II.

III.

Iv.

ALTAIR SHORT COURSE

INTRODUCTION

COMPUTER FUNDAMENTALS
1- COMPUTER ORGANIZATION
2- NUMBER SYSTEMS

3. BASIC LOGIC CIRCUITRY

=

- PROGRAMMING

HARDWARE

1. ALTAIR ORGANIZATION

2. I/0 STRUCTURE

3. INTERFACING TECHNIQUES

SOFTWARE

L. PROGRAMMING CONCEPTS
- MACHINE LANGUAGE

3. ASSEMBLY LANGUAGE

4. BASIC LANGUAGE

QUESTIONS & ANSWERS

ALTAIR 8800 SHORT COURSE

NOTES

Protect enable operates on board currently addressed. Other boards are
not protected. Use with assembler. Unprotect is the same.

Parallel I/0 board is in the full duplex mode. Bytes are sent and received
simultaneously.

DBIN and IN lines must be high to allow input. Control is through an
AND gate.

Current drain on any card is to be less than 0.6 amps max.
Only one TTL load on a Bus line card connection
For information on A/D and D/A conversion:

Ed Currie - (305) 885-9288 - (Florida; evenings)

PAGE ONE

ALTAIR 8800 SHORT COURSE

NOTES

PAGE TWO

ALTAIR ABO0 SHORT COURSE

NOTES

PAGE THREE

ALTAIR 8800 SHORT COURSE

NOTES

PAGE FOUR

L.,/

ALTAIR 8800 SHORT COURSE

NOTES

PAGE FIVE

ALTAIR 8800 SHORT COURSE

NOTES

PAGE SIX

ALTAIR 8800 SHORT COURSE

NOTES

PAGE SEVEN

ALTAIR 8800 SHORT COURSE

NOTES

PAGE EIGHT

ALTAIR 8800 SHORT COURSE

NOTES

PAGE NINE

ALTAIR 8800 SHORT COURSE

NOTES

PAGE TEN

ALTAIR 8800 SHORT COURSE

NOTES

PAGE ELEVEN

ALTAIR 8800 SHORT COURSE

NOTES

PAGE TWELVE

ALTAIR 8800 SHORT COURSE

NOTES

PAGE THIRTEEN

ALTAIR 8800 SHORT COURSE

NOTES

PAGE FOURTEEN

ALTAIR 8800 SHORT COURSE

NOTES

PAGE FIFTEEN

ALTAIR 8800 SHORT COURSE

NOTES

PAGE SIXTEEN

ALTAIR 4800 SHORT COURSE

NOTES

PAGE SEVENTEEN

ALTAIR 8800 SHORT COURSE

NOTES

PAGE EIGHTEEN

ALTAIR 8800 SHORT COURSE

NOTES

PAGE NINETEEN

ALTAIR 8800 SHORT COURSE

NOTES

PAGE TWENTY

The MITS system software consists of three packages, an assembly
language development system (called Package I), a machine
language debugging package (DBG-8800) and ALTAIR BASIC.

These three packages operate in a stand-alone environment
i.e. without disk or other high speed random access storage
device. I/0 devices supported are asynchronous serial ASCIT
terminals, parallel ASCII terminals (such as TVT's) and the
ACR (cassette) interface board.

Two disk based systems are now under development and should
be ready by mid-December. These are Extended BASIC and the
DOS. Extended BASIC and the DOS both use the same file
structure I/O code; Extended BASIC is an advanced BASIC
interpreter while the DOS package is a disk based assembly
language development system.

Here is an overview of the features of the packages currently
available:

Package I
(System Monitor, Editor & Assembler)

System Monitor - 2K Bytes

Contains I/O drivers for system console, ACR board (supports
multiple files on one cassette). Loads programs from paper
tape or cassette.

Text Editor - 2K bytes

Facilitates editing of source programs. The editor is line
oriented, that is, commands always reference a line or group
of lines.

Commands :
P - Print Lines
I - Insert Lines
D - Delete Lines
R - Replace Lines
E - Exit to Monitor
A - Alter a line. Enables user to change, delete or

insert minor changes in an already existing line.

~1-

B

ottom
of
emory-gn

F String - Searches from the current line forward for

an occurance of the character string given
as its argument.

Relative addressing is allowed. P.+6 would print the sixth
line after the current one.

Line Feed - Prints and moves the current line pointer

Escape -

S -
L -

Assembler -

to the next line.

Prints and moves current line pointer to
line before current one.

Saves File.
Loads a File.

3K Bytes

The ALTAIR loading assembler assembles a source program in

one pass from paper tape,

buffer.
progresses.

Since the assembler is one pass,

cassette or from the current Editor
Object code is stored directly into memory as assembly

it is possible to avoid the

time consuming process of re-reading source tapes more than

once, which is the case with multi-pass assemblers.

Also,

if the program being assembled resides in the edit buffer,
assembly is almost instantaneous and the user may immediately
correct and re-assemble his program.

Features not provided by the ALTAIR assembler:

- Conditional Assembly

- Macros

- Cross Reference Listing

ALTERNATIVE MEMORY MAPS FOR PACKAGE

Edit Buffer

Editor

User Assembly
Language
Program

Edit Buffer Assembler
Assembler Buffer
Buffer
Assembler
Editor Assembler

System Monitor

System Monitor]

System Monitor

System Monitor

~2-

NOTE: Package I can be used with all memory available. A minimum

of 8K is necessary, but any extra memory may be allocated
for Package I buffer or program storage.

DEBUG CAPABILITIES OF DBG-8800
2K Bytes
Examine/Modify Commands

A location to be examined can be specified by an octal address,
a register name (A,B,C,D,E,H,L, or S for status word), or a
period to indicate the address in the current address pointer.
In addition a location can be specified with any of the above
forms but with a + or - octal offset (e.g. .+7).

The specified location can be examined by typing a / after it.
A / causes the following:

- Type the specified (and possibly following locations)
in accordance with the current I/0 mode.

- Open location(s) for modification.

- A carriage return will close the location.

~ A line feed will print the address and contents of the
next memory location(s) (depending on I/0 mode).

-~ 4 acts as a line feed but goes to previous instead of

next location(s).

; causes contents to typed in octal regardless of I/0

mode.

- A tab (control I) will open for examination the address
associated with a previously displayed symbolic
3-byte instruction.

- Otherwise input information will be accepted to modify
the contents of the current location. Input data
must conform to the specified I/0 mode.

- A rubout typed at any time will cause input to the current

line to be aborted, and a new line will be started.

I/0 modes can be respecified at any time by typing an escape
followed by one of the following characters:

(octal)

(ASCII)

(symbolic) (instruction format)
(two-byte words)

(decimal)

O wpo

Execution Commands

An. address (as specified above) if followed by a G will cause
execution of the user program to begin at the specified address.

A P will cause execution of the user program to proceed from
the most recently encountered break point. An octal number
can precede a P to indicate the number of breakpoints that the
user wishes to pass over before finally returning control to
DEBUG.

Breakpoint Commands

There are 8 possible breakpoints (numbered 0 thru 7). To set
a breakpoint an address is followed by an X. The first free
breakpoint will be set.

A Y is typed to remove all breakpoints.

A Q will cause a table of all set breakpoints to be displayed.

Memory Block Commands

The contents of a block of memory can be displayed by typing
a command of the form:
(ADDRESS A), (ADDRESS B)T
This command will cause memory contents beginning with (ADDRESS A)
and ending with (ADDRESS B) to be displayed in the current I/O mode.

8K BASIC

ALTAIR BASIC (Version 3.1) requires a minimum of 6K bytes of
memory.

Features not normally found in BASIC include Boolean operators

(AND, OR, NOT) which can be used in IF statements or for bit
manipulation, INP and OUT which can read or write a byte from

any I/0 port, and PEEK and POKE to read or write a byte from

any memory location. Variable length strings (up to 255 characters)
are provided, as well as the LEFTS$, RIGHTS$ and MID$ functions

to take substrings of strings, a concatenation operator and VAL

and STR$ to convert between strings and numbers. Number represent-
ation is 32 bit floating point. Both string and numeric arrays

of up to 30 dimensions may be used, and can be allocated dynamically
during program execution. Nesting of loops and subroutine calls

is limited only by available memory. Intrinsic functions are SIN,
C0s, TAN, LOG, EXP, SQR, SGN, ABS, INT, FRE, RND and POS, in
addition to TAB and SPC in PRINT statements.

—4-

J

Other important fedtures are direct execution of statements,
multiple statements per line, and the abiltiy to interrupt
program execution and then continuc after the examination of
variable values.

For the MITS' line of ALTAIR microcomputers, 8K BASIC costs
$75 with the pruchase of 8K memory and an I/0 interface board.

4K BASIC

The 4K version of BASIC, with less features than 8K BASIC, costs
$60 for ALTAIR owners with 4K memory and an I/0 board.

The features of 4K BASIC are a subset of those of 8K BASIC.
Main restrictions are:

- No strings.

- Matrices of only one dimension.

- Math functions are ABS, INT, SQR, RND, SIN, SGN
- AND, OR, NOT

- No PEEK, POKE, INP, OUT

- No interrupt response subroutines.

- No ON...GOTO, ON...GOSUB

~ No CONTinue command.

NOTE: it is often advantageous to run 4K BASIC in an 8K ALTAIR
if you have a long program or a program that uses large
single dimensioned arrays.

'

9

| REFERENCE |
|
|

VIATERIAL |

pem—" % crmm— { e | ot} covmnnes || commm | | e

¥ —— e

“Creative Electronics”

COMMANDS

A command is usually given after BASIC has typed OK. This is called

the ""Command Level.

Commands may be used as program statemerits. Certain

commands, such as LIST, NEW and CLOAD will terminate program execution

when they finish.

NAME EXAMPLE

PURPOSE/USE

CLEAR *(SEE PAGE 42 FOR EXAMPLES AND EXPLANATION)

LIST LIST

LIST 100
NULL NULL 3
RUN RUN

Lists current program

optionally starting at specified line.
List can be control-C'd (BASIC will
finish listing the current line)

(Null command only in 8K version, but
paragraph applicable to 4K version also)
Sets the number of null (ASCII 0) charac-
ters printed after a carriage return/line
feed. The number of nulls printed may

be set from 0 to 71. This is a must for
hardcopy terminals that require a delay
after a CRLFY It is necessary to set the
number of nulls typed on CRLF to 0 before
a paper tape of a program is read in from
a Teletype (TELETYPE is a registered
trademark of the TELETYPE CORPORATION).
In the 8K version, use the null command
to set the number of nulls to zero. In
the 4K version, this is accomplished by
patching location 46 octal to contain the
number of nulls to be typed plus 1.
(Depositing a 1 in location 46 would set
the number of nulls typed to zero.) When
you punch a paper tape of a program using
the list command, null should be set >=3
for 10 CPS terminals, >=6 for 30 CPS ter-
minals. When not making a tape, we recom-
mend that you use a null setting of 0 or 1
for Teletypes, and 2 or 3 for hard copy
30 CPS terminals. A setting of 0 will
work with 'Teletype compatible CRT's.

Starts execution of the program currently
in memory at the lowest numbered state-
ment. Run deletes all variables (does a
CLEAR) and restores DATA. If you have
stopped your program and wish to continue
execution at some point in the program,
use a direct GOTO statement to start
execution of your program at the desired

Line. *CRLF=carriage return/line feed

d

RUN 200 (8K version only) optionally starting
at the specified line number

NEW NEW Deletes current program and all variables
THE FOLLOWING COMMANDS ARE IN THE 8K VERSION ONLY

CONT CONT Continues program execution after a
control/C is typed or a STOP statement
is executed. You cannot continue after
any error, after modifying your program,
or before your program has been run.
One of the main purposes of CONT is de-
bugging. Suppose at some point after
running your program, nothing is printed.
This may be because your program is per-
forming some time consuming calculation,
but it may be because you have fallen
into an "infinite loop'". An infinite loop
is a series of BASIC statements from
which there is no escape. The ALTAIR will
keep executing the series of statements
over and over, until you intervene or
until power to the ALTAIR is cut off.
If you suspect your program is in an
infinite loop, type in a control/C. In
the 8K version, the line number of the
statement BASIC was executing will be
typed out. After BASIC has typed out 0K,
you can use PRINT to type out some of the
values of your variables. After examining
these values you may become satisfied that
your program is functioning correctly.
You should then type in CONT to continue
executing your program where it left off,
or type a direct GOTO statement to resume
execution of the program at a different
line. You could also use assignment (LET)
statements to set some of your variables
to different values. Remember, if you
control/C a program and expect to continue
it later, you must not get any errors or
type in any new program lines. If you
do, you won't be able to continue and will
get a '"CN" (continue not) error. It is
impossible to continue a direct command.
CONT always resumes execution at the next
statement to be executed in your program
when control/C was typed.

YHE FOLLOWING TWO COMMANDS ARE AVAILABLE IN THE 8K CASSETTE

CLOAD

CSAVE

SYMBOL

VERSION ONLY

CLOAD P Loads the program named P from the
cassette tape. A NEW command is auto-
matically done before the CLOAD com-
mand is executed. When done, the CLOAD
will type out 0K as usual. The one-
character program designator may be any
printing character. CSAVE and CLOAD
use I/0 ports 6 § 7.

See Appendix I for more information.

CSAVE P Saves on cassette tape the current pro-
gram in the ALTAIR's memory. The pro-
gram in memory is left unchanged. More
than one program may be stored on cassette
using this command. CSAVE and CLOAD use
1/0 ports 6 § 7. :

See Appendix I for more information

OPLRATORS

SAMPLE STATEMENT PURPOSE/USE

4
(usually a

A=100 Assigns a value to a variable
LET Z=2.5 The LET is optional

B=-A Negation. Note that 0-A is subtraction,
while -A is negation.

130 PRINT X43 Exponentiation (8K version)

shift/N) (equal to X*X*X in the sample statement)
040=1 0 to any other power = 0
A+B, with A negative and B not an integer
gives an FC error.

140 X=R*(B*D) Multiplication
150 PRINT X/1-3 Division

160 Z=R+T+a Addition

170 J=100-I Subtraction

RULLS FOR EVALUATING EXPRESSIONS:

1) Operations of higher precedence are performed before opera-
tions of lower precedence. This means the multiplication and
divisions are performed before additions and subtractions. As
an example, 2+10/5 equals 4, not 2.4. When operations of equal
precedence are found in a formula, the left hand one is executed
first: 6-3+5=8, not -2.

(=5

2) The order in which opcrations are performed can always be
specified explicitly through the use of parentheses. For in-
stance, to add 5 to '3 and then divide that by 4, we would use
(5+3)/4, which equals 2. If instead we had used 5+3/4, we
would get 5.75 as a result (5 plus 3/4).

The precedence of operators used in evaluating expressions is as
follows, in order beginning with the highest precedence:
(Note: Operators listed on the same line have the same precedence.)

1) FORMULAS ENCLOSED IN PARENTHESIS ARE ALWAYS EVALUATED FIRST

2) + EXPONENTIATION (8K VERSION ONLY)
3) NEGATION =X WHERE X MAY BE A FORMULA
4) * 7/ MULTIPLICATION AND DIVISION
5) + - ADDITION AND SUBTRACTION
L) RELATIONAL OPERATORS: = EQUAL

(equal precedence for <> NOT EQUAL

all six) LESS THAN

GREATER THAN

<

LESS THAN OR EQUAL
GREATER THAN OR EQUAL

hn v A

>
(8K VERSION ONLY) (These 8 below are Logical Operators)

?) NOT LOGICAL AND BITWISE "NOT"
LIKE NEGATION, NOT TAKES ONLY THE
FORMULA TO ITS RIGHT AS AN ARGUMENT

8) AND LOGICAL AND BITWISE "AND"

9) oR LOGICAL AND BITWISE "OR"

In the 4K version of BASIC, relational operators can only be used
once in an IF statement. However, in the 8K version a relational ex-
pression can be used as part of any expression,

Relational Operator expressions will always have a value of True (-1)
or a value of False (0). Therefore, (5=4)=0, (5=5)=-1, (4>5)=0, (4<5)=-1, N
etc.

The THEN clause of an IF statement is executed whenever the formula
after the IF is not equal to 0. That is to say, IF X THEN... is equivalent
to IF X<>0 THEN... .

SYMBOL SAMPLE STATEMENT PURPOSE/USE

= 10 IF A=15 THEN 4O Expression Equals Expression

<> 70 IF A<>0 THEN § Expression Does Not Equal Expression
> 30 IF B>100 THEN & Expression Greater Than Expression

< 1k0 IF B<2 THEN 10 LExpression Less Than Expression
<=,=< 180 IF 100<=B+C THEN 10 Expression Less Than Or Equal

To Expression

>=,=> 190 IF @=>R THEN 50 Expression Greater Than Or Equal
To Expression

AND 2 IF A<5 AND B<2 THEN ? (8K Version only) If expression 1
(A<5) AND expression 2 (B<2) are both
true, then branch to line 7

OR IF A<l OR B<2 THEN 2 (8K Version only) 1If either expres-
sion 1 (A<l) OR expression 2 (B<2) is
true, then branch to line 2

NOT IF NOT @3 THEN Y4 (8K Version only) If expression
"NOT Q3" is true (because Q3 is
false), then branch to line 4
Note: NOT -1=0 (NOT true=false)

AND, OR and NOT can be used for bit manipulation, and for performing
boolean operations.

These three operators convert their arguments to sixteen bit, signed
two's, complement integers in the range -32768 to +32767. They then per-
form the specified logical operation on them and return a result within
the same range. If the arguments are not in this range, an "FC" error
results.

The operations are performed in bitwise fashion, this means that each
bit of the result is obtained by examining the bit in the same position
for each argument.

The following truth table shows the logical relationship between bits:

OPERATOR ARG. 1 ARG. 2 RESULT
AND L 1 1
g 1 0
1 D o
o 0 0
(cont.)

OPLRATOR ARG. 1 ARG. 2 RESULT

OR

(= =N
(=] ro g
[=

=
i
=]

NOT

EXAMPLES: (In all of the examples below, leading zerces on binary
numbers are not shown.)

b3 AND 1b=1lbk Since 63 equals binary 111111 and 16 equals binary
10000, the result of the AND is binary 10000 or 16.

15 AND 1u=14 15 equals binary 1111 and 14 equals binary 1110, so
15 AND 14 equals binary 1110 or 14.

-1 AND 8=8 -1 equals binary 1111111111111111 and 8 equals binary
1000, so the result is binary 1000 or 8 decimal.

4 AND 2=0 4 equals binary 100 and 2 equals binary 10, so the
result is binary 0 because none of the bits in either
argument match to give a 1 bit in the result.

4 OR e=b Binary 100 OR'd with binary 10 equals binary 110, or
6 decimal.

10 OR 10=10 Binary 1010 OR'd with binary 1010 equals binary 1010,
or 10 decimal.

-1 OR -2=-1 Binary 1111111111111111 (-1) OR'd with binary
1111111111111110 (-2) equals binary 1111111111111111,
or -1.

NOT O=-1 The bit complement of binary 0 to 16 places is sixteen
ones (1111111111111111) or -1. Also NOT -1=0.

NOT X NOT X is equal to -(X+1). This is because to form the
sixteen bit two's complement of the number, you take the
bit (one's) complement and add one.

NOT 1=-2 The sixteen bit complement of 1 is 1111111111111110,
which is equal to -(1+1) or -2.

A typical use of the bitwise operators is to test bits set in the
ALTAIR's inport ports which reflect the state of some external device.

Bit position 7 is the most significant bit of a byte, while position
0 is the least significant.

For instance, supposc bit I of 1/0 port 5 is 0 when the door to Room
X is closed, and 1 if the door is open. The following program will print
"Intruder Alert" if the door is opened:

10 IF NOT (INP(5) AND 2) THEN 10 This line will execute over
and over until bit 1 (mask-
ed or selected by the 2) be-
comes a 1. When that happens,
we go to line 20 .

20 PRINT "INTRUDER ALERT" Line 20 will output "INTRUDER
ALERT",

However, we can replace statement 10 with a "WAIT'" statement, which
has exactly the same effect.

10 WAIT 5,2 This line delays the execution of the next
statement in the program until bit 1 of
- I/0 port 5 becomes 1. The WAIT is much
faster than the equivalent IF statement
and also takes less bytes of program
storage.

The ALTAIR's sense switches may also be used as an input device by
the INP function. The program below prints out any changes in the sense
switches.

10 A=300:REM SET A TO A VALUE THAT WILL FORCE PRINTING
20 J=INP(255):IF J=A THEN 20
30 PRINT J;:A=Jd:GOTO 20

The following is another useful way of using relational operators:

125 A=-(B>()*B-(B<=C)*C This statement will set the variable
A to MAX(B,C) = the larger of the two
variables B and C.

STATEMENTS

Note: 1In the following description of statements, an argument of V
or W denotes a numeric variable, X denotes a mumeric expression, X$ de-
notes a string expression and an I or J denmotes an expression that is
truncated to an integer before the statement is executed. Truncation
means that any fractional part of the number is lost, e.g. 3.9 becomes
3, 4.0L becomes 4.

An expression is a series of variables, operators, function calls

and constants which after the operations and funetion calls are performed
using the precedence rules, evaluates to a numeric or string value.)

A constant is either a number (3.14) or a string literal ("FOO").

-

c

NAME

DATA

DEF

DIM

LXAMPLL

10 DATA 1.3.-1E3..04

20 DATA "' F00'",Z00

100 DEF FNA(V)=V/B+C

110 Z=FNA(3)

113 DIM A(3),B(10)

PURPOSE/USE

Specifies data, read from left to right.
Information appears in data statements
in the same order as it will be read in
the program. IN THE 4K VERSION OF BASIC,
DATA STATEMENTS MUST BE THE FIRST STATE-
MENTS ON A LINE. Expressions may also
appear in the 4K version data statements.

(8K Version) Strings may be read from
DATA statements. If you want the string
to contain leading spaces (blanks), colons
(:) or commas (,), you must enclose the
string in double quotes. It is impossible
to have a double quote within string data
or a string literal. (""MITS"" is illegal)

(8K Version) The user can define functions
like the built-in functions (SQR, SGN, ABS,
etc.) through the use of the DEF statement.
The name of the function is "FN" followed
by any legal variable name, for example:
FNX, FNJ7, FNKO, FNR2. User defined
functions are restricted to one line. A
function may be defined to be any expres-
sion, but may only have one argument. In
the example B § C are variables that are
used in the program. Executing the DEF
statement defines the function. User de-
fined functions can be redefined by exe-
cuting another DEF statement for the same
function. User defined string functions
are not allowed. "V'" is called the dummy
variable.

Execution of this statement following the
above would cause Z to be set to 3/B+C,
but the value of V would be unchanged.

Allocates space for matrices. All matrix
elements are set to zero by the DIM state-
ment.

114 DIM R3(5,5),D%(2,2,2) (8K Version) Matrices can have more

115 DIM QL(N),Z(2*I)

than one dimension. Up to 255 dimen-
sions are allowed, but due to the re-
striction of 72 characters per line
the practical maximum is about 34
dimensions.
Matrices can be dimensioned dynamically
during program execution. If a matrix
is not explicitly dimensioned with a DIM
statement, it is assumed to be a single
dimensioned matrix of whose single subscript

11?7 A(B)=4

END 999 END

may range from O to 10 (eleven elements).
If this statement was encountered before
a DIM statement for A was found in the
program, it would be as if a DIM A(10)
had been executed previous to the execu-
tion of line 117. All subscripts start
at zero (0), which means that DIM X(100)
really allocates 101 matrix elements.

Terminates program execution without
printing a BREAK message. (see STOP)
CONT after an END statement causes exe-
cution to resume at the statement after
the END statement. END can be used any-
where in the program, and is optional.

FOR 300 FOR V=1 TO 9.3 STEP -b (see NEXT statement) V is set

310 FOR V=1 TO 9.3

equal to the value of the expres-
sion following the equal sign, in
this case 1. This value is called
the initial value. Then the state-
ments between FOR and NEXT are
executed. The final value is the
value of the expression following
the TO. The step is the value of
the expression following STEP.

When the NEXT statement is encoun-
tered, the step is added to the
variable.

If no STEP was specified, it is
assumed to be one. If the step is
positive and the new value of the
variable is <= the final value (9.3
in this example), or the step value
is negative and the new value of
the variable is => the final value,
then the first statement following
the FOR statement is executed.
Otherwise, the statement following
the NEXT statement is executed.

All FOR loops execute the statements

between the FOR and the NEXT at
least once, even in cases like
FOR V=1 TO 0.

315 FOR V=10*N TO 3.4/@ STEP SQR(R) Note that expressions

(formulas) may be used for the in-
itial, final and step values in a
FOR loop. The values of the ex-
pressions are computed only once,
before the body of the FOR....NEXT
loop is executed.

320 FOR v=9 TO 1 STEP -1 When the statement after the NEXT
is executed, the loop variable is
never equal to the final value,
but is equal to whatever value
caused the FOR...NEXT loop to ter-
minate. The statements between
the FOR and its corresponding NEXT
in both examples above (310 § 320)
would be executed 9 times.

330 FOR W=l TO 10: FOR W=1 TO :NEXT W:NEXT W Error: do not
use nested FOR...NEXT loops with
the same index variable.

FOR loop nesting is limited only
by the available memory.
(see Appendix D)

GOTO 50 GOTO 100 Branches to the statement specified.

6OSUB 10 GOSUB €910 Branches to the specified statement (910)
until a RETURN is encountered; when a
branch is then made to the statement
after the GOSUB. GOSUB nesting is limited
only by the available memory.

(see Appendix D)

IF...60TO
32 IF X<=Y+23.4 GOTO 92 (8K Version) Equivalent to IF...THEN,
except that IF...GOTO must be followed
by a line number, while IF...THEN can
be followed by either a line number
or another statement.
IF...THEN
IF X<10 THEN 5 Branches to specified statement if the
relation is True.
c0 IF X<O THEN PRINT "X LESS THAN 0" Executes all of the

statements on the remainder of the line
after the THEN if the relation is True.
25 IF X=5 THEN 50:Z=A WARNING. The '"Z=A" will never be
executed because if the relation is
true, BASIC will branch to line 50.
If the relation is false Basic will
proceed to the line after line 25.
cb IF X<O THEN PRINT “ERROR, X NEGATIVE": GOTO 350
In this example, if X is less than 0,
the PRINT statement will be executed
and then the GOTO statement will
branch to line 350. If the X was 0 or
positive, BASIC will proceed to
execute the lines after line 26.

INPUT

LET

NEXT

ON...GOTO

3 INPUT V,U,uW2

5 INPUT "VALUE";V

300 LET W=X
310 v=5.1

340 NEXT V
345 NEXT

350 NEXT V,U

Requests data from the terminal (to be
typed in). Lach value must be separated
from the preceeding value by a comma (,).
The last value typed should be followed
by a carriage return. A "?" is typed as
a prompt character. In the 4K version, a
value typed in as a response to an INPUT
statement may be a formula, such as
2*SIN(.16)-3. However, in the 8K version,
only constants may be typed in as a re-
sponse to an INPUT statement, such as
4.5E-3 or "CAT". If more data was re-
quested in an INPUT statement than was
typed in, a "??" is printed and the rest
of the data should be typed in. If more
data was typed in than was requested,

the extra data will be ignored. The 8K
version will print the warning "EXTRA
IGNORED" when this happens. The 4K ver-
sion will not print a warning message.
(8K Version) Strings must be input in the
same format as they are specified in DATA
statements.

(8K Version) Optionally types a prompt
string ("VALUE'") before requesting data
from the terminal. If carriage return

is typed to an input statement, BASIC
returns to command mode. Typing CONT
after an INPUT command has been inter-
rupted will cause execution to resume at
the INPUT statement.

Assigns a value to a variable.
"LET'" is optional.

Marks the end of a FOR loop.

(8K Version) 1f no variable is given,
matches the most recent FOR loop.

(8K Version) A single NEXT may be used
to match multiple FOR statements.
Equivalent to NEXT V:NEXT W.

100 ON I GOTO 10,20,30,40 (8K Version) Branches to the line

indicated by the I'th number after
the GOTO. That is:

IF I=1, THEN GOTO LINE 10

IF I=2, THEN GOTO LINE 20

IF I=3, THEN GOTO LINE 30

IF I=4, THEN GOTO LINE 40.

ON-..GOSUB

ouT

POKE

PRINT

If I=0 or I attempts to sclect a non.
existent line (>=5 in this case), the
statement after the ON statement is
executed. However, if I is >255 or
<0, an FC error message will result.
As many line numbers as will fit on

a line can follow an ON...GOTO.

105 ON SGN(X)+2 GOTO 40,50,L0

110 ON I GOSUB 50,k0

355 out I,J

357 POKE I,d

360 PRINT X,Y;Z

370 PRINT

3480 PRINT X,Y;

390 PRINT "WALUE IS";A
400 PRINT A2,B,

This statement will branch to line 40
if the expression X is less than zero,
to line 50 if it equals zero, and to
line 60 if it is greater than zero.

(8K Version) Identical to "ON...GOTO",
except that a subroutine call (GOSUB) is
executed instead of a GOTO. RETURN from
the GOSUB branches to the statement after
the ON...GOSUB.

(8K Version) Sends the byte J to the
output port I. Both I § J must be >=0
and <=255.

(8K Version) The POKE statement stores
the byte specified by its second argu-
ment (J) into the location given by its
first argument (I). The byte to be stored
must be =>0 and <=255, or an FC error will
occur. The address (I) must be =>0 and
<=32767, or an FC error will result.
Careless use of the POKE statement will
probably cause you to "poke" BASIC to
death; that is, the machine will hang, and
you will have to reload BASIC and will
lose any program you had typed in. A

POKE to a non-existent memory location is
harmless. One of the main uses of POKE

is to pass arguments to machine language
subroutines. (see Appendix J) You could
also use PEEK and POKE to write a memory
diagnostic or an assembler in BASIC.

Prints the value of expressions on the
terminal. If the list of values to be
printed out does not end with a comma (,)
or a semicolon (;), then a carriage

return/line feed is executed after all the
values have been printed. Strings enclosed
in quotes (') may also be printed. If a
semicolon separates two expressions in the
list, their values are printed next to

each other. If a comma appears after an

expression in the list, and the print head
is at print position 56 or more, then a d‘
carriage return/line feed is executed.
If the print head is before print position
56, then spaces are printed until the car-
riage is at the beginning of the next 14
column field (until the carriage is at
column 14, 28, 42 or 56...). If there is no
list of expressions to be printed, as in
line 370 of the examples, then a carriage
return/line feed is executed.

Y10 PRINT MID%(A%,2); (8K Version) String expressions may be
printed.

READ 490 READ V.U Reads data into specified variables from
a DATA statement. The first piece of data
read will be the first piece of data list-
ed in the first DATA statement of the pro-
gram. The second piece of data read will
be the second piece listed in the first
DATA statement, and so on. When all of
the data have been read from the first
DATA statement, the next piece of data to
be read will be the first piece listed in
the second DATA statement of the program.
Attempting to read more data than there
is in all the DATA statements in a pro-
gram will cause an OD (out of data) error. d‘
In the 4K version, an SN error from a READ
statement can mean the data it was at-
tempting to read from a DATA statement was
improperly formatted. In the 8K version,
the line number given in the SN error will
refer to the line number where the error
actually is located.

REM 500 REM NOW SET V=0 Allows the programmer to put comments in
- his program. REM statements are not exe-
cuted, but can be branched to. A REM
statement is terminated by end of line,
but not by a ":",
505 REM SET V=0: V=0 1In this case the V=0 will never be exe-
cuted by BASIC.
50b V=0: REM SET V=0 1In this case V=0 will be executed

RESTORE 510 RESTORE Allows the re-reading of DATA statements.
After a RESTORE, the next piece of data
read will be the first piece listed in
the first DATA statement of the program.
The second piece of data read will be
the second piece listed in the first DATA
statement, and so on as in a normal
READ operation. u

RETURN

STOP

WAIT

4K INTRINSIC FUNCTIONS

50 RETURN

9000 STOP

805 WAIT I,d,K
&0b WAIT I,J

ABS (X)

INT(X)

RND (X)

120 PRINT ABS(X)

140 PRINT INT(X)

170 PRINT RND(X)

Causcs a subroutine to return to the
statement after the most recently exc-
cuted GOSUB.

Causes a program to stop execution and to
enter command mode.

(8K Version) Prints BREAK IN LINE 9000.
(as per this example) CONT after a STOP
branches to the statement following the
STOP.

(8K Version) This statement reads the
status of input port I, exclu$ive OR's

K with the status, and then AND's the re-
sult with J until a non-zero result is
obtained. Execution of the program con-
tinues at the statement following the
WAIT statement. If the WAIT statement
only has two arguments, K is assumed to
be zero. If you are waiting for a bit
to become zero, there should be a one in
the corresponding position of K. I, J
and K must be =>0 and <=255.

Gives the absolute value of the expression
X.” ABS returns X if X>=0, -X otherwise.

Returns the largest integer less than or
equal to its argument X. For example:
INT(.23)=0, INT(7)=7, INT(-.1)=-1, INT
(-2)= -2, INT(1.1)=1.
The following would round X to D decimal
places:

INT(X*104D+.5)/104D

Generates a random number between 0 and 1.

The argument X controls the generation of

random numbers as follows:
X<0 starts a new sequence of random
numbers using X. Calling RND with
the same X starts the same random
number sequence. X=0 gives the last
random number generated. Repeated
calls to RND(0) will always return
the same random number. X>0 gener-
ates a new random number between 0
and 1.
Note that (B-A)*RND(1)+A will gener-
ate a random number between A § B.

SGN(X)
SIN(X)

S@R(X)

TAB(I)

USR(I)

8K FUNCTIONS

ATN(X)

COS(X)

EXP(X)

FRE(X)

INP(I)

230 PRINT SGN(X)
190 PRINT SIN(X)

180 PRINT SQR(X)

240 PRINT TAB(I)

200 PRINT USR(I)

Gives 1 if X>0, 0 if X=0; and -1 if X<O0.

Gives the sine of the expression X. X is
interpreted as being in radians. Note:
COS (X)=SIN(X+3.14159/2) and that 1 Radian
=180/PI degrees=57.2958 degrees; so that
the sine of X degrees= SIN(X/57.2958).

Gives the square root of the argument X.
An FC error will occur if X is less than
Zero.

Spaces to the specified print position
(column) on the terminal. May be used
only in PRINT statements. Zero is the
leftmost column on the terminal, 71 the
rightmost. If the carriage is beyond
position I, then no printing is done. I
must be =>0 and <=255.

Calls the user's machine language sub-
routine with the argument I. See POKE,
PEEK and Appendix J.

(Includes all those listed under 4K INTRINSIC FUNCTIONS

plus the following in addition.)

210 PRINT ATN(X)

200 PRINT COS(X)

150 PRINT EXP(X)

2?0 PRINT FRE(D)

2b5 PRINT INP(I)

Gives the arctangent of the argument X.
The result is returned in radians and
ranges from -PI/2 to PI/2. (PI/2=1.5708)

Gives the cosine of the expression X. X
is interpreted as being in radians.

Gives the constant "E" (2.71828) raised
to the power X. (E4X) The maximum
argument that can be passed to EXP with-
out overflow occuring is 87.3365.

Gives the number of memory bytes currently
unused by BASIC. Memory allocated for
STRING space is not included in the count
returned by FRE. To find the number of
free bytes in STRING space, call FRE with
a STRING argument. (see FRE under STRING
FUNCTIONS)

Gives the status of (reads a byte from)
input port I. Result is =>0 and <=255.

LOG(X) 10 PRINT LOG(X)
PEEK 356 PRINT PEEK(I)
POS(I) 2k0 PRINT POS(I)
SPC(I) 250 PRINT SPC(I)
TAN(X) 200 PRINT TAN(X)
STRINGS (8K Version Only)

Gives the natural (Base E) logarithm of

its argument X. To obtain the Base Y
logarithm of X use the formula LOG(X)/LOG(Y).
Example: The base 10 (common) log of

7 = LOG(7)/ LOG(10).

The PEEK function returns the contents of
memory address I. The value returned will
be =>0 and <=255. If I is >32767 or <0,
an FC error will occur. An attempt to
read a non-existent memory address will
return 255. (see POKE statement)

Gives the current position of the terminal
print head (or cursor on CRT's). The
leftmost character position on the terminal
is position zero and the rightmost is 71.

Prints I space (or blank) characters on
the terminal. May be used only in a
PRINT statement. X must be =>0 and <=255
or an FC error will result.

Gives the tangent of the expression X.
X is interpreted as being in radians.

1) A string may be from 0 to 255 characters in length. All string
variables end in a dollar sign ($); for example, A$, B9$, K$,
HELLO§.

2) String matrices may be dimensioned exactly like numeric matrices.
For instance, DIM A$(10,10) creates a string matrix of 121 elements,
eleven rows by eleven columns (rows 0 to 10 and columns 0 to 10).
LEach string matrix element is a complete string, which can be up to

255 characters in length.

3) The total number of characters in use in strings at any time during
program execution cannot execeed the amount of string space, or an
0S error will result.
space so that it can contain the maximum number of characters which
can be used by strings at any one time during program execution.

NAME

EXAMPLE

DIM

25 DIM A<(10,10)

At initialization, you should set up string

PURPOSE/USE

Allocates space for a pointer and length
for each element of a string matrix. No
string space is allocated. See Appendix D.

LET 27 LET As="F00"+V%
>

<

<=

>=

<>

+ 30 LET Zs=Rs+ds
INPUT 40 INPUT X%

READ 50 READ X3

PRINT bO PRINT X%
?0 PRINT "FOO''+As

Assigns the value of a string expression
to a string variable. LET is optional.

String comparison operators. Comparison
is made on the basis of ASCII codes, a
character at a time until a difference
is found. If during the comparison of
two strings, the end of one is reached,
the shorter string is considered smaller.
Note that "A " is greater than "A" since
trailing spaces are significant.

String concatentation. The resulting
string must be less than 256 characters
in length or an LS error will occur.

Reads a string from the user's terminal.
String does not have to be quoted; but if
not, leading blanks will be ignored and
the string will be terminated on a "," or
'":" character.

Reads a string from DATA statements within
the program. Strings do not have to be
quoted; but if they are not, they are
terminated on a "," or ":" character or
end of line and leading spaces are ignored.
See DATA for the format of string data.

Prints the string expression on the user's
terminal.

STRING FUNCTIONS (8K Version Only)

ASC(X%) 300 PRINT ASC(X%)

CHRs(I) 275 PRINT CHR%(I)

FRE(X$) 272 PRINT FRE("™)

LEFT$(X$,I)
310 PRINT LEFTS(X%,I)

Returns the ASCII numeric value of the
first character of the string expression
X$. See Appendix K for an ASCII /number
conversion table. An FC error will occur
if X§ is the null string.

Returns a one character string whose single
character is the ASCII equivalent of the
value of the argument (I) which must be

=>0 and <=255. See Appendix K.

When called with a string argument, FRE
gives the number of free bytes in string
space.

Gives the leftmost I characters of the
string expression X§. If I<=0 or >255
an FC error occurs.

J

C

LEN(X%) 220 PRINT LEN(X%)

MID%(X$,1)
330 PRINT MID$(Xs,I)

MIDS(X$,I,d)

340 PRINT MID&%(X%,I,J)

RIGHTS (X%, I)

320 PRINT RIGHTS(X%,I)

STR(X) 290 PRINT STR$(X)

VAL(X%) 280 PRINT VAL (X%)

SPECIAL CHARACTERS

CHARACTER USE

@ Erases current 1

Gives the length of the string expression
X$ in characters (bytes). Non-printing
characters and blanks are counted as part
of the length.

MID§ called with two arguments returns
characters from the string expression X$
starting at character position I, If
I>LEN(I$), then MID$ returns a null (zero
length) string. If I<=0 or >255, an ¥C
erTor OCCurs.
MID§ called with three arguments returns
a string expression composed of the
characters of the string expression X$
starting at the Ith character for J char-
acters. If I>LEN(X$), MID$ returns a null
string. If I or J <=0 or >255, an FC
error occurs. If J specifies more char-
acters than are left in the string, all
characters from the Ith on are returned.

Gives the rightmost I characters of
the string expression X§. When I<=0
or >255 an FC error will occur. If
I>=LEN(X$) then RIGHT$ returns all of
X$.

Gives a string which is the character
representation of the numeric expression
X. For instance, STR$(3.1)=" 3.1".

Returns the string expression X$ converted
to a number. For instance, VAL('3.1")=3.1.
If the first non-space character of the
string is not a plus (+) or minus (-) sign,
a digit or a decimal point (.) then zero
will be returned.

ine being typed, and types a carriage

return/line feed. An "@'" is usually a shift/P.

(backarrow or underline) Lrases last character typed.

If no more characters are left on the line, types a

carriage return/

line feed. "<" is usually a shift/0.

CARRIAGE RETURN A carriage return must end every line typed in. Re-

turns print héad or CRT cursor to the first position
(leftmost) on line. A line feed is always executed
after a carriage return.

CONTROL/C Interrupts execution of a program or a list command.

Control/C has effect when a statement finishes exe-
cution, or in the case of interrupting a LIST com-
mand, when a complete line has finished printing. In
both cases a return is made to BASIC's command level
and 0K is typed.

(8K Version) Prints “'BREAK IN LINE XXXX'" , where
XXXX is the line number of the next statement to

be executed.

(colon) A colon is used to separate statements on a line.

Colons may be used in direct and indirect statements.
The only limit on the number of statements per line
is the line length. It is not possible to GOTO or
GOSUB to the middle of a line.

(8K Version Only)

CONTROL/O Typing a Control/O once causes BASIC to suppress all

1)

output until a return is made to command level, an
input statement is encountered, another control/O is
typed, or an error occurs.

Question marks are equivalent to PRINT. For instance,
? 2+2 is equivalent to PRINT 2+2. Question marks can
also be used in indirect statements. 10 ? X, when
listed will be typed as 10 PRINT X.

MISCLLLANEOUS

To read in a paper tape with a program on it (8K Version), type a
control/0 and feed in tape. There will be no printing as the tape
is read in. Type control/O again when the tape is through.
Alternatively, set nulls=0 and feed in the paper tape, and when done
reset nulls to the appropriate setting for your terminal.

Each line must be followed by two rubouts, or any other non-printing
character. If there are lines without line numbers (direct commands)
the ALTAIR will fall behind the input coming from paper tape, so
this in not recommending.

Using null in this fashion will produce a listing of your tape in
the 8K version (use control/O method if you don't want a listing).
The null method is the only way to read in a tape in the 4K version.

To read in a paper tape of a program in the 4K version, set the
number of nulls typed on carriage return/line feed to zero by patch-
ing location 46 (octal) to be a 1. Feed in the paper tape. When

J

J

2)

4)

the tape has finished reading, stop the CPU and repatch location 46
to be the appropriate number of null characters (usually 0, so de-
posit a 1). When the tape is finished, BASIC will print SN ERROR
because of the "OK" at the end of the tape.

To punch a paper tape of a program, set the number of nulls to 3 for
110 BAUD terminals (Teletypes) and 6 for 300 BAUD terminals. Then,
type LIST; but, do not type a carriage return.

Now, turn on the terminal's paper tape punch. Put the terminal on
local and hold down the Repeat, Control, Shift and P keys at the same
time. Stop after you have punched about a 6 to 8 inch leader of
nulls. These nulls will be ignored by BASIC when the paper tape is
read in. Put the terminal back on line.

Now hit carriage return. After the program has finished punching,
put some trailer on the paper tape by holding down the same four
keys as before, with the terminal on local. After you have punched
about a six inch trailer, tear off the paper tape and save for

later use as desired.

Restarting BASIC at location zero (by toggling STOP, Examine loca-
tion 0, and RUN) will cause BASIC to return to command level and
type "OK". However, typing Control/C is preferred because Control/
C is guaranteed not to leave garbage on the stack and in variables,
and a Control C'd program may be continued. (see CONT command)

The maximum line length is 72 characters** If you attempt to type too
many characters into a line, a bell (ASCII 7) is executed, and the
character you typed in will not be echoed. At this point you can
either type backarrow to delete part of the line, or at-sign to delete
thewhole line. The character you typed which caused BASIC to type

the bell is not inserted in the line as it occupies the character
position one beyond the end of the line.

*CLEAR CLEAR Deletes all variables.

CLEAR X (8K Version) Deletes all variables. When
used with an argument "X", sets the amount
of space to be allocated for use by string
variables to the number indicated by its
argument "X'".

10 CLEAR 50 (8K Version) Same as above; but, may be used
at the beginning of a program to set the exact
amount of string space needed, leaving a maxi-
mum amount of memory for the program itself.

NOTE: If no argument is given, the string
space is set at 200 by default. An OM error
will occur if an attempt is made to allocate
more string space than there is available
memory.

**For inputting only.

EXTENDED BASIC

When LEXTENDED BASIC is sent out, the BASIC manual will be updated
to contain an extensive section about EXTENDED BASIC. Also, at this time
the part of the manual relating to the 4K and 8K versions will be revised
to correct any errors and explain more carefully the areas users are hav-
ing trouble with. This section is here mainly to explain what EXTENDED
BASIC will contain.

INTEGER VARIABLES These are stored as double byte signed quantities
ranging from -~32768 to +32767. They take up half as much space as normal
variables and are about ten times as fast for arithmetic. They are denoted
by using a percent sign (%) after the variable name. The user doesn't
have to worry about conversion and can mix integers with other variable
types in expressions. The speed improvement caused by using integers for
loop variables, matrix indices, and as arguments to functions such as
AND, OR or NOT will be substantial. An integer matrix of the same dimen-
sions as a floating point matrix will require half as much memory .

DOUBLL-PRECISION Double-Precision variables are almost the oppo-
site of integer variables, requiring twice as much space (8bytes per value)
and taking 2 to 3 times as long to do arithmetic as single-precision
variables. Double-Precision variables are denoted by using a number sign
(#) after the variable name. They provide over 16 digits of accuracy.
Functions like SIN, ATN and EXP will convert their arguments to single-
precision, so the results of these functions will only be good to 6 digits.
Negation, addition, subtraction, multiplication, division, comparision,
input, output and conversion are the only routines that deal with Double-
Precision values. Once again, formulas may freely mix Double-Precision
values with other numeric values and conversion of the other values to
Double-Precision will be done automatically.

PRINT USING Much like COBOL picture clauses or FORTRAN format
statements, PRINT USING provides a BASIC user with complete control over
his output format. The user can control how many digits of a number are
printed, whether the number is printed in scientific notation and the
placement of text in output. All of this can be done in the 8K version
using string functions such as STR$ and MID$, but PRINT USING makes it
much easier.

DISK I/0 EXTENDED BASIC will come in two versions, disk and non-
disk. There will only be a copying charge to switch from one to the
other. With disk features, EXTENDED BASIC will allow the user to save and
recall programs and data files from the ALTAIR FLOPPY DISK. Random ac-
cess as well as sequential access will be provided. Simultaneous use of
multiple data files will be allowed. Utilities will format new disks,
delete files and print directories. These will be BASIC programs using
special BASIC functions to get access to disk information such as file
length, etc. User programs can also access these disk functions, enabling
the user to write his own file access method or other special purpose

J

disk routine. The file format can be changed to allow the usc of other
(non-floppy) disks. This type of modification will be done by MITS under
special arrangement.

OTHER FEATURES Other nice features which will be added are:

Fancy Lrror Messages

An LLSL clause in IF statements

RESEQUENCE

LIST, DELLTE commands with line range as arguments

Deleting Matrices in a program

TRACE ON/OFF commands to monitor program flow

LXCHANGE statement to switch variable values (this will speed
up string sorts by at least a factor of two).

Other features contemplated for future release are:

A multiple user BASIC

Explicit matrix manipulation

Virtual matrices

Statement modifiers

Record I/0

Paramaterized GOSUB

Multi-argument, multi-line user defined functions with string
arguments and values allowed

Compilation

Multiple USR functions

"Chaining"

LXTENDED BASIC will use about 11K of memory for its own code (10K
for the non-disk version) leaving 1K free on a 12K machine. It will take
almost 20 minutes to load from paper tape, 7 minutes from cassette, and
less than 5 seconds to load from disk.

We welcome any suggestions concerning current features or possible
additions of extra features. Just send them to the ALTAIR SOFTWARE
DEPARTMENT .

In January of 1975, we stunned the computer
world with the announcement of our Altair 8800
general purpose computer that sells for $439 in kit
form and $621 assembled.

Today we are annoucing the Altair 680.

The Altair 680 is a complete computer built around
the 6800 MPU available from Motorola and AML

It comes with power supply, front panel control board,

MPU board with 1K RAM (2102 type 1024 x 1-bit
chips), built-in I/O that can be configured

for RS232 or 20mA current loop or

60mA current loop, and

provisions for 1K of ROM

or PROM —all inclosed in

an 117 wide x 117 deep
x4 11/16” case.

The Altair 680 is now selling at a special introduc-
tory price of $293 in kit form and $420 fully assem-
bled. A turnkey model (complete except for front
panel control board) is $240 in kit form and $280
fully assembled.

The Altair 680 can be utilized for many commer-
cial and industrial products or it can be used as a
development system for Altair 680 MPU Boards. With
a cycle time of 4 microseconds, an 8-bit ALU, 16-bit
addressing, the capability of directly addressing 65K
of memory and a virtually unlimited number of 1/O
devices, the Altair 680 can be configured into any
number of applications.

Software for the Altair 680 includes a PROM

monitor, assembler, debug, and editor.

MITS

“Creative Electronics”

6328 Linn NE

Albuquerque, NM 87108

505-265-7553 or
262-1951

Introductory Altair 680 prices are good until
December 31, 1975. Contact MITS or your area
MITS representative today!

DEVELOPMENT
$293

In January of 1975, we stunned the computer The Altair 6800 MPU has 197 instructions—59 of

world with the announcement of our Altair 8800 the possible 256 codes being unassigned. Internal)
general purpose computer that sells for $439 in kit registers include the program counter, A and B regis- J
form and $621 assembled. ters, condition code flags, index register, and stack
Today we are announcing the Altair 680 MPU pointer. Addresses are 16-bits wide, giving the system
Board. 65,536 possible locations to use for memory locations
The Altair 680 MPU Board is a complete computer and device registers. The idea of using addresses to
on a board (less power supply). In addition to the refer to 1/0 devices greatly simplifies the internal
6800 MPU available from Motorola and AMI, the structure of the Altair 680.
Altair 680 MPU Board comes with 1K of Software for the Altair 680 MPU includes a PROM

RAM (2102 type 1024 x 1-bit chips),
built-in I/O that can be con-

figured for RS232 or 20mA

current loop or 60mA

current loop, and provisions

for 1K of ROM or PROM.
It measures 8 3/4”

monitor, assembler, debug, and editor.

MITS

"Creative Electronics”

6328 Linn NE

x101/4” Albuquerque, NM 87108
505-265-7553 or
262-1951
The Altair 680 MPU Board is now selling at the Introductory Altair 680 prices are good until
special introductory price of $180 in kit form and December 31, 1975. Contact MITS or your area
$275 assembled. MITS representative today!

256 x 8-bit PROM Kkits (u‘ltra\/iolet, erasable 1702
devices) are available for $42 in kit form and
$57 assembled.

PRODUCTION
$18

ALTAIR 880Q -

e THEORY of OPERATION
MANUAIL & SCHEMATICS =

TABLE OF CONTENTS
INTRODUCTION -.veeeeeesraanasnacneannsns .. 2
CPU BOARD OPERATION ..eveevnernernnannnsn.... 3
DISPLAY/CONTROL BOARD OPERATION 5
1K STATIC MEMORY BOARD OPERATION 7
POMER SUPPLY OPERATION 9
8800 SYSTEM BUS STRUCTURE 10
SCHEMATICS
MITS.
© MITS, Inc., 1975 “(regiok Electronics”

P.0. BOX 8636
PRINTED 'IN U.S.A. ALBUQUERQUE, NEW MEXICO 87108

INTRODUCTION

The ALTAIR 8800 computer system is designed around Intel's 8080 microprocessor.

The Intel 8080 is a complete central processing unit (CPU) on a single LSI
chip using n-channel silicon gate MOS technology. This chip uses a separate
16-11ne address and 8-1ine bidirectional data bus configuration to greatly
simplify design.

The ALTAIR 8800 uses a 100 line bus structure for data transfer between the
CPU and memory or I/0 devices. This bus structure contains all of the data
and address 1ines, along with the unregulated supply voltages and all control
and status signal lines. Cards other than the CPU will have control of the
bus only when addressed by the CPU.

The schematic diagrams for the ALTAIR system are located at the end of this
section. Specific schematics will be referred to in each particular section
of the theory of operation.

On the schematics for each particular board components are identified by
letters for the integrated circuits (A, B, C, etc.), and letters and numbers
for the resistors and capacitors (R1, R2, C1, C2, etc.). Specific pins on
the IC's are identified by numbers external to the symbol for that particu-
lar IC. The boxed numbers next to signal lines with arrows that exit or
enter a given schematic refer to the bus number for those signals. Other
notations on the schematics are self-explanatory.

CPU_BOARD OPERATION

The 8800 CPU Board is the "heart" of the ALTAIR system. This board contains
the 8080 microprocessor chip, bus drivers, the system clock, miscellaneous
gating logic and the system status latch.

Refer to the following schematics for the CPU Board operation: 880-101,
880~102 and 880-103.

BUS DRIVERS

A1l signals entering or leaving the CPU Board are buffered using 8797 tri-
state drivers. These signals include: 16 address lines through IC's B, C
and 4 gates of D; 8 data output lines through IC E and 2 gates of D; 8 data
input Tines through IC F and 2 gates of H.

The terms "in" and "out" are always defined with respect to the processor.
Note that the 8080 bidirectional bus is split at the processor into an
input and an output data bus.

The address and data out drivers (IC's B, C, D and E) can be disabled using
the ADDR DSBL and DO DSBL bus signals through 2 of the gates of IC M. The
data in drivers (IC F and 2 gates of H) are enabled under control of the pro-

cessor through one gate of IC R, etc. (see schematic).

The 8 status output signals are buffered using 8797's (4 gates of G and 4
gates of H). These signals are SINTA, SWO, SSTACK, SHLTA, SOUT, SMI, SINP,
and SMEMR. The STATUS DSBL signal can be used to disable these outputs.

The 6 command/control output signals are also buffered using an 8T97 (IC J).
These signals are SYNC, DBIN, WAIT, WR, HLDA, and INTE. The C/C DSBL signal
can be used to disable these outputs.

The 4 command/control input signals (READY, HOLD, INT and RESET) are buffered
using 4 gates of the 8797 IC I. Note that the PRDY and PHOLD signals are
synchronized to the leading edge of the §2 clock. This is required since the
transition of either of these signals during the second half of §2 will cause
the processor to enter an undefined state.

SYSTEM CLOCK d

The ALTAIR 8800 system clock employs a standard TTL oscillator (IC P) with a
2.000 MHz crystal as the feedback element. The correct pulse widths and
separations for the two phases are obtained using the dual single-shots (IC Q)
and the delay circuit (R43 and C6). The 8080 processor requires a 12 volt
swing on the clock. This is accomplished using a 7406 driver (IC N). TTL
clock levels are sent to the system bus using 8T97 drivers (2 gates of IC I).
The CLOC signal is sent to .the system bus through one gate of the 8T97 IC G.

GATING LOGIC

The only external gating logic on the CPU Board consists of IC 0 (3 gates)
and IC R (1 gate). If we define the output on IC O pin 13 to be G] ENB

(Data Input Enable), then:
. G1 ENB = (DBIN + HLDA) e (RUN + SS) *

Further, if we define G1 DSB = G1 ENB; then the output of IC R pin 8, which
is the disable input for the input data drivers, is:

DI DSB = G1 DSB + SSW DSB

Gl DSB, as can be seen from the schematic, is a processor generated signal.
When the 8080 is ready for input data, it will allow G1 DSB to go low thus
enabling the input data drivers. Q.‘

SSW DSB 1s a signal generated on the Display/Control Board. This signal is
used to disable the input data drivers when an input from the sense switches
(device address 3778) takes place.** This is necessary since the sense
switch inputs are tied directly to the bidirectional data bus at the proces-
sor.

SYSTEM STATUS LATCH
The system status latch consists of IC K (8212). At the start of each
machine cycle the processor places the system status on the bidirectional

data bus. When SYNC and §1 are coincident, this data is latched by IC K
and remains latched for the remainder of the machine cycle.

*In these notations, + means or, and e means and.

**This address is listed in octal format. It is the same as the decimal
address "255" listed in the assembly manual.

DISPLAY/CONTROL BOARD OPERATION

The 8800 Display/Control Board provides the operator with RUN/STOP and Single
Step control of the processor. It also allows him to examine and modify the
contents of any location in memory using the front panel switches.

Refer to the following schematics for the Display/Control Board operation:
880-104, 880-105 and 880-106.

The primary function of the D/C Board is controlling the ready line (PRDY),
or a combination of the PRDY and the bidirectional data bus, to allow the
above functions to be performed. Control of the PRDY Tine is exercised at
IC 0 (7430). The output of IC O pin 8 (PRDY) logically appears:

PRDY = RUN + SS + EXM + EXM NXT *

For the ready line to be released one of these inputs to IC 0 must go high.
The circuitry preceding IC 0 will insure that only one of these signals is
high at any given time.

RUN/STOP

The RUN/STOP circuit consists of an R-S flip-flop and gating to establish
the stop condition. The RUN/STOP flip-flop exercises control over PRDY as
described abbve through its Q output. The gating insures that a STOP will
occur when D05, §2 and PSYNC are true and the STOP switch is depressed.

SS

The Single Step circuit consists of a dual single shot (IC M) for debounce
and the SGL STP f1ip-flop (R-S type). When the machine is in a stopped
mode, depressing the SS switch will set the SGL STP flip-flop. (The machine
must be stopped for any of the front panel switches except RESET to be
active.) This allows PRDY to go high. The machine will execute one machine
cycle and PSYNC, on the next cycle, will reset the SGL STP flip-flop. This
will pull PRDY low, stopping the machine.

EXM
The Examine circuit consists of a dual single shot (IC L) for debounce, a 2-bit

counter (IC J), the top 3 sets of 7405's on schematic 880-106 (IC's A, B, C and
2 gates of D), and some gating.

* In this notation, + means or.

When the Examine switch is depressed the counter (IC J) is started. On the
first count, a jump instruction (JMP 303) is strobed directly onto the bi-
directional data bus at the processor. This is accomplished by enabling 2
gates of IC C and 2 gates of IC D through the output pin 6 of one gate of IC
T. These open collecter gates then pull down data lines D2, D3, D4 and D5.
This puts a 303 on the data bus, which is the code for a JMP.

On the second count, the settings of switches SA 0 through SA 7 are strobed
onto the data bus in a similar manner to the JMP instruction through IC A
and 2 gates of B. This provides the first byte of the JMP address.

The third count strobes the settings for switches SA 8 through SA 15 onto the
bus. This provides the second byte of the JMP address. The processor will
then execute the JMP to the location set on the switches SA 0 through SA 15,
allowing the examination of the contents of that particular memory location.

The fourth count resets the counter and pulls the EXM Tine low, which in turn
pulls PRDY low and stops the processor.

EXM NXT

Examine Next operates in the same manner as Examine, except a NOP is strobed
onto the data lines through 4 gates of IC D and 4 gates of IC E. This causes
the processor to step the program counter.

DEP
The Deposit circuit places a write pulse on the MWRITE 1ine and enables the
switches SA 0 through SA 7. This causes the contents of these eight switches
to be stored in the memory location currently addressed.

DEP NXT

The Deposit Next circuit simply causes a sequential operation of the EXM NXT
and the DEP circuits.

@I

1K STATIC MEMORY BOARD OPERATION

The 8800 TK Static Memory Board is designed around the Intel 8101 256 X 4
bit static RAM. Two of these RAM's provide 256 8-bit bytes of memory. The
board may be configured with a minimum of two 8101's (256 bytes) and may be
expanded in increments of 256 bytes by adding pairs of 8101's up to 1024
bytes.

In addition to the RAM's, the board includes 4 circuit units: Address De-
coding, Processor Slow Down Circuit, Memory Protect Circuit and Buffers and
Buffer Disabling Gating.

Refer to the following schematics for the 1K Static Memory Board operation:
880-107 & 880-108.

ADDRESS DECODING

The address decoding circuitry is in the lower left corner of schematic
880-107. Address bits A10 through A15 are used to select a particular
1K of memory, using IC A and IC B. By patching the inputs of IC B to
either the "1" or "0" address inputs for A10 through Al5 a board can be
assigned any address for a 1K block from 0 to 63.

Address bits A9 and A8 are used to select a particular 256 bytes within
the 1K on the board. The gating (IC D, IC F, 2 gates of IC C and 4 gates
of IC E) forms a standard 2 to 4 line decoder.

PROCESSOR SLOW DOWN CIRCUIT

Since the 8101 RAM's require 850 nanoseconds for stable data on a read output,
it is necessary to insert 2 wait cycles (lus) when the processor reads data
from memory.

This is accomplished by IC K, 2 gates of IC N and 1 gate of IC C. This circuit
causes the output from pin 8 of IC K to go Tow for approximately 2 clock cycles
starting with PSYNC. If the 1K card has been addressed, and the processor is
in a memory read cycle, two of the drivers of IC H will be enabled. This will
transmit the low from IC K pin 8 to PRDY on the bus; which will in turn cause
the processor to wait for lus for the data from memory to stabilize.

MEMORY PROTEECT CIRCUIT

The Memory Protect circuit consists of an R-S flip-flop (IC L) which can be
set or reset by the PROT and UNPROT 1ines from the system bus when the card
is addressed (CE is true).

When the flip-flop is set the pin 11 output of IC N is disabled and MWRITE
pulses from the bus cannot get to the 8101's. A status signal, PS, is re-
turned to the front panel display via the system bus to indicate when the
protect flip-flop for a particular memory card is set.

BUFFERS
The output drivers on the 1K board are 8797 tri-state drivers (IC's J & H).
Gating for enabling and disabling these drivers is accomplished with IC G
and 1 gate of IC C.

The logic for this is as follows: *

G2 = SINP + SOUT + CE
OR

G2 = SINP @ SOUT e CE
AND

GT = SMEMR + CE
OR

Gl = SMEMR e CE

* In this notation + means "or" and e means “and".

POWER SUPPLY OPERATION

The 8800 Power Supply provides two +8 and + & - 16 volts to the system bus
and the display/control board. These voltages are unregulated until they
reach the individual cards. Each separate card has all the necessary reg-
ulation for fts own operation.

Refer to schematic 880-109 for the Power Supply operation. -

Transformer T1 provides +8 volts unregulated to the system bus. This voltage
is rated at 8 Amps. All boards except the display/control board use this
supply for their regulated +5 volts.

Transformer T2 provides two unregulated voltages; +8 volts rated at 1 Amp for
the display/control board, and +16 rated at .8 Amps. to the system bus.

Transformer T3 provides the -16 volt supply rated at .3 Amps to the system bus.

A1l of the AC and DC voltages are wired to a terminal block for distribution
to the other boards.

8800 SYSTEM BUS STRUCTURE ‘I

The 8800 system bus structure consists of 100 lines. These are arranged
50 on each side of the plug-in boards. Refer to drawing # 880-110 for the
following explanation. :

The following genéra] rules apply to the 8800 system bus:

SYMBOLS: "P" prefix indicates a processor command/control
signal

"S" prefix indicates a processor status signal

LOADING: A11 inputs to a card will be loaded with a max-
imum of 1 TTL low power load.

LEVELS: Al11 bus signals except the power supply are TTL

BUS DEFINITION

No. SYMBOL NAME FUNCTION

1 +8V +8 volts Unregulated input to 5v regulators ﬁ'
2 +16V +16 volts Positive unregulated voltage

3 XRDY External Ready For special applications: Pulling

this Tine Tow will cause the pro-
cessor to enter a WAIT state and
allows the status of the normal

Ready line (PRDY) to be examined

4 VIO Vectored Interrupt
Line #0

5 VIl Vectored Interrupt
Line #1

6 VI2 Vectored Interrupt
Line #2

7 VI3 Vectored Interrupt
Line #3

8 VI4 Vectored Interrupt
Line #4

BUS DEFINITION

No. SYMBOL
9 VIS5

10 V6

n VI7

12

to TO BE DIFINED
17

18 STA DSB

19 C/C DSB

20 UNPROT

21 SS

22 ADD DSB

23 D0 DSB

24 §2

25)|

26 PHLDA

NAME

Vectored Interrupt
Line #5

Vectored Interrupt
Line #6

Vectored Interrupt
Line #7

STATUS DISABLE

COMMAND/CONTROL
DISABLE

UNPROTECT

SINGLE STEP

ADDRESS DISABLE
DATA OUT DISABLE

Phase 2 Clock
Phase 1 Clock

Hold Acknowledge

1

FUNCTION

Allows the buffers for the 8
status lines to be tri-stated

Allows the buffers for the 6
output command/control lines
to be tri-stated

Input to the memory protect
flip-flop on a given memory
board

Indicates that the machine is
in the process of performing a
single step

Allows the buffers for the 16
address Tines to be tri-stated

Allows the buffers for the 8
data output lines to be tri-stated

Processor command/control output
signal which appears in response

to the HOLD signal; 1indicates that
the data and address bus will go

to the high impedance state

BUS DEFINITION
No SYMBOL NAME FUNCTION

27 PWAIT WAIT Processor command/control output
signal which acknowledges that
the processor is in a WAIT state

28 PINTE INTERRUPT ENABLE Processor command/control output
signal indicating interrupts are
enabled: indicates the content of
the CPU internal interrupt flip-
flop; F-F may be set or reset by
EI and DI instruction and inhibits
interrupts from being accepted by
the CPU if it is reset

29 A5 Address Line #5
30 A4 Address Line #4
31 A3 Address Line #3
32 Al5 Address Line #15
33 A12 Address Line #12
34 A9 Address Line #9
35 DO1 Data Out Line #1
36 D00 Data Out Line #0
37 A10 Address Line #10
38 D04 Data Out Line #4
39 D05 Data Out Line #5
40 D06 Data Out Line #6
4 DI2 Data In Line #2
42 DI3 Data In Line #3
43 DI7 Data In Line #7

12

(‘/ BUS DEFINITION

No. SYMBOL

44 M1

45 SOUT

46 SINP .

47 SMEMR
C 48 SHLTA

49 TLOCK

50 GND

51 +8V

52 16V

53 SSW DSB

54 EXT CLR

NAME
M1

ouT

INP

MEMR

HLTA

CLOCK

GROUND
+8 volts
-16 volts

SENSE SWITCH
DISABLE

EXTERNAL CLEAR

FUNCTION

Status output signal that indicates
that the processor is in the fetch
cycle for the first byte of an in-
struction

Status output signal which in-
dicates that the address bus con-
tains the address of an output
device and the data bus will con-
tain the output data when PWR is
active

Status output signal which in-
dicates that the address bus con-
tains the address of an input
device and the input data should
be placed on the data bus when
PDBIN is active

Status output signal which in-
dicates that the data bus will be
used for memory read data

Status output signal which
acknowledges a HALT instruction

Inverted output of the 2MHz
oscillator that generates the
2 phase clock

Unregulated input to 5v regulators
Negative unregulated voltage

Disables the data input buffers

so the input from the sense switches
may be strobed onto the bidirec-
tional data bus right at the pro-
cessor

Clear signal for I/0 devices (front
panel switch closure to ground)

69

70

n

72

73

74

BUS DEFINITION
SYMBOL

TO BE DEFINED

MWRT

PROT

RUN

PRDY

NAME

MEMORY WRITE

PROTECT STATUS

PROTECT

RUN

READY

INTERRUPT
REQUEST

FUNCTION

Indicates that the current data
on the Data Out Bus is to be
written into the memory location
currently on the address bus

Indicates the status of the
memory protect flip-flop on the
memory board currently addressed

Input to the memory protect flip-
flop on the memory board currently
addressed

Indicates that the RUN/STOP flip-
flop is Reset

Processor command/control input
that controls the run state of the
processor; if the line is pulled
low the processor will enter a
wait state until the line is re-
leased

The processor recognizes an inter-
rupt request on this line at the
end of the current instruction or
while halted. If the processor is
in the HOLD state or the Interrupt
Enable flip-flop is reset, it will
not honor the request.

Processor command/control input
signal which requests the proces-
sor to enter the HOLD state; allows
an external device to gain control
of address and data buses as soon
as the processor has completed its
use of these buses for the current
machine cycle

BUS DEFINITION

No. SYMBOL NAME FUNCTION
75 PRESET RESE Processor command/control input;

while activated the content of the
program counter is cleared and the
instruction register is set to 0

76 PSYNC SYNC Processor command/control output
provides a signal to indicate the
beginning of each machine cycle

77 PWR WRITE Processor command/control output
used for memory write or I/0 out-
put control: data on the data bus
is stable while the PWR is active

78 PDBIN DATA BUS IN Processor command/control output
signal indicates to external cir-
cuits that the data bus is in the
input mode

79 A0 Address Line #0

80 Al Address Line #1

81 A2 Address Line #2

82 A6 Address Line #6

83 A7 Address Line #7

84 A8 Address Line #8

85 Al13 Address Line #13

86 Al4 Address Line #14

87 ATl Address Line #11

88 D02 Data Out Line #2

89 D03 Data Out Line #3

90 D07 Data Out Line #7

91 D14 Data In Line #4

15

No.

92
93
94
95
96

97

98

99
100

* BUS DEFINITION

SYMBOL
DI5
DI6
DI

DIO
SINTA

SWO

SSTACK

POC
GND

NAME

Data In Line #5

Data In Line #6

Data In Line #1

Data In Line #0

INTA

W0

STACK

Power-On Clear

GROUND

16

FUNCTION

Status output signal to acknow-
ledge signal for INTERRUPT re-
quest

Status output signal indicates
that the operation in the cur-
rent machine cycle will be a
WRITE memory or output function

Status output signal indicates
that the address bus holds the
pushdown stack address from the
Stack Pointer

oS

FANLONYLS SNG WILSAS

0LL-088

suT

O L T T T

S18°9

cwvoa s ueriold [T Wy TTWTTATTTISTITM TR TTTRTTTRTTTATTTI
avvor o s TR T T TS TN TR T TR T TR T TR T

(4]

CCEREECECECEED

[o5]
hm
il
3
i
L3 'Hud|l$
o —
] lﬂl%
T
T
u [
q
:
:
7
L 8
T Lim H
H (9] JINTd |87 |
(7] 9L YOTHd
u 37 —
(7] 29 k4
14 ¥
HE. SUINNSSIRH
(X1)
Ly LX)
L3 #

tl

EREFLE

ecar)

3070 WILSAS
¢01-088

JN

2ZHa DCTZ

—
2b g2 e

ERY

<00 <
a wg. e
s+
11}o L] 7 ador & eh= B
RENE

z = o
2 LA CH RCE s -~
(s2sizh 2P et CezibL) 2h g
amy - = oz o g
2] s - £

W
Y

]

~
q
EANE
o0
n
"
o
AW
—

AS+

S¥0LYIN93Y Q¥Y09-NO Ndd

i

A9l 1~\ A 9l + YINIZ.
#n ELE Al'S
80 62 2a
s
LE3
SRHO 022
(93M) A 5 — J M (93uNA) A 91—
svu
ASI H A9 Ii\ H3IN3IZ
4any El 3 + o2
49 012 1
s
»3
sMHO <%
! : ‘ ——— VAN
(83¥) A 21 ¢ svy (B3UNNM) A 91 4
A9l A9l A
(02) 5ev0 uOssIUddns A3 o e

o2 uwl_‘

—

+212

€
nom:.\J

(93WIAG &~

2 $ 01

“(o3UNA) A 8 +

(93)A G+

dCLYIN93Y QYYOE-NO T0YLINOI/AYIdSIA

¥01-088
(02) Sdvo HOSE3NddNS u\,..o__.H Hﬁ a An Hh.u b
0208 == ... 19§ = g1 210
éE— : i ooez wrf ; |

9
SoaunmTa 8 +)

d0LYIN93d Q¥Y0S-NO AYOWIW DILVLIS Wi
801-088

AP
FUN
20

dnge
£2
13

108

11
T L

.

(02) $dvo ¥Oss3uddns A%
oz 98

&

(938)A S +

{934NN) A8 +

. - VY ey
CUMPUTER CPU & BUFFERS :“’Ey]ué:%m ,,,,,, e —
alzs GND 1 e L‘ﬂ
skl
a2 B
PEENEY)|
a4 pd
as [
a7
ISER Y
we B9
s B9
o

Bmem®

Ay
a8
e .
euty e |
zcn _,vos 4
o B3
oz B
vos B
po4
s)
Doe @
=2 &
o i Lo E]
s

8212
K

B 12}
]

renC

1 2 SV
it AN |

e P S , o™
ax s RN
walar
invela 2 L]
. 25} :
2 o ‘ :
. i L
o Tox
ol i _aw B < sy i E1]
T an LAty T
AT W
a T 9]

L 7%, wne

B} a5 msc 6——

B]

anse——

@ Adua
g ~es

22 acisen

o =P

S pReey

B i

TOYINOD T3NVd INOY4 ¥ILNdWOI
901-088

RN T
ST 7 o 7] = X S > -
X _ g — s20m) 20
omdizh woeo Conkh s Ps (g2imilan 82 nwnlaﬁ.r‘ -
x L vz o 2 [=x oz ho] Y o g
< < = 5
As
nC2n
a2 bt
y 2 = ave
tGr<onasa Bbg

ano.
qA8

YA

A9T
AT

N\
N!

(ooron) cor

(1 *a21 d13EWOYDS)

A1ddNS ¥3IMOd
601-088

1

L w L I
yen . -
P w.\\n\ulmﬂ uGJ_J, \
= 11
(w2200) Aw+ 5 u
yoor @ SWILT
(2
d = rY -
2 l‘w\.\m._;l k.\nonnscl_ﬂ »ulwﬂ
)

S r) @ SAY M E

2L

CL o)

L

sowv 63 Lo s Tt
i

|12y

QYY08 AYOWIW J1LYIS Nl

L0t-088
LR -
€l oo ‘
=
[s]»10 5
(ZFs 10 .
naf i
% ‘T - P
s10 .
oo)
g e”\/_@’: =
H - W ,
> E v
>
'
G e [PPHZ = 7 122 ujgd = ol = [
S AERESTY 2 o w ik o ro s
e soh e
e pray. £ Lol g ZEM
V T
17
1
1

g
¢
=
= =
B sexee <
—

880-105
B pone COMPUTER FRONT PANEL DISPLAY
=

sy
[FERETN
S3 &34
ML 3
ST
TA
Tetacw)
” AV
SinTa .
r33 r32 o3 o Beaw Feze £27 Zeas R2s £2y
DAT* 7 pATAG Daras DaTA Y DATA 3 Dara 2 Dara 1 Dara
.MN MN N M L4 oz S LT3 D Dre L4 oie
e e e faars oo £ e S, = recn
b 124 - or Dé s oY bs b2 or
Ras R3e £37 £3g Pet £39 y24 R/
“ 2 - - E . © 2
Noanuid ey sov Fresod Raitasd Pyesoy Raialad FYisor
e 0 gem v el ® zoaa] " e 1® zess|® sez0]” P
3] o2v
3] ve
m IS
o] md
g oIS
[e
ﬂ =4
5y mMH>—
B
i
e 4z
31 A3
na <
s as
2 i P
£s7 k<o ess osv R53 £s2 s/ g0 2v8 X evr m 2 mmk Bvs m~‘< x Q2
s . a3 sz a o 2 e - ~ as a a3 az ~ ae
pzr Saz 722 pay Das »2¢ 027 228 29 D30 Das

Page 11

Page 14

Page 18

October 2, 1975

ARROWHEAD TIPS

8800 COMPUTER

(D/C Board): Capacitor C7 has been changed
several times; you may find change notices
referring to various stages of this change
process, as well as extra parts. C7 was
changed from .001 MFD to .0047 MFD, then to
.0068 MFD. Now, the absolute last final
ultimate change (as of August 10th!) makes

Cc7 = .01 MFD and changes C8 from .0l to
.1 MFD.
(D/C Board): In connecting the AC switch

wires to the board, use heat-shrink tubing

to protect the stripped wire as follows:

cut 1/2" of clear heat-shrink tubing and

slide it onto the wire, well past the stripped
end; then solder the wire onto the board;
finally slide the tubing into place and shrink
it with the heat of a match or soldering iron.
You may prefer to cut the lands around the AC
switch and solder the wires directly to the

switch pins.

(D/C Board): Don't bolt the printed-circuit
board to the sub-panel; the switches will hold
it fine. The switches come with extra mounting
nuts and extra guide washers; you can safely
throw away all this extra hardware -~ you don't
need it. Mount the switches as shown with only

one nut each for best results.

C

8800 Tips cont'd

Page 21

Pages
40-46

Page 50

(D/C Board): Installing the LED's is slick

if you leave one of the leads unsoldered until
all the LED's are in place and aligned. You
might like to line them up flush with the front
dress-panel for higher contrast (so that no
light falls on them). After you've adjusted
the position, recheck the polarity of all the
LED's before soldering the second lead into

place.

(1K Memory): Until May, only the 1K memory
board was available, and most systems were
ordered with 256 words of memory on one of
these boards. Now that the 2K and 4K memories
are available, it isn't sensible to require

some 1K boards in every system, but the in-
structions are still embedded in the CPU manual.
CPU kits don't have any memory 'in them.

(P/S Board): The bridge rectifier seems to
cause more than its share of problems. Be

sure the 1leads are clean - several of us have
found that solder won't wet the leads, and it's
a mess to try to clean the partially-soldered
assembly. Run the leads through some alcohol
and/or steel wool before installing the bridge.
The spacer-and-washer arrangement on Page 51 is
a jig to get the bridge flat at the right posi-
tion; it will later be bolted directly to the

chassis.

C

8800 Tips cont'd

Page 52

Page 58

Page 66

(P/S Board): You'll laugh, but I got capacitor
Cl4 in backwards; nobody else has made this mis-
take. Tell us about your experiences with the
kit, and we'll publish them, with or without your
name, as you please. Your reward: A replacement

fuse (1 amp slo-blow).

(Chaésis): MITS doesn't ask you to cut wires to
close tolerances. If you follow the instructions
here without trimming transformer leads, and use
all the #20 wire, you'll have long loops of slack.
This is good for allowing boards, etc. to be moved
without breaking wires, but you may want to in-
stall the terminal lugs after consulting the wiring

diagrams on Pages 59 and 62.

(Motherboard): The way the instructions spell it
out, you'll have a slack loop of cable. Hold
everything in place-on the chassis to see the actual
length required. We are enclosing a sorted list of
wires to help you check your progress. Using mask-
ing tape, group the wires in decades after protecting
them with a cable clamp. Then, install them on the
motherboard, by decades; 50's, 60's, 70's, 20's,
80's, 30's, 90's, and finally, 40's.

Install the cable clamps by bolting them to the
printed circuit board only. If you put screws
through the sub-panel, then the dress-panel won't
fit flush against it and you won't be able to screw

the chassis into the case!

8800 Tips cont'd

Page 68 (Expander Boards): The card guides are maybe
sorta optional. They look nice, but they really
aren't required to hold the boards in place -

- the edge connectors are plenty strong for that.

Page 74 (CPU Chip): Many people advocate postponing in-
stallation of the CPU chip until after the regulator
and zener diodes on the CPU have been tested.

Page 77 (Nameplate): This beauty gets a lot of criticism:
"Mine was off-color, kinda pinkish." That's a
sticky plastic cover to protect it until you've
installed it. Peel the covering off afterward.
The white lettering on the dress-panel can be
chipped off by hard use. If you decide to protect
it with clear acrylic spray, use a matte-finish
product. Ours looks funny with a glossy krylon

finish.

(Checkout): You can see your machine run, even without any
memory. When the machine tries to execute an instruction
at a non-existent memory location, the value returned is

11 111 111 (377 in octal). 377 is a restart instruction,
used to jump to an interrupt (at location 70) handling rou-
tine. It pushes the 2-word program counter onto the stack
before taking the jump. At location 70, the lack of memory
will yield another 377, so the restart will repeat every 1l
clock cycles, or 181,818 times per second. This will cycle
the stack pointer through the 16-bit address space about 5
times per second. So, if you run with no memory, the address
light Al5 will blink at that speed.

8800 Tips cont'd

Page 39 (CPU Board): The wafer connector is about 5%
too large to fit the board (or you might say
the holes in the board are too close). To pre-
vent the connector plug from arching, clamp it
down flat while soldering it on. If you can't
clamp it, then try cutting it with a hacksaw

into two 4-pin connectors.

Checkout): After turning the computer on you should re-
set it. To reset the computer you have to hold the stop
switch raised while raising the reset switch. Release

the reset switch first. (No, we don't know why, but it's

traditionall)

DATA/CONTROL BOARD CONNECTIONS TO SYSTEM BUS

ORGANIZED BY DECADE

0's 10's 20's 30's 40's
20 30 41
21 31 42
24 32 43
26 33 44
27 34 45

28 37 46 (11)

29 39 47
48

Lv 50's 60's 70's 80's 90's
53 68 70 80 91
54 69 71 8l 92
72 82 93
75 83 94
76 84 95
77 85 96
78 86 97
79 87 98
99

An error has been found on the - () Connect a jumper wire from pin
errata sheet for the serial 1/0 22 of ICM to pin § of ICC

boards. On the errata sheet labeled
"Modification for internal hardware

When this modification is im-

interrupt" the last two steps are in plemented, the status word defini-
error. They should be changed to: tion becomes:

(') Connect a jumper wire from pin
18 of ICM to pin 13 of ICC

DATA BIT LOGIC LOW LEVEL - LOGIC HIGH LEVEL
7 Output Device Ready Not Ready
(x-mitter Buffer Empty)
6 Not Used
5 Not Used

ﬁevis/a.n. o y

075; ,

2
1 Not Used
0 Input Device Ready

(Data Available for Computer)

Data Overflow
Framing Error

Parity Error

Not Ready

veh

i

o

e

3

0n

= S

o Ta
2 £

)

=
& <
4 o
© ”

o -
& =t

ure
na

o

oard

st
.
£
o4

)

-

C

Il

e
1S

/
/

I\
i

\

@

©

©

C

O

O
O

-

Yy e
Z

dano

C

T pane 1

Epm
NS A

4
xS
e

o

n

SYHPTO
si

ncor-

ront

B
o
2

—

a

1

S 1 (=) i

S

The Statw

iy
Y

d.

1
prourn

1=
4 o
G 2y
- :
@ o <
+ i
D
S DA b
41_ T oW
@ @
. =
<
b
—_

C

