)
7:*Line numbers

To insert text before a specific line (not the
current line), enter <line> I:

4 1 The result is 4:

11.4-22

Programmer Guide

Mow, enter the new text for lines 4 and &:

4: fool around with
5: those very useful commands that

Then to end the insertion, type:
A: <Ctri+l>
low type L to list the file; the result is:

1: This is a sample file.

2: lise: to demonstrate dynamic 1ine numbers
?: See what happens when you

A: fool around with

5: those very useful commands that
A:*Delete and Insert

7: (The D and I commands)

2: (llse the <Ctr1+C> to exit insert mode)
9: Line numbers

To insert 1lines 1immediately before the current
line, enter:

I
The result is:

R:
Mow, insert the following text terminated with a
<Ctri+i>:

Mow to List the file and see the result, type:
L
The result is:

: This is a sample file.

llse: to demonstrate dynamic 1ine numbers
See what happens when you

fool around with

: those very useful commands that

: perform the two major editing functions,
7:*Delete and Insert

8: (The D and I commands)

9: (lUse the <Ctr1+C> to exit insert mode)
10: Line numbers

N AWM =

11

EDLIM

.A-23

EDLIM Drogrammer Guide

To append new lines to the end of the file, enter:

1 1
This produces the following:
5

Mow, enter the following new lines:

11: The insert command can place new lines

12: anywhere in the file; there's no space
problems.

13: because the 1ine numbers are dynamic;

14: They'11 slide all the way to AR53%.

End insertion by typing <Ctr1+C>. The new 1lines
will appear at the end of all previous lines in the
file. Mow enter the list command:

L
The result is:

1: This is a sample file.

2: lise: to demonstrate dynamic line numbers
3: See what happens when you

4: fool around with

A: those very useful commands that

f: perform the two major editing functions,
7:*Delete and Insert

8: (The D and I commands)

a: (Hse the <Ctr1+C> to exit insert mode)
10: Line numbers

11: The insert command can place new lines
12: anywhere in the file; there's no space

problems.

13: because the line numbers are dynamic;
14: They'11 slide all the way to RRR32,

I1.4-24

Programmer Guide EDLIM

Name:

Syntax: [<line>1l,<1ine>] L

Function: List the specified range of 1lines, including the
two 1ines specified.

Comments: If the first <line> is omitted, the first <line>
defaults to the current 1ine. If the second <line>
is omitted, 22 1lines are listed; the eleven lines
before <line>, the <line>, and the eleven 1lines
after <line>. The current line remains unchanged.
If the current 1line is one of the lines listed, it
contains an asterisk between the Tine number and
the first character.

Example: Assume the following file exists and is ready to

edit:
1: This is a sample file.
2: llse: to demonstrate dynamic line numbers
3: See what happens when you
4: Nelete and Insert
5: (The D and I commands)
15:*The current line contains an asterisk.

26: (llse the <Ctr1+C> to exit insert mode)
27: Line numbers

To Tist a range of lines without reference to the
current line, enter <line>,<line> L:

2,5 L

The result is:
2: llse: to demonstrate dynamic 1ine numbers
2: See what happens when you

: Delete and Insert
: (The D and I commands)

[T

I1.4-25

EDLIN

11.4-26

Programmer Guide

To list a range of 1ines beginning with the current
1ine, enter ,<line> L:

J2F L
The result is:

15:*The current line contains an asterisk.

.

26: (Use <Ctr1+C> to exit insert mode)

To 1ist a range of 23 1lines around a specified
line, enter <line>, L:

12, L
The result is:

12: The specified line is 1isted first in the
range.

14: The current line remains unchanged by the L
command.

15:*The current line contains an asterisk.

35: <Ctr14C> exits interline insert command
mode.

To 1ist a range of 23 1ine centered around the
current line, enter only L:

L

Programmer Guide EDLIN

The result is:

: Use: to demonstrate dynamic 1ine numbers
See what happens when you

Delete and Insert

(The N and I commands)

wWe s s MWLM

—

: The specified 1ine is Tisted first in the
range.

: The current line remains unchanged by the L
command.

15:*The current line contains an asterisk.

—
-3

24: <Ctr1+4C> exits interline insert command
mode.

11.4-27

EDLIN Programmer Guide

Mame:

Syntax: n

Function: Onuit the editing session, do not save any editing
changes, and exit to the DOS operating system.

Comments: Mo .BAK file is created. The 0N command takes no
parameters. It is simply a fast means of exiting an
editing session. As soon as the N command is given,
EDLIM displays the message:

Abort edit (Y/M)?_

Press "Y" to quit the editing session; press "N"
{or any other key except <Ctr1+C>) if you decide to
continue the editing session.

Example: Assume the following file exists and is ready to
edit:

1: This is a sample file.

?: llse: to demonstrate dynamic 1ine numbers
3: Compare the before and after

4: See what happens when you

5: Delete and Insert

f: Line numbers

Mow, to delete line 2, enter:
D
To 1ist the file, enter "L":
1: This is a sample file.
?2: llse: to demonstrate dynamic line numbers
3: See what happens when you

4: Delete and Insert
5: Line numbers

11.4-78

Programmer Guide EDLIM

Mow, to keep the changes and to quit the editing
sessicn, enter:

n
The result is:
Mmteﬁt(WM[_

Enter "¥" to exit to the operating system command
level:

Abort edit (Y/M)?Y
A:

I1.4-29

EDLIM

Name :

Syntax:

Function:

Comments:

I1.4-3n

Programmer Guide

<1ine>1l,<1ine>] I?] R<stringl><Ctri+Z><string2>

Replace all occurrences of <stringl> in the
specified range with <string2>.

As each occurrence of <stringl> is found, it is
replaced by <string2>. FEach 1line 1in which a
replacement occurs is displayed. If a line contains
two or more replacements of <stringl> with
<string2>, then the 1ine is displayed once for each
occurrence. When all occurrences of <stringl> in
the specified range are replaced by <string2>, the
R command terminates and the asterisk prompt
reappears.

If a second string is to be given as a replacement,
then <stringl> must be terminated with a <Ctr1+ZI>.
If the <string2> is to be omitted, the <stringl>
may be terminated with either a combination
<Ctr1+Z><Rtn>, or simply a <Rtn>. <string2> must
also be terminated with a <Ctrl1+Z><Rtn> combination
or with a simple <Rtn>. If <stringl> is omitted,
then the replacement 1is terminated immediately. If
<string2> is omitted, then <stringl> 1is deleted
from all lines in the range. If the first <line> is
omitted in the range argument (as in ,<line>} then
the first <line> defaults to the 1line after the
current line. If the second <line> is omitfed (as
in <1ine> or <line>,) the second <line> defaults to
#, Therefore, this is the same as <line>,#.
Remember that # dindicates the 1ine after the last
Tine of the file.

If the question mark (?) parameter is given, the
Replace command stops at each 1line with a string
that matches <string>, displays the 1line with
<string2> in place, and then displays the prompt
"0.K.?". If the user presses "Y" or the <Rtn> key,
then <string2> replaces <stringl>, and the next
occurrence of <stringl> is found. Again, the
"0.¥.?" prompt is displayed. This process continues
until the end of the range or until the end of the
file. After the last occurrence of <stringl> is
found, EDLIM returns the asterisk prompt.

—

Programmer Guide

Example:

EDLIN

If you press any key besides "Y" or <Rtn> after the
"0.K.?" prompt, the <stringl> is left as it was in
the 1line, and the replace goes to the next
occurrence of <stringl>. If <stringl> occurs more
than once 1in a line, each occurrence of <stringl>»
is replaced individually, and the "0.K.?" prompt is
displayed after each replacement. In this way, only
the desired <stringl> is replaced, and you prevent
replacement of embedded strings.

Assume the following file exists and is ready to
edit:

This is a sample file.
llse: to demonstrate dynamic 1ine numbers
See what happens when you
fool around with
those very useful commands that
perform the two major editing functions,
Nelete and Insert
{The D and 1 commands)
: (llse <Ctr1+C> to exit insert mode)
10: Line numbers
11: The insert command can place new lines
12: anywhere in the file; there's no space
problems
13; because the Tine numbers are dynamic;
14: They'11 slide all the way to A5533

..

O D~ 'nBEurny -

To replace all occurrences of <stringl> with
<string2> in a specific range, enter:

2,12 Rand<Ctr1+Z>or<Rtn>
The result is:
5: those very useful commors that
7: Nelete or Insert
f: (The D or I commands)

A: (The D or I commors)
11: The insert commor can place new lines

11.4-31

EOLIN Programmer Guide

Mote that in the above replacement, some unwanted
substitutions have occurred. To avoid these, and
confirm each replacement, the same original file
can be used:

é: those very useful commands that

7: Delete and Insert
f: (The N and I commands)

11: The insert command can place new lines

only with a slightly different command. this time,
to replace only certain occurrences of the first
<string> with the second <string>, enter:

2? Rand<Ctrl1+Z>or<Rtn>
The result is:

f: those very useful commands that
0.V.2 N

7: Delete or Insert

0.¥.2 Y

A: (The D or I commands)

0 P S

R: (The D or I commors)

n.v.?2 N
11: The insert commor can place new lines
0.¥.? M

*

Mow, enter the List command (L) to see the result
of all these changes:

N e

: those very useful commands that

: Delete or Insert
(The D or I commands)

The insert command can place new lines

L L = e

I1.4-32

Programmer Guide EDLIM

Name :

Syntax: [<1ine>]l,<1ine>] [?] S<string>

Function: Search the specified range of 1lines for the
specified string.

Comments: The <string> must be terminated with a <Rtn>, The
first 1ine that matches <string> is displayed and
becomes the current 1ine. The Search command
terminates when a match is found. If no line
contains a match for <string>, the message "Mot
found" is displayed.

If the optional parameter, question mark (?), is
included in the command, EDLIM displays the first
line with a matching string; it then prompts the
user with the message "0.¥.?". If the user presses
either the "Y" or <Rtn> key, the 1ine becomes the
current line and the search teminates. If the user
presses any other key, the search continues until
another match is found, or wuntil all lines have
been searched (then the "Mot found" message is
displayed).

If the first <line> is omitted (as 1in ,<line>
S<string>), the first <line> defaults to the 1ine
after the current line. If the second <line> is
omi tted (as in <line> S<string> or
<line>,S<string>), the second <line> defaults to #,
which is the same as <line>,# S<string>, If
<string> is omitted, no search is made and the
command terminates immediately.

Example: Assume the following file exists and 1is ready to
edit:

This is a sample file.

llse: to demonstrate dynamic Tine numbers
See what happens when you

fool around with

those very useful commands that

perform the two major editing functions,
Delete and Insert

(The D and 1 commands)

: {lUse <Ctr1+C> to exit insert mode)

10: Line numbers

11: The insert command can place new lines
12: anywhere in the file; there's no space
problems

T

DWW I N BN

11.4-33

EDLIN Programmer Guide

13: because the Tine numbers are dynamic
14:*They'11 slide all the way to A5532

To search for the first occurrence of a string,
enter:

2,12 Sand<Rtn>
The result is:
A: those very useful commands that

To get the "and" in 1line 7, modify the search
command by entering:

<F3>,12 Sand<Rtn>
The search then continues from the 1ise after the
current 1ine (line &), since no first 1ine is
given. The result is:

7: Delete and Insert

To Search through several occurrences of a string
until the correct string is found, enter:

1, ? Sand
The result is:

5: those very useful commands that
0.¥X.?

Continue:

7: Delete and Insert
0.¥.?

Mow press "Y" to terminate the search:

0.¥.?Y
*

IT.4-34

Programmer Guide

Name:

Syntax:

Function:

Comments:

F<n>IW

Write lines from the editing buffer to the output
file

The Write command is used when editing files that
are larger than available memory. By executing the
Write, lines are written out to the output file and
room is made in the input buffer for more lines to
be appended from the input file. If W is typed with
no <n> parameter, then Tlines are written until
memory is 1/4 full.

If the <n> parameter is given, then <n> lines are
written out. MNote that 1lines are written out
beginning with the start of the file; subsequent
lines in the editing buffer are renumbered
beginning with one. A later Append command will
append lines to any remaining lines in the editing
buffer.

It

EDLIN

.4-35

EDLIN Programmer Guide

4.4 ERROR MESSAGES

EDLIN error messages occur either when you try to invoke EDLIM i
or during the actual editing session.

4.4.1 Errors When Invoking EDLIN
Cannot edit .BA¥ file--rename file

Cause: The user attempted to edit a file with the
filename extension .BA¥. .BA¥ files cannot be
edited because the extension is reserved for
backup copies.

Cure: If the user needs the .BA¥ file for editing
purposes, the user must either REMAME the file
with a different extension or COPY the .BAK file
but with a different filename extension.

Mo room in directory for file

Cause: When the user attempted to create a new file,
either the file directory was full or the user
specified an 1illegal disk drive or an illegal
filename.

Cure: Check the EDLIN invocation command Tline for
illegal filename and i1legal filename and illegal
disk drive entries. If the command is no Tlonger
on the screen and if the user has not yet entered
a new command, the EDLIM invocation command can
be recovered by pressing the <F3> key.

If the invocation command 1ine contains no
illegal entries, run the CHKDSK program for the
specified disk drive. If the status report shows
the disk directory full, remove the disk and
insert and format a new disk. If the CHKDSK
status report shows the disk directory is not
full, check the EDLIM invocation command for an
illegal filename or illegal disk drive
designation.

11.4-36

Programmer Guide

4.5 Errors while Editing

Entry Error

Cause:

Cure:

The 1last command entered contained a syntax
error.

Reenter the command with the correct syntax.

Line too long

Cause:

Cure:

During Replace command mode, the string given as
the replacement causes the 1line to expand beyond
the 1imit of 254 characters. EDLIMN aborts the
Replace command.

Divide the long Tine into two 1lines, then retry
the Replace command.

Disk Full--file write not completed

Cause:

Cure:

The user gave the End command, but the disk did
not contain enough free space for the whole file.
ENLIM aborts the E command and returns the user
to the operating system. Some of the file may
have been written to the disk.

Only a portion (at most) of the file will have
been saved. The user should probably delete
whatever file was saved and restart the editing
session. Mone of the file not written out will be
available after this error. Always be sure that
the disk has sufficient free space for the file
to be written, before you begin your editing
session. -

11

EDLIN

.2-37

Programmer Guide CREF

R.1.1 Features and Benefits

The CREF Cross Reference Facility can aid you 1in debugging
your assembly lanauage proqrams. CRFF produces an alphabetical
1listing of all the symbols 1in a special file produced by your
assembler. With this 1listing, you can quickly Tlocate all
occurrences of any symbol in your source program by 1line
number .

The CREF produced listing is meant to be used with the symbol
table produced by your assembler.

The symbol table 1listing shows the value of each symbol, and
its type and length, and its value. This information is needed
to correct erroneous symbol definitions or uses.

The cross reference 1isting produced by CRFF provides you with
the Tlocations, speeding your search and allowing faster
debugging.

R.1.2 Overview of CREF Operation

CREF produces a file with cross references for symbolic names
in your program.

First, you must create a cross reference file with the
assembler. Then, CREF takes this cross reference file, which
has the filename extension .CRF, and turns it into an
alphabetical l1isting of the symbols in the file. The cross
reference listing file is given the default filename extension
.REF.

Beside each symbhol in the 1isting, CREF 1ists the line numbers
in the source program where the symbol occurs in ascending
sequence. The 1line number where the symbol is defined is
indicated by a octothorpe sign (#},

CREF Programmer Guide

o

&

Assembler

CREF

v

FOO 20 64 123# 145 ...
GAD 21 45# 49 120 ...

I17.R-2

Programmer Guide CREF

5.2 RIINNING CREF

Running CRFF requires two types of commands: a command to
invoke CPEF and answers to command prompts. You will enter all
the commands to CRFF on the keyboard. Some special command
characters exist to assist you while entering CREF commands.

Refore you can use CRFF to create the cross reference listing,
you must first have created a cross reference file using your
assembler. This step is reviewed in Section R.2.3.

R.2.1 Creating a Cross Reference File

A cross reference file is created during an assembly session.

To create a cross reference file, answer the fourth assembler
command prompt with the name of the file you want to receive
the cross reference file.

The fourth assembler prompt is:
Cross reference MIL.CRF1:

If you do not enter a filename in response to this prompt, or
if you in any other way use the default response to the
prompt, the assembler will not create a cross reference file.
Therefore, you must enter a filename. You may also specify
which drive or device you want to receive the file and what
filename extension you want the file to have, if different
from .CRF. If you change the filename extension from .CRF to
anything else, you must remember to specify the filename
extension when naming the file in response to the first CRFF
prompt (see Section R.2.7?).

When you have given a filename in response to the fourth
assembler prompt, the cross reference file will be qenerated
during the assembly session.

You are now ready to convert the cross reference file produced
by the assembler into a cross reference 1isting using CRFF.

CREF Programmer Guide

5.2.2 Invoking CREF

CREF may be invoked two ways. By the first method, you enter
the commands as answers to individual prompts. By the second
method, you enter all commands on the 1line used to invoke
CREF.

Summary of Methods to invoke CREF

Hethod 1 CREF

Method 2 CREF <crffile>,<listing>

T1.5-4

Programmer Guide CREF

5.2.3 Method 1: CREF
Enter:

CREF
CREF will be loaded into memory. Then, CREF returns a series
of two text prompts that appear one at a time. You answer the
prompts to command CREF to convert a cross reference file into
a cross reference listing.

Command Prompts

Cross reference [.CRF1:

Enter the name of the cross reference file you want
CREF to convert into a cross reference 1isting. The
name of the file 1is the name you gave your
assembler when you directed it to produce the cross
reference file.

CREF assumes that the filename extension 1is .CRF.
If you do not specify a filename extension when you
enter the cross reference filename, CREF will Tlook
for a file with the npame you specify and the
filename extension .CRF. If your cross reference
file has a different extension, specify the
extension when entering the filename.

See Section 5.4, Format of CREF Compatible Files,
for a description of what CREF expects to see in
the cross reference file. You will need this
information only if your cross reference file was
not produced by a Microsoft assembler.

Listing lerffile.REFT:

Enter the name you want the cross reference listing
file to have. CREF will automatically give the
cross reference 1listing the filename extension
.REF.

If you want your cross reference 1isting to have
the same filename as the cross reference file but
with the filename extension .REF, simply press the
carriage return key when the Listing prompt
appears. If you want your cross reference 1listing
file to be named anything else and/or to have any
other filename extension, you must enter a response
following the Listing prompt.

I1.5-R

CREF Programmer Guide

If you want the 1isting file placed on a drive or
device other than the defualt drive, specify the
drive or device when entering your response to the
Listing prompt.

Special Command Characters

: lise a single semicolon (;) followed immediately by
a carriage return at any time after responding to
the cross reference prompt to select the default
response to the Listing prompt. This feature saves
time and overrides the need to answer the Listing
prompt.

If you use the semicolon, CREF gives the 1listing
file the filename of the cross reference file and
the default filename extension .REF.

Example:
Cross reference l.CRF]: FUM;

CREF will process the cross reference file named
FIM,CRF and output a listing file name FI'M,REF.

<Ctr1+C> llse <Ctr1+C> at any time to abort the CRFF
session. If you enter an erroneous response, (the
wrong filename), or an incorrectly spelled
filename, you must press <Ctr1+C> to exit CREF then
reinvoke CREF and start over. If the error has been
typed but not entered, you may delete the erroneous
characters, but for that 1ine only.

I11.5-f

—

Programmer Guide

5.2.4 Method 2: CREF <crffile>,<1isting>
Enter:
CREF <crffile>,<1isting>

CREF will be 1loaded into memory. Then, CREF immediately
procedes to convert your cross reference file into a cross
reference listing.

The entries following CREF are responses to the command
prompts. The crffile and listing fields must be separated by a
comma.

where: crffile is the name of a cross reference file
produced by your assembler. CREF assumes that the
filename extension is .CRF, which you may override
by specifying a different extension. If the file
named for the crffile does not exist, CREF will
display the message:

Fatal 1/0 Error 11N
in File: <crffile>.CRF

Control then returns to your operating system.
listing is the name of the file you want to receive
the cross reference 1listing of symbols in your
program.
To select the default filename and extension for
the listing file, enter a semicolon after you enter
the crffile name.
Example:

CREF FlIM:<Rtn>
This example causes CREF to process the cross

reference file FIM.CRF and to produce a listing
file named FIIM,REF.

CREF

I1.5-7

CREF Programmer Guide

To give the 1listing file a different name,
extension, or destination, simply specify these
differences when entering the command line.

CREF FIIM,B:WOR¥.ARG
this example causes CREF to process the cross
reference file named RIM.CRF and to produce a

listing file named WORV.ARG, which will be placed
on the diskette in drive B:.

§.2.5 Format of Cross Reference Listings

The cross reference 1isting is an alphabetical 1ist of all the
symbols in your program.

Each page is headed with the title of the program or program
module.

Then comes the 1ist of symbols. Following each symbol name is
a 1Tist of the 71ine numbers where the symbol occurs in your
program. The 1ine number for the definition has a octothorpe
sign (#) appended to it.

On the next page is a cross reference 1isting as an example:

I1.6-R

Programmer Guide

CREF
EMTX

Symbol Cross Reference

AAAYND

BEGHNN
BEGONN
BEGXNN

CESXnNn
CLMEND
COPE .
COnsT.
CRC¥NN
CRDXNN
CSXENN
CIIRHNN

DATA .
DGROYP
DOSOFF
posynn

PASCAL entry for initializing programs

R R S

EMDHNO

ENDOnn
EHDIINA
EMpYnn
EHDYNN
EMTGNN
ENTYCM

FREXND
HORFOD

HDRVAD
HFAP .

HEAPREG.
HEAPLOW.

{vers no.)

L

« s = s s & @
s s s = s

LR T)
= s s s s s s =

P
P
. s e s
a e s a

R R
P
N T R T
P

NN, L L L. L.

MAIM STARTIP. . . .
MEMORY o v v o & 4 &

(date)

(# is definition)

s

a3
i
113

o7
R7
27
14
02
o
33
RR

Ra%
11n#

oR#
184

R7
3#
4
184
24
n#
1824
10
7
73
a2
a4
a3

a3

1no#
az

3R

RA#
1A2
12R#

LLY
AR#

192

1n4
aas
aR#
RR#
RA#

Al
11
100
2nas

ans
108
197
1044
10/
187
1R2

170

24

7a4

an
152
171

1A1

11
ap#

154

164

1ng
210
214
140
18R

1nn
111
109
210

1R

221
178

181
152
11n
172

18N
a8

17f

223

10
215

11n
111

an

Cref-1

127

1no

comes from
TITLE directive

11n

CREF

171

II.5-0

172

CREF

LTS (ol

RECENN
REFENN
REPENN
RESEON

SYTOP.
SMLSTv

D

.

.

LRI

.

STAC¥. . .
STARTMAIM,
STvBnn .
STVHAN ,

II.5-1n

. s s

LR

= s s s % =

fQ 7n
f1 A2#
77 TR
70 An#
78 TR#
RO

135 1274
A L]
134 1RA#
R on#
a] 02#

150

14A

AN
200
146
16N

11n

Programmer Guide

Programmer Guide

5.3 ERROR MESSAGES

A11 errors cause CREF to abort. Control is returned to your
operating system.

A1l error messages are displayed in the format:

Hhere:

Humber

n1

mnz

1n3
1na

1ns

1mna

10

112

13

Fatal 1/0 Frror <error number>
in File: <filename>

filename is the name of the file where the error
occurs.

error number is one of the numbers 1in the following
Tist of errors.

Error

Hard data error
IInrecoverable disk I1/0 error

Nevice name error
I11eqal device specification (for example
¥:FN0.CRF)

Internal error
Report to Nynalogic Info-Tech Corporation

Internal error
Report to Nynalogic Info-Tech Corporation

Nevice offline
Nisk drive door open, no printer attached,
and so on.

Internal error
Report to Nynalogic Info-Tech Corporation

Disk full
File not found
Nisk is write protected

Internal error
Report to NDynalogic Info-Tech Corporation

Internal error
Reoort to Dynalogic Info-Tech Corporation

CREF

I115.11

CREF Programmer Guide

114 Internal error (
Report to Nynalegic Info-Tech Corporation
115 Internal error

Report to Dynalogic Info-Tech Corporation

I15.12

Programmer Guide CREF

5.4 FORMAT OF CREF COMPATIBLE FILES

CREF will process files other than those generated by Macro
Assembler as long as the file conforms to the format that CREF
expects.

f.4.1 General Description of CREF File Processing

In essence, CRFEF reads a stream of bytes from the corss
reference file (or source file), sorts them, then emits them
as a printable 1isting file (the .REF file). The symbols are
held in memory as a sorted tree. References to the symbols are
held in a linked 1ist.

CREF keeps track of 1line numbers 1in the source file by the
number of end-of-1ine characters it encounters. Therefore,
every line in the source file must contain at Tleast an
end-of-Tine character fsee chart helow).

CREF attempts to place a heading at the top of every page of
the listing. The name it uses as a title is the text passed by
your assembler from a TITLE (or similar) directive in your
source program. The title must be followed by a title symbol
{see chart below). If CREF encounters more than one title
symhol in the source file, it uses the last title read for all
page headings. If CREF does not encounter a title symbol in
the file, the title 1ine on the listing is Teft blank.

5.4.2 Format of Source Files

CREF uses the first three bytes of the source file as format
specification data. The rest of the ifle is processed as a
series of records that either begin or end with a byte that
identifies the type of record.

First Three Bytes

{The PAGE directive 1in your assembler, which takes arguments

for the page 1length and 1ine 1length, will pass this
information to the cross reference file.)

IT.5-13

CREF Proarammer Guide

First Byte

The number of lines to be printed per page (page
length range is from 1 to 255 lines).

Second Byte

The number of characters per 1line (line length
range is from 1 to 132 characters).

Third Byte

The Page Symhol (n7) that tells CREF that the two
preceding bytes define listing page size.

If CREF does not see these first three bytes in the file, it
uses default values for page size (page length: 5R lines; line
length: AN characters).

Control Symbols

The two charts show the types of records that CREF recognizes
and the byte values and placement it uses to recognize record
types.

Records have a Control Symbol (which identifies the record
type) either as the first byte of the record or as the last
byte.

IT.R-14

Programmer Guide

CREF

Records That Begin with a Control Symbol

Subsequent Bytes

Byte Value Control Symbol
m Reference symbol
ng Define symbol

na End of line

08 End of file

Record is a reference
to a symbol name
{1 to 8N characters)

Record is a definition
of a symbol name
{1 to A0 characters)

{none)

1AH

Records That End with a Control Symbol

Byte Value Control Symbol

Preceding Bytes

NR Title defined

n7 Page lenath/
line length

Record is titled text
{1 to RO characters)

One byte for page length
followed by one byte
for 1ine length

For all record types, the byte value represents a control

character. as follows:

n1 Ctrl+A
n2 Ctr1+4B
na Ctrl1+D
N& Ctr1+E
NR Ctrl1+F
07 Ctrl1+G

I11.5-15

CREF Programmer Guide

The Control Symbols are defined as follows:
Reference symbol

Record contains the name of a symbol that is
referenced. The name may be from 1 to #n ASCII
characters long. Additional characters are
truncated.

Define symbol

Record contains the name of a symbol that is
defined. The name may be from 1 to AN ASCII
characters long. Additional characters are
truncated.

End of Tine

Record is an end of 1ine symbol character only (N4H
or Ctr1+n).

End of file
Record is the end of file character (1AH).
Title defined

ASCII characters of the title to be printed at the
top of each listing page. The title may be from 1
to RN characters 1long. Additional characters are
truncated. The 1last title definition record
encountered is used for th title placed at the top
of all pages of the 1listing. If a title definition
record is not encountered, the title line on the
record is not encountered, the title 1ine on the
listing is left blank.

Page length/1ine length

The first byte of the record contains the number of
lines to be printed per page (range is from 1 to
255 1ines). The second byte contains the number of
characters to be printed per 1ine (range is from 1
to 132 characters). The default page length is AR
lines. The default line lenath is AN characters.

I1.5-1A

Programmer Guide

Summary of CRF File Record Contents

byte contents

length of record

M symbol name

N2 symbol name

n4

05 1A

title text N6

PL LL N7

?-R1 bytes

2-8) bytes

1 byte

2 bytes

2-R1 bytes

3 bytes

CREF

I1.R-17

Programmer Guide EXE?BIM

6.1 EXE2BIN

Format: EXE2BIM filespec ld:1Mfilename]l.ext]
Purpose: Convert files from .EXE format to binary format

Remarks: The first parameter is the input file; if no
extension is given, it defaults to .EXE. The
second parameter is the output file. If no drive is
given, the drive of the input file 1s used; if no
filename is given, the filename of the input file
is used; if no extension is given, .RIM is used.

The input file must be in valid .E¥E format
produced by the linker. The ‘"resident", or actual
code and data part of the file, must be less than
A4¥, There must be no STAC¥ segment. Two kinds of
conversion are possible depending on the specified
initial CS:IP:
1. If CS:IP 1is not specified, a pure binary
conversion is assumed. If segment fix-ups are
necessary, the following prompt appears:

Fix-up needed - base segment (hex):

By typing a legal hexadecimal number and then
<Rtn>, execution will continue.

2. If CS:IP is specified as 10NH, then it is
assumed the file is to be run as a .COM file
ORGed at 1nNH, and the first 1N0H of the file
is to be deleted. Mo segment fix-ups are
allowed, as .COM files must be segment
relocatable.

If CS:IP does not meet one of these criteria or
meets the .COM file criterion, but has segment
fix-ups, the following error message is displayed:

File cannot be converted
Mote that to produce standard .COM files with the
Macro Assembler, one must both NRG the file at 1n0OH

and specify the first location as the start address
(this is done in the FMD statement).

11.A.1

EXE?BIM

For example:

ORG
START:

.

FND

11.A.2

10NH

START

Programmer Guide

Programmer Guide Appendix A

ASCII Code Character
nnn ML
nn1 © SNH
nnz ® STY
nnz v FTY
nna @ EOT
nne & FHn
nng ® AC¥
nn7 BEL
nnA BS
nno HT
mp LF
ni1 T
ma FF
na CR
na 53 S0
ne £°3 ST
nmea - NLE
nz - ner
na t nc?
nio " nc?
n2n v nca

Page A-1

Appendix A

Prograrmmer Guide

ASCII Code Character
n21 MAV
ng? SvH
ng2 ETR
nza CAN
n2s EM
n2A SIiB
n27 ESCAPE
n2Aa FS
nza GS
nan RS
n21 s
naz SPACE
N2z !
naa "
n2s # (octothorpe)
N2k ¢ (dollar sign)
n27 % (percent)
naa & (ampersand)
n3a ' (apostrophe)
nan { (right parenthesis)
na1) (left parenthesis)
naz * (asterisk)
naz + (plus sign)

Page A-?

Programmer Guide Appendix A

ASCII Code Character
naa , (comma)
nag - (hyphen)
nar . (period)
nay / (slash)
nap n
nao 1
n&n 2
n&1 k|
n&2 a
NR3 g
nRa A
NRE 7
nsA A
087 a
n&A : (colon)
nsa ; (semi-colon)
nen < (less than)
NR) = (equal sign)
nA? > {greater than)
NA2 ? (question mark)
neA A (at sign)
NRE A
NRA B

Page A-3

Appendix A

Programmer Guide

ASCII Code Character
nR7 c
NRR D
nRa F
n7n F
n71 G
n7z2 H
n73 I
n7a J
075 v
n7A L
n77 il
n78 M
n7a 0
nRn P
nAa1 n
naz R
NA2 S
nea T
nas "
nNRA v
NR7 W
nag X
nRe Y
nan Z
nol [f1eft bracket)

Page A-4

Programmer Guide Appendix A

ASCII Code Character
nng {backslash)
na3 1 (right bracket)
na4 T (caret)
nog < {less than)
noR ' (apostrophe)
naz a
nog b
nan c
nn d
m E
109 f
12 g9
1na h
105 i
1n& j
1n7 k
10R 1
1nae m
1IN n
1m 0
119 P
1173 q
114 r
18 s

Page A-R

Appendix A

Programmer Guide

ASCIT Code Character
116 t
117 u
118 v
110 W
12n X
121 y
122 z
122 f (Teft curlicue)
124 ! {1ine)
125 } (right curlicue)
126 " (non-trivial blank)
127 DEL
128 G
170 U
130 é
121 3
132 a
122 a
134 a
135 ¢
196 s
137 8
119 B

Page A-F

Programmer Guide Appendix A

ASCI1 Code Character
12n 9
140 7
141]
142 A
143 A
144 E
145 3
146 &
147 0
148 6
140 0
180 1]
181 u
189 V
183 n
154 ii
188 ¢
154 £
187 ¥
1RR Pt
150 !
1A0 a
161 i

Page A-7

Appendix A

Programmer Guide

ASCII Code Character
182 0
162 U
1RA n
1R f
16R a
1647 0
1RR ¢
160 :
170 =
171 1/2
172 1/a
172 i
174 <<
178 >>
17f
177 2o
178 fod
170 |
190 -
1.1 =
187 .
192 -
184 =

Page A-R

Orogrammer Guide Appendix A

ASCII Code Character
178 =l
19F Il
127 =
188 =
1p0 -
1an -
101 -
109 L
102 -+
104 -
108 E
1Ng e
107 +
109 E
100 3
2nn &
201 F
an? -
203 -
2n4 3
208 =
20A 2
207 -~

Page A-0

Appendix A

Programmer Guide

ASCII Code Character
2na a
2no =
210 -
211 -
212 -
713 =
214 .
718 4+
21A +
217 -
218 iy
2ln O
220 -
221 | |
222 1
221 =
224 -t
275
27k I
7217 L
278 z
220 o
?22n u

Page A-1n

Programmer Guide Appendix A

ASCII Code Character
221 T
23?2 @
237 o
234 Y]
235 &
23R oo
237 2
23R €
220 n
24n =
241 N
242 2
243 <
244 r
245 J
206 =
247 =
248 °
240 .
250
251 N
252 n
252 !
254 =
P L {blank 'FF')

Page A-11

Programmer Guide Appendix B

o

Disk I/0 procedures for the beginning BASIC user are examined
in this appendix. If you are new to bASIC or if you're
getting errors, read through these procedures and program
examples to make sure you're using all the disk statements
correctly.

Wherever a filename is required in a disk command or
statement, use a name that conforms to your operating system's
requirements for filenames. (Will our system appends a default
.BAS to filenames?)

B.1 - PROGRAM FILE COMMANDS

Here is a review of the commands and statements used in
program file manipulation.

SAVE <filename>[,A] Writes to disk the program that is
currently residing in memory.
Optional A writes the program as a
series of ASCII characters.
{Otherwise, BASIC uses a compressed
binary format.)

LOAD <filename>[,R] Loads the program from disk into
memory. Optional R runs the program
immediately. LOAD always deletes the
current contents of memory and closes
all files before LOADing. If R is
included, however, open data files
are kept open. Thus programs can be
chained or 1loaded in sections and
access the same data files.

RIN <filename>l ,R] RUM <filename> loads the program from
disk into memory and runs it. RIN
deletes the current contents of
memory and closes all files before
loading the program. 1If the R option
is included, however, all open data
files are kept open.

Page B-1

Appendix B Programmer Guide

HERGE <filename> Loads the program from disk into
memory but does not delete the
current contents of memory. The
program line numbers on disk are
merged with the 1ine numbers in
memory. If two lines have the same
number, only the 1ine from the disk
program is saved. After a MERGE
command, the "merged" program resides
in memory, and RASIC returns to
command Tevel.

¥ILL <filename> Neletes the file from the disk.
<filename> may be a program file, or
a sequential or random access data
file.

IMAME <old filename> AS <new filename>
To change the name of a disk file,
execute the MAME statement, MAME
<oldfile> AS <newfile>. MNAME may be
used with program files, random
files, or sequential files.

B.2 PROTECTED FILES

If you wish to save a program in an encoded binary format, use
the "Protect” option with the SAVE command. For example:

SAVE "MVPRNG",P
A program saved this way cannot be listed or edited. You may

also want to save an unprotected copy of the program for
1isting and editing purposes.

B.3 DISK DATA FILES - SENIEMTIAL AND RANDOM I/0
There are two types of disk data files that may be created and

accessed by a BASIC program: sequential files and random
access files.

Page B-?

Programmer Guide Appendix B

B.3.1 Sequential Files

Sequential files are easier to create than random files but
are limited in flexibility and speed when it comes to
accessing the data. The data that is written to a sequential
file is stored, one item after another (sequentially), in the
order it is sent and is read back in the same way.

The statements and functions that are used with sequential
files are:

OPENM

PRINT#
INPIIT#
WRITE#
PRINT# HSING
LINE TMPHT#
CLNSE

EOF

Loc

The following program steps are required to create a
sequential file and access the data in the file:
1. 0OPEM the file in "0N" mode.
OPEH 0", #1,"NATA"
2. HWrite data to the file using the PRINT# statement.
(WRITE# may bhe used instead.)
PRIMT#1,AS;RS;CS
3. To access the data in the file, you must CLOSE the
file and reNPEM it in "I" mode.

CLOSE #1
OPEM “T", #1,"DATA"

Page B-?

Appendix B Programmer Guide

4. Use the INPUT# statement to read data from the
sequential file into the program.

THPUT#1, XS, V8,28

Program B-1 is a short program that creates a sequential file,
"DATA", from information you input at the terminal.

10 OPEN “0",#1,"DATA"

20 IMPUT "MAME":M&

25 IF M&="DOME" THEM EMD

N IMPIT “PEPARTMEMT":DS%

an THPUT "DATE HIRED";HS

RN PRINT#I,NS&;",":D8;", "1 HS
AN PRINT:GOTO 20

RIM

MAME? MICYEY MOUSE
DEPARTMEMT? AHDIO/VISUAL AIDS
DATE HIRED? N1/12/72

MAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/D3/RR

NAME? EREMEEZER SCROOGE
NEPARTMEMT? ACCONNTING
DATE HIRED? na/27/78
MAME? SHPER MAMN
NEPARTMENT? MAIMTEHAMCE
DATE HIRED? nR/16/7R

MAME? etc.

PROGRAM B-1 - CREATE A SENUENTIAL DATA FILE

Page B-4

Programmer Guide Appendix B

Mow look at Program B-2. It accesses the file "DATA" that was
created in Program R-1 and displays the name of everyone hired
in 1978,

10 OPEM "I",#1,"DATA"

20 THPUT#1 M€ DS, HS

2N IF RIGHTS(Ht,2)="7R" THEN PRINT M$
4an GNTO 20

RUN

EBEMEEZER SCROOGE

SI'PER MAMM

Input past end in 20

Nk

PROGRAN B-2 - ACCESSING A SENIEMTIAL FILE

Program B-? reads, sequentially, every item in the file. When
all the data has been read, line 20 causes an "Input past end"
error. To avoid getting this error, insert line 15 which uses
the EOF function to test for end-of-file:

15 IF EOF(1) THEM EMD
and change 1ine 40 to GOTO 15
A program that creates a sequential file can also write
formatted data to the disk with the PRIMT# USIMG statement.
For example, the statement:

PRINT#1,IISIMG" ##4#4 #4 ":AR,C,D
could be used to write numeric data to disk without explicit
delimiters. The corma at the end of the format string serves
to separate the items in the disk file.
The LOC function, when used with a sequential file, returns
the number of sectors that have heen written to or read from

the file since it was NPFMed. A sector is a 1?8-byte block of
data.

Page B-%

Appendix B Programmer Guide

B.3.1.1 Adding Data to a Sequential File

If you have a sequential file residing on disk and later want
to add more data to the end of it, you cannot simply open the
file in "N" mode and start writing data. As soon as you open
a sequential file 1in "0" mode, you destroy its current
contents. The following procedure can be used to add data to
an existing file called "MAMES".

1. OPEM “MAMES" in "I" mode.

2. DPEM a second file called "COPY" in "N" mode.

2. Read in the data in "MAMES" and write it to "COPv",

A, CLOSE "MAMES" and VILL it.

f. Write the new information to "COPY".

f. Rename "CNPY" as "MAMES" and CLOSE.

7. Mow there 1is a file on disk called "HAMES" that

includes all the previous data plus the new data you just
added.

Program B-3 illustrates this technique. It can be used to
create or add onto a file called MAMES. This program also
illustates the wuse of LINE IMPHT# to read strings with
embedded commas from the disk file. Remember, LIME INPUT#
will read in characters from the disk until it sees a carriage
return (it does not stop at quotes or commas) or until it has
read ?RAh characters.

Page B-A

Programmer Guide Appendix B

10 ON FRROR GOTO 200N

20 OPEM "I",#1,"NAMES"

a0 REM IF FILE FXISTS, WRITE IT T0 “coPy"
40 OPEN "0",#2,"COPY"

&0 IF FOF(1) THEM on

AN LINE THPIT#1,AS

70 PRINT#2,A$

an GOTO &0

an CLOSE 4]

100 VILL "MAMFS"

110 REM ADD HEW FMTRIES TO FILE

120 THPIT “MAME" ;NS

120 IF N&="" THEN 200 'CARRIAGE RETIRM EXITS INPUT LOOP
14n LINE INPUT "ANDRESS? ";AS

160 LINE INPUT "BIRTHDAY? ";BS

160 PRINT#2,N$

170 PRINT#2,AS

180 PRINT#?,BS$

100 PRINT:GOTO 1200

200 CLOSE

208 REM CHANGE FILENAME BACY TO "NAMES"
210 MAME "COPY" AS "MNAMES"

200N IF ERR=R2 AMD ERL=2n THFM OPEM "0",#2,"COPY":RESUME 120
2010 ON ERROR GOTO N

PROGRAM B-3 - ADDING DATA TO A SENUENTIAL FILE

The error trapping routine in line 20NN traps a “File does not
exist" error in Tine 2n. If this happens, the statements that

copy the file are skipped, and "CNPY" is created as if it were
a new file.

Page B-7

Appendix B

B.3.2 Random Files

Creating and accessing random files requires more program
steps than sequential files, but there are advantages to using
random files. One advantage is that random files require less
room on the disk, because BASIC stores them in a packed hinary

format. (A sequential file is stored as a series of ASCI!
characters.)

The biggest advantage to random files is that data can be
accessed randomly, i.e., anywhere on the disk -- it is not
necessary to read through all the information, as with
sequential files. This is possible because the information is
stored and accessed in distinct units called records and each
record is numbered.

The statements and functions that are used with random files
are:

OPEN
FIELD
LSET/RSET
GET
PUT
CLOSE
Loc
MKTS
CVvI
MKSS
Ccvs
MKDS
cvp

Page B-R

Programmer Guide

Programmer Guide Appendix B

B.3.2.1 Creating a Random File

The following program steps are required to create a random
file.

1. OPEM the file for random access (“R" mode). This example
specifies a record length of 32 bytes. If the record
length is omitted, the default is 128 bytes.

NPEM "R",#1,"FILE",32

2. lse the FIELD statement to allocate space in the random
buffer for the variables that will be written to the
random fileg.

FIELD #1 20 AS M&, 4 AS AS, R AS PS$

3. llse LSET to move the data into the random buffer.
Mumeric values must bhe made into strings when placed in
the buffer. To do this, use the "make" functions: MrIS
to make an integer value into a string, M¥SS for a single
precision value, and M¥D$ for a double precision value.

LSET NS=X%

LSET AS$-M¥SS({AMT)
LSET PS=TEL®

4. Write the data from the buffer to the disk using the PUT
statement.

PUT #1,CODE%

Page B-0

Appendix B Drogrammer Guide

Look at Program B-4. It takes information that is input at
the terminal and writes it to a random file. Each time the
PIIT statement is executed, a record is written to the file.

The two-digit code that is input in 1ine 30 becomes the record
number.

Note

Do not use a FIELDed string variable in an INPUT or LET
statement. This causes the pointer for that variable to point
into string space instead of the random file buffer.

10 OPEN “R",#1,"FILE",22

20 FIELD #1,20 AS NS, 4 AS ASS, R AS P$
an INPIT "2-DIGIT CODE",CODE%
40 IMPUT "MAME";X$

&0 THPUT "AMONNT" ; AMT

RO IMPUT "PHOME";TELS:PRINT
70 LSET MS=XS§

AN LSET A$=MKSS(AMT)

an LSET PS=TELS

100 PUT #1,CODE%

110 GOTO 30

PROGRAM B-4 - CREATE A RANDOM FILE

Page B-10

Programmer Guide Appendix B

B.3.2.2 Access a Random File

The following program steps are required to access a
random file:

1. OPEM the file in "R" mode.

OPEM “R",#1,"FILE",3?

2. lise the FIELD statement to allocate space in
the random buffer for the variables that will
be read from the file.

FIELD #1 2n AS M&, 4 AS Af, R AS PS

Note:

In a program that performs both input and
output on the same random file, you can often
use just one OPEM statement and one FIELD
statement.

A llse the GET statement to move the desired
record into the random buffer.

GET #1,CODNER

4, The data in the buffer may now be accessed by
the program. Mumeric values must he converted
back to numbers using the "convert" functions;
CVI for dintegers, CVS for single precision
values, and CYD for double precision values.

Program B-5 accesses the random file "FILE" that was
created in Program B-4, BY inputting the three-digit
code at the terminal, the information associated with
that code is read from the file and displayed.

Page B-11

Appendix B Programmer Guide

10 OPEM "R",#1,"FILE",32

20 FIELD #1, 20 AS M$, 4AS AS, RAS PS
an INPUT “2-DIGIT CODE";CODE%

an GET #1, CODE%

R0 PRINT Mg

A0 PRINT USING "sg###.##";CVS(AL)

70 PRINT PS&:PRINT

a0 GOTO 20

PROGRAM B-R ~ ACCESS A RANDOM FILE

The LOC function, with random files, returns the
"current record number". The current record number
is one plus the last record number that was used in
a RET or PIT statement. For example, the statement

IF LOC(1)>80 THEH EMD

ends program execution if the current record number
in file#1 is higher than &0,

Program B-f is an inventory program that illustrates
random access. In this program, the record number
is used as the part number, and it is assumed the
inventory will contain no more than 100 different
pgrt numbers. Lines 90N-9AN initialize the data file
by writing chr$(255) as the first character of each
record. This is used later (line 270 and line 5NN)
to determine whether an entry already exists for
that part number.

Lines 13n-22n display the different inventory
functions that the program performs. When you type
in the desired fucntion number, Tine 230 branches to
the appropriate subroutine.

Page B-12

Programmer Guide Appendix B

120 OPEM"R",#1," IMVEM.DAT",30

125 FIELD#1,1 AS F%,30 AS D&,2 AS N§,2 AS RS$,4 AS PS$
130 PRINT:PRINT “FINCTIOMS:":PRIMT

135 PRIMT 1,"IMITIALIZE FILE:

140 PRIMNT 2,"CREATE A MEW EMTRY"

150 PRINT 3,"DISPLAY INVENTORY FOR OME PART"

1AN PRINT 4,"ADD TO STNCK"

170 PRINT K,"SUBTRACT FROM STOCK"

180 PRINT 6,"DISPLAY ALL ITEMS BELOW REORDER LEVEL"
220 PRIMT:PRINT:TMPUT"FIIMCTION" ;FIINCTION

225 IF (FUNMCTIONM<I)OR(FUMCTION>R)

THEM PRINT "RAD FUMCTIOM NUMBER": GO TO 120
230 ON FIMCTION GOSIIB ann, 250,300,480, 560, AAN
24n GOTO 220
750 REM BUILD NEW EMTRY
260 GOSIIB Ran
270 IF ASC(F$)<>255 THEM IMPIT"OVERWRITE":AS&:

IF Ag<>"Y" THEM RETURM
2RN LSET F$=CHRS(N)

200 IMPHT “"DESCRIPTION";DESCS

300 LSET D$=DESCS

310 INPIT "QUAMTITY IM STOCK":n%

32N LSET N$=Mr1$(R%)

330 INPUT "REORDER LFEVEL";R%

34n LSET R$=MKIS&(R%)

380 THPUT "UMIT PRICE";P

3R0 LSET P$-MKSS(P)

370 PUT#1,PART%

3R0 RETIIRM

390 REM DISPLAY EMTRY

400 GOSIIB R4N

41N IF ASC{F$)=255 THEM PRIMT “MULL EMTRY":RETIIRM
420 PRINT HSING "PART NUMBER ###";PART%

430 PRINT DS

4an PRINT IISING “NUANTITY OM HAMD #####":CVI(N§)
450 PRINT SING "REORDER LEVEL #####";CVI(RS)
4R0 PRINT USIMG "UMIT PRICE SS##>##::CVS(Pg)

470 RETIIRM

480 REM ADD TO STOCK

400 (OSIB RaN

500 IF ASC(F$)=255 THEM PRINT "MULL EMTRY":RET!RM
510 PRIMT DS:IMPIT "MUIANTITY TO ADD ":A%

R20 0%=CVI{N%)+A%

82N LSET N&=MKIS$(n%)

RAn PUT#1,PARTE

RAN RETIIRN

5RN REM REMOVE FROM STOC¥

570 GOS!B R4D

58N IF ASC(F%)=255 THEM PRIMT "MIILL EMTRY":RETURM
5an PRINT D$

60N INPUT "NUAMTITY TO SUBTRACT":S%

610 N%=CVI(NS)

Page B-1?

Appendix B Programmer Guide

f20 IF (N%-S%)<n THEM PRINT “OMLY";N%:" IM STOCY":GOTO AON
AN NZ=N%-.5%

RAN TF N%=<CVI(R%) THEM DRINT “AUANTITY MOW";n%:
" REORDER LEVFL" CVI(RS)

REN LAST N&=MKIS(N%)

RRN DIIT#1,PARTY,

A70 RETIIRM

RRN NISPLAY ITEMS BELOW REORDER LEVEL

fON FOR 1-1 TO 100

710 GET#1,1

720 IF CVI(0S)<CVI(RS) THEM PRIMT DS;" MUANTITY";
CVI(n$) TAB{KN) "RENRDER LEVEL"

730 NEXT 1

740 RETIIRN

/40 INPUT "PART MUMBER";PARTY

/50 IF(PART%<1)0R(PART%>100) THEM PRINT "BAD PART MIMBER":
GOTO RAN ELSE GET#1,PART%:RETIRM

aan END

ann REM INTTIALIZE FILE

Q1N INPUT “ARE YOIl SURE":B%:IF BS§<>"Y" THEM RETIRM
920 LSET F$-CHRS(255)

Qan FOR I+1 TO 100

04n PIT#1,1

a5 NEXT 1

QRN RETIRN

PROGRAM B-f - IMVENTORY

Page B-14

i

Programmer Guide Appendix C

CODE NUMBER MESSAGE

NF 1 HEXT without For
A variable in a MEXT statement does not
correspond to any previously executed,
unmatched FOR statement variable.

SN 2 Syntax error
A line is encountered that contains some
incorrect sequence of characters (such as
unmatched parentheses, misspelled command or
statement, incorrect punctuation, etc.).

RG 3 RETIIRN without GOSIB
A RETIRN statement is encountered for which
there is no previous, unmatched GOS!B
statement.

on 4 ODut of data
A READ statement is executed when there are no
DATA statements with unread data remaining in
the program.

FC 5 I17egal function call
A parameter that is out of range is passed to a
math or string function. An FC error may also
occur as the result of:

1) a negative or unreasonably large
subscript;

?) a negative or zero argument with LOG
3) a negative argument to SPR

4) a negative mantissa with a non-integer
exponent

=== T

Page C-1

Prograrmer Guide Appendix C

CODE NUMBER MESSAGE
_

§) acall to a USR function for which the
starting address has not yet been given

&) an improper argument to MIDS, LEFTS,
RIGHTS, IMP, ONT, WAIT, PEEK, POYE, TAB,
SPC, STRIMGS, SPACES, INSTR, or ON...GOTO.

ov [Overflow
The result of a calculation is too large to be
represented in RASIC's number format. If

underflow occurs, the result is zero and
execution occurs without an error.

oM 7 nut of memory
A program is too large, has too many FOR Toops
or GOSIIBs, too many variables, or expressions
that are too complicated.

L A lindefined 1ine
A line reference in a GOTO, GOSUB,
IF...THEM...ELSE or DELETE is to a nonexistent

line.
BS L} Subscript out of range
An array element is referenced either with a
subscript that is outside the dimensions of the
array, or with the wrong number of subscripts.
DD 1n Redimensioned array

Two DIM statements are gqiven for the same
array, or a DIM statement is given for an array
after the default dimension of 10 has been

established for that array.

Page C-2

Programmer Guide Appendix C

L
CODE NUMBER MESSAGE |

/0 11 Division by zero

A division by zero is encountered 1in an
expression, or the operation of involution
results in zero being raised to a negative
power. Machine infinity with the sign of the
numerator is supplied as the result of the
division, or positive machine infinity is
supplied as the result of the involution, and
execution continues.

1D 12 I17egal direct
A statement that is illegal in direct mode is
entered as a direct mode command.

™ 13 Type mismatch
A string variable name is assigned a numeric
value or vice versa; a function that expects a
numeric argument is given a string argument or
vice versa.

0S 14 Out of string space
String variables have caused BASIC to exceed
the amount of free memory remaining. BASIC
will allocate string space dynamically, until
it runs out of memory.

LS 15 String too long
An attempts is made to create a string more
than 255 characters long.

ST 1A String formula too complex
A string expression is too long or too complex.
The expression should be broken into smaller
expressions.

— —

Page C-3

Programmer Guide Appendix C

CODE NUMBER MESSAGE

CM 17 Can't continue
An attempt is made to continue a program that:

1) has halted due to an error

2) has been modified during a break in
execution, or

3) does not exist.

HIF 1R lindefined user function
A USR function 1is called before the function
definition (DEF statement) is given.

19 Mo RESUME
An error trapping routine is entered but
contains no RESIME statement.

20 RESIME without error
A RESIIME statement is encountered before an
error trapping routine is entered.

21 Inprintable error
An error message is not available for the error
condition which exists. This is usually caused
by an ERROR with an undefined error code.

22 Missing operand
An expression contains an operator with no
operand following it.

23 Line buffer overflow
An attempt is made to input a line that has too
many characters.

26 FOR without NEXT
A FOR was encountered without a matching MEXT.

29 WHILE without WEMD
A WHILE statement does not have a matching
WEND.

_———eee————)

Page C-4

Programmer Guide Appendix C

)
CODE NUMBER MESSAGE

————_—_—_—
3n WEMD without WHILE
A WEND was encountered without a matching
WHILE.

50 Field overflow
A FIELD statement is attempting to allocate
more bytes than were specified for the record
length of a random file.

Rl Internal error
An internal malfunction has occurred in BASIC.
Report to Nynalogic the conditions under which
the message appeared.

52 Bad file number
A statement or command references a file with a
file number that is not OPEM or is out of the
range of file numbers specified at
initialization.

53 File not found
A LOAD, KILL or OPEM statement references a
file that does not exist on the current disk.

54 Bad file mode
An attempt is made to use PUT, GET, or LOF with
a sequential file, to LOAD a random file or to
execute an OPEM with a file mode other than I,
0, or R.

RR File already open
A sequential output mode OPEM is issued for a
file that is already open; or a K¥ILL is given
for a file that is open.

&7 Disk 1/0 error
An 1/0 error occurred on a disk 1/0 operation.
It is a fatal error, i.e., the operating system
cannot recover from the error.
_—————

Page C-5

Programmer Guide Appendix C

CODE MUMBER MESSAGE

&R File already exists
The filename specified in a NAME statement is
jdentical to a filename already in use on the
disk.

Al Disk full
A1l disk storage space is in use.

A2 Input past end
An INPUT statement is executed after all the
data in the file has been IMPIT, or for a null
(empty) file. To avoid this error, use the EOF
function to detect the end of file.

f2 Bad record number
In a PUT or GET statement, the record number is
either greater than the maximum allowed (3227A7)
or equal to zero.

Al Bad file name
An illegal form is wused for the filename with
LOAD, SAVE, KILL, or OPEM (e.g., a filename
with too many characters).

AR NDirect statement in file
A direct statement is encountered while LOADing
an ASCII-format file. The LOAD is terminated.

A7 Too many files
An attempt is made to create a new file (using
SAVE or OPEM) when all 255 directory entries
are full.

Page C-f

Programmer Guide Appendix D

Derived Functions

Functions that are not intrinsic to BASIC may be calculated as follows.

FUNCTION BASIC ENIIIVALENT

SECANT SEC(X)=1/C0S(¥)

COSECAMT CSC(X)=1/SIN(X)

COTANGENT COT(X)=1/TAN(¥)

IMVERSE SINME ARCSTM(X)=ATM{X/SPR{-X*X+1))

INVERSE COSINE ARCCOS(X)=-ATM (X/SOR({-X*X+1))+].570R

INVERSE SECAMT ARCSEC(X)=ATM({X/SPR{-X*X+1))
+SGN(SGM(X)-1)*1.570R

TMVERSE COSECANT ARCCSC(X)=ATN(X/SPR(X*¥-1))
+(SBM[X)=1)*].R70R

IMVERSE COTAMGEMT ARCCOT(X)=ATM{X)+1.570R

HYPERROLIC SIME SIMH(X)=(EXP(X)-E¥P(-X))/2

HYPERBOLIC COSIME COSH(X)=(EXP(¥)+EXP(-X))*2+]

HYPERBOLIC TANGENT TANH(X)}=EXP(=X)/EXP(X)+EXP(-X))*2+1

HYPERBOLIC SECANT CSCH(X)=2/(EXP(X)+EXP{-X))

HYPERBOLIC COSECAHT COTH(X)=EXP(-X}/(EXP(X)-EXP(-X))*2+1

INVERSE HYPERBOLIC
SINE ARCSIMH{X)=LOG(X+SNR{X*X+1})

Page N-1

Appendix D Programmer Guide

FUNCTION BASIC ENUIVALENT
————

IMVERSE HYPERBOLIC

COSINME ARCCOSH{X)=LOG(X+SNR(X*X-1})
INVERSE HYPERBOLIC
TANGENT ARCTAMH(X)=LOG{ (1+X)/{1-X))/2
INVERSE HYPERBOLIC
SFCANT ARCSECH(Y)=LOG({SOR(=X*X+1)+1)/X)
INVERSE HYPERBNLIC
COSECAMT ARCCSCH{ ¥)=LOG({SGM(X)*SOR{ X*¥+1)+1)/X
IMVERSE HYPERROLIC
COTAMGENT ARCCOTH(Y)=LNG((X+1)/(X-1)/2
—_— ——— ——————————————————— |

Page D-?

Programmer Guide Appendices
APPEMNDIX E

ALPHABETICAL SIIMMARY OF
BASIC COMMAMNDS, FUNCTIONS & STATEMEMTS

ABS 1.5
ASC I.5
ATM 1.5
AUTO 1.2
BEEP I.4
BLOAD 1.4
BSAVE I.4-
CALL 1.4
CDBL 1.5
CHAIN 1.4
CHR$ 1.5
CINT I.5
CIRCLE I.4-
CLEAR 1.2
CLOSE I.

CLS !
COLOR (A) 1.
COLOR (G) I
COM(n) I.
COMMON I.
CoMT I
cos I
CSMG I
CSRLIN I.
CvI,Cvs,CvD I
DATA I.
DATES I.
DEF FM I
DEF SEG I.
DEF VISR I
DEFINT I.4-
DELETE I.2
NIM I.

DRAW I.
EDIT I
END I.
EOF I.
ERASE 1.
ERR & ERL I.
ERROR I.
EXP | 8
FIELD I.
FILES 1
FIX I.
FOR...MEXT I.
FRE 1.
GET (A) I.
GET (G) I.
GOS!B I.
GOTO I.
HEXS I.
IF...ELSE 1.
IF...GOTO T
IF...THEN I.

‘W HWEN =0 VLTI NN LN =D NDLdEBEEBTNTANND 00D DL YA N AL WNMND IO E NBRMN == N =

E-1

Appendices Programmer Guide

INFEYS I.
IHpP I.
INPUT I.
INPUT# I.
INPUTS I.
INSTR I.
INT 1.
KEY I.
KILL I
LEFTS I.
LEM I.
LET I.

I.

I.

I.

1

I

LIME

LINE INPUT
LINE INPHT#
LIST

LLIST

LOAD

Loc

- 0N~ DDV 0 O0ONONEBEWI-NNSRARAANV Y IMNNN=D00BWVYLY=DD0DDNAWMNIDIONODVIAISIA NN

1

1

LOCATE 1
LOF 1
LOG 1
LPOS 1
LPRINT 1
LPRINT USIMNG I
LSET & RSET I
MERGE 1
MIDS 1
MYIS,MFSE MYDS I
NAME I
NEW 1
OCTS 1
0N COM(n) 1
ON ERROR GOTO 1
OM KEY I
I

1

1

I

I

1

I

1

I

I

I

1

1

I

1

1

1

1

1

OM...GOSUB
OM...GOTO
OPEM

OPEM COM1:
OPTIOM BASE
onT

PAINT

PEEY

PLAY

POTMT

POVE

POS

PRESET
PRINT

PRINT # LSIMG
PRINT NSIMG
PRINT#

PSET

PUT (A)

.

e s s o4 w

E-2

Programmer Guide Appendices

PUT (G) 1.4-92
RANDOMIZE 1.4-05
READ 1.4-96
REM 1.4-08
RENIM 1.3-14
RESTORE 1.4-99
RESIUME 1.4-100
RETIIRM I.4-1Nn1
RIGHTS 1.5-21
RND 1.5-32
RUN 1.3-15
SAVE 1.2-16
SCREEM - Statement 1.4-1n2
SCREEMN - Function 1.5-23
SGH 1.5-24
s [.5.7%
SOHMND I.4-1na
SPACES 1.5-36
SPC 1.5-37
SR 1.5-29
STOP 1.4-1n5
STRS 1.5-39
STRINGS 1.5-40
SHAP 1.4-106
SYSTEM 1.3-17
TAB 1.5-4)
TAM 1.5-42
TIMES 1.4-1n7
TROM/TROFF 1.2-18
USR 1.5-42
VAL 1.5-44
VARPTRS 1.5-45
WAIT I.4-1n0
WHILE...WEMD 1.4-110
WIDTH 1.4-111
WRITE 1.4-113
WRITE# 7.4-114

	Hyperion - Programmer Guide 1
	Hyperion - Programmer Guide 2
	Hyperion - Programmer Guide 3
	Hyperion - Programmer Guide 4
	Hyperion - Programmer Guide 5
	Hyperion - Programmer Guide 6
	Hyperion - Programmer Guide 7
	Hyperion - Programmer Guide 8

