[image: image1.png]BASIC-80
Reference
Manual

This manual is a reference for Microsoft's BASIC-80
language, release 5.0 and later.

There are significant differences between the 5.0
release of BASIC-80 and the previous releases
(release 4.51 and earlier). If you have programs
written under a previous release of BASIC-80,
check Appendix A for new features in 5.0 that may
affect execution.

[image: image2.png]g

[image: image3.png]INTRODUCTION

CHAPTER 1
CHAPTER 2
CHAPTER 3

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

2 B W 9 H M @ W Mmoo 0 w P

BASIC-80 Reference Manual

CONTENTS

General Information About BASIC-80

BASIC-80 Commands and Statements

BASIC-80 Functions

New Features in BASIC~80, Release 5.0

BASIC-80
Assembly
BASIC-80
BASIC=-80
BASIC-80
BASIC-80

Disk I/0
Language
with the
with the
with the
with the

Subroutines

CP/M Operating System
ISIS-II Operating System
TERDOS Operating System

Intel SBC and MDS Systems

Standalone Disk BASIC-

Converting Programs to BASIC-80

Summary of Error Codes and Error Messages

Mathematical Functions

Microsoft BASIC Compiler

ASCII Character Codes

[image: image4.png]“

[image: image5.png]Introduction

BASIC-80 is the most extensive implementation of BASIC
available for the 8080 and 280 microprocessors. In its
fifth major release (Release 5.0), BASIC-80 meets the ANSI
qualifications for BASIC, as set forth in document
BSRX3.60-1978. Each release of BASIC-80 consists of three
upward compatible versions: 8K, Extended and Disk . This
manual is a reference for all three versions of BASIC-80,
release 5.0 and later. This manual is also a reference for
Microsoft BASIC-86 and the Microsoft BASIC Compiler.
BASIC-86 is currently available in Extended and Disk
Standalone versions, which are comparable to the BASIC-80
Extended and Disk Standalone versions.

There are significant differences between the 5.0 release of
BASIC-80 and the previous releases (release 4.51 and
earlier). 1If you have programs written under a previous
release of BASIC-80, check Appendix A for new features in
5.0 that may affect execution.

The manual is divided into three large chapters plus a
number of appendices. Chapter 1 covers a variety of topics,
largely pertaining to information representation when using
BASIC-80. Chapter 2 ccntains the syntax and semantics of
every «command and statement in BASIC-80, ordered
alphabetically. Chapter 3 describes all of BASIC-80's
intrinsic functions, also ordered alphabetically. The
appendices contain information pertaining to individual
operating systems; plus 1lists of error messages, ASCII
codes, and math <functions; and helpful information on
assembly language subroutines and disk I/0.

[image: image6.png]-

[image: image7.png]CHAPTER 1

GENERAL INFORMATION ABOUT BASIC-80

1.1 INITIALIZATION

The procedure for initialization will vary with different
implementations of BASIC-80. Check the appropriate appendix

at the back of this manual to determine howv-BA$IC-80 :i?;'-

initialized with your operating system.

1.2 MODES OF OPERATION

‘k’/ When BASIC-80 is initialized, it types the prompt "Ok".

- "Ok" means BASIC-80 is at command level,. that is, it is
ready to accept commands. At this point, BASIC-80 may be
used in either of two modes: the direct mode or the
indirect mecde. ‘ '
In the direct mode, BASIC commands and statements are not
preceded by line numbers. They are executed as they are
entered. Results of arithmetic and logical operations may
be displayed immediately and stored for later use, but the
instructions themselves are lost after execution. This mode
is useful for debugging and for using BASIC as a
"calculator" for quick computations that do not require a
complete programe.
The indirect mode is the mode used for entering programs.
Program lines are preceded by line numbers and are stored in
memory. The program stored in memory is executed by
entering the RUN command.
1.3 LINE FORMAT

“ Program lines in a BASIC program have the following format

(square brackets indicate optional):

nnnnn BASIC statement[:BASIC statement...] <carriage return>

[image: image8.png]e
GENERAL LNFURMALLUN ASUUL DadLv=0wv Sy E e

At the programmer's option, more than one BASIC statement
may be placed on a line, but each statement on a line must
be separated from the last by a colon.

A BASIC program line always begins with a line number, ends \J
with a carriage return, and may contain a maximum of:

72 characters in 8K BASIC-80
255 characters in Extended and Disk BASIC-80.

In Extended and Disk versions, it is possible to extend a
logical line over more than one physical line by use of the
terminal's <line feed> key. <lLine feed> lets you continue
typing a logical 1line on the next physical line without
entering a <carriage return>. (In the 8K version, <line
feed> has no effect. :

1.3.1 Line Numbers

Every BASIC program line begins with a line. number., Line =~ :- -
numbers indicate the order in which the program lines are
stored in memory and .are also used as references when
branching and editing. Line numbers must be in the range 0
to 65529. In the Extended and Disk versions, a period (.)
may be used in EDIT, LIST, AUTO and DELETE commands to refer b
to the current line. kj

= e e -t v

J

[image: image9.png]GENERAL INFORMATION ABOUT BASIC-80 Page 1-3

1.4 CHARACTER SET

The BASIC-80 character set is comprised of alphabetic
characters, numeric characters and special characters.

The alphabetic characters in BASIC-80 are the upper case and
lower case letters of the alphabet.

The numeric characters in BASIC-80 are the digits 0 through
9.

The following special characters and terminal keys are
recognized by BASIC-80:

Character Name

Blank

Semicolon

Equal sign or assignment symbol
Plus sign

Minus sign

Asterisk or multiplication symbol
Slash or division symbol

Up arrow or exponentiation symbol
Left parenthesis S -
Right parenthesis - A “
Percent : :
Number (or pound) sign

Dollar sign

Exclamation point

Left bracket

Right bracket

Comma

Period or decimal point

Single quotation mark (apostrophe)
Colon

Ampersand

Question mark

Less than

Greater than

Backslash or integer division symbol

@ VAR =0 & Sk d—~>N #1 + [B

At-sign
Underscore
<rubout> Deletes last character typed.
<escape> Escapes Edit Mode subcommands.
See Section 2.16.
<tab> Moves print position to next tab stop.

. Tab stops are every eight columns.
<line feed> Moves to next physical line.
<carriage

return> Terminates input of a line.

[image: image10.png]0
D

? GENERAL INFORMATION ABOUT BASIC-80 Page 1-4

1.4.1 Control Characters

% The following control characters are in BASIC-80:

Control-A Enters Edit Mode on the line being typed.
Control=C Interrupts program execution and returns to
BASIC-80 command level.
| Control=-G Rings the bell at the terminal.
| Control-H Backspace. Deletes the last character typed.
|
} Control-I Tab., Tab stops are every eight columns.
f Control=-0 Halts program output while execution
| continues. A second Control-0 restarts
} Control=R Retypes the 1line that is currently being
| typed.
i Control-S Suspends program execution. ;11; f_?
j Control=-Q Resumes program execution after a cOntégLéé%.
1 Control-U Deletes the 1line that is currentlirfgéiﬁb
| ' typed e -

1.5 CONSTANTS

|)
i Constants are the actual values BASIC uses during execution.
| There are two types of constants: string and numeric.. ’

i A string constant is a sequence of up to 255 alphanuﬁeric
| characters enclosed in double quotation marks. Examples of
string constants:

"HELLO"
| "$25,000.00"
| "Number of Employees”

i Numeric constants are positive or negative numbers. Numeric
| constants in BASIC cannot contain commas. There are five
} types of numeric constants:

1. Integer constants Whole numbers between =-32768 and
+32767. Integer constants do not

have decimal points.

2, Fixed Point Positive or negative real numbers,
constants i.e., numbers that contain decimal
| points.

C w e - -

- - - -

o 77;52%

3

J

[image: image11.png]GENERAL INFORMATION ABOUT BASIC-80 Page 1=5
3, Floating Point Positive or negative numbers repre-
VL/ constants sented in exponential form (similar
" . to scientific notation). A

floating point constant consists of
an optionally signed integer or
fixed point number (the mantissa)
followed by the 1letter E and an
optionally signed integer (the
exponent). The allowable range for
floating point constants is

10738 £o 10738, Examples:

235.988E-7 = ,0000235988
2359E6 = 2359000000

(Double precision floating point
constants use the letter—-D-instead
of E. See Section 1.5.1.)

4. EHex constants Hexadecimal numbers with the prefix
&§H. Examples:
&H76
&H32F
S 5. Octal constants Octal numbers with the -prefix &0—or—
| &. Examples:
&§0347
&1234

1.5.1 Single And Double Precision Form For Numeric Constants

In the 8K version of BASIC-80, all numeric constants are
single precision numbers. They are stored with 7 digits of
precision, and printed with up to 6 digits.

In the Extended and Disk versions, however, numeric
constants may be either single precision or double precision
numbers. With double precision, the numbers are stored with
16 digits of precision, and printed with up to 16 digits.

[image: image12.png]W MR — - ~. i

GENERAL INFORMATION ABOUT BASIC-80 Page 1-6

A single precision constant is any numeric constant that :

has: A
1., seven or fewer digits, or \J

2. exponential form using E, or

3. a trailing exclamation point (!)

A double precision constant is any numeric constant that

has:
1. eight or more digits, or -
2. exponential form using D, or —
3. a trailing number sign (#) -%—
Examples:
Single Precision Constants Double Precision Constants
46.8 345692811
-7.09E=06 =1.09432D-06
3489.0 3489.0#%
22.5! 7654321.1234

1.6 VARIABLES

Variables are names used to represent values that are used -
in a BASIC program. The value of a variable may be.assigned
explicitly by the programmer, or it may be assigned as the
result of calculations in the program. Before a variable is..
assigned a value, its value is assumed to be zero. :

1.6.1 Variable Names And Declaration Characters

BASIC-80 variable names may be any length, however, in the
8K version, only the first two characters are significant.
In the Extended and Disk versions, up to 40 characters are
significant. The characters allowed in a variable name are
letters and numbers, and the decimal point is allowed in
Extended and Disk variable names. The first character must
be a letter. Special type declaration characters are also
allowed -- see below.

A variable name may not be a reserved word. The Extended »*
and Disk versions allow embedded reserved words; the 8K \j
version does not. If a variable begins with FN, it is 4
assumed to be a call to a user-defined function. Reserved ?
words include all BASIC-80 commands, statements, function

[image: image13.png]GENERAL INFORMATION ABOUT BASIC-80 Page 1=7

names and operator names.

Variables may represent either a numeric value or a string.
String variable names are written with a dollar sign ($) as
the last character. For example: A$ = "SALES REPORT". The
dollar sign is a variable type declaration character, that
is, it "declares" that the variable will represent a string.

In the Extended and Disk versions, numeric variable names

may declare integer, single or double precision values.
(All numeric values in 8K are single precision.) The type
geclaration characters for these variable names are as
ollows:

$ Integer variable B L
! Single precision variable
Double precision variable

The default type for a numeric variable name is single
precision.

Examples of BASIC-80 variable names follow.
In Extended and Disk versions:'

PI# declares a double precision value
MINIMUM! declares a single precision value
LIMITS declares an integer value

In 8K, Ektended and Disk versions:

N$ declares a string value
ABC represents a single precision value

In the Extended and Disk versions of BASIC-80, there is a
second method by which variable types may be declared. The
BASIC-80 statements DEFINT, DEFSTR, DEFSNG and DEFDBL may be
jnclcded in a program to declare the types for certain
variable names. These statements are described in detail in
Section 2.12.

1.6.2 Array Variables

An array is a group or table of values referenced by the
same variable name. Each element in an array is referenced
by an array variable that is subscripted with integers or
integer expressions. An array variable name has as many
subscripts as there are dimensions in the array. For
example V(10) would reference a value in a one~-dimensional
array, T(1,4) would reference a value in a two-dimensional
array, and so on. The maximum number of dimensions for an

array is 255. The maximum number of elements per dimension
dm AR

[image: image14.png]GENERAL INFORMATION ABOUT BASIC-80 Page 1-8

1.7 TYPE CONVERSION

When necessary, BASIC will convert a numeric constant from
one type to another. The following rules and examples
should be kept in mind.

1.

2.

If a numeric constant of one type is set equal to a
numeric variable of a different type, the number
will be stored as the type declared in the variable
name. (If a string variable is set equal to a
numeric value or vice versa, a "Type mismatch"
error occurs.)

Example:

10 A% = 23.42
20 PRINT A%

- RON

23

During expression evaluation, all of the operands
in an arithmetic or relational operation are
converted to the same degree of precision, i.e.,
that of the most precise operand. Also, the result
of an arithmetic operation is returned to this
degree of precision.

Examples: _
10 D% = 6%/7 The arithmetic was performed
20 PRINT D# in double precision and the
RUN result was returned in D#
.8571428571428571 as a double precision value.
10 D = 64/7 The arithmetic was performed
20 PRINT D in double precision and the
RUN result was returned to D (single
.857143 precision variable), rounded and
printed as a single precision
value.

Logical operators (see Section 1.8.3) convert their
operands to integers and return an integer result.
Operands must be in the range =-32768 to 32767 or an
"Overflow" error occurs.

When a floating point value is converted to an
integer, the fractional portion is rounded.
Example:

10 C% = 55,88
20 PRINT C%
RUN

56

y

[image: image15.png]GENERAL INFORMATION ABOUT BASIC-80 Page 1-9

5. If a double precision variable is assigned a single
precision value, only the first seven digits,
rounded, of the converted number will be valid.
This is because only seven digits of accuracy were
supplied with the single precision value. The
absolute value of the difference between the
printed double precision number and the original
single precision value will be less than 6.3E-8
times the original single precision value.

Example:

10 A= 2,04
20 B# = A
30 PRINT A;B#
RUN
2.04 2.039999961853027

1.8 EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, or
a variable, or it may combine constants and variables with
operators to produce a single value.

Operators perform mathematical or logical operations on
values. The operators provided by BASIC-80 may be divided
into four categories:

1. Arithmetic

2. Relational

3. Logical

4. Functional

1.8.1 Arithmetic Operators

The arithmetic operators, in order of precedence, are:

Operator Operation Sample Expression
A Exponentiation XAY
- Negation -X
*, / Multiplication, Floating X*Y
Point Division X/¥

+,- Addition, Subtraction X+Y

[image: image16.png]GENERAL INFORMATION ABOUT BASIC-80 Page 1-10

To change the order in which the operations are performed,
use parentheses. Operations within parentheses are
performed first. Inside parentheses, the usual order of
operations is maintained. -

Here are some sample algebraic expressions and their BASIC
counterparts.

AV

Algebraic Expression BASIC Expression
X+2Y X+Y*2
x-_;{_ X-Y/%
= X*Y/3 - T
= (X+Y) /3 L
x3)¥ (XA2) AY -))
e XA (YAZ) j
X (=Y) X*(-Y) Two consecuéi&éfﬁi

operators must
be separated by
parentheses-,

1.8.1.1 Integer Division And Modulus Arithmetic -
Two additional operators are available in Extended and Disk
versions of BASIC-80: Integer division and modulus

arithmetic.

Integer division is denoted by the baskslash ~(\). The
operands are rounded to integers (must be in the range
~32768 to 32767) before the division is performed, and the
quotient is truncated to an integer. For example:

10\4 = 2
25.68\6.99 = 3

The precedence of integer division is just after
multiplication and floating point division.

Modulus arithmetic is denoted by the operator MOD. It gives
the integer value that is the remainder of an integer
division. For example:

10.4 MOD 4 = 2 (10/4=2 with a remainder 2)
25.68 MOD 6.99 = 5 (26/7=3 with a remainder S)

The precedence of modulus arithmetic is just after integer
division.

J

[image: image17.png]GENERAL INFORMATION ABOUT BASIC-80 Page 1-11

— 1.8.1.2 Overflow And Division By Zero -

C If, during the evaluation of an expression, a division by

' zero is encountered, the "Division by zero" error message is
displayed, machine infinity with the sign of the numerator
is supplied as the result of the division, and execution
continues. If the evaluation of an exponentiation results
in zero being raised to a negative power, the "pivision by
zero" error message is displayed, positive machine infinity
is supplied as the result of the exponentiation, and
execution continues.

If overflow occurs, the "Overflow" error message is
displayed, machine infinity with the algebraically correct
sign is supplied as the result, and execution continues.

1.8.2 Relational Operators

Relational operators are used to compare two values. The
result of -the comparison is either "true" (-1) or "false"
(0). This result may then used to make a decision regarding
program flow. (See IF, Section 2.26.) ST

C Operator [Relation Tested Expression
. = Equality K=Y
< Inequality XY
< Less than XX
> Greater than XY
<= Less than or equal to X<=Y
>= Greater than or equal to O=Y

(The equal sign is also used to assign a value to a
variable. See LET, Section 2.30.) '

when arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. For
example, the expression

X+Y < (Tf1)/Z

is true if the value of X plus Y is less than the value of
T-1 divided by 2. More examples:

IF SIN(X)<0 GOTO 1000
IF I MOD J <> 0 THEN K=K+1

[image: image18.png]GENERAL INFORMATION ABOUT BASIC-80 Page 1-12

1.8.3 Logical Operators

Logical operators perform tests on multiple relations, bit
manipulation, or Boolean operations. The logical operator
returns a bitwise result which is either "true" (not zero)
or "false" (zero). 1In an expression, logical operations are
performed after arithmetic and relational operations. The
outcome of a logical operation is determined as shown in the
following table. The operators are listed in order of
precedence.,

NOT

X NOT X

1 0

0 1
AND

X Y X AND Y

1 1 1

1 0 0

0 1 0

0 0 0
OR

X Y XOR Y

1 1 1

1 0 1

0 1 1

0 0 0
XOR

X b4 X XOR Y

1 1 0

1 0 1

0 1 1

0 0 0
IMP

X Y X IMP Y

1 1 1

1 0 0

0 1 1

0 0 1
EQV

X b4 X EQV ¥

1 1 1

1 0 0

0 1 0

0 0 1

Just as the relational operators can be used to make
decisions regarding program £flow, logical operators can
connect two or more relations and return a true or false
value to be used in a decision (see IF, Section 2.26). For

J

[image: image19.png]GENERAL INFORMATION ABOUT BASIC-80 Page 1-13

example:

IF D<200 AND F<4 THEN 80
IF I>10 OR K<0 THEN 50
IF NOT P THEN 100

Logical operators work Dby converting their operands to
sixteen bit, signed, two's complement integers in the range
-32768 to +32767. (If the operands are not in this range,
an error results.) If both operands are supplied as 0 or -1,
logical operators return 0 or ~-1. The given operation is
performed on these integers in bitwise fashion, i.e., each
bit of the result is determined by the corresponding bits in
the two operands.

Thus, it is possible to use logical operators to test bytes
for a particular bit pattern. For instance, the AND
operator maybe used to "mask" all but one of the bits of a
status byte at a machine I/O port. The OR operator may be
used to "merge" two bytes to create a particular binary
value. The following examples will help demonstrate how the

logical operators work.

63 AND 16=16 63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16 _

15 AND 14=14 15 = binary 1111 and 14 = binary 1110,
so 15 AND 14 = 14 (binary 1110)

-1 AND 8=8 -1 = binary 1111111111111111 and
8 = binary 1000, so -1 AND 8 = 8

4 OR 2=6 4 = binary 100 and 2 = binary 10,
8o 4 OR 2 = 6 (binary 110)

10 OR 10=10 10 = binary 1010, so 1010 OR 1010 =
1010 (10)

«1 OR =2==1 -1 = binary 1111111111111111 and

=2 = binary 1111111111111110,
so -1 OR -2 = =1, The bit
complement of sixteen zeros is
sixteen ones, which is the
two's complement representation of =-1.

NOT X=~= (X+1) The two's complement of any integer
is the bit complement plus one.

RO

[image: image20.png]GENERAL INFORMATION ABOUT BASIC-80 Page 1-14

1.8.4 Functional Operators -

e

A function is used in an expression to call a predetermined ﬁ‘
operation that is to be performed on an operand. BASIC-80

has "intrinsic" functions that reside in the system, such as

SQR (square root) or SIN (sine). All of BASIC-80's
intrinsic functions are described in Chapter 3.

BASIC-80 also allows "user defined" functions that are
written by the programmer. See DEF FN, Section 2.11.

1.8.5 String Operations

Strings may be concatenated using +. For example:

10 A$="FILE" : B$="NAME"
20 PRINT A$ + BS$ - -
30 PRINT "NEW " + A$ + B$S - -
RUN -

FILENAME S
NEW FILENAME -

Strings may be compared using the same relational operators -
that are used with numbers: -

= © < > <= >= - —_U,ﬂi

String comparisons are made by taking one character at - a
time from each string and comparing the ASCII codes. If all
the ASCII codes are the same, the strings are equal. If the
ASCII codes differ, the lower code number precedes the
higher. 1If, during string comparison, the end of one string
is reached, the shorter string is said to be smaller.
Leading and trailing blanks are significant. Examples:

lIAAII < nABn

"FILENAME" = "FILENAME"

Nx&ﬂ > lx#ll

lICL " > IlCLII

nkgn > "KG"

"SMYTH" < "SMYTHE"

B$ < “"9/12/78" where B$ = "8/12/78"

Thus, string comparisons can be used to test string values
or to alphabetize strings. All string constants used in
comparison expressions must be enclosed in quotation marks.

[image: image21.png]GENERAL INFORMATION ABOUT BASIC-80 Page 1-15

1.9 INPUT EDITING

If an incorrect character is entered as a line 1is being
typed, it can be deleted with the RUBOUT key or with
Control-H. Rubout surrounds the deleted character(s) with
backslashes, and Control-H has the effect of backspacing
over a character and erasing it. Once a character(s) has
been deleted, simply continue typing the line as desired.

To delete a line that is in the process of being typed, type
Control-U. A carriage return is executed automatically
after the line is deleted.

To correct program lines for a program that is currently in
memory, simply retype the line using the same line number.
BASIC-80 will automatically replace the old line with the
new line.

More sophisticated editing capabilities are provided—in—the _

Extended and Disk versions of BASIC-80. See EDIT, Section
2.16. T

To delete the entire program that is currently residing in_;
memory, enter the NEW command. (See Section 2.41.) NEW is
usually used to clear memory prior to entgring a new

program.

1.10 ERROR MESSAGES

If BASIC-80 detects an error that causes program execution
to terminate, an error message is printed. In the 8K
version, only the error code is printed. In the Extended
and Disk versions, the entire error message is printed. For
a complete list of BASIC-80 error codes and error messages,
gsee Appendix J.

[image: image22.png]J

[image: image23.png]CHAPTER 2

BASIC-80 COMMANDS AND STATEMENTS

All of the BASIC-80 commands and statements are described in
this chapter. Each description is formatted as follows:

Format:

Versions:

Purpose:

Remarks:

Example:

Shows the correct format for the instruction.
See below for format notation.

Lists the versions of BASIC-80
in which the instruction is available.

Tells what the instruction is used for.

Describes in detail how the instruction
is used.

Shows sample programs oOr program segments
that demonstrate the use of the instruction.

Format Notation

Wherever

= format for a statement or command is given, the

following rules apply:

1.
2.

3.
4.

Items in capital letters must be input as shown.

Items in lower case letters enclosed in angle
brackets (< >) are to be supplied by the user.

Items in square brackets ([]) are optional.

All punctuation except angle brackets and square
brackets (i.e., commas, parentheses, semicolons,
hyphens, equal signs) must be included where shown.

Items followed by an ellipsis (...) may be repeated
any number of times (up to the length of the line).

Items separated by a vertical bar (|) are mutually
exclusive; choose one.

[image: image24.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-~2

2.1 AUTO

Format:
Versions:

Purpose:

Remarks:

Example:

AUTO [<line number>[,<increment>]]
Extended, Disk

To generate a line number automatically after
every carriage return.

AUTO begins numbering at <line number> and

increments each subsequent line number by

<increment>. The default for both values is 10.

If <line number> is followed by a comma but

<increment> is not specified, the last increment.
specified in an AUTO command is assumed.

If AUTO generates a line number that is already..

being used, an asterisk is printed after the | ...
number to warn the user that any input will
replace the existing line. However, typing a .. .
carriage return immediately after the asterisk. ..

will save the 1line and generate the next .line ...
number. L T oL

AUTO is terminated by typing Control-C._ The |
line in which Control=C is typed is not saved. =~ \
After Control-C is typed, BASIC returns. to
command level. - T

-

AUTO 100,50 Generates line numbers 100,7"
150, 200 ... A

AUTO Generates line numbers 10, .= .
20, 30, 40 ... M

[image: image25.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-3

2.2 CALL

Format:
Version:
Purpose:

Remarks:

Example:

CALL <variable name>[(<argument list>)]
Extended, Disk
To call an assembly language subroutine.

The CALL statement is one way to transfer
program flow to an assembly language subroutine.
(See also the USR function, Section 3.40)

<variable name> contains an address that is the
starting point in memory of the subroutine.
<variable name> may not be an array variable
name., <argument list> contains the arguments
that are passed to the assembly language
subroutine. .

The CALL statement generates the same calliné
sequence used by Microsoft's FORTRAN, COBOL and
BASIC compilers. - s e

110 MYROUT=&HDOOQO
120 CALL MYROUT(I,J,K)

[4

[image: image26.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-4
2.3 CHAIN
Format: CHAIN [MERGE] <filename>[, [<line number exp>]

Version:

Purpose:

Remarks:

{,ALL] [,DELETE<range>]]
Disk

To call a program and pass variables to it from
the current program.

<filename> is the name of the program that is
called. Example:

CHAIN"PROG1"

<line number exp> is a line number or. aﬁ'
expression that evaluates to a line number -in.
the called program. It is the starting point

for execution of the called program. If it .is =

omitted, execution begins at the first line.
Example:

CHAIN"PROG1", 1000 RO

<line number exp> is not affected by a RENUKQ

command. .

With the ALL option, every variable in the

current program is passed to the called program.
If the ALL option is omitted, the current
program must contain a COMMON statement to list
the variables that are passed. See Section 2.7.

Example:
CHAIN"PROG1",1000,ALL

If the MERGE option is included, it allows a
subroutine to be brought into the BASIC program
as an overlay. That is, a MERGE operation is
performed with the current program and the
called program. The called program must be an
ASCII file if it is to be MERGEd. Example:

CHAIN MERGE"OVRLAY",1000

After an overlay is brought in, it is usually
desirable to delete it so that a new overlay may
be brought in. To do this, use the DELETE
option. Example:

CHAIN MERGE"OVRLAY2",1000,DELETE 1000-5000

The line numbers in <range> are affected by the
RENUM command.

X

[image: image27.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-5

NOTE:

NOTE:

The Microsoft BASIC compiler does not support
the ALL, MERGE, and DELETE options to CHAIN. If
you wish to maintain compatibility with the
BASIC compiler, it is recommended that COMMON be
used to pass variables and that overlays not be

used.

If the MERGE option is omitted, CHAIN dces not
preserve variable types or user-defined
functions for use by the chained program. . That
is, any DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEFFN
statement containing shared variables must Dbe
restated in the chained program.

[image: image28.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-6
2.4 CLEAR
Format: CLEAR[, [<expressioni1>] [,<expression2>]]

Versions:

Purpose:

Remarks:

NOTE:

Examples:

8K, Extended, Disk

To set all numeric variables to zero and all
string variables to null; and, optionally, to
set the end of memory and the amount of stack
space.

<expression1> is a memory location which, if
specified, sets the highest location available
for use by BASIC-80.

<expression2> sets aside stack space for BASTC.
The default is 256 bytes or one-eighth of- the
available memory, whichever is smaller. :

In previous versions of BASIC-80, <expressl§£3>t

set the amount of string space and <expression2>

set the end of memory. BASIC-80, release -_5.0: - :.
and later, allocates string space dynamically.. - I -:

An "Out of string space" error occurs only :if

there is no free memory left for BASIC to use. .‘
N

CLEAR e

CLEAR ,32768 St
CLEAR, ,2000 S
CLEAR,32768,2000

J

[image: image29.png]BASIC-80 COMMANDS AND STATEMENTS Page 2~7

~ 2.5 CLOAD
&/, D
Formats: CLOAD <filename>

CLOAD? <filename>
CLOAD* <array name>
Versions: 8K (cassette), Extended (cassette)

Purpose: To load a program or an array from cassette tape
into memory.

Remarks: CLOAD executes a NEW command before it loads the
program from cassette tape. <filename> 1is the
string expression or the first character of the
string expression that was specified when the -
program was CSAVEAd. -

CLOAD? verifies tapes by comparing the program --
currently in memory with the file on tape- that

has the same filename. If they are the same,
BASIC-80 prints Ok. If not, BASIC-80 prints NO
GOOD. - .

CLOAD* loads a numeric array that has been saved
on tape. The data on tape is loaded into the
array called <array name> specified when the
array was CSAVE*ed.

CLOAD and CLOAD? are always entered at command
level as direct mode commands. CLOAD* may be
entered at command level or used as a program
statement. Make sure the array has been
DIMensiocned before it is loaded. BASIC-80
always returns to command level after a CLOAD,
CLOAD? or CLOAD* is executed. Before a CLOAD
is executed, make sure the cassette recorder is
properly connected and in the Play mode, and the
tape is possitioned correctly.

See also CSAVE, Section 2.9.

NOTE: CLOAD and CSAVE are not included in all
implementations of BASIC-80.

Example: CLOAD "MAX2"

C Loads file "™M" into memory.

[image: image30.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-8

2.6 CLOSE

Format: CLOSE[[#]<file number>([, [#]<file number...>]]

Version: Disk

Purpose: To conclude I/O to a disk file.

Remarks: <file number> is the number under which the file
was OPENed. A CLOSE with no arguments closes
all open files.

The association between a particular file and
file number terminates upon execution of a
CLOSE. The file may then be reOPENed using the
same or a different file number; likewise, that .
file number may now be reused to OPEN any file. S
A CLOSE for a sequential output file wrltes thé -
final buffer of output. .-
The END statement and the NEW command aiQAYS'
CLOSE all disk files automatically. (STOP does
not close disk files.) S LET

Example: See Appendix B. :

J

[image: image31.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-9

2.7 COMMON

Format:
Version:
Purpose:

Remarks:

Example:

COMMON <list of variables>
Disk
To pass variables to a CHAINed program.

The COMMON statement is used in conjunction with
the CHAIN statement. COMMON statements may
appear anywhere in a program, though it is
recommended that they appear at the beginning.
The same variable cannot appear in more than one
COMMON statement. Array variables are specified
by appending "()" to the variable name., If all
variables are to be passed, use CHAIN with the
ALL option and omit the COMMON statement.

100 COMMON A,B,C,D() ,G$
110 CHAIN "PROG3",10

[image: image32.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-10

2.8 CONT

Format:
Versions:

Purpose:

Remarks:

Example:

CONT
8K, Extended, Disk

To continue program execution after a Control-C
has been typed, or a STOP or END statement has
been executed.

Execution resumes at the point where the break
occurred. If the break occurred after a prompt
from an INPUT statement, execution continues
with the reprinting of the prompt (? or prompt
string).

CONT is usually used in conjunction with STOP
for debugging. When execution 1is stopped,
intermediate values may be examined and changed
using direct mode statements. Execution may be
resumed with CONT or a direct mode GOTO, which
resumes execution at a specified line number.
With the Extended and Disk versions, CONT may be
used to continue execution after an error.

CONT is invalid if the program has been edited
during the break. In 8K BASIC~80Q, execution
cannot be CONTinued if a direct mode erxror has
occurred during the break.

See example Section 2.61, STOP.

3

[image: image33.png]BASIC-80 COMMANDS AND STATEMENTS | Page 2-11
2.9 CSAVE
Formats: CSAVE <string expression>

Versions:

Purpose:

Remarks:

NOTE:

Example:

CSAVE* <array variable name>
8K (cassette), Extended (cassette)

To save the program or an array currently in
memory on cassette tape.

Each program or array saved on tape is
identified by a filename. When the command
CSAVE <string expression> is executed, BASIC-80
saves the program currently in memory on tape
and uses the first character in <string
expression> as the filename. <string
expression> may be more than one character, but
only the first character is used for the
filename.

When the command CSAVE* <array variable name> is
executed, BASIC-80 saves the specified array on .
tape. The array must be a numeric array. The
elements of a multidimensional array are saved
with the leftmost subscript changing fastest.

CSAVE may be used as a program statement or as a
direct mode command. ‘

Before a CSAVE or CSAVE* is executed, make sure
the cassette recorder is properly connected and
in the Record mode.

See also CLOAD, Section 2.5.

CSAVE and CLOAD are not included in all
implementations of BASIC-80.

CSAVE "TIMER"

Saves the program currently in memory on
cassette under filename "T".

[image: image34.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-12
2.10 DATA
Format: DATA <list of constants>

Versions: 8K, Extended, Disk

Purpose: To store the numeric and string constants that
are accessed by the program's READ statement(s).
(See READ, Section 2.54)

Remarks: DATA statements are nonexecutable and may be
placed anywhere in the program. A DATA
statement may contain as many constants as will
£it on a line (separated by commas), and any
number of DATA statements may be used in a
program. The READ statements access the DATA -
statements in order (by line number) and the
data contained therein may be thought of as one. - -
continuous list of items, regardless of how many -
items are on a line or where the lines:.are - :

placed in the program. I T

y

<list of constants> may <contain numeric
constants in any format, i.e., fixed point,
floating point or integer. (No numeric
expressions are allowed in the list.) String
constants in DATA statements must be surrounded
by double quotation marks only if they contain
commas, colons or significant leading or
trailing spaces. Otherwise, quotation marks are
not needed.

The variable type (numeric or string) given in
the READ statement must agree with the
corresponding constant in the DATA statement.

DATA statements may be reread from the beginning
by use of the RESTORE statement (Section 2.57).

Example: See examples in Section 2.54, READ.

[image: image35.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-13
o 2.11 DEF FN

Format: DEF FN<name> [(Kparameter list>)]=<function definition>

Versions: 8K, Extended, Disk

Purpose: To define and name a function that is written by
theuser.
Remarks: <name> must be a legal variable name. This

name, preceded by FN, becomes the name of the
function. <parameter list> is comprised of
those variable names in the function definition
that are to be replaced when the function is
called. The items in the list are separated by
commas. <function definition> is an expression
that performs the operation of the function. It
is limited to one line. Variable names that
appear in this expression serve only to define
the function; they do not affect program .
variables that have the same name. A variable
name used in a function definition may or may
not appear in the parameter list. If it does,

C the value of the parameter is supplied when the

: function is called. Otherwise, the current
value of the variable is used.

. The variables in the parameter 1list represent,
on a one-to-one basis, the argument variables or
values that will be given in the function call.
(Remember, in the 8K version only one argument
is allowed in a function call, therefore the DEF
FN statement will contain only one variable.)

In Extended and Disk BASIC-80, user-defined .
functions may be numeric or string; in 8K,
user-defined string functions are not allowed.
If a type is specified in the function name, the
value of the expression is forced to that type
before it is returned to the calling statement.
If a type is specified in the function name and
the argument type does not match, a "Type
mismatch" error occurs.

A DEF FN statement must be executed before the

function it defines may be called. If a

function is called before it has been defined,

an "Undefined user function" error occurs. DEF
o FN is illegal in the direct mode.

[image: image36.png]BASIC-80 COMMANDS AND STATEMENTS

Example:

410 DEF FNAB (X,Y)=XA3/YA2
420 T=FNAB(I,J)

Line 410 defines the function
function is called in line 420.

Page 2-14

FNAB. The

[image: image37.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-15

2.12 DEFINT/SNG/DBL/STR

|

Format: DEF<type> <range(s) of letters>
where <type> is INT, SNG, DBL, or STR

Versions: Extended, Disk

Purpose: To declare variable types as integer, single
precision, double precision, or string.

Remarks: A DEFtype statement declares that the variable
names beginning with the letter(s) specified
will be that type variable. However, a type
declaration character always takes precedence
over a DEPtype statement in the typing of . a
variable. ,
If no type declaration statements _ are
encountered, BASIC-80 assumes all variables
without declaration characters are single
precision variables.

Examples: 10 DEFDBL L-P All variables beginning with. . -

the letters L, M, N, O, and P
' will be double precision

variables.

10 DEFSTR A All variables beginning with
the letter A will be string
variables.

10 DEFINT I-N,W=2 .
All variables beginning with
the letters I, J, K, L, M,

N, W, X, ¥, 2 will be integer
variables.

[image: image38.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-16

2.13 DEF USR

Format:
Versions:

Purpose:

Remarks:

Example:

DEF USR[<digit>]=<integer expression>
Extended, Disk

To specify the starting address of an assembly
language subroutine.

<digit> may be any digit from 0 to 9. The digit
corresponds to the number of the USR routine
whose address is being specified. If <digit> is
omitted, DEF USRO is assumed. The value of
<integer expression> is the starting address of
the USR routine. See Appendix C, Assembly
Language Subroutines. I

Any number of DEF USR statements may appear in a
program to redefine subroutine starting
addresses, thus allowing access to as °

subroutines as necessary. -

[2

200 DEF USR0=24000
210 X=USRO (YA2/2.89)

J

[image: image39.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-17

2.14 DELETE

e

Format: DELETE [<line number>] [-<line number>]

Versions: Extended, Disk

Purpose: To delete program lines.

Remarks: BASIC-80 always returns to command level after a
DELETE is executed. If <line number> does not
exist, an "Illegal function call" error occurs.

Examples: DELETE 40 Deletes line 40
DELETE 40-100 Deletes lines 40 through

100, inclusive
DELETE~-40 Deletes all lines up to
and including line 40

[image: image40.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-18

2,15 DIM

Format:
Versions:

Purpose:

Remarks:

Example:

DIM <list of subscripted variables>
8K, Extended, Disk

To specify the maximum values for array variable
subscripts and allocate storage accordingly.

If an array variable name is used without a DIM
statement, the maximum value of its subscript(s)
is assumed to be 10, If a subscript is used
that is greater than the maximum specified, a
"Subscript out of range" error occurs. = The
minimum value for a subscript is always 0,
unless otherwise specified with the OPTION BASE
statement (see Section 2.46). -

The DIM statement sets all the elements of;:}be
specified arrays to an initial value of zero.

10 DIM A(20)
20 FOR I=0 TO 20

30 READ A(I)

40 NEXT I

s

[image: image41.png]BASIC~80 COMMANDS AND STATEMENTS Page 2-19
‘Q, 2.16 EDIT
Format: EDIT <line number>

Versions: Extended, Disk
Purpose: To enter Edit Mode at the specified line.

Remarks: In Edit Mode, it is possible to edit portions of
a line without retyping the entire line. Upon
entering Edit Mode, BASIC-80 types the line
number of the line to be edited, then it types a
space and waits for an Edit Mode subcommand.

BEdit Mode Subcommands

Edit Mode subcommands are used to move the
cursor oOr to insert, delete, replace, or search
for text within a line. The subcommands are not .
echoed. Most of the Edit Mode subcommands may
be preceded by an integer which causes the .
command to be executed that number of times.
When a preceding integer is not specified, it is- -
assumed to be 1. ‘

Edit Mode subcommands may be categorized
according to the following functions:

1. Moving the cursor
2. Inserting text

3. Deleting text

4. PFinding text

5. Replacing text

6. Ending and restarting Edit Mode

NOTE

In the descriptions that follow, <ch>
represents any character, <text>
represents a string of characters of
arbitrary length, [i] represents an

@ optional integer (the default is 1), and
$ represents the Escape (or Altmode)
key.

[image: image42.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-20

1. Moving the Cursor

Space Use the space bar to move the cursor to the i]
right. [i]Space moves the cursor i spaces to \
the. right. Characters are printed as you space
over them.

Rubout In Edit Mode, [i]Rubout moves the cursor i
spaces to the left (backspaces). Characters are
printed as you backspace over them.

2. Inserting Text

I I<text>$ inserts <text> at the current cursor
position. The inserted characters are printed
on the terminal. To terminate insertion, type
Escape. If Carriage Return is typed during an
Insert command, the effect is the same as typing
Escape and then Carriage Return. During an
Insert command, the Rubout or Delete key on the
terminal may be used to delete characters to the
left of the cursor. If an attempt is made to
insert a character that will make the line- --
longer than 255 characters, a bell (Control-G)- -
is typed and the character is not printed. -7

X The X subcommand is used to extend the line. X %‘
moves the cursor to the end of the line, goes ‘
into insert mode, and allows insertion of text
as if an Insert command had been given. When
you are finished extending the line, type Escape
or Carriage Return.

3. Deleting Text

D (i]D deletes i characters to the right of the
cursor. The deleted characters are echoed
between backslashes, and the cursor is
positioned to the right of the last character
deleted. If there are fewer than i characters
to the right of the cursor, 1iD deletes the
remainder of the line.

H H deletes all characters to the right of the
cursor and then automatically enters insert
mode. H is useful for replacing statements at
the end of a line.

4. Pinding Text

s The subcommand [i]S<ch> searches for the ith g
occurrence of <ch> and positions the cursor \‘
before it. The character at the current cursor
position is not included in the search. If <ch>
is not found, the cursor will stop at the end of

[image: image43.png]-

BASIC-80 COMMANDS AND STATEMENTS Page 2~21

6.

the line. All characters passed over during the
search are printed.

The subcommand {i]K<ch> is similar to [ilS<ch>,
except all the characters passed over in the
search are deleted. The cursor is positioned
before <ch>, and the deleted characters are
enclosed in backslashes.

Replacing Text

C

The subcommand C<ch> changes the next character
to <ch>. If you wish to change the next i
characters, use the subcommand iC, followed by i
characters. After the ith new character is
typed, change mode is exited and you will return
to Edit Mode.

Ending and Restarting Edit Mode

<cr>

Typing Carriage Return prints the remainder of
the 1line, saves the changes you made and exits
Edit Mode.

The E subcommand haé the same effect as Carriage
Return, except the remainder of the line is not
printed.

The Q subcommand returns to BASIC-80 command
level, without saving any of the changes that
were made to the line during Edit Mode.

The L subcommand lists the remainder of the line
(saving any changes made so far) and repositions
the cursor at the beginning of the 1line, still
in EBEdit Mode. L is usually used to list the
line when you first enter Edit Mode.

The A subcommand lets you begin editing a line
over again. It restores the original line and
repositions the cursor at the beginning.

NOTE

If BASIC-80 receives an unrecognizable
command or illegal character while in
Edit Mode, it prints a bell (Control-G)
and the command or character is ignored.

[image: image44.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-22

Syntax Errors

When a Syntax Error is encountered during “‘
execution of a program, BASIC-80 automatically
enters Edit Mode at the 1line that caused the
error. For example:

10 K = 2(4)

RUN

?Syntax error in 10
10

When you £finish editing the 1line and type
Carriage Return (or the E subcommand), BASIC-80
reinserts the line, which causes all variable
values to be lost. To preserve the variable
values for examination, first exit Edit " Mode -
with the Q subcommand. BASIC-80 will return to -~ - -- -
command level, and all variable values will b
preserved. -

Control-A IR T
To enter Edit Mode on the line you are currently - -
typing, type Control-A. BASIC-80 responds with -
a carriage return, an exclamation point (!) ~and
a space. The cursor will be positioned at the W'
first character in the line. Proceed by typing _
an Edit Mode subcommand. -

NOTE

Remember, if you have 3just entered a
line and wish to go back and edit it,
the command "EDIT." will enter Edit Mode
at the current line. (The line number
symbol "." always refers to the current
line.)

[image: image45.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-23
2.17 END
END

Format:
Versions:

Purpose:

Remarks:

Example:

8K, Extended, Disk

To terminate program execution, close all files
and return to command level.

END statements may be placed anywhere in the
program to terminate execution. Unlike the STOP
statement, END does not cause a BREAK message to
be printed. An END statement at the end of a
program is optional. BASIC-80 always returns to
command level after an END is executed.

520 IF K>1000 THEN END ELSE GOTO 20

[image: image46.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-24

2.18 ERASE

Format:
Versions:
Purpose:

Remarks:

NOTE:

Example:

ERASE <list of array variables>
Extended, Disk
To eliminate arrays from a program.

Arrays may be redimensioned after they are
ERASEd, or the previously allocated array space
in memory may be used for other purposes. If an
attempt is made to redimension an array without
first ERASEing it, a "Redimensioned array" error

occurse. , -

The Microsoft BASIC compiler does not “suppoft:

ERASE. SR

L

450 ERASE A,B i

460 DIM B(99) S

e ettt |

[image: image47.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-25

2.19 ERR AND ERL VARIABLES

When an error handling subroutine is entered,
the variable ERR contains the error code for the
error, and the variable ERL contains the line
number of the 1line in which the error was
detected. The ERR and ERL variables are usually
used in IF...THEN statements to direct program
flow in the error trap routine.

If the statement that caused the error was a
direct mode statement, ERL will contain 65535.
To test if an error occurred in a direct

statement, use IF 65535 = ERL THEN ...
Otherwise, use

IF ERR = error code THEN ...
IF ERL = line number THEN ...
If the line number is not on the right side _of

the relational operator, it cannot be renumbered N

by RENUM. Because ERL and ERR are reserved
variables, neither may appear to the left of the
equal sign in a LET (assignment) statement.
BASTIC~80's error codes are listed in Appendix J.
(For Standalone Disk BASIC error codes, see
Appendix H.) -

T

[image: image48.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-26

2.20 ERROR

Format: ERROR <integer expression>

Versions: Extended, Disk

Purpose: 1) To simulate the occurrence of a BASIC-80
error; or 2) to allow error codes to be
defined by the user.

Remarks: The value of <integer expression> must Dbe

Example 1:

greater than 0 and less than 255. If the value
of <integer expression> equals an error code
already in use by BASIC-80 (see Appendix J), the
ERROR statement will simulate the occurrence of
that error, and the corresponding error message
will be printed. (See Example 1.) .

To define your own error code, use a value that
is greater than any used by BASIC-80's error
codes. (It is preferable to use the highest
available values, so compatibility may be.
maintained when more error codes are added ¢to.
BASIC-80.) This user-defined error code may then-.
be conveniently handled in an error trap
routine. (See Example 2.) . '

If an ERROR statement specifies a code for which
no error message has been defined, BASIC=-80-
responds with the message UNPRINTABLE ERROR.
Fxecution of an ERROR statement for which there
is no error trap routine causes an error message.
to be printed and execution to halt. -
LIST

10 s = 10

20T = 5

30 ERROR S + T

40 END

Ok

RUN

String too long in line 30

Or, in direct mode:

Ok

ERROR 15 (you type this line)
String too long (BASIC-80 types this line)
Ok

4

PR -

[image: image49.png]BASIC-80 COMMANDS AND STATEMENTS

N Example 2: .
“ :
110 ON ERROR GOTO 400

120 INPUT "WHAT IS YOUR BET";B
130 IF B > 5000 THEN ERROR 210

400 IF ERR = 210 THEN PRINT "HOUSE
410 IF ERL = 130 THEN RESUME 120

Page 2-27

LIMIT IS $5000"

[image: image50.png]BASIC-80 COMMANDSAND STATEMENTS Page 2-28

2.21 FIELD

Format:
Version:

Purpose:

Remarks:

Example:

NOTE:

FIELD[#]<file number>,<field width> AS <string variable>.;4

Disk

To allocate space for variables in a random file
buffer.

To get data out of a random buffer after a GET
or to enter data before a PUT, a FIELD statement
must have been executed.

<file number> is the number under which the file
was OPENed. <field width> is the number of
characters to be allocated to <string variable>.
For example,

FIELD 1, 20 AS N$, 10 AS ID$, 40 AS ADD$
allocates thHe first 20 positions (bytes) in the

random file buffer to the string variable asr.li“

the next 10 positions to ID$, and the next 40
positions +to ADDS$. FIELD does NOT place any

data in the random file buffer. (See LSET/RSET

and GET.)

The total number of bytes allocated in a FIELD
statement must not exceed the record length that
was - specified when the file was OPENed.

Otherwise, a "Field overflow" error occurs. ..

(The default record length is 128.)

Any number of FIELD statements may be executed
for the same file, and all FIELD statements that
have been executed are in effect at the same
time.

See Appendix B.

Do not use a FIELDed variable name in an INPUT
or "LET statement. Once a variable name is
FierDed, It points to the correct place in the
random £file buffer. If a subsequent INPUT or
LET statement with that variable name is
executed, the variable's pointer is moved to

string space.

oA

[image: image51.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-29

2.22 FOR...NEXT

Format:

Versions:

Purpose:

Remarks:

FOR <variable>=x TO y [STEP z]

NEXT [<variable>] [,<variable>...]
where x, y and z are numeric expressions.
8K, Extended, Disk

To allow a series of instructions to be
performed in a loop a given number of times.

<variable> is used as a counter. The £first
numeric expression (x) is the initial value of
the counter. The second numeric expression (y)
is the final value of the counter. The program
lines following the FOR statement are executed
until the NEXT statement is encountered. Then
the counter is incremented by the amount-

specified by STEP. A check is performed to see -

if thevalue of the counter is now greater tham

the final value (y). If it is not greater, =

BASIC-80 branches back to the statement after
the FOR statement and the process is repeated.
If it is greater, execution continues with the
statement following the NEXT statement. This is
a FOR...NEXT loop. If STEP is not specified,
the increment is assumed to be one. If STEP is

' negative, the final value of the counter is set

to be less than the initial value. The counter
is decremented each time through the 1loop, and
the loop is executed until the counter is less
than the final value.

The body of the loop is skipped if the initial
value of the 1loop times the sign of the step
exceeds the final value times the sign of the
step.

Nested Loops

FOR...NEXT loops may be nested, that is, a
FOR...NEXT loop may be placed within the context
of another FOR...NEXT loop. When loops are
nested, each loop must have a unique variable
name as its counter. The NEXT statement for the
inside loop must appear before that for the
outside loop. If nested loops have the same end
point, a single NEXT statement may be used for
all of them.

The variable(s) in the NEXT statement may be

[image: image52.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-30

Example 1:

Example 2:

Example 3:

omitted, in which case the NEXT statement will
match the most recent FOR statement. If a NEXT
statement is encountered before its
corresponding FOR statement, a "NEXT without
FOR" error message is issued and execution is
terminated.

10 K=10

20 FOR I=1 TO K STEP 2
30 PRINT I;

40 R=K+10

50 PRINT K

60 NEXT

Ok

10 J=0 - -
20 FOR I=1 TO J -
30 PRINT I

40 NEXT I -

In this example, the loop does not execute
because the initial value of the loop exceeds
the final value. '

10 I=5
20 FOR I=1 TO I+5
30 PRINT I:;
40 NEXT
RUN

1 2 3 4 5 6 7 8 9 10 : :
Ok ,

In this example, the loop executes ten times.
The final value for the loop variable is always
set before the initial value is set. (Note:
Previous versions of BASIC-80 set the initial
value of the loop variable before setting the
final value; i.e., the above loop would have
executed six times.)

A

[image: image53.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-31
2.23 GET

Format: GET [#]<file number>[,<record number>]

Version: Disk

Purpose: To read a record from a random disk file into a

random buffer.

Remarks: <file number> is the number under which the file
was OPENed. 1If <record number> is omitted, the
next record (after the last GET) is read into
the 2bg$fer. The largest possible record number
is 32767,

Example: See Appendix B.

[image: image54.png]BASIC-80 COMMANDS AND STATEMENTS

2.24 GOSUB...RETURN

Format: GOSUB <line number>

RETURN

Versions: 8K, Extended, Disk

Purpose:

Remarks:

<line number> is the first

subroutine.

line

Page 2-32

To branch to and return from a subroutine.

of the

A subroutine may be called any number of times

in a program,

from within another subroutine.
subroutines is limited only by available memory.

The RETURN statement(s) in a
to branch back to the

BASIC-80

following the most recent . GOSUB

and a subroutine may be called--

Such nesting of .

subroutine cause

statement .
statement.. A

subroutine may contain more than one RETURN.
statement, should logic dictate a return at

different points in the subroutine.
may appear anywhere in the program,
that the subroutine be readily
distinguishable from the main B

recommended

Subroutines
but it is

prevent inadvertant entry into the subroutine,
it may be preceded by a STOP, END,

statement that directs program control around

the subroutine.

Example: 10
20
30
40
50
60
70

RUN

GOSUB
PRINT
END
PRINT
PRINT
PRINT
RETURN

40
"BACK FROM SUBROUTINE"

"SUBROUTINE";
" IN";
" PROGRESS"

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE

Ok

or GOTO

program. ‘To

A

[image: image55.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-33

2.25 GOTO

Format:
Versions:

Purpose:

Remarks:

Example:

GOTO <line number>
8K, Extended, Disk

To branch unconditionally out of the normal
program sequence to a specified line number.

If <line number> is an executable statement,
that statement and those following are executed.
If it is a nonexecutable statement, execution
proceeds at the first executable statement
encountered after <line number>.

LIST

10 READ R

20 PRINT "R =";R,

30 A = 3.14*RA2

40 PRINT "AREA =";A

50 GOTO 10

60 DATA 5,7,12

ok

RUN

R=25 AREA = 78.5
R=7 AREA = 153,86
R= 12 AREA = 452.16
?20ut of data in 10

ok

[image: image56.png]BASIC~80 COMMANDS AND STATEMENTS Page 2-34

2-26 E‘..THEN[..QELSE] AND E...GOTO . ,4

Format:

Format:

Versions:

NOTE:

Purpose:

Remarks:

d

IF <expression> THEN <statement(s)> | <line number>
[ELSE <statement(s)> ' <line number>]

IF <expression> GOTO <line number>

[ELSE <statement(s)> | <line number>]

8K, Extended, Disk

The ELSE clause is allowed only.in Extended and
Disk versions. -

To make a decision regarding program flow based” -
on the result returned by an expression.

If the result of <expression> is not zero,- the = ...
THEN or GOTO clause is executed., THEN may be = =
followed by either a line number for branching: -
or one or more statements to be executed. GOTO--: :.:
is always followed by a line number. If- the .- -
result of <expression> is zero, the THEN or:GOTO. . : .
clause is ignored and the . ELSE clause, if- -
present, is executed. Execution continues with Q‘
the next executable statement. (ELSE is allowed
only in Extended and Disk versions.) Extended = -
and Disk versions allow a comma before THEN. .

Nesting of IF Statements

In the Extended and Disk versions, -
If...THEN...ELSE statements may be nested. - .-
Nesting is limited only by the 1length of - the- - -
line. For example o

IF XY THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a legal statement. If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "A<CH

will not print "A<>C" when A<>B.

If an IF...TEEN statement is followed by a line \"
number in the direct mode, an "Undefined line" |
error results unless a statement with the
specified line number had previously been
entered in the indirect mode.

[image: image57.png]C

BASIC-80 COMMANDS AND STATEMENTS Page 2-35

NOTE:

Example 1:

Example 2:

Example 3:

When using IF to test equality for a value that
is the result of a floating point computation,
remember that the internal representation of the
value may not be exact. Therefore, the test
should be against the range over which the
accuracy of the value may vary. For example, to
test a computed variable A against the value
1.0, use:

IF ABS (A-1.0)<1.0E-6 THEN ...

This test returns true if the value of A is 1.0
with a relative error of less than 1.0E-6.

200 IF I THEN GET#1,I

This statement GETs record number I if I is not

Zero.

100 IF (I<20)*(I>10) THEN DB=1979-1:GOTO 300
110 PRINT "OUT OF RANGE"

L]
L

In this example, a test determines if I |is
greater than 10 and less than 20, If I is in
this range, DB is calculated and execution
branches to line 300. If I is not in this
range, execution continues with line 110.

210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go
either to the terminal or the line printer,
depending on the value of a variable (IOFLAG).
If IOFLAG is zero, output goes to the line
printer, otherwise output goes to the terminal.

[image: image58.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-36

2,27 INPUT

Format:
Versions:

Purpose:

Remarks:

INPUT([;] [<"prompt string">;]<list of variables>
8K, Extended, Disk

To allow input from the terminal during program
execution.

When an INPUT statement is encountered, program
execution pauses and a question mark is printed
to indicate the program is waiting for data. If
<"prompt string"> is included, the string is
printed before the question mark. The required
data is then entered at the terminal. :

If INPUT is immediately followed by a semicolon,-
then the carriage return typed by the user to
input data does not echo a carriage return/line
feed sequence.

The data that is entered is assigned to the
variable(s) given in <variable list>. The
number of data items supplied must be the same.
as the number of variables in the list. Data-
items are separated by commas. S

The variable names in the list may be numeric or
string variable names (including subscripted
variables). The type of each data item that is
input must agree with the type specified by the
variable name. (Strings input to an INPUT
statem?nt need not be surrounded by quotation
marks.

Responding to INPUT with too many or too few
items, or with the wrong type of value (numeric
instead of string, etc.) causes the messsage
»2Redo from start®™ to be printed. No assignment
of input values is made until an acceptable
response is given.

In the 8K version, INPUT is illegal in the
direct mode.

[image: image59.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-37

Examples: 10 INPUT X

.L/ 20 PRINT X "SQUARED IS" XA2
30 END
RUN
? 5 (The 5 was typed in by the user

in response to the question mark.)
5 SQUARED IS 25
Ok

LIST

10 PI=3.14

20 INPUT "WHAT IS THE RADIUS";R

30 A=PI*RA2

40 PRINT "THE AREA OF THE CIRCLE IS";A
50 PRINT

60 GOTO 20

RUN
WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS?
etc.

[image: image60.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-38

2.28 INPUT#

Pormat:
Version:

Purpose:

Remarks:

Example:

INPUT#<file number>,<variable list>
Disk

To read data items from a sequential disk file
and assign them to program variables.

<file number> is the number used when the file
was OPENed for input. <variable list> contains
the variable names that will be assigned to the
items in the file. (The variable type must
match the type specified by the variable name.)
With INPUT#, no question mark is printed, as
with INPUT. o

The data items in the file should appear just as -~
they would if data were being typed in response -

+o an INPUT statement, With numeric values,

leading spaces, carriage returns and line feeds . _
are ignored. The first character encountered - -~

that is not a space, carriage return or line
feed is assumed to be the start of a number.
The number terminates on a space, carriage
return, line feed or comma.

If BASIC-80 is scanning the sequential data file

for a string item, leading spaces, carriage
returns and line feeds are also ignored. The
first character encountered that is not a space,
carriage return, or line feed is assumed to -be

the start of a string item. If this first
character is a quotation mark ("), the string

item will consist of all characters read between

the first quotation mark and the second. Thus,

a quoted string may not contain a quotation-mark
as a character. If the first character of the
string is not a quotation mark, the string is an
unquoted string, and will terminate on a comma,
carriage or line feed (or after 255 characters
have been read). If end of file is reached when
a numeric or string item is being INPUT, the
item is terminated.

See Appendix B.

}S

[image: image61.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-39

2.29 KILL

Format:
Version:
Purpose:

Remarks:

Example:

KILL <filename>

Disk

To delete a file from disk.

Tf a KILL statement is given for a file that is
currently OPEN, a "File already open" error
occurs.

KILL is used for all types of disk files:
program files, random data files and sequential
data files. '
200 KILL "DATA1"

See also Appendix B.

[image: image62.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-40

2.30 LET

Format:
Versions:

Purpose:

Remarks:

Example:

[LET] <variable>=<expression>
8K, Extended, Disk

To assign the value of an expression to a
variable.

Notice the word LET is optional, i.e., the equal
sign is sufficient when assigning an expression
to a variable name.

110 LET D=12

120 LET E=12A2

130 LET F=12A4 o
140 LET SUM=D+E+F .

L
or

110 D=12

120 E=12A2
130 F=12A4
140 SUM=D+E+F

Y

(SN

[image: image63.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-41

2.31 LINE INPUT

Format: LINE INPUT[:] [<"prompt string">;]<string variable>
Versions: Extended, Disk

Purpose: To input an entire line (up to 254 characters)
to a string variable, without the use of
delimiters.

Remarks: The prompt string is a string 1literal that is
printed at the terminal before input is
accepted. A question mark is not printed unless
it is part of the prompt string. All input from
the end of the prompt to the carriage return is
assigned to <string variable>.

If LINE INPUT is immediately followed by a
semicolon, then the carriage return typed by the.
user to end the input 1line does not echo a .
carriage return/line feed sequence at the
terminal. S

. A LINE INPUT may be escaped by typing Control=C.

@ BASTC-80 will return to command level and type

s Ok. Typing CONT resumes execution at the LINE
INPUT.

Example: See Example, Section 2.32, LINE INPUT#.

[image: image64.png]BASIC-80 COMMANDS AND STATEMENTS Page 2=-42

2.32 LINE INPUT#

Format:
Version:

Purpose:

Remarks:

Example:

LINE INPUT#<file number>,<string variable>
Disk

To read an entire line (up to 254 characters),
without delimiters, from a sequential disk data
file to a string variable. .

<file number> is the number under which the file
was OPENed. <string variable> is the variable
name to which the line will be assigned. LINE
INPUT# reads all characters in the sequential
file up to a carriage return. It then skips
over the carriage return/line feed sequence, -and -
the next LINE INPUT# reads all characters up to_: -
the next <carriage Treturn. (If a line.
feed/carriage return sequence is encountered, it -

is preserved.) . -

LINE INPUT# is especially useful if each liﬁéiééigs ..

a data file has been broken into fields, or if a
BASIC-80 program saved in ASCII- mode is being :----
read as data by another program.

10 OPEN "O",1,"LIST"

20 LINE INPUT "CUSTOMER INFORMATION? ";C$
30 PRINT #1, C$

40 CLOSE 1

50 OPEN "I",1,"LIST"

60 LINE INPUT #1, C$

70 PRINT C$

80 CLOSE 1

RON

CUSTOMER INFORMATION? LINDA JONES 234,4 MEMPHIS
LINDA JONES 234,4 MEMPHIS

Ok

Y

MY s 2 s

M!

[image: image65.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-43

2.33 LIST

Format 1: LIST [<line number>]

Versions: 8K, Extended, Disk

Format 2: LIST [<line number>[-[<line number>]]]

Versions: Extended, Disk

Purpose: To list all or part of the program currently in
memory at the terminal.

Remarks: BASIC-80 always returns to command level after a

LIST is executed.

Format 1: If <line number> is .omitted, the

program is listed beginning at the lowest line

number. (Listing is terminated either by _the
end of the program or by typing Control-C.) If

<line number> is included, the 8K version will
list the program beginning at that line; and
the Extended and Disk versions will 1list only
the specified line.

Format 2: This format allows the following
options:

1. If only the first number is specified, that
line and all higher-numbered 1lines are
listed. .

2. If only the second number is specified, all
lines from the beginning of the program
through that line are listed.

3. If both numbers are specified, the entire
range is listed.

[image: image66.png]BASIC-80 COMMANDS AND STATEMENTS Page
Examples: Format 1:
LIST Lists the program currently
in memory.
LIST 500 In the 8K version, lists
all programs lines from
500 to the end.
In Extended and Disk,
lists line 500.
Format 2;
LIST 150~ Lists all lines from 150
to the end.
LIST -1000 Lists all lines from the

LIST 150-1000

lowest number through 1000.

Lists lines 150 through
1000, inclusive..

2-44

"

Y

[l

[image: image67.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-45

2.34 LLIST

Format:
Versions:

Purpose:

Remarks:

NOTE:

Example:

LLIST [<line number>([-[<line number>]1]
Extended, Disk

To list all or part of the program currently in
memory at the line printer.

LLIST assumes a 132-character wide printer.
BASIC-80 always returns to command level after
an LLIST is executed. The options for LLIST are
the same as for LIST, Format 2.

LLIST and LPRINT are not included in = all
implementations of BASIC-80. S

See the examples for LIST, Format 2.

[image: image68.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-46

2.35 LOAD

Format:
Version:
Purpose:

Remarks:

Example:

LOAD <filename>[,R]

Disk

To load a file from disk into memory.

<filename> is the name that was used when the
file was SAVEQd. (With <cP/M, the default
extension .BAS is supplied.)

LOAD closes all open files and deletes all

variables and program lines currently residing
in memory before it loads the designated

program. However, if the "R" option is used
with LOAD, the program is RUN after it is

LOADed, and all open data files are kept open.
Thus, LOAD with the "R" option may be used .to
chain several programs (or segments of the same
program). Information may be passed between the.

programs using their disk data files.

LOAD "STRTRK",R

'

[|

A

[image: image69.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-47

2.36 LPRINT AND LPRINT USING

Format:

Versions:

Purpose:

Remarks:

NOTE:

LPRINT [<list of expressions>]

LPRINT USING <string exp>;<list of expressions>
Extended, Disk

To print data at the line printer.

Same as PRINT and PRINT USING, except output
goes to the line printer. See Section 2.49 and
Section 2.50.

LPRINT assumes a 132-character-wide printer.

LPRINT and LLIST are not included in all
implementations of BASIC-80.

[image: image70.png]BASIC-80 COMMANDS AND STATEMENTS Paée 2-48

2,37 LSET AND RSET

Format:

Version:

Purpose:

Remarks:

Examples:

NOTE:

LSET <string variable> = <string expression>
RSET <string variable> = <string expression>

Disk

To move data from memory to a random file buffer
(in preparation for a PUT statement).

If <string expression> requires fewer bytes than
were FIELDed to <string variable>, LSET
left-justifies the string in the field, and RSET
right-justifies the string. (Spaces are used to
pad the extra positions.) If the string is too
long for the field, characters are dropped from
the right. Numeric values must be converted to
strings before they are LSET or RSET. See the
MRI$, MKS$, MKD$ functions, Section 3.25.

150 LSET A$=MKSS$ (AMT)
160 LSET D$=DESC ($)

See also Appendix B.

LSET or RSET may also be used with a non-fielded
string variable to left-justify or right-justify
a string in a given field. For example, the
program lines

110 A$=SPACES (20)
120 RSET A$=N$

right-justify the string N§ in a 20-character
field. This can be very handy for formatting
printed output.

N

[image: image71.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-49

2.38 MERGE

Format: MERGE <filename>

Version: Disk

Purpose: To merge a specified disk file into the program
currently in memory.

Remarks: <filename> is the name used when the file was

Example:

SAVEd. (With CP/M, the default extension .BAS
is supplied.) The file must have been SAVEd in
ASCII format. (If not, a "Bad file mode" error
occurs.) '

If any lines in the disk file have the same-line
numbers as lines in the program in memory, the
lines from the file on disk will replace the
corresponding lines in memory. - (MERGEing may be -
thought of as "inserting" the program lines on
disk into the program in memory.)

BASIC-80 always returns to command level after
executing a MERGE command.

MERGE "NUMBRS"

[image: image72.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-50

2.39 MID$

Format:

Versions:

Purpose:

Remarks:

Exanmple:

MIDS$ (<string exp1>,n[,m])=<string exp2>

where n and m are integer expressions and
<string exp1> and <string exp2> are string
expressions.

Extended, Disk

To replace a portion of one string with another
string.

The characters in <string exp1>, beginning at
position n, are replaced by the characters in

<string exp2>. The optional m refers to the

number of characters from <string exp2> that
will be used in the replacement. If m |is
omitted, all of <string exp2> is used. However,
regardless of whether m is omitted or included,

the replacement of characters never goes beyond
the original length of <string expi1>. . -

10 A$="KANSAS CITY, MO"

20 MID$ (A$,14)="KsS"

30 PRINT A$

RUN o
KANSAS CITY, KS Sl

MID$ may also be used as a function that reﬁhrﬁs‘
a substring of a given string. See Section
3.24.

-

[image: image73.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-51
”&/ 2.40 NAME

Format: NAME <old filename> AS <new filename>

Version: = Disk

Purpose: To change the name of a disk file.

Remarks: <old filename> must exist and <new filename>

must not exist; otherwise an error will result.
After a NAME command, the file exists on the
same disk, in the same area of disk space, with
the newname.

Example: Ok -
NAME "ACCTS" AS "LEDGER" . .
Ok - T

In this example, the file that was
formerly named ACCTS will now be named LEDGER.

[image: image74.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-52

2.41 NEW

Format:
Versions:

Purpose:

Remarks:

NEW
8K, Extended, Disk

To delete the program currently in memory and
clear all variables.

NEW is entered at command level to clear memory
before entering a new program. BASIC-80 always
returns to command level after a NEW is
executed.

[image: image75.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-53

2.42 NULL

Format: NULL <integer expression>

Versions: 8K, Extended, Disk

Purpose: To set the number of nulls to be printed at the
end of each line.

Remarks: For 10=-character-per-second tape punches,
<integer expression> should be >=3. When tapes
are not being punched, <integer expression>
should be 0 or 1 for Teletypes and
Teletype-compatible CRTs. <integer expression>
should be 2 or 3 for 30 cps hard copy printers.
The default value is 0.

Example: Ok
NULL 2
Ok
100 INPUT X

200 IF X<50 GOTO 800

-

Two null characters will be printed after each
line.

[image: image76.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-54

2.43 ON ERROR GOTO

Format:
Versions:

Purpose:

Remarks:

NOTE:

Example:

ON ERROR GOTO <line number>
Extended, Disk

To enable error trapping and specify the first
line of the error handling subroutine.

Once error trapping has been enabled all errors
detected, including direct mode errors (e.g.,
Syntax errors), will cause a jump to the
specified error handling subroutine. If <line
number> does not exist, an "Undefined line"

error results. To disable error trapping,

execute an ON ERROR GOTO 0. Subsequent errors
will print an error message and halt execution.
An ON ERROR GOTO 0 statement that appears in an
error trapping subroutine causes BASIC-80 to
stop and print the error message for the error
that caused the trap. It is recommended that
all error trapping subroutines execute an ON
ERROR GOTO 0 if an error is encountered for
which there is no recovery action.

Tf an error occurs during execution of an error
handling subroutine, the BASIC error message is
printed and execution terminates. Error
trapping does not occur within the error
handling subroutine. -

10 ON ERROR GOTO 1000

N

[image: image77.png]I
—

BASIC-80 COMMANDS AND STATEMENTS Page 2-55
2.44 ON...GOSUB AND ON...GOTO

Format: ON <expression> GOTO <list of line numbers>
ON <expression> GOSUB <list of line numbers>
Versions: 8K, Extended, Disk

Purpose: To branch to one of saeveral specified line
numbers, depending on the value returned when an
expression is evaluated.

Remarks: The value of <expression> determines which line
number in +the list will be used for branching.
For example, if the value is three, the third
line number in the list will be the destination
of the branch. (If the value is a non-integer, - -
the fractional portion is rounded.) -

In the ON...GOSUB statement, each line number in . -

the list must be the <first line number of a
subroutine.

If the value of <expression> is zero or greater
(_ than the number of items in the list (but less
than or equal to 255), BASIC continues with the
next executable statement. T£f the value of
<expression> is negative or greater than 255, an
"Illegal function call®™ error occurs.

Example: 100 ON L-1 GOTO 180,300,320,390

[image: image78.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-56

2.45 OPEN

Format:
Version:
Purpose:

Remarks:

NOTE:

Example:

OPEN <mode>, [#]1<file number>,<filename>, [<reclen>]
Disk
To allow I/0 to a disk file.

A disk file must be OPENed before any disk I/0
operation can be performed on that file. OPEN
allocates a buffer for I/0O to the £ile and
determines the mode of access that will be used
with the buffer.

<mode> is a string expression whose first
character is one of the following:

o specifies sequential output mode
I specifies sequential input mode
R specifies random input/output mode

<file number> is an integer expression whose
value is between one and fifteen., The number is
then associated with the file for as long as it
is OPEN and is used to refer other disk I/0
statements to the file.

<filename> is a string expression containing a
name that conforms to your operating system's
rules for disk filenames.

<reclen> is an integer expression which, if
included, sets the record length for random
files. The default record length is 128 Dbytes.

See also page A=-3.

A file can be OPENed for sequential input or
random access on more than one file number at a
time. A file may be OPENed for output, however,
on only one file number at a time.

10 OPEN "I",2,"INVEN"

See also Appendix B.

1 ¥

[image: image79.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-57

2.46 OPTION BASE

Format: OPTION BASE n
where n is 1 or 0

Versions: 8K, Extended, Disk

Purpose: To declare the minimum value for
subscripts.
Remarks: The default base is 0. If the statement

OPTION BASE 1

array

is executed, the lowest value an array subspripﬁ

may have is one.

[image: image80.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-58

2.47 OUT

Format: ouT I,J
where. I and J are integer expressions in the
range 0 to 255,

Versions: 8K, Extended, Disk

Purpose: To send a byte to a machine output port.

Remarks: The integer expression I is the port number, and
the integer expression J is the data to be
transmitted.

Example: 100 ouT 32,100

[image: image81.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-59
. 2.48 PORE
>

Format: POKE I,J
where I and J are integer expressions

Versions: 8K, Extended, Disk

Purpose: To write a byte into a memory location.

Remarks: The integer expression I is the address of the
memory location to be POKEd. The integer
expression J is the data to be POKEd. J must be
in the range 0 to 255. In the 8K version, I
must be less than 32768. In the Extended and
pisk versions, I must be in the range O to - -
65536. .
With the 8K version, data may be POKEd info:iga;.
memory locations above 32768 by supplying a
negative number for I. The value of I is
computed by subtracting 65536 from the desired . .-
address. For example, to POKE data :into _.
location 45000, I = 45000-65536, or -20536.

@ The complementary function to PORE is PEEK.. - The -

arqument to PEEK is an address from which a byte
is to be read. See Section 3.27. -

POKE and PEEK are useful for efficient data
storage, loading assembly language subroutines,
and passing arguments and results . to and from
assembly language subroutines.

Example: 10 PORE &HSA00,&HFF

[image: image82.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-60

2.49 PRINT

Format:
Versions:
Purpose:

Remarks:

PRINT (<list of expressions>]
8K, Extended, Disk
To output data at the terminal.

If <list of expressions> is omitted, a blank
line is printed. If <list of expressions> is
included, the values of the expressions are
printed at the terminal. The expressions in the
list may be numeric and/or string expressions.
(Strings must be enclosed in quotation marks.)

Print Positions

The position of each printed item is determined
by the punctuation used to separate the items in
the list. BASIC-80 divides the line into print
zones of 14 spaces each. In the 1list of
expressions, a comma causes the next value to be
printed at the beginning of the next zone. A
semicolon causes the next value to be printed
immediately after the last value. Typing one or
more spaces between expressions has the same
effect as typing a semicolon.

If a comma or a semicolon terminates the list of
expressions, the next PRINT statement begins
printing on the same line, spacing accordingly.
If the list of expressions terminates without a
comma or a semicolon, a carriage return is
printed at the end of the line. If the printed
line is longer than the terminal width, BASIC-80
goes to the next physical line and continues
printing.

Printed numbers are always followed by a space.
Positive numbers are preceded by a space.
Negative numbers are preceded by a2 minus sign.
Single precision numbers that can be represented
with 6 or fewer digits in the unscaled format no
less accurately than they can be represented in
the scaled format, are output using the unscaled
format. For example, 10A(-6) 1is output as
.000001 and 10A(=7) is output as 1E-7. Double
precision numbers that can be represented with
16 or fewer digits in the unscaled format no
less accurately than they can be represented in
the scaled format, are output using the unscaled
format. For example, 1D=16 is output as
.0000000000000001 and 1D=17 is output as
1D"‘1 7.

[image: image83.png]“

BASIC~-80 COMMANDS AND STATEMENTS Page 2-61

Example 1:

Example 2:

Example 3:

A question mark may be used in place of the word
PRINT in a PRINT statement.

10 X=5
20 PRINT X+5, X=5, X*(=5), XAS5
30 END
RUN
10 0 -25 _ 3125
ok

In this example, the commas in the PRINT
statement cause each value to be printed at the
beginning of the next print zone.

LIST
10 INPUT X
20 PRINT X "SQUARED IS" XA2 "AND";
30 PRINT X "CUBED IS" XA3
40 PRINT
50 GOTO 10
ok
RUN
29
9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

2

In this example, the semicolon at the end of
line 20 causes both PRINT statements to be
printed on the same line, and line 40 causes a
blank line to be printed before the next prompt.

10 FORX =1 T0 5
20 J=J+5
30 RK=K+10
40 2J;:K;
50 NEXT X
ok
RUN
5 10 10 20 15 30 20 40 25 50
Ok

In this example, the semicolons in the PRINT
statement cause each value to be printed
immediately after the preceding value. (Don't
forget, a number is always followed by a space
and positive numbers are preceded by a space.)
In line 40, a question mark is used instead of
the word PRINT.,

[image: image84.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-62

2.50 PRINT USING

Format: PRINT USING <string exp>;<list of expressions>

Versions: Extended, Disk

Purpose: To print strings or numbers using a specified
format.

Remarks <list of expressions> is comprised of the string'

and expressions or numeric expressions that are to

Examples: be printed, separated by semicolons. <string

exp> is a string literal (or variable) that is
comprised of special formatting characters.
These formatting characters (see below)
determine the field and the format of the
printed strings or numbers.

String Fields

When PRINT USING is used to print strings, one
of three formatting characters may be used to
format the string field:

bl B Specifies that only the first character in the
given string is to be printed.

"\n spaces\" Specifies that 2+n characters from the string
are to be printed. If the backslashes are typed
with no spaces, two characters will be printed;
with one space, three characters will be
printed, and so on. If the string is longer
than the field, the extra characters are
ignored. If the field is longer than the
string, the string will be left-justified in the
field and padded with spaces on the right.
Example:

10 A$="LOOK" :B$="0UT"

30 PRINT USING "1";A$;BS

40 PRINT USING "\ \";A$;B$

50 PRINT USING "\ \";A$;B$;"!!"
RUN

10

LOOKOUT

LOOK OUT !I!

[image: image85.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-63

”&“

Specifies a variable length string field. When
the field 1is specified with "&", the string is
output exactly as input. Example:

10 A$="LOOK" :B$="0UT"
20 PRINT USING "!";A$;
30 PRINT USING "&";BS$
RUN
LouT

Numeric Fields

When PRINT USING is used to print numbers, the
following special characters may be used to
format the numeric field:

A number sign is used to represent each digit
position. Digit positions are always filled.
If the number to be printed has fewer digits
than positions specified, the number will be -
§ight—justified (preceded by spaces) in -the-
ield. P

A decimal point may be inserted at any position
in the f£field. If the format string specifies
that a digit is to precede the decimal point,
the digit will always be printed (as 0-if
necessary). Numbers are rounded as necessary.

PRINT USING "##.##":;.78
0078 '

PRINT USING "###.#8";987.654
987.65

PRINT USING "##.## ".10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted
at the end of the format string to separate the
printed values on the line.

A plus sign at the beginning or end of the
format string will cause the sign of the number
(plus or minus) to be printed before or after
the number.

[image: image86.png]BASIC~-80 COMMANDS AND STATEMENTS Page 2-64

%%

$$

*'k$

A minus sign at the end of the format field will
cause negative numbers to be printed with a
trailing minus sign.

PRINT USING "+##o## ";-68095’2-4'55-6,‘09

PRINT USING "##.##- ";-68.95,22.449,-7.01
68.95~ 22.45 7.01=

A double asterisk at the beginning of the format

string causes leading spaces in the numeric -

field to be filled with asterisks. The ** also
specifies positions for two more digits.

PRINT USING ll**#.# ";12.39'-009'765.1
*12.4 *-009 765.1 LT == -7

A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted
number. The $$ specifies two more digit
positions, one of which is the dollar sign. The
exponential format cannot be used with $3.
Negative numbers cannot be used unless the minus
sign trails to the right.

PRINT USING "$$#4#.#4";456.78
$456.78

The **$ at the beginning of a format string
combines the effects of the above two symbols.
Leading spaces will be asterisk-filled and a
dollar sign will be printed before the number.
**$ gpecifies three more digit positions, one of
which is the dollar sign.

PRINT USING "**$i#.##";2.34
*h2$2.34

A comma that is to the left of the decimal point
in a formatting string causes a comma to be
printed to the left of every third digit to the
left of the decimal point. A comma that is at
the end of the format string is printed as part
of the string. A comma specifies another digit
position. The comma has no effect if used with
the exponential (AAAA) format.

PRINT USING "####,.##";1234.5
1,234.50

PRINT USING "####.#%,";1234.5
1234.50,

G

[image: image87.png]BASIC-80 COMMANDS AND STATEMENTS Page 2~65

AAAA

Four carats (or up-arrows) may be placed after
the digit position characters to specify
exponential format. The four carats allow space
for E+xx to be printed. Any decimal point
position may be specified. The significant
digits are left-justified, and the exponent is
adjusted. Unless a leading + or trailing + or -
is specified, one digit position will be used to
the left of the decimal point to print a space
or a minus sign.

PRINT USING "##.##AAAA";234.56
2.35E+02

PRINT USING ".####AAAA-";888888
.8889E+06 :

PRINT USING "+.##AAAA";123
+.12E+03

An underscore in the format string causes the
next character to be output as a literal
character. -

PRINT USING "_!##.##_1";12.34
112.34!

The literal character = itself may be an
underscore by placing "__" in the format string.

If the number to be printed is larger than the
specified numeric field, a percent sign is
printed in front of the number. If rounding
causes the number to exceed the field, a percent
sign will be printed in front of the rounded
number.

PRINT USING "##.##";111,22
$111,.22

PRINT USING ".##";.999
$1.00

If the number of digits specified exceeds 24, an
*Illegal function call" error will result.

[image: image88.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-66

2.51 PRINT# AND PRINT# USING

Format:

Version:
Purpose:
Remarks:

PRINT#<filenumber>, [USING< string exp>;]<list of exps>
Disk
To write data to a sequential disk file.

<filenumber> is the number used when the file
was OPENed for output. <string exp> is
comprised of formatting characters as described
in Section 2.50, PRINT USING. The expressions
in <list of expressions> are the numeric and/or
szring expressions that will be written to the
file. S

PRINT# does not compress data on the disk.:--An
image of +the data is written to the disk, just

as it would be displayed on the terminal with- a .
PRINT statement. For this reason, care should .-
be taken to delimit the data on the disk, so -
that it will be input correctly from the disk, ..-.

In the list of expressions, numeric expressiéﬁéf"';:
should be delimited by semicolons. For example,- -_-

PRINT#1,A;B;CiX; Y32 S I

(If commas are used as delimiters, the ;iffa v
blanks that are inserted between print fiélds
will also be written to disk.) jf;_.;f

String expressions must be separated. by .

semicolons in the 1list. To format the stxing;;:;fl

expressions correctly on the disk, use explicit -
delimiters in the list of expressions.

For example, let A$="CAMERA" and- B$="93604-1".
The statement

PRINT#1 rA$?B$

would write CAMERA93604-1 to the disk. Because
there are no delimiters, this could not be input
as two separate strings. To correct the
problem, insert explicit delimiters into the
PRINT# statement as follows:

PRINT#1,A$;",":B$

The image written to disk is

CAMERA,93604-1

N\
.

[image: image89.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-67

/

. which can be read back into two string
Y variables.

If the strings themselves contain commas,
semicolons, significant leading blanks, carriage
returns, or line feeds, write them to disk
surrounded by explicit quotation marks,
CHR$ (34) .

For example, let A$="CAMERA, AUTOMATIC" and
B$=" 93604-1". The statement

PRINT#1,A$;B$
would write the following image to disk:
CAMERA, AUTOMATIC 93604-1
and the statement
INPUT#1,A$,B$
would input "CAMERA" to A$. and
“AUTOMATIC 93604-1" to B$. To separate these
strings properly on the disk, write double
,(ﬁ/ quotes to the disk image using CHR$(34). The
statement
PRINT#1,CHRS (34) ;A$;CHRS (34) ;CHRS (34) ;B$;CHRS (34)
writes the following image to disk:
"CAMERA, AUTOMATIC"" 93604~-1"
and the statement
INPUT#1,A$,B$

would input "CAMERA, AUTOMATIC" to AS$ and’
" 93604-1" to BS$.

The PRINT# statement may also be used with the
USING option to control the format of the disk
file. For example:
PRINT#1,USING"$S#4#%.#%,":J:K;L

For more examples using PRINT#, see Appendix B.

S See also WRITE#, Section 2.6%.

[image: image90.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-68

2.52 PUT

Format: PUT [#]1<file number>[,<record number>]

Version: Disk

Purpose: To write a record from a random buffer to a
random disk file.

Remarks: <file number> is the number under which the file
was OPENed. If <record number> is omitted, the
record will have the next available record
number (after the last PUT). The largest
possible record number is 32767.

Example: See Appendix B. - -

[image: image91.png]-

BASIC-80 COMMANDS AND STATEMENTS Page 2~69

2.53 RANDOMIZE

Format:
Versions:
Purpose:

Remarks:

Example:

NOTE:

RANDOMIZE [<expression>]
Extended, Disk
To reseed the random number generator.

If <expression> is omitted, BASIC-80 suspends
program execution and asks for a value by
printing

Random Number Seed (0-~65529)7?
before executing RANDOMIZE.

If the random number generator is not reseeded,

the RND function returns the same sequence of

random numbers each time the program is RUN. To

change the sequence of random numbers evecy time
the program is RUN, place a RANDOMIZE statement -
at the beginning of the program and change the
argument with each RUN.

10 RANDOMIZE
20 FOR I=1 TO 5
30 PRINT RND;
40 NEXT I
RUN o
Random Number Seed (0-65529)? 3 (user types 3)
.88598 .484668 .586328 ,119426 .709225
Ok
RUN
Random Number Seed (0-63529)? 4 (user types 4
for new segquence)
.803506 .162462 .929364 .292443 .322921
Ok
RUN
Random Number Seed (0-65529)? 3 (same sequence
as first RUN)
.88598 .484668 .586328 ,119426 .709225
Ok

With the BASIC Compiler, the prompt given by
RANDOMIZE is:

Random Number Seed (-32768 to 32767)7?

[image: image92.png]A

BASIC-80 COMMANDS AND STATEMENTS Page 2-70
2.54 READ
Format: READ <list of variables> \‘

Versions: 8K, Extended, Disk

Purpcse: To read values from a DATA statement and assign
them to variables. (See DATA, Section 2.10.)

Remarks: A READ statement must always- be used in
conjunction with a DATA statement. - READ
statements assign variables to DATA statement
values on a one-to-one basis. READ statement
variables may be numeric or string, and the
values read must agree with the variable: types
specified. If they do not agree, a "Syntax
error® will result. LTt i
A single READ statement may access one or. mare
DATA statements (they will be accessed 5 in

' order), or several READ statements may access
the same DATA statment. If the number of
variables in <list of variables> exceeds the
number of elements in the DATA statement(s), an
OUT OF DATA message is printed. If the number 1
of variables specified is fewer than the number &i
of elements in the DATA statement(s), subsequent »
READ statements will begin reading data at the

first unread element. If there are no
subsequent READ statements, the extra data is
ignored.

To reread DATA statements from +the start, use
the RESTORE statement (see RESTORE, Section
2.57)

Example 1: .

80 FOR I=1 TO 10

90 READ A(I)

100 NEXT I

110 pATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

L]
*

This program. segment READs the values from the
DATA statements into the array A. After ‘\’
execution, the value of A(1) will be 3.08, and
SO on.

-4

[image: image93.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-71

- Example 2: LIST

_ 10 PRINT "CITY", "STATE", " ZIP"
20 READ C$,5%,2
30 DATA "DENVER,", COLORADO, 80211
40 PRINT C$,S%,2

Ok

RUN

CITY STATE ZIP
DENVER, COLORADO 80211
Ok

This program READs string and numeric data ffom
the DATA statement in line 30.

[image: image94.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-72

2.55 REM

Format: REM <remark>

Versions: 8K,

Extended, Disk

Purpose: To allow explanatory remarks to be inserted in a
program. :

Remarks: REM

statements are not executed but are output

exactly as entered when the program is listed.

REM statements may be branched into (from a . GOTO
or COSUB statement), and execution will continue
with the first executable statement after the
REM statement. o .

In the Extended and Disk versions, remarks. may

be added to the end of a line by preceding the

remark with a single quotation mark instead of

:m. - - .o P - - -
Example: :

120 REM CALCULATE AVERAGE VELOCITY)

130 FOR I=1 TO 20)

140 SUM=SUM + V(I) DaTiE

or, with Extended and Disk versions: B

120 FOR I=1 TO 20 'CALCULATE AVERAGE VELOCITY

130 SUM=SUM+V (I)

140 NEXT I

5%

[image: image95.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-73

2.56 RENUM

Format:
Versions:
Purpose:

Remarks:

NOTE:

Examples:

RENUM [[<new number>] [, [<old number>] [,<increment>]1]]
Extended, Disk
To rehumber‘program lines.

<new number> is the first line number to be used
in the new sequence. The default is 10. <old
number> is the line in the current program where
renumbering is to Dbegin. The default is the
first line of the program. <increment> is the
increment to be used in the new sequence. The
default is 10. it -
RENUM also changes all 1line number references.
following GOTO, GOSUB, THEN, ON...GOTO, -
ON...GOSUB and ERL statements to reflect the new.
line numbers. If a nonexistent line number
appears after one of these statements, the error . ,
message "Undefined 1line xxxxx in yYyyy®. is . ..
printed. The incorrect line number reference i
(xxxxx) is not changed by RENUM, but line number
yYYYy may be changed. -l :
RENUM cannot be used to change the order of
program lines (for example, RENUM 15,30 when the "
program has three lines numbered 10, 20 and 30)
or to create line numbers greater than 65529.
An "Illegal function call" error will result.

RENUM Renumbers the entire program.
The first new line number
will be 10. Lines will
increment by 10.

RENUM 300,,50 Renumbers the entire pro-
gram. The first new line
number will be 300. Lines
will increment by 50.

RENUM 1000,900,20 Renumbers the lines from
900 up so they start with
line number 1000 and
increment by 20.

[image: image96.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-74

2.57 RESTORE

Format:
Versions:

Purpose:

Remarks:

Example:

RESTORE [<line number>]
8K, Extended, Disk

To allow DATA statements to be reread from a
specified point.

After a RESTORE statement is executed, the next
READ statement accesses the first item in the
first DATA statement in the program. If <line
number> is specified, the next READ statement

accesses the first item in the specified DATA

statement.

10 READ A,B,C
20 RESTORE -
30 READ D,E,P
40 DATA 57, 68, 79 oo

[image: image97.png]BASIC-80 COMMANDS AND STATEMENTS : Page 2-75

2.58 RESUME

Formats:

Versions:

Purpose:

Remarks:

Example:

RESUME

RESUME 0

RESUME NEXT

RESUME <line number>
Extended, Disk

To continue program execution after an error
recovery procedure has been performed.

Any one of the four formats shown above may be
used, depending upon where execution is to
resume:

RESUME Execution resumes at the
or statement which caused the

RESUME 0 error.

RESUME NEXT Execution resumes at the

statement immediately £fol-
lowing the one which
caused the error.

RESUME <line number> Execution resumes at
<line number>.

A RESUME statement that is not in an error trap
routine causes a "RESUME without error” message
to be printed.

10 ON ERROR GOTO 900

900 IF (ERR=230)AND (ERL=90) THEN PRINT "TRY
AGAIN" : RESUME 80

[image: image98.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-76

2.59 RUN
- A
Format 1: RUN [<line number>] &I

Versions: 8K Extended, Disk
Purpcse: To execute the program currently in memory.

Remarks: Tf <line number> is specified, execution begins
on that 1line. Otherwise, execution begins at
the lowest line number. BASIC-80 always returns
to command level after a RUN is executed.

Example: RUN

Format 2: RUN <filename>(,R] ;:u'z;;-::§]
Version: Disk C
Purpose: To load a file from disk into meﬁbfy and run it.

Remarks: <filename> is the name used when the fiféziwas |
SAVEd. (With CP/M and 1ISIS-II, the qefault - !
extension .BAS is supplied.) L= - |

RUN closes all open files and deletes the &l
current contents of memory before loading the ‘
designated program. However, with the “R"
option, all data files remain OPEN.

Example: RUN "NEWFIL",R

See also Appendix B.

[image: image99.png]BASIC-80 COMMANDS AND STATEMENTS ‘Page 2-77

2.60 SAVE

Format:
Version:
Purpose:

Remarks:

Examples:

SAVE <filename>(,A ,P1
Disk
To save a program file on disk.

<filename> is a quoted string that conforms to
your operating system's requirements for
filenames. (With CP/M, the default extension
.BAS is supplied.) If <filename> already exists,
the file will be written over.

Use the A option to save the file in ASCII
format. Otherwise, BASIC saves the file in a
compressed binary format. ASCII format takes
more space on the disk, but some disk access
requires that files be in ASCII format. For-
instance, the MERGE command requires an ASCII
format file, and some operating system commands.
such as LIST may require an ASCII format file..

Use the P option to protect the file by saving
it in an encoded binary format. When a -
protected file is later RUN (or LOADed), any
attempt to list or edit it will fail. -

SAVE"COM2" ,A
SAVE"PROG",P

See also Appendix B.

[image: image100.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-78
2.61 STOP .o
mmms—— . /1

Format: STOP ‘*‘

Versions: 8K, Extended, Disk

Purpose: To terminate program execution and return to
command level.

Remarks: STOP statements may be used anywhere in a
program to terminate execution. When a STOP is
encountered, the following message is printed:

Break in line nnnnn -
Unlike the END statement, the:.STOP. statement -:--.:_
does not close files. TSl S
BASIC-80 always returns to command level after a.- . -
STOP is executed. Execution is resumed by. :-__.
issuing a CONT command (see Section 2.8). - _: -:-

Example: 10 INPUT A,B,C TToT T oo

30 STOP i i
40 M=C*K+100:PRINT M T LT \j
RUN - . N
2 1,2,3 O
BREAK IN 30 i o
Ok
PRINT L
30.7692 - . _ S
ok ST CLITITT oo
CONT R
115.9 : - Cz
Ok ~

[image: image101.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-79
2.62 SWAP
Format: SWAP <variable>,<variable>
Versions: Extended, Disk
Purpose: To exchange the values of two variables.
Remarks: Any type variable may be SWAPped (integer,
single precision, double precision, string), but
+he two variables must be of the same type or a
"rType mismatch" error results.
Example: LIST
10 A$=" ONE " : B$=" ALL " : C$="FOR"
20 PRINT A$ C$ BS : :
30 SWAP AS$, BS
40 PRINT A$ C$ BS
RUN
Ok
ONE FOR ALL)
ALL FOR ONE
Ok .

[image: image102.png]BASIC~80 COMMANDS AND STATEMENTS Page 2-80

2,63 TRON/TROFF

Format: TRON
TROFF
Versions: Extended, Disk
Purpose: To trace the execution of program statements.

Remarks: As an aid in debugging, the TRON statement
(executed in either the direct or indirect mode)
enables a trace flag that prints each line
number of the program as it is executed.. The
numbers appear enclosed in square brackets. The
trace flag is disabled with the TROFF statement
(or when a NEW command is executed). IR

Example: TRON --
ok -
LIST ‘ LT
10 K=10

20 FOR J=1 TO 2 . TITIL o
30 L=K + 10 e -

40 PRINTJI:;K:;L
50 RK=R+10

60 NEXT

70 END

[101(201(30](40] 1 10 20
(50]([60]1([30][40] 2 20 30
[50]1[60](70]

Ok

TROFF

Ok

[image: image103.png]BASIC-80 COMMANDS AND STATEMENTS Page 2~-81

2.64 WAIT
Format:

Versions:

Purpose:

Remarks:

CAUTION:

Example:

WAIT <port number>, I[,J]
where I and J are integer expressions

8K, Extended, Disk

To suspend program execution while monitoring
the status of a machine input port.

The WAIT statement causes execution to be
suspended until a specified machine input port
develops a specified bit pattern. The data read
at the port is exclusive OR'ed with the integer
expression J, and then AND'ed with I. If the
result is zero, BASIC-80 loops back and reads
the data at the port again. If the result “is
nonzero, execution continues with the next
statement. If J is omitted, it is assumed to be. -
zero. :

It is possible to enter an infinite 1loop -with.<-“'

the WAIT statement, in which case it will be
necessary to manually restart the machine. -

100 WAIT 32,2

[image: image104.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-82

2.65 WHILE...WEND

Format:

Versions:

Purpose:

Remarks:

Example:

WHILE <expression>

[<loop statements>]

WEND
Extended, Disk

To execute a series of statements in a loop as
long as a given condition is true.

If <expression> is not zero (i.e., true), <loop
statements> are executed until the WEND
statement is encountered. BASIC then returns to
the WHILE statement and checks <expression>. If
it is still true, the process is repeated. If
it is not true, execution resumes with the
statement following the WEND statement.

WHILE/WEND loops may be nested to any level.
Bach WEND will match the most recent WHILE.
An unmatched WHILE statement causes a "WHILE
without WEND" error, and an unmatched WEND
statement causes a "WEND without WHILE" errcor.

90 'BUBBLE SORT ARRAY A$
100 FLIPS=1 'FORCE ONE PASS THRU LOOP
110 WHILE FLIPS

A

115 FLIPS=0
120 FOR I=1 TO J-1
130 IF A$(I)>A$(I+1) THEN

SWAP A$(I),AS$(I+1):FLIPS=1
140 NEXT I .
150 WEND

[image: image105.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-83

2,66 WIDTH

Format:
Versions:

Purpose:

Remarks:

WIDTH [LPRINT] <integer expression>
Extended, Disk

To set the printed line width in number of
characters for the terminal or line printer.

If the LPRINT option is omitted, the line width
is set at the terminal. If LPRINT is included,
the line width is set at the line printer.

<integer expression> must have a value in . the
range 15 to 25S5. The default width is 72
characters. . T

If <integer expression> is 255, the line width -
is "infinite," that is, BASIC never inserts a
carriage return. However, the position of the

cursor or the print head, as given by the POS or-

LPOS function, returns to zero after position -
255.

[image: image106.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-84
Format: WRITE[<list of expressions>] &’
Version: Disk
Purpose: To output data at the terminal.
Remarks: If <list of expressions> 1is omitted, a blank
line is output. If <list of expressions> is
included, the values of the expressions are-
output at the terminal. The expressions in the
list may be numeric and/or string expressions,
and they must be separated by commas.
When the printed items are output, —each item
will be separated from the last by a comma.
Printed strings will be delimited by quotation.
marks. After the last item in the list is
printed, BASIC inserts a carriage return/line _..__ ..
feed. T T T
WRITE outputs numeric values ‘using the “§amé | i;iii
format as the PRINT statement, Section 2.49._. .~ ~"°]
Example: 10 A=80:B=90:C$=THAT'S ALL -mmE T J
20 WRITE A,B,C$ S . -
RUN B cmmm 1T
80, 90,"THAT'S ALL" oot T
Ok

[image: image107.png]BASIC-80 COMMANDS AND STATEMENTS Page 2-85

2.68 WRITE#

Format: WRITE#<file number>,<list of expressions>
Version: Disk
Purpose: To write data to a sequential file.

Remarks: <file number> is the number under which the file
was OPENed in "O" mode. The expressions in the
1ist are string or numeric expressions, and they
must be separated by commas.

The difference between WRITE# and PRINT# is that
WRITE4 inserts commas between the items as
they are written to disk and delimits strings
with quotation marks. Therefore, it is not
necessary for the user to put explicit
delimiters in the list. A carriage return/line
feed sequence is inserted after the last item in -
. the list is written to disk. :

Example: Let A$="CAMERA" and B$="93604-1". 'The
statement: T

g“' WRITE#1,A$,B$
writes the following image to disgz
"CAMERA","93604-1"
A subseéuent,INPUT# statement, such as:
INPUT#1,A$,BS
would input "CAMERA" to A$ and "93604-1" to BS.

[image: image108.png].

[image: image109.png]CHAPTER 3

BASIC-80 FUNCTIONS

The intrinsic functions provided by BASIC-80 are presented
in this chapter. The functions may be called from.any... .
program without further definition.

Arguments to functions are always enclosed in parentheses.
In the formats given for the functions in this chapter, .th
arguments have been abbreviated as follows: -

X and ¥ Represent any numeric expressions o
I and J Represent integer expressions
X$ and Y¥$ Represent string expressions

If a floating point value is supplied where an integer is
required, BASIC-80 will round the fractional portion and use
the resulting integer.

NOTE

With t@e BASIC-80 and BASIC-86 interpreters,
only integer and single precision results
are returned by functions. Double precision

functions are supported only by the BASIC
compiler.

[image: image110.png]BASIC-80 FUNCTIONS Page 3=2

Format: ABS (X)
Versions: 8K, Extended, Disk

Action: Returns the absolute value of the expression X.

Example: PRINT ABS(7*(-5))
35
ok
3.2 AsC L
Format: ASC (x$) ST

Versions: 8K, Extended, Disk ToTts

Action: Returns a numerical value that is the ASCIIicoEé}:
of the first character of the string X$. (See
Appendix L for ASCII codes.) If X$ is null, an
"Tllegal function call"™ error is returned.

Example: 10 X$ = "TEST" e s
20 PRINT ASC(X$) Lo

RON

84

ok

See the CHR$ function for ASCII=to-string
conversion.

A

[image: image111.png]BASIC-80 FUNCTIONS Page 3-3
WQ./ 3 . 3 ATN
Format: ATN (X)
Versions: 8K, Extended, Disk
Action: Returns the arctangent of X in radians. Result
is in the range =-pi/2 to pi/2. The expression X
may be any numeric type, but the evaluation of
ATN is always performed in single precision.
Example: 10 INPUT X
20 PRINT ATN (X)
RON
? 3
1.24905
ok
3.4 CDBL
) Format: CDBL (X) oot

Versions: Extended, Disk
Action: Converts X to a double precision number.

Example: 10 A = 454,67
20 PRINT A;CDBL(A)
RUN
454.67 454.6700134277344
- Ok

[image: image112.png]Versions:

Action:

Example:

3.6 CINT

Format:
Versions:

Action:

Example:

BASIC-80 FUNCTIONS Page 3-4
3.5 CHRS
Format: CHRS$ (I)

8K, Extended, Disk

Returns a string whose one element has ASCII
code I. (ASCII codes are listed in Appendix L.)
CHR$ is commonly used to send a special
character to the terminal. For instance, the
BEL character could be sent (CHR$3(7)) as a
preface to an error message, or a form feed
could be sent (CHR$(12)) to clear a CRT screen
and return the cursor to the home position.

PRINT CHRS$ (66)

B PR

Ok

See the ASC function for _ASCII-to=-numeric -
conversion. S
CINT (X) Teem v .

Extended, Disk Ll oo i

Converts X to an integer by -rounding - :the-.
fractional portion. If X is not in the range- :_
-32768 to 32767, an "Overflow" error occurs.: . _:.

PRINT CINT(45.67)
46 Do
ok

See the CDBL and CSNG functions for converting
numbers to the double precision and single
precision data type. See also the FIX and INT
functions, both of which return integers.

[N

[image: image113.png]BASIC-80 FUNCTIONS Page 3-5
3.7 COS
Format: COS (X)

Versions:

Action:

Example:

3.8 CSNG

Format:
Versions:
Action:

Example:

8K, Extended, Disk

Returns the cosine of X in radians. The
calculation of COS(X) is performed in single
precision.

10 X = 2*C0OS(.4)
20 PRINT X
RUN
1.84212
ok

CSNG (X)
Extended, Disk
Converts X to a single precision number.

10 A$ = 975.3421%

20 PRINT A#; CSNG(A#)

RUN ' _ —
975.3421 975.342 ‘

ok

See the CINT and CDBL functions for converting
numbers to the integer and double precision data

types.

[image: image114.png]BASIC-80 FUNCTIONS Page 3=6

3.9 CvI, Cvs, CVD

Format:

Version:

Action:

Example:

3.10 EOF

Format:
Version:

Action:

Example:

CVI(<2-byte string>)
CVS (<4=byte string>)
CVD (<8=byte string>)

Disk

Convert string values to numeric values.
Numeric values that are read in from a random
disk file must be converted from strings back
into numbers. CVI converts a 2-byte string to
an integer. CVS converts a 4-byte string to a
single precision number. CVD converts an 8=byte

string to a double precision number. :

70 FIELD 1,4 AS N$, 12 AS BS, ...
80 GET #1
90 Y=CVS (NS$)

See also MKI$, MKS$, MKD$, Séction;~§.25 and ‘
Appendix B.

EOF (<file number>) CT
Disk

Returns -1 (true) if the end of a sequential = -
file has been reached. Use EOF to test for
end-of-file while INPUTting, to avoid "Input

past end" errors.

10 OPEN "I",1,"DATA"
20 C=0

30 IF EOF(1) THEN 100
40 INPUT #1,M(C)

50 C=C+1:GOTO 30

: s

[image: image115.png]BASIC-80 FUNCTIONS Page 3-7

3.11 EXP

Format:
Versions:

Action:

Example:

3.12 FIX

Format:
Versions:

Action:

Examples:

EXP (X)
8K, Extended, Disk

Returns e to the power of X. X must be
<=87,3365. If EXP overflows, the "Overflow"
error message is displayed, machine infinity
with the appropriate sign is supplied as the
result, and execution continues.

10 X = 5
20 PRINT EXP (X-1)
RUN
54.5982
Ok

PIX(X)
Extended, Disk

Returns the truncated integer part of X. FIX(X)
is equivalent to SGN(X)*INT(ABS(X)). The major
difference between FIX and INT is that FIX does
not return the next lower number for negative X.

PRINT FIX(58.75)
58
Ok

PRINT FIX(-58.75)
-58
Ok

[image: image116.png]BASIC-80 FUNCTIONS Page 3-8

3.13 FRE

Format:

Versions:

Action:

Example:

3.14 HEXS$

Format:
Versions:

Action:

Example:

FRE (0)
FRE (X3)

8K, Extended, Disk

Arguments to FRE are dummy arguments. FRE returns
the number of bytes in memory that are not being
used by BASIC-80.

FRE("") forces a garbage collection before re-
turning the number of free bytes. BE PATIENT:
garbage collection may take 1 to 1-1/2 minutes.
BASTIC will not initiate garbage collection until

all free memory has been used up. Therefore us- -

ing FRE("") periodically will result in shorter
delays for each garbage collection.

PRINT FRE(0) » _—
14542
ok

HEXS$ (X)
Extended, Disk

Returns a string which represents the
hexadecimal value of the decimal argument. X is
rounded to an integer Dbefore HEXS$(X) is
evaluated.

10 INPUT X
20 A$ = HEXS$ (X)
30 PRINT X "DECIMAL IS " A$ " HEXADECIMAL"
RUN
? 32
32 DECIMAL IS 20 HEXADECIMAL
Ok

See the OCT$ function for octal conversion.

[image: image117.png]BASIC-80 FUNCTIONS Page 3-9

3.15 INP

Format:
Versions:

Action:

Example:

3.16 INPUTS

Format:
Version:

Action:

Example 1:

Example 2:

INP (I)
8K, Extended, Disk

Returns the byte read from port I. I must be in
the range 0 to 255. INP is the complementary
function to the OUT statement, Section 2.47.

100 A=INP (255)

INPUTS (X[, [#]1¥])
Disk —

Returns a string of X characters, read from the
terminal or from file number Y. If the terminal
is used for input, no characters will be echoed
and all control characters are passed through
except Control-C, which is used to interrupt the
execution of the INPUT$ function.

5 'LIST THE CONTENTS OF A SEQUENTIAL FILE IN
HEXADECIMAL _—

10 OPEN"I",1,"DATA"

20 IF EOF(1) THEN 50

30 PRINT HEXS$ (ASC(INPUTS$(1,#1))):

40 GOTO 20

50 PRINT

60 END

100 PRINT "TYPE P TO PROCEED OR § TO STOP"
110 X$=INPUTS (1)

120 IF X$="P" THEN 500

130 IF X$="S" THEN 700 ELSE 100

[image: image118.png]BASIC~80 FUNCTIONS Page 3-10

3.17 INSTR

Format:
Versions:

Action:

Example:

3.18 INT

Format:
Versions:
Action:

Examples:

INSTR([I,]X$,Y$)
Extended, Disk

Searches for the first occurrence of string Y§
in X$ and returns the position at which the
match is found. Optional offset I sets the
position for starting the search. I must be in
therange 0 to 255. If IDLEN(X$) or if X$ is

null or if ¥Y$ cannot be found, INSTR returns 0.
If Y$ is null, INSTR returns I or 1. X$ and Y$
may be string variables, string expressions or

string literals. L

10 X$ = "ABCDEB"
20 ¥Y$ = "B" o L
30 PRINT INSTR(XS$,Y$);INSTR(4,X$,Y$) -

RUN =

2 6 . Tl
Ok LooInT

INT (X)
8K, Extended, Disk

Returns the largest integer <=X.

PRINT INT(99.89) T -
99

Ok

PRINT INT(-12.11)
-13
Ok

See the FIX and CINT functions which also return
integer values.

SN

bk

[image: image119.png]BASIC-80 FUNCTIONS Page 3-11
3.19 LEFTS
Format: LEFTS (X$,I)
Versions: 8K, Extended, Disk
Action: Returns a string comprised of the leftmost I
characters of X$. I must be in the range 0 to
255. If I is greater than LEN(X$), the entire
string (X$) will be returned. If I=0, the null
string (length zero) is returned.
Example: 10 A$ = "BASIC-80"
20 B$ = LEFTS (A$,5)
30 PRINT B$
BASIC
Ok
Also see the MID$ and RIGHT$ functions.
3.20 LEN i
Format: LEN (X$)

Vversions:

Action:

Example:

8K, Extended, Disk S

Returns the number of characters in Xs.
Non-printing characters and blanks are counted.
10 X$ = "PORTLAND, OREGON" l
20 PRINT LEN (X$)

16
Ok

[image: image120.png]BASIC-80 FUNCTIONS Page 3-12
3.21 LOC C
Format: LOC(<file number>) k‘
Version: Disk
Action: With random disk files, LOC returns the next
record number to be used if a GET or PUT
(without a record number) is executed. With
sequential files, LOC returns the number of
sectors (128 byte blocks) read from or written
to the file since it was OPENed.
Example: 200 IF LOC(1)>50 THEN STOP
3.22 LOG)
Format: LOG (X) o L
Versions: 8K, Extended, Disk |
Action: Returns the natural logarithm of X. X must be |
greater than zero. RO A T - ‘:‘i
Example: PRINT LOG(45/7) S HER I j

1.86075 T
°k z - :

T S, S

[image: image121.png]BASIC-80 FUNCTIONS Page 3-13

3.23 LPOS

Format: LPOS (X)

Versions: Extended, Disk

Action: Returns the current position of the line printer
print head within the line printer buffer. Does
not necessarily give the physical position of
the print head. X is a dummy argument.

Example: 100 IF LPOS(X)>60 THEN LPRINT CHR$(13)

3.24 MID$ —

Format: MID$ (X$,I[,J1)

Versions: 8K, Extended, Disk

Action: Returns a string of length J characters from. X3
beginning with the Ith character. I and J must.
be in the range 0 to 255. If J is omitted or if
there are fewer than J characters to the right
of the Ith character, all rightmost characters
beginning with the Ith character are returned.
Tf IDLEN(X$), MID$ returns a null string.

Example: LIST

10 A$="GOOD "

20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$,9,7)

ok

RUN

GOOD EVENING

ok

Also see the LEFT$ and RIGHT$ functions.

[image: image122.png]BASIC-80 FUNCTIONS Page 3-14

3.25 MKI$, MKS$, MKD$

Format:

Version:

Action:

Example:

3.26 OCT$

Format:
Versions:

Action:

Example:

MRI$ (<integer expression>)
MKS$ (<single precision expression>)
MKD$ (<double precision expression>)

Disk

Convert numeric values to string values. Any
numeric value that is placed in a random file
buffer with an LSET or RSET statement must be
converted to a string. MKI$ converts an integer
to a 2-byte string. MKS$ converts a single
precision number to a 4-byte string. MKD$
converts a double precision number to an 8<byte
string.

90 AMT= (K+T)

100 FIELD #1, 8 AS D$, 20 AS N$
110 LSET D$ = MKSS$ (AMT)

120 LSET N$ = A$

130 PUT #1

See also CVI, CVS, CVD, Section 3.9 and Appendix
B. .- o

OCT$ (X) | -
Extended, Disk -
Returns a string which represents. the octal
value of the decimal argument. X is rounded to
an integer before OCT$(X) is evaluated.

PRINT OCT$ (24)

30
Ok
See the HEXS function for hexadecimal
conversion.

[image: image123.png]BASIC-80 FUNCTIONS Page 3=15
L,, 3.27 PEEK
Format: PEEK(I)
Versions: 8K, Extended, Disk
Action: Returns the byte (decimal integer in the range 0
to 255) read from memory location I. With the
8K version of BASIC-80, I must be 1less than
32768. To PEEK at a memory location above
32768, subtract 65536 from the desired address.
With Extended and Disk BASIC-80, I must be in
the range 0 to 65536. PEEK is the complementary
function to the POKE statement, Section 2.48.
Example: A=PEEK (&H5A00))
3.28 POS)
Format: POS (I) o
(J, Versions: 8K, Extended, Disk
) Action: Returns the current cursor position. The

leftmost position is 1. X is a dummy argument.
Example: IF POS (X)>60 THEN PRINT CHR$(13)

Also see the LPOS function.

[image: image124.png]BASIC-80 FUNCTIONS Page 3-16

3.29 RIGHTS

FPormat:
Versions:

Action:

Example:

3.30 RND

Pormat:
Versions:

Action:

Example:

RIGHTS (X3$,1I)
8K, Extended, Disk

Returns the rightmost I characters of string X$.
If I=LEN(X$), returns X$. If 1I=0, the null
string (length zero) is returned.

10 A$="DISK BASIC-80"

20 PRINT RIGHTS (A$,8)

RUN

BASIC-80

ok e

Also see the MID$ and LEFT$ functions.

RND[(X)]

8K, Extended, Disk f.) -A"Q!

Returns a random number between 0 and 1.- "The’
same sequence of random numbers is generated
each time the program is RUN unless the randem
number generator is reseeded (see RANDOMIZE, :--
Section 2.53). However, X<0 always restarts the . .-
same sequence for any given X. R

0 or X omitted generates the next random
number in the sequence. X=0 repeats the last
number generated. -

10 FOR I=1 TO 5
20 PRINT INT(RND*100);

30 NEXT
RUN

24 30 31 51 5
Ok

oo

- H

[image: image125.png]BASIC-80 FUNCTIONS Page 3=-17
) 3.31 SGN
—
Format: SGN (X)
Versions: 8K, Extended, Disk
Action: If X>0, SGN(X) returns 1.
If X=0, SGN(X) returns 0.
If X<0, SGN(X) returns -1,
Example: ON SGN(X)+2 GOTO 100,200,300 branches to 100 if
X is negative, 200 if X is 0 and 300 if X is
positive.
3.32 SIN —
Format: SIN (X) o
Versions: 8K, Extended, Disk | '
Action: Returns the sine of X in radiahs;~ SIN(X) - ié:
(/, calculated in single precision.

COS (X)=SIN (X+3.14159/2).

Example: PRINT SIN(1.5)
997495
Ok

[image: image126.png]BASIC-80 FUNCTIONS Page 3-18
3.33 SPACES

Format: SPACES$ (X)
Versions: Extended, Disk
Action: Returns a string of spaces of length X. The

expression X is rounded to an integer and must
be in the range 0 to 255.

Example: 10 FOR I = 1 TO S
20 X$ = SPACE$(I)
30 PRINT X$:;I
40 NEXT I ‘ -

ok ;‘:'i;;-Z‘

Also see the SPC function.

3.34 SPC

Format: SPC(I)
Versions: 8K, Extended, Disk

Action: Prints I blanks on the terminal. SPC may only
be used with PRINT and LPRINT statements. I
must be in the range 0 to 255.

Example: PRINT "OVER" SPC(15) "THERE"
OVER THERE
Ok

Also see the SPACE$ function.

[image: image127.png]BASIC-80 FUNCTIONS Page 3-19
3.35 SQR

Format: SQR (X)
Versions: 8K, Extended, Disk
Action: Returns the square root of X. X must be >=0,

Example: 10 FOR X = 10 TO 25 STEP 5
20 PRINT X, SQR(X)

30 NEXT
RUN
10 3.16228
15 3.87298
20 4.47214
25 5 L
Ok
3.36 STRS. -
Format: STRS (X)

" Versions: 8K, Extended, Disk

Action: Returns a string representation of the value of
X.

Example: 5 REM ARITHMETIC FOR KIDS
10 INPUT "TYPE A NUMBER";N :
20 ON LEN (STR$(N)) GosuB 30,100,200,300,400,500

L]
[4
L

Also see the VAL function.

[image: image128.png]——

BASIC-80 FUNCTIONS Page 3-20

3.37 STRINGS

Formats:
Versions:

Action:

Example:

3.38 TaAB

Format:
Versions:

Action:

Example:

STRINGS (I,J)
STRINGS (I,X$)

Extended, Disk

Returns a string of length I whose characters
all have ASCII code J or the first character of

Xs$.

10 X$ = STRING$(10,45)
20 PRINT X$ "MONTHLY REPORT" X§
RUN

MONTHLY REPORT

Ok

TAB(I)
8K, Extended, Disk

. Spaces to position'I on the terminal. If the
‘current print position is already beyond space

I, TAB goes to that position on the next line.
Space 1 is the leftmost position, and the right-
most position is the width minus one. I must be
in the range 1 to 255. TAB may only be used in
PRINT and LPRINT statements.

10 PRINT "NAME" TAB(25) "AMOUNT" : PRINT
20 READ AS$,BS

30 PRINT A$ TAB(25) B$§

40 DATA "G. T. JONES","$25.00"

RUN

NAME AMOUNT
G. T. JONES $25.00
Ok .

[image: image129.png]BASIC-80 FUNCTIONS Page 3-21
3.39 TAN
Format: TAN (X)

Versions:

Action:

Example:

3.40 USR

Format:
Versions:

Action:

Example:

8K, Extended, Disk

Returns the tangent of X in radians. TAN(X) is
calculated in single precision. If TAN
overflows, the "Overflow" error message is
displayed, machine infinity with the appropriate
sign is supplied as the result, and execution
continues.

10 ¥ = Q*TAN(X)/2

USR[<digit>] (X)

8K, Extended, Disk

Calls the user's assembly language subroutine -
with the argument X. <digit> is allowed in the -
Extended and Disk versions only. <digit> is in
the range 0 to 9 and corresponds to the digit
supplied with the DEF USR statement for that
routine. If <digit> is omitted, USRO is
agssumed. See Appendix C.

40 B = T*SIN(Y)
50 C = USR(B/2)
60 D = USR(B/3)

[image: image130.png]BASIC-80 FUNCTIONS

3.41

Format:
Versions:

Action:

Example:

VAL

Page 3-22

VAL (X$) J

8K, Extended, Disk

string X$. If
- &’ or a

Returns the numerical value of
the first character of X$ is not +,
digit, VAL(X$)=0.

10 READ NAMES$,CITY$,STATES$,ZIP§

20 IF VAL(ZIP$)<9000O OR VAL(ZIP$)>96699 THEN
PRINT NAME$ TAB(25) "OUT OF STATE"

30 IF VAL(2IP$)>=90801 AND VAL(Z2IP$)<=90815 THEN
PRINT NAME$ TAB(25) "LONG BEACH" S

See the STR$ function for numeric to’-string - --
conversion.

[e TS P

[T I

[image: image131.png]BASIC-80 FUNCTIONS Page 3-23

3.42 VARPTR

Format 1:
Versions:
Format 2:
Version:

Action:

NOTE:

Example:

VARPTR (<variable name>)
Extended, Disk

VARPTR (#<file number>)
Disk

Format 1: Returns the address of the first byte
of data identified with <variable name>. A
value must be assigned to <variable name> prior
to execution of VARPTR. Otherwise an "Illegal
function call® error results. Any type variable
name may be used (numeric, string, array), and
the address returned will be an integer in the
range 32767 to =32768. If a negative address is
returned, add it to 65536 to obtain the actual
address.

" VARPTR is usually used to obtain the -address of

a variable or array so it may be passed to an
assembly language subroutine. .A _function . .call
of the form VARPTR(A(0)) is usually specified
when passing an array, so that the
lowest-addressed element of the array is
returned. . -

All simple variables should be assigned before
calling VARPTR for an array, because the

addresses of the arrays change whenever a new .

simple variable is assigned.

Format 2: -Returns the starting address of the
disk I/O buffer assigned to <file number>.

In Standalone Disk BASIC, VARPTR(#<file number>)
returns the first byte of the file block. See
Appendix H.

100 X=USR(VARPTR(Y))

[image: image132.png]

[image: image133.png]APPENDIX A

New Features in BASIC-80, Release 5.0

The execution of BASIC programs written under Microsoft

BASIC,

release 4.51 and earlier may be affected by some of
the new features in release 5.0. Before attempting to run

such programs, check for the following:

1.

2.

3.

New reserved words: CALL, CHAIN, COMMON, WHILE,
WEND, WRITE, OPTION BASE, RANDOMIZE.

Conversion from floating point to integer values
results in rounding, as opposed to truncation.
This affects not only assignment statements (e:g.,
I3=2.5 results in I%=3), but also affects function

and statement evaluations (e.g., TAB(4.5) goes ¢to - .-
the 5th position, A(1.5) yeilds aA(2), and X=11.5

MOD 4 yields 0 for X).

The body of a FOR...NEXT loop 1is skipped if the
initial value of the loop times the sign of the
step exceeds the final value times the sign of the
step. See Section 2.22.

Division by zero and overflow no longer produc
fatal errors. See Section 1.8.1.2. :

The RND function has been changed so that RND with;

no argument is the same as RND with a positive
argument. The RND function generates the same
sequence of random numbers with each RUN, unless
RANDOMIZE is used. See Sections 2.53 and 3.30.

The rules for PRINTing single precision and double
precision numbers have been changed. See Section
2.49.

String space is allocated dynamically, and the
first argument in a two-argument CLEAR statement
sets the end of memory. The second argument sets
the amount of stack space. See Section 2.4.

[image: image134.png]10.

1.

Page A=-2

Responding to INPUT with too many or too few items,
or with the wrong type of value (numeric instead of
string, etc.), or with a carriage return causes the
message "?Redo from start" to be printed. No
assignment of input values is made until an
acceptable response is given.

There are two new field formatting characters for
use with PRINT USING. An ampersand is used for
variable length string fields, and an underscore
signifies a literal character in a format string.

If the expression supplied with the WIDTH statement
is 255, BASIC uses an "infinite" line width, that
ig, it does not insert carriage returns. WIDTH
LPRINT may be used to set the line width at the
line printer. See Section 2.66.

The at-sign and underscore are no longer used as
editing characters. S RS

Variable names are significant up to 40 characters
and can contain embedded reserved words. However,
reserved words must now be delimited by spaces. To
maintain compatibility with earlier versions of
BASIC, spaces will be automatically inserted
between adjoining reserved words and variable
names. WARNING: This insertion of spaces may
cause the end of a line to be truncated if the line
length is close to 255 characters.

BASIC programs may be saved in a protected- “binary.:

format. See SAVE, Section 2,.60.

)

B SN

i

[image: image135.png]Page A-3

CP/M and ISIS-II BASIC-80

In CP/M and ISIS-II BASIC-80, release 5.0, a number of addi-
tions have been made to disk I/O capability:

1. After a GET statement, INPUT# and LINE INPUT# may be done
to read characters from the random file buffer. PRINT#,
PRINT# USING, and WRITE# may also be used to put characters
in the random file buffer before a PUT statement.

In the case of WRITE#, BASIC-80 pads the buffer with spaces
up to the carriage return. Any attempt to read or write
past the end of the buffer causes a "Field overflow" error.

2. /S:<max record size> may be added at the end of the command
line to set the maximum record size for use with random -
files. The default record-size is 128 bytes.

A new feature has been added to the INPUT statement. A comma
may be used instead of a semicolon after the prompt string to
suppress the question mark. For example, the statement . -.
INPUT "ENTER BIRTHDATE",B$ will print the prompt with no
question mark. .

[image: image136.png]

[image: image137.png]APPENDIX B

BASIC-80 Disk I/0

Disk I/O procedures for the beginning BASIC-80 user are
examined in this appendix. If you are new to BASIC-80 or if
you're getting disk related errors, read through these
procedures and program examples to make sure you're using
all the disk statements correctly.

Wherever a filename is required in a disk command or .
statement, use a name that conforms to your operating
system's requirements for filenames. The CP/M operating
system will append a default extension .BAS to the filename

given in a SAVE, RUN, MERGE or LOAD command. - i -

B.1 PROGRAM FILE COMMANDS

Here is a review of the commands and statements used in
program file manipulation.

SAVE "filename"[,A] Writes to disk the program that is

currently residing in memory.
Optional A writes the program as a
series of ASCII characters.

(Otherwise, BASIC uses a compressed
binary format.)

LOAD "filename" [,R] Loads the program from disk into
memory. Optional R runs the program
immediately. LOAD always deletes the
current contents of memory and closes
all files before LOADing. If R is
included, however, open data files are
kept open. Thus programs can be
chained or loaded in sections and
access the same data files.

[image: image138.png]Page B-2

RUN "filename™[,R]" RUN "filename" loads the program from
disk into memory and runs it. RUN
deletes the current contents of memory
and closes all files before loading
the program. If the R option is
included, however, all open data files
are kept open.

MERGE "filename" Loads the program from disk into
memory but does not delete the current
contents of memory. The program line
numbers on disk are merged with the
line numbers in memory. If two lines
have the same number, only the line
from the disk program is saved. After
a MERGE command, the "merged" program
resides in memory, and - BASIC returns-
to command level. o Tl oo

KILL"filename” Deletes the file frbm;;;théifai;k;:f

"filename" may be a program file, or-a- - .

sequential or random access data. file.

NAME To change the name of a disk file,
execute the NAME statement, NAME
"oldfile"” AS "newfile", NAME may be
used with program files, random files,
or sequential files.

B.2 PROTECTED FILES

If you wish to save a program in an encoded binary format,
use +the "Protect" option with the SAVE command. For

example:
SAVE "MYPROG",P

A program saved this way cannot be listed or edited.

[image: image139.png]Page B-3

B.3 DISK DATA FILES - SEQUENTIAL AND RANDOM I/0

There are two types of disk data files that may be created
and accessed by a BASIC-80 program: sequential files and
random access files.

B.3.1 Seggential Files

Sequential files are easier to create than random files but
are limited in flexibility and speed when it comes to
accessing the data. The data that is written to a
sequential file is stored, one item after another
(sequentially), in the order it is sent and is read back in
the same way.

The statements and functions that are used with sequential.-.
files are:

OPEN PRINT# INPUT# WRITE# - e
PRINT# USING LINE INPUT# <L

CLOSE EOF LOC oL LIliolltiolioo o

The following program steps are requiré&tzﬁb'"crééte a
sequential file and access the data in the files

1. OPEN the file in "O" mcde. OPEN "O",#1,"DATA"

2. Write data to the file PRINT#1,A$:;B$;C$
using the PRINT# statement.
" (WRITE4 maybe used instead.)

3. To access the:data in the CLOSE#1
file, you must CLOSE the file OPEN "I",#1,"DATA"
and reOPEN it in "I" mode.

4., Use the INPUT# statement to INPUT#1,X$,Y3$,23
read data from the sequential
file into the program..

Program B-1 is a short program that creates a sequential
file, "DATA", from information you input at the terminal.

[image: image140.png]Page B-4

OPEN "O",#1,"DATA"
INPUT "NAME";N$

- IF N$="DONE" THEN END.
INPUT "DEPARTMENT";D$
INPUT "DATE HIRED";HS
PRINT#1,N$;",":D$;",";HS
PRINT:GOTO 20

' NAME? MICXEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROQGE
DEPARTMENT? ACCOUNTING
DATE EIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE EIRED? 08/16/78

NAME? etcC.

PROGRAM B-=1 - CREATE

A SEQUENTIAL DATA FILE

[image: image141.png]Page B-5

Now look at Program B-2. It accesses the file "DATA" that

was created in Program B-1 and displays the name of everyone
hired in 1978.

10 OPEN "I",#1,"DATA"

20 INPUT#1,N$,D$,HS

30 IF RIGHTS (H$,2)="78" THEN PRINT N$
40 GOTO 20

RUN

EBENEEZER SCROOGE

SUPER MANN

Input past end in 20

Ok

PROGRAM B-2 - ACCESSING A SEQUENTIAL FILE ~

Program B-2 reads, sequentially, every item :in. the file,
When all the data has been read, line 20 causes an "Input

past end" error. To avoid getting this error, insert line
15 which uses the EOF function to test for end-of-file:

15 IF EOF(1) THEN END

and change line 40 to GOTO 15.

A program that creates a sequential file can "algso write
formatted data to the disk with the PRINT# USING statement.
Por example, the statement

PRINT#1,USING"#4#4.%4%,";A,8,C,D

could be used to write numeric data to disk without explicit
delimiters. The comma at the end of the format string
serves to separate the items in the disk file.

The LOC function, when used with a sequential file, returns
the number of sectors that have been written to or read from
the file since it was OPENed. A sector is a 128-byte block
of data.

B.3.1.1 Adding Data To A Sequential File -

If you have a sequential file residing on disk and later
want to add more data to the end of it, you cannot simply
open the file in "O" mode and start writing data. As soon
as you open a sequential file in "O" mode, you destroy its
current contents. The following procedure can be used to
add data to an existing file called "NAMES",

[image: image142.png]2.

3.
4.
5.
6.

Page B=-6

OPEN "NAMES" in "I" mode.

OPEN a second file called "COPY" in "O" mode.

Read in the data in "NAMES" and write it to "COPY".
CLOSE "NAMES" and KILL it.

Write the new information to "COPY".

Rename "COPY" as "NAMES" and CLOSE.

7. Now there is a file on disk called
all the previous data plus the new data

includes
you just added.

Program B-3 illustrates this technique.
create or add onto a file called NAMES.
illustrates the use of LINE INPUT# to _read. . strings —wi

embedded commas from the disk file. Remember, LINE INPUT#
will read in characters from the disk until “it sees
carriage return (it does not stop at quotes qr”commasl oE.

until it has read 255 characters.

"NAMES"

that

It één~be used .to

This program also

+h

AY

a’_’

[image: image143.png]Page B=7

10 ON ERROR GOTO 2000

20 OPEN "I",%#1,"NAMES"

30 REM IF FILE EXISTS, WRITE IT TO "COPY"

40 OPEN "O",#2,"cCOPY"

50 IF EOF (1) TEEN 90

60 LINE INPUT#1,AS$

70 PRINT#2,A$

80 GOTO 50

90 CLOSE #1

100 KILL "NAMES"

110 REM ADD NEW ENTRIES TO FILE

120 INPUT "NAME";N$

130 IF N$="" THEN 200 ‘'CARRIAGE RETURN EXITS INPUT LOOP

140 LINE INPUT "ADDRESS? ";AS$

150 LINE INPUT "BIRTHDAY? ";B$

160 PRINT#2,N$ » S

170 PRINT#2,AS%

180 PRINT#2,B$ e SR
190 PRINT:GOTO 120 T -

200 CLOSE

205 REM CHANGE FILENAME BACK TO "NAMES" -

210 NAME "“COPY" AS "NAMES" R
2000 IF ERR=53 AND ERL=20 THEN OPEN "O",#2,"COPY":RESUME 120
2010 ON ERROR GOTO 0 L T -

PROGRAM B-3 - ADDING DATA TO A SEQUENTIAL FILE

The error trappring routine in line 2000 traps a "File does
not exist" error in 1line 20. If this happens, - the

statements that copy the file are skipped, and "COPY" 1is
created as if it were a new file.

B.3.2 Random Files

Creating and accessing random files requires more program
steps than seguential files, but there are advantages to
using random files. One advantage is that random files
require less room on the disk, because BASIC stores them in
a packed binary format. (A sequential file is stored as a
series of ASCII characters.)

The biggest advantage to random files is that data can be
accessed randomly, i.e., anywhere on the disk == it is not
necessary to read through all the information, as with
sequential files. This is possible because the information
is stored and accessed in distinct units called records and
each record is numbered.

The statements and functions that are used with random files
are:

[image: image144.png]Page B-8

OPEN FIELD LSET/RSET GET

PUT CLOSE LOC

MKI$ cvI
MKS$ cvs
MKD$ CvD

B.3.2.1 Creating A Random File =~
The following program steps are required to create a random
file.

1. OPEN the file for random OPEN "R",#1,"FILE",32 -
access ("R" mode). This example - - - TOoT . -
specifies a record length of 32 T
bytes.If the record length is
omitted, the default is 128

bytes.] -
2. Use the FIELD statement to FIELD #1 20 AS N§,
allocate space in the random 4 AS A$, 8 AS P$

buffer for the variables that
will be written to the random

file.

3. Use LSET to move the data LSET N$=X$
into the random buffer. LSET A$=MKS$ (AMT)
Numeric values must be made LSET P$=TELS$

into strings when placed in

the buffer. To do this, use the
"make” functions: MKI$ to

make an integer value into a
string, MKS$ for a single
precision value, and MKD$ for
a double precision value.

4. Write the data from PUT #1,CODE%
the buffer to the disk
using the PUT statement.

Look at Program B-4., It takes information that is input at
the terminal and writes it to a random file. Each time the
PUT statement is executed, a record is written to the file.
The two-digit code that is input in line 30 becomes the
record number.

[image: image145.png]Page B-9

“ - NOTE

Do not use a FIELDed string
variable in an INPUT or LET
statement. This causes the
pointer for that variable to

point into - string space
ingstead of the random £file
buffer.

20 FIELD #1,20 AS N$, 4 AS AS$, 8 AS P$
30 INPUT "2-DIGIT CODE";CODES% - -

10 OPEN "R"#1,"FILE" s e [e

40 INPUT "NAME";X$

50 INPUT "AMOUNT";AMT

60 INPUT "PHONE";TELS$:PRINT R
70 LSET N$=X$ - -
80 LSET A$=MKS$ (AMT) R
90' LSET P$=TEL$ 4 R

100 PUT #1,CODE%
Y 110 GOTO 30

PROGRAM B-4 - CREATE A RANDOM FILE

B.3.2.2 Access A Random File -
The following program steps are required to access a random

file:

10 OPEN the file in "RN mdeo OPEN "R”’#1'“FILE"'32

2. Use the FIELD statement to FIELD #1 20 AS N$§,
allocate space in the random 4 AS A$, 8 AS P$

buffer for the variables that
will be read from the file.

NOTE:

In a program that performs both
input and output on the same random
file, you can often use just one
OPEN statement and one FIELD
statement.

[image: image146.png]Page B-10

3. Use the GET statement to move GET #1,CODE%
the desired record into the
random buffer.

4, The data in the buffer may PRINT N$
now be acessed by the program. PRINT CVS (AS$)
Numeric values must be converted
back to numbers using the
"convert" functions: CVI for
integers, CVS for single o T
precision values, and CVD
for double precision values.

Program B-5 accesses the random file "FILE" that was created
in Program B-4. By inputting the three-digit code at the
terminal, the information associated with that code is read
from the file and displayed.

10 OPEN "R",#1,"FILE"
20 FIELD #1, 20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE";CODE%

40 GET #1, CODE% R

50 PRINT N$
60 PRINT USING "$$##3.#4";CVS (A$) B R
70 PRINT P$:PRINT ' o
80 GOTO 30

PROGRAM B-5 - ACCESS A RANDOM FILE

The LOC function, with random files, returns ”the "Ehrrehtj'

record number." The current record number is one plus the

last record number that was used in a GET or PUT statement. :

For example, the statement
IF LOC(1)>50 THEN END

ends program execution if the current record number in
file#1 is higher than 50.

Program B-6 is an inventory program that illustrates random
file access. In this program, the record number is used as
the part number, and it is assumed the inventory will
contain no more than 100 different part numbers. Lines
900-960 initialize the data file by writing CHR$(255) as the
first character of each record. This is used later (line
270 and line 500) to determine whether an entry already
exists for that part number.

Lines 130-220 display the different inventory functions that
the program performs. When you type in the desired function
number, line 230 branches to the appropriate subroutine.

[image: image147.png]500
510
520
530
340
550
560
570
580
590
600
610

~ 320
630
- _ 640
650
660

Page B-11
PROGRAM B=6 = INVENTORY

OPEN "R",#1,"INVEN.DAT",39

FIELD#1,1 AS F$,30 AS D$, 2 AS Q$,2 AS R$,4 AS P$
PRINT :PRINT "FUNCTIONS:":PRINT i
PRINT 1,"INITIALIZE FILE" ;
PRINT2, "CREATE A NEW ENTRY" ;
PRINT 3,"DISPLAY INVENTORY FOR ONE PART"

PRINT 4,"ADD TO STOCK"

PRINT 5,"SUBTRACT FROM STOCK"

PRINT 6,"DISPLAY ALL ITEMS BELOW REORDER LEVEL"
PRINT :PRINT: INPUT"FUNCTION" ; FUNCTION g
IF (FUNCTION<1)OR (FUNCTION>6) THEN PRINT "BAD FUNCTION NUMBER":GOTO 13
ON FUNCTION GOSUB 900,250,390,480,560,680 |
GOTO 220

REM BUILD NEW ENTRY

GOSUB 840 ‘

IF ASC(F$)<>255 THEN INPUT"OVERWRITE";A$:IF A$<>"Y" THEN RETURN
LSET F$=CHR$ (0) -

INPUT "DESCRIPTION";DESCS

LSET D$=DESC$

INPUT "QUANTITY IN STOCK";Q%

LSET Q$=MKIS$ (Q%)

INPUT "REORDER LEVEL";R$% : * -
LSET R$=MKIS$ (R%) T
INPUT "UNIT PRICE";P ' ST
LSET P$=MKSS$ (P) ‘ |
PUT#1,PARTS S
RETURN

REM DISPLAY ENTRY
GOSUB 840 :
IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
PRINT USING "PART NUMBER ###";PART%

PRINT D$

PRINT USING "QUANTITY ON HAND #####";CVI(Q$)

PRINT USING "REORDER LEVEL #####";CVI(R$)

PRINT USING "UNIT PRICE $$##.##";CVS(P$)

RETURN

REM ADD TO STOCK

GOSUB840

IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN v

PRINT D$:INPUT "QUANTITY TO ADD ";A%

Q%=CVI (Q$)+A%

LSET Q$=MKIS$ (Q%)

PUT41,PARTS

RETURN

REM REMOVE FROM STOCK

GOSUB 840

IF ASC(F$)=255 THEN PRINT "NULL ENTRY" : RETURN

PRINT D$

INPUT "QUANTITY TO SUBTRACT";S%

Q%=CVI(Q3)

IF (Q%=-S%)<0 THEN PRINT "ONLY";Q%;" IN STOCK":GOTO 600
Q%=Q3~-S%

IF Q%$=<CVI(R$) THEN PRINT "QUANTITY NOW";Q%;" REORDER LEVEL";CVI(RS)
LSET Q$=MKIS$ (Q%)

PUT#1,PARTS

[image: image148.png]670
680
690
710
720

730
740
840
850

890
900
910
920
930
940
950
960

Page B-12

RETURN

REM DISPLAY ITEMS BELOW REORDER LEVEL

FOR I=1 TO 100

GET#1,I

IF CVI(Q$)<CVI(R$) THEN PRINT D$;" QUANTITY";CVI(Q$) TAB (50)
"REORDER LEVEL";CVI(R$)

NEXT I

RETURN

INPUT "PART NUMBER";PART%

IF (PART$<1)OR(PART$>100) THEN PRINT "BAD PART NUMBER" :GOTO 840
ELSE GET#1,PART%:RETURN

END

REM INITIALIZE

INPUT "ARE YOU SURE";B$:IF B$S<O"Y" THEN RETURN

LSET F$=CHRS$ (255)

FOR I=1 TO 100

PUT#1,I

NEXT I

RETURN

[image: image149.png]APPENDIX C

Assembly Language Subroutines

All versions of BASIC-80 have provisions for interfacing
with assembly language subroutines. The USR Punction allows
assembly language subroutines to be called in the same way
BASIC's intrinsic functions are called.

NOTE

The addresses of the DEINT,
GIVABF, MAKINT and FRCINT T -
routines are stored in loca- R .]
tions +that must be supplied
individually for different im=-. N
plementations of BASIC. T -

C.1 MEMORY ALLOCATION

Memory space must be set aside for an assembly language
subroutine before it can be loaded. During initialization,

enter the highest memory location minus the amount of memery -

needed for the assembly language subroutine(s). BASIC uses
all memory available from its starting location up, so only
the topmost locations in memory can be set aside for user
subroutines.

When an assembly language subroutine is called, the stack
pointer is set up for 8 levels (16 bytes) of stack storage.
If more stack space is needed, BASIC's stack can be saved
and a new stack set up for use by the assembly language
subroutine. BASIC's stack must be restored, however, before
returning from the subroutine.

[image: image150.png]Page C=-2

The assembly language subroutine may be loaded into memory
by means of the system monitor, or the BASIC POKE statement,
or (if the user has the MACRO-80 or FORTRAN-80 package)
routines may be assembled with MACRO-80 and loaded using
LINK-80.

C.2 USR FUNCTION CALLS - 8K BASIC

The starting address of the assembly language subroutine
must be stored in USRLOC, a two-byte location in memory that
is supplied individually with different implementations of
BASIC-80. With 8K BASIC, the starting address may be POKEd
into USRLOC. Store the low order byte £first, followed by
the high order byte.

The function USR will call the routine whose address - is in
USRLOC. Initially USRLOC contains the address of ILLFUN,
the routine that gives the "Illegal function call" error.
Therefore, if USR is called without changing the address in
USRLOC, an "Illegal function call" error results.

The format of a USR function call is . O

USR (argument) : i ths
where the argument is a numeric expression. To obtain- - the
argument, the assembly language subroutine must call- the-
routine DEINT. DEINT places the argument into the D,E
register pair as a 2-byte, 2's complement integer. (If the
argument is not in the range -32768 to 32767, an "Illegal
function call" error occurs.) -

To pass the result back from an = assembly language
subroutine, load the value in register pair [A,B], and call
the routine GIVABF. If GIVABF is not called, USR(X) returns
X. To return to BASIC, the assembly language subroutine
must execute a RET instruction.) -

For example, here is an assembly language subroutine that
multiplies the argument by 2:

USRSUB: CALL DEINT ;jput arg in D,E
XCHG ;move arg to H,L
DAD H :H,L=H,L+H,L
MOV A,H ;move result to A,B
MOV B,L
JMP GIVABF ;pass result back and RETurn

Note that valid results will be obtained from this routine
for arguments in the range ~-16384<=x<=16383. The single
instruction JMP GIVABF has the same effect as:

[image: image151.png]Page C-3

CALL GIVABF
RET

To return additional values to the program, load them into
memory and read them with the PEEK function.

There are several methods by which a program may c¢all mcre
than one USR routine. For example, the starting address of
each routine may be POKEd into USRLOC prior to each USR
call, or the argument to USR could be an index into a table
of USR routines.

C.3 USR FUNCTION CALLS - EXTENDED AND DISK BASIC

In the Extended and Disk versions, the format of the "USR
function is ,

USR([<digit>] (argument) -

where <digit> is from 0 to 9 and the argument is any numeric.
or string expression. <digit> specifies which USR routine
is being called, and corresponds with the digit supplied in
the DEF USR statement for that routine. If <digit> is
omitted, USRO is assumed. The address given in the DEF_ _USR
statement determines the starting address of the subroutine.

When the USR function call is made, register A contains a

value that specifies the type of argument that was given.
The value in A may be one of the following:

Value in A Type of Argument

2 Two-byte integer (two's complement)
String

4 Single precision floating point number

8 Double precision floating point number

If the argument is a number, the [H,L] register pair points
to the Floating Point Accumulator (FAC) where the argument
is stored.

If the argument is an integer:

FAC-3 contains the lower 8 bits of the argument and
FAC-2 contains the upper 8 bits of the argument.

If the argument is a single precision floating point number:

FAC=3 contains the lowest 8 bits of mantissa and

[image: image152.png]Page C-4

FAC-2 contains the middle 8 bits of mantissa and
FAC-1 contains the highest 7 bits of mantissa
with leading 1 suppressed (implied). Bit 7 is
the sign of the number (O=positive, 1=negative).
FAC is the exponent minus 128, and the binary
point is to the left of the most significant

bit of the mantissa.

If the argument is a double precision floating point number:

FAC-7 through FAC-4 contain four more bytes
of mantissa (FAC-7 contains the lowest 8 bits).

If the argument is a string, the [D,E] register pair peints
to 3 bytes called the "string descriptor." Byte 0 of the
string descriptor contains the length of the string (0 to
255). Bytes 1 and 2, respectively, are the lower and upper
8 bits of the string starting address in string space.

CAUTION: If +the argument is a string literal in the
program, the string descriptor will point to program text.
Be careful not to alter or destroy your program this way.
To avoid unpredictable results, add +"" to the string
literal in the program. Example:

A$ = "BASIC-80"+""

This will copy the string literal into string space and will
prevent alteration of program text during a subroutine call.

Usually, the value returned by a USR function is the same
type (integer, string, single precision or double precision)
as the argument that was passed to it. However, calling the
MAKINT routine returns the integer in [H,L] as the value of
the function, forcing the value returned by the function to
be integer. To execute MAKINT, use the following sequence
to return from the subroutine:

PUSH H ;save value to be returned
LHELD XXX ;jget address of MAKINT routine
XTHL ;save return on stack and

;get back [H,L]
RET ;return

Also, the argument of the function, regardless of its type,

may be forced to an integer by calling the FRCINT routine to
get the integer value of the argument in (H,L]. Execute the
following routine:

LXI B ;get address of subroutine
;continuation

PUSH H :place on stack

LELD XXX ;jget address of FRCINT

PCHL

SUB1 : .] . . .

[image: image153.png]Page C=5

C.4 CALL STATEMENT

Extended and Disk BASIC-80 user function calls may also be
made with the CALL statement. The calling sequence used is
the same as that in Microsoft's FORTRAN, COBOL and BASIC
compilers.

A CALL statement with no arguments generates a simple "CALL"
instruction. The corresponding subroutine should return via
a simple "RET." (CALL and RET are 8080 opcodes - see an 8080
reference manual for details.)

A subroutine CALL with arguments results in a somewhat more
complex calling sequence. For each argument in the CALL
argument list, a parameter is passed to the subroutine.
That parameter is the address of the low byte of the
argument. Therefore, parameters always occupy two bytes
each,regardless of type.

The method of passing the parameters depends upon the number
of parameters to pass:

1. If the number of parameters is less than or equal’
to 3, they are passed in the registers. Parameter
1 will be in HL, 2 in DE (if present), and 3 in BC-
(if present).

2. TIf the number of parameters is greater than 3, they
are passed as follows:

1. Parameter 1 in HL. . -

2. Parameter 2 in DE.

3.. Parameters 3 through n in a contiguous data
block. BC will point to the low byte of this
data block (i.e., to the low byte of parameter
3).

Note that, with this scheme, the subroutine must know how
many parameters to expect in order to find them.
Conversely, the calling program is responsible for passing
the correct number of parameters. There are no checks for
correct number or type of parameters.

If the subroutine expects more than 3 parameters, and needs
to transfer them to a local data area, there is a system
subroutine which will perform this transfer. This argument
transfer routine is named $AT (located in the FORTRAN
library, FORLIB.REL), and is called with HL pointing to the
local data area, BC pointing to the third parameter, and A
containing the number of arguments to transfer (i.e., the
total number of arguments minus 2). The subroutine is

[image: image154.png]Page C=6

responsible for saving the first two parameters before
calling $AT. For example, if a subroutine expects 5

parameters, it should look like: M'
SUBR: SHLD P1 ; SAVE PARAMETER 1

XCHG

SHLD P2 ; SAVE PARAMETER 2

MVI a,3 ;NO., OF PARAMETERS LEFT

LXI “H,P3 :POINTER TO LOCAL AREA

CALL $AT s TRANSFER THE OTHER 3 PARAMETERS

EBody of subroutine]

*>

RET sRETURN TO CALLER
P1: DS 2 ;SPACE FOR PARAMETER 1
P2: DS 2 ; SPACE FOR PARAMETER 2 B
P3: DS 6 ; SPACE FOR PARAMETERS 3=-5 - LI

A listing of the argument transfer routine AT$ follows. :

00100 ; ARGUMENT TRANSFER |
00200 ;[B,C] POINTS TO 3RD PARAM. eres - \‘
00300 ;(H,L] POINTS TO LOCAL STORAGE FOR PARAM 3

00400 ;[A] CONTAINS THE # OF PARAMS TO XFER(TOTAL=2) .~ ... © -
00500

00600

00700 ENTRY $AT S s

00800 $aT: XCEG ;SAVE [H,L] IN (D,E]

00900 MOV H,B

01000 MOV L,C ; [E,L] = PTR TO PARAMS.

01100 AT1: MOV c,M

01200 INX H

01300 MOV B,M o :

01400 INX H ; [B,C] = PARAM ADR

01500 XCHG . [H,L] POINTS TO LOCAL STORAGE
01600 MOV M,C

01700 INX B

01800 MOV M,B

01900 INX B ;STORE PARAM IN LOCAL AREA
02000 XCHG s SINCE GOING BACK TO AT1

02100 DCR A ;s TRANSFERRED ALL PARAMS?

02200 INZ AT1 sNO, COPY MORE

02300 RET. ;YES, RETURN

[image: image155.png]C

Page C=7

When accessing parameters in a subroutine, don't forget that
they are géinters to the actual arguments passed.

NOTE

I+ is entirely up to the
programmer to see to it that
the arguments in the calling
program match in number, type,
and length with the parameters
expecte y the subroutine.
This applies to BASIC
subroutines, as well as those
written in assembly language.

C.5 INTERRUPTS

Assembly language subroutines can be written to "handle _

interrupts. All interrupt handling routines should save _the:

stack, register A-L and the PSW. Interrupts should ailways: .
be re-enabled before returning from the subroutine, . .since -

an interrupt automatically disables all further “interrupts.
once it is received. The user should be. aware of which
interrupt vectors are free in the particular version -of -
BASIC that has been supplied. Note *to CP/M users: in CP/M
BASIC, all interrupt vectors are free.) S

[image: image156.png]e

[image: image157.png]APPENDIX D

BASIC-80 with the CP/M Operating System

The CP/M version of BASIC-80 (MBASIC) is supplied on a
standard size 3740 single density diskette. The name of the
file is MBASIC.COM. (A 28K or larger CP/M system is
recommended.)

To run MBASIC, bring up CP/M and type the following: '
A>DMBASIC <carriage return>
The system will reply:
xxxx Bytes Free
BASIC=-80 Version 5.0
(CP/M Version)
Copyright 1978 (C) by Microsoft
‘Qv{ Created: dd-mmm-yy
~- Ok

MBASIC is the same as Disk BASIC-80 as described in this
manual, with the following exceptions:

D.1 INITIALIZATION

The initialization dialog has been replaced by a set of
options which are placed after the MBASIC command to CP/M.
The format of the command line is:

ADMBASIC [<filename>] [/F:<number of files>] [/M:<highest memory locatiod;

If <filename> is present, MBASIC proceeds as if a RUN
<filename> command were typed after initialization is
complete. A default extension of .BAS is used if none is
supplied and the filename is less than 9 characters long.
This allows BASIC programs to be executed in batch mode
using the SUBMIT facility of CP/M. Such programs should
include a SYSTEM statement (see below) to return to Cp/M
when they have finished, allowing the next program in the
&J/ batch stream to execute.

[image: image158.png]Page D=2

If /F:<number of files> is present, it sets the number of
disk data files that may be open at any one time during the

execution of a BASIC program. Each file data block
allocated in this fashion requires 166 bytes of memory. If
the /F option is omitted, the number of files defaults to 3.

The /M:<highest memory location> option sets the highest
memory location that will be used by MBASIC. 1In some cases
it is desirable to set the amount of memory well below the
CP/M's FDOS to reserve space for assembly language
subroutines. In all cases, <highest memory location> should
be below the start of FDOS (whose address is contained in
locations 6 and 7). If the /M option is omitted, all memory
up to the start of FDOS is used.

NOTE PR .ot ol

Both <number of files> and =~ 7
<highest memory location> are

numbers that may be either

decimal, octal (preceded by --. o e -

80) or hexadecimal (preceded
by &H). ..

Examples: I
A>MBASIC PAYROLL.BAS Use all memory and 3 files,
load and execute PAYROLL.BAS. "=~~~

A>MBASIC INVENT/F:6 Use all memory and 6 files,
load and execute INVENT.BAS.

A>MBASIC /M:32768 Use first 32K of memory and - - -
3 £iles. S

A>MBASIC DATACK/F:2/M:&H9000 e
Use first 36K of memory, 2
files, and execute DATACK.BAS.

D.2 DISK FILES

Disk. filenames follow the normal CP/M naming conventions.
All filenames may include A: or B: as the first two
characters to specify a disk drive, otherwise the currently
selected drive is assumed. A default extension of .BAS is
used on LOAD, SAVE, MERGE and RUN <filename> commands if no
"," appears in the filename and the filename is less than 9
characters long.

o

J

[image: image159.png]Page D=3
D.3 FILES COMMAND
Format: FILES[<filename>]
Purpose: To print the names of £files residing on the

current disk.

Remarks: If <filename> is omitted, all the files on the
currently selected drive will be 1listed.
<filename> is a string formula which may contain
question marks (?) to match any character in the
filename or extension. An asterisk (*) as the
first character of the filename or extension
will match any file or any extension.

Examples: FILES

X FPILES "*.Bas"
FILES "B:* *"
FILES "TEST?.BAS"

D.4 RESET COMMAND LT T L

Format: RESET | | s

Purpose: To close all disk files and write the directory
information to a diskette before it is removed.
from a disk drive. . A ' s

Remarks: Always execute a RESET command before removing a
diskette from a disk drive. Otherwise, when the
diskette is used again, it will not have the
current directory information written on the
directory track.

RESET closes all open files on all drives and
writes the directory track to every diskette
with open files.

[image: image160.png]D.5

LOF

Page D=4

FUNCTION

Format:

Action:

Example:

D.6 EOF

LOF (<file number>)

Returns the number of records present in the
last extent read or written. If the file does
not exceed one extent (128 records), then LOF
returns the true length of the file.

110 IF NUMS>LOF (1) THEN PRINT "INVALID ENTRY"

With CP/M, the EOF function may be used with random files.
If a GET is done past the end of file, EOF will return =-1.
This may be used to find the size of a file using a binary
search or other algorithm.

D.7

MISCELLANEQUS

1.
2.

3.

CSAVE and CLOAD are not implemented.

To return to CP/M, use the SYSTEM command or
statement. SYSTEM closes all files and then
performs a CP/M warm start. Control=C always
returns to MBASIC, not to CP/M.

FRCINT is at 103 hex and MAKINT is at 105 hex.
(Add 1000 hex for ADDS versions, 4000 for SBC ce/M
versions.)

[image: image161.png]APPENDIX E

BASIC-80 with the ISIS-II Operating System

With ISIS~II, BASIC-80 is the same as described in this
manual, with the following exceptions:

E.1 INITIALIZATION ’ S Co -

The initialization dialog has been replaced by a’ set of’T----

options which are placed after the MBASIC command to

ISIS-II. The format of the command line is: = - - ° -en
-MBASIC [<filename>] [/F:<number of files>][/M:<highest memofy;légap;on>$

If <filename> is present, BASIC proceeds as "if a-'RUN

,»L/ <filename> command were typed after initialization 1is
: complete. A default extension of .BAS is used if - none is -~
supplied.

If /F:<number of files> is present, it sets -the number of
disk data files that may be cpen at any oneé-time during the - -
execution of a BASIC program. The maximum is six and the
default is three. The /M:<highest memory location> option
sets the highest memory location that will be used by BASIC.
Use this option to reserve memory locations above BASIC for
assembly language subroutines. -

At initialization, the system will reply:

xxxx Bytes Free

BASIC-80 Version x.X

(ISIS-II Version) :
Copyright 1978 (C) by Microsoft

[image: image162.png]Page E-2

E.2 LINE PRINTER I/0

To send output to the printer during execution of a BASIC
program, open the line printer as if it were a disk file:

50 N=4
100 OPEN "ON'N'":LP:"

120 PRINT #N,A,B,C

Since BASIC buffers disk I/0, you may want to force buffers
out by CLOSEing the printer channel.

To LIST a program on the line printer, use:

SAVE":LP:" ,A

E.3 ATTRIB STATEMENT

In ISIS-II BASIC=-80, the ATTRIB statement sets file
attributes. The format of the statement is:

ATTRIB <filename string>,<attribute string>

The attribute string consists of F, W, S or I for the
attribute, followed by a 1 to set the attribute or a 0 to
reset.

Examples:
ATTRIB "INFO.DAT","W1"
ATTRIB "GHOST.BAS","I1"

ATTRIB ":F1:SYSFIL","WIF1S1I1"
ATTRIB A$,BS

E.4 MISCELLANEOUS

Note these other differences for ISIS-~I1I BASIC:

1. MAKINT is located at xxxxx hex, and GIVINT is
located at xxxxxX hex.

2. There is no FILES command in ISIS-II BASIC.
Filenames do not default to .BAS on SAVEs, LOADs,
and MERGESs.

s

[image: image163.png]APPENDIX F

BASIC-80 with the TERDOS Operating System

The operation of BASIC-80 with the TEKDOS operating system
is the same as described in this manual with the following
exceptions:

1.

2.

3.

4.

5.

At initialization, BASIC asks MEMORY SIZE? If you
respond with a carriage return, BASIC will use all
available memory. If you respond- with"-'a memory
location (in decimal), BASIC will use memory only
up to that location. This lets you reserve space
at the top of memory for assembly language
subroutines.

The number of disk files that may be open at one.

time defaults to 5.

LPRINT and LLIST are not implemented. Instead,
open a file to the printer. i -

TEKDOS does not support random disk I/O. The
corresponding BASIC-80 statements (PUT, GET,
OPEN"R", etc.) are inoperable under TEKDOS. :

Control-C works only once due to a bug- in TEKDOS.
If you interrupt a running program or a LIST

command with Control-C, BASIC appears to be- in’

"gingle statement"” mode. To clear this condition,
exit BASIC with a SYSTEM command and re—enter BASIC
with an XEQ BASIC. Avoid using the AUTO command ,
since it requires a Control-C to return to BASIC
command level. :

[image: image164.png]N

[image: image165.png]APPENDIX G

BASIC-80 with the INTEL SBC and MDS Systems

G.1 INITIALIZATION

The paper tape of BASIC-80 supplied for SBC.and MDS . systems
is in Intel-compatible hex format. Use the -meaitcels—R—
command to load the tape, then execute the G command to
start BASIC-80. The command is: ‘

.G4000
BASIC will respond: -

Memory size?
If you want BASIcfto use all available RaM, just type a
carriage return. If you want to reserve space at the top of
memory for machine language subroutines, enter the highest
memory address (in decimal) that BASIC may use.

Terminal Width? »
(8K versions only) Respond with the number of characters for
the output line width in PRINT statements. ‘The default is
72 characters. (Extended versions use WIDTE command.)

Want SIN=-COS-TAN-ATN?

Type ¥ to retain these functions, type N to delete them, oOFr
type A to delete ATN only.

G.2 SUBROUTINE ADDRESSES

In the 8K version of SBC and MDS BASIC-80, DEINT is located
at 0043 hex and GIVABF is located at 0045 hex. USRLOC is at
xxxx hex. In the Extended version, FRCINT is located at
xxxx hex, and MAKINT is located at xxxxX hex.

[image: image166.png]G.3 LLIST AND LLPRINT

LLIST and LPRINT are not implemented.

Page G-2

i
4
1
- 4
b
i
|

[image: image167.png]APPENDIX H

Standalone Disk BASIC

Standalone Disk BASIC is an easily implemented,
gelf-contained version of BASIC-80 that runs on almost any
8080 or 280 based disk hardware without an operating system.
Standalone Disk BASIC incorporates several unique disk I/O
methods that make faster and more efficient use of dis
access and storage. N

Random access with Standalone BASIC is faster than- other
disk operating systems because the file allocation table is
kept in memory and updated periodically on the diskette. .
Therefore, there is no need for index blocks for random
files, and there is no need to distinguish between- random._
and sequential files. Because there are no index-.blocks, .
there is no large per-file-overhead either in memory or on
disk. Binary SAVEs and LOADs are also faster because they
are optimized by cluster, i.e., an entire cluster is read or
written at one time, instead of a single sector.

To initialize Standalone Disk BASIC, insert the BASIC
diskette and power up the system. In one= Or two=-drive
systems, BASIC asks if there are two drives. In systems
with more than two drives, BASIC asks for the number of
drives. BASIC then asks how many files, i.e., how many disk
files may be open at one time. Answer with a number £from 0
to 15, or, for a default of 1 file per drive, just enter a
carriage return. i

The operation of Standalone Disk BASIC is the same as Disk
BASIC-80 as described in this manual, with the following
exceptions:

H.1 FILENAMES

Digk filenames are six characters with an optional
three=character extension that is preceded by a decimal
point. If a decimal point appears in a filename after fewer
than six characters, the name is blank-filled to six
characters and the next three characters are the extension.

[image: image168.png]Page H-2

If the filename is six or fewer characters with no decimal
point, there is no extension. If the filename is more than
six characters, BASIC inserts a decimal point after the
sixth character and uses the next three characters as an
extension. (Any additional characters are ignored.)

H.2 DISK FILES

The FILES command prints the names of the files residing on
a disk. The format is: [L]FILES[<drive number>]

LFILES outputs to the line printer. In addition to the
filename, the size of each file, in clusters, is output. A
cluster is the minimum unit of allocation for a file == it
is one-half of a track. Filenames of files created with -
OPEN or ASCII SAVE are listed with a space between the name
and extension. Filenames of binary €files created with
binary SAVE are listed with a decimal point between the name

and extension. The protected file option with SAVE is not

supported in Standalone Disk BASIC.

H.3 FPOS O

The FPOS function: ;m fi—: T :f:~r

FPOS (<file number>) CL L

is the same as BASIC-80's LOC function except it returns the -
number of the physical sector where <filenumber> is located. --
(BASIC-80's LOC function and CP/M BASIC-80's LOF function -

are also implemented.)

H.4 DSKI3$/DSKOS$

The DSKO$ statement:

DSKO$<drive> ,<track>,<sector>,<string expression>
writes the string on the specified sector. The maximum
length for the string is 128 characters. A string of fewer

than 128 characters is zero-filled at the end ¢to 128
characters.

DSKI$ is the complementary function to the DSKC$ statement.
DSKI$ returns the. contents of a sector to a string variable
name. The format is:

DSKIS$ (<drive>,<track>,<sector>)

Example: A$=DSKI$(0,I,J)

[image: image169.png]Page H-3

H.5 MOUNT COMMAND

(v, Before a diskette can be used for file operations (i.e., any
disk I/O besides DSKI$, DSKO$, or IBM or USR modes), it must
be MOUNTed. The format of the command is:

MOUNT (<drive>[,<drive>...]]

MOUNT with no arguments mounts all drives. When a diskette
is mounted, BASIC reads the File Allocation Table (see
Section H.11.2) from the diskette into memory and checks it
for errors. If there are no errors, the disk is mounted.
If an error is found, BASIC reads one or both of the back-up
allocation tables from the diskette in an attempt to mount
the disk:; and a warning message, "x copies of allocation
bad on drive y", is issued. x is 1 or 2 and y isthedrive—

number. When a warning occurs, it is a good. idea to make a -_-- .

new copy of the diskette. If all copies of the allocation. . - -
table are bad or if a free entry is encountered in the file
chain, a fatal error--"Bad allocation table"--is given and
the diskette will not be mounted.

While a disk is mounted, BASIC occasionally writes the
allocation table to the directory track, but it does.not
check for errors unless the read after write attribute is
set for that drive (see SET statement).

E.6 REMOVE COMMAND -

REMOVE is the complement of MOUNT. Before a_ diskette can be
taken out of the drive, a REMOVE command must be executed.
The format of the command is: -

REMOVE [<drive>[,<drive>...]] o L

REMOVE writes three copies of the current allocation table
to disk and follows the same error-check procedure as MOUNT.
MOUNT and REMOVE replace the RESET command that is. in -
BASIC-80.

NOTE

ALWAYS do a REMOVE before
taking a diskette out of a
drive. If you do not, the
diskette you took out will not
have an updated and checked
allocation table, and the data

@ on the next diskette inserted

; will be destroyed when the

L wrong allocation table is
written to the directory
track.

[image: image170.png]Page H-4

H.7 SET STATEMENT

/4.

The SET statement determines the attributes of the currently \‘
mounted disk drive, a currently open file, or a file that
need not be open. The format of the SET statement is:

SET<drive> l $<file> <filename>,<attribute string>
<attribute string> is a string of characters that determines

what attributes are set. Any characters other than the
fo;;owing are ignored:

R Read after write
P Write protect
E EBCDIC conversion (if available)

Attributes are assigned in the following order:

- - P R

1. MOUNT command S . i -
when a MOUNT is done for a particular -drive, the: '
first byte of the information sector on the
diskette (track 35, sector 20 for floppy; . track
18, sector 13 for miniflopp¥y) <contaiils the
attributes for the disk. (octal values: -R=100,. = --
Pm20, E=40) st itEriziTel

2. SET<drive>,<attribute string> Statement e - \i
This statement sets the current attributes for - the ‘

- disk, in memory, while it is mounted. . The - .
attributes are not permanently recorded and apply -
only while the disk is mounted. -

3. When a file is created, the permanent - file

attributes recorded on the disk will be the same- as - _ 4
the current drive attributes. . -

4, SET<filename>,<attribute string> Statement -
This statement changes the permanent file-
attributes that are stored in the directory entry
for that file. It does not affect the drive
attributes. .

S. When an existing file is OPENed, the attributes of
the file number are those of the directory entry.

6. SET#<file number>,<attribute string> Statement
This statement changes the attributes for that file
number but does not change the directory entry.
" Examples:

SET 1,"R" Force read after write checking on all \‘
output to drive 1 !

SET #1,"R" Force read after write for all output to

[image: image171.png]Page H=5

file 1 while it is open

SET #1,"p" Give write protect error if any output is
attempted to file 1

SET "TEST","P" Protect TEST from deletion and
. modification

SET 1,"" Turn off all attributes for drive 1

H.8 ATTRS FUNCTION

ATTRS$ returns a string of the current attributes for a

drive, currently open file, or file that need not be open..

The format of ATTRS is: R
ATTRS (<drive> #<file number> <filename>)

For example: B .

SET 1,"R":A$=ATTRS$ (1) :PRINT A$ o
R) :

ok D s Tl

H.9 OPEN STATEMENT

The format for the CPEN statement in Standalone<BASIC isQ
OPEN <filename> (FOR <mode>] AS ([#]<file number>
where <mode> is one of the following: ‘

INPUT
OUTPUT
APPEND
IBM
USR

The mode determines only the initial positioning within the
file and the actions to be taken if the file does not exist.
The action taken in each mode is:

INPUT The initial position is at the start of the file.
An error is returned if the file is not found.

OUTPUT The initial position is at the staft of the f£file.
A new file is always created.

APPEND The initial position is at the end of the file.
An error is returned if the file is not found.

[image: image172.png]Page H-6

IBM The initial position is after the last DSKI§ or
DSKO$. The file is then set up to write
contiguous. No file search is done. (The same

effect may be achieved in many cases by altering
the FORMAT program. See Section H.11.2.1.)

USR : Same as IBM mode except, instead of write
contiguous, USRO is called and returns the next
track/sector number. The USRO routine should read
the current track/sector from B,C and return the
next location in B,C. When USRO is first called,
B,C contains the track and sector number of the
previous DSKI$ or DSKOS.

If the FOR <mode> clause is omitted, the initial position is

at the start of the file. If the file is not found, it is

created.

Note that variable length records are not -supported in

Standalone Disk BASIC. All records are 128 bytes in length.-

USR mode is especially useful for creating_ diskettes that
require sector mapping. This is the case if the diskette is.
intended for use on another system, for example, a CP/M
system, Instead of opening the file for write contigucus
(IBM mode), the USRO routine may be used to ‘map the sectors

logically, as required by the other system.” -~ _ R

When a file is OPENed FOR APPEND, the file modeé is "set "to
APPEND and the record number is set to the last record “of
the file. The program may subsequently execute disk I/0
statements that move the pointer elsewhere in the file.
When the last record is read, the file mode is reset to FILE
and the pointer is left at the end of the file. -Then,—if-
you wish to append another record, execute:. -

GET#n,LOF (n)

This positions the pointer at the end of the f£ile in

preparation for appending.

At any one time, it is possible to have a particular
filename .OPEN under more than one file number. This allows
different attributes to be used for different purposes. Or,
for program clarity, you may wish to use different file
numbers for different methods of access. Each file number
has a different buffer, so changes made under one file are
not accessible to (or affected by) the other numbers until
that record is written (e.g., GET#n,L0C(n)).

[image: image173.png]Page H=-7

H.10 DISK I/0

A GET or PUT (i.e., random access] cannot be done on a file
that is OPEN FOR IBM or OPEN FOR USR. Otherwise, GET/PUT
may be executed along with PRINT#/INPUT# on the same file,
which makes midfile updating possible. The statement
formats for GET, PUT, PRINT#, and INPUT# are the same as
those in BASIC-80. The action of each statement in
Standalone BASIC is as follows:

GET Tf the "buffer changed" flag is set, write the
buffer to disk. Then execute the GET (read the
record into the buffer), and reset the position
for sequential I/O to the beginning of the buffer.

PUT Execute the PUT (write the buffer to the specified
record number), and set the "sequential I/0 is.
illegal™ flag until a GET is done. -

INPUT# If the buffer is empty, write it if the "Buffer
changed" flag is set, then read the next buffer.

PRINT# Set the "buffer changed" flag. If the buffer is -

full, write it to disk. Then, if end of file. ha
not been reached, read the next buffer. . :

H.10;1 File Format

For a single density floppy, each file requires 137 bytes:.
9 bytes plus the 128-byte buffer. Because the File
Allocation Table keeps random access information for all
files, random and sequential £files are identical on. the
disk. The only distinction is that sequential files have a
Control-Z (32 octal) as the last character of the last
sector. When this sector is read, it is scanned from the
end for a non-zerc byte. If this byte is Control=-Z, the
gize of the buffer is set so that a PRINT overwrites this
byte. If the byte is not Control-Z, the size is set so the
last null seen is overwritten.

Any sequential file can be copied in random mode and remain
jdentical. If a file is written to disk in random mode
(i.e., with PUT instead of PRINT) and then read in
sequential mode, it will still have proper end of file
detection.

[image: image174.png]Page H=-8

HE.11 DISK ALLOCATION INFORMATION

ith Standalone Disk BASIC, storage space on the diskette is
allocated beginning with the cluster closest to the current
position of the head. (This method is optimized for
writing. Custom versions can be optimized for reading.)
Disk allocation information is placed in memory when the
disk is mounted and is periodically written back to the
disk. Because this allocation information is kept in
memory, there is no need for index blocks for random files,
and there is no need to distinguish between random and
sequential files.

BE.11.1 Directory Format : L

On the diskette, each sector of the directory track .contains -

eight £file entries. BEach file entry is 16 bytes long and
formatted as follows:) Lot

Bytes Usage -

0=-8 Filename, 1 to 9 characters. The . -
first character may not be 0 or 25S5. R T

9 Attribute: o
Octal

200 Binary file A
100 Force read after write check Sy
40 EBCDIC file o
20 Write protected file - Tl
Excluding 200, these bits are the same .

for the disk attribute byte which is the ' ; .

first byte of the information sector. L

10 Pointer into File Allocation Table
+o the first cluster of the file's
cluster chain.

11=15 Reserved for future expansion.
If the first byte of a filename is zero, that file entxry
slot is free. If the first byte is 255, that slot is the

last occupied slot in the directory, i.e., this flags the
end of the directory.

BE.11.2 Drive Information

For each disk drive that is MOUNTed, the following
information is kept in memory:

J

[image: image175.png]_ D SRR ———

Page H-9

Attributes

Drive attributes are read from the information
sector when the drive is mounted and may be changed
with the SET statement. Current attributes may be
examined with the ATTRS function.

Track Number

This is the current track while the disk is
mounted. Otherwise, track number contains 255 as a
flag that the disk is not mounted.

Modification Counter
This counter is incremented whenever an entry in
the File Allocation Table is changed. After a
given number of changes has been made, the File
Allocation Table is written to disk. .

Number of Free Clusters

This is calculated when the drive is mounted, . and
updated whenever a file is deleted or a cluster is
allocated. . ST -

File Allocation Table T T LI=lTTT
The File Allocation Table has a one-byte entry for
every cluster allocated on the disk. If the
cluster is free, this entry is 255. If the cluster
is reserved, this entry is 254. If the cluster is
the last cluster of the file, this: entry is 300
(octal) plus the number of sectors - from this
cluster that were used. Otherwise, the entry is a
pointer to the next cluster of the file. The File
Allocation Table is read into memory when the drive
is mounted, and updated: : R

1. When a file is deleted
2. When a file is closed

3. When modifications to the table total twice the
number of sectors in a cluster (this can be
changed in custom versions)

4. When modifications to the table have been made
and the disk head is on (or passes) the
directory track.

[image: image176.png]Page H-10

H.11.2.1 FORMAT Program - Before mounting a

drive with a new diskette, run BASIC's FORMAT program to
initialize the directory (set all bytes to 255), set the
information sector to 0, and set all the File Allocation
Table entries (extept the directory track entry (254)) to
"free" (255).

The FORMAT program is:

10 CLEAR 1500

20 A$=STRINGS (128,2553)

30 B$=STRINGS (35*2,255)+STRINGS (2,254) +STRINGS (56,255)
40 FOR S=1 TO 19:DSKO$ 1,35,S,A$:NEXT

50 FOR S=21 TO 25 STEP 2:DSKO$ 1,35,S,B$

60 DSKO$ 1,35,S+1,A$:NEXT

70 DSKO$ 1,39,20,CHR$(0)

After running FORMAT and MOUNTing the drive, files will be
allocated as usual, i.e., on either side of the directory
track.

The FORMAT program may be altered to pre=-allocate selected
files. For instance, you may wish to use the FORMAT program
to pre-allocate €£iles contiguously (as they would be
allocated in IBM mode). Then IBM and BASIC files may both
exist on the diskette. The altered FORMAT program must also
write the name of the file(s) to the directory track (i.e.,
files1-8 in sector 1, files 9-16 in sector 2, etc.), SO
BASIC knows where the files start.

H.11.3 File Block

Each file on the disk has a file block that contains the
following information:

1. PFile Mode (byte 0)
This is the first byte (byte 0) of the file block,
and its location may be read with
VARPTR (4filenumber). The location of any other
byte in the file block is relative to the file mode
byte. The file mode byte is one of the following:

(octal)
1 Input only
2 Output only
4 File mode
10 Append mode
20 Delete file
40 IBM mode
100 Special format (USR)

200 Binary save

A

[image: image177.png]fage d=il
NOTE

It is not recommended that the user attempt
to modify the next four bytes of the File
: Allocation Table. Many unforeseen
&/ complications may result.

2. Pointer to the File Allocation Table entry for the
first cluster allocated to the file (+1)

3. Pointer to the File Allocation Table entry for the
last cluster accessed (+2)

4. Last sector accessed (+3)

5. Disk number of file (+4)

6. The size of the last buffer read (+5). This is 128
unless the last sector of the file is not full
(i.e., Control-z). ' « :

7. The current position in the buffer (+6). This ié
the offset within the buffer for tle next print or

input.
. 8. File flag (+7), is one of the following:
_K/' Octal
100 Read after write check
40 Read/Write EBCDIC, not ASCII
(Not available in all versions.) ____ __ ..
20 File write protected
10 Buffer changed by PRINT
4 PUT has been done. PRINT/INPUT are
errors until a GET is done..
(See Section H.10.)
2 Plags buffer is empty:

9. Terminal position for TAB function and comma in
PRINT statements (+8) -

10. Beginning of sector buffer (+9), 128 bytes in
length

H.12 ADVANCED USES QF FILE BUFFERS

1. Information may be passed £rom one program to

another by FIELDing it to an unopened file number

“ (not %0). The FIELD buffer is not cleared as long
' as the file is not OPENed.

[image: image178.png]2.

3.

4.

Page H=-12

The FIELDed buffer for an unopened file can also be
used to format strings. For example, an
80-character string could be placed into a FIELDed
buffer with LSET. The strings could then be
accessed as four 20-character strings using their
FIELDed variable names. For example:

100 FIELD#1, 80 AS A$:

200 FIELD#1, 20 AS A1$, 20 AS A2$, 20 AS A3$, 20 AS A4S
300 LINE INPUT "CUSTOMER INFORMATION: ".B$

400 LSET A$=B3

500 PRINT "NAME ";A1$;"SSN: ";A2$

FIELD#0 may be used as a temporary buffer, but note
that this buffer is cleared after . each.of the
following commands: FILES, LOAD, SAVE, MERGE, RUN,
DSKO$, MOUNT, OPEN. I T
The effect of PRINT[USING]# into a string may be
achieved by printing to a FIELDed buffer and then
accessing it without recpening the file. To assure
that +this temporary buffer is not written to the
disk, return the pointer to the -beginning--of “the
buffer and reset the "buffer changed" flag as
follows: I

10 OPEN "D™ FOR IBM AS 1:REM THIS DOESN'T USE SPACE
20 PRINT USING#1 ...

30 P=PEEK (6+VARPTR (#1)) :REM OPTIONAL, TO GET LENGTH OF PR
USING

40 FIELD#1 oee AS .ee

50 Y=7+VARPTR(#1)

60 DOKE Y,PEEK(Y AND &360) :REM RESET BUFFER CHANGED FLAG
70 POKE 6+VARPTR,0:REM CLEAR POSITION IN BUFFER

;
-

D W

[image: image179.png]Page H=-13

H.13 STANDALONE BASIC DISK ERRORS

50 FIELD overflow

51 Internal error

52 Bad file number

53 File not found

54 File already open

55 Disk not mounted

56 Disk I/O error

57 File already exists

59 Disk already mounted

61 Input past end

62 Bad file name

63 Direct statement in file

64 Bad allocation table

65 Bad drive number

66 Bad track/sector

67 Pile write protected

68 Disk offline -
69 Deleted record -
70 Rename across disks

71 Sequential after PUT

72 Sequential I/0 only ; -
73 File not OPEN .

H.14 DOUBLE DENSITY, DOUBLE SIDED DISKETTES

For diskettes with 256-byte sectors, DSKI$ and DSKO$ are
modified.

The DSKI$ function returns as its value the first 255 bytes
of the sector read. - -

The DSKO$ statement does not use the <string expression>
field. The format is:

DSKO$ <drive>,<track>,<sector>

In order to specify the data to write with DSKOS$ and to
retrieve all 256 bytes of the data read by DSKI$, the user
must FIELD twe or more variables (for a total of 256 bytes)
to the file#0 buffer. The FIELDed variables will be iden-
tical to the data read with DSKI$ and written with DSKOS$.
For example:

FIELD#0,128 AS A$,128 AS B$

For double-sided diskettes, the formats of DSKIS$ and DSKO$
must also include the surface number:

DSKIS (<drive> ,<surface>,<track>, <sector>)

DSKO$ <drive>,<surface>,<track>,<sector>
or
NQXAE cAriwvas <canrfacad.<track>,<sector>,<string exp>

[image: image180.png]-

[image: image181.png]APPENDIX I

Converting Programs to BASIC-80

If you have programs written in a BASIC other than BASIC-80, some
minor adjustments may be necessary before running them with BASIC-80.
Here are some specific things to look for when converting BASIC
programs.

I.1 STRING DIMENSIONS : T

Delete all statements that are used to declare the length of strings. -
A statement such as DIM A$(I,J), which dimensions a string array for J
elements of length I, should be converted to the BASIC=-80 - statement -
DIM As(J)- "? U Ix= PR

Some BASICs use a comma or ampersand for string concatenation. Each
of +these must be changed to a plus sign, which is the operator for
BASIC-80 string concatenation. ‘

In BASIC-80, the MID$, RIGHT$, and LEFT$ functions are used to take -
substrings of strings. Forms such as A$(I) to access the Ith
character in A$, or A$(I,J) to take a substring of A$ from position "I
to position J, must be changed as follows: o

Other BASIC BASIC-80
X$=A% (I) X$=MID$ (AS$,I,1)
X$=2a3(I,J) X$=MID$ (A$,I,J-I+1)

If the substring reference is on the left side of an assignment and X$
is used to replace characters in A$, convert as follows:

Other BASIC 8K BASIC-80
A$ (I)=x$ A$=LEFT$ (A$,I-1) +X$+MIDS (A$,I+1)
A$ (I,J)=X$ A$=LEFTS (AS,I-1) ;X$;MID$ (A$,J+1)

Ext. and Disk BASIC-80 R -

A$ (I)=X$ MID$ (A$,1,1)=XS$
A$(I,J)=X$ MID$ (AS,I,J=-I+1)=X$

[image: image182.png]Page I-2

I.2 MULTIPLE ASSIGNMENTS

/t-
Some BASICs allow statements of the form: \‘
10 LET B=C=(
to set B and C equal to zero, BASIC-80 would interpret the second
equal sign as a logical operator and set B equal to -1 if C equaled 0.
Instead, convert this statement to two assignment statements:

10 C=0:B=0

I.3 MULTIPLE STATEMENTS

- .

Some BASICS use a backslash (\] to separate multiple statements- on a.]

line. With BASIC-80, be sure all statements on a line are separated.’
by a colon (:). A .

I.4 MAT FUNCTIONS

Programs using the MAT functions available in scme BASICs must be
rewritten using FOR...NEXT loops to execute properly. . . 4__1&‘

[image: image183.png]Code Number
NF 1
SN 2
RG 3
oD 4
PC 5

APPENDIX J

Summary of Error Codes and Error Messages

Message

NEXT without FOR

A variable in a NEXT statement does not
correspond to any previously executed,
unmatched FOR statement variable.

Syntax error

A line is encountered that contains scme’

incorrect sequence of characters (such as
unmatched parenthesis, misspelled command oI
statement, incorrect punctuation, etc.)..

Return without GOSUB . -

A RETURN statement is encountered for which
there is no previous, unmatched GOSUB
statement.

Qut of data . .

A READ statement is executed when there are
no DATA statements with unread data remaining
in the program.

Illegal function call

A parameter that is out of range is passed to
a math or string function. AaAn FC error may
also occur as the result of:

1. a negative or unreasonably large
subscript

2. a negative or zero argument with LOG
3. a negative argument to SQR

4. a negative mantissa with a non-integer
exponent

e

[image: image184.png]ov

oM

BS

DD

/0

ID

™

10

11

12

13

Page J-2

5, a call to a USR function for which the
starting address has not yet been given

6. an improper argument to MID$, LEFTS,
RIGHET$, INP, OUT, WAIT, PEEK, POKE, TAB,
SPC, STRINGS, SPACES, INSTR, or
ON...GOTO.

Overflow

The result of a calculation is toco large to
be represented in BASIC-80's number format.
If underflow occurs, the result is zero and
execution continues without an error.

OQut of memory

A program is too large, has too many FOR
loops or GOSUBs, too many variables, or
expressions that are too complicated.

Undefined line

A line raference in a GOTO, GOSUB,
IF...TEEN...ELSE or DELETE is to a
nonexistent line.

Subscript out of range

An array element is referenced either with a
subscript that is outside the dimensions of
the array, or with the wrong number of
subscripts.

Redimensioned array

Two DIM statements are given £for the same
array, or a DIM statement is given for an
array after the default dimension of 10 has
been established for that array.

Division by 2zero

A division by zero is encountered in an
expression, or the operation of involution
results in zero being raised to a negative
power. Machine infinity with the sign of the
numerator is supplied as the result of the
division, or positive machine infinity is
supplied as the result of the involution, and
execution continues.

Illegal direct
A statement that is illegal in direct mode is
entered as a direct mode command.

Type mismatch
A string variable name is assigned a numeric
value or vice versa; a function that expects
a numeric argument is given a string argument
or vice versa.

N

[“%

[image: image185.png]Page J-3

Out of string space
String variables cause BASIC to exceed the
amount of free memory remaining. BASIC will
allocate string space dynamically, until it
runs out of memory.

String too long
An attempt is made to create a string more
than 255 characters long.

String formula tco complex

A string expression is too long or too
complex. The expreSSLOn should be broken
into smaller expressions.

Can't continue
An attempt is made to continue a program
that:

1. has halted due to an error,

2. has been modified duran. a break in
execution, or -

3. does not exist.
Undefined user function

A USR function is called before the functlon
definition (DEF statement) is given.

Extended and Disk Versions Onliv

No- RESUME.
An error trapping routine is - entered but

contains no RESUME statement.

RESUME without error
A RESUME statement is encountered before an
error trapping routine is entered.

Unprintable error

An error message is not available for the
error condition which exists. This is
usually caused by an ERROR with an undefined
error code.

Missing operand
An expression contains an operator with no
operand following it.

Line buffer overflow
An attempt is made to input a line that has
too many characters.

[image: image186.png]26

29

30

50

51

52

53

54

55

57

58

Page J-4

FOR without NEXT
A FOR was encountered without a matching
NEXT.

WHILE without WEND
A WHILE statement does not have a matching
WEND.

WEND without WHILE

A WEND was encountered without a matching
WHILE.

Disk Errors

Field overflow

A FIELD statement is attempting to allocate
more bytes than were specified for the record
length of a random file.

Internal error

An internal malfunction has occurred in Disk
BASIC-80. Report to Microsoft the conditions
under which the message appeared.

Bad file number'
A statement or command references a file with

a file number that is not OPEN or is out of

the range of £ile numbers specified at
initialization.

File not found
A LOAD, KILL or OPEN statement references a
file that does not exist on the current disk.

Bad file mode

An attempt is made to use PUT, GET, oOr LOF
with a sequential file, to LOAD a random file
or to execute an OPEN with a f£ile mode other
than I, O, or R.

File already open

A sequential output mode OPEN is issued for a
file +that is already open; or a KILL is
given for a file that is open.

Disk I/0 error

An I/O error occurred on a disk I/0
operation. It is a fatal error, i.e., the
operating system cannot recover from the
error.

File already exists

The filename specified in a NAME statement is
jidentical to a filename already in use on the
disk.

N

[image: image187.png]:LJ

61

62

63

64

66

67

Page J-5

Disk full
All disk storage space is in use.

Input past end

An INPUT statement is exeucted after all the
data in the file has been INPUT, or for a
null (empty) file. To avoid this error, use
the EOF function to detect the end of file.

Bad record number - S

In a PUT or GET statement, the record number
is either greater than the maximum allowed
(32767) or equal to zero.

Bad file name :
An illegal form is used for the filename with .
LOAD, SAVE, KILL, or OPEN (e.g., a filename
with too many characters). '

Direct statement in file

A direct statement is encountered while ~ °
LOADing an ASCII-format £ile. The LOAD is

terminated..

Too many files

An attempt is made to create a new file
(using SAVE or OPEN) when all 255 directory
entries are full.

[image: image188.png]o

[image: image189.png]Derived Functions

Functions that are not
as follows:

Function

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HEYPERBOLIC COSECANT
HYPERBOLIC COTANGENT
INVERSE HYPERBOLIC
SINE

INVERSE HYPERBOLIC
COSINE

INVERSE HYPERBOLIC
TANGENT

INVERSE HYPERBOLIC
SECANT ‘

INVERSE HYPERBOLIC
COSECANT

INVERSE HYPERBOLIC
COTANGENT

APPENDIX K

Mathematical Functions

intrinsic to BASIC-80 may be calculated

BASIC=-80 Egquivalent

SEC (X)=1/COS (X)

CSC(X)=1/SIN(X)

COT (X)=1/TAN (X)

ARCSIN (X)=ATN (X/SQR(=X*X+1))

ARCCOS (X)==ATN (X/SQR(=X*X+1))+1.5708

ARCSEC (X) =ATN (X/SQR (X*X=1))
+SGN (SGN (X)=1)*1.5708

ARCCSC (X) =ATN (X/SQR (X*X=1))
+(SGN(X)=~1)*1.5708

ARCCOT (X)=ATN (X)+1.5708

SINH (X)= (EXP (X) =EXP (=X)) /2

COSH (X) = (EXP (X) +EXP (=X)) /2

TANH (X) =EXP (=X) /EXP (X) +EXP (=X)) *2+1

SECH (X) =2/ (EXP (X) +EXP (=X))

CSCH (X) =2/ (EXP (X) =EXP (=X))

COTEH (X) =EXP (=X) / (EXP (X) =EXP (=X)) *2+1

ARCSINH (X) =LOG (X+SQR (X*X+1))

ARCCOSH (X) =LOG (X+SQR (X*X~1)

ARCTANE (X)=LOG ((1+X) / (1-X)) /2

ARCSECH (X) =LOG ((SQR(=X*X+1)+1) /X)
ARCCSCH (X) =LOG ((SGN (X) *SQR (X*X+1)+1) /X

ARCCOTH (X) =LOG ((X+1) /(X=1))/2

- —— it ey

[image: image190.png]G\

[image: image191.png]APPENDIX L

Microsoft BASIC Compiler

The Microsoft BASIC Compiler package contains the <£following
software: BASIC Compiler, MACRO-80 assembler, and LINK-80
loader. The following manuals are also supplied: BASIC-80
Reference Manual, BASIC Compiler User's Manual, Utility
Software Manual. The Utility Software Manual 1is the . -]
reference manual for MACRO-80 and LINK-80. The BASIC __.--..
Compiler User's Manual describes the use of the compiler, T
its command format, compilation switches and error messages.

The BASIC language that is used with the Microsoft BASIC

Compiler is the same as decribed in this manual for Disk - - .
BASIC-80 with the following exceptions: S

L.1 OPERATIONAL DIFFERENCES - T

The Compiler interacts with the console only to read:.
compiler commands. These specify what £files are to be . .
compiled. There is no "direct mode," as with the BASIC-80
interpreter. Commands that are usually issued in the direct
mode with the BASIC-80 interpreter are not implemented on
the Compiler.

The following statements and commands are not implemented
and will generate an error message:

AUTO CLEAR CLOAD CSAVE CONT DELETE
EDIT LIST LLIST RENUM RUN SAVE
LOAD MERGE NEW CHAIN COMMON RESET
FILES

Because there is no direct mode for typing in programs or
edit mode for editing programs, use Microsoft's EDIT-80 Text
Editor or BASIC-80 interpreter for creating and editing
programs. If you use the interpreter, be sure to SAVE the
file with the A (ASCII format) option.

The compiler cannot accept a physical line that is more than
127 characters in length. A logical statement, however, may
contain as may physical lines as desired. Use line feed to

[image: image192.png]Page L-2

start a new physical line within a logical statement.

To reduce the size of the compiled program, there are no
program line numbers included in the object code generated
by the compiler unless the /D, /X, or /E switch is set 1in
the compiler command. Error messages, therefore, contain
the address where the error occurred, instead of a line
number. The compiler 1listing and the map generated by
LINK-80 are used to identify the line that has the error.
It is always a good idea to debug programs using the
BASIC-80 interpreter before attempting to compile them. See
the BASIC Compiler User's Manual for more information.

L.2 LANGUAGE DIFFERENCES

Most programs that run on the Microsoft BASIC-80 interpreter
will run on the BASIC Compiler with little or no change.
However, it is necessary to note differences in the use of
the following program statements:

1. CALL
The <variable name> field in the CALL statement
must contain an External symbol, i.e., one that is
recognized by LINK-80 as a global symbol. This
routine must be supplied by the user as an assembly
language subroutine orxr a routine from the
FORTRAN=-80 library.

2. CHAIN and COMMON
The CHAIN and COMMON statements are not implemented
on the compiler. They will generate a fatal error.

The CHAIN and COMMON statements will be implemented
in a future release of the BASIC compiler.
However, their implementation will be different
from the BASIC-80 interpreter's version. The
COMMON statement will be similar to FORTRAN's
COMMON statement.

3. DEFINT/SNG/DBL/STR

The compiler does not "execute" DEFXxXX statements;
it reacts to the static occurrence of these
statements, regardless of the order in which
program lines are executed. A DEFxxxX statement
takes effect as soon as its line is encountered.
Once the type has been defined for a given
variable, it remains in effect until the end of the
program or until a different DEFXxx statement with
that variable takes effect.

4, USRn Functions
USRn functions are significantly different from the
interpreter versions. The argument to the USRn

[image: image193.png]Page L-3

function is ignored and an integer result is
returned in the HL registers. It is recommended
that USRn functions be replaced by the CALL
statement.

DIM and ERASE

The DIM statement is similar to the DEFxxx
statement in that it is scanned rather than
executed. That is, DIM takes effect when its line
is encountered. If the default dimension (10) has
already been established for an array variable and
that variable is later encountered in a DIM
statement, a "Redimensioned array" error results.

There is no ERASE statement in the compiler, so
arrays cannot be erased and redimensioned. An
ERASE statement will produce a_gigyl error.

Also note that the values of the subscripts in a
DIM statement must be integer constants; they may
not be variables, arithmetic - expessions, or
floating point values. For example,. . _
DIM A1(I)
DIM A1(3+4)

are both illegal.

END .
During execution of a compiled program, an END

statement closes files and returns control to the

operating system. The compiler ‘assumes an END
statement at the end of the program, so "running
off the end" produces proper program termination.

ON ERROR GOTO/RESUME <line number>

If a program contains ON ERROR GOTO and RESUME
<line number> statements, the /E compilation switch
must be used. If +the RESUME NEXT, RESUME, or
RESUME 0 form is used, the /X switch must also be
included. See the BASIC Compiler User's Manual for
an explanation of these switches.

REM

REM statements or remarks starting with a single
quotation mark do not take up time or space during
execution, and so may be used as freely as desired.

STOP

The STOP statement is identical to the END
statement. Open files are closed and control
returns to the operating system.

[image: image194.png]Page L-4

TRON/TROFF

In order to use TRON/TROFF, the /D compilation
switch must be used. Otherwise, TRON and TROFF are
ignored and a warning message is generated.

FOR/NEXT and WHILE/WEND
FOR/NEXT and WHILE/WEND loops must be statically
nested.

Double Precision Transcendental Functions

SIN, COS, TAN, SQR, LOG, and EXP return double
precision results if given a double precision
argument. Exponentiation with double precision
operands will return a double precisiocn result.

L.3 EXPRESSION EVALUATION

During expression evaluation, the operands of each operator
are converted to the same type, that of the most precise
operand. For example,

QR=J%+A!+Q#

causes J% to be converted to single precision and added to
Al. This result is converted to double precision and added
to Q#.

The Compiler is more limited than the interpreter in
handling numeric - overflow. For example, when run on the
interpreter the following program

I3=20000
J3=20000
K%=-30000
M3=I$+J%=K3

yields 10000 for M%. That is, it adds I% to J% and, because
the number is too large, it converts the result into a
floating point number. K% is then coverted to floating
point and subtracted. The result of 10000 is found, and is
converted back to integer and saved as M%.

The compiler, however, must make type conversion decisions
during compilation. It cannot defer until the actual values
are known. Thus, the compiler would generate code toO
perform the entire operation 1in integer mode. If the /D
switch were set, the error would be detected. Otherwise, an
incorrect answer would be produced.

In order to produce optimum efficiency in the compiled

program, the compiler may perform any number of wvalid

algebraic transformations before generating the c¢ode. For

N

[image: image195.png]Page L~5

example, the program

I%=20000
J%=-18000
K3=20000
M3=I%+J%+K%

could produce an incorrect result when run. If the compiler
actually performs the arithmetic in the order shown, no
overflow occurs. However, if the compiler performs I%+K$%
first and then adds J%, an overflow will occur. The
compiler follows the rules for operator precedence and
parenthetic modification of such precedence, but no other
guarantee of evaluation order can be made.

L.4 INTEGER VARIABLES

In order to produce the fastest and most compact object code’
possible, make maximum use of integer variables. For
example, this program .

FOR I=1 TO 1Q
A(I)=0
NEXT I

can execute approximately 30 times faster -by-—simply ——
gubstituting "I%" for "I". It is especially advantageous to :
use integer variables to compute array subscripts. The
generated code is significantly faster and more compact.

[image: image196.png]N

)

[image: image197.png]ASCII Character Codes

ASCII ASCII
Code Character Code
000 NUL 043
001 SOH 044
002 STX 045
003 ETX 046
004 EOT 047
005 ENQ 048
006 ACK 049
007 BEL 050
008 BS 051
009 HT 052
010 LF 053
011 vT 054
012 FF 055
013 CR 056
014]o) 057
Q1S SI 058
Q16 DLE 059
017 DC1 060
018 DC2 061
019 DC3 - 062
020 DC4 - 063
021 NAK 064
022 SYN 065
023 ETB 066
024 CAN 067
025 EM 068
#$26 SUB 069
027 ESCAPE 070
028 FS 077
029 GS 072
030 RS 073
031 us 074
032 SPACE 075
033 ! 076
034 " 077
035 # 078
036 $ 079
037 % 080
038 & 081
039 ' 082
040 (083
041) 084
042 * 085

ASCII codes are in decimal

APPENDIX M

Character

+

-

CHNPYOYOZEHANUHEBEQEEUOAWM @IV I A o OOJAUTHWN 2O\

ASCII

Code

086
087
088
089
090
091

092
093
094
095
096

097
098
099
100
101

102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127

LF=Line Feed, FF=Form Feed, CR=Carriage Return,

Character

'uv;-..a——ﬁukgxzqﬁnmn.q'udnBHa‘u-H:rm Hho A P ~A>—r NN ES

I
b

DEL=Rubout

[image: image198.png]

[image: image199.png]2-9
2-3, 2=-16, 2=-59, 3=21,

3-23, C-1, L=2

1=-7, 2-9, 2-18, L-4
LJ 3-3’ L‘3

1-7’2-7' 2-11' 2-24

3=-2
. 3-2' 3-4' M-4

INDEX
e @ ® o & ® o o s o 3-2
e e o @ o e o @ o o 1‘10
e ®© o s o ® & o o = 2-4,
e e ® ® o e o ® o 3‘3
e & & e ¢ & & o 2-4' 2-49’ 2‘77' L‘1

ASCII codes

Array variables
Assembly language subroutines

Arrays

ASC

Addition
Arctangent .
ASCII format .

ALL

ABS

.
&M

.

Boolean operators

o o o 2-3, C-S' L;Z-
e o ©® o o o o 1-3' 2-36' 2-41 tO_Z?éz,_,

Carriage return

CALL

2-83 to 2-85

2-76 to 2-77,

o 0 o~ o
1 1 [J
(W) m 3 ~ i
- [e)]}
- - - - - < ~
1 ! t 1 ' o~ Lt
N~ (55 m o g N
- - - -~ -~ < o N O =~
NN FITOEE 0P FONN P
O I T O I O O L L T O I O I O I
2q37~1q31¢2a47&2641;£1|1a£162q37-B
e @ 6 o 6 & o o & @ 6 & * 0 0 o & o o o
@ €@ © % 5 8 & ¢ 9 e & 5 ¢ 0 3 ° ¢ o+ 2
e & o b 8 6 o & b 6 & & & o o o s 0+ 0
o 0 & & % & e ® 6 5 e ¥ & ¢ & o 0 o o o
e & & & © % 0o ¢ & O & 4 & o 6 o o » s+ o
6 & ® © o & o o &6 0 o & o o b o o o s
e & b 0 & ¢ o & o © o o o6 & & ol ¢ & 4
¢ o & @ 6 & & 6 0 6 v s o o b o”“ ¢ o o
¢ @ ® o & ¢ & ¢ o [» o“ ¢« o o
o Y — o] o
D o e@ ¢ o s o 0 0o o @ ¢Q o} o o o
a9.." NP T B
. e o @ . [} o
‘N - ®dun O«
QG ¢ 2@ o o o o ¢ o+ o e o 1 e e
H ¢ ko) em e
Y 'z9 "mghBmAgwe 'oR
0l u$T MM@S mcsTtt 2]
R AN q3g 3666686888
C@ @CC @C@@CCCCCCCCC

C

N

i

2-11

CSAVE

2=11

CSAVE™*
CSNG

€0 00
111
mmm
- N w
W w
UL
Mmoo

VI .
cvs .

AV

2-74

2=-12,

.

DATA

[image: image200.png]2-13

DEF EN .

DEF USR « o« o o o o o o o o o« 2=16, 3=21

DEFDBL e e 8 ®© ® 8 ¢ @ ® ¢ o o 1-7, 2-15’ L-2

DEFINT . o ¢ ¢ ¢ o o o o o o o 1-7' 2"15, L-Z

DEPSNG e o ®» o e e ® e & o s o 1-'7’ 2"15, L"Z

DEFSTR e ®© © ©® & & © o o & e o 1"7, 2-15' L‘Z

DEINT e © © e o ® o ® ° & o o C-1, G-1

DELETE e © o e o 8 ® o © o o o 1-2' 2-4, 2"17

DIM e © ® e ® @& & © o o o o o 2-18, L"Z

Direct MOAE .« o o o o o o « o 1=1, 2-34, 2-54, L-1

DiViSion e o o @ ©® ©® e & o s o 1=10

Do‘mle PreCiSion » ®o o o e o o 1-5' 2-15' 2"60, 3"3’ A-1, L-3

DSKI$ e ®© © o e e e o & o o o H-Z

DSKO$ ‘e e ® e ® ® e e e ¢ o o H-Z

EDIT ¢ o o o ¢ ¢ o o o o o o o 1"'2' 2-19

Edit mOde' e ®© ® @ o & o s o @ 1"'4' 2-19’ L-1

END e o e ® 8 e 8 & © & ¢ = o 2-8, 2"'10, 2"23, 2-32’ L"3

EOF e o o 8 e e e e o & ¢ ° 3"'6’ B-B' 3-5, D-4

ERASE e o6 o6 e e ©® e ® & o e o 2'24, L‘Z

ERL e & ® e e o @ e ® o o o o 2"25

ERR e ®© ®© © e ® o ® o e & o o 2-25

ERROR e @ o o o o © o o o o o 2-26

Error COdes e o o o o © o o o 1-15’ 2-25 to 2-26’ J-1

EZror mesSSages . « « « o o o o 1=15, J=1, L=-2

EXrror trapping « « o« o o ¢ o+ o 2=25 tO 2-26, 2-54, 2-75,
B=7, L=-3

Escape e ®© ® ® o © & © ¢ o o o 1-3' 2-19

EXP e © © ® © ® @ o & & o & o 3-7, L-3

Exponentiation . « « o o ¢ o o 1=-10 to 1=-11, 3-7, L-3

E)‘pressjnons e o & o o ® o o @ 1=9

FIELD s o e o ° o o e ° e ° o 2"28, 3-8, H"11

FILBS e ®© e o & o o o & o & o D-B, H-Z

FIX e ® ® @ ® © 8 e ® s & o o 3-7

FOR.OONEXT e ® © ° o e e o e o 2’29’ A"1, L—3

FORMAT prcgram e ® e 8 ¢ o o o H- 1 0

FPOS ¢« ¢ ¢ o ¢ ¢ o o o o o o o H-z

PRCINT ¢ « ¢ o ¢ ¢ o o o o o o C-1' C"4, D-4’ G-1

FRE e e e o ©® o & o e o o o o 3"‘8

Functions e o » © o o o o o o 1-14' 2‘13’ 3"1’ K-1

GET e ® ® o ®» © @& ® © o o o o 2"'28' 2-31' B‘a, D"’4' A-3
H=-7

GIVABE ¢« ¢ o« o ¢ s o o o o o o C"1 to C-Z, G"1

GIVINT ¢« ¢ ¢ ¢ o e o o o o o o E-Z

GOSUB e o ® @ o & o o o s s o 2-32

GOTO e & o o o e o e o o o o o 2-32 to 2“33

HEX$ e e 4 e ® ® & & o ° s o o 3“8

HexadeCimal e ® & © 9 o & o o 1-5' 3-8

IF...GOTO s e ® o e ® o o e o 2-34

IF...THEN e o ® o o 8 e e s 2-25’ 2"34

IF...THEN...ELSE . « « « o o+ o 2=34

Indirect mode .« « o o o o o o 1=1

INP e ® ® ®© o o o ® @ o o o o 3-9

INPUT « « o o o o o o o« o o » 2=10, 2-28, 2-36, A-2, A-3, B=9

[image: image201.png]3-9
. 2-38, A-3, B-3, H-7

.
w9
B
2
]
A

INPUT#

INSTR

e © o & o

e & o o o b

e o L} o o o
o

e ol O o o
n

e ooy o o @
>

o oo0f o 1) o
© . h

. .
H4ay SH

+ 00 HH
oo M
QR v

HHPEHIH

Nﬂn.um.us

HHH HH

. 2-39' B-Z

*

KILL .

e o = 3'11

[4

L 4

LEFT$

2?40' B-g

.« 3=11
. 2=-28,
. H‘Z

>
L]

L 4 .
L 4 [2

LEN
LET

LFILES .

2-41 to 2-42,-

!]
-—
1
3
T
n m
T
\Ue Mo | ™
To «
Ny
’412
(o0 o B i
L I
Ladis Na Na
[[2
. e 0
* * o
[] ¢ e
. ¢ o
. ¢ o
. . o
. s o
. L}
L] .
&
v BB
: &b
o AR
Q
g B2
-rf HH
ad a4

L-2

,'.
M
™M
e~ 0
t ™
(o]
L o]
o o0
)
(o Ko]
- =
ot~
1
- 1
o
(o]
M -
wn
- <
[|
— N
[]
¢ o
()
o @
o ®
¢ o
e 0
[
* o
ny
H Qo
(L
mnu
)
Al
fuj o 1
Q9
m_u
aa

A.Z' E-Z
2=43

L L 2 L [)
d * L [4 ®

L
[2 - L L

* L *
L g - L J L 4

Lines
LIST

1-2,

«~y Vot
]
o
I o~
o L]
1 (U
m
-
- o~ -
T K
v m
s = N mM
-—~m ™ o0 +— 00 o0
1 1 1o UL 1
Fn‘ﬂumqu NN m
N W N - LS S -
NWYWAN s~
PP P = NOO G g P
UL L L L
NN AOAMerAN NN
¢ ¢ o o & 0o & o @ o @
® o o o & o o ¥ 0o e o
o & o & & & 0 o o & ¢
® 0 0 % ¢ o o & o 0 o
o & & & ¢ o ® o o ¢ @
® o o . & & ¢ & & o o o
o« & & o * o o o 0
u
¢ o 6 6 6 4 o ¢ o o o
a
@ e & o o) ° b o e @
o
6 0 o ey o s oY o
a 6
b o o o o)y s o o .
o 4]
® o o o @ ¢ o sl o
r £
o o o o . .
: LN
SRR A
MLLLLMLHL.@L

e o o o o o o C‘1' C—4, D-4, E-Z, G-1

MBASIC
MDS

MAKINT

. 2-4' 2-49’ B‘Z

MERGE
MID$

2-50' 3-13, I-1
3-14’ B-a
. 3-14, B-8

L L *
L] L 3
> L]

MKIS .

MKD$.

a
!
m
.%nuo
~— —
1 10
(a2 JE sl and
e o o
¢ o o
¢ s 0
o o 0
e o U
-rd
o o3
é om
*HY
Q-
TR
o
* N
)
e
o~
w 0
293
522

(']
wmn
!
o
o — OO ~M
[ad N ad N «— 00 N
[U B L
ool o N NN
¢ ® ¢ o o
. o ¢ & o o
. o o o o o
* o s & o
. o e ¢ & o
e o e ¢ o o
o o e ¢ b o
o ® e o o &
o o & & o
)
e | ¢ o 8 o
ks
e g e o o
9]
LR | e 3 b o
—t o
o, o o @
| 2] o
Wt I
59 2oh
=3 NNM

NULL

P

[image: image202.png]Numeric con
Numeric variables

OCT$. .

Octal . ¢« ¢ ¢ o o o
ON ERROR GOT .« o
ON...GOSUB . « « « o
ON...GOTO . « o o &
OPEN . ¢« o o o o o o
Operators .« o« « o »
OPTION BASE ¢ « o
OUT L] * L] L) * L J * *
Overflow « « o « o o
overlay .« o o o o o
Paper tape . « « +« o«
PEEK L] [] L L] [] L *® -«
POKE [] ® - L] L] ® L J L J
POS . [[J [e [] L J -
PRINT [] L J L 2 ' L] L J e L]
PRINT USING &« o« o
PRINT# « o o o ¢ o
PRINT# USING . « « o

stants

[]

Protected files . .

PUT . . .

Randonm files . . . &«

Random numbers . . .

RANDCOMIZE
READ . . &

Relational
REM L J L] L]
REMOVE . .
RENUM . .
RESET . .
RESTORE .
RESUME * *
RETURN . .
RIGHTS . .
RND [] . .
RSET . . .
Rubout . .
RUN [[2 []
SAVE . . .
SBC . . .
Sequential

SET .« « o

L] L4 * L [J
[] L L] L] ®
operators
L * L] * L]
L] [) [] * L]
L [] [] L] []
* [] - L] []
L * L] [] L J
* * * L] L
L] * * L] L 4
* L * L L]
L] * L L] ®

%iies .« o

* [] [] [] ° [] [] [] L] [3 [] L [3 * [] []

e o 6 8 o ® o o & & ¢ 8 & o b o

e & o & & o o o ¢ e © o o s o o

1=4

1=7

3=-14

1=5, 3=14

2-54, L-3

2=-55

2=-55

2-8, 2-28, 2-56, B-3,
B-8, H=5

1-9, 1=11 to 1-14, L-4
2-57
2-58
1-11, 3=7, 3=21, A=1, L-4
2-4

2-53

2-59, 3-15
2=-59, 3=-15
2-83, 3-15
2-60, A-1
2-62, A=2

2-66' A-3' B-B' H“?
2-66' A.3’ B-S, 3‘5

2-77, A=2, B-2
2-28' 2-68’ B‘Q, H-7

2-28, 2-31, 2=-39, 2-48,

B-7, D=4

2-69, 3-16
2-69, 3-16, A-1
2—70' 2-74

1=-11

2-72, L=3

H=-3

2-4, 2-25, 2-73
D=3

2=74

2-75, L-3

2=-32

3-16

2-69, 3-16, A-1
2-48, B-8

1-3, 1=-15, 2-20
2-76 to 2-77, B=2

G-1
2-66, 2-85, 3-6, 3-12,
B-3
H-4

“9N

e

[image: image203.png](C

SGN * . e [*
s IN L] ® * L J L] [B
Single precision
SPACEY . . « « &
SPC L] L] [J L] * L]
SQR . [. . . [

Gie o o s o o

o 9 ¢ ¢ 4o o s o o o

Standalone Disk B

STOP [[] L] [] * *
STR$ [3 o e L) L] [
String constants
String functions

String operators
String space . .
String variables
STRINGS . .

Subroutines . .
Subscripts . . .
Subtraction . .
SWAP * L 2 L 2 * * L 2
SYSTEM o« o o o «
TAB [] L 3 L L L J []
Tab [B L] [] L 2 * *
TM * L 2 - L 3 L 3 L 2
TEXDOS ¢ o o o »
TROFF L 3 * L 3 L L
TRON o o o o s o
USR > - > L 3 > L 4
USRLOC o o « =«

VAL L 2 L 2 > L 2 *-

Variables . »

VARPTR o o o o

WAIT [4 L 2 L 2 L 2 o ®
WEND * * L J L 3 * *
WHILE [2 L 3 L] L J [4
WIDTB L J - L J * L 23
WIDTH LPRINT . .
WRITE L 3 > L J 9 *
WRITE# * L] [] [3 [2

s 6 6 ¢ 8 & o 9 o

’ o ® 8 o o 4 o

e ¢ o

“ o 6 0 0 s ¢

e & 9o 0 ¢ 0 @ s o

. ¢ 2 92 9 ¢ o

[2

* 0 0 9 4 o 0

ot

s & o * & 9 o 8 o

¢ 9 ¢ 9 0 9 0 o o

e e 8 ¢ o 0 o

I S IR

¢ ¢ 9 o o ® & ¢ o o

e ® o 9 o o & o o

L)

¢ *

?

e 5 9 o o o o

e 9 o @ © o o 9 o * o

s 0 s 0 o ¢ o v 0

. 0 ¢ & o o 0 o

T e 0 ¢ & o 09

e & o & o ¢ o o » o o

e & ¢ 8 o & & o O

T * e s 9 0 0

¢ e o & o o o

o ¢ & o % o o @ o o o

e 6 o 0 o o o o o

¢ & ¢ 0 9 o

3-17

3-17, L-3

1-5, 2-15, 2-60, 3-5, A-1
3-18

3-18

3-19, L-3

H=-1

2-10, 2-23, 2-32, 2-78, L-3
3-19

1-4

3-6, 3-10 to 3=-11, 3-13,
3-16, 3=19, 3=-22, I-1
1-14

2-6’ 3‘8' A-1' B-g

1=7, 2=15, 2=41 to 2-42
3=-20

2-3, 2-32, 2=55, C-1
1=-7, 2-18, 2=57, L-3
1=10

2-79

D=4, F=1

3=20

1=3 to 1-4

3=21, L-3

F=1 - o
2-80, L-3 T
2‘80, L-3

2=-16, 3=21, C=1
c-2' G-1

. 3=22

1-6, L-4

* 3‘23' H-10

[R A

2-81

2-82, L-3
2-82, L-3
2-83r A—Z
2-83, A-2
2~-84

2-85, A=-3, B-3

[image: image204.png]A

