RS R S T S ol PO SRS S St S v
W S R § S IR OF T I = R T 0 T " T A TR W T

URERS FialUAL

Monitor System

The monitor system is used to assemble and debug programs.
Whenever the monitor is ready to accept a command, the
character "»" is printed in the first column of the input
device. '

Execution Parameters

The monitor is loaded via one of two commands under DOS.

*GO CASM
*¥GO DASHM -

The CASM file contains a version of the assembler which stores
object code directly into memory whereas the DASM program
produces a Hex Format object file for loading under the LOADER
program., The user must take care in using CASM to insure that
generated code does not overlay the assembler, its symbol table,
or its buffer areas.

Monitor Commands

Monitor ccmmands are 4 characters followed by the parameters
necessary for the particular command. The entry of an unrecognizablg
command will cause the message "ILLEGAL COMMAND" to print.

If the debug commands are used to test out a program module,
then the user must insure that the program being tested resides
in memory somewhere above the monitor.

The following section describes the various monitor commands
and their actions.

DUMP XXXX,YYYY The contents of memory between the locations
specified by XXXX and YYYY are printed 16
bytes per line. The last byte printed in each
line corresponds to the memory address ending
in 'F' (hex). If YYYY is not specified then
only one byte is printed.

PATCH XXXX The contents of memory from XXXX are patched

- according to the data on the following line.
Each byte is placed in the next successive
byte in memory. A carriage return terminates
patch mode.

Example: PATCH 124
15 27 16 32
DUMP 124,127
15 27 16 32
GOTO XXXX Control is transferred to the address given

by the GOTO command. No changes are made to
insure that a proper address is specified.

MOVE XXXX,YYYY This command will move the 256 byte block
starting at XXXX to location YYYY through
YYYY+255.

BRKP (XXXX) A breakpoint is set at location XXXX or, if

no parameter exists, all breakpoints are cleared
If a memory location is specified as a
breakpoint then an attempt to execute the
instruction at that address will result in the
message “"XXXX BREAK" being printed. The
continue command will proceed from a breakpoint
with the environment intact. The breakpoint

is cleared when it is hit. Up to 8 breaks may
be specified at a time. The DUMP and PATCH
commands can be used during a BREAK in order

to determine the contents of memory. The
environment may be examined by dumping memory
location 1000 - 1007 which contain:

1000 A register
1001 state flags

1002 C register
1003 B register
1004 E register
1005 D register
1006 L register
1007 H register
CONT The Continue command will proceed from a

breakpoint, executing the instruction at
which the breakpoint was set. A GOTO command
may be used to return to a location other
than the one at which the BREAK was detected.

DB,DW = Data definitions

The DB statement is used to define storage on the byte level
while the DW statement reserves double byte storage. Literal
strings, which are enclosed in single quote marks ('), always
generate one byte of data per character regardless of the mode

of the mnemonic. Multiple values may be specified on a line

each separated by a comma. When the data definition statement

is printed at assembly time, each field generated will be printed
on a separate print line. Filelds within a data definition state-
ment may contain expressions which utilize variable names, con-
stants (hex or decimal) and literals with combinations of the +
and - operators. Literals used within arithmetic expressions must
not exceed the byte length of the data definition statement.

Examples

DB 1,SYM,OFH,XV+3,'L'-1, 'LITERAL'
DW 6,VAR,16H,XY~6, 'AA'+1l, 'MESSAGE®

Macro Command

In order to simplify the creation of user programs a macro
facility has been incorporated into the assembler. If the user
finds a sequence of codes being used repeatedly, those codes
could be generated by the use of a single statement rather than
recopying the set each time. The assembler can optionally list
or not list the expanded set of generated instructions within the
assembly listing, the latter case saving on output print time.
Expanded macros are printed on the assembly listing with a leading
t4+' character in the line. This is to remind the user that these
lines do not exist in the actual source file.

Macro Format

Macro definitions A
' - MNAME MACRO PARM1,PARM2,...,PARMn

. Body of Macro

MEND

Macro Call:
MNAME - CALL—-PARMS

where: MNAME:. is the name under which the macro will be
called. This name must not conflict with
any variable names used within the program.

ASMF /NAME/ The 4 characters specified in the name field
are used to specify a file name "NAME".ASM
which is opened for assembler source input.
A message will appear reporting the status
of the attempted open.

OBJF /NAME/ The 4 characters specified in the name field
‘are used to specify a filename "NAME".O3J
which is opened for assembler object output.
This command is invalid for CASM.

CASM XX, (YYYY) The input file is. assembled with its base
stating address as XXXX or the end of the mo
monitor if the parameter is not specified.
In the case of CASM, the output code can be
specified to be stored at location YYYY and
later moved to XXXX before execution (MOVE
to GOTO cammands).

Assembler

The macro-assembler is a program which reads symbolic input
files containing assembly language (source) instructions, macro
instructions and program directives, and generates either machine
language code directly into memory (CASM) or INTEL 8080 hex format
code into a disk file (DASM). Hex formatted data can be loaded into:
memory at a later time through use of the LOADER program.

Format

The assembler accepts free form input files oxr the user may
optionally choose to use the tab capability to put the various
fields used by the assembler into fixed columns. The format of
an assembly statement is: :

LABEL OP OPRND COMMENTS

where: LABEL always starts in column 1 and is a _
1-5 character sequence, optionally terminated
by a ':' character. '

OP is a standard INTEL mnemonic code or any of the
psuedo ops: ORG, EQU, END, DS, DB, DW, MACRO or MEND.
The OP field starts at least one column after the label
field or in column 2 if the label field is not used.

OPRND

COMMENTS

The operand field starts at least one column
after the OP code field and contains the
parameters specifying the registers, memory
locations, immediate values, or data elements
utilized by the various OP codes. The operand
field may contain any arithmetic expressions
consisting of combinations of variables, con-
stants (hex and decimal), and literal strings
(defined by the ' mark), along with either the
+ or = operators. The special symbol '$' re-
fers to the current value of the location
counter (address of the current location), and
may also be used in expressions, For example,
in order to define a variable whose value is
the length of a given message, the following
code may appear:

MSGC DB '"MESSACE ONE'
MSGSZ EQU ™ $-MSG

The comments field is preceded by a ":"
character. Comments may follow any source
statement or they may stand alone by placing
the ":;" character inte column one.

NOTE: An input line containing the tab character “f "
would appear as follows:

LABEL:

'OP OPRND CO¥MENTS

When it is listed by the assembler or text editor
the fields will appear in colummns: 1, 8, 14 and 25.

Psuedo Ops

(Seembler
Directives)

The equate psuedo is use to set a variable
equal to the current contents of another
variable. It may also be used to create
a variable whose value is equlvalent to a
constant
For example: A3a EQU BB

AD EQU 1012H .

This is used to terminate the assembler. The
1st of the two passes is completed -and a 2nd
pass over the source input file is done.

Upon detection of the "end" after the final
pass, disk files are closed and the current .
symbol table is prlnted if the option had been
requested.

ORG

The set program origin directive allows the
user to specify the starting memory location
of the next instruction which will be generatel
by the assembler.

Examplet ORG OFB3H
ORG 146
ORG AXY+B~-3

The define storage psuedo op is used to re-
serve an area of memory. This area is not
affected during program loading and it is
therefore up to the user to initialize al

DS areas,)

Example: TBLA DS 1000
' TBLB DS TBLBX

Exrroxr Codes

The following error codes will appear in column one of the
assembly output upon the detection of an assembly error,

Argument Error

A -
D =~ Duplicate Label

L ~~ Label Error

M - Missing Label

O =~ Opcode Invalid ,

R ==~ Register Specification Error

§ == Syntax Unrecongnizable

U -= Undefined Symbol -

V =~ Value error - Argument field value overflow

- Assembly Example

: The following sample assembly program will convert a buffer
of data coded in one character set (say ASCII) into a new buffer
under a different character set (say EBCDIC). The program is not
coded efficiently, it is presented in order to show the various

- assembler capabilities, : '

PARMs: are optional parameters which can be used
within the macro. Upon calling a macro, the
parameters passed in the call are substituted
into the parameters used in the actual macro.

Example:

The following is an example of the creation and use of a
macro to load a register pair from a memory location specified
by the H and L registers,

LRPM MACRO RP

Mov AM
MOV RP+1,A
INX H '
MOV AM
MOV RP,A
InX H
MEND

PROGRAM .
LRPM B
LRPM D

Macros may also be used to change the namss of certain instructions
in oder to make programs more readable. For example:

JL. MACRO ADR sJUMP IF LESS THAN
Jc ADR
MEND ADR

The mnemonic JL might be more meaningful following a compare
instruction than the condition code test statement.

(las *% 0o wo af a8 =0 ap «t ng ap 0 og oy

NVRT$

LOOP:

PROC:

PROCE:

CHK2:

CONVERT FROM ASCII TO EBCDIC

ADDRESS OF ASCII BUFFER

LOCATIONS: ABUF
- ADDRESS OF EBCDIC BUFFER

ABUF

THIS SUBROUTINE RETURNS TO THE CALLER
UPON THE DETECTION OF AN ASCII
CARRIAGE RETURN. THE SEQUENCE 'END*
WILL ALSO STOP THE SUBROUTINE.

THE CARRY IS SET UPON RETURN.

D,E) = ADR OF ASCII BUFR

LRP D,ABUF s (

XCHG : +SAVE (D,E) IN (H,L)

LRP D,EBUF :(D,E) = ADR OF EBCDIC BUFR
MoV AM +GET ASCII CHAR

CcPI ASCR +IS IT A CARRIAGE RETURN?
JE BYE . sYES =~ DONE ;
CPI - END +IS IT AN 'E'?- ‘
JE CHKND +YES - CHECK IF ‘'END'

XCHG +«NO - (H,L) = STORAGE LOCATION
PUSH H +SAVE ADR

IXI H,CNVTB +GET CONVERSION TBL ADR

IXI B,O

MoV C.A +MOVE CHR TO (B,C) PAIR
DAD B - +POINT TO NEW CHR

MoV A M + GET NEW CHR

pop H +GET STORAGE ADR OFF STACK
MOV M,A + STORE NEW CHR

INX H s POINT TO NXT STORAGE ADR
XCHG ;GET ASCII BUFR ADR IN (H,L)
INX H » + POINT TO NXT CHR

JMP LOOP s+ PROCESS NXT

sTC s SET CARRY

RET +RETURN TO CALLER

INX H

MOV A,M +GET NXT CHR

CPI END+1 +IS IT 'N'?

JE CHK2

. DCX H +NO ~ PROCESS THE ‘'E'

MVI A, 'BE!
JMP PROC

- INX H :
MOV AM sGET NXT
CPI END+2 +IS IT 'D'?
JE BYE :YES - DONE
DCX' H $ADJ PTR -

JHUP PRONP ©avA BPeacren moe ted

#1

r_crj..

END:

ASCR:

#8

ORG

MACRO
PUSH
IXI
MoV
INX
MOV
POP
MEND

MACRO

MEND

DB

DB

#14 #25

100 H 'sSTART AT HEX 100

RP, ADR '$LOAD REG PAIR FROM ADR. & ADR+1

H,ADR
RP+1,M
H

RP,M

ADR

- ADR

13
IENDI

ABUF':
ABUF?

-s

- a¢

CNVTB:

s

DS

Ds

2
2

EBCDIC CONVERSION TABLE

192 +SKIP OVER NON-ALPHAS
@, tABCDEFGHI'

6

g, " TKLMNOPQR'

6

#Z, ' STUVWXYZ'

6

16123456789
6

Text Editor

The text editing program EDITOR is used to create and
maintain data files on disk., The editor reduces textual
storage by allowing the user to store a tabulation character
(¢) which is converted to the appropriate number of spaces
by all software in the system. (Tab stops are permanently
set at columns 8, 14 and 25). Storage is further reduced by

"eliminating the storage requirements for end of line sequence
replacing it with a flag on the last character in each data

line.

The editor takes an input file and executes’ the commands
specified by the user in order to produce the desired output
file. If the input filename is not specified then the editor
will only allow for the creation of a new data file (since no
commands which would edit source input are meaningful). If an
output file is not specified then only the end editing with
listing command is acceptable since there is no purpose to
editing the source file.

Execution Specifications

In order to execute the editor the following DOS commands
are executed. (User commands are underlined).

*GO BASIC
READY
1.0AD EDITOR
" READY
RUN

The editor will startup by typing:
. TEXT EDITOR -~ V1.0 10/77

INPUT FILENAME?
OUTPUT FILENAME?

S

The user enters the names of the disk files being edited
or a carriage return if the particular flle is not being used.
The editor will respond with:

FILE XK. BEING OPENED,
FILE YYYYYYYY BEING OPDNED.

CMD?

At this time editing‘commands may be entered.

Editing Commands

An editing command consists of a single character. Any
multiple character sequence is assumed to be a line of textual
information. The editor maintains a "current line" of source
data. Editing commands effect this current line points.

Command Code Action

S (SKIP) - The editor asks the user for the number
of lines to skip "#=?" and advances the
current line pointer the specified number
of lines. All lines skipped are written
to the output file and are optional printed
as they are bypassed. - (See L. command).

D (DELETE) The editor asks.for the number of lines to
: be deleted "#=? - The number of lines
specified (including the current line) are
deleted from the source file. Deleted lines
are listed with an '*! precedlng the line
image.

F {FIND) The user is asked to enter the desired string
which is to be located “STR=?". All lines’ ' °
from the current line to the line containing
the string are copied to the output file.
Skipped lines are printed as controlled by
the list mode.

L (LIST) Skipped and delted lines are listed as they
S g are processed. List mode is on by default
when the editor is started.

N (NO LIST) Only the current line is printed following
. the execution of a command.

E (END) The editor is terminated. All lines from the
. current line up to the end of the source file
are copied to the output file. Listing is
controlled by the current listing indicators.
If an output file is not specified the end
command will cause the source flle to be listed
only.

Multiple Char -
Seq (INSERT) The current line is written to the output
file and the inputted string becomes the

current line,

Carriage :
Return (SKIP-1) The next line from the input file becomes
the current line. The previous current line

is written to the cutput file.

NOTE: Tab characters detected in the'soarce file will
cause the lines to be dlsplayed with the appropriate

spacing.

Upon termination of the editor, the number of sectors of data
written to disk is printed so that the user can determined the

current end of file,

Object File Sizes

This program is designed to calculate the size of the object
code file in sectors.

Execution Parameters

The program is executed as follows:

*CO BASIC
READY
LOAD OBJSIZE
READY
RUN

OBJECT FILE SIZER - V1.0 10/77

OBJECT FILENAME (XXXX)?
OPENING FILE XXXX.OBJ

APPROXIMATE FILE SIZE = XXX SECTORS'
NUMBER OF RECORDS = XX :

Assembly Time Calculator

This program is designed to calculate the approximate
printing time if the user is producing an assembly listing
from the assembler.

Execution Parameters

The program is executed as follows:

*GO_BASIC
READY
LOAD_ASMTIME
READY

RUN

ASSEMBLY TIME CALCULATOR - V1.0 10/77

PRINTER SPEED (CPS)?
FILENAME (200X)?

FILE XXXX.ASM BEING OPENED,

NUMBER OF SOURCE LINES = XXX¥X LINES.
AVERAGE NUMBER OF CHARS/LINE = XX.X
MAXIMUM LINE SIZE = XX CHARS.

NUMBER OF OUTPUT CHARS = XXxXXXX CHARS.
APPROXIMATE PRINTOUT TIME = XXX.X MINUTES

Obiject File lLoader

The object file loader is designed to load INTEL Hex Format
object code files from disk into memory.

Execution Parameters

The loadsr program is executed as follows:
*GO_LOADER
CBJLCT FILE LOADER -- V1,0 110/77

FILENAME (XXXX)?
FILE XXXX.ODJ BEING OPENED
Checksum and illegal character error messages will be printed

Af the object file is in error. The block number (block starting
address) will be vrinted to indicate the bad block.

NORTHSTAR DISK BASED MACRO ASSEMELER

A PRODUCT OF INTERSYSTEMS SOFTWARE

VI.OA

Revision List

9/77 Original e...e.eveesese Not Released
10/77 VI.OA veueeeeesesses Release I

Memory Utilization - Standard Software (V1.0A)

To be supplied

Davice Assignments

To be supplied

Special Commands

By using the CASM and DASM commands, an assembly listing
and symbol table printout will be produced. Macros will not
be expanded (printed in their entirety upon each call). The user
may modify the assembly command to produce a specialized listing.
This may be done by tagging an "option" character onto the CASM
or DASM statement. The option characters are:

Only print lines with exrors
Only produce an assembly listing
Only print a symbol table

X o v w

Print an assembly listing with
~expanded macros

This document is an update to the original manual

and describes:

- New Programs

= Assembler options

-= Customizing I/0

- Fast Editor

« Debug modifications

« VI.OA Memory Map

~ Original Documentation Errata

It also further explains various system capabilities.

NORTHSTAR DISK ASSEMBLER ADDITIONAL DOCUMENTATION

Monitor Start/Restart/Typing Errors

, The starting address of the monitor is location {.
‘ The system will initialize its I/0 by utilizing the
standard or user defined initialization routine. After
- clearing breakpoints the monitor will wait for a '
command.

In order to restart the monitor without clearing
breakpoints, the user can branch to location 3.

NOTE: If the program branches to location & due to a
fault, the monitor will restart destroying all
set breakpoints. The user must restore the
breakpointed instructions before proceeding.

The "« " character is used to delete the last
character which was input to the monitor or editor.
The "@" character will delete the entire input line on

which it appears.

Loader Program

The object file loader program has been rewritten
in assembly language in order to minimize its memory
requirements. The standard loader loads into locations
'3C00~3EFF and locations 3F00-3FFF are used as a disk input
buffer. The loader programs transfers object code from a
disk file into memory and will branch back to 0S upon
-loading, enter the users program directly, or enter the
monitor debug routines. . : :

- The loader is executed by entering.
*GO LOADER

The loader will print a startup message and then
wait for the 4 character filename of the object code
file (XXXX.CBJ).

After loading the code into memory, if the user did
not specify a starting address (as specified below) then the
disk operating system is rebooted into memory by executing the
PROM at location E900. - ‘

DASM/DASMX

The DASM file contains a disk assembler which produces INTEL
loader format code.

DASMX contains a disk assembler which produces the compressed
OBJECT FORMAT which is compatable with the LOADER program. This
format for the object code is: byte count of record (1-255 bytes),
16 bit memory address, followed by the data bytes. A byte count
of zero indicates end of file (EOF).

DASMX also contains the text editor.

NOTE: 1If an object file is not specified, then no object
' code is produced by the assembler.

EDITOR

The VI.O0A editor has been incorporated into the DASMX
package. The VI.OA editor is written in assembly language and
executes many times faster than the VI.O basic language text
editor. It is invoked via the command:

EDIT or EDITN

The former command specifies that tab characters should cause
proper formatting of all printed lines during editing while the
latter command converts the tab character to a space in order to
reduce print time.

The editor will then ask for the name of an input and output
file. One or both may be specified. If the files are properly
opened then the editor will prompt the user for editing
commands by typing:

ED>

In order to branch to a specific memorg location upon
loading, the following code must appear in the users
program:

ORG 3EFEH
DW ADDRESS

where: ADDRESS is the desired execution address.

In order to utilize the memory dump and
modification routines in the monitor as well as the
program breakpoint feature, then the ADDRESS to be used for
entry is @#. (initiation of monitor) or 3 {continuation of
monitor). The former address is used if the monitor had
been load via an *LF command, while the latter is used if a
%GO command loaded the monitor. For example: =

Program with a start address of 3 address of @
G0 DASMX (or DASM OR CASM) *LF DASMX@

' GO _TO 2028 (restart DOS) "

%C0 LOADER | *GO LOADER

OBJ LOADER =--VI.OA ~-'10/77v 0OBJ LOADER --Yé
?FIL1 IFIL1

> (automatic monitor start))

NEW PROGRAMS

Version 1.0A is released with four new basic programs.

COMPRESS ~ This program converts a file which is
a8 core image of a "file" produced by
The Self Contained Monitor System
(which is provided with IMSAI 8080
microprocessing systems) into a file
which is compatible with the
Northstar Disk Based Assembler/Monitor
Software. -

FDUMP = This program will dump an image of
a disk file in decimal and ASCII. The
user enters a filename and EOF character
when prompted., If the EOF character is
unknown, then entering a number greater
than 255 will cause all sectors up to
the physical end of file to be printed.

All editing commands specified in the original documentation
are permitted. The additional command specified has been added:;)

Command ~Action
T The editor asks the user to specify

a character to be used as a tabulat;op
-character. If no character is specifies
the default character "!" is utilized.

Whenever the specified tabulation character is found in a line
being inserted into file, then it is converted into the internal
representation for a tab "!". The "# " used in the original
implementation is no longer valid. '

The delete command will list all deleted lines. The
last line listed will be the new current line. If list mode is
otf, only the new current line will be shown.

Sector information will not be printed at the end of editing.
FSIZER may be executed to determine the file size.

1/0 Interface

The standard 1/0 routines which are delivered with the
system are oriented towards an IMSAI 8080 microprocessor.
If these routines are incompatable with a particular
configuration, the steps in the next section describe how to add
a customized I/0 routine.

Standard I/0

Programmed Input Switch v Result
7 up - Input from device # 3, echo on #3
down - Input from device #5, echo on #3
and #5. '
6 up Output to device #3.

down Output to device #3, and # 5.

FSIZER =~ The sizer program determines the

number of sectors used within a file.

This program is useful in determining the
minimum size file needed to store

a given data set.,

FCOPY =~ The copy program will copy one file
‘ ' to another file. The file size of the
new file must be large enough to
hold the actual data contents of the
source file, it does not have to be the .
same physical size of the source file.

The execution of the FSIZER program followed by the creation of
a minimum length file, followed by the execution of FCOPY and
subsequent deletion of the original file, will keep disk
space utilization to a minimum.,

Errata

This section corrects documentation errors in the original
users manual.

DUMP - The proper format of the dump memory command is:
DMP XXXX YYYY
Where: XXXX - is a 1-&4 hexadecimal digit start address
YYYY - is a 1-4 digit optional end address.

PATCH - The patch memory command is formatted as:

MOD XXXX
YY YY YY YY/

Where: XXXX - is a 1-4 hexadecimal digit start address

YY - is a 1-2 hexadecimal d1g1t memory patch. The
"/" character terminates patching. Carriage returns are
-ignored during processing.

MOVE « The proper format of the move command is:
MOVE XXXX YYYY |
Where: XXXX - is the "from" address
YYYY - is the "to'" address
One 256 byte block is moved

BRKP - Locations 1000 - 100B are set up at the time of
’ a breakpoint as follows:

1000 PSW

1001 A Reg
1002 C Reg
1003 B Reg
1004 _ E Reg
1005 D Reg
1006 SP (Low)
1007 SP (High)
1008 L

1009 H

100A PC (Low)
100B PC (High)

CONT. - To Proceed from a given address following a breakpoint
the command:

CONT XXXX ‘
is used. The GOTO command does not restore. the
environment Lefore entry to the program,

j12¢ 1 -

SWMAA. S

MEMORY MAF

BiISK /NPT BUFFER

FREE

Micle L’Ttlméé:‘ BvFFLE

O TCR
L
i N EniB ER
I
i

arsm

3FFF
arco

| 3E00

3Aco

I5A0

lega
S¥mnets

bISk AVPCT RUFFER

Disxg ovPer BULFFER

Mucpo STENRACE BULFFER

ORFECYT JoPE BUFFER

TEXT corrern K

DA A

* DAS X Ny
e

3FFI
2Fo¢
acot

3peca
3g9co

Customized 1/0

~In order to add an I/0 routine for your particular
configuration the following steps are taken:

The I/0 routines may be placed at locations IIFI - 124C and

1256 « 1271 overlaying the standard I/O routines. The user may als¢
choose to place the routines immediately above the end of the
monitor (start of the symbol table). If the latter case is

chosen, the last address of the I/0 routines plus one becomes the
new start of the symbol table and the new address must be specified
to the monitor as described below.

, The addresses of the three required I/0 routines

(I/0 initialization, get a byte, put a byte) must also be
" patched into the system. The new monitor may then be written
- to disk using the procedures described below. :

- The addresses of the customized 1/0 routines must be patched
- into-the following locations: .

" F73 C3 LL HH JMP INIT
-F76° C3 LL HH JMp INPUT s Put Byte in 'A' REG
F79. C3 LL HH JMP OUTPT ; Write Byte in °'B' Reg

If the address of the symbol table changes:

' 349‘—LL HH DW SYMBOL - TABLE - START - ADDRESS
- STANDARD: CASM 15A0 (AO 15)
DASM}(X) 1820 (20 18)

After making the necessary memory modification, the customized
package may be written to disk via the command sequence:

>GOTO 2028

CR FILENAME SIZE
*SF FILENAME ¢

*TY FILENAME 1 ¢
%GO FILENAME

- The siZze must be large enough to hold all in core coding.
Remember, DASMX contains the text editor up to location IDOO.

ASSEMBLY ERRORS

P - Phase Error

This new error code indicates that a failure occurred in
addressing during pass 2 of the assembler. The addresses
of labels in pass 2 should match those of pass 1 or the

"P'" error will appear.
cause a phase error.

" FILENAMES |

An invalid DB or DW psuedo op can

The following programs have been renamed in the

VI.0OA release.

 0ld Name
ASMTIME
OBJS1IZE

ASSEMBLER COMMANDS

New Name

ATIME
OSIZER

The commands CASM and DASM have been removed and have been

replaced as follows:

NOTE: The assembler reboots the DOS upon completion of
the assembly phase.

ASMT 0 XXXX (YYYY) =

ASMN f0} XXxX (YYYyy) -

Assemble a source file and expand tab
characters properly if a listing is
produced. The base address of the
program is XXXX. If the core version
of the assembler is used,then an
optional YYYY parameter specifies
where to store the generated coding
if XXXX is not available. The file
CASM will store output code into
memory. DASM and DASMX will store
object code in a disk file in loader
format (see below). Optional assembly
options{¢} S,E,X, and L may be
specified in the command.

Same as ASMT but tab characters will
cause a single space to be printed
thereby reducing print time.

NORTHSTAR MINI FLOPPY USERS

Now available in source form on mini-floppy diskette:

CORE IMAGE LOADERY

CORE IMAGE SAVER¥*

"« Allows the user to write and read core images from disk,
Gets around the problem of loading modules which overlay
the DOS image in memory.

- Available on diskette in source form compatable with the
Minifloppy Disk-Based Macro-Assembler*

Supplied on diskette: $15,00
Written to users diskette: $10.50

* PRODUCTS OF: INTERSYSTEMS SOFTWARE INC.
: (201) 871-4085

