[image: image1.png]MICROSOFT 8088 FORTRAN-IV

Version 2.2

Copyright 1977 (C) by Microsoft

[image: image2.png]MICROSOFT 8880 FORTRAN-IV Page 2

Table of Contents

Section

1 Introduction
2 Fortran Program Form

2.1 Fortran Character Set

2.1.1 Letters

2.1.2 Digits
2.1.3 Alphanumerics
2.1.4 Special Characters
2.2 FORTRAN Line Format
2.3 Statements
3 Data Representation/Storage Format

3.1 Data names and types

3.1.1 Names
3.1.2 Types

3.2 Constants
3.3 Variables :
3.4 Arrays and Array Elements
3.5 Subscripts
3.6 Data Storage Allocation -
4 FORTRAN Expressions
4.1 Arithmetic Expressions %
4.2 Expression Evaluation k
4.3 Logical Expressions g

4.3.1 Relational Expressions
4.3.2 Logical Operators

4.4 Hollerith, Literal, and Hexadecimal Constants !
in Expressions : 4

5 Replacement Statements |

6 Specification Statements |
6.1 Specification Statements i
6.2 Array Declarators i
6.3 Type Statements g
6.4 EXTERNAL Statements ' g
6.5 DIMENSION Statements ‘
6.6 COMMON Statements |
6.7 EQUIVALENCE Statements %
6.8 DATA Initialization Statement

[image: image3.png]MICROSOFT ‘8086 FORTRAN-IV Page 3

7 FORTRAN Control Statements

7.1

N3

NI

=0 00 ~J Ui

0

GOTO Statements

7.1.1 Unconditional GOTO
7.1.2 . Computed GOTO
7.1.3 Assigned GOTO

ASSIGN Statement
IF Statement

7.3.1 Arithmetic IF
7.3.2 Logical IF

DO Statement
CONTINUE Statement
STOP Statement
PAUSE Statement
CALL Statement
RETURN Statement
END Statement

8 Input/Output

8.1

8.6

9.1
9.2
9.3

Formatted READ/WRITE
8.1.1 Formatted READ
8.1.2 Formatted WRITE

Unformatted READ/WRITE

Auxiliary I/0 Statements _

ENCODE/DECODE

Input/Output List Specifications

8.5.1 List Item Types

8.5.2 Special Notes on List Specifications

ORMAT Statements
1 Field Descriptors

2 Numeric Conversions

3 Hollerith Conversions
4 Logical Conversion

5 X Descriptor

6 P Descriptor
7
6
6
8

DO mM
[]

Special Control Features of FORMAT Statements
.6.7.1 Repeat Specifications
.7.2 Field Separators
FORMAT Control, List Specifications, and
Record Demarcation
.9 FORMAT Carriage Control
.10 FORMAT Spec1f1cat10ns in Arrays

Functions and Subprograms

PROGRAM Statement
Statement Functions
Library Functions

s

o M TS e

e

[image: image4.png]MICROSOFT 8888 FORTRAN-IV Page 4

Function Subprograms i
Construction of Function Subprograms |
Referencing a Function Subprogram
Subroutine Subprograms

Construction of Subroutine Subprograms
Referencing a Subroutine Subprogram ' i
Return From Function and Subroutine Subprograms i
Processing Arrays in Subprograms |
BLOCK DATA Subroutine

(@

O W WO WLW WY
.
Ll ol o Voo cBEN B o QN6 V-

=S

APPENDIX A- Language Extensions and Restrictions
APPENDIX B~ I/O Interface

APPENDIX C- Subprogram Linkages

APPENDIX D- ASCII Character Codes

APPENDIX E- Disk File Access

[image: image5.png]MICROSOFT 8088 FORTRAN-IV - Page 5

SECTION 1

INTRODUCTION

FORTRAN is a universal, problem oriented programming
language designed to simplify the preparation and check-out
of computer programs. The name of the language - FORTRAN -~
is an acronym for FORmula TRANslator. ‘

The syntactical rules for using the language are
rigorous and - require the programmer to define fully the
characteristics of a problem in a series of precise
statements. These statements, called the source program,
are translated by a system program called the FORTRAN
processor into an object program in the machine language of
the computer on which the program is to be executed.

This manual defines the FORTRAN source language for the
8088 and 2-80 microcomputers. This language includes the
American National Standard FORTRAN language as described in
ANSI document X3.9-1966, approved on March 7, 1966, plus a
number of language extensions and some restrictions. These
language extensions and restrictions are described in the
text of this document and are listed in Appendix A.

NOTE

This FORTRAN differs from the
Standard in that it does not
include the COMPLEX data type.

Examples are included throughout the manual to
illustrate the construction and use of the language
elements. The programmer should be familiar with all
‘aspects of the language to take full advantage of its
capabilities. :

Section 2 describes the form and components of an 8080
FORTRAN source program. Sections 3 and 4 define data types
and their expressional relationships. Sections 5 through 9
cescribe the proper construction and usage of the various
statement classes.

—~~

BRI &

i R

[image: image6.png]MICROSOFT 8888 FORTRAN-IV Page 6

SECTION 2

FORTRAN PROGRAM FORM

8080 FORTRAN source programs consist of one program
unit called the Main program and any number of program units
called subprograms. A discussion of subprogram types and
methods of writing and using them is in Section 9 of this
manual. _

Programs and program units are constructed of an
ordered set of statements which precisely describe
procedures for solving problems and which also define
information to be wused by the FORTRAN processor during
compilation of the object program. Each statement is
written wusing the FORTRAN character set and following a
prescribed line format.

2.1 FORTRAN CHARACTER SET

To simplify reference and explanation, the FORTRAN
character set 1is divided into four subsets and a
name is given to each.

2.1.1 LETTERS

AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRlSITIU
VIWIXIYIZI$
NOTE
No distinction is made between upper and
lower case letters. However, for clarity
and leglblllty, exclusive use of upper case
letters is recommended.
2.1.2 DIGITS

0,1,2,3,4,5,6,7,8,9

NOTE

Strings' of digits representing numeric
quaptltles are normally interpreted as
decimal numbers. However, in certain

[image: image7.png]MICROSOFT 8080 FORTRAN-IV Page 7

N AN+

statements, the interpretation is in the
Hexadecimal number system in which case the
letters A, B, C, D, E, F may also be used
as Hexadecimal digits. Hexadecimal usage
is defined in the descriptions of
statements 1in which such notation is
allowed.

ALPHANUMERICS

A sub-set of characters made up of all letters and
all digits.

SPECIAL CHARACTERS

Blank

Equality Sign
Plus Sign

Minus Sign
Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma _
Decimal Point

NOTES:

l.

FORTRAN program lines consist of 8@ character
positions or columns, numbered 1 through 84.
They are divided into four fields.

The following special characters are classified

as Arithmetic Operators and are significant in
the unambiguous - statement - of arithmetic
expressions.

Addition or Positive Value
Subtraction or Negative VAlue
Multiplication

Division

* Exponentiation

AN % |+

The other special characters have specific
application in the syntactical expression of
the FORTRAN language and in the construction of
FORTRAN statements.

-

-

o

[image: image8.png]MICROSOFT 8080 FORTRAN-IV Page 8

2.2

4. Any printable character may appear in a
Hollerith or Literal field.

FORTRAN LINE FORMAT

The sample FORTRAN coding form (Figure 2.1) shows
the format of FORTRAN program lines. The lines of
the form consist of 80 character positions or
columns, numbered 1 through 86, and are divided
into four fields.

1. Statement Label (or Number) field- Columns 1
through 5 (See definition of statement labels).

2. Continuation character field-
Column 6

3. Statement field-
Columns 7 through 72

4. Indentification field-
Columns 73 through 88

The identification field is available for any
purpose the FORTRAN programmer may desire and is
ignored by the FORTRAN processor.

The lines of a FORTRAN statement are placed in
Columns 1 through 72 formatted according to 1line
types. The four line types, their definitions, and
column formats are:

1. Comment line -- used for source program
annotation at the convenience of the
programmer.

1. column 1 contains the letter C.

2. Columns 2 - 72 are used in any desired
format to express the comment or they may
be left blank.

3. A comment line may be followed only by an
initial 1line, an END 1line, or another
comment line.

4. Comment lines have no effect on the object

program and are ignored by the FORTRAN
processor except for display purposes in
the listing of the program.

~ Example:

WROy n T

AP i

[image: image9.png]T = 3 o P . R R T B] s L ek

/rl \. Wi0) Sy WL} SIUBWR104S buydund 10§ 31Qu|ID~AD St/ C| BRY ©112319 rimg lnn.o_ PIOY propuoys y
v 99 S ¥9 £9 Z9 19 09 65 85 L5 95 SS ¥S £5 IS 1S OS &v By Ly 9 S¥ ¥r €F Zv IV Or 68 8C LE 9¢ SC € EC ZE IE OF 62 8T 4T 92 SZ ¥ €2 2T 1 O 6L 8L L1 9t S vl €L 2L 1L O 6 8 £f{91S » € ¢z 11
. — - T 7 HiR] [| oy : :
i i { . _ O T 1 b v i :
EEERER | | ! M N SR R L .
- — R ; — —
P [P N R N :
i _ RERNNEENEEE R RN - “
R i i C [o ; o o ;) ;
m] i | “ ro P i ; b Coi Do ;
: : T ' | 4 R o o ' ; ; A
_ ” b _ j “ Dot R | i = ,) .
i [i H H o ; 4 [v
T - T T T X i T 7 H
; ’ . P i ! ! . ; o ; i
N i H) “ : o } “ i [TN X [s]
ST NI B
R - | o F | i i Lo
1 i i : : | ' . . ¢ :
i ! i | ‘ i ‘ : P
i i A | _ . ; _ _ Cod ! : P
i i |1 o | { ! ' o .
| ! RER IRRERR R R Do
i ; | o | i R ; o P
_ “ ﬁ » N L SR Fd M
. T T A . - I , T
; i ' [i
‘ _ _ Eobo _ _ H ot o v P
' * Lo - { _ ; L -
i _ A R A o P
t | i i i . i ! ! b i [k : o
T : : L *
, i ! o _ ! Lo ” R Cob .o
_ _ R R | N : \ yot
P ; i ' ! L))
N RN EEREEEN
H T i] * H
: P
m _ i _ [Co m [
I 1 ! R i
i ! o | :
[: H | ! - “ !
R _ T t R ! I
H i i it i i i
b _ ' | ‘ | ' ¢ !
T T T ; T
o i Pl Colo R I . :
! | ! i | [;
; i | b Pl b : .
T T T 1 H T ﬁ | i
o | ! o oo b . ‘
. Pt _ Ll I i
; by P [“) ,_ ;
; n Py Co :
; : I i : i
l v i i i :
i B i § i i ! ' N '
: * i { I ! ! ;
i Pt : C i Lo ! Coe :
: : v ‘ [! [
AR ! ! ! b . '
EEEEEEEE | - RN R R T
! : |
: n P i i _ b i . |
: ' ; ' . : : ; :
T T T T . T | | v R T oo
T : P i i ! . : !
S ! P P4 _ ! _ : i X i o ! to
: : T H— 1 R R F i ! . N
o : [1 i w | i | _ ! — | , .
I RN R L | | AR SR AR R . ,
99 9 ¥9 €9 19 19 09 65 85 £S5 95 S ¥S €5 IS (S 0S 6% 8 ¥ 97 Sv ¥¥ €v v IF OF S BE L 9 SL ¥E £C ZC € OC 62 8Z /2 92 ST ¥L £Z I iZ O 6l 8L <l 9t S1 vl €1 Zi it o 6 8 Pslc vy g ¢zha
[[a)
INIWILVIS NVILYOL 3 Lieratvis m
HONNd va ERNAVIDOed
> SNOILDNYISNI i _ :
NIHONNG
DIHVIO ° ~N wWvaDled

/U oy Buipoy NvUIHOA fzv , J vﬁmn

FORTRAN Coding Form

Figure 2.1

[image: image10.png]MICROSOFT 8688 FORTRAN-IV Page 9

4,

C COMMENT LINES ARE INDICATED BY THE
C CHARACTER C IN COLUMN 1.
C THESE ARE COMMENT LINES

END line -- the last line of a program unit.

1. Columns 1-5 may contain a statement label.

2. Column 6 must contain a zero or blank.

3. Columns 7-72 contain one of the characters
E, N or D, in that order, preceded by,
separated by or followed by blank
characters.

4. Each FORTRAN program unit must have an END
line as 1its 1last 1line to inform the
Processor that it is at the physical end of
the program unit.

5. An END line may follow any other type line.
Example:

END
Initial Line —- the first or only line of each

statement.

Columns 1-5 may contain a statement 1label

to identify the statement.
Column 6 must contain a zero or blank.

Columns 7-72 contain all or part of the
statement. -

An initial line may‘begin anywhere within
the statement field.

Example:

C THE STATEMENT BELOW CONSISTS
C OF AN INITIAL LINE
C

‘A= _5*SQRT(3-2.*C)

Continuation Line ~- used when additional lines
of

originating with an initial line.

coding are required to complete a statement

—spepre—

[image: image11.png]MICROSOFT 8080 FORTRAN-IV Page 10

1. Columns 1-5 are ignored, unless Column 1
contains a C.

2. If Column 1 contains a C, it is a comment
line. '

3. Column 6 must contain a character other

than zero or blank.

4. Columns 7-72 contain the continuation of
the statement.

5. There may be as many continuation lines as
needed to complete the statement.

Example:

C THE STATEMENTS BELOW ARE AN INITIAL LINE
C AND 2 CONTINUATION LINES "
C
63 BETA(1,2) =
1 A6BAR**7- (BETA (2,2)-A5BAR*50
2 +SQRT (BETA(2,1)))

A statement label may be placed in columns 1-5 of a
FORTRAN statement initial 1line and is used for
reference purposes in other statements.

The following considerations govern the use of
statement labels:
1. The label is an integer from 1 to 99999.

2. The numeric value of the label, 1leading zeros
and blanks are not significant.

3. A label must be unique within a program unit.

4. A label on a continuation line is ignored by
the FORTRAN Processor.

L e T PR

[image: image12.png]MICROSOFT 8080 FORTRAN-IV . , Page 11

Example:

C EXAMPLES OF STATEMENT LABELS
C

1

1 91
95999

763

STATEMENTS

Individual statements deal with specific aspects of
a procedure described in a program unit and are
classified as either executable or non-executable.

Executable statements specify actions and cause the
FORTRAN Processor to generate object program
instructions. There are three types of executable

statements:

1. Replacement statements.
2. Control statements.

3. Input/Output statements.

Non-executable statements describe to the processor
the nature and arrangement of data and provide
information about input/ocutput formats and data
initialization to the object program during program
loading and execution. There are five types of
non—-executable statements:

1. Specification statements.

2. DATAjInitialization statements.
3. FORMAT statements.

4. FUNCTION defining statements.

5. Subprogram statements.

The proper usage and construction of the various

types of statements are described in Sections 5
through 9. '

£l M

[image: image13.png]MICROSOFT 8880 FORTRAN-IV Page 12

SECTION 3

DATA REPRESENTATION / STORAGE FORMAT

The FORTRAN Language prescribes a definitive method for
identifying data used in FORTRAN programs by name and type.

3.1
3.1.1

DATA NAMES AND TYPES

NAMES

l. Constant - An explicitly stated datum.

2. Variable - A symbolically identified datum.

3. Array - An ordered set of data in 1, 2 or 3

dimensions.

4. Array Element - One member of the set of data
of an array.

TYPES
Integer —-- Precise representation of integral
numbers (positive, negative or zero) having

precision to 5 digits in the range -32768 to +32767
inclusive (-2**15 to 2**15-1).

Real —-- Approximations of real numbers (positive,

negative or 2zero) represented in computer storage

in 4-byte, floating-point form. Real data are
precise to 7+ significant digits and their
magnitude may lie between the approximate limits of
19**-38 and 19**38 (2**-127 and 2**127).

Double Precision -- Approximations of real numbers
(positive, negative or zero) represented_ in
computer storage in 8-byte, floating-point form.
Double Precision data are precise to 16+
significant digits in the same magnitude range as
real data.

Logical -- One byte representations of the truth
values "“TRUE" or "FALSE" with “FALSE defined to
have an 1internal representation of zero. The
constant .TRUE. has the wvalue -1, however any
non-zero value will be treated as .TRUE. in a
Logical 1IF statement. 1In addition, Logical types
may be used as one byte signed integers in the
range -128 to +127, inclusive.

[image: image14.png]MICROSOFT 8088 FORTRAN-IV - . Page 13

5.

Hollerith -- A string of any number of characters
from the computer's character set. All characters
including blanks are significant. Hollerith data

require one byte for storage of each character in
the string.

- CONSTANTS

FORTRAN constants are identified explicitly by
stating their actual value. The plus (+) character
need not precede positive valued constants.

Formats for writing constants are shown in Table
3-1.

T

% -

W».W‘ .

s

[image: image15.png].y,
-

MICROSOFT 8080 FORTRAN-IV

Table 3-1. CONSTANT FORMATS

TYPE FORMATS AND RULES OF USE

INTECER 1.

REAL 1.

1 to 5 decimal digits
interpreted as a deci-
mal number.

A preceding plus (+) or
minus (-) sign is op-
tional.

No decimal point (.) or
comma (,) is allowed.

Value range: -32768
through +32767 (.i.e.,
~-2*%*15 through 2**}15-1),

A decimal number with
precision to 7 digits
and represented in one
of the following forms:

a.
b.

or -.f + or ~-i.f
or -i.E+ or -e
or -.fE+ or -e
or —i.fE+ or -e

+ 4+ +

where i1, £, and e are
each strings represent-
ing integer, fraction,
and exponent respective-
ly. ~

Plus (+) and minus (-)
characters are optional.

In the form shown in 1 b
above, if r represents any
of the forms preceding

E+ or -e (i.e., rE+ or -e),

the value of the constant

is interpreted as r times

1p**e, where -38<=e<=38,

If the constant preceding
E+ or -e contains more
significant digits than

Page 14

EXAMPLES

-763
1
+00672

-32768
+32767

345.
-.345678
+345.678
+.3E3
-73E4

. M‘!ﬁﬁ B

TR

a3 e

.

U e e

[image: image16.png]C

MICROSOFT 8088 FORTRAN-IV

DOUBLE
PRECISION

LOGICAL

LITERAL

HEXADECIMAL

the precision for real
data allows, truncation
occurs, and only the

most significant digits
in the range will be rep-
resented.

A decimal number with
precision to 16 digits. All
formats and rules are identi-
cal to those for REAL con-
stants, except D is used in
place of E. Note that a real
constant is assumed single pre-
cision unless it contains a

"D" exponent.

.TRUE. generates a non-zero
byte (hexadecimal FF) and
.FALSE. generates a byte in
which all bits are 0.

If logical values are

used as one-byte integers, the
rules for use are the same as
for type INTEGER, except that
the range allowed is -128 to
+127, inclusive.

In the literal form, any

number of characters may be

enclosed by single quotation

marks. The form is as follows:
'X1X2X3...Xn"

where -each Xi is any charac-
ter other than '. Two
quotation marks in succession
may be used to represent the
quotation mark character
within the string, i.e.,

if X2 is to be the guotation
mark character, the string
appears as the following:

'X1''X3...X%Xn"

1. The letter Z or X
followed by a single quote,
up to 4 hexadecimal

digits (8-9 and A-F) and a

Page 15

+345.678
+.3D3
-73D4

.TRUE.
.FALSE.

z2'12"

X'ABlF®
Z'FFFF’

[image: image17.png]MICROSOFT 8080 FORTRAN-IV

single quote is recognized
as a hexadecimal value.

2. A hexadecimal constant is
right justified in its storage
value.

X'1F'

Page 16

iy
Vs

s

g s

[image: image18.png]MICROSOFT 8088 FORTRAN-IV Page 17

3.3

((_)

VARIABLES

Variable data are identified in FORTRAN statements
by symbolic names. The names are unique strings of
from 1 to 6 alphanumeric characters of which the
first is a letter.

NOTE

System variable names and runtime
subprogram names are distinguished from
other variable names in that they begin
with the dollar sign character ($). It is
therefore strongly recommended that in
order to avoid conflicts, symbolic names in
FORTRAN source programs begin with some
letter other than "$".

Examples:
I5, TBAR, B23, ARRAY, XFM79, MAX, AlsC

Variable data are classified into four types:
INTEGER, REAL, DOUBLE PRECISION and LOGICAL. The
specification of type is accomplished in one of the
following ways:

1. Implicit typing in which the first 1letter of
the symbolic name specifies 1Integer or Real
type. Unless explicitly typed (2., below),
symbolic names beginning with I, J, K, L, M or
N represent 1Integer variables, and symbolic
names beginning with letters other than I, J,
K, L, M or N represent Real variables.

Integer Variables

ITEM
Jl
MODE
K123
N2

[image: image19.png]MICROSOFT 8680 FORTRAN-IV Page 18

Real Variables

BETA
H2
ZAP
AMAT
XID

2. Variables may be typed explicitly. That is,
they may be given a particular type without
reference to the first letters of their names.
Variables may be explicitly typed as INTEGER,
REAL, DOUBLE PRECISION or LOGICAL. The
specific statements used in explicitly typing
data are described in Section 6.

Variable data receive their numeric value assignments during
program execution or, initially, in a DATA statement
(Section 6). '

Hollerith or Literal data may be assigned to any type

variable. Sub-paragraph 3.6 contains a discussion of
Hollerith data storage.

3.4 ARRAYS AND ARRAY ELEMENTS

An array is an ordered set of data characterized by
the property of dimension. An array may have 1, 2
or 3 dimensions and is identified and typed by a
symbolic name in the same manner as a variable
except that an array name must be so declared by an
"array declarator." Complete discussions of the
array declarators appear in Section 6 of this
manual. An array declarator also indicates the
dimensionality and size of the array. An array
element is one member of the data set that makes up
an array. Reference to an array element in a
FORTRAN statement is made by appending a subscript
to the array name. The term array element |is
synonymous with the term subscripted variable used
in some FORTRAN texts and reference manuals.

An initial value may be assigned to any array
element by a DATA statement or its value may be
derived and defined during program execution.

3.5 SUBSCRIPTS

A subscript follows an array name to uniguely

[image: image20.png]MICROSOFT 8680 FORTRAN-IV .- , ' Page 19

identify an array element. In use, a subscript in
a FORTRAN statement takes on the same
representational meaning as a subscript in familiar
algebraic notation.

Rules that govern the use of subscripts are as
follows: '

1. A subscript contains 1, 2 or 3 subscript
expressions (see 4 below). enclosed in
parentheses. : :

2. If there are two or three subscript expressions
within the parentheses, they must be separated
by commas.

3. The number of subscript expressions must be the
same as the specified dimensionality of the
Array Declarator except in EQUIVALENCE
statements (Section -6).

4, A subscript expression is written in one of the
following forms:

K C*vV V-K
V C*V+K C*V-K
V+K

where C and K are integer constants and V is an
integer variable name (see Section 4 for a
discussion of expression evaluation).

5. Subscripts themselves may not be subscripted.
Examples:

X(2*3-3,7) A(1,J,K) I(20) C(L-2) Y(I)

DATA STORAGE ALLOCATION

Allocation of storage for FORTRAN data is made 1in
numbers of storage units. A storage unit is the
memory space reguired to store one real data value
(4 bytes).

Table 3-2 defines the word formats of the three -
data types.

Hexadecimal dapa may be associated (via a DATA
statemept) . with any type data. Its storage
allocation is the same as the associated datum.

Hollerith or literal data may be associated with
any data type by use of DATA initializaton

[image: image21.png]MICROSOFT 8888 FORTRAN-IV ’ Page 20

statements (Section 6).

Up to eight Hollerith characters may be associated
with Double Precision type storage, up to four with
Real, up to two with Integer and one with Logical
type storage.

[image: image22.png]MICROSOFT 8080 FORTRAN-1IV page 21

TYPE

INTEGER

LOGICAL

REAL

TABLE 3-2. STORAGE ALLOCATION BY DATA TYPES

ALLOCATION
2 bytes/ 1/2 storage unit
S Binary Value

Negative numbers are the 2's complement of
positive representations.

1 byte/ 1/4 storage unit

Zero (false) or non-zero (true)

A non—-zero valued byte jndicates true (the
logical constant .TRUE. is represented by
the hexadecimal value FF). A zero valued

pyte indicates false.

when used as an ar ithmetic value, 2 Logical
datum 1is treated as an Integer in the range
-128 to +127.

4 bytes/ 1 storage unit

Characteristic S Mantissa
Mantissa (continued)
The first byte is the characteristic:

expressed in excess 298 (octal) notation;
i.e., a value of 200 (octal) corresponds to a
binary exponent of 8. Values lesS than 200
(octal) correspond to negative exponents, and
values greater than 200 correspond - to
positive exponents. BY definition, if the
characteristic is zero, the entire number is
zZero.

The next three bytes constitute the mantissa.

" The mantissa 1S always normalized such that

the high order bit is one, eliminating the
need to actually save that bit. The high bit
is used instead to indicate the sign of the
number . A one indicates a negative number,
and zero indicates a positive number . The
mantissa 1is assumed to be a binary fraction
whose binary point is . to the left of the
mantissa.

[image: image23.png]MICROSOFT 8888 FORTRAN-IV Page 22

DOUBLE
PRECISION

8 bytes/ 2 storage units

The internal form of Double Precision data is
identical with that of Real data except
Double Precision uses 4 extra bytes for the
matissa.

[image: image24.png]MICROSOFT 8088 FORTRAN-IV Page 23

SECTION 4

FORTRAN EXPRESSIONS

A FORTRAN expression is composed of a single operand or a
string of operands connected by operators. Two expr2ssion
types --Arithmetic and Logical-- are provided by .FORTRAN.
The operands, operators and rules of use for both types are
described in the following paragraphs.

4.1 ARITHMETIC EXPRESSIONS

The following rules define all permissible
arithmetic expression forms:

l. A constant, vafiable name, array element
reference or FUNCTION reference (Section 9)
standing alone is an expression.

Examples:
S (1) JOBNO 217 17.26 SQRT (A+B)

2. If E is an expression whose first character is
not an operator, then +E and -E are called
signed expressions.

Examples
-S +JOBNO =217 +17.26 —SQRT(A+B)

3. If E is an expression, then (E) means the
quantity resulting when E is evaluated.

Examples:
(~A) - (JOBNO) - (X+1) (A-SQRT (A+B))

4. If E is an unsigned expression and F 1is any
expression, then: F+E, F-E, F*E, F/E and F**E
are all expressions.

Examgles:

-(B(I,J)+SQRT(A+B(K,L)))
1.7E-2**(X+5.0)
=(B(I+3,3*J+5)+A)

[image: image25.png]MICROSCFT 8080 FORTRAN-1V , . . Page 24

5.

An evaluated expression may be Integer, Real,
Double Precision, or Logical. The type is
determined by the data types of the elements of
the expression. . If the -elements of the
expression are not all of the same type, the
type of the expression is determined by the
element having the highest type. The type
hierarchy (highest to lowest) is as follows:
DOUBLE PRECISION, REAL, INTEGER, LOGICAL.

Expressions may contain nested parenthesized
elements as in the following:

A* (Z- ((Y+X)/T)) **J

where Y+X is the innermost element, (Y+X)/T is
the next innermost, Z-((Y+X)/T) the next. 1In
such expressions, care should be taken to see
that the number of 1left parentheses and the

‘number of right parentheses are equal.

EXPRESSION EVALUATION

Arithmetic expressions are evaluated according to
the following rules:

1.

Parenthesized expression elements are evaluated
first. If parenthesized elements are nested,
the innermost elements are evaluated, then the
next innermost until the entire expression has
been evaluated.)

Within parentheses and/or wherever parentheses
do not govern the order or evaluation, the
hierarchy of operations in order of precedence
is as follows: ‘

a. FUNCTION evaluation

b. Exponentiation

c. Multiplication and Division
d. Addition and Subtraction

Example:
The expression
A* (Z-((Y+R)/T)) **J+VAL

is evaluated in the following sequence:

¢

[image: image26.png]MICROSOFT 8280 FORTRAN-IV

Y+R = el
(el)/T = e2
Z-e2 = e3
e3**J = ed
A*ed4d = e5
e5+VAL = e6

3. Wherever operations of equal

Page 25

hierarchy are

4.3

involved, evaluation
right.

Examples:

Expression

WXX/Y*2
B**Z-4 . *A*C
X~-Y-2Z

X/Y/2

—X**3

4. The expression X**y#**7

proceeds from 1left to

Evaluated as

(W*X) /Y*2
(B**Z)-((4.*3a)*C)
(X-Y)-2

(X/Y)/2

- (X**3)

is not allowed. It

should be written as follows:

(x**Y) **Z

or X** (y*kg7)

5. Use of an array element reference requires the

evaluation of its

subscript. Subscript

expressions are evaluated under the same rules

as other expressions.

LOGICAL EXPRESSIONS

A Logical Expression may be any of the following:

l. A single Logical Constant (i.e., .TRUE. or

.FALSE.), a Logical
Element or Logical
FUNCTION, Section 9).

variable, Logical Array
FUNCTION reference (see

2. Two arithmetic expressions separated by a

relational
expression).

operator

3. Logical operators

acting upon

(i.e., a relational

logical

constants, 1logical variables, logical array

elements, logical

FUNCTIONS,

relational

expressions or other logical expressions.

b L b e i

¢
B
:
*

ey

[image: image27.png]MICROSOFT 8088 FORTRAN-IV Page 26

The value of a logical expression is always either
.TRUE. or .FALSE.

RELATIONAL EXPRESSIONS

The general form of a2 relational expression is as
follows:

el r e2
where el and e2 are arithmetic expressions and r is

a relational operator. The six relational
operators are as follows: ’

.LT. Less Than

.LE. Less than or egqual to
.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or egual to

The value of the relational expression is .TRUE.
if the condition defined by the operator is met.
Otherwise, the value is .FALSE.

Examples:

A.EQ.B
(A**J) .GT. (ZAP* (RHO*TAU-ALPH))

LOGICAL OPERATORS

Table 4-1 lists the logical operations. U and V
denote logical expressions.

——
- ~

$ G Se o T

RN R SR :«n&:m*?r_ﬁmﬂ ety

et

[image: image28.png]W

MICROSOFT 8080 FORTRAN-IV] ~+ Page 27 ,

Table 4-1. Logical Operations

.NOT.U The value of this expression is the

logical complement of U (i.e., 1 T
bits become # and @ bits become 1). N

U.AND.V The value of this expression is the f‘
logical product of U and 'V (i.e., %;

there is a 1 bit in the result only e
where the corresponding bits in both |

U and V are 1. ,

|

}

l

U.OR.V The value of this expression is the
logical sum of U and V (i.e., there
is a 1 in the result 1if the
corresponding bit in U or V is 1 or
if the corresponding bits in both U
and V are 1.

U.XOR.V The value of this expression is the
exclusive OR of U and V (i.e., there
is a one in the result if the
corresponding bits .in U and V are 1
and 0 or @ and 1 respectively.

((;/ Examples:
If U = 91161166 and V = 116016861 , then .-

.NOT.U = 10015811
U.AND.V = 81001000 . |
U.OR.V = 111081181 3
U.XOR.V = 10106101

5

IR P

[image: image29.png]MICROSOFT 8080 FORTRAN-IV Page 28

The following are additional considerations for
construction of Logical expressions:

l.

Any Logical expression may be enclosed in
parentheses. However, a Logical expression to
which the .NOT. operator is applied must be
enclosed in parentheses if it contains two or
more elements.

In the hierarchy of operations, parentheses may
be used to specify the ordering of the
expression evaluation. Within parentheses, and
where parentheses do not dictate evaluation
order, the order 1is understood to be as
follows:

a. FUNCTION Reference

b. Exponentiation (*%*)

c. Multiplication and Division (* and /)
d. Addition and Subtraction (+ and -)

e. .LT., .LE., .EQ., .NE., .GT., .GE.

f. .NOT.

g. .AND.

h. .OR., .XOR.

Examples:
The expression

X .AND. Y .OR. B(3,2) .GT. Z

is evaluated as

el = B(3,2).GT.2
e2 = X .AND. Y
e3 = e2 .0OR. el

The expression
X .AND. (Y .OR.-B(3,2) .GT. 2)

is evaluated as

el = B(3,2) .GT. 2
e2 =Y .0OR. el
e3 = X .AND. e2

It is invalid to have two contiguous logical
operators except when the second operator is
.NOT. '
That is,

.AND. .NOT.

© e

——

< RO il

P

[image: image30.png]w

MICROSOFT 8080 FORTRAN-IV Page 29

P and

(:m“ .
('/ : .OR..NOT.

are permitted.

Example:
A.AND. .NOT.B is permitted
A.AND. .OR.B is not permitted

4.4 HOLLERITH, LITERAL, AND HEXADECIMAL CONSTANTS IN
EXPRESSIONS

Hollerith, Literal, and Hexadecimal constants are
allowed in expressions in place of Integer
constants. These special constants always evaluate
to an Integer value and are therefore limited to a
length of two bytes. The only exceptions to this
are:

1. Long Hollerith or Literal constants may be used
as subprogram parameters.

2. Hollerith, Literal, or Hexadecimal constants
may be up to four bytes long in DATA statements
when associated with Real variables, or up to
eight bytes 1long when associated with Double
Precision variables.

[image: image31.png]W

MICROSOFT 8088 FORTRAN-IV . Page 30

SECTION 5
REPLACEMENT STATEMENTS

Replacement statements define computations and are used
similarly to equations in normal mathematical notation.
They are of the following form: -

vV = e

where v is any variable or array element and e is an
expression.

FORTRAN semantics defines the equality sign (=) as meaning
to be replaced by rather than the normal is equivalent to.
Thus, the object program instructions generated by a
replacement statement will, when executed, evaluate the
expression on the right of the equality sign and place that
result in the storage space allocated to the variable or
array element on the left of the equality sign.

The following conditions apply to replacement statements:

1. Both v and the equality sign must appear on the
same line. This holds even when the statement is
part of a logical IF statement (section 7).

Example:
C IN A REPLACEMENT STATEMENT THE '='
o MUST BE IN THE INITIAL LINE.
aA(5,3) =
1l - B(7,2) + SIN(C)

The 1line containing v= must be the initial line of
the statement unless the statement is part of a
logical IF statement. In that case the v= must
occur no later than the end of the first line after
the end of the IF. '

2. If the data types of the wvariable, v, and the
expression, e, are different, then the value
determined by the expression will be converted, if
possible, to conform to the typing of the variable.
Table 5-1 shows which type expressions may be
equated to which type of variable. Y indicates a
valid replacement and N indicates an invalid
replacement. Footnotes to Y indicate conversion
considerations. ‘

S~

WL T e e e

[image: image32.png]W

x

MICROSOFT 8088 FORTRAN-IV Page 30 %
!

SECTION 5
REPLACEMENT STATEMENTS ;

Replacement statements define computations and are used
similarly to equations in normal mathematical notation.

They are of the following form:
v = e

where v is any -‘variable or array element and e 1is an
expression. i

FORTRAN semantics defines the equality sign (=) as meaning |
to be replaced by rather than the normal is equivalent to. i
Thus, the object program instructions generated by a f
replacement statement will, when executed, evaluate the |
expression on the right of the equality sign and place that |
result in the storage space allocated to the variable or §
array element on the left of the equality sign. 1

The following conditions apply to replacement statements:

(;J 1. Both v and the equality sign must appear on the
same line. This holds even when the statement is -
part of a logical IF statement (section 7).
Example:

C IN A REPLACEMENT STATEMENT THE '='

C MUST BE IN THE INITIAL LINE.
A(5,3) =
1 B(7,2) + SIN(C)

The line containing v= must be the initial line of -
the statement unless the statement 1is part of a

logical 1IF statement. In that case the v= must

occur no later than the end of the first line after

the end of the IF. ‘

2. If the data types of the variable, v, and the
expression, e, are different, then the value
determined by the expression will be converted, if
possible, to conform to the typing of the variable.
Table 5-1 shows which type expressions may be
equated to which type of variable. Y indicates a
valid replacement and N indicates an invalid

: : ' repl§cement. Footnotes to Y indicate conversion '(
(J considerations. '

[image: image33.png]c

MICROSOFT 8088 FORTRAN-IV Page 31

Varia
Types

Integ
Real

Logic
Doubl

Table 5-1. Replacement By Type

Expression Types (e)

ble Integer Real Logical Double
er Y Ya Yb Ya
Yc Y Yc Ye
al Yd Ya Y Ya
e Yc Y Yc Y

a. The Real expression value is converted to Integer,
truncated if necessary to conform to the range of
Integer data.

b. The sign is extended through the second byte.

c. The variable is assigned the Real approximation of
the Integer value of the expression.

d. The variable is assigned the truncated value of the
Integer expression (the low-order byte 1is used,
regardless of sign).

e. The variable is assigned the rounded value of the
Real expression.

ok G s

[image: image34.png]MICROSOFT 8088 FORTRAN-IV Page 32

SECTION 6

SPECIFICATION STATEMENTS

Specification statements are non-executable, non-generative
statements which define data types of variables and arrays,
specify array dimensionality and size, allocate data storage
or otherwise supply determinative information to the FORTRAN
processor. DATA intialization statements - are
non-executable, but generate object program data and
establish initial values for variable data.

6.1 SPECIFICATION STATEMENTS

There are six kinds of specification statements.
They are as follows:

Type, EXTERNAL, and DIMENSION statements
COMMON statements

EQUIVALENCE statements

DATA initialization statements

All specification statements are grouped at the
beginning of a program unit and must be ordered as
they appear above. Specification statements may be
preceded only by a FUNCTION, SUBROUTINE, PROGRAM or
BLOCK DATA statement. All specification statements
must precede statement functions and the first
executable statement.

6.2 ARRAY DECLARATORS
Three kinds of specification statements may specify
array declarators. These statements are the
following: :

Type statements
DIMENSION statements
COMMON statements

Of these, DIMENSION statements have the declaration
of arrays as their sole function. The other two
serve dual purposes. These statements are defined
in subparagraphs 6.3, 6.5 and 6.6.

Agray declarators are used to specify the name,
dimensionality and sizes of arrays. An array may
be declared only once in a program unit.

An array declarator has one of the following forms:

e g

L By

g

[image: image35.png]W

MICROSOFT 8080 FORTRAN-IV Page 33

ui (k)
- : ui (k1,k2)
((~/ ui (k1,k2,k3)

where ui is the name of the array, called the
declarator name, and the k's are integer constants.

Array storage allocation is established upon
appearance of the array declarator. Such storage
is allocated 1linearly by the FORTRAN processor
where the order of ascendancy is determined by the
first subscript varying most rapidly and the last
subscript varying least rapidly. .

For example, if the array declarator AMAT(3,2,2)
appears, storage is allocated for the 12 elements
in the following order:

AMAT(1,1,1), AMAT(2,1,1), AMAT(3,1,1), AMAT(1,2,1),

AMAT(2,2,1), AMAT(3,2,1), AMAT(1,1,2), AMAT(2,1,2),
AMAT(3,1,2), AMAT(1,2,2), AMAT(2,2,2), AMAT(3,2,2)

6.3 TYPE STATEMENTS

Variable, array and FUNCTION names are
) automatically typed Integer or Real by the
((;/ 'predefined' convention unless they are changed by
R Type statements. For example, the type is Integer
if the first letter of an item is I, J, K, L, M or
N. Otherwise, the type is Real.

Type statements provide for overriding or - J
confirming the pre-~defined convention by specifying i
the type of an item. 1In addition, these statements :
may be used to declare arrays.

Type statements have the followingvgeneral form:.

t vl,vi,...Vh

where t represents one of the terms INTEGER, E
INTEGER*1, INTEGER*2, REAL, REAL*4, REAL*8, DOUBLE %
PRECISION, LOGICAL, LOGICAL*1l, LOGICAL*2, or BYTE. k!
Each v is an array declarator or a variable, array
or FUNCTION name. The INTEGER*1, INTEGER*2,
REAL*4, REAL*8, LOGICAL*1,and LOGICAL*2 types are
allowed for readability and compatibility with
other FORTRANSs. BYTE, INTEGER*1l, LOGICAL*1l, and
LOGICAL are all equivalent; INTEGER*2, LOGICAL*2,
and. INTEGER are equivalent; REAL and REAL*4 are
equivalent; DOUBLE PRECISION and REAL*8 are
;(;) . equivalent. ,

Example: : | R ,

[image: image36.png]W

MICROSOFT 8088 FORTRAN-IV . ‘ _ Page 34

U,

REAL AMAT(3,3,5),BX,IETA,KLPH

‘NOTE

1. AMAT and BX are redundantly typed.

2, IETA and KLPH are unconditionally
declared Real.

3. AMAT (3,3,5) 1is a constant array
declarator specifying an array of 45
elements. :

Example:
INTEGER M1, HT, JMP(15), FL

NOTE

Ml is redundantly typed here. Typing of HT
and FL by the pre-defined convention is
overridden by their appearance in the
, INTEGER statement. JMP(15) is a constant
(;) array declarator. It redundantly types the
array elements as Integer and communicates
to the processor the storage requirements
and dimensionality of the array.

Example:
LOGICAL L1, TEMP

NOTE

All variables, arrays or FUNCTIONs required
to be typed Logical must appear in a
LOGICAL statement, since no starting letter
indicates these types by the default
convention.

674 EXTERNAL STATEMENTS

EXTERNAL statements have the following form:

[image: image37.png]MICROSOFT 8088 FORTRAN-IV Page 35

6-5

EXTERNAL ul,u2,...,un

where each ui is a SUBROUTINE, BLOCK DATA or
FUNCTION name. When the name of a subprogram is
used as an argument in a subprogram reference, it
must have appeared in a preceding EXTERNAL
statement. »

When a BLOCK DATA subprogram is to be included in a
program load, 1its name must have appeared in an
EXTERNAL statement within the main program unit.

For example, if SUM and AFUNC are subprogram names
to be used as arguments in the subroutine SUBR, the
following statements would appear in the calling
program unit:

EXTERNAL SUM, AFUNC

CALL SUBR(SUM,AFUNC,X,Y)

DIMENSION STATEMENTS

A DIMENSION statement has the following form:
DIMENSION u2,u2,u3,...,un
where each ui is an array declarator.
Example:
- DIMENSION RAT(5,5) ,BAR(20)
This Statement declares two arrays - the 25 element

array RAT and the 20 element array BAR. '

COMMON STATEMENTS

COMMON statements are non-executable, storage

allocating statements which assign variables and
arrays to a storage area called COMMON storage and
provide the facility for various program units to
share the use of the same storage area.

COMMON statements are expressed in the following
form:

[image: image38.png]DIPTSR = A PR S S T R s SRR e e R e]

MICROSOFT 8088 FORTRAN-IV Page 36 ‘ L

COMMON /Y1/Al/Y2/A2/.../¥n/An

(_/ " where each Yi is a COMMON block storage name and
each Ai 1is a sequence of variable names, array
names or constant array declarators, separated by 4
commas. The elements in Ai make up the COMMON ,
block storage area specified by the name Yi. If ¥
any Y1 1s omitted leaving two consecutive slash
characters (//), the block of storage so indicated
is called blank COMMON. 1If the first block name
(Y1) is omitted, the two slashes may be omitted.

Example:
COMMON /AREA/A,B,C/BDATA/X,Y,Z,
X FL,ZAP(30)

In this example, two blocks of COMMON storage are
allocated - AREA with space for three variables and
BDATA, with space for four variables and the 30
element array, ZAP.

COMMON //Al,B1/CDATA/ZOT (3,3)
X //T2,23

(;/ In this example, Al, Bl, T2 and 23 are assigned to {
blank COMMON in that order. The pair of slashes ‘
preceding Al could have been omitted. .

CDATA names COMMON block storage for the nine

element array, 2ZOT and thus ZOT (3,3) is an array é
declarator. 20T must not have been previously %
declared. (See "Array Declarators," Paragraph

6.3.)

Additional Considerations: .

1. The name of a COMMON block may appear more than
once in the same COMMON statement, or in more
than one COMMON statement.

2. A COMMON block name is made up of from l to 6 ;
alphanumeric characters, the first of which |
must be a letter.

3. A COMMON block name must be different from any
subprogram names used throughout the program.

g AR

4. The size of a COMMON area may be ' increased by :
) : the use of EQUIVALENCE statements. See
<~/ _ "EQUIVALENCE Statements,“ Paragraph 6.7. (

[image: image39.png]MICROSOFT 8980 FORTRAN-IV Page 37

6.7

5. The lengths of COMMON blocks of the same name
need not be identical in all program units
where the name appears. However, 1if the
lengths differ, the program unit specifying the
greatest length must be loaded first (see the
discussion of LINK-88 in the User's Guide).
The length of a COMMON area is the number of
storage units required to contain the variables
and arrays declared in the COMMON statement (or
statements) wunless expanded by the use of
EQUIVALENCE statements.

EQUIVALENCE STATEMENTS

Use of EQUIVALENCE statements permits the sharing
of the same storage unit by two or more entities.
The general form of the statement is as follows:

EQUIVALENCE (ul),(u2),...,(un)

where each ui represents a sequence of two or more
variables or array elements, separated by commas.
Each element in the sequence is assigned the same
storage unit (or portion of a storage unit) by the
processor. The order in which the elements appear
is not significant.

Examglé:
EQUIVALENCE (A,B,C)

The variables A, B and C will share the same"

storage unit during object program execution.

If an array element is wused in an EQUIVALENCE
statement, the number of subscripts must be the
same as the number of dimensions established by the

.array declarator, or it must be one, where the one

subscript specifies the array element's number
relative to the first element of the array.

: Examgle:

If the dimensionaliity of an array, 2, has been
declared as Z(3,3) then in an EQUIVALENCE statement
Z(6) and Z(3,2) have the same meaning.

Additonal Considerations:

1. The subscripts of array elements must be
integer constants.

[image: image40.png]MICROSOFT 8880 FORTRAN-IV Page 38

2.

An element of a multi-dimensional -array may be
referred to by a single subscript, if desired.

Variables may be assigned to a COMMON block
through EQUIVALENCE statements.

Example:

COMMON /X/A,B,C
EQUIVALENCE (a,D)

In this case, the variables A and D share the
first storage unit in COMMON block X.

>

EQUIVALENCE statements can increase the size of
a block indicated by a COMMON statement by
adding more elements to the end of the block.

Example:

DIMENSION R(2,2)
COMMON /Z/W,X,Y
EQUIVALENCE (Y,R(3))

The resulting COMMON block will have the
following configuration: ,

Variable Storage Unit (

We=>L(,1) @ }

X = R(2,1) 1

Y = R(1,2) 2 j
R(2,2) 3 :

The COMMON block established by the COMMON
statement contains 3 storage units. It is
expanded to 4 storage units by the EQUIVALENCE
statement. .
COMMON block size may be increased only from
the last element established by the COMMON
statement forward; not from its first element
backward.

O < e

Note that EQUIVALENCE (X,R(3)) would be invalid ;
in the example. The COMMON statement.
established W as the first element in the
COMMON block and an attempt to make X and R(3)
equivalent would be an attempt to make R(1l) the
flrst element. g

[image: image41.png]MICROSOFT 8080 FORTRAN-IV Page 39

5. It is invalid to EQUIVALENCE two elements of
the same array or two elements belonging to the
same or different COMMON blocks.

Example:

DIMENSION XTABLE (20), D(5)
COMMON A,B(4)/ZAP/C,X

EQUIVALENCE (XTABLE (6),A(7)
X B(3) ,XTABLE(5)),
Y (B(3),D(5))

This EQUIVALENCE statement has the following
errors:

1. It attempts to EQUIVALENCE two elements of the
same array, XTABLE(6) and XTABLE (15).

2., It attempts to EQUIVALENCE two elements of the
same COMMON block, A(7) and B(3).

3. Since A is not an array, A(7) 1is an illegal
reference.

4. Making B(3) equivalent to D(5) extends COMMON
backwards from its defined starting point.

DATA INITIALIZATION STATEMENT

The DATA initialization = statement is a
non-executable statement which provides a means of
compiling data values into the object program and
assigning these data to variables and array
elements referenced by other statements. '

The statement is of the following form:

DATA list/ul,uz,...,un/,list.../uk,uk+l,...uk+n/

where "list" represents a list of variable, array
or array -element names, and the ui are constants
corresponding in number to the elements in the
list. An exception to the one-for-one
correspondence of list items to constants is that
an array name (unsubscripted) may appear in the

H
8
{

[image: image42.png]MICROSOFT 8080 FORTRAN-IV _ Page 480

list, and as many constants as necessary to fill
. the array may appear in the correspondlng position (|
between slashes. Instead of ui, it is permissible
to write k*ui in order to declare the same »
constant, ui, k times in succession. k must be a ;
positive integer. Dummy arguments may not appear :
in the list. \

Example:

DIMENSION C(7)
DATA A, B, C(1),C(3)/14.73,
X -8.1,2*%7.5/

This implies that

A=14.73, =—8.l' C(l)=7.5, C(3)=7‘5

The type of each constant ui must match the type of
the corresponding item in the list, except that a
Hollerith or Literal constant may be paired with an
item of any type.

When a Hollerith or Literal constant is used, the

number of characters in its string should be no

greater than four times the number of storage units
required by the corresponding item, 1i.e., 1 ¢
character for a Logical variable, up to 2
characters for an Integer variable and 4 or fewer _
characters for a Real variable.

If fewer Hollerith or Literal characters are |
specified, trailing blanks are added to fill the i
remainder of storage. i

Hexadecimal data are stored in a similar fashion.
If fewer Hexadecimal characters are used,
sufficient leading zeros are added to fill the
remainder of the storage unit. -

The examples below illustrate many of the features
of the DATA statement.

R o bt e Y

el

[image: image43.png]MICROSOFT 8088 FORTRAN-IV Page 41

DIMENSION HARY (2)
DATA HARY,B/ 4HTHIS, 4H OK.
1 ,7.86

REAL LIT(2)

LOGICAL LT,LF

DIMENSION H4(2,2),PI3(3)

DATA al,B1,K1,LT,LF,H4(1,1) ,H4(2,1)
1 H4(1,2) ,H4(2,2),PI3/5.9,2.5E-4,
2 64, .FALSE., .TRUE.,1.75E~-3,

3 fp.85E-1,2*75.0,1.,2.,3.14159/
4 LIT(1)/'NOGO"

[image: image44.png]MICROSCFT 8088 FORTRAN-IV . _ : Page 42
SECTION 7

FORTRAN CONTROL STATEMENTS
FORTRAN control statements are executable statements which
affect and guide the logical flow of a FORTRAN program. The
statements in this category are as follows:
1. GO TO statements:
1. Unconditional GO TO
2. Computed GO TO

3. Assigned GO TO

2. ASSIGN
3. IF statements:
l. Arithmetic IF

2. Logical IF

4. DO

5. CONTINUE

6. STOP
7. PAUSE
8. CALL
9. RETURN

When statement labels of other statements are a part of a
control statement, such statement labels must be associated
with executable statements within the same program unit in
which the control statement appears. '

7.1 GO TO STATEMENTS

7.1.1 UNCONDITIONAL GO TO

Unconditional GO TO statements are used whenever‘

control 1is to be transferred unconditionally to
some other statement within the program unit.

—

[image: image45.png]MICROSOFT 8080 FORTRAN-IV) . , Page 43

7.1.2

7.1.3

The statement is of the following form:

GO TO k

where k is the statement label of an executable
statement in the same program unit.

Example: -

GO TO 376
319 A(7) = V1 -A(3)

376 A(2) =VECT
GO TO 319

In these statements, statement 376 is ahead of

statement 310 in the logical flow of the program of
which they are a part.

COMPUTED GO TO
Computed GO TO statements are of the form:
GO TO (kl,k2,...,n),3

where the ki are statement 1labels, and j is an
integer variable, 1 < j < n.

This statement causes transfer of control to the
statement 1labeled kj. If j <1 or j > n, control
will be passed to the next statement following the
Computed GOTO.

r

When J = 3, the computed GO TO transfers control to
statement 700. Changing J to equal 5 changes the
transfer to statement 70000. Making J = 8 or J = 6

gggld cause control to be transferred to statement

ASSIGNED GO TO

‘Assigned GO TO statements are‘ of thé following

[image: image46.png]MICROSOFT 8080 FORTRAN-1IV Page 44

form:
GO TO j,(kl,k2,...,kn)
or
GOTO J
where J is an integer variable name, and the ki are
statement 1labels of executable statements. This
statement causes transfer of control to the

statement whose label is equal to the current value
of J.

Qualifications

l. The ASSIGN statement must logically precede an
assigned GO TO.

2. The ASSIGN statement must assign a value to J

which is a statement label included in the list
of k's, if the list is specified.

Example:
GO TO LABEL, (86,90, 108)

Only the statement labels 86, 96 or 18 may be
assigned to LABEL.

ASSIGN STATEMENT

This statement is of the following form:

ASSIGN j TO i

where j is a statement 1label of an executable

statement and i is an integer variable.

The statement is wused in conjunction with each
assigned- GO TO statement that contains the integer
variable i. When the assigned GO TO is executed,
control will be transferred to the statement
labeled j.

Examgle:
ASSIGN 100 TO LABEL

ASSIGN 96 TO LABEL

% o

e T

[image: image47.png]MICROSOFT 8088 FORTRAN-IV Page 45

7.3

7.3.1

7‘3.2

GO TO LABEL, (80,90,100)

IF STATEMENT
IF statements transfer control to one of a series
of statements depending upon a condition. Two
types of IF statements are provided:

Arithmetic IF

Logical IF

ARITHMETIC IF

The arithmetic IF statement is of the form:
IF(e) ml,m2,m3

where e 'is an arithmetic expression and ml, m2 and
m3 are statement labels.

Evaluation of expression e determines one of three
transfer possibilities:

If e is: Transfer to:
< @ ' ml

= @ m2

> 0 m3

Examples:

Statement : Expression Value Transfer to
IF (A)3,4,5 15 | 5
IF (N-1)586,73,9] ' 73

IF (AMTX(2,1,2))7,2,1 -256 7

LOGICAL IF

The Logical IF statement is of the form:
IF (u)s

where u is a Logical expression and ‘s 1is any
executable statement except a DO statement (see
7.4) or another Logical IF statement. The Logical
expression u 1is evaluated as .TRUE. or .FALSE.
Section 4 contains .a discussion of Logical
expressions.

kControl Conditions:

If u is FALSE, the statement s is ignored and

Sl s e

[image: image48.png]MICROSOFT 8088 FORTRAN-IV Page 46

control goes to the next statement following the
Logical IF statement. If, however, the expression
is TRUE, then control goes to the statement s, and
subsequent program control follows normal
conditions. :

If s is a replacement statement (v = e, Section 5),
the variable and equality sign (=) must be on the
same line, either immediately following IF(u) or on

a separate continuation line with the line spaces
following IF(u) left blank. See example 4 below.

Examples:
1. IF(I.GT.28) GO TO 115
2. IF(Q.AND.R) ASSIGN 10 TO J
3. 1IF(2) CALL DECL(A,BCC)
4. IF(A.ORB.LE.PI/2.)I=J
IF(A.OR.B.LE.PI/2)

X I =J
DO STATEMENT
The DO statement, as implemented in FORTRAN,
provides a method for repetitively executing a

series of statements. The statement takes of one
of the two following forms:

1) DO ki = ml,m2,m3
or

2) DO k i = ml,m2

where k is a’statement.label, i is an integer or

logical wvariable, and ml, m2 and m3 are integer -

constants or integer or logical variables.

If m3 is 1, it may be omitted as in 2) above.

The following conditions and restrictions govern

the use of DO statements:

1. The DO and the first comma must appear on the
initial line. ‘

2. The statement labeled k, called. the terminal
statement, must be an executable statement.

IR T

[image: image49.png]MICROSOFT 8080 FORTRAN-IV Page 47

3.

The terminal statement must physically follow
its associated DO, and the executable
statements following the DO, up to and
including the terminal statement, constitute
the range of the DO statement.

The terminal statement may not be an Arithmetic
IF, GO TO, RETURN, STOP, PAUSE or another DO.

If the terminal statement is a logical IF and
its expression is .FALSE., then the statements
in the DO range are reiterated.

If the expression is .TRUE., the statement of
the logical IF 1is executed and then the
statements in the DO range are reiterated. The
statement of the logical IF may not be a GO TO,
Arithmetic IF, RETURN, STOP or PAUSE.

The controlling integer variable, i, is called
the index of the DO range. The index must be
positive and may not be modified by any
statement in the range.

If ml, m2, and m3 are Integer*1l variables or
constants, the DO loop will execute faster and
be shorter, but the range is 1limited to 127
iterations. For example, the loop overhead for
a DO loop with a constant 1limit and an
increment of 1 depends upon the type of the
index variable as follows:

Index Variable Overhead
Type Microseconds Bytes
INTEGER*2 35.5 19

INTEGER*1 24 14

During the first execution of the statements in
the DO range, i 1is equal to ml; the second
execution, i = ml+m3; the third, i=ml+2*m3,
etc., until i is equal to the highest value in
this sequence less than or equal to m2, and
then the DO 1is said to be satisfied. The
statements in the DO range will always be
executed at least once, even if ml < m2.

When the DO has been satisfied, control passes
to the statement following the terminal
statement, otherwise control transfers back to
the first executable statement following the DO
statement.

Examgle:

[image: image50.png]MICROSOFT 8880 FORTRAN-IV . . , Page 48

1a.

The following example computes

100

Sigma Ai where a is a one-dimensional array

i=1
109 DIMENSION A(160)

SUM = A(1)
DO 31 I = 2,108
31 SUM =SUM + A(I)

END

The range of a DO statement may be extended to
include all statements which may logically be
executed between the DO and its terminal
statement. Thus, parts of the DO range may be
situated such that they are not physically
between the DO statement and its terminal
statement but are executed logically in the DO
range. This is called the extended range.

Example:
DIMENSION A(500), B(508)

DO 56 1 = 18, 327, 3

IF (V7 -C*C) 28,15,31
39) | ,

56 A(I) = B(I) + C

206 C=C - .05
GO TO 580

31 C=C+ .8125
GO TO 30

It is invalid' to transfer control into the.
range of a DO statement not itself in the range
or extended range of the same DO sStatement.

B

e

[image: image51.png]S

MICROSOFT 8080 FORTRAN-IV Page 49

1l1. Within the range of a DO statement, there may
be other DO statements, in which case the DO's
must be nested. That is, if the range of one
DO contains another DO, then the range of the
inner DO must be entirely included in the range
of the outer DO.

The terminal statement of the inner DO may also
be the terminal statement of the outer DO.

For example, given a two dimensional array A of
15 rows and 15 columns, and a 15 element
one-dimensional array B, the following
statements compute the 15 elements of array C
to the formula:

15
Ck =Sigma AkjBm, k = 1,2,...,15
j=1 -

DIMENSION A(15,15), B(15), C(15)

DO 88 K =1,15
C(K) = 0.0
DO 88 J=1,15
80 C(K) C(K) +A(K,J) * B(J)

7.5 CONTINUE STATEMENT

CONTINUE is classified as an executable statement.
However, its /execution does nothing. The form of
the CONTINUE statement is as follows:

CONTINUE

CONTINUE 1is frequently used as the terminal
statement in a DO statement range when the
statement which would normally be the terminal
statement 1is one of those which are not allowed or
is only executed conditionally.

Examgle:
DO 5K =1,10

IF (C2) 5,6,6
6 CONTINUE

[image: image52.png]MICROSOFT 80680 FORTRAN-IV . ‘ ‘ Page 50

7.6

C2 = C2 +.005
5 CONTINUE

STOP STATEMENT

A STOP statement has one of the following forms:
STOP
or
STOP c¢
where ¢ is any string of one to six characters.
When STOP is encountered during execution of the
object program, the characters c (if present) are
displayed on the operator control console and

execution of the program terminates.

The STOP statement, therefore, constitutes the
logical end of the program.

PAUSE STATEMENT

A PAUSE statement has one of the following forms:
PAUSE
or
PAUSE c

where ¢ is any string of up to six characters.

When PAUSE is encountered during execution of the
object program, the characters ¢ (if present) are
displayed on the operator control console and
execution of the program ceases.

The decision to continue execution of the program
is not under control of the program. If execution
is resumed through intervention of an operator
without otherwise changing the state of the
processor, the normal execution sequence, following
PAUSE, is continued.

Execution may be terminated by typing a "T" at the
operator console. Typing any other character will
cause execution to resume.

A T e

Gt msg 3%

TR

[image: image53.png]-

MICROSOFT 8088 FORTRAN-IV Page 51

7.8

7.10

CALL STATEMENT

CALL statements control transfers into SUBROUTINE
subprograms and provide parameters for use by the
subprograms. The general forms and detailed
discussion of CALL statements appear in Section 9,
FUNCTIONS AND SUBPROGRAMS.

RETURN STATEMENT

The form, use and interpretation of the RETURN
statement is described in Section 9.

END STATEMENT

The END statement must physically be the last
statement of any FORTRAN program. It has the
following form: '

END

The END statement is an executable statement and
may have a statement label. It causes a transfer
of control to be made to the system exit routine
$EX, which returns control to the operating system.

[image: image54.png]MICROSOFT 8880 FORTRAN-1IV Page 52

SECTION 8

INPUT / OUTPUT

FORTRAN provides a series of statements which define the
control and conditions of data transmission between computer
memory and external data handling or mass storage devices
such as magnetic tape, disk, line printer, punched card
processors, keyboard printers, etc.

These statements are grouped as follows:
1. Formatted READ and WRITE statements which cause

formatted information to be transmitted between the
computer and I/0 devices.

2. Unformatted READ and WRITE statements which
transmit unformatted binary data in a form similar
to internal storage.

3. Auxiliary I/0 statements for positioning and
' demarcation of files.

4. ENCODE and DECODE statements for transferring data
between memory locations.

5. FORMAT statements used in conjunction with
formatted record transmission to provide data
conversion and editing information between internal
data representation and external character string

forms.
8.1 FORMATTED READ/WRITE STATEMENTS
8.1.1 FORMATTED READ STATEMENTS

A formatted READ statement is used to transfer
information from an input device to the computer.

Two forms of the statement are available, as
follows:

READ (u,f,ERR=L1,END=L2) k

or

READ (u,f,ERR=L1,END=L2)
wheré:

u - specifies a ?hysical and Logical Unit Number
and may be either an unsigned integer or an

ERARG Ry s

[image: image55.png]MICROSOFT 8080 FORTRAN-IV . Page 51

7.8

C

CALL STATEMENT

CALL statements control transfers into SUBROUTINE
subprograms and provide parameters for use by the
subprograms. The general forms and detailed
discussion of CALL statements appear in Section 9,
FUNCTIONS AND SUBPROGRAMS.

RETURN STATEMENT

The form, use and interpretation of the RETURN
statement is described in Section 9.

END STATEMENT

The END statement must physically be' the 1last
statement of any FORTRAN program. It has the
following form:

END

The END statement is an executable statement and
may have a statement label. It causes a transfer
of control to be made to the system exit routine
$EX, which returns control to the operating system.

-

s QR - Foran, TR e

[image: image56.png]W

C

MICROSOFT 8080 FORTRAN-IV Page 52

SECTION 8

INPUT / OUTPUT

FORTRAN provides a series of statements which define the
control and conditions of data transmission between computer
memory and external data handling or mass storage devices
such as magnetic tape, disk, 1line printer, punched card
processors, keyboard printers, etc.

These statements are grouped as follows:
1. Formatted READ and WRITE statements which cause

formatted information to be transmitted between -the
computer and I/0 devices.

2. Unformatted READ and WRITE statements which
transmit unformatted binary data in a form similar
to internal storage.

3. Auxiliary I/0O statements for positioning and
' demarcation of files.

4., ENCODE and DECODE statements for transferring data
between memory locations.

5. FORMAT statements used in conjunction with
formatted record transmission” to provide data
conversion and editing information between internal
data representation and external character string

forms.
8.1 FORMATTED READ/WRITE STATEMENTS
8.1.1 FORMATTED READ STATEMENTS

A formatted READ statement is used to transfer
information from an input device. to the computer.

Two forms of the statement are available, as

follows:
READ (u,f,ERR=L1,END=L2) k
or
READ (u,f,ERR=L1,END=L2)
wheré:

u - specifies a Physical and Logical Unit Number
and may be either an unsigned integer or an

R e —

[image: image57.png]MICROSOFT 8680 FORTRAN-IV ‘ . Page 53

integer variable 1in the range 1 through 255.
If an Integer variable 1is used, an Integer
value must be assigned to it prior to execution
of the READ statement.

Units 1, 3, 4, and 5 are preassigned to the
console Teletypewriter. Unit 2 is preassigned
to the Line Printer (if one exists). Units
6-10 are preassigned to Disk Files (see
Appendix E). These units, as well as units 11
- 255, may be re-assigned by the user (see
Appendix B).

f - is the statement label of the FORMAT statement
describing the type of data conversion to be
used within the input transmission or it may be
an array name, in which case the formatting
information may be input to the program at the
execution time. (See 8.5.10)

Ll- is the FORTRAN label on the statement to which
the I/0 processor will transfer control if an
I/0 error is encountered.

L2~ is the FORTRAN label on the statement to which
the I/0 processor will transfer control if an
End-of-File is encountered.

k - is a list of variable names, separated by com-
mas, specifying the input data.

READ (u,f)k is used to input a number of items,
corresponding to the names in the list k, from the
file on 1logical wunit wu, and wusing the FORMAT
statement f to specify the external representation
of these items (FORMAT statements, 8.5). The ERR=
and END= clauses are optional. If not specified,
I/0 errors and End-of-Files cause fatal runtime
errors. . -

The following notes further define the function of
the READ (u,f)k statement:

1. Each time execution of the READ statement
begins, a new record from the input file is
read.

2. The number of records to be input by a single
READ statement is determined by the list, k,
and format specifications.

3. The list k specifies the number of items to be
regd from the input file and the locations into
which they are to be stored.

[image: image58.png]MICROSOFT 8080 FORTRAN-IV Page 54

4.

6.

Any number of items may appear in a single list
and the items may be of different data types.

If there are more gquantities in an input record
than there are items in the list, only the
number of guantities equal to the number of
items in the list are transmitted. Remaining
quantities are ignored.

Exact specifications for the 1list k are
described in 8.5.

Examples:

1.

Assume that four data entries are punched in a
card, with three blank columns separating each,
and that the data have field widths of 3, 4, 2
and 5 characters respectively starting in
column 1 of the card. The statements

READ(5,20)K,L,M,N
20 FORMAT(I3,3X,I4,3X,I12,3X,1I5)

will read the card (assuming the Logical Unit
Number 5 has been assigned to the card reader)
and assign the input data to the variables K,
L, M and N. The FORMAT statement could also be

20 FORMAT(I3,17,I5,1I8)

See 8.5 for complete description of FORMAT
statements.

Input the guantities of an array (ARRY):
READ(6,21)ARRY

Only the name of the array needs to appear ' in
the 1list (see 8.4). All elements of the array
ARRY will be read “ and stored using = the
appropriate formatting specified by the FORMAT
statement labeled 21.

READ(u,k) may be used in conjunction with a FORMAT
statement to read H-type alphanumeric data into an
existing H—-type field (see Hollerith Conversions,
8.5.3).

For example, the statements

READ (I, 25)

25 FORMAT (18HABCDEFGHIJ)

N s

£ 2

[image: image59.png]MICROSOFT 8080 FORTRAN-IV Page 55

cause the next 18 characters of the file on input
device I to be read and replace the characters
ABCDEFGHIJ in the FORMAT statement.

FORMATTED WRITE STATEMENTS

A formatted WRITE statement 1is used to transfer
information from the computer to an output device.

Two forms of the statement are available, as
follows:

WRITE (u,f,ERR=L1,END=L2)k

or

WRITE (u,f,ERR=L1,END=L2)
where:
u - specifies a Logical Unit Number.

f - is the statement label of the FORMAT statement
describing the type of data conversion to be
used with the output transmission.

Ll1- specifies an I/0 error branch.
L2- specifies an EOF branch.

k - is a list of variable names separated by com-
mas, specifying the output data.

WRITE (u,f)k is used to output the data specified
in the list k to a file on logical unit u using the
FORMAT statement f to specify the external
representation of the data (see FORMAT statements,
8.6). The .following notes further define the
function of -the WRITE statement:

l. Several records may be output with a single
WRITE statement, with the number determined by
the list and FORMAT specifications.

2. Successive data are output until the data
specified in the list are exhausted.

3. If output is to a device which specifies fixed
length records and the data specified in the
list do not fill the record, the remainder of
the record is filled with blanks.

Example:

.
&
i
i

*
H

Capombie s R w0

[image: image60.png]MICROSOFT 8088 FORTRAN-IV Page 56

WRITE(2,198)A,B,C,D

The data assigned to the variables A, B, C and D
are output to Logical Unit Number 2, formatted
according to the FORMAT statement labeled 10.

WRITE(u,f) may be used to write alphanumeric
information when the characters to be written are
specified within the FORMAT statement. In this
case a variable list is not required.

For example, to write the characters 'HE CONVERSION'
on unit 1,

WRITE (1,26)

26 FORMAT (12HH CONVERSION)

8.2 UNFORMATTED READ/WRITE

Unformatted I1/0 (i.e. without data conversion) is
accomplished using the statements:

READ (u,ERR=L1,END=L2) k ' (ﬁ
WRITE (u, ERR=L1, END=L2) k ~

where:

u - specifies a Logical Unit Number.
Ll1- specifies an I/0 error branch.’
L2- specifies an EOF branch.

k - is a list of variable names, separated by
commas, specifying the I/0 data.

The following notes define the functions of !
unformatted I/0 statements. : f

1. Unformatted READ/WRITE statements perform

memory-image transmission of data with no data
conversion or editing.

R . P SR

2. The amount of data transmitted corresponds £o
the number of variables in the list k.

TR A

[image: image61.png]MICROSOFT 8888 FORTRAN-IV ‘ ~ Page 57

8.3

8.4

3. The total length of the list of variable names
in an unformatted READ must not be longer than
the record 1length. If the 1logical record
length and the length of the list are the same,
the entire record is read. If the 1length of
the 1list 1is shorter than the logical record
length the unread items in the record are
skipped.

4. The WRITE(a)k statement writes one 1logical
record. ‘

5. A logical record may extend across more than
one physical record.

AUXILIARY I/0 STATEMENTS

Three auxiliary I/O statements are provided:

BACKSPACE u
REWIND u
ENDFILE u

Initially, the actions of all three statements are

defined as no-ops. They may, however, be redefined
(see Appendices B and E).

ENCODE/DECODE

ENCODE and DECODE statements transfer data,
according to format specifications, from one
section of memory to another. DECODE changes data
-from ASCII format to the specified format. ENCODE
changes data of the specified format into ASCII
format. The two statements are of the form:

ENCODE(A,F) K -
DECODE (A,F) K

where;

A is an array name
F is FORMAT statement number
K is an I/0 List

DECODE is analogous to a READ statement, since it
causes conversion from ASCII to internal format.
ENCODE is analogous to a WRITE statement, causing
conversion from internal formats to ASCII.

- e e el Lk e

[

e

[image: image62.png]W‘

MICROSOFT 8088 FORTRAN-IV Page 58 g

C | NOTE | :

Care should be taken that the array A is
always large enough to contain all of the
data being processed. There is no check
for overflow. An ENCODE operation which
overflows the array will probably wipe out
important data following the array. A
DECODE operation which overflows will
attempt to process the data following the
array.

8.5 INPUT/OUTPUT LIST SPECIFICATIONS

Most forms of READ/WRITE statements may contain an
ordered 1list of data names which identify the data
to be transmitted. The order in which the 1list
items appear must be the same as that in which the
corresponding data exists (Input), or will exist
(Output) in the external I/0 medium.

Lists have the following form:

ml,m2,...,mn

.

where the mi are list items separated by commas, as
shown.

8.5.1 LIST ITEM TYPES

A list item may be a single datum identifier or a
multiple data identifier.

1. A single datum identifier item is the name of a

variable or array element.: One or more. of

- these items may be enclosed in parentheses
. without changing their intended meaning.

~ Examples:
A

c(26,1),R,K,D, (I,J)
B,1(18,18),S,(R,K),F(1,25)

NOTE

The entry (I,J) defines two items in a ,
@ ‘ list while (26,1) is a subscript. (

[image: image63.png]MICROSOFT 8880 FORTRAN-IV Page 59

subscript(s) 1is considered equivalent to the
listing of each successive element of the
array.

Example:

If B is a two dimensional array, the list item
B is equivalent to: B(1,1),B(2,1),B(3,1)....,
B(1,2),B(2,2)...,B(j,k).

where j and k are the subscript limits of B.
b. DO-implied items are lists of one or more
single datum identifiers or other DO-implied
items followed by a comma character and an
expression of the form:

i =ml,m2,m3 or i = ml,m2
and enclosed in parentheses.
The elements i,ml,m2,m3 have the same meaning
as defined for the DO statement. The DO

implication applies to all list items enclosed
in parentheses with the implication.

Examples:

DO-Implied Lists Equivalent Lists
(X(1),1=1,4) X(1),X(2),X(3),X(4)
(Q(J) ,R(J),I=1,2) Q(1),R(1),Q(2),R(2)
(G (K) ,K=1,7,3) G(1),G(4).G(7)
((a(1,J9),1=3,5),3=1,9,4) A(3,1),A(4,1),A(5,1)

A(3,5),A(4,5),A(5,5)
A(3,9),A(4,9),A(5,9)

(R(M) ,M=1,2),1,ZAP(3) R(1),R(2),I,2AP(3)
(R(3),T(1I),1=1,3) R(3),T(1),R(3),T(2),
. R(3),T(3)

- Thus, the elements of a matrix, for example,

may be transmitted in an order different from
the order in which they appear in storage. The
array A(3,3) occupies storage in the order
A(l,1),A(2,1), A(3,1),A(1,2),A(2,2),A(3,2),
A(l1,3),A(2,3),A(3,3). By specifying the
transmission of the array with the DO-implied
list item ((A(1r,J),3=1,3),1=1,3), the order of
transmission is:

A(lll)»lA(llz) IA(lIB) rA(le) IA(Z'IZ) [4
A(2,3),A(3.1),A(3,2),A(3,3)

ARSI A R s b TR SO I S MR v e 0 e R AT

R LI)

e

e

[image: image64.png]W

MICROSOFT 8080 FORTRAN-IV Page 60]

8.5.2 SPECIAL NOTES ON LIST SPECIFICATIONS

(u/ " - 1. The ordering of a list is from 1left to right L
with repetition of items enclosed in
parentheses (other than as subscripts) when
accompanied by controlling DO-implied index
parameters.

2. Arrays are transmitted by the appearance of the
array name (unsubscripted) in an input/output
list. :

3. Constants may appear in an input/output 1list
only as subscripts or as indexing parameters.

4. For input lists, the DO-implying elements i,

ml, m2 and m3 may not appear within the
parentheses as list items.

ExamEles:

l. READ (1,28) (1,J,A(I),I=1,J,2) is not allowed
2. READ(1,20)I,J,(A(I),I=1,J3,2) is allowed
O 3. WRITE(1,20)(1,J,A(I),I=1,J,2) is allowed (
Consider the following examples:
DIMENSION A (25)
A(1)
A(3)

A(5)
J=5

nonu
N NN
W N =

WRITE (1,20) J,(I,A(I),I=1,J,2)

the output of this WRITE statement is
5,1,2.1,3,2.2,5,2.3
1. Any number of items may appear in a single
list.
2. In a - formatted transmission. (READ(u,f)k,

WRITE(u,f)k) each - item must have the correct
(;/ type as specified by a FORMAT statement. '

r/.\

[image: image65.png](Q |

MICROSOFT 80886 FORTRAN-IV Page 61

8.6

FORMAT STATEMENTS

FORMAT statements are non-executable, generative
statements used in conjunction with formatted READ
and WRITE statements. They "specify conversion
methods and data editing information as the data is
transmitted between computer storage and external
media representation.

FORMAT statements require statement 1labels for
reference (f) in the READ(u,f)k or WRITE(u,f)k
statements.

The general form of a FORMAT statement 1is as
follows:

n FORMAT (sl,s2,...,sn/sl',s2',...,sn'/...)

where n is the statement label and each si 1is a
field .descriptor. The word FORMAT and the
parentheses must be present as shown. The slash
(/) and comma (,) characters are field separators
and are described in a separate subparagraph. The
field is defined as that part of an external record
occupied by one transmitted item.

FIELD DESCRIPTORS

Field descriptors describe the sizes of data fields
and specify the type of conversion to be exercised
upon each transmitted datum. The FORMAT field
descriptors may have any of the following forms:

Descriptor Classification

rfFw.d

rGw.d

rEw.d : "Numer ic Conversion
rDw.d ‘

riw

rLw Logical Conversion
rAw

nHhlh2...hn Hollerith Conversion
‘*1112...1n°

nX Spacing Specification
mp » Scaling Factor

where:

[image: image66.png]C

MICROSOFT 8080 FORTRAN-IV Page 62

1. w and n are positive integer constants defining
the field width (including digits, decimal
points, algebraic signs) in the external data
representation.

2, d 1is an integer specifying the number of
fractional digits appearing in the external
data representation.

3. The characters F, G, E, D, I, A and L. indicate
the type o0f conversion to be applied to the
items in an input/output list.

4. r is an optional, non-zero integer indicating
that the descriptor will be repeated r times.

5. The hi and 1i are characters from the FORTRAN
character set.

6. m is an integer constant (positive, negative,
or zero) indicating scaling.

NUMERIC CONVERSIONS

Input operations with any of the numeric
conversions will allow the data to be represented
in a "Free Format"; i.e., commas may be wused to
separate the fields in the external representation.

F-type conversion

Form: Fw.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which 4 are considered fractional. .

F-output g ' -

Values are converted and output as minus sign (if
negative), followed by the integer portion of the
number, a decimal point and d digits of the
fractional portion of the number. If a value does

not fill the field, it is right Jjustified in the
field and enough preceding blanks to fill the field

are inserted. If a value reguires more field

positions than allowed by w, the first w-1 digits

of the value are output, preceded by an asterisk.

G Al SN

[image: image67.png]MICROSOFT 808# FORTRAN-IV Page 63

F-Output Examples:

FORMAT Internal Output
Descriptor Value (b=blank)
F10.4 368.42 bb362.4200
F7.1 -4786.361 -4786.4
F8.4 8.7E-2 bb#.08375
F6.4 4739.76 *,7600
F7.3 -5.6 : b-5.600

* Note the loss of leading digits in the 4th 1line
above.

F-Input
(See the description under E-Input below.)

E-type Conversion

Form: Ew.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which 4@ are considered fractional.

E~-Output

Values are converted, rounded to d digits, and
output as:

1. a minus sign (if negative),
2. a zero and a decimal point,
3. d decimal digits,
4., the letter E,
5. the sign of the eiponent (minus or blank),
6. two exponent digits,
in that order. The values as described are right
justified in the field w with preceding blanks to
fill the field if necessary. The field width w
should satisfy the relationship:
w >4+ 7

Otherwise significant characters may be lost; Some
E~Qutput examples follow:

FORMAT ' Internal Output
Descriptor Value (b=blank)

B

G N

. N

L e SN Y i B ke kL

[image: image68.png]MICROSOFT 8088 FORTRAN-IV Page 64

E12.5 76.573 b#.76573EbA2 (

E14.7 -32672.354 -8.3267235Eb@5 :
E7.3 56.93 * §.569E : .
E13.4 -90.0012321 bb-0.1232E-02 5
E8.2 76321.73 #.76Eb@5

E~-Input

Data values which are to be processed under E, F,
or G conversion can be a relatively loose format in
the external input medium. The format is identical
for either conversion and is as follows:

1. Leading spaces (ignored)

2. A + or - sign (an unsigned input is assumed to
be positive)

3. A string of digits

4. A decimal point

5. A second string of digits

6. The character E

. A + or - sign | <ﬂ
8. A decimal exponent

Each item in the list above is optional; but the
following conditions must be observed:

1. If FORMAT items 3 and 5 (above) are present,
then 4 is required. ' '

Wi OB s o 8 A

2. If FORMAT item 8 is present, then 6 or 7 or
-both are required. B

3. All non-leading spaces are considered zeros.

Input data can be any number of digits in 1length,
and correct magnitudes will be developed, but
precision will be maintained only to the extent
specified in Section 3 for Real data.

E- and F- and G- Input Examples: ‘ ;

FORMAT Input Internal . |
Descriptor (b=blank) Value - H
E10.3 +0.23756+4 +2375. 60 (
E10.3 bbbbbl7631 +17.631 ‘ |

G8.3 - ble28911 +1628.911

[image: image69.png]o

MICROSQFT 8080 FORTRAN-IV) Page 65

F12.4 bbbb-6321132 -632.1131

Note in the above examples that if no decimal point
is given among the input characters, the d in the
FORMAT specification establishes the decimal point
in conjunction with an exponent, if given. If a
decimal point is included in the input characters,
the d specification is ignored..

The letters‘E, F, and G are interchangeable in the
input format specifications. The end result is the
same.

D-Type Conversions

D-Input and D-Output are identical to E-Input and
E-Output except the exponent may be specified with
a "D" instead of an "E."

G-Type Conversions

Form: Gw.d

Real or Double Precision type data are processed
using this conversion. w characters are processed

~of which d are considered significant.

G-Input:

(See the description under E-Input)

G-Output:

The method of output conversion is a function of
the magnitude of the number being output. . Let n be

the magnitude of the number. The following table
shows how the number will be output: -

Magnitude Equivalent Conversion

.1<= n <1 F(w—4) .d,4X

1 <=n«<319 F(w-4).(4-1) ,4X

a-2 a-1
186 <= n < 18 F(w-4).1, 4X

d-1 4

[image: image70.png]MICROSOFT 8088 FORTRAN-IV Page 66

8.6.3

16 <= n < 190 F(w-4).0,4X

Otherwise Ew.d

I-Conversions

Form: Iw

Only Integer data may be converted by this form of
conversion. w specifies field width.

I-Output:

Values are conver ted to Integer constants.
Negative values are preceded by a minus sign. If
the value does not fill the field, it is right
justified 1in the field and enough preceding blanks
to fill the field are inserted. If the value
exceeds the field width, only the least significant
w-1l characters are output preceded by an asterisk.

Examples:

FORMAT Internal Output
Descriptor Value (b=blank)
I6 - 4281 ‘ bbb281
I6 -23261 ’ -23261
I3 126 126
14 ' -226 -226
I3 1234 *34

I-Input:

A field of w characters is input and converted to

internal integer format. A minus- sign may precede
the integer digits. If a sign is not present, the

value is considered positive.

Integer values in the range -32768 to 32767 are
accepted. Non-leading spaces are treated as zeros.

Examples:
Format Input Internal
Descriptor (b=blank) Value

I4 bl24 124

I4 _ -124 -124

17 bb6732b 67320

I4 ‘ ~1b2b - 1820

HOLLERITH CONVERSIONS

s

PP S S

[image: image71.png]MICROSOFT 8080 FORTRAN-IV Page 67

A-Type Conversion

The form of the A conversion is as follows:

Aw

This descriptor causes unmodified Hollerith
characters to be read 'into or written from a
specified list item.

The maximum number of actual characters which may
be transmitted between internal and external
representations using Aw is four times the number
of storage wunits in the corresponding list item
(i.e., 1 character for logical items, 2 characters
for 1Integer items, 4 characters for Real items and
8 characters for Double Precision items).

A-Qutput:

If w is greater than 4n (where n is the number of
storage units required by the 1list item), the
external output field will consist of w-4n blanks
followed by the 4n characters from the internal
representation. If w is less than 4n, the external
output field will <consist of the leftmost w
characters from the internal representation.

Examples:

Format - Internal Type Output
Descriptor (b=blanks)
Al Al Integer A
A2 AB Integer AB
A3 ABCD Real ABC
A4 ABCD Real ABCD
A7 ' ABCD Real ‘ bbbABCD
) A-Input:

If w is greater than 4n (where n is the number of
storage units regquired by the corresponding list
item), the rightmost 4n characters are taken from
the external input field. If w is less than 4n,
the w characters appear left justified with w-4n
trailing blanks in the internal representation. '

Examples:

Format Input Type Internal
Descriptor Characters ‘ _ {b=blanks)
Al A : Integer Ab

A3 ABC Integer AB

[image: image72.png]MICROSOFT 8088 FORTRAN-IV Page 68

a4 ABCD Integer AB i
al A ' Real Abbb (
A7 ABCDEFG Real DEFG :

H-Conversion

The forms of H conversion are as follows:
nHEhlh2...hn
‘hih2.. .hn'

These descriptors process Hollerith character
strings between the descriptor and the external
field, where each h represents any character from
the ASCII character set.

NOTE

Special consideration is required if an

apostrophe (') 1is to be used within the

literal string in the second form. An

apostrophe character within the string is
"represented by two successive apostrophes.

See the examples below. (

H-Output:

The n characters hi, are placed in the external
field. In the nHhlh2...hn form the number of
characters in the string must be exactly as
specified by n. Otherwise, characters from other
descriptors will be taken as part of the string.
In both forms, blanks are counted as characters.

Examples: ’ -
Format Output

Descriptor (b=blanks)]
1HA or 'A' A i
8HbSTRINGD or 'bSTRINGD' bSTRINGb
11HX(2,3)=12.0 or 'X(2,3)=12.0" X(2,3)=12.0
12HIbSHOULDN'T or 'IbSHOULDN''T' IbSHOULDN'T

H-Input

The n characters of the string hi are replaced by
the next n characters from the input record. This (

resul?s in a new string of characters in the field
descriptor.

[image: image73.png]MICROSOFT 8080 FORTRAN-IV Page 69 3

FORMAT " Input - Resultant

Descriptor (b=blank) Descriptor
401234 or 'l1234" ABCD 4HABCD or ‘'ABCD'
7HbbFALSE or 'bbFALSE' bFALSEb 7HbFALSEb or ‘'bFALSED'
6Hbbbbbb or 'bbbbbb' MATRIX 6HMATRIX or 'MATRIX'

8.6.4 LOGICAL CONVERSIONS

The form of the logical conversion is as follows:
Lw
L-Output:

If the wvalue of an item in an output list
corresponding to this descriptor is 8, an F will be

output; otherwise, a T will be output. If w is
greater than 1, w-1 leading blanks precede the
letters. :
Examples:
FORMAT Internal Output
Descriptor Value (b=blank)
L1l =p F
Ll 2O T
L5 <>0 ‘ bbbbT
L7 =P bbbbbbF
L-Input

The external representation occupies w positions.
It consists of optional blanks followed by a "T" or
"F", followed by optional characters. :

8.6.5 X DESCRIPTOR o

The form of X conversion is as follows:

nX
This descriptor causes no conversion to occur, nor
does it correspond to an item in an input/output
list. When used for output, it causes n blanks to
be inserted in the output record. Under input
circumstances, this descriptor causes the next -n
characters of the input record to be skipped.

Output Examples:

FORMAT Statement o Output

[image: image74.png]W

MICROSOFT 8888 FORTRAN-IV Page 70
({b=blanks)
- 3 FORMAT (1HA,4X,2HBC) AbbbbBC (
O 7 FORMAT (3X,4HABCD,1X) bbbABCDb

Input Examples:

FORMAT Statement Input String Resultant Input P

1p FORMAT (F4.1,3X,F3.0) 12.5ABC120 12.5,120
5 FORMAT (7X,I3) 1234567012 912

8.6.6 P DESCRIPTOR

The P descriptor is wused to specify a scaling
factor for real conversions (F, E, D, G). The form
is nP where n is an integer constant (positive,
negative, or zero).

The scaling factor is automatically set to zero at
the beginning of each formatted I1/0 call (each READ
or WRITE statement). If a P descriptor is
encountered while scanning a FORMAT, the scale
factor is changed to n. The scale factor remains
changed wuntil another P descriptor is encountered
or the I/0 terminates.

.
o Effects of Scale Factor on Input: (

During E, F, or G input the scale factor takes
effect only if no exponent 1is ©present in the
external representation. In that case, the
internal value will be a factor of 18**n less than
the external value (the number will be divided by
18**n before being stored).

Effect of Scale Factor on OQutput:

E-Output, D=Output:

The coefficient is shifted left n places relative ;
to the decimal point, and the exponent is reduced i
by n (the value remains the same). f

F-Output:
The external value will be 18**n times the internal
value.)
G-Output: j
- ' The scale factor is ignored if the internal value V
(;/ is small enough to be output using F conversion. (b

Otherwise, the effect is the same as for E output.) 3

[image: image75.png]MICROSOFT 8088 FORTRAN-IV .. . Page 71

) 8.6.7 SPECIAL CONTROL FEATURES OF FORMAT STATEMENTS
Q;/ 8.6.7.1 Repeat Specifications
1. The E, F, D, G, I, L and A field descriptcrs

may be indicated as repetitive descriptors by
using a repeat count r in the form rEw.d,
rFfw.d, rGw.d, rIw, rLw, rAw. The following
pairs of FORMAT statements are eguivalent:

66 FORMAT (3F8.3,F9.2)
C IS EQUIVALENT TO:
66 FORMAT (F8.3,F8.3,F8.3,F9.2)

14 FORMAT (2I3,2A5,2E18.5)
C IS EQUIVALENT TO:
14 FORMAT (I3,I3,A5,A5,E10.5,E10.5)

Repetition of a group of field descriptors is
accomplished by enclosing the group 1in
parentheses preceded by a repeat count.
Absence of a repeat count indicates a count of
one. Up to two levels of parentheses,
including the parentheses reguired by the
FORMAT statement, are permitted.

Note the following equivalent statements:

22 FORMAT (I3,4(F6.1,2X))
C IS EQUIVALENT TO:
22 FORMAT (I3,F6.1,2X,F6.1,2X,F6.1,2X,
1 F6.1,2X)

Repetition of FORMAT descriptors is also
initiated when all descriptors in the FORMAT
statement have been used but there are still
items in the input/output list that have not
been processed. When this occurs the FORMAT
descriptors are re-used starting at the opening
parenthesis that matches the 1last closing
parenthesis in the FORMAT statement. The
parentheses enclosing the entire list of
descriptors are not considered unless there are
no other parentheses in the 1list. A repeat
count preceding the parenthesized descriptor (s)
to be re-used is also active in the re-use.
This type of repetitive use of FORMAT
descriptors terminates processing of the
current record and initiates the processing of
a new record each time the re-use begins.
Record demarcation under these circumstances is

[image: image76.png]MICROSOFT 8088 FORTRAN-IV Page 72

8.6.7.2

L

the same as in the paragraph 8.7.6.2 below.

Input Example:
DIMENSION A(100)
READ (3,13) A

13 FORMAT (5F7.3)

In this example, the first 5 quantities from each
of 2@ records are input and assigned to the array
elements of the array A.

Output Example:

WRITE (6,12)E,F,K,L,M,KK,LL,MM,K3,LE,
1 M3

12 FORMAT (2F9.4,(317))

In this example, three records are written. Record
1 contains E, F, K, L and M. Because the
descriptor 3I7 is reused twice, Record 2 contains
KK, LL and MM and Record 3 contains K3, L3 and M3.

Field Separators

Two adjacent descriptors must be séparated in the
FORMAT statement by either a comma or one or more
slashes. -

Examgie:
2HﬂK/F6.3 or 2HPAK,F6.3

The slash not only separates field descrlptors, but
it also specifies the demarcation of formatted
records.

Each slash terminates a record and sets up the next
record for processing. The remainder of an input
record is ignored; the remainder of an output
record is- filled with blanks. Successive slashes
(///.../) cause successive records to be ignored on
input and successive blank records to be written on
output. :

'/‘\

FERRP R 5 v

[image: image77.png]MICROSOFT 8088 FORTRAN-IV Page 73

Output example:
DIMENSION A(180),J(20)

WRITE (7,8) J,A
8 FORMAT (1617/1017/56F7.3/50F7.3)

In this example, the data specified by the list of
the WRITE statement are output to unit 7 according
to the specifications of FORMAT statement 8. Four

records are written as follows:

Record 1 Record 2 Record 3 Record 4
J (1) J(1l1) A(l) A(51)
J(2) J(12) ~ A(2) A(52)
J(10) J28) A (58) A(100)

Input Example:

DIMENSION B(10)

READ (4,17) B
17 FORMAT (F10.2/F10.2///8F10.2)

In this example, the two array elements B{(l) and
B(2) receive their wvalues from the first data
fields of successive records (the remainders of the
two records are ignored). The third and fourth
records are ignored and the remaining elements. of
the array are filled from the fifth record.

8.6.8 FORMAT CONTROL, LIST SPECIFICATIONS AND RECORD

DEMARCATION
The following relationships and interactions

between FORMAT control, input/output 1lists and
record demarcation should be noted:

1. Execution of a formatted READ or WRITE
statement initiates FORMAT control.

2. The conversion performed - on data depends on
information jointly provided by the elements in
the input/output list and field descriptors in
the FORMAT statement.

[image: image78.png]MICROSOFT 8888 FORTRAN-IV , . Page 74

3'

If there is an input/output 1list, at least one
descriptor of types E, F, D, G, I, L or A must
be present in the FORMAT statement.

Each execution of a formatted READ statement
causes a new record to be input.

Each item in an input . 1list corresponds to a
string of <characters in the record and to a
descriptor of the types E, F, G, I, L or A in
the FORMAT statement.

H and X descriptors communicate information
directly between the external record and the
field descriptors without reference to 1list
items.

On input, whenever a slash 1is encountered in
the FORMAT statement or the FORMAT descriptors
have been exhausted and re-use of descriptors
is initiated, processing of the current record
is terminated and the following occurs:

a. Any unprocessed characters in the record
are ignored.

b. If more input is necessary to satisfy
list requirements, the next record is
read.

A READ statement is terminated when all items
in the input list have been satisfied if:

a. The next FORMAT descriptor is E, F, G, I,
L or A.

b. The FORMAT control has reached the last
outer right parenthesis of the FORMAT
statement.

If the input list has been satisfied, but the
next FORMAT descriptor is H or X, more data are
processed (with the possibility of new records
being input) until one of the above conditions
exists.

If FORMAT control reaches the 1last right
parenthesis of the FORMAT statement but there
are more list items to be processed, all or
part of the descriptors are reused. (See item

3 in the description of Repeat § ifi i
ecif
sub-paragraph 8.7.6.1) ® pecitications,

-

B s ot ARVl gn e

[image: image79.png]W

MICROSOFT 8088 FORTRAN-IV Page 75

. _ 19. When a Formatted WRITE statement 1is executed,
Ry) records are written each time a slash is
‘\C encountered in the FORMAT statement or FORMAT
: control has reached the rightmost right
parenthesis. The FORMAT control terminates in !
one of the two methods described for READ
termination in 8 above. 1Incomplete records are

filled with blanks to maintain record lengths.

8.6.9 FORMAT CARRIAGE CONTROL
The first character of every formatted output
record is used to convey carriage control
information to the output device, and is therefore
never printed. The carriage control -character

determines what action will be taken before the
line is printed. The options are as follows:

Control Character Action Taken Before Printing

] Skip 2 lines
1 Insert Form Feed
+ No advance
Other Skip 1 line
(v/ 8.6.10 FORMAT SPECIFICATIONS lg ARRAYS

The FORMAT reference, £, of a formatted READ or
WRITE statement (See 8.1) may be an array name
instead of a statement label. 1If such reference is
made, at the time of execution of the READ/WRITE
statement the first part of the information
contained in the array, taken in natural order,
must constitute a valid FORMAT specification. | The
array may contain non-FORMAT information following
the right parenthesis that ends the FORMAT
specification.

The FORMAT specification which is to be inserted in
the array has the same form as defined for a FORMAT
statement (i.e., it begins with a left parenthesis
and ends with a right parenthesis).

The FORMAT specification may be inserted in the
array by use of a DATA initialization statement, or

by use of a READ statement together with an Aw
FORMAT. Example:

Assume the FORMAT specifiéation
C (3F10.3,416)

or a similar 12 chatactér_specification is to be

[image: image80.png]MICROSOFT 8080 FORTRAN-IV Page 76

stored into an array. The array must allow a
minimum of 3 storage units.

The FORTRAN coding below shows the various methods
of establishing the - FORMAT specification and then
referencing the array for &a formatted READ or
WRITE.

C DECLARE A REAL ARRAY
DIMENSION A(3), B(3), M(4)

C INITIALIZE FORMAT WITH DATA STATEMENT
DATA A/'(3F1','6.3,','416)"'/

C READ DATA USING FORMAT SPECIFICATIONS
C IN ARRAY A
READ(6,A) B, M

C DECLARE AN INTEGER ARRAY
DIMENSION IA(4), B(3), M(4)

C READ FORMAT SPECIFICATIONS
READ (7,15) IAa
C FORMAT FOR INPUT OF FORMAT SPECIFICATIONS
15 FORMAT (4A2)

C READ DATA USING PREVIOUSLY INPUT
C FORMAT SPECIFICATION
READ (7,IA) B,M

N

[image: image81.png]LW

MICROSOFT 8888 FORTRAN-IV Page 77 i

SECTION 9

((J; ' FUNCTIONS AND SUBPROGRAMS
The FORTRAN language provides a means for defining and using
often needed programming orocedures such that the statement
or statements of the procedures need appear in a program
only once but may be referenced and brought into the logical
execution sequence of the program whenever and as often as
needed.

These procedures are as follows:

1. Statement functions.
2, Library functions.
3. FUNCTION subprograms.

4. SUBROUTINE subprograms.

Each of these procedures has its own unique requirements for

reference and defining purposes. These requirements are
~ discussed in subsegquent paragraphs of this section.
((,/ However, certain features are common to the whole group or

to two or more of the procedures. These common features are
as follows:

1. Each of these procedures is referenced by its name
which, in all cases, 1is one to six alphanumeric
characters of which the first is a letter.

2. The first three are designated as “functions" . and
are alike in that:

l. They are always single valued (i.e., they
return one value to the program unit from which
they are referenced).

2. They are referred to by an expression
containing a function name.

3. They must be typed by type specification
statements if the data type of the
single-valued result is to be different from
that indicated by the pre-defined convention.

, 3. FUNC?ION subprograms and SUBROUTINE subprograms are
.(_j considered program units.

[image: image82.png]e,
MICROSOFT 8080 FORTRAN-IV . ‘ Page 78

In the following descriptions of these procedures, the term
_ calling program means the program unit or procedure in which (;
(// a reference to a procedure is made, and the term “"called ’ :
program" means the procedure to which a reference is made.

9.1 THE PROGRAM STATEMENT

The PROGRAM statement provides a means of
specifying a name for a main program unit. The
form of the statement is:

PROGRAM name

If present, the PROGRAM statement must appear
before any other statement in the program unit.
The name consists of 1-6 alphanumeric characters,
the first of which is a letter. If no PROGRAM
statement 1is present in a main ©program, the
compiler assigns a name of $MAIN to that program.

9.2 STATEMENT FUNCTIONS

Statement functions are defined by a single

arithmetic or logical assignment statement and are

relevant only to the program wunit in which they (
(./ appear. The general form of a statement function

is as follows:

f(al,a2,...an) = e

where f is the function name, the ai are dummy
arguments and e is an arithmetic or 1logical
expression.

Rules for ordering, structure and use of statement
functions are as follows:

1. Statement function definitions, if they exist
in a program unit, must precede all executable
statements in the unit and follow all
specification statements. '

2. The ai are distinct variable names or array
elements, but, being dummy variables, they may
have the came names as variables of the same
type appearing elsewhere in the program unit.

3. The expression e is constructed according to
the rules in SECTION 4 and may contain only
‘ references to the dummy arguments and ,
(_/ ' non-Literal constants, variable and array (
element references, wutility and mathematical '
function references and references to

[image: image83.png]{@

MICROSOFT 8080 FORTRAN-IV . : : Page 79

previously defined statement functions.

4. The type of any statement function name or
argument that differs from its pre-defined
convention type must be defined by a type
specification statement.

5. The relationship between f and e must conforh
to the replacement rules in Section 5.

6. A statement function 1is called by its name
followed by a parenthesized list of arguments.
The expression is evaluated using the arguments
specified in the <call, and the reference is
replaced by the result. :

7. The ith parameter in every argumeht list must
agree in type with the ith dummy in the
statement function.

The example below shows a statement function and a
statement function call.

C STATEMENT FUNCTION DEFINITION

C
FUNC1(A,B,C,D) = ((A+B)**C)/D

C STATEMENT FUNCTION CALL
C ,
Al2=A1-FUNC1l (X,Y,27,C7)

LIBRARY FUNCTIONS

Library functions are a group 'of utility and.
mathematical functions which are "built-in" to the
FORTRAN system. Their names a pre-defined to the
Processor and automatically typed. The functions
are listed in Tables 9-1 and 9-2. In the tables,
arguments are denoted as al,a2,...,an, if more than
one argument is required; or as a if only one is

‘required.

A library function is called when its name is used
in an arithmetic expression. Such a reference
takes the following form:

 f(al,a2,...an)

where £ is the name of the function and the ai éte

actual arguments. The arguments must agree in

type, number and order with the specifications

indicated in Tables 9-1 and 9-2.

[image: image84.png]MICROSOFT 8088 FORTRAN-IV Page 80

In addition to the functions listed in 9-1 and 9-2,
four additional library subprograms are provided to
enable direct access to the 8088 (or 288) hardware.
These are:

PEEK, POKE, INP, OUT

PEEK and INP are Logical functions; POKE and OUT
are subroutines. PEEK and POKE allow direct access
to any memory location. PEEK(a) returns the
contents of the memory 1location specified by a.
CALL POKE (al,a2) causes the contents of the memory
location specified by al to be replaced by the
contents of a2. INP and OUT allow direct access to
the I/0 ports. INP(a) does an input from port a

and returns the 8-bit value input. CALL OUT (al,a2) ..

outputs the value of a2 to the port specified by
al.)

Examples:
Al = B+FLOAT (17)
MAGNI = ABS (KBAR)
PDIF = DIM(C,D)
S3 = SIN(T12)

ROOT = (-B+SQRT (B**2-4.,*a*C))/
: (2.%*A)

e

[image: image85.png]MICROSOFT 8488 FORTRAN-IV

Function Name

— - —— — o

ABS
IABS
DABS

AINT
INT
IDINT

AMOD
MOD

AMAXD
AMAX1
MAX®
MAX1
DMAX1

AMING
AMIN1
MING
MIN1
DMINI1

FLOAT
IFIX

SIGN

ISIGN

DSIGN

DIM
IDIM

SNGL

DBLE

TABLE 9-1

Intrinsic Functions

Definition

Sign of a times lar-
gest integer <=]al

al (mod a2)

Max(al,a2,...)

Min(al,a2,...)

Conversion from
Integer to Real

Conversion from

-Real to Integer

Sign of a2 times |all

al - Min(al,a2)

Types
Argument

Real
Integer
Double

Real
Real
Double

Real
Integer

Integer
Real
Integer
Real
Double

Integer
Real
Integer
Real
Double

Integer

Real

Real
Integer
Double

Real
Integer

Double

Real

Function

Real
Integer
Double

Real
Integer
Integer

Real
Integer

Real
Real
Integer
Integer
Double

Real
Real
Integer

Integer

Double

Real

Integer

Real
Integer
Double

Real
Integer

Real

Double

Page 81

[image: image86.png]MICROSOFT 8088 FORTRAN-IV

Name

EXP
DEXP

ALOG
DLOG

ALOG1#9
DLOG1#9

SIN
DSIN

CcOos
DCOS

TANH

SQRT
DSQRT

ATAN
DATAN

ATAN2
DATANZ2

DMOD

Number
of
Arguments.

W W

o b e e e et

NN

[V]

Page 82

TABLE 9-2

Basic External Functions

Definition

—— ——— g -~ — ——

ln (a)

logld (a)
sin (a)
cos (a)

tanh (a)
(a) ** 1/2

arctan (a)

arctan (al/a2)

"al(mod a2)

Type
Argument Function
Real Real
Double Double
Real Real
Double Double
Real Real
Double Double
Real Real
Double Double
Real Real
Double Double
Real Real
Real Real
Double Double
Real Real
Double Double
Real Real
Double Double
Double : Double

[image: image87.png]@

MICROSOFT 8080 FORTRAN-1IV Page 83

9.4 FUNCTION SUBPROGRAMS

A program unit which begins with a FUNCTION
statement is called a FUNCTION subprogram.

A FUNCTION statement has one of the following
forms:

t FUNCTION £(al,a2,...an)
or -
FUNCTION f(al,a2,...an)
where:

l. t is either INTEGER, REAL, DOUBLE PRECISION or
LOGICAL or 1is empty as shown in the second
form.

2. f is the name of the FUNCTION subprogram. :
3. The ai are dummy arguments of which there . must
be at 1least one and which represent variable

names, array names or dummy names of SUBROUTINE
or other FUNCTION subprograms.

9.5 CONSTRUCTION OF FUNCTION SUBPROGRAMS

Construction of FUNCTION subprograms must comply
with the following restrictions:

l. The FUNCTION statement must be the first
statement of the program unit.

2. Within the FUNCTION subprogram, the FUNCTION
name must appear at least once on the left side
of the equality sign of an assignment statement
or as an item in the input list of an input
statement. This defines the wvalue of the
- FUNCTION so that it may be returned to the
calling program.

Additional values may be returned to the
calling program through assignment of values to
dummy arguments.

Example:
FUNCTION Z7(A,B,C)

27 = 5.%(A-B) + SQRT(C)

[image: image88.png]MICROSOFT 8088 FORTRAN-IV Page 84

9.6

C REDEFINE ARGUMENT
B=B+Z7

RETURN

END

The names in the dummy argument list may not appear
in EQUIVALENCE, COMMON or DATA statements in the
FUNCTION subprogram.

If a dummy argument is an array name, then an array
declarator must appear 1in the subprogram with
dimensioning information consistant with that in
the calling program.

A FUNCTION subprogram may contain any defined
FORTRAN statements other than BLOCK DATA
statements, SUBROUTINE statements, another FUNCTION
statement or any statement which references either
the FUNCTION being defined or another subprogram
that references the FUNCTION being "defined.

The logical termination of a FUNCTION subprogram is
a RETURN statement and there must be at least one
of them.

A FUNCTION subprogram must physically terminate

with an END statement.

Examgle:r

FUNCTION SUM (BARY,I,J)
DIMENSION BARY (10,20)
SUM = 0.0
DO 8 K=1,I
pog M =1,J

8 SUM = SUM + BARY(K,M)
RETURN
END

REFERENCING A FUNCTION SUBPROGRAM

FUNCTION subprograms are called whenever the
FUNCTION name, accompanied by an argument list, is

[image: image89.png]MICROSOFT 8088 FORTRAN-IV Page 85

9.7

used as an operand in an expression. Such
references take the following form:

f(al,a2,...,an)

where f is a FUNCTION name and the ai are actual
arguments. Parentheses must be present in the form
shown.

The arguments ai must agree in type, order and
number with the dummy arguments in the FUNCTION
statement of the called FUNCTION subprogram. They
may be any of the following: :

1. A variable name.

2. An array element name.

3. An array name.,

4. An expression.

5. A SUBROUTINE or FUNCTION subprogram name.
6. A Hollerith or Literal constant.

If an ai is a subprogram name, that name must have
previously been distinguished from ordinary
variables by appearing in an EXTERNAL statement and
the corresponding dummy arguments in the called
FUNCTION subprograms must be used in subprogram
references.

If ai is a Hollerith or Literal constant, the
corresponding dummy variable should encompass
enough storage units to correspond exactly to the
amount of storage needed by the constant.

When a FUNCTION subprogram is called, :program
control -goes +to the -first executable statement
following the FUNCTION statement. .

The following examples show references to FUNCTION
subprograms. .

z19 = FT1+4+Z27(D,T3,RHO)

DIMENSION DAT (5,5)

Sl = TOTl + SUM(DAT,S5,5)

SUBROUTINE SUBPROGRAMS

T

e e

S R A A

SRS S

e gt

[image: image90.png]MICROSOFT 8088 FORTRAN-IV Page 86

9.8

A program unit which begins with a SUBROUTINE
statement 1is called a SUBROUTINE subprogram. The
SUBROUTINE statement has one of the following
forms:

SUBROUTINE s (al,a2,...,an)

or

SUBROUTINE s

where s is the name of the SUBROUTINE subprogram
and each ai is a dummy argument which represents a

variable or array name or another SUBROUTINE or
FUNCTION name.

CONSTRUCTION OF SUBROUTINE SUBPROGRAMS

The SUBROUTINE statement must be the first statement
of the subprogram.

The SUBROUTINE subprogram name must not appear in
any statement other than the initial SUBROUTINE
statement.

The dummy argument names must not appear in
EQUIVALENCE, COMMON or DATA statements in the
subprogram.

If a dummy argument is an array name then an array
declarator must appear in the subprogram with
dimensioning information consistant with that in the
calling program.

If any of the dummy arguments represent values that
are to be determined by the SUBROUTINE subprogram
and returned to the calling program, these dummy
arguments must appear within the subprogram on the
left side of the -equality sign- in a replacement
statement, 1in the input list of an input statement
or as a parameter within a subprogram reference.

A SUBROUTINE may contain any FORTRAN statements
other than BLOCK DATA statements, FUNCTION
statements, another SUBROUTINE statement, a PROGRAM
statement or any statement which references the
SUBROUTINE subprogram being defined or another
subprogram which references the SUBROUTINE
subprogram being defined.

A SUBROUTINE subprogram may contain any number of
RETURN statements. It must have at least one.

s

SR AR <y

TR

o

e+

S e B Ly

[image: image91.png]MICROSOFT 8980 FORTRAN-IV ' . , Page 87

10.

The RETURN statement(s) is the 1logical tdrmination
point of the subprogram.

The physical termlnatlon of a SUBROUTINE subprogram
is an END statement.

If an actual argument transmitted to a SUBROUTINE
subprogram by the calling program is the name of a
SUBROUTINE or FUNCTION subprogram, the corresponding
dummy argument must be used in the called SUBROUTINE
subprogram as a subprogram reference.

Example:
C SUBROUTINE TO COUNT POSITIVE ELEMENTS
C IN AN ARRAY

SUBROUTINE COUNT P (ARRY,I,CNT)
DIMENSION ARRY(7)
CNT = @
DO 9 J=1,1I
IF(ARRY (J))9,5,5
9 CONTINUE
RETURN
5 CNT = CNT+1.0
GO TO 9
END

REFERENCING A SUBROUTINE SUBPROGRAM

A SUBROUTINE subprogram may be called by using a
CALL statement. A CALL statement has one of the
following forms:

CALL s(al,a2,...,an)
‘or
CALL -s

where s is a SUBROUTINE subprogram name and the ai
are the actual arguments to be wused by the
subprogram. The ai must agree in type, order and
number with the corresponding dummy arguments in
the subprogram-defining SUBROUTINE statement.

The arguments in a CALL statement must comply with
the following rules:

1. FUNCTION and SUBROUTINE names appearing in the
. argument 1list must have prev1ously appeared in
an EXTERNAL statement.

[image: image92.png]MICROSOFT 8888 FORTRAN-IV , . Page 88

9.10

2. If the called SUBROUTINE subprogram contains a
var iable array declarator, then the CALL
statement must contain the actual name of the
array and the actual dimension specifications
as arguments.

3. 1If an item in the SUBROUTINE subprogram dummy
argument 1list 1is an array, the corresponding
item in the CALL statement argument 1list must
be an array. :

When a SUBROUTINE subprogram is called, program
control goes to the first executable statement
following the SUBROUTINE statement.

ExamEle:
DIMENSION DATA(19)

C THE STATEMENT BELOW CALLS THE
Cc SUBROUTINE IN THE PREVIOUS PARAGRAPH
C

CALL COUNTP (DATA,18,CPOS)

RETURN FROM FUNCTION AND SUBROUTINE SUBPROGRAMS

The logical termination of a FUNCTION or SUBROUTINE
subprogram is a RETURN statement which transfers
control back to the calling program. The general
form of the RETURN statement is simply the word

RETURN

The following rules govern the use of the RETURN
statement: - -

1. There must be at least one RETURN statement in
each SUBROUTINE or FUNCTION subprogram.

2. RETURN from a FUNCTION subprogram is to the
instruction sequence of the <calling program
following the FUNCTION reference.

3. RETURN from a SUBROUTINE subprogram is to the
next executable statement in the calling
program which would logically follow the CALL
statement.

4. Upon return from a FUNCTION subprogram the
single-valued result of the subprogram is
available to the evaluation of the expression
from which the FUNCTION call was made.

[image: image93.png]MICROSOFT 8080 FORTRAN-IV Page 89

5. Upon return from a SUBROUTINE subprogram the
values assigned to the arguments in the
SUBROUTINE are available for use by the calling
program.

Example:
Calling Program Unit

CALL SUBR(29,B7,R1)

Called Program Unit

SUBROUTINE SUBR(A,B,C)
READ(3,7) B
A = B**C
RETURN
7 FORMAT (F9.2)
END

In this example, 29 and B7 are made available to
the calling program when the RETURN occurs.

PROCESSING ARRAYS IN SUBPROGRAMS

If a calling program passes an array name to a
subprogram, the subprogram must contain the
dimension information pertinent to the array. A
subprogram must contain array declarators if any of
its dummy arguments represent arrays or array
elements. ' - '

For example, a FUNCTION subprogram designed to
compute the average of the elements of any one
dimension array might be the folowing:

Calling Program Unit

DIMENSION 21(50),22(25)

Al = AVG(Z1,580)

[image: image94.png]MICROSOFT 8880 FORTRAN-IV ‘ , Page 90
- .

A2 = Al-AVG(Z2,25)
. (

Called Program Unit

FUNCTION AVG (ARG, 1I)
DIMENSION ARG (58)
SUM = 0.0
DO 26 J=1,1

20 SUM = SUM + ARG(J)
AVG = SUM/FLOAT(I)
RETURN
END

Note that actual arrays to be processed by the
FUNCTION subprogram are dimensioned in the calling
program ~and the array names and their actual
dimensions are transmitted to the FUNCTION
subprogram by the FUNCTION subprogram reference.
The FUNCTION subprogram itself contains a dummy
array and specifies an array declarator.

Dimensioning information may also be passed to the
subprogram in the paramater list. For example:

Calling Program Unit (T

DIMENSION A(3,4,5) i

CALL SUBR(A,3,4,5)

END
Called Program Unit

SUBROUTINE SUBR(X,I,J,K)
DIMENSION X(I,J,K)

* i

RETURN
END

It is valid to use variable dimensions only when

the array name and all of the variable dimensions

are dummy arguments. The variable dimensions must .
be type 1Integer. It is invalid to change the (
values of any of the variable dimensions within the)
called program.

[image: image95.png]((_/

MICROSOFT 8088 FORTRAN-IV Page 91

9.12

BLOCK DATA SUBPROGRAMS

A BLOCK DATA subprogram has as its only purpose the
initialization of data in a COMMON block during
loading of a FORTRAN object program. BLOCK DATA
subprograms begin with a BLOCK DATA statement of
the following form:

BLOCK DATA [subprogram-name]

and end with an END statement. Such subprograms
may contain only Type, EQUIVALENCE, DATA, COMMON
and DIMENSION statements and are subject to the
following considerations:

1. 1If any element in a COMMON block 1is to be

initialized, all elements of the block must be

~listed in the COMMON statement even though they
might not all be initialized.

2. Initialization of data in more than one COMMON
block may be accomplished in one BLOCK DATA
subprogram.

3. There may be more than one BLOCK DATA
subprogram loaded at any given time. :

4. Any particular COMMON block item should only be
initialized by one program unit.

Example:

BLOCK DATA

LOGICAL Al
COMMON/BETA/B(3,3) /GAM/C (4)
COMMON/ALPHA/AL1,C,E,D

paTa B/1.1,2.5,3.8,3*4.96,
12*¢.52,1.1/,C/1.2E0,3*4.08/
DATA Al/.TRUE/,E/-5.6/

[image: image96.png]MICROSOFT 8288 FORTRAN-IV) A Page 92

APPENDIX A

Language Extensions.and Restrictions

The FORTRAN-80 language includes the following extensions to
ANSI Standard FORTRAN (X3.9-1966). :

1.

2.

9.

If ¢ is used in a 'STOP c' or 'PAUSE c' statement,
c may be any six ASCII characters.

Error and End-of-File branches may be specified in
READ and WRITE statements using the ERR= and END=
options.

The standard subprograms PEEK, POKE, INP, and OUT
have been added to the FORTRAN library.

Statement functions may use subscripted variables.

Hexadecimal constants may be used wherever Integer
constants are normally allowed.

The 1literal form of Hollerith data (character
string between apostrophe characters) is permitted
in place of the standard nH form.

Holleriths and Literals are allowed in expressions
in place of Integer constants.

There 1is no restriction to the number of
continuation lines.

Mixed mode expressions and assignments are allowed,
and conversions are done automatically.

FORTRAN-80 places the following restrictions wupon Standard

FORTRAN.

1.

2.

The COMPLEX data type is not implemented. It may
be included in a future release.

The specification statements must appear -“in the
following order:

1. PROGRAM, SUBROUTINE, FUNCTION, BLOCK DATA
2. Type, EXTERNAL, DIMENSION

3. COMMON

%
i

[image: image97.png]MICROSOFT 8088 FORTRAN-IV Page 93

4. EQUIVALENCE
5. DATA

6. Statement Functions

3. A different amount of computer memory is allocated
for each of the data types: 1Integer, Real, Double
Precision, Logical.

4. The equal sign of a replacement statement and the
first comma of a DO statement must appear on the
initial statement line.

Descriptions of these lanquage extensions and restrictions
are included at the appropriate points in the text of this
document.

[image: image98.png]MICROSOFT 8086 FORTRAN-IV Page 94
APPENDIX B

I/0 Interface

Input/Output operations are table-dispatched to the
driver routine for the proper Logical Unit Number. SLUNTB
is the dispatch table. It contains one 2-byte driver
address for each possible LUN. It also has a one-byte entry
at the beginning, which contains the maximum LUN plus one.
The initial run-time package provides for 18 LUN's (1 - 10),
all of which correspond to the TTY. Any of these may be
redefined by the user, or more added, simply by changing the
appropriate entries in SLUNTB and adding more drivers. The
runtime system wuses LUN 3 for errors and other user
communication. Therefore, LUN 3 should correspond to the
operator <console. The initial structure of SLUNTB is shown
in the listings following this appendix.

The device drivers also contain local dispatch tables.

Note that S$LUNTB contains one address for each device, yet
there are really seven possible operations per device:.

l) Formatted Read
2) Formatted Write
3) Binary Read

4) Binary Write

5) Rewind

6) Backspace

7) Endfile

Each device driver contains up to seven routines. The
starting addresses of each of these seven routines are
placed at the beginning of the driver, in the exact order
listed above. The entry in $LUNTB then points to this local
table, and the runtime system indexes into it - to get the
address of the appropriate routine to handle the requested
I/0 operation. :

The following conventions apply to the individual 1I/0

routines: '

1. Location $BF contains the data buffer address for
READs and WRITEs.

2. For a WRITE, the number of bytes to write 1is in
location $BL.

3. For a READ, the number of bytes read should be
returned in S$BL. ’

[image: image99.png]MICROSOFT 8080 FORTRAN-IV Page 95

4.

All I/0 operations set the condition codes before
exit to indicate an error condition, end-of-file
condition, or normal return:

a) Cy=1, z=don't care - I/O error
b) CY¥=0, Z=0 - end-of-file encountered
c) CY=8, Z=1 - normal return

The runtime system checks the condition codes after
calling the driver. 1If they indicate a non-normal
condition, control is passed to the label specified
by "ERR=" or "END=" or, if no label is specified, a
fatal error results.

$IOERR is a global routine which prints an “"ILLEGAL
I/0 OPERATION" message (non-fatal). This routine
may be wused if there are some operations not
allowed on a particular device (i.e. Binary I/0 on
a TTY). ~

NOTE

The I/0 buffer has a fixed maximum 1length
of 132 bytes wunless it is changed at
installation time. 1If a driver allows an
input operation to write past the end of
the buffer, essential runtime variables may
be affected. The consequences are
unpredictable.

The listings following this appendix contain an example

driver

for ‘a TTY. REWIND, BACKSPACE, and ENDFILE are

implemented as No-Ops and Binary I/0 as an error. This 1is.
the TTY driver provided with the runtime package.

[image: image100.png]MACS0 1.0 PAGE 1

gg%gg ; TTY I/0 DRIVER
00300 EXT IOERR, $BL SBF, SERR, STTYIN, $TT
0@4A7 IRECER EQUJ 3 NPUT RECORD TOO 1ONG
29500 ENTRY $DRV3

9013 ' @0609 SDRV3: DW DRV3FR ;FORMATTED READ

0642 09790 DW DRV3FW ;FORMATTED WRITE

0610 ° 20800 DW DRV3BR ;BINARY READ

0610 00990 DW DRV3BW ;BINARY WRITE

@goE ' 21000 DW DRV3RE ;REWIND

QO0E 31100 DW DRV3BA ;BACKSPACE

0O0E * 21200 DW DRV3EN ;ENDFILE

AF p1368 DRV3EN: XRA A *THESE OPERATIONS ARE
#1400 :NO-OPS FOR TTY
91568 DRV3RE BQU DRV3EN

o g%ggg DRV3BA EOU DRV3EN

C3 pueg * 31808 DRV3BW: JMP SIOERR ;ILLEGAL OPERATIONS
31908 : (PRINT ERROR AND RETURN)
@2000 DRV3BR BQU DRV3BW

AF 02188 DRV3FR: XRA A sREAD

32 gUgo * 32200 STA BL :2ERO BUFFER LENGTH

CD #4820 * 22300 DRV3l: CALL ;INPUT A CHAR

E6 7F 92400 ANI 177 :AND OFF PARTTY

FE #A__ #2500 CPI 1B :IGNORE LINE FEEDS

CA 9017 ° 32609 Jz DRV31

FS 92700 PUSH PSW ;SAVE IT

2A 0015 * 028060 LALD SBL :GET CHAR POSIT IN BUFFER

26 00 32998 H,0 :ONLY 1 BYTE

EB 03060 XCHG

27 0008 * 83100 LHLD - $BF ;GET BUFFER ADDR

19 33200 DAD D D OFFSET

F1 03300 POP PSW 'GET CHAR

77 #3200 MOV M,A ;PUT IT IN BUFFER

13 03500 INX D :INCREMENT SBL

EB 33600 XCHG

22 0623 * 33700 SHLD L ;SAVE IT

FE @D 03800 CPI 15 ;CR?

c8 63900 RZ : YES—DONE

7D 040300 MOV A,L :SBL

FE 80 _ 04109 CPI 128 iMAX IS DECIMAL 128

DA 9017 ' 04200 Jc DRV31 :GET NEXT CHAR

CD 2000 * 24300 CALL SERR

12 04400 DB IRECER ;INPUT RECORD TOO LONG

AF 04500 XRA A ;CLEAR FLAGS

c9 34600 RET :

3A 0931 * 84708 = DRV3FW: LDA $BL sBUFFER LENGTH

B7 04800 ORA A .

[image: image101.png]DORSEONDOENHNHDERSD
S EENISESISISISIS SIS ISISTS)
%\oxcno\c\c\mgmmmm
PO T OIO <IN

~sIsI~ISION
ONHIT

0e7A

JOERR
TTYIN
DRV3FR
DRV3RE

DR3FW2

MACS80 1.0
2h 9829 *

2D
CD 0980 *

2B

CA 06979 !
31

C2 0064 '

0c
CD @P4F *
C3 0079 '

OA

CD P@5F *
20

ca 2979 !
30

c2 8979 '
?A

CD 9067 *

CD 8077 *

C3 0978 '

MACB2 1.0

S
0P13' DRV3FW
QOgE' DRV3BA
0679' DR3FW1

2
2

LIS TS TS TS TS TS T IS TS TS TS TS T IS T s TS T TS S T S IS TS TS TS TS TS T Rt o s T
OO ~I~NINIsNINININ IS IS S IOy ooy oOnen oy Ut Utnin iU
NI TR0 00~ IOWULE WINIHTIWO 00 ~JOYUI > W INH RO O ~ IOV W N = SIWW0
SRS ESVRODHE DR ER
[SESISTS SIS LS TS TS LS [o T ha SN [es o Lo s P IS T Tl S L TS L SIS LS TSTS TG TS

PAGE

pB43*
P8O *
042"
000E"
0064

DR3FW1:

DR3FW2:
DRV32:

$BF

DRV3BR
DRV3EN
DRV32

ERR
DRV3
DRV3BW

DRV31

;EMPTY BUFFER
;BUFFER ADDRESS
sDECREMENT LENGTH
;SAVE IT

:CR
sOQUTPUT IT
;GET FIRST CHAR IN BUFFER

;NO LINE FEEDS

;NOT FORM FEED
; FORM FEED
;OUTPUT IT

:LF

;GET CHAR BACK

;NO MORE LINE FEEDS
ENO MORE LINE FEEDS

’

;GET LENGTH BACK
s INCREMENT PTR

;SAVE CHAR COUNT
7GET NEXT CHAR
;INCREMENT PTR
;OUTPUT CHAR
;GET COUNT
;DECREMENT IT
;ONE MORE TIME

[image: image102.png]MAC80 1.0 PAGE
: 00100
C 00200
. 00210
0001 00220
0001 00230
0000 09235
002472
20300
0900 00400
6000 00590
8000 28 0600
0ggL 0000 * 02700
0203 00800
80900
00@3 61000
6203 61100
0003 61200
0003 0000 * 01300
8095 61400
0995 9001 * 81540
0007 01510
0807 0005 * 01600
0009 01602
0809 01604
1685
01686
0909 01608
0909 0007 * 01700
0003 01800
81900
02600
02100
62200
82300
(o8 02400
0028 062500
0908 02600
00P8 0000 * 02700
080D Q00B * 02800
0OOF OOD * 02900
9211 QooF * 03000
0013 0011 * 03100
0015 03200
0015 83300
MAC80 1.0 PAGE
PT oAl .. DSK 0901
SDRV3 @009* LPTDRV @903*

1

sCOMMENT *

; DRIVER ADDRESSES FOR LUN'S 1 THROUGH 18
Lpr EQU 1 ;UNIT 2 IS LPT
DSK EQU 1 _ ;UNITS 6-10 ARE DSK
DTC EQU 7] ;DTC COMMUNICATIONS UNIT 4
ENTRY LUNTB
EXT DRV3
SLUNTB: DB 913 sMAX LUN + 1
DW SDRV3 ;THEY ALL POINT TO SDRV3 FOR NOW
IFF LPT
DW SDRV3
ENDIF
IFT LPT
EXT LPTDRV
DW LPI'DRV
ENDIF
DW SDRV3
IFF DTC
DW SDRV3
ENDIF
IFT DTC
EXT MDRV
DW SCMDRV
ENDIF
DW SDRV3
IFF DSK
DW DRV3
DW DRV3
DW DRV3
DW DRV3 : -
DW DRV3 ('
ENDIF »
IFT DSK
EXT DSKDRV
DW DSKDRV
DW DSKDRV
DW DSKDRV
DW DSKDRV
DW DSKDRV
ENDIF
END
2
SLUNTB 0800°'

DTC 0009
DSKDRV @013*

4

[image: image103.png]MICROSOFT 8887 FORTRAN-IV Page 96

APPENDIX C

Subprogram Linkages

This appendix defines a normal subprogram call as
generated by the FORTRAN compiler. It is included to
facilitate 1linkages between FORTRAN programs and those
written in other languages, such as 8080 Assembly.

‘A subprogram reference with no parameters generates a

simple "CALL" instruction. The corresponding subprogram
should return via a simple "RET." (CALL and RET are 8088
opcodes - see the assembly manual or 8080 reference manual

for explanations.)

A subprogram reference with - parameters results in a
somewhat more complex calling seguence. Parameters are
always passed by reference (i.e., the thing passed is
actually the address of the 1low byte of the actual
argument). Therefore, parameters always occupy two bytes
each, regardless of type.

The method of passing the parameters depends upon the
number of parameters to pass:

1. If the number of parameters is less than or equal
to 3, they are passed in the registers. Parameter
1 will be in HL, 2 in DE (if present), and 3 in BC
(if present).

2. If the number of parameters is greater than 3, they
are passed as follows:

1. Parameter 1 in HL. e Z
2. Parameter 2 in DE.

3. Parameters 3 through n in a contiguous data
block. BC will point to the low byte of this
data block (i.e., to the low byte of parameter
3).

Note that, with this scheme, the subprogram must ° know
how many parameters to expect in order to find them.
Conversely, the calling program is responsible for passing
the correct number of parameters. Neither the compiler nor
the runtime system checks for the correct number of

[image: image104.png]MICROSOFT 80880 FORTRAN-IV . , Page 97

parameters.

If the subprogram expects more than 3 parameters, and
needs to transfer them to a local data area, there is a
system subroutine which will perform this transfer. This
argument transfer routine is named $AT, and is called with
HL pointing to the local data area, BC pointing to the third
parameter, and A containing the number of arguments to
transfer (i.e., the total number of arguments minus 2). The
subprogram is responsible for saving the first two
parameters before calling $AT. For example, if a subprogram
expects 5 parameters, it should look 1like:

SUBR: SHLD Pl ; SAVE PARAMETER 1
XCHG
SHLD P2 ; SAVE PARAMETER 2
MVI A,3 ;NO. OF PARAMETERS LEFT
LXI H,P3 ; POINTER TO LOCAL AREA
CALL SAT ;TRANSFER THE OTHER 3 PARAMETERS

[Body of subprogram]

RET ;RETURN TO CALLER
Pl: DS 2 ;:SPACE -FOR FARAMETER 1
P2: DS 2 ;SPACE FOR PARAMETER 2
P3: DS 6 ; SPACE FOR PARAMETERS 3-5

When accessing parameters in a subprogram, don't forget
that they are pointers to the actual arguments passed.

NOTE

It 1is entirely up to the
programmer to see to it that
the arguments in the calling
program match in number, type,
and length with the parameters
expected by the subprogream.
This applies to FORTRAN

supprograms, as well as those
written in assembly language.

' FORTRAN Functions (Section 9) return their wvalues in
registers or memory. depending upon the type. Logical
results arekreturned in (A), 1Integers in (HL), Reals 1in

[image: image105.png]MICROSOFT 8080 FORTRAN-IV Page 98

memory at $AC, Double Precision in memory at $DAC. S$AC and
$DAC are the addresses of the low bytes of the mantissas.

'@

[image: image106.png]MICROSOFT 8080 FORTRAN-IV

DECIMAL

000
901
002
003
604
065
006
007
908
889
010
611
812
813
814
815
816
017
618
819
020
821
822
923
824
025
826
927
828
829
230
231
832
933
834
35
836
837
838
239
040
841
942

LF=Line Feed

CHAR.

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI1
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESCAPE
FS
GS
RS
Us
SPACE
!

> . =R IO

DECIMAL

943
P44
045
046
047
048
49
850
051
852
053
954
@55
856
857
P58
859
060
6l
P62
063

064

065
P66
g67
P68
P69
870
271
872

873 -

074

875

876

877 .
678

879
080
081
P82
P83
084
085

FF=Form Feed

APPENDIX D

ASCII CHARACTER CODES

CHAR.

-+

-

CHNUOWOUWOZRBRHERUHIONOMDONMODOEIE@ WOV I A « 0O JAUTB WNHFH RN

DECIMAL

P86
287
288
889
908
91
992
P93
094
95
996
897
P98
99
100
101
102
103
104
185
106
187
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Page 99

-

=N X ESCC AN RATO S S HAURTAMMDOLO TN

DEL

CHAR.

Vv

W

X

Y

Z

[

\

|

“ (or %)
(or «)

CR=Carriage Return DEL=Rubout

R

N

[image: image107.png]MICROSOFT 8088 FORTRAN-IV Page 100
APPENDIX E

DISK FILE ACCESS

FORTRAN-80 provides the capability of disk file access
via FORTRAN programs. Logical Unit Numbers 6-13 are
preassigned to disk files. A READ or WRITE to an LUN
automatically OPENSs the file for input or output
respectively, if it is not already open. The file remains
open until closed by an ENDFILE command or until normal
program termination. A file that is OPENed by a READ or
WRITE statement has a default name that depends upon the
operating system:

CPM and
ISIS II: FORT#6.DAT, FORTA7.DAT,..., FORT10.DAT

ALTAIR: FOR@6DAT, FOR07DAT}..., FOR10DAT
DTC: FOR@A6D, FORB7D,..., FOR1OD

In each case the LUN is incorporated into the default file
name. :

Alternatively, a file may be OPENed usingA the OPEN
subroutine. LUNs 1-5 may also be assigned to disk files
with OPEN. The form of an OPEN call is:

CALL OPEN (LUN, Filename, Drive)

where:

LUN = a Logical Unit Number to be associated with the
file (must be an integer, constant or variable with a value

"between 1 and 10).

will associate with the file. The Filename should be a
Hollerith or Literal constant, or a variable or array name,
where the variable or array contains the ASCII name. The

- Filename should be blank filled to exactly the number of

characters allowed by the operating system:
CPM: 11 characters

ALTAIR: 8 characters

DTC: - 6 characters
ISIS I1: 6 characters followed by a "." followed by
a 3-character extension

Filename = -an ASCII name which ‘the opérating system-

[image: image108.png]MICROSOFT 8888 FORTRAN-IV Page 101

, Drive = the number of the disk drive on which the file
exists or will exist (must be an integer, constant or
variable within the range allowed by the operating system).
If the Drive specified is 0, the currently selected drive is
assumed; 1 is drive @8 (or A), 2 is drive 1 (or B), etc.

The OPEN subroutine allows the program to specify a
filename and device to be associated with an LUN, whereas
the default specifies a default name and uses the currently
selected disk drive.

An OPEN of a non-existent file creates a null file of
the appropriate name. An OPEN of an existing file followed
by an output deletes the existing file. An OPEN of an
existing file followed by an input allows access to the
current contents of the file.

The ENDFILE and REWIND commands allow further program
control of disk files. The form of the commands is:

ENDFILE L or REWIND L

where. L. is an LUN. ENDFILE L <closes the file associated
with LUN L. REWIND L closes the file associated with LUN L,
then opens it again.

NOTE

Exercise caution when
outputting to disk files. If
output is done to an existing
file, the existing file will
be deleted and replaced with a
new file of the same name.

[image: image109.png]MICROSOFT 8888 FORTRAN-IV Page 102

INDEX

.« . . 23-24, 45
. 42, 45, 47
- L] - 7 .
. . . 12, 18, 32-33, 35-36, 38-39,
54, 75, 84-85, 89-98

Arithmetic Expression
Arithmetic IF
Arithmetic Operators
Array .« . « « o+

Array Declarator 18

Array Element 12, 18, 25, 30, 37
ASCII Character Codes 99

ASSIGN . . v & & ¢ & o « « o« « 42, 44

Assigned GOTO 42-43

BACKSPACE . « + o v o « v . . 57
BLOCK DATA 32, 35, 86, 91

CALL +. ¢ ¢ + o o o o o« o« o « o 42, 51, 87

Character Set 6

Characteristic 21

COMMON « +. « « « . 32, 35-36, 38-39, 84, 86,
91

Computed GOTO « . . 42-43

Constant ¢« « . « . 12-13

Continuation 8=9

CONTINUE . +« « v ¢ « &« « « « . 42, 49

Control Statements 42

DATA 32, 39, 84, 86, 91

Data Representation 12

Data Storage 19

Decode &« ¢ o « « « « o 57

DIMENSION 18, 32, 35, 91
Disk 109

DO . ¢« ¢« ¢ & o ¢ o0 o 42, 45-47

DO Implied List 59 :

.Double precision . . e+ o 12

Dummy 86-87, 89-98¢

EnCode . «. « v « &« 4 4 o« « . . 57

END 51, 84, 87, 91
ENDFILE e s e e e« s e o o « 57

Endfile . ., o . . 100

EQUIVALENCE e + « . 32,.36-39, 84, 86, 91
Executable e e 11, 32, 42

.
.
.
.
.

Expression 23, 29-39
Extended Range 48
EXTERNAL 32, 34, 85, 88
External Functions 82 '

FORMAT 5355, 61, 65-66, 68-76
Formatted READ 52 ‘

Formatted WRITE 55

[image: image110.png]FUNCTION +« « « « «. « » 32, 35, 77, 83-88, 90

GOTO v v « o o o o o o o o o o 42, 47

Hexadecimal 19, 29, 49
Hollerith 8, 13, 18-19, 29, 449, 54,

66, 68, 85
I/0 e e s+ <« o « . 52, 94
I/JO List . . ¢ ¢ ¢« ¢ + « « « o 58
IF & v ¢ v o o o o o « o« « « o 42, 45
INdeX v ¢ “ o o o o o o o o o 47
INP & ¢ ¢« ¢ o ¢ « o« « o« o« » . 80
Integer « + « <« . . 12,17, 21
ctions 81

Intrinsic Funct

8, 18, 42-43, 46

77, 79 -

8

8, 18-19, 29, 48, 68, 85
12, 17, 21, 69

Label
- Library Function . .
Line Format
Literal
Logical

Logical Expression . 25, 28, 45
Logical IF 42, 45, 47
Logical Operator . . 26

Logical Unit Number 52, 56, 94
LUN . . ¢« ¢ ¢ o o & 52, 56, 94

Mantissa . . .« ¢ ¢ & « &« o o o 21

Nested . . . ¢« ¢+ ¢« « o« « « « o 49

Non-execbStable « « « 11, 32
OPeN & v o &« o o o« « « =« =« « o 108
Operand . . . « « « « « o « « 23
Operator . . ¢« ¢« « &+ & « « o+ o« 23
OUT . & ¢ ¢ ¢ ¢ o o o o« « « « 80
PAUSE . . & ¢ ¢ o o « o « o« « 42, 47, 50
PEEK . . . ¢ &« ¢ ¢« « « « « « o« 80
POKE . . ¢ &« & & « o« « o « « « 88
PROGRAM + « « « 32, 78, 86
RANge . ¢ 4 ¢ o o o o o o« o « 47 :
READ ¢« ¢ ¢ +« « « « » - 54, 56, 61, 78, 73-76
Real+ ¢ o . 12,17, 21
Relational Expression 25-26
Relational Operator 26
" Replacement Statement .« « o« 308, 46
RETURN « « « « « . - 42, 47, 51, 84, 86, 88-89
REWIND ¢ &+ +« & &« « « « 57

Rewind 101

Scale Factor 70
Specification Statement . . . 32

Statement Function 32,477—78
STOP - . . 3 - L] - . . 3 . L[] L3 42, 47’ 50
Storage 33

Storage Format . . . I

[image: image111.png]Storage Unit
Subprogram
SUBROUTINE
Subscript
Subscript Expression

TYPE .« ¢ ¢ ¢ ¢ o o =
Unformatted I/0 . .
variable

WRITE . - -

19,
32,
18,
19,

33,

21, 37

51, 77, 83-91, 96

35, 51, 77'
25
25

91

84-88

[image: image112.png]FORTRAN~-80 User's Manual

Copyright (C) 1977 by Microsoft

[image: image113.png]Microsoft FORTRAN-80 User's Manual _ Page 2

FOREWORD

This manual describes the use of the FORTRAN-88 compiler and
associated software under the CP/M, DTC Microfile, Altair
DOS or ISIS-II Disk Operating System. Refer to the
FORTRAN-88 manual for an extensive description of FORTRAN
syntax and semantics.

TSR T

[image: image114.png]0 b

Microsoft FORTRAN-80 User's Manual ' Page 3

Table of Contents

Section
1 Compiling FORTRAN Programs
1.1 The FORTRAN-84 and MACRO-80 Command Scanner

1.1.1 Format of Commands ,
1.1.2 FORTRAN-80 Compilation Switches

1.2 Sample Compilation

1.3 FORTRAN-80 Compiler Error Messages
2 Linking FORTRAN Programs

2.1 The LINK-88 Command Scanner

2.1.1 Format of Commands
2.1.2 LINK-88 Switches

2.2 Sample Link
2.3 Format of LINK-88 Compatible Object Files
2.4 LINK-88 Error Messages
3 The MACRO-8# Assembler
3.1 Format of MACRO-88 Commands

3.1.1 MACRO-80 Command Strings
3.1.2 MACRO-88 Switches

3.2 Format of the MACRO-88 Source File

3.3 Assembler Features

Names

Constants

Labels

Operators

Address Expressions
Remarks

Statement Form

WWWwwwww
] L) L) L] L) L]

W wwwww
NV WN

3.4 Pseudo Operations

Define Byte

Define Character
Define Space

Define Word

Program Termination

Wwwww
o ¢ o o o
[NN
e o o s 0
Ut b W N

[image: image115.png]Microsoft FORTRAN-80 User's Manual Page 4

3.4.6 Terminated Conditional Assembly
3.4.7 Define Entry Points
3.4.8 Define Equivalence
3.4.9 Define External
3.4.10 False Conditional Assembly
3.4.11 True Conditional Assembly
3.4.12 Cefine Origin
3.4.13 Page Break
3.4.14 Set
3.4.15 Title
3.5 Notes

3.6 Sample Assembly

3.7 MACRO-88 Errors

4 FORTRAN Runtime Error Messages
5 Operating Systems
5.1 CPM

5.2 DTC Microfile
5.3 ALTAIR DOS

5.4 ISIS-I1I

[image: image116.png]Microsoft FORTRAN-80 User's Manual . Page 5

SECTION 1
((_/ Compiling FORTRAN Programs
1.1 The FORTRAN-80 and MACRO-80 Command Scanner

1.1.1 Format of Commands

FORTRAN-88 and MACRO-80 general commands are as
follows:

objprog-dev:filename.ext,list-dev:filename.ext=
source-dev:filename.ext

objprog-dev:
The device on which the object program is to be
written.

list-dev:
The device on which the program listing is written.

source-dev:

The device from which the source-program input to

FORTRAN-80 or MACRO-88 is obtained. If a device
: name is omitted, it defaults to the currently
‘(~/ selected drive.

filename.ext
The filename and filename extension of the object
program file, the 1listing file, and the source
file. Filename extensions may be omitted. See
Section 5 for the default extension supplied by
your operating system.

- Either the object file or the listing file or both
may be omitted. If neither a listing file nor an
object file is desired, place only a comma to the
left of the equal sign. If the names of the object
file and the listing file are omitted, the default
is the name of the source file.

Examples:
A>F80
*=TEST Compile the program TEST.FOR
and place the object in TEST.REL
*,TTY:=TEST - Compile the program TEST.FOR
, and list program on the terminal.
(;J No object is generated.

*TESTOBJ=TEST.FOR Compile the program TEST.FOR

[image: image117.png]Microsoft FORTRAN-80 User's Manual Page 6

* ,=TEST.FOR

and put object in TESTOBJ.REL

*TEST, TEST=TEST Compile TEST.FOR, put object in

TEST.REL and listing in TEST.LST

Compile TEST.FOR but produce
no object or listing file. Useful
for checking for errors.

FORTRAN-80 Compilation Switches

A number of different switches may be given in the
command string that will affect the format of the

listing file.
slash (/):

Switch

oo

Examples:

Each switch should be preceded by a.

Print all listing addresses, etc. in
octal. (Default for ALTAIR DOS)
Print all listing addresses, etc. in
hexadecimal.

(Default for non-ALTAIR versions)

Do not list generated code.

Force generation of an object file.
Force generation of a listing file.
Each /P allocates an extra 108 bytes
of stack space for use during
compilation. Use /P if stack over-
flow errors occur during compila-
tion. Otherwise not needed.

*,TTY: MYPROG/N Compile file MYPROG.FOR and list

*=TEST/L

- *=BIGGONE/P/P

program on terminal but without

. generated code.

Compile TEST.FOR '
with object file TEST.REL and
listing file TEST.LST

Compile file BIGGONE.FOR

and produce object file BIGGONE.REL.
Compiler is allocated 288 extra bytes
of stack space.

[image: image118.png]9

tg

& Microsoft FORTRAN-80 User's Manual

L

1.2

A>F80

Page 7

Sample Compilation

*EXAMPL,TTY:=EXAMPL

FORTRAN-88 Ver. 2.3 Copyright 1977 (C) By Microsoft - Bvtes: 4524

00100
po200
00300

PO40o
* k ok kK

kkkkk

p0500
po600

kkkkk
kkkkk
00700
*kkkk
khkkkk
kkkkk
*kkkk
Akkkk
khkhkk
068060
kkkkx
kkkkk
kkkkk
% &k kk
hhkkk
kkkkk
20960
T kkkkk
* Kk kkk
khkkkk
s g &k Kk
kkkkk
kkkkk
khhkk
*hkkdk
kkkhk
21000
*kkkk
*kkkk
kdkkk Kk

0000
pooB3"
C

pea6’
p0o9"

6ooeC’
BOOF’
6012"
6015"
0018"
6o1B"
1
6O1E"
0021"
6024"
0027"
0829"
6o2C"
10
BO2F"
832"
0035"
6038°
6039"
0033"
603C’
6O3E"
8o3F"

pp4z’
8045
Ba47"

PROGRAM EXAMPLE

INTEGER X
I = 2**8 + 2**9 + 2**1”

po 1 J=1,5

LXI H,0700

SHLD I

CIRCULAR SHIFT I LEFT 3 BITS -- RESULT IN X
CALL CSL3(I,X)

LXI H,0001

SHLD J

WRITE(3,18) I,X

LXI D, X

LXI H,I

CALL CSL3

LXI D,10L

LXI H, [63 20]
CALL SW2

I=X

LXI B, X

LXI D,I :

LXI H, I g1 00]
MVI A,03

CALL SIP

CALL SND

FORMAT (2115)

LHLD X

SHLD I

LHLD J

INX H

MVI aA,85

SUB L

MVI A,09 : -
SBB - H

JP pP09"’

END

CALL SEX

6100

0300

‘Program Unit Length=@#049 (73) Bytes
Data Area Length=006D (13) Bytes

Subroutines Referenced:

$I0
$ND

CSL3 » $W2
$EX .

[image: image119.png]Microsoft FORTRAN-80 User's Manual . Page 8

‘Variables:

X 0gp1™
LABELS:

1L 282F "
*~C

A>

See section
CsL3.

3.6

for

I peB3" J pges"

1%L eae87"

a listing of the MACRO-86 subroutine

R

[image: image120.png]C

Microsoft FCRTRAN-80 User's Manual . Page 9

1.3

<

FORTRAN Compiler Error Messages

The FORTRAN-88 Compiler detects two Kkinds of
errors: Warnings and Fatal Errors. When a Warning
is issued, compilation continues with the next item
on the source line. When a Fatal Error is found,
the compiler ignores the rest of the logical line,
including any continuation lines. Warning messages
are preceded by percent signs (%), and Fatal Errors
by gquestion marks (?). The editor line number, if
any, or the physical line number is printed next.
It is followed by the error code or error message.

Example:

?Line 25: Mismatched Parentheses

$Line 16: Missing Integer Variable

When either type of error occurs, the program
should be changed so that it compiles without
errors. No guarantee is made that a program that
compiles with errors will execute sensibly.

Fatal Errors:

Error Message

Number

100 Illegal Statement Number

101 Statement Unrecognizable or Mlsspelled
102 Illegal Statement Completion

193 Illegal DO Nesting

104 Illegal Data Constant

185 Missing Name

186 Illegal Procedure Name

187 Invalid DATA Constant or Repeat Factor
i98 Incorrect Number of DATA Constants
169 Incorrect Integer Constant-

110 Invalid Statement Number

111 Not a Variable Name

112 Illegal Logical Form Operator

113 Data Pool Overflow

114 Literal String Too Large

115 Invalid Data List Element in I/O
116 Unbalanced DO Nest

117 Identifier Too Long

118 Illegal Operator

119 Mismatched Parenthesis

129 Consecutive Operators

121 Improper Subscript Syntax

122 Illegal Integer Quantity

123 Illegal Hollerith Construction

124 Backwards DO reference

s e e
Y

[image: image121.png]Microsoft FORTRAN-80 User's Manual Page 180

125 Illegal Statement Function Name

126 Illegal Character for Syntax

127 Statement Out of Sequence

128 Missing Integer Quantity

' 129 Invalid Logical Operator

1389 Illegal Item Following INTEGER or REAL or
LOGICAL :

131 Premature End Of File on Input Device

132 Illegal Mixed Mode Operation

133 Function Call with No Parameters

134 Stack Overflow

135 Illegal Statement Following Logical IF

Warnings:

Duplicate Statement Label

Illegal DO Termination

Block Name = Procedure Name

Array Name Misuse

COMMON Name Usage

Wrong Number of Subscripts

Array Multiply EQUIVALENCEd within a Group
Multiple EQUIVALENCE of COMMON

- COMMON Base Lowered

Non-COMMON Variable in BLOCK DATA

Empty List for Unformatted WRITE
Non-Integer Expression

Operand Mode Not Compatible with Operator
Mixing of Operand Modes Not Allowed
Missing Integer Variable-

Missing Statement Number on FORMAT

Zero Repeat Factor

Zero Format Value

b b e e i S WO OO B WD &S
NOUAWN S

18 Format Nest Too Deep

19 Statement Number Not FORMAT Associated
208 Invalid Statement Number Usage

21 No Path to this Statement

22 Missing Do Termination

23 Code Output in BLOCK DATA

24 Undefined Labels Have Occurred

25 RETURN in a Main Program

26 STATUS Error on READ

27 Invalid Operand Usage

28 " Function with no Parameter

29 Hex Constant Overflow

30 Division by Zero

32 Array Name Expected

33 . Illegal Argument to ENCODE/DECODE

[image: image122.png]Microsoft FORTRAN-80 User's Manual

SECTION 2

Linking FORTRAN Programs

2.1 The LINK-88 Command Scanner

2.1.1 Format of Commands

Page 11

Each command to LINK-88 consists of a number of

filenames and switches separated by commas:

objdevl:filename.ext/switchl,objdev2:filename.ext,...

If the input device for a file 1is omitted, the

default 1is the currently 1logged disk.

If the

extension of a file 1is omitted, the default is
.REL. ‘After each line is typed, LINK will load or

search (see /S below) the specified files.

After

LINK finishes this process, it will 1list all
symbols that remained undefined followed by an

asterisk.
Example:

A>LINK

*MAIN

SUBR1* (SUBR1 is undefined)
*SUBR1

*/G (Starts Execution - see below)

Typically, to execute a FORTRAN program and
subroutines, the user types the list of filenames
followed by /G (begin execution). If the FORTRAN
programs reguire any FORTRAN Library routines, they
will be - satisfied automatically by searching
FORLIB.REL before execution begins. If the user
~wishes to first search 1libraries of his own, he
should append the filenames that are followed by /S

to the end of the loader command string.

2.1.2 LINK-80 Switches

LINK-80 has a number of switches that specify

actions affecting the 1loading process. These

switches are: :

Switch Action

R ge§ep. Put loader back in its
initial state. Use /R if you

loaded the wrong file by mistake

AR

[image: image123.png]Microsoft FORTRAN-80 User's Manual Page 12

and want to restart. /R takes
effect as soon as it is encountered

in a command string.

E or E:Name Exit LINK-80 and return to the
Operating System. FORLIB.REL will
be searched on the current disk to
satisfy any existing undefined
globals. The optional form E:Name
(where Name 1is a global symbel
previously defined in one of the
modules) uses Name for the start
address of the program. Use /E to
load a program and save the memory
image.

G or G:Name Start execution of the program as
soon as the current command 1line
has been interpreted. FORLIB.REL
will be 'searched on the current
disk to satisfy any existing
undefined globals if they exist.
Before execution actually begins,
LINK-88 prints three numbers and a
BEGIN EXECUTION message. The three
numbers are the start address, the
address of the next available byte,
and the number of 256-byte pages
used. The optional form G:Name
(where Name 1is a global symbol
previously defined 1in one of the
modules) uses Name for the start
address of the program.

U List all undefined globals as soon
as the current command 1line has
‘been interpreted.

- M ' Map. List all defined globals and
i " their wvalues, and all undefined
globals followed by an asterisk.

S _ Search the filename immediately
preceding the /S 1in the command
string to satisfy any undefined
globals.

Examples:

*/M List all globals

*MYPROG, SUBROT +MYLIB/S
: Load MYPROG. REL and SUBROT.REL and
then search MYLIB.REL to satisfy
~any remaining undefined globals.

[image: image124.png]'O

Microsoft FORTRAN-88 User's Manual Page 13

2.2

2.3

-

*/G Begin execution of main program

Sample Link

A>L80

*EXAMPL ,EXMPL1/G
[304F 30AC 49]
[BEGIN EXECUTION]

1782 14336
14336 -16383
-16383 14
14 112

112 896

A>

Format of LINK Compatible Object Files

NOTE

Section 2.3 is reference material for users
who wish to know the locad format of LINK-80
relocatable object files. Most users will
want to skip this section, as it does not
contain material necessary to the operation
of the package.

LINK-compatible object files consist of a bit
stream. Individual fields within the bit stream
are not aligned on byte boundaries, except as noted
below. Use of a bit stream for relocatable object
files keeps the size of object files to a minimum,
thereby decreasing the number of disk reads/writes.

There are two basic types -of load items: Absolute
and Relocatable. The first bit of an item
indicates one of these two types. If the first bit
is a @, the following 8 bits are loaded as an
absolute byte. If the first bit is a 1, the next 2

bits are wused to indicate oné of four types of
relocatable items:

0e Special LINK item (see below).

g1 Program Relative. Load the following 16
" bits after adding the current Program
base.

19 Data Relative. Load the following 16

bits after adding the current Data base.

[image: image125.png]Microsoft FORTRAN-80 User's Manual Page 14

11 Common Relative. Load the following 16
bits after &dding the current Common
base.

Special LINK items consist of the bit stream 1060
followed by:

a four-bit control field

an optional A field consisting
of a two-bit address type that
is the same as the two-bit field
above except 88 specifies
absolute address

an optional B field consisting
of 3 bits that give a symbol
length and up to 8 bits for
each character of the symbol

A general representation of a special LINK item is:

-1 00 xxxx Yy zzz + characters of symbol name
A field ' B field

XXXX Four-bit control field (0-15 below)

Yy Two-bit address type field

zz2 Three-bit symbol length field

The following special types have a B-field only:

Entry symbol (name for search)

Select COMMON block

Program name

Reserved for future expansion -
Reserved for future expansion -

WS

The following special LINK items have both an A
field and a B field:

5 Define COMMON size

6 Chain external (A is head of address cha1n,
B is name of external symbol)

7 Define entry point (A is address, B is name)

8 Reserved for future expansion

9 Reserved for future expansion

Thg following special LINK items have an A field
only: ,

19 Define size of Data areaT(A is size)

[image: image126.png]Microsoft FORTRAN-88 User's Manual Page 15

11 Set loading location counter to A
12 Chain address. A is head of chain,

replace all entr
location counter
The last entry i

ies in chain with current

n the chain has an

address field of absolute zero.

13 Define program size (A is size)
14 End program (forces to byte boundary)
The following special Link item has neither an A nor
a B field:
15 End file
2.4 LINK-80 Error Messages

LINK-88 has the followi

?No Start Address

[

?Loading Error

?Fatal Table Collision
?Command Error

?File Not Found

$2nd COMMON Larger /XXX

$Mult. Def. Global YYYY

ng error messages:

A /G switch was issued,
but no main program
had been loaded.

The last file given for input
was not a properly formatted
LINK-80 object file.

Not enough memory to load
program.

Unrecognizable LINK-80
command.

A file in the command string
did not exist.

XXX/

The first definition of
COMMON block /XXXXXX/ was not
the largest definition. Re-
order module loading sequence
or change COMMON block
definitions.

YY

More than one definition for
the global (internal) symbol
YYYYYY was encountered during
the loading process.

[image: image127.png]Microsoft FORTRAN-8# User's Manual

3.1

3.1.1

3.1.2

3.3.1

Page 16

SECTION 3

The MACRO-80 Assembler

Format of MACRO-80 Commands

MACRO-80 Command Strings

The format of MACRO-88 command strings is identical
to the format of FORTRAN-80 command strings. See:
section 1.1.1.

MACRO-80 Switches

MACRO-80 Switches are the same as FORTRAN-80
switches except that /P, /N and /0 have no effect.
See section 1.1.2. -

Format of MACRO-80 Source Files

In general, MACRO-80 accepts a source file that is
almost identical to source files for INTEL
compatible assemblers. 1Input source lines of up to
132 characters in length are acceptable.

The assembler outputs a module name to the 1loader.
This module name consists of the first six
characters of the title if a TITLE statement is

~included. If no TITLE statement is included, the
module name is made from the file name.

Assembler Features

The features -of "the - ~MACRO-88 assembler are
described briefly below.

Names

All namés are 1-6 characters. The first character
is an alpha character (A-Z) or $. The remaining
characters are alphanumeric (A-Z, 6-9) or $. Names
followed immediately by two number signs with no -
intervening blanks (e.g. NAME##) are classified as
external. This type of name is an alternative to
the program statement

EXT NAME
or

EXTRN NAME

[image: image128.png]Microsoft FORTRAN-8@ User's Manual . Page 17

-3.3.2 Constants

a. Decimal: Numbers consisting of decimal
digits and having nc leading zero.
The allowable range is 65535 to
-65535.

b. Octal: Numbers consisting of octal digits
' and having a leading 2zero or a
trailing Q or O. The allowable
range is 0177777 to ~-8177777.

c. Hex: Numbers consisting of one to four
hexadecimal digits and having the
form x'hhhh'. One-digit or three-
digit values are treated as though
zero were to the left (i.e., X'A'
and X'@GA' are the same). The
allowable range is X'FFFF' to
-X'FFFF'. Numbers consisting of
from one to four hexadecimal digits
immediately followed by the suffix
H (e.g., hhhhH) are also allowed.

d. Character: One or two ASCII characters
preceded and followed by - quotation
marks (i.e., “a" or "BC" or 'BC').
The delimiters may be either single
quotes (') or double quotes ("),
but the starting and end delimiters
must be identical. Whenever one
type of quote is used as a
delimiter, the other type of guote
is allowed as a character.

3.3.3 Labels

A label is a name that does not contain an imbedded
space and is terminated by a colon (:). Labels
must begin in.column 1 and all names beginning in
column 1 will be interpreted as labels.
Consequently, opcodes and pseudo-ops cannot begin
in column 1. Labels alone on a 1line with no
further opcode or pseudo-op are allowed.

3.3.4 Operators

An operator consists of an 80880 mnemonic or one of
the pseudo-operations described in Section 3.4.

3.3.5 Address Expressions

[image: image129.png]Microsoft FORTRAN-80 User's Manual _ Page 18

3.3.6

3.3.7

3.4

3.4.1

An address expression consists of a name or a
constant or an address expression + or - an address
expression. An address expression uses the current
assigned address of a name or the 16-bit value of a
constant to form a 16-bit value which, after the
expression 1is totally calculated, is truncated to
the field size required by the operator. Operator
precedence during expression evaluation is as
follows:

Parenthesized expressions
*, /, MOD, SHL, SHR

+, = (unary and binary)
Logical NOT

Logical AND

Logical OR, XOR

An expression may not contain any imbedded blanks
(except those appear ing inside character
constants). An expression 1is terminated by a
semicolon or a tab.

Remarks

A remark is indicated by a statement whose first
character 1is a semicolon (;) (in which case the
whole statement is a remark), or by any characters
following the end of an operand field. A remark is
always terminated by a carriage return.

Statement Form

A statement consists of an optional label (if it is
absent, at least one space or tab must be used in
its place), followed by an operator, followed by as
many address expressions as the operator requires,
followed by an optional remark, and terminated by a
carriage return. Multiple blanks or tabs may be
used to improve readability - (except inside
character constants or character strings).

Pseudo Operations

Define Byte

; DB El,E2,...,En
or ;

DB “Character String"
or

DB ‘Character String"

[image: image130.png]((_/

-

Microsoft FORTRAN-80 User's Manual Page 19

3.4.2

Each of the address expressions El, E2,...En |is
evaluated and stored in n successive bytes. The
character string form allows storing of multiple
ASCII characters and may be mixed with the address
expression form. Two-character character constants
are treated as character strings unless they are
combined with another address expression.

Either single or double quotes may be used as
character string delimiters, but the starting and
end delimiters must be identical. It is
permissible to use the delimiter quotes as

characters, but the quote marks must appear twice.

for every character occurrence desired. For
example: '
DB "I am ""great"" today"

will store
I am "great" today

Each character in the character string is stored as
one byte with its high-order bit set to zero.

Define Character

DC "Character String"

Only double gquotes may be used as character string
delimiters, . and . double gquotes may not be used as
characters.

Each character in the character string is stored as
one byte with its high-order bit set to zero except
for the last byte which has its high-order bit set
to one. ~

3.4.3 Define Space 7) ‘ o _

DS E
The address expression E is evaluated and that many
bytes of space are allocated. All names used in E
must be defined prior to the DS statement.

Define Word

DW El, E2, ..., En

Each address expression is evaluated and stored as
n successive words.

[image: image131.png]W

Microsoft FORTRAN-80 User's Manual ' Page 20

3.4.5 Program Termination
. (
C END E
This statement 1is the 1last statement of each
program. The optional address expression E gives
the program execution address. If E evaluates to

absolute zero, it 1is equivalent to no execution
address.

3.4.6 Terminated Conditional Assembly

ENDIF

Terminates conditional assembly -~ initiated by a
previous IFF or IFT.

3.4.7 Define Entry Points

ENTRY Nl, N2, ..., Nn i
or ‘
PUBLIC N1, N2, ..., Nn

The names N1, N2, ..., Nn are entry points from

external programs and act as names for the program (“
(;/ being assembled. The names must appear in an ENTRY o

or PUBLIC statement prior to their appearance as a

label.

3.4.8 Define Equivalence }

Label EQU E

The label of the EQU statement is assigned the 1
address given by address expression E. The label

is -required and must not have previously appeared -
as a label. All names used in E must be defined -~ -
prior to the EQU statement.

3.4.9 Define Externél

EXT Nl, N2, ..., Nn
or

EXTRN Nl, N2, ..., Nn |

The names N1, N2, ...y Nn are defined to be

external references and may not have been used as a -
label.

(fl

[image: image132.png]Microsoit FORTRAN-88 User's Manual : Page 21

'3.4.10 False Conditional Assembly

((/ IFF E

The address expression E is evaluated and if it is
False (=0), all statements down to the next ENDIF
are assembled. If E 1is True (not =8), the
statements are not assembled.

3.4.11 True Conditional Assembly

IFT E
or
IF E

The address expression E is evaluated and if it is
True (not =0), all statements down to the next
ENDIF are assembled. If E 1is False (=8), the
statements are not assembled. Unlimited nesting of
conditionals is allowed.

3.4.12 Define Origin

ORG E

(_/ The address expression E 1is evaluated and the
assembler assigns generated code starting with that
value. All names used in E must be defined prior
to the ORG statement, and the mode of E must not be
external.

3.4.13 Page Break

PAGE

A page. break will occur on the listing. _The PAGE
statement will not list and code is not generated.
If a TITLE statement has been included, the title
(up to 125 characters) will be printed at the top
of the page.

3.4.14 Set
Label SET E

The label of the SET statement 1is assigned the
address given by expression E. The 1label is
required and must not have previously appeared as a

(w/ label. All names used in E must be defined prior
to the SET statement.

[image: image133.png]Microsoft FORTRAN-88 User's Manual Page 22

The difference between the SET and EQU statements
is that SET allows redefinition of label values.
Redefinition of a label by an EQU statement will
result in an error.

3.4.15 Title
TITLE ICOMP INTEGER COMPARE ROUTINE

TITLE followed by a title of up to 125 characters
is allowed. This title will appear at the top of
each page. The title must be terminated by a.
carriage return. The module name that the
assembler outputs to the loader is taken from the
first six characters that follow the TITLE
statement. If no TITLE statement is included, the
assembler outputs to the loader a module name that
is taken from the file name.

3.5 Notes

1. An asterisk (*) indicates the value of the
location counter at the start of the statement.

2. When the assembler is entered, the origin is
assumed to be Relative-0.

3. Address expressions used in the conditional
assembly pseudo-operations IFF and IFT must
have all names defined prior to the use in the
expression, and the expression must be
Absolute.

4., Address expressions whose final mode is other
than Absolute must generate assembly data that
Hls<stored as two bytes. Loy S R
5. The following names are defined by the
assembler to have the indicated Absolute
values.

m
[}
> Jd

C=1 D=2 E=3
M=6 SP=6 PSW=6

nu
e

oW

S~

[image: image134.png]C

Microsoft FORTRAN-88# User's Manual Page 23

3.6 Sample Assembly
A>M80 |
*EXMPL1,TTY:=EXMPL1
MAC80 1.0 PAGE 1

po100 ;CSL3(P1,P2)
00200 ;SHIFT Pl LEFT CIRCULARLY 3 BITS
0300 sRETURN RESULT IN P2

0000 pB400 ENTRY CSL3
20450 ;GET VALUE OF FIRST PARAMETER
p0500 CSL3:

pooo 7E PP600 MOV A,M
pog1 23 00700 INX H
0032 66 0o8o0 MOV H,M
00093 6F 08909 MOV L,A
21000 sSHIFT COUNT
0ea4 p6 03 p11a80 MVI B,3
006 AF 1200 LOOP: XRA A
. 01300 ;SHIFT LEFT
0087 29 91400 DAD H
#1569 ;ROTATE IN CY BIT
0P08 17 #1600 RAL
8069 85 21700 ADD - L
200A 6F 018080 MOV L,A
1969 ; DECREMENT COUNT
paoB p5 02000 DCR B
02100 ;ONE MORE TIME
poacC C2 pop6 02200 JNZ LOOP
pPeaF EB 02390 XCHG
02400 ;SAVE RESULT IN SECOND PARAMETER
0010 73 : 825080 MOV M,E
P11 23 2600 INX H
p0o12 72 027080 MOV M,D
2913 C9 02800 RET
p014) . 82900 END -
MAC80 1.0 PAGE 2

CSL3 paeg’ LOOP 006"

[image: image135.png]C

Microsoft FORTRAN-8f User's Manual . Page 24

MACRO-80 Errors

MACRO-80 errors are indicated by a one-character
flag in column one of the 1listing file. 1If a
listing file is not being printed on the terminal,
each erroneous line is also printed or displayed on
the terminal. Below is a 1list of the MACRO-80
Error Codes:

Code Meaning

Block name in DATA

Too many ENDIFs

Bad octal or hex or binary digit
Expression error

No label in EQU

Label or symbol defined more than once
Name too long

Bad operator (opcode)

Illegal field termination

Undefined symbol

Value error to MOD

Missing second field for opcode

Phase error

Missing or .incorrect character string
delimiter

OPHNN<CcHOZRrmuounw

vy

Sk SRR .. .o T R I N B PP S

%
3
2
f
b
’
§

R e ety

[image: image136.png]Microsoft FORTRAN-80 User's Manual Page 25

SECTION 4

FORTRAN Runtime Error Messages

Code , Meaning

Warning Errors:

IB Input Buffer Limit Exceeded

TL Too Many Left Parentheses in FORMAT
OB Output Buffer Limit Exceeded

DE Decimal Exponent Overflow

(Number in input stream had
an exponent larger than 99)

IS Integer Size Too Large
- BE Binary Exponent Overflow
IN Input Record Too Long
ov Arithmetic Overflow
CN Conversion Overflow
on REAL to INTEGER Conversion
SN Argument to SIN Too Large
A2 Both Arguments of ATAN2 are 0
IO ‘ Illegal 1/0 Operation
BI Buffer Size Exceeded During Binary I/O
RC Negative Repeat Count in FORMAT

Fatal Errors:

- ID Illegal FORMAT Descriptor
Fo FORMAT Field wWidth is Zero
MP Missing Period in FORMAT
FW FORMAT Field Width is Too Small
IT I/0 Transmission Error
ML Missing Left Parenthesis in FORMAT
DZ Division by Zero, REAL or INTEGER
LG Illegal Argument to LOG Function
(Negative or Zero) ,
SQ Illegal Argument to SQRT Function (Negative)
DT Data Type Does Not Agree With FORMAT
: Specification
EF EOF Encountered on READ

Runtime errors are surrounded by asterisks as follows:

FW

Fatal errors cause execution to cease (control is
returned to the operating system). Execution
continues after a warning error. However, after 20
warnings, execution ceases.

[image: image137.png]*S9sSedd UOIINOaXa ‘sbHutuiem
Pz 1933Fe ’JBABMOH *10119 butulieM B I193JB SONUTIUOD
uoI3NdaXy * (w23sis Bur:exedo 2yl o3 pauaniazix
ST TOI3u0D) 3SedD 03 UOTIINDIXD ISSNED SI0113 Ie3ed

xxMI g x

PSMOTTO3 se s)sTi133se AQq papunolins aie S101I13 dwTjuny

dvdyd uo paxsjunodum J0d a4
uotiedrjtroads :

LYWI0d Y3 TM 321bBbY 10N saog adAg ejeq Ia

(eaT13RbON) uoTIOUNI TIPS 03 Iusunbay TebaT1T1I 0s

(o013Z 10 aa13jebap)

uot3iosung 9507 03 jusunbay [ebaTTI o7

YADILINI I0 IVIAY ‘0197 AQ UOTSTATQ za

LVWY0d UT STS®yjuaieqg 3Ja7 BUTISSIN W

10117 uoIrssIwsue1l O/I II

TTeWS O0CL ST YIPIM PISTd IVWIOJ Ma

LYWY0d Ul poTidd BuisstIn du

0197 ST U3IPIM PISTJ IVWIOJ . g4

103dT19s30 TVWYOd TeBSTTI ar -

:s1011g Te3Rd .

LVWY0d ur 3juno) jeaday sar3iebon oy

O/I KAieulg ﬁutzna papoaoxd 9215 133Ing ig

uorjeiado 0/I 1eHOTII oI

@ I ZNVIV Jo s3ijuaunbay yjog A4

abie7 ool NIS 03 jusunbay NS
UOTSJGAUOD YIOILNI 03 IVdY uo

MOTJIID2A0Q UOTISIDAUOD ND

MOTJFI2A0 OT3BWYTIY AO

puor ool piooay 3ndug NI

MOTFI9A0 Fusuodxy KAieutg qg

obie1 ooJ @218 1abajur SI

(66 ueyy isbiey juauodxs ue
pey weai13ls 3jndur ur Isaqunp)

MOTFIDA0 3Juauodxy TeWTIOAQ = {4

pape30oxd ITwWIT 13Fjng 3ndanp g0

LYWY0J UL sasayjuazied 33o7 Auey 0o 1L

' peps3dxd 3TwiT 193Ing 3ndur a1

$s10113 butuiem

putuesy ' apod

Sob6eSSaW 1011 SWTIUNY NVYINOd

¥ NOILOEIS

gz obed S Tenuey s,I9S) @8-NVEI¥OJ 3ITOSOIOTH

[image: image138.png]Microsoft FORTRAN-88 User's Manual Page 26

SECTION 5

Operating Systems

This section describes the use of FORTRAN-80 under the
different disk operating systems.

5.1 CPM

Create a Source File

Create a source file following the standard format"

for FORTRAN source programs, using the CPM editor.
Filenames are up to eight characters long, with
3-character extensions. FORTRAN-80 source
filenames - should have the extension FOR and
MACRO-80 source filenames should have the extension
MAC.

Compile the Source File ‘ :

Before attempting to compile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. Removing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
a source file called MAX1.FOR, type

F80 ,=MAX1

This command compiles the source file MAX1.FOR
without producing an object or listing file. If
necessary, return to the editor and correct any
syntax errors.

To compile the source file and produce an object
and listing file, type

F88 MAX1,MAX1=MAX1
or
F80 =MAX1l/L

The cohpiler will create a REL (relocatable) file
called MAX1.REL and a listing file called MAX1.PRN.

Loading, Executing and Saving the Pfogram (Using

LINK-80)
To load the program into memory and execute it,
type

L88 MAX1/G

To save the memory image (object code), type

[image: image139.png]Microsoft FORTRAN-88 User's Manual Page 27

L8F MAX1/E

which will exit from LINK-88, return to the monitor
and print three numbers: the starting address for
execution of the program, the end address of the
program and the number of 256-byte pages used. For
example

[210C 401A 48]

Use the CPM SAVE command to save a memory image.
For example

SAVE 48 MAX1.COM
(Programs are loaded beginning at 188H (400Q).)
An object code file has now been saved under the
name of your original source file (in this case
MAX1l) on the disk. To execute the program simply
type the program name

‘MAX1
after the CPM monitor prompt.

CPM - Available Devices

A:, B: disk drives

HSR: high speed reader
LST: line printer
TTY: Teletype or CRT

CPM Disk Filename Standard Extensions

FOR FORTRAN-80 source file
MAC MACRO-80 object file
REL = . relocatable object file
PRN listing file

COM ~ - absolute file

CPM Command Lines

CPM command lines and files are supported; i.e., a
FORTRAN-80, MACRO-88 or LINK-88 command line may be
placed in the same line with the CPM run command.
For example, the command

A>F80 =TEST

causes CPM to load and run the FORTRAN~-88 compiler,
which then compiles - the program TEST.FOR and
creates the file TEST.REL. This is equivalent to
the following series of commands:

[image: image140.png]Microsoft FORTRAN-80 User's Manual Page 28

502

A>F88
*=TEST
*7C

a>

DTC Microfile

Create a Source File

Create a source file following the standard format
for FORTRAN source programs, using the DTC editor.
Filenames are up to five characters 1long, with

l-character extensions. FORTRAN~-80 and MACRO-80 -

source filenames should have the extensign T.

Compile the Source File

Before attempting to compile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. Removing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
the source file called MAX1l, type

F80 ,=MAX1

This command compiles the source file MAX1l without
producing an object or listing file. 1If necessary,
return to the editor and correct any syntax errors.

To compile the source file MAX1 and produce an
object and listing file, type

F80 MAX1,MAX1=MAX1
or
F86 =MAX1/L/R

The compiler will create a relocatable file called
MAX1.0 and a listing file called MAX1.L.

Loading,-Executing and Saving . the Program (Using
LINK-80) '
To load the program into memory and execute it,

type

L86 MAX1/G
To save the memory image (object code), type
L88 MAX1l/E

which will exit from LINK-88, return to the DOS
monitor and print three numbers: the starting
address for execution of the program, the end
address of the program, and the number of 256- ~byte
pages used. For example :

T < ¢ x

s 0 e AR o

it

e it

N o

[image: image141.png]Microsoft FORTRAN-80 User's Manual . Page 29

[210C 401A 48]

Use the DTC SAVE command to save a memory 1image.
For example

SA MAX1 2860 491A

2800H (240008Q) is the load address used by the DTC
Operating System.

An object code file has now been saved under the i
name of your original source file (in this case |
MAX1l) on the disk. To execute the program, simply-

type

RUN MAX1
after the DTC monitor prompt.

DTC Microfile - Available Devices

pDo:, Dl;, D2:, D3: disk drives
TTY: . Teletype or CRT
LIN: line printer

DTC Disk Filename Standard Extensions

T FORTRAN-88 or MACRO-80 source file
0o relocatable object file
L listing file

DTC Command Lines
DTC command lines are supported as described in ;
Section 5.1, CPM Command Lines. R

5.3 Altair DOS

Create a Source File :
Create a source file using the Altair DOS editor.
The name of the file should have four characters, {
and the first character must be a letter. For ?
example, to <create a file called MAX1l, initialize {
DOS and type

EDIT MAX1

after the monitor prompt"“.". The editor will

respond
CREATING FILE | | |
808100 ' n

Enter the'program, following the standard format
for FORTRAN source programs. When you are finished
entering and editing the program, exit the editor.

[image: image142.png]Microsoft FORTRAN-80 User's Manual Page 30

Compile the Source File o :
.Load the compiler by typing (4 i

F8o

in response to the monitor prompt. The compiler
will return the prompt character "*",

Before attempting to compile the program and
produce object code for the first time, it is ‘
advisable to do a simple syntax check. Removing §
syntax errors will eliminate the necessity of ;
recompiling later. To perform the syntax check on |
the source file called MAX1l, type

s =&MAX1.

in response to the compiler prompt. (The editor
stored the program as &MAX1l) Typing ,=&MAXl.
compiles the source file MAX1 without producing an
object or 1listing file. If necessary, return to
the editor and correct any syntax errors.

To compile the source file MAX1 and produce an
object and listing file, type

MAX1R, &MAX1=&MAX1. ‘ ()

The compiler will create a REL (relocatable) file
called MAXIRREL and a listing file called &MAX1LST.
The REL filename must be entered as five characters
instead of four, so it is convenient to use the
source filename plus R.

After the source file has been compiled and a
prompt has been printed, exit the compiler. If the
‘computer uses interrupts with the terminal, type
Control C. 1If not, actuate the RESET switch on the
computer front panel. Either action will return
control ‘to the monitor. :

Using LINK-80
Load LINK-89 by typing

L8#o

after the monitor prompt. LINK-80 will respond
with a “*" prompt. Load the program into memory by
entering the name of the program REL file

MAXIR

Executing and Saving the Program = o -
Now you are ready to either execute the program
that is in memory or save a memory image (object

[image: image143.png]Microsoft FORTRAN-80 User's Manual : Page 31

5.4

code) of the program on disk. To execute the
program, type

/G
To save the memory image (object code), type

/E
which will exit from LINK-88, return to the DOS
monitor and print three numbers: the starting

address for execution. of the program, the end
address of the program, and the number of 256-byte
pages used. For example

[26301 44854 35]

Use the DOS SAVE command to save a memory image.
Type

SAV MAX1 0 17100 44854 26301

17180 is the load address used by Altair DOS for
the floppy disk. (With the hard disk, use 44000.)

An object code file has now been saved under the
name of your original source file (in this case
MAX1l) on the disk. To execute the program, simply
type the program name

MAX1
after the DOS monitor prompt.

Altair DOS - Available Devices

FO;, Fl:, F2:, disk drives
TTY: . L Teletype or CRT

Altair DOS Disk Filename Standard Extensions

FOR FORTRAN-88 source file

MAC MACRO-88 source file
REL relocatable object file
LST listing file

Command Lines
Command lines are not supported with Altair DOS.

ISIS-II

Create a Source F11e
Create a source file following the standard format
for FORTRAN source programs, using the ISIS-II

[image: image144.png]Microsoft FORTRAN-80 User's Manual . Page 32

editor. Filenames are up to six characters long,
with 3-character extensions. FORTRAN-80 source {)
filenames should have the extension FOR. MACRO-80

source filenames should .have the extension MAC.

Compile the Source File
Before attempting to compile the program - and Y
produce object code for the first time, it is
advisable to do a simple syntax check. Removing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
the source file called MAX1.FOR, type

F86 ,=MAX1

This command compiles the source file MAX1.FOR
without producing an object or listing file. If
necessary, return to the editor and correct any
syntax errors.

To compile the source file MAX1.FOR and produce an
object and listing file, type :

F88 MAX1,MAX1=MAX1 ;
or . g
F88 =MAX1/L/R -

The compiler will create a REL (relocatable) file
called MAX1.REL and a listing file called MAX1.LST.

Loading, Saving and Executing the Program (Using

LINK-80) _
To load the program into memory and execute it,
type
. 3
L88 MAX1l/G '

To save the memory image (objeét code), type
L8¢ MAX1/E -

which will exit from LINK-80, return to the ISIS-II
monitor and -print three numbers: the starting
address for execution of the program, the end
address of the program, and the number of 256-byte
pages used. For example

[216C 401A 48]

;f you wish to save a memory image of the program,
it will be 1loaded beginning at 4000H (40088Q).
Execution should begin at 4066H. o (3

[image: image145.png]Microsoft FORTRAN-88 User's Manual Page 33

ISIS-II - Available Devices

(ZL/ . FO:, Fl:, F2:, ... disk drives
- TTY: Teletype or CRT
LST: line printer

ISIS~II Disk Filename Standard Extensions L
E

FOR FORTRAN-80 source file _ A
MAC MACRO-80 source file ;
REL relocatable object file -

LST listing file

ISIS-IT1 Command Lines
ISIS-II command lines are supported as described in
Section 5.1, CPM Command Lines.

