o

i

=

o

NG

“s

OHIO SCIENTIFIC

BASIC REFERENCE MANUAL

@© Copyright 1981 by Ohio: Scientific inc.

Printed in the United States of America.

e

All rights reserved. This book, or any part thereof, may not be reproduced without the permission of the publishers.
Although great care has been taken in the preparation of this manual to insure the techmcal correctness, no responsibility is assumed.by Ohio Scientific

for any.consequences resuiting from the use of its contents. Nor does Ohio Scientific assume any responsibility for any infringements of patents or othe’
rights of third parties which may result from its use.

If you discover misprints or errors, please send a letter to the attention of: Documentation Department, Ohio Scientific inc.. 1333 S. Chillicothe Roac
Aurora, Ohio, 44202

3
CONTENTS
TER PAGE
oL L e SRS Sk A SO P A P PP S SR SRR g iv
AT BON . it iiieisinsinassosessesososesssssnssnsssaneensiasssssasessnsssssinnes .1
CEYBOARD CONVENTIONSccovvceccvennarcnnns i aaese e deeieeeeis e s s 1
SPECIAL CHARACTERS ...iiiiiiieeriarecnececassasassssssacsnaasessasssnnannssssssnnnenns 1
CEYWORDSoiuiiiiiniiiniinnrnenenens T P TP RPPPERPINE .1
SMENTS OF BASICiiiiiiiiiiiiiiiiatetaneneaenenaeensarasssensnssssnsnensanans 2-5
SONSTANTSiiiiiiiiiiiiierieinenrensnnecnans B O I S N T 2
NUMENC CONS aNtS .. .uvviiiiitienseressnesaceesssssansosnssionsnnsssnsassasssanssasasss 2
StringConstants.................., ... PR 22,
~0gICal CONSTANTS .. .uuuuutttrerresenaneeecnecnnasssnassssasanssscessssannanasanncsnssans
FARIABLES iiiiiittiieteieierieeensecaesoessensassssescassssnssasnnnssassassenansnns 2
NUMETIC Variablescviieeeoeeiseeeecserascaseeasesasssoassassiasnneassnsesnssnnss veee 2
Nteger Variablesu.unutieeeienaseceaseasscsscsaosonesnssasasasesssanssasacnsnsess 2
StriNg Variablesc.viiiiiiieiiiesreectenserassossesnnsancnnssesnnnsensnnnsaessnnanse 2
ARITHMETIC OPERATORS AND EXPRESSIONSicciiiiiiiiniiiiirerecencensssesonannes 3
3IT OPERATORS AND, OR, AND NOTcuuureinenuneasetessnssssnnssssansssssnnnnnnns 3,4
RELATIONAL OPERATORS AND EXPRESSIONS iiiiiiiiiiaiiieeennercennsennnnnaannns 4
COMPARING STRINGS0ovttevencnseesessoeenseasascssssossonsensassassssasssansanssns 4 g
STRING EXPRESSIONS0vvvtcineseseeceesessassanasssosasssasansssasanasassneenans)
SIGNMENT, INPUT AND OUTPUT ..ottt tieiiitaeseersnenasnencnenns 6-10
e T ST ATEMENTi.iiiineeseeansssessesaosasesesstoseennsasssseesnsssassnnnnsennnns 6
NP U T ST AT EMENT irnreeeeasneeeasnessseseseessssssnsnssnssesssssanansansesns 6 _6,
READ AND DATA STATEMENT S ...t treeeneaaeressoesssascancacsssssnssasasnsssansanns ;
RESTORE STATEMENTourerereseessesasseseseasassasassesssesssssssassnssssseanenscas 7
PRINT ST AT EMENT uitesteesnsnnnseeansesescnsssoesessasosnsnsssssaansanssnnasseness 7
/ERTICAL SPACING OF OUTPUT .. iissrarecesesesessesesesaasesssssnsesasionsnassesnans 7
HORIZONTAL SPACING OF OUTPUT ...uuveeenenncsonsotseeneeeannnsseannnasanasannnss 8,9
Zoned Format....... s b s e s o v bm o n g Stimrn e £1a i 40 m o b et s 8
COMPreSSed FOPMALcoseiseeeeeseseessasssesssssesessenassssssessassssesassssosnss 8
TAB FUNCHION ittt ittt ieeeeeasesenesecsesssnnssansesssnnsesassnnssensnnns .8,9
S P FUNCHIONttt sttt eseeeeasasssesesseasasansessssssansnsssanncssesasansans 9
POS FUNCHION ...ttt ettt e s e e e et ae e s e e e s anesennssesesesnnsnnnseecesnnssnns 9
DEVICE SPECIFIED INPUT AND OUTPUT ... ittitttiiarneaennnnnnneeesasnacassannnnsans 9, 10
JONEY - MODE OU T PUT ..t reieteesaessssseesssessssssassssesnssnnassnsnnanascanis 10
O G RAM CONT RO ..ottt ettt ee e tatesaeassensssnsnesnasnsnessansnsnans 11-13
GOTO STATEMENT iiiiinunercecneneeanseossaesessosseasacneaatssesssssssnesasensss 11
F cGOTO STATEMENTuotts e sesecesesennoanssssssasesosssnsassassssesssansnsnns 11
F .. THEN STATEMENTooviitverineeeseeecersssssnssnnnssessanasssssanasssns 11, 12
ON . . . GOTO STATEMENTo'uuuirerenenconeanaeccanssascnsssssnsssnnasssassssesannss 12
FOR AND NEXT STATEMENT S0t ivieercearionacnstesassssnnscacnsssenssssssanscsnss 12, 13
D ClaUSEiiiiittiiieeeennssosesaseesoasnasocaassaeasaensonnsssscasessnnsannsss ::;
NSt LOOPS ...t iiiiiiiiieneeienceeesoaeassassassssnsssassnssesssssssansnsnssasancans
1

CHAPTER PAGE

F. STOP STATEMENTuititiitcateentoinessessessosssesonisssanisassassasenceessnsnssenee 13
G. END STATEMENT ...t iiiiiiireneinniaseessossresaseesasssssesasssssnssansssnssassanns 13
5. PROG RAMMING ...ttt ittt tatneansesaeasasasasansnsnssensasasnns .. 1417
A. BASIC PROGRAMSiiiiiiicinanteseaesioanessessenssssassssesnnsassscsacessansnns 14
B. IMMEDIATE MODE ciiiiiiitiittannneraeesnnasesanssiossssasnssoseceasasssassassnns 14
C. COMMANDS iiiiiiiitiiiiarieeransnssonssnsssesassnssaesnsnsnssasnnsasssananssns 14-16
NEW Commandiciiiiiiiiiaieeinarscescaeasscsseasanssanscassessssssnanensasesnnss 15
RUNCommandccuven O A S A ST U0 RS S P UG STV e I TS I RS S 15
LISTCommand A A R AL A T AL LI ol A Ml E 24 e e 15
CONT Commandcevveeinencnnnennnn A e 15, 16
D. INTERRUPTING EXECUTION ...\ttt ieenetanseasae e enesnsansenesnassnssenesnesnns 16
E. EDITING A PROGRAM R P T P P U OE S ol e SN 16
F. DOCUMENTATION L e i e e e i i S S T e 16
REM Statement R NP o 10 A TR A O S DA LMD SR KPR 16
G. SAVING SPACEcvtiitiuneiseersusioasensssessssossaasassssessssssesssescasansnassnsnse 17
FRE FUNCHIONociviiiiitiiinnnionsansoassasrassnsnnsacasscssassssssassasasssssassnssans 17
CLEAR Statement.......ccciviicurererentonessasoeasossionsossssnsnassascssansssasassnsnsss 17
Suggestions E T R R S Y L AT A S A A 17
T - 8 2 1 2 7 £ T S AN 18
A. SUBSCRIPTED VARIABLEScvituiiinireeseneaneetsnecssasassnssnasoasssassssenssnnses 18
B. DIM STATEMENT ...t iiiitiiietieiescnaeasaanionsesoassoaassasanescsnssonnsnasaseeesns 18
7. FUNCTIONS .ottt et e s e ie it s s s e e e eas 19-22
A. MATHEMATICAL FUNCTIONS iiiiiiiitierreteesosscesnnsnnssnssasnnsansnnsasinnns 19,20
ABS FUNCHION ...ttt itiiiineeensensneaesososassesssaasesssnnsssnnansansssonansasonsns 19
EXP FUNCHON ... ittt iiiiineentesecneiuanaseneasassnecanasasasassnensasasasasasannnanss 19
LOG FUNCHIONttt ittt inteiasnasarenensaiosnsinsesassnsasensasoannssnennssnnssans 19
INT FUNCHION . .. ittt e eeeeeneaasnesnasoasossanaenesensnassassansssssnnnannns 19
RND FUunCHON ...ttt ittt iieiininreneteaaasossensasesnesasesnassasnsasesassnsnanss 19
SGN Functionccviviviiriveeeivenas R S e e e b 19
SQR FUNCHON ...ttt i tiieitiie it siiananasetanasisasssensssnssanannanans 20
Trigonometric FUNCHONS c.citiriieiniteeiiienneeersenenanreennssesssesonsesnanssns 20
B. STRING FUNCTIONSiiiiiiiiiniteseneeneensesssesaneseassnssssssnssnsssssasnssnns 20-22
ASC FUNCHON ...ttt ittt iiiieaneeenieneeeeseosennasenssssasssansnsssasssansaessinnsnns 20-21
CHRS FUNCHION . ..oeiiiiieienriinrneeiensnenrnannnsnanes i Ll m s wame e e e 21
LEF TS FUNCHION ...t ititineeinnesasesossssassnsesssonassasnssinssssnsnessnnsssncsnsens 21
LEN FUNCHION ..ottt ieieeeieneeneenennneannns D i T A e e e e s 21
IMIDS FUNCHION ..ottt ittresinneeesuesasnsssssannsnsnsesseannssesesasnsssensanssneensns 21
RIGHT S FUNCHION ittt iitiiinteeeieesseeeaeneonasenanesasnssnssesesnosassssesonsascnnnssns 21
STRS FUNCHON .« .. itiitriineteeseeansesansesasseaeseinssenniossnnsasnassesnsnannssasnas 21
VAL FUNCHIONttt iiiiiiiiteernaeeeiuasnaisacsnasecenasensscaennnenssssansannanscens 22
8. SUBPROG RAMS ...ttt ittt eaesaetaseeetesssassasensanessnsensnnnnns 23, 24
A. STATEMENT FUNCTIONS ...t iiiitiieeneeetranrassesosesnassssosessssnssssssnssassnnssns 23
DEF Statement...................... B PR BT AP PR P SR L R g S e APy S 23
B. SUBROUTINESci0uitieseereeneeesooionscssaancssosssnsesasensanssasesanssnssnans 23, 24
GOSUB And RETURN Statementsc.cvciininrnrenceesinncannaneansonsasasassaes 23, 24
ON ... GOSUB Statementouuuneeetreenuneneeseeesnsseeessasascsssssossesessasnssss 24
9. DIRECT MEMORY CONTROL P O PNl SR T OSSR A S o i i SN S 25, 26
A, POKE STATEMENT ... iiitiiiernrcennnseseesenenesesessosesesessasssasassasssanassannans 25
B. PEEK FUNCTION iiiiiiiiiieiueessanesncsecoonssennsannnesanneensas e e e bt 25
C. WAIT FUNCTION it iiiitiiitiieeteasennoessoasseassosssesansssassenssenssssnnsnsss 25, 26
i

CHAPTER 2

'ELEMENTS OF BASIC

A. CONSTANTS

There are three types of constants in BASIC
numeric, string, and logical. .

NUMERIC CONSTANTS

Numeric constants may have one of three forms:
integer, real, and exponential. The integer form con-
sists of a signed or unsigned string of decimal digits
with no decimal point. Examples of the integer form
would be 3 and —596. The real form has a decimal
point. Examples of the real form would be 3.57 and

. —§.56. The exponential form is rEn where r is in real
form and n is in integer form. The exponential form
corresponds to scientific notation. For example,
.9000P156789 in exponential form would be
1.56789E-6 and 123778641 would be 1.23778641E+8.

All three forms of numeric constants are converted
internally to the exponential form. The range of
values is from —1.7014 E+38 to 1.7¢14 E+38 (2 to the
power 127). The smallest positive value is 2 to the
—128 power or 2.9387 E-39.

If a program calculates a value greater than 1.7014
E+38 an overflow error occurs. If a program calcu-
lates a value less than —1.7¢14 E+38 no underflow
error occurs;.a value of zero results.

Numeric constants have nine significant digits in
the disk BASICs and six significant digits in ROM
BASIC. If more digits are used (not including the dec-
imal point or exponent) the number is truncated. For
example, 98765432111 is 9.87654321E+ 16 in OS-65D.

STRING CONSTANTS

A string constant consists of a collection of up to
255 characters enclosed in quotes. Examples of string
constants are ‘‘RATIO”,*3.9”, and ““”’. Any char-
acter in the ASCII table except “ (double quotes)
may be used in a string constant.

LOGICAL CONSTANTS

There are two logical constants in BASIC. They are

"TRUE and FALSE. TRUE is represented internally

by —1 (all bits set) and FALSE by ¢ (all bits reset).

B. VARIABLES

A constant can be represented by a variable. There
are three types of variables in BASIC: numeric, in-
teger, and string. Each type may be simple or sub-
scripted. Simple variables are discussed in this chap-
ter; subscripted variables are discussed in Chapter 6.

NUMERIC VARIABLES

A variable name consists of either a letter or a let-
ter followed by another letter or decimal digit.
Examples of numeric variables are A, XB, and S2.

A name with more than two letters can be used.
Their use, however, should be watched closely be-
cause only the first two characters of a variable name
are stored. Thus COVE and COUNT are considered

to be the same variable (CO).

INTEGER VARIABLES

Numbers can be stored in integer form in BASIC by
adding a % (percent sign) to the variable name.
Examples of valid integer variable names would be
A%, BA%, and S2%. The range of an integer variable
in —32767 to +32767. Integer variables cannot be
used with BASIC in ROM.

STRING VARIABLES

String variables are represented in BASIC by add-
ing a $ (dollar sign) to the variable name. Examples of
valid string variable names wou]d be A$, BAS$, and
S28.

C. ARITHMETIC OPERATORS AND
EXPRESSIONS

The arithmetic operators are represented by the fol-
lowing characters:

addition
subtraction
multiplication
division
exponentiation

> — % |+

The carat representing exponentiation is entered by
<SHIFT/N> on polled keyboards. U

An arithmetic expression calculates a nu%'ﬂer'i'cal
value. It consists of a list of variables or constants
separated by arithmetic operators or brackets.
Examples of arithmetic expressions are A+B, B+3,
A+ 5,and (B "2)—4*A*C.

No two operators should appear next to each other
in an expression. The expression A/—2 is valid but
should be written as A/(=2).

Multiplication is never impiied. Thus 3(A+B) and
(A+B)(A+C) are invalid and should be written as
3*(A+B) and (A+B)*(A+C).

In order to avoid ambiguity in the evaluation of ex-
préssions a preference is established among the
operators. The preference is 1) brackets, 2) exponen-
tiation, 3) negation, 4) multiplication and division, and
5) addition and subtraction. Expressions enclosed in
brackets are performed first starting with the inner-
most pair of brackets. All operations at one level are
performed before proceeding to the next level. Thus

2+16/2 "3 is 4

Operations. at the same level are performed from
left to right. Thus

e

273 %°2is(2 "3) "2or64

It is recommended that the programmer insert
brackets in expressions to make them more readable
and to ensure that the correct calculation is per-
formed.

D. BIT OPERATORS AND, OR, AND
NOT

The logical (or bit) operators AND, OR, and NOT
operate ‘bit-by-bit on the internal binary representa-
tions ‘of the numbers. Each bit in the result is deter-
mined by comparing corresponding bits in the two
numbers.

The operator AND sets a bit in the result to 1 if
both corresponding bits in the numbers are 1. The
operator OR sets a bit to 1 in the result if either one
or both bits in the numbers are 1. The operator NOT
operates on a single number and reverses the bits.

X Y X AND Y
1 1 1
1 ¢ [/
B ¢ 1 ¢
)) ¢
X Y X AND Y
1 1 1
OR 1 ¢ 1
) 1 1
g ¢ ¢
X NOT X
NOT| 1 9
¢ 1

Some examples will serve to show how the logical
operations work:

63 AND 16=16 111111,

AND ¢10¢¢¢,
310000,

63=binary 111111
and 16=binary 10¢¢¢
so 63 AND 16=16.

15= binary 1111 and 14=bi-
nary 1114 so 15 AND 14=bi-
nary 111¢=14.

15 AND 14=14

—1 AND 8=8 The two’s complement repre-
sentation of —1 is
1111111111111111, (all bits of

- the two-byte number set to
1). Therefore, —1=binary
1111111111111111 and 8=bi-
nary 10¢¢, so —1 AND 8=8.

4 OR 2=6 4=binary 10¢ and 2=binary

1¢ so 4 OR 2=binary 119=6.

-1 0R -2=-1 —1=binary
1111111111111111 and -2=
1111111111111119, so —1 OR
—-2=-1.
NOT ¢=-1 The bit complement of six-

teen zeros is sixteen ones,

which is the two’s comple-

ment representation of —1.
NOT X=—(X+1) the two’s complement of any
number is the bit complement
plus one.

A typical use of logical operations is ‘masking’, -

testing a binary number for some predetermined paté

tern of bits. Such numbers might come from the com- -

puter’s input ports and would then reflect the condi-
tion of some external device.

The action of the bit operators on the logical values
—1 (TRUE) and ¢ (FALSE) is the same as the famil-
iar Boolean operators in the propositional calculus.
This action is reviewed in the next section.

E. RELATIONAL OPERATORS AND
EXPRESSIONS

The relational operators are represented by the fol-
lowing characters:

= equal

< less than

> greater than
<=or=< less than or equal
>=or=> greater than or equal
<>or>< not equal

Just as an arithmetic expression calculates a numer-
ical value a relational expression calculates one of the
two logical values TRUE or FALSE. Examples of re-

lational expressions are:

-

A < =B Is A less than or equal toB?
(A2 — B) <> 3 Is A2 minus B unequal to 3?

The bit operators AND, OR, and NOT can be used in
relational expressions. If E1 and E2 are logical con-
stants then

E1 AND E2 is TRUE only when both El
and E2 are TRUE, otherwise
FALSE

El1 OR E2 is TRUE when either one or
both of E1 and E2 are TRUE,
otherwise FALSE

NOT El is TRUE when El is FALSE,

otherwise FALSE

Examples would be the following expressions
which are in fact equivalent:

A<@PORA >3
NOT (A >= §AND A <= 3)

Relational operators may not be chained. The ex-

* pression

1<A<S

is invalid and should be written
(1<A)AND (A <)

The order of preference of arithmetic operators ex-
tends to relational operators and bit operators. The
order of preference is 1) brackets, 2) exponentiation,
3) negation, 4) multiplication and division, 5) addition
and subtraction, 6) all relational operators, 7) NOT, 8)
AND, 9) OR. For example

NOT 2 * 3 > 5is FALSE

F. COMPARING STRINGS

Strings may be compared using relational oper-
ators. The comparison is made in the same manner as
a dictionary ordering. Corresponding characters in
the two strings are compared moving from left to
right. One character is considered less than another if
it precedes it in the ASCII table. Thus ‘““ABE”’ is less
than “ABF”’, **2” is greater than **12”, and “‘$” is
less than ““%’’. An example of a relational expression
involving strings is

NOT (A$ <= B$ AND C > 5)

G. STRING EXPRESSIONS

String expressions consist of string constants,
string functions, or string variables connected by the
string operator +. The result of a string expression is
a string. The string operator + means concatenation.

-

For example,

 1¢ A$="HELLO "
- 2¢ B$="THERE”

30 C$ = A$ + B$

40 PRINT C$
 results in the output:

'HELLO THERE

E

- CHAPTER 3
ASSIGNMENT, INPUT AND OUTPUT

BASIC programs usually input data from the
keyboard and output data to the screen. They_can,
however, communicate with a variety of other de-
vices. Tape and disk input and output are discussed in
CHAPTERS 16 and 11.

A. LET STATEMENT

The assignment of values to variables is performed
by the LET statement. The forms are:

N LETA=8B
N A=B

where N is a line number, A is a variable, and B is an
expression. The keyword LET is optional. The ex-
pression B is evaluated and its value is assigned to A.
Examples of valid assignment statements are:

1@ LET X = 3.14159
20 A$ = “YES” + B$
3Z=2<3

49 N% = 3.999

Numeric and integer variables may be assigned
either numeric or logical values. If a numeric value is
assigned to an integer variable it is truncated. The
value assigned to N% above is the integer 3. The
value assigned to Z'above is —1, representing the log-
ical value TRUE. String variables may be assigned
only string values. Attempts to assign values to the
wrong type of variable results in a type-mismatch
€rTor.

Chaining assignment statements as in the statement

1WA=B=C
will evaluate A to a logical value. The value of A will
be —1 (TRUE) if B is equal to C, or § (FALSE) if B is
not equal to C. So, the expression

10 A=B=C=0(

would be evaluated from left to right as

10 A=((B=C)=0)

B. INPUT STATEMENT

Input is obtained using the INPUT statement. The
forms are:

N INPUT S
N INPUT#M, S

where N is a line number, S is a list of variables sepa-
rated by commas, and M is a device number.

An example of the first form is:
10 INPUT AB

When this INPUT statement is executed, a question
mark appears on the screen. Values are entered from
the keyboard separated by commas.

The INPUT statement allows a comment to be
printed along with the question mark. For example:

10 INPUT “YES OR NO”;A$
displays
YES OR NO?

on the screen. The response from the keyboard is as-
signed to the string variable A$.

The second form is discussed under DEVICE
SPECIFIED INPUT AND OUTPUT (Section H).

C. READ AND DATA STATEMENTS

The READ and DATA statements are always used
together. The READ statements ‘‘read” the values in
the DATA statements.

The DATA statement has the form

N DATA S

where N is a line number and S is a list of constants
separated by commas. For example,

1@ DATA 1.5, “HI”, HI, —66

Strings may appear either quoted or unquoted. If
unquoted, leading blanks are ignored and trailing
blanks are included. '

The values appearing in DATA statements are
combined into a list in the order in which they appear.
Thus the statement

19 DATA 2,35
is equivalent to the two statements

10 DATA 2,3 -
20 DATA 5

The READ statement has the form
N READ S o

where N is a line number and S is a list of variables
separated by commas. Each READ statement assigns
values to the variables in its list by accessing the
DATA list. The next READ statement proceeds in the
DATA list where the previous READ statement left
off. For example,

19 READ A,B$,C$
2¢ READ C

30 DATA 1.5, TYPE
40 DATA 40,509

is equivalent to

10 LET A=15

2¢ LET B$="TYPE”
3¢ LET C$="40"
40 LET C=5¢0

Numeric values may be read into string variables.

However, if an attempt is made to read a string into a.
numeric variable, a syntax error occurs in the line
containing the string.
. If there are more items in the DATA list than are
read, the rest are ignored. On the other hand, if the
DATA list contains too few items, then an out-of-data
error occurs and the program is terminated.

D. RESTORE STATEMENT

The RESTORE statement resets the pointer in the
DATA list to the first DATA item. The RESTORE

statement has the form:
N RESTORE
where N is a line number. For example:

10 DATA 10,2¢
20 READ A
3¢ READ B

assigns A the value 1§ and B the value 2¢. While

10 DATA 10,20
20 READ A
3¢ RESTORE
4¢ READ B

assigns both A and B the value 1.

.E. PRINT STATEMENT

The PRINT statement is used for output. The forms
are:

N PRINT S
N PRINT#M,S

where N is a line number, S is a list of expressions,
and M is a device number.
The second form is discussed under DEVICE
SPECIFIED INPUT AND OUTPUT (Section H).
The following example of a PRINT statement:

10. LET A=3.15
20 LET B$="TOTAL IS”
30 PRINT B$;A

results in
TOTAL IS 3.15

appearing on the screen.

A question mark can be used instead of PRINT
when entering a program. The following examples are
equivalent:

1¢ ?“THE VALUE IS “;B
10 PRINT“THE VALUE IS “;B

The question mark only appears when the program
is first typed, and is replaced by PRINT when the
program is listed.

F. VERTICAL SPACING OF OUTPUT

Vertical spacing is accomplished by using the
PRINT statement without an output list. This, in ef-
fect, prints a blank line. For example,

10 PRINT“LINE ONE”
20 PRINT
3¢ PRINT“LINE TWO”

results in the output:

LINE ONE
LINE TWO

Using a colon to allow multiple statements on a line
and using ? for PRINT, three lines are skipped by this
example:

.....

Because the question mark is replaced by PRINT
when the program is listed, the programmer should be
careful of overrunning the end of a line if he uses a lot
of question marks for PRINTS. A

The following example will skip 32 lines or cleak-the-
screen. ‘

W

1@ FOR I=1 to 32: PRINT:NEXT

G. ggPIZONTAL SPACING OF OUT-

BASIC has several features that can be used to
control horizontal spacing: zoned output, compressed
output, the TAB function, the SPC function, and the
POS function.

ZONED FORMAT

Each line of output is divided into 14-space zones.
The use of commas in the output list specifies zoned
format. For example,

10 PRINT*123456789()123456789()123456789¢"
20 A=1.2:B=-5

30 PRINT AB

40 PRINT A,,B

results in the output:

1 232456789(61 23456789(1234567890
1. -5
1.2 -5

All values are left-justified in their zones. Positive
numerical values have a space in the first position in-
stead of a plus sign.

If a PRINT statement ends with a comma, the next
PRINT statement outputs to the next zone instead of
the next line. The statement:

19 PRINT A,B

is equivalent to the two statements:

10 PRINT A,
20 PRINT B

If a value will not fit into the 14 spaces allowed for
a zone (for example, a long string), the next zone is
skipped.

COMPRESSED FORMAT

The use of a semicolon in the output list of a
PRINT statement specifies compressed format. String
values are printed next to each other. Numeric values
are printed with a trailing blank. Positive numeric
values also have a leading blank instead of a plus
sign. For example,

19 B=—40:A=3.5
20 C$="THE ANSWERS "~
30 D$="ARE "
49 E$=* AND "
5¢ PRINT C$;D$;A;E$;B
results in the output:
THE ANSWERS ARE 3.5 AND —4¢

If a PRINT statement ends with a semicolon, then
the next statement outputs to the same line instead of
the next line. For example,

10 PRINT A;
20 PRINT B

and
10 PRINT A;B

are equivalent.

TAB FUNCTION

The TAB function is used in the same way as the
TAB key on a typewriter. The general form is

TAB(X)

where X is a arithmetic expression whose value is one
less than the position where the next value is to be
printed. An example:

10 PRINT A;TAB(3*X);B

-

Semicolons should be used with the TAB function.
If followed by a comma, printing begins in the next
zone. Note the effect of commas in lines 5¢ and 66 of
this example:

10 PRINT*123456789011234567890123456789¢"
20 A=12.3:B=-5 ‘
3¢ A$=uAn

40 PRINT A;TAB(8):B
50 PRINT A, TAB(8);B
60 PRINT A$,TAB(8),B

results in the output:

123456789¢112345678901234567890
123 -5
12.3 -5

A | -5

e

SPC FUNCTION

The SPC function is used to print spaces in output.
The general form is

SPC(X)

where X is a numerical expression whose value is the
number of spaces to be printed. For example,

10 PRINT“123456789¢123456789¢"
20 PRINT“A”’;SPC(5);"B"”
3@ PRINT“A”,SPC(5);"B"”

results in the output:

12345678901234567890
A B
A B

Note that the comma in line 3¢ produces spacing
within the zone.

POS FUNCTION

A PRINT statement can print a sequence of up to
132 characters in length. The position function returns
(as an integer between @ and 132) the position in the
sequence of the last character printed. Its form is

POS(X)

where X is a dummy argument. The value of X is ig-
nored. For example,

10 PRINT"$1234";POS(X)

- results in the output:

91234 5

There may be a difference between the position of a
character in the output sequence and its position on
the screen. This is because a video screen displays
either 32 or 64 characters per line; the output se-
quence, which can be as long as 132 characters, may
extend over several lines. Thus, when POS(X)=64

- the cursor is at the left margin of the screen.

-

H. DEVICE SPECIFIED INPUT AND
OUTPUT

The disk BASICs, OS-65D and OS-65U, allow a
device to be specified in PRINT, INPUT, and LIST
statements. A device is specified by typing a pound
sign followed by the device number. Some examples:

INPUT #8,D$
PRINT #4, “LINE PRINTER”
LIST #6

Input and output can be routed from or to various
devices on the system including a terminal, modem or
cassette at the serial port, video display, 439 board
based UART, memory buffer, line printer, two disk
buffers, 16 port serial board and a null device. The
following table lists the device numbers:

65D INPUT DEVICES

Serial Port (ACIA)
Keyboard on 44(/549 Board
UART on 430 Board

Null

Memory

Disk Buffer 1

Disk Buffer 2

55(Board Serial Port

Null

©ONOOA~WN -

65D OUTPUT DEVICES

Serial Port (ACIA

Video on 44(/54Q Board
UART on 43¢ Board
Line printer

Memory

Disk Buffer 1

Disk Buffer 2

550 Board Serial Port
Null

CONONAWN =

For example, to store a program on cassette that
exists on disk, the user calls that program into mem-
ory and types LIST#1 or LIST#3 depending on
which port his cassette interface is connected to. This

o

lists that program on that device. To output to a print-
er, the user types PRINT#4 and the output will be
routed to the line printer. Memory output, device #5,
is useful for various experimenter situations such as
directly displaying information on the 549 video
screen without scrolling.

Device #6 and device #7 are memory buffers for
use with disk files.

Care must be taken not to route input or output to
non-existent or turned-off peripheral devices since
this will cause the computer system to ‘‘hang”’
and will require a reset which may destroy data in
memory. For 65u device numbers, please refer to the
manual. AR

Y-

v

. MONEY-MODE OUTPUT

Money-mode output of numeric variables is avail-
able in OS-65U BASIC. Any numeric variable output
in the money-mode is automatically truncated to two
digits -after the decimal point. For example, 3.149
would be output as 3.14. Rounding up can be accom-
plished by adding .#¢5 to the number to be output.

10

The money-mode also inherently provides left or right
justification of the output in one of the 14-space out-
put zones. A variable to be output in money-mode is
preceded by either $R or $L, depending on whether it
is to be left or right-justified in its field. Values are
printed with a leading and following blank. When
right-justified, values end two spaces inside the right
edge of the field. For example:

10 X=1.429

20 Y=2.222

30 PRINT*“1 23456789¢1 23456789¢123456789¢”
< 49 PRINT $L,X

50 PRINT $R,Y

results in the output:

1 23456789¢1 234567890123456789¢
1.42
2.22

BASIC turns on the money-mode when it
encounters either $L or $R in and output list. The
next numeric variable encountered in the output list is
printed in money-mode, and then money-mode is
turned off. String variables should not be used in
money-mode because they do not turn it off.

CHAPT ER 4
PROGRAM CONTROL

Normally, program execution proceeds sequen-

tially. The order of execution can be altered by the

control statements described in this chapter.

A. GOTO STATEMENT |

The GOTO statement is an unconditional transfer
statement. It has the form

N GOTO M

where N and M are line numbers. In OS-65U the
directive M can also be a variable. Because blanks
are ignored in BASIC, it can also be written GO TO.

When the GOTO is executed control transfers to
line M, rather than to the next statement For exam-

ple,
19 GOTO 3¢
20 PRINT “LINE 2¢"
3¢ PRINT “LINE 39"
results in the output |

LINE 30

When used in the immediate mode (see CHAPTER ’

5.B), GO TO M starts execution of the program in the
workspace at line M.

ey

B. IF ... GOTO STATEMENT

The IF . . . GOTO statement is a conditional t,rans-'
fer statement. It has the general form:

N IFX GOTO M.

where N and M are line numbers and X is a relational
or arithmetic expression. In 0S-65U the directive M
can also be a variable. If the value of X is TRUE then

- the next statement executed is line number M; if X is

FALSE control transfers to the line followmg N. For
example,

100 IF A < = 5 GOTO 19

- results in control passing to line 1§ whenever A is less

than or equal to 5 and to the line followmg 190
whenever A is greater than 5. ‘

If X is an arithmetic expression, the value of X'is
- treated as FALSE whenever X is zero. If the value of
X is nonzero then X is treated as TRUE For exam-
ple,

100 IF SIN(A) GOTO 300
and ‘ | : ‘
100 IF SIN(A) < > § GOTO 3098
are equivalent. |

The difference between statements and lines (which
can-contain several statements) becomes very impor-
tant when using the IF . . . GOTO statement. It
should never be followed by a second statement on
the same line; the second statement is never exe-
cuted. Regardless of whether X is TRUE or FALSE,
_control ‘always passes to a different line.

C.IF... THEN STATEME’NT
The IF . . . THEN statement is a conditional trans-
fer statement. It occurs in two forms:

N IF S THEN M
N IF S THEN R

where N and M are line numbers, S is a relational or
arithmetic expression and R is a statement. If Sis an

arithmetic expression, the value of S is treated as
 FALSE whenever §S is zero. If the value of S is non-

zero then S is treated as TRUE.
The first form is equivalent to the IF . . .
statement described above. For example, -

GOTO

10 IF Z < > @ THEN 300
and

10 IF Z THEN 300

both transfer control to line 3¢¢ whenever Z is non-
Zero.

With the second form, the statement R is executed
whenever S is TRUE. If S is FALSE, R is ignored
and control passes to the following line. These state-
ments, for example,

10 INPUT “ENTER X’;X
20 IF X > @ THEN PRINT”X IS POSITIVE”
30 X<= @ THEN PRINT*X IS NOT POSITIVE”

will cause one, but not both, of the phrases ,X IS
POSITIVE” or ‘X IS NOT POSITIVE” to be
printed.

Multiple statements can appear in the place of ;
statement R. If S is FALSE all of the statements fol-

lowing THEN are ignored. For example,

P

IF Z > ¢ THEN PRINT*Z IS POSITIVE":GOTO 30¢¢

prints ‘‘Z IS POSITIVE”’ and transfers control to line
300 when Z is positive. If Z is not positive, control
passes to the next line in the program.

D. ON ... GOTO STATEMENT

The ON . . . GOTO statement is a conditional
transfer statement having the general form:

N ON S GOTO L

where N is a line number, S is an arithmetic expres-
sion, and L is a list of line numbers separated by
commas. In 0S-65U each line number in the list can
be represented by a variable. The expression S is
evaluated and truncated. Control then passes to the
S-th line number in the list. For example,

20 ON Z éOTO 100,200,300

transfers control to line 100 if Z is 1, to line 200 if Z is
2, and line 309 if Z is 3. If Z is less than 1 or greater
than 3 then the ON . . . GOTO statement is ignored
and control passes to the following statement.

E. FOR-NEXT STATEMENTS

It is often desirable to repeat a segment of a pro-
gram. Looping back over a portion of a program is
usually accomplished in BASIC with a FOR-NEXT
loop. The FOR and NEXT statements are used to-
gether to form the loop.

12

The FOR statement has the forms:

NFORV=XTOY
NFORV = XTO Y STEP S

where N is a line number, V is a single numeric or

integer variable, and X and Y are arithmetic ex-

pressions. The value of X is called the initial value

assigned to the index variable V, the value of Y is the

limit of V, and the value of S is the increment.
The NEXT statement has two forms:

N NEXT
N NEXT V

™

where N is a line number and V is the same index

~ variable appearing in the FOR statement. The index

variable is optional in the NEXT statement for a
single loop, but should appear if loops are nested.

The FOR statement is the first statement in the
program loop. The NEXT statement is the last state-
ment in the loop. The collection of statements be-
tween the FOR statement and the NEXT statement is
called the body of the loop and comprises the block of
statements that are repeated.

The following actions take place with the first form
of the FOR statement. When the FOR statement is
executed, the index is assigned the initial value. Then
the body of the loop is executed. Two actions, incre-
ment and check, take place when the NEXT state-
ment is executed. First, the index variable is in-
cremented by adding one to its value. Second, the
value of the index variable is now compared to the
limit. If the value of the index variable exceeds the
limit, control transfers to the statement following
NEXT. If the index variable is less than or equal to
the limit, control transfers to the first statement in the
body of the loop. For example,

1 FORI=1TO5
20 PRINT |
30 NEXT

causes the numbers from 1 to 5 to be printed in a
column.

Because the index is not compared to the upper
limit until the end of the loop, the body is always exe-
cuted at least once.

The expressions X, Y and S are evaluated only
once, when the FOR statement is executed. Thus the
looping is unaffected if the variables comprising these
expressions are assigned new values within the body
of the loop. Looping may be affected if the value of
the index variable is changed within the body of the
loop.

Control may transfer out of the body of the loop.
Transfer into the body with a statement other than a
RETURN from a GOSUB, may lead to unexpected
results.

STEP CLAUSE

The second form of the FOR statement contains the
STEP clause. In the first form, the index variable is
incremented by 1 on each pass through the loop. In
the second form, the index variable is incremented by
the value of S. If S is positive, then control passes out
of the loop to the statement following NEXT when
the index variable exceeds the limit. If the increment
is negative, control passes out of the loop when the
index variable is less than the limit. If the increment
is zero, no check is made and the loop repeats in-
definitely. Consider these examples:

%

STATEMENT VALUES OF X

FOR X=1TO 2 STEP .5 1,1.5,2

FOR X=1TO 5 STEP 1§ | 1

FOR X=1¢ TO 1 STEP —-1| 14,9,8,7,6,5,4,3,2,1

FOR X=1 to 16 STEP ¢ 1,1,1, ...

NESTED LOOPS

Loops may be nested. For example,

1¢ FOR 1=1 TO 2
29 FOR J=1 TO 3
30 PRINT 1,J

40 NEXT J

50 NEXT |

results in the output

NN DN e et
W N == W N e

Note that the inner loop is completed with each
step of the outer loop.

Care must be taken to be sure the loops are
properly nested and not overlapped as would

13

occur if lines 40 and 5¢ above were reversed.
Lines: 49 and 50 can also be written in a
shorthand form as *‘ 49 NEXT J,I .

Exiting in the middle of FOR-NEXT loops-and
then reusing the same loop variables as loop
variables can create unexpected NEXT without
FOR errors. Such errors can be avoided by
using different loop variables.

F. STOP STATEMENT

Program execution is halted with a STOP state-
ment. Its form is:

N STOP

where N is a line number. There may be more than
one STOP statement in a program. When execution is
halted a BREAK message with the line number is
printed. For example,

1¢ PRINT “HERE”
20 STOP

results in the output:

HERE
BREAK IN 20

A program that has been halted by a STOP state-
ment can be restarted where it left off by the CONT
command (see page 15).

G. END STATEMENT

The END statement is often used as the last state-
ment in a program. Like the STOP statement, it ter-
minates execution. It has the form:

N-END

where N is a line number. The END statement is op-
tional. If used, it need not be the last statement in the
program, and there may be more than one END
statement. In contrast to the STOP statement, no
BREAK message is printed and the program cannot
be restarted where it left off.

—“

CHAPTER 5

PROGRAMMING

~ A. BASIC PROGRAMS

A BASIC program can be entered into the comput-
er whenever the BASIC prompt

OK

posed of lines. Each line begins with a number (called
the line number) followed by a list of BASIC state-
ments separated by colons. For example,

10 A = 60
20B=A2:C=A3"
3¢ PRINT B, C

Any integer from 1 to 63999 can be used as a line
number.

The lines of the program are typed one at a time. A
line can hold 71 characters. A statement is not
allowed to overlap. two lines. (Since a line on the
screen contains either 32 or 64 characters, a state-
ment may overlap lines on the screen.)

"After each line is typed the <RETURN> key is
depressed. :
~ After all of the program has been entered it is exe-
cuted by typing the command

RUN

without a line number and followed by <RETURN>.
Normally, the statements in a program are executed
starting with the lowest line number and then to the
next lowest, and so on. Statements on the same line
are executed in order from left to right.

If the program above were run; the screen would
appear as follows:

OK

10 A = 60

20 B =A2:C = A/3
30 PRINT B, C

RUN

30 29
OK

The program is entered after the OK prompt. The
RUN command is given and execution proceeds as
follows:

:—i: *

appears on the screen. A BASIC program is com-

Line 1¢: The value of 60 is assigned to th
; variable A. '
Line 20: The value of A is divided by 2 and
assigned to the variable B (now 30).
Then the value of A is divided by 3
and assigned to the variable C (now
‘ 20).
Line 3¢: The values of B and C are printed.

The output consists of the two numbers 3§ and 20.
The OK prompt reappears after execution is com-
pleted. The computer is ready for another instruction.

The program is stored in a region of memory re-
ferred to as the workspace. The program will remain
in the workspace until erased by the NEW command,
replaced by a program loaded from tape or disk, or
lost by unplugging the computer.

B. IMMEDIATE MODE

As each line is typed it is stored in a memory loca-
tion referred to as a buffer. If the line begins with a
line number it is added to the program in the work-
space. If the line does not begin with a number it is
executed immediately. This immediate execution fea-
ture is called the immediate mode or calculator mode
of BASIC. Most BASIC statements can be used in
the immediate mode. Examples:

PRINT SIN(.315)
and

. FOR 1=1TO1¢@:PRINT 1" 3:NEXT

C. COMMANDS

A command is an instruction that is usually used in
the immediate mode as apposed to a statement which
is an instruction that usually appears within a pro-
gram. :

-

NEW COMMAND

If a program resides in the workspace any new lines
that are entered with a line number will be added to
it. In order to create new programs the workspace
must be reset by the NEW command. It has the form

NEW

Because the NEW command returns from a BASIC
program to the immediate mode, it is not as useful as
other commands when used within a program. But
the NEW command can be used within a program for
read protection by using NEW in place of an END
commands.

,%‘_0

Yt

RUN COMMAND
The RUN command has the following forms:

RUN
RUN M
RUN”N

where M is ‘a line number and N is the name of a
program stored on disk or a track number. The first
form starts execution of the program in the work-
space at the lowest line number. The second form
starts execution of the program in the workspace at
the line numbered M. The third form causes the pro-
gram named N to be loaded from disk and executed
starting at the lowest line number. If N is a number
then the program on track number N will be loaded
and executed starting at the lowest line number.
Examples:

RUN 135
RUN”ACCOUNT
RUN"23

All of the forms of the RUN command can be used

within a program. When used in a program, the first »

form simply restarts the program; the second form
acts in a manner similar to the GOTO statement ex-
cept that the variable table is cleared; the third form
is the most useful. The third form can be used to ‘‘c
hain’ programs so that they are executed one after
the other. Programs are chained by having the last
statement in each program be a RUN command giv-
ing the name of the next program to be executed.

15

LIST COMMAND

The LIST command causes a segment of the pro-
gram in the workspace to be printed, usually on the
screen. It has the forms

1) LIST

2) LIST F

3) LIST#D
4) LIST#D,F

The first form lists the entire program on the
screen.
. The letter F represents one of the followmg forms
which are illustrated by example using the second
form above:

LIST 10 lists only line 1@

LIST —-19 lists: from the beginning to
line 10

LIST 10— list from line 1@ to the end

LIST 10-2¢ lists from line 1§ to line 20

The letter D is an output device number. If a hard-
copy printer were device number 1, then the entire
program would be printed by

LIST#1
and lines 1§ through 2¢ would be printed by
LIST#1, 10—20¢

Device numbers are discussed in Chapter 3 under
heading DEVICE SPECIFIED INPUT AND OUT-
PUT (Section H).

It is often desirable to ‘‘page through’’ a program
by stopping and restarting the LIST command. In
ROM BASIC listing can be halted by depressing
<CTRL/C>. Listing can be restarted on line number
N by LIST N—. This procedure can also be used in
the disk BASICs, but there is an easier procedure:
listing can be halted by <CTRL/S> and restarted
where it left off by <CTRL/Q>.

The output of LIST to the screen can be toggled in
08S-65U BASIC by <CTRL/O>. This differs from the
features described above in that the listing continues;
it simply doesn’t appear on the screen.

Since LIST returns from a BASIC program to the
immediate mode it is not very useful as a program
statement.

CONT COMMAND

The continue command has the following form:

CONT

The continue command can only be used in the
immediate mode.

When a program is halted by a <CTRL/C> or
STOP statement a pointer is set in the program at the
point of interruption. The program can be restarted
where it left off by the CONT command. Restarting
the program need not take place immediately. For
example, the immediate mode can be used for LIST-
ing and PRINTing without disturbing the pointer:
This provides the programmer with a very useful de-
bugging procedure:

1) Place STOP statements at convenient points
within the program.

2) RUN the program.

3)
sage with the line number will be printed.
The program segment that was just exe-

cuted can be listed using the LIST com-

mand, and the present values of variables-

can be determined by using the PRINT
statement in the immediate mode. For
example,

LIST 10¢-20¢
PRINT A,B,C$

NOTE: If a new line of text is added to the program,
these pointers are cleared and a continue error will be
given if CONT is used.

D. INTERRUPTING EXECUTION

A program that is running can be halted by depress-
ing <CTRL/C>. It can be restarted where it left off
with the CONT command.

The keyboard is continually checked during execu-
tion to see if a <CTRL/C> has been depressed. This
feature can be disabled by one of the following POKE
statements; it must be disabled when a program polls
the keyboard.

A <BREAK>, or on some systems <RESET>,
will also halt program execution. In ROM BASIC a
<BREAK> followed by a warm start <W> will re-
turn to BASIC with the program in the workspace in-
tact. In 65D and 65U-BASIC the program must be
reloaded from disk following a <BREAK> or <RE-
SET>.

When a STOP is executed a BREAK mes- -

The LIST command can also be halted; see LIST
COMMAND above.

E. EDITING A PROGRAM

Corrections can be made in a line as it is being
typed. A <SHIFT/O> will backspace and delete the
last character. Multiple deletions can be made by re-
peating the <SHIFT/O>. In ROM BASIC 'the char-
acters will still appear on the screen with cursor
marks after them. The line will appear in corrected
form after a LIST command.

A line can be deleted as it is being typed by enter-
ing a ‘‘commercial at’’ symbol, @. On polled

. keyboards @ is entered by <SHIFT/P>.

If a new line is entered with the same line number
as a previous line it will replace the previous version.
Thus a line can be removed from a program by simply
typing its line number followed by <RETURN>.

F. DOCUMENTATION

Remarks can be placed in BASIC programs with
the REM statement. These comments can often be
very useful to a person reading the program. They are
ignored by the computer when the program is exe-
cuted.

REM STATEMENT

The remark statement has the form:
N REM R

where N is a line number and R is a remark. For
example:

109 REM SUBROUTINE TO FIND RATIO
25 X=T/D:REM X IS THE RATIO

As shown by the above examples a remark may
appear as the only statement on a line or. follow other
statements. However, another statement should not
follow a REM statement on the same line. It would
not be executed; everything after REM is ignored on
execution.

DISABLE <CTRL/C>

POKE 530, 1
POKE 2073,96
POKE 2¢73,96

ENABLE <CTRL/C>

POKE 53¢,0
POKE 2¢73,173
POKE 2073,76

BASIC USED

ROM
0S-65D
0S-65D

16

G. SAVING SPACE

Writing a procedure so that it will fit into the avail-
able workspace can be a significant programming dif-
ficulty. BASIC provides some features that can be of
help.

FRE FUNCTION

The amount of workspace available to the pro-
grammer can be determined by the free function. The
free function returns the number of bytes of memory
in the workspace that are unused. It has the form:

FRE(X)

where X is a dummy variable. A programmer who
wishes to expand an existing program should run the
program before using the free function; additional
memory is required during execution for the variable
table. After the program is executed, the following
line can be entered in the immediate mode:

PRINT FRE(X)

If more than 32K of memory is available the FRE
function returns a value that has cycled negative.
That is, values increase in the order 1,2,. . .,
32767,—32768,—-32767,. . . . When FRE(X) is negative
the number of available bytes can be determined by

PRINT 65536+FRE(X)

If the FRE function causes the computer to

““hang,” it should be preceded by the CLEAR state- -

ment. Since the FRE function may cause the comput-
er to ‘““hang,”’ the programmer should save the pro-
gram in the workspace on tape or disk before using
FRE.

CLEAR STATEMENT

As variables are encountered in a program they are
put in a variable table along with their values. The

17

N

clear statement clears the variable table and RE-
STOREs the DATA pointer. It has the form:

N CLEAR

where N is a line number. The CLEAR statement can
be used to reduce the amount of memory that a pro-
gram requires by removing variables that are no
longer needed.

The following example illustrates the effect of the
CLEAR statement. The FRE function is used to de-
termine the amount of workspace remdining unused.

10 PRINT FRE(X)

20 A=2:A$="X"
30 PRINT FRE(X)
40 PRINT AA$
5¢ CLEAR
60 PRINT FRE(X)
70 PRINT AA$
OK
RUN
31923
31911
2 X
31923
]
SUGGESTIONS

The first place a programmer can look for addi-
tional space is the overall design of the program.
After that, some simple fixes can be tried. For example:

1) Use subroutines for repeated code and
- functions for repeated calculations.
2) Remove blanks:
10 FORI =1TO 19
and '
16 FORI=1TO1¢
are equivalent.

3) Remove REM statements.

4) Remove line numbers by putting more
statements per line.

5) Reuse variable names.

6) Use smaller names such as A for Al.

7) Put variables in arrays; an array of 19 ele-
ments uses less space than 14 different vari-
able names.

8) Integer arrays use less space in memory

than real arrays.

CHAPTER 6
ARRAYS

Large quantities of data can be handled in BASIC
by organizing the data into arrays. Arrays can bé one
or multi-dimensional. The ‘elements of an array are
subscripted variables.

A. SUBSCRIPTED VARIABLES

Variables may be simple or subscripted. Sub-
scripted variables have the form

N(L)

where N is an arithmetic, integer, or string variable;
and L is a list of arithmetic expressions, called sub-
scripts, separated by commas. Examples:

N1(2)
V$(5.6,4*X)
RA%(S,T,W)

The arithmetic expressions used as subscripts are
evaluated and then truncated to integer values. Sub-
scripts can have values between @ and %, inclusive.
Larger subscript values are allowed if the array is di-
mensioned in a DIM statement.

18

B. DIM STATEMENT

The dimension statement has the form
N DIM L

where N is a line number and L is a list of subscripted
variable names. For example,

10 DIM A(20),B$(1,2)
20 DIM X1(N*2)

The array A is a one-dimensional arithmetic array
having twenty-one elements: A(#), . . . , A2#). The
array B is a two-dimensional string array having the
six elements: B$(@,4), B$(4,1), B$(9,2), B$(1,9),
B$(1,1), and B$(1,2).

Arrays can have variable subscripts. For example,

19 INPUT'WHAT IS THE DIMENSION OF M";N
20 DIM M(N)

Dimension statements are usually placed together
at the beginning of the program. However, dimension
statements can occur an_ywhere in a program. Space
is allocated as they are encountered. The dimension
statement must be executed before the array is used.
A double dimension error occurs if an array is
encountered in a DIM statement after one of the ele-
ments of the array has been encountered. A double
dimension error also occurs if an array is encountered
in more than one DIM statement..

CHAPTER 7
FUNCTIONS

A. MATHEMATICAL FUNCTIONS

The following mathematical functions are supplied
in each version of BASIC. In general, the arguments
of these functions may be any arithmetic expression.
Exceptlons are noted in the dlscussmn of ea%h func-
tion.

Y

ABS FUNCTION

The absolute value function returns the absolute
value of its argument: ABS(X) is equal to X if X is
greater than or equal to zero and ABS(X) is equal to
"—X'if X is less than zero. For example, ABS(-7.5) is
7.5.

EXP FUNCTION

The exponential function returns e=2.71828.
raised to the power of its argument. For example,
EXP(1) is e. The argument of EXP must be less than
88. ¢296919

INT FUNCTION

The integer function returns the greatest integer
less than or equal to its argument. For example,
INT(6.6) is 6 and INT(-3.2) is —4.

LOG FUNCTION

The logarithm function returns the natural log-
arithm (log to the base e) of its argument. The argu-
ment must be positive. The log to another base, say
B, of X'is LOG(X)/LOG(B) ~

- 'RND FUNCTION

The random number generating function returns a

‘number between @ and 1. This function is usually

used to generate a sequence of pseudo-random val-

ues. For example, in ROM BASIC this program:

163997

5 X = RND(-1)

~ 1@ FORI=1TO 5

- 20 PRINT RND(1);
3¢ NEXT

results in the output:

56961 .865247 .323602 .412642

If the argument is positive, it is a dummy argument.

- That is, its value is not important; RND only checks
‘to see if it is positive. As long as the argument re-

mains positive, RND will generate the next number in
the sequence using the last value returned. The ran-
dom number sequences are periodic. The example
above repeats after 1861 calls to RND.

If the argument is negative, RND will start a new
sequence with a new period based on the value of the
argument. Thus negative arguments serve as seeds.
The same sequence is generated if the same negative
seed is used.

If the argument is zero, RND will return the previ-
ous value again.

If the programmer wishes to have a program gen-
erate a different random number sequence each time
the program is run, he should devise a procedure for
choosing the seeds. Such a procedure might be based
on PEEKing various memory locations.

A random number N between two numbers A
and B . (A<N<B) can be obtamed by N =
A+RND(X)*(B—A).

SGN FUNCTION

The sign function returns the sign of the argument.
Plus one is returned for positive arguments, minus
one for negative arguments, and zero is returned if
the argument is zero. ‘

19

SQR FUNCTION

The square root function returns the square root of
its argument. For example, SQR(4) is 2. The argu-
ment must be positive.

TRIGONOMETRIC FUNCTIONS
The trigonometric functions require their arguments
to be in radians. To convert degrees to radians; ra-
dians = .(174532925 * degrees.
SEC(X) = 1/COS(X)
CSC(X) = 1/SIN(X) : %
COT(X) = 1/TAN(X)
_ARCSIN(X) =ATN(X/SQR(—X*X+1))

ARCCOS(X) = —ATN(X/SQR(—X*X+1)) +1.5708

ARCSEC(X) = ATN(SQR(X*X—1))

The sine, cosine, tangent, and arctangent functions
are supplied by BASIC. They are called by the fol-
lowing forms: SIN(X), COS(X), TAN(X), and
ATN(X); where the argument is an arithmetic ex-
pression. The value of the argument of ATN(X) must
be between —1 and 1.

The following functions, while not intrinsic to
BASIC, can be calculated using the existing BASIC
functions as follows:

ARCCSC(X) = ATN(1/SQR(X*X—1)) +(SGN(X)—1)*1.57¢8

ARCCOT(X) = ATN(1/X)
SINH(X) = (EXP(X)—EXP(-X))/2
COSH(X) = (EXP(X)+EXP(-X))/2

TANH(X) = EXP(—X)/(EXP(X)+EXP (—X)) *(—2)+1

SECH(X) = 2/(EXP(X)+EXP(~X))
CSCH(X) = 2/(EXP(X)~EXP(=X))

COTH(X) = EXP(—X)/(EXP(X)—EXP (~X))*2+1
ARCSINH(X) = LOG(X+SQR(X*X+1))
ARCCOSH(X) = LOG(X+SQR(X*X~1))
ARCTANH(X) = LOG((1+X)/(1=X))/2
ARCSECH(X) = LOG((SQR(~X*X+1) +1)/X)

ARCCSCH(X) = LOG((SGN(X)*SQR(X*X+ 1)+1/)X

ARCCOTH(X) = LOG((X+1)/(X—1))/2

B. STRING FUNCTIONS

A string function is either a function whose argu-
- ment is a string or a function which returns a string.
String functions may return either numeric values or
strings. Those that return strings have names ending
with a dollar sign.

ASC FUNCTION

The ASCII function returns the ASCII value in dec-
imal of the first character in the argument. It has the
form

ASC(XS$)

-

: . kTR
e th S

where X$ is a string expression. For example,
ASC(‘*BIG”) is 66.

CHR$ FUNCTION

The character function returns a one-character
string. The character returned is the one whose dec-
imal ASCII value is the argument. It has the form

-

CHR$(X)

where X is an arithmetic expression whose value is
between @ and 255. The character function is. essen-
tially the opposite of the ASC function. For ex?imple,
CHR$(66) IS “B”. . “

LEFT$ FUNCTION

The left function returns a left-most substring of a
string. It has the form

LEFT$(XS$,Y)

where X$ is a string expression and Y is a positive
arithmetic expression. The Y left-most characters of
X$ are returned. For example, LEFT$(‘*123456,3) is
*“123”’. If Y exceeds the length of the string, the
string is returned.

LEN FUNCTION

The length function returns the length of a string. It
has the form .

LEN(X$)

where X$ is a string expression. For example,
LEN(‘OUT”) is 3.

MID$ FUNCTION

The middle function returns a middle substring of a
string. It has the two forms

MID$(X$,Y)
MID$(X$,Y,Z)

where X$ is a string expression, Y is a positive arith-
metic expression and Z is a nonnegative arithmetic

21

expression. The first form returns the substring of X$
starting in the Y-th position to the end of the string.
For example, MID$(‘*123456°*,3) is ‘“3456”’. The sec-
ond form returns a substring of length Z starting in
the Y-th position. For example, MID$(**12345”,3,2)
s ““34”, If Y exceeds the length of the string, the
string of length zero, “**°, is returned. If Z goes past
the end of the string, the substring starting in the Y-th
position to the end of the string is returned.

RIGHT$ FUNCTION

The right function returns a right-most substring of
a string. It has the form

RIGHT$(X$,Y)

where X$ is a string expression and Y is a positive
arithmetic expression. The right-most Y characters of
X$ are returned. For example, RIGHT-
$¢“VALUE”,3)is “LUE”. If Y exceeds the length of
the string the string is returned.

STR$ FUNCTION

The string function returns the value of the argu-
ment as a string. It has the form

STR$(X)

where X is an arithmetic expression. For example,
STR$(12.3) is ** 12.3”, a string of length 4. For posi-
tive numbers, a leading blank instead of a plus sign is
returned. The results are the same as when X is
PRINTed; except that no trailing blank is included in
the string. Some forms are converted; for example,

10 PRINT’123456789(1234567890"

20 A(1)=15.1

30 A(2)=-25

40 A(3)=120E+2

50 A(4)=100000000000

60 FOR I = 1TO 4

70 A$=STRS$(A())

8¢ PRINT A$, LEN(A$) : NEXT
results in the output

123456789(123456789¢
15.1 5
-25 3
1200 5
1E+11 6

-

VAL FUNCTION : where X$ is a string expression representing a
number. For example, VAL(*‘8.8835"") is 3.5E—@3. If
X$ does not represent a number the value @ is re-
turned.

The value function returns the numeric value of a
string. It is the opposite of the STR$ function. Its
form is

VAL(X$)

22

e

CHAPTER 8
SUBPROGRAMS

A calculation that needs to appear more than once
in a program can be written as a subprogram. The
subprogram can be called each time it is needed; thus
avoiding the necessity of rewriting the calculation.
There are two types of subprograms in BASIC:
statement functions and subroutines. A statément
function consists of a one-statement calculation. A
subroutine can be a self-contained program.

A. STATEMENT FUNCTIONS

In addition to the functions supplied by the system,
the user can create functions called statement func-
“tions. Statement functions are defined by the DEF
statement.

DEF STATEMENT

The define function statement has the form
N DEF FNX(A) = E

where N is a line number, X and A are simple
numeric variables, and E is an arithmetic expression.
The name of the function consists of the letters FN
followed by a.variable name. The variable A is called
the dummy variable. The expression E may reference
other functions; including those defined by DEF
statements. The use of the variables X and A in the
function does not affect their use elsewhere in the
program. The define function statement cannot be
used in the immediate mode.
Consider the following program:

1P DEFFNS(P) =P + P " 2
20X =2
30 PRINT FNS(X+1)
The output is
12

The function FNS is defined in line 19 to be P plus
the square of P. In line 3¢, the programmer has re-

23

placed the dummy argument P by an arithmetic ex-
pression, X + 1. At this point in the program the
value of X + 1is 3, so'3 is substituted for each occur-
ence of P in the defining expression. The result,
3437 2= 12, is assigned to FNS(X+1).

B. SUBROUTINES

A subroutine consists of a program segment ending
with a RETURN statement. A GOSUB statement
calls the subroutine by transferring control to the first
line of the subroutine. When the return statement at
the end of the subroutine is encountered, control re-
turns to the statement following the GOSUB state-
ment.

GOSUB AND RETURN STATEMENTS

The form of the GOSUB statement is
N GOSuB M

where N and M are line numbers. In 65U the direc-
tive M can also be a variable.) Control is transferred
to line number M. The form of the RETURN state-
ment is

N RETURN
where N is a line number. For example,

10 PRINT “START"

20 GOSUB 50

30 PRINT “OUT OF SUBROUTINE”
40 END

50 PRINT “IN SUBROUTINE”

60 RETURN

results in the output

START
IN SUBROUTINE
OUT OF SUBROUTINE

Subroutines. can call other subroutines including
themselves. Subroutines may have logical branches
each of which ends in a RETURN statement.

It is convenient to picture the transfer of control as
follows: As the GOSUBs are encountered they are
stacked one on the other; when a RETURN state-
ment is encountered one of the GOSUBs is peeled off
the top of the stack. Control then passes to the next
statement following the GOSUB that was on top of
the stack. .

If a RETURN statement is encountered with no
GOSUB on the stack, a RETURN-without-GOSUB
error occurs. For this reason, subroutines are placed
after a STOP or END statement denoting the end of

the main logical sequence in the program. et

ON ... GOSUB STATEMENT s
The ON . . . GOSUB statement is a conditional

transfer statement similar to the ON . . . GOTO

statement. It has the form

24

N ON S GOSUB L

where N is a line number, S is an arithmetic expres-
sion, and L is a list of line numbers separated by
commas. The expression S is evaluated and trun-
cated. Control then passes to the S-th line number in
the list L. When a RETURN is encountered, control
returns to the statement following the ON . . .
GOSUB statement. For example,

20 ON Z GOSUB 10¢,2¢¢,3¢09

transfers control to statement 19¢ if Z = 1, to state-
ment 200 if Z = 2, and to statement 3¢ if Z = 3. If Z
is less than 1 or greater than 3 then the ON . . .
GOSUB statement is ignored and control passes to
the following statement. (In 65U each line number
can also be represented by a variable.)

CHAPTER 9

DIRECT MEMORY CONTROL

The following features of BASIC can be veéry useful
to the experienced programmer. Care musi be exer-
cised with these statements and functions because
they manipulate the memory of the computer directly.
An improper operation with any of these commands
can cause a system crash, wiping out BASIC¥ind the
user’s programs. =

The function of each memory location varies with
the computer’s configuration. The programmer should
consult his operating systems manual for a ‘‘memory
map’’ and a listing of the most useful parameters used
by PEEK, POKE, and WAIT.

A. POKE STATEMENT

The POKE statement stores a value into a memory
location. It has the form

N POKE |, J

where N is a line number, and I and J are arithmetic
expressions whose values are integers. The value of I
is a memory location expressed in decimal and the
value of J is placed in location 1. The value of J must
be between @ and 255 inclusive. For example,

10 FOR | = 14822 TO 14828
20 POKE I, A(l)
3¢ NEXT

stores the array A in the memory locations 14822 to
14828.

The expression J cannot contain the PEEK func-
tion. No error results; the value is not POKED.

A value cannot be POKED into a ROM memory
location.

B. PEEK FUNCTION

The PEEK function reads a location memory. It
functions as the opposite of the POKE statement. It
has the form

PEEK(l)

25

where 1 is a memory location or I/O location ex-
pressed in decimal. For example,

19 FOR | = 14822 TO 14828
20 A(l) = PEEK(l)
30 NEXT

assigns the values in memory locations 14822 to 14828
to the array A. A memory location can store one
byte; the value returned by the PEEK function is
therefore an integer between @ and 255.

If a write-only memory location is' PEEKed the
value returned may not be the actual value in the lo-
cation.

C. WAIT FUNCTION

The WAIT function halts program execution, or
causes the program to ‘‘wait’’, until a particular bit in
memory is set or reset. It has the forms

WAIT |, J
WAIT |, J, K

where I is a memory location expressed in decimal,
and J and K are integers between @ and 255. The
WAIT function in the first form reads the status of-
memory location I then ANDs the result (see THE
BIT OPERATORS AND, OR, AND NOT) with- J
until a nonzero result is obtained.

The bit operator OR compares two binary numbers
bit-by-bit and sets a bit in the result to 1 if one or both
of the corresponding bits in the two numbers is 1. The
logical operation ‘‘exclusive’’ OR is similar, but sets a
bit to 1 in the result if exactly one of the correspond-
ing bits in the two numbers is 1.

The WAIT function in the second form reads the
status of memory location I, exclusive ORs that value
with K, and then ANDs that result with J until a non-
zero result is obtained.

The WAIT function is used for fast service of input
status flags. For example,

WAIT X, 1

will cause the execution of a BASIC program to halt
and then continue when bit zero of memory location
X goes low.

The WAIT function is not available on some spe-
cialized disks. To determine if WAIT is available on a

26

disk, boot up the disk and PEEK four consecutive
memory locations starting at 713 in OS-65D (starting
at 9929 in 0S-65U). If WAIT is available, the values
returned will be 87, 65, 73, and 212. These numbers
are the ASCII values of W, A, I, and T plus 128.

*n

CHAPTER 10

TAPE INPUT AND OUTPUT

This chapter discusses the commands provided in
ROM BASIC for input and output to cassette tape.

)g: - ;
A. LOAD COMMAND IN ROM BASIC

The load command switches input from the
keyboard to serial input port 1. It has the form

LOAD

The LOAD command can be executed in the im-
mediate mode or as part of a stored program.
- When the BASIC interpreter encounters a LOAD
command, it switches input from the keyboard to se-
rial input port 1. Input continues from this port until
the user depresses the space bar on the terminal or a
program modifies a flag in memory by the statement
POKE 515,80 (POKE 515,255 also turns on LOAD).
Serial port 1 is normally connected to an audio cas-
sette interface.

To LOAD programs which are stored on tape into
the computer, proceed as follows:

1. Rewind the tape.

2. -Cold start the machine or type NEW <RE-
TURN>. :

3. Type LOAD but not <RETURN>.

4. Start the tape in play-back mode.

5. As soon as the leader passes over the tape
head, depress
<RETURN>. _

6. Upon completion of a LOAD, turn off the
tape recorder type <SPACE BAR> and then
<RETURN>.

B. SAVE COMMAND IN ROM BASIC

The SAVE command causes output to be routed to
both the video screen and serial port 1. It has the
form

SAVE

27

The SAVE command can be executed in the im-
mediate mode or as part of a stored program.
. When the BASIC interpreter encounters the SAVE
command, it routes output to both the video screen
and serial port 1. This mode of operation continues
until a LOAD command is encountered which auto-
matically clears the SAVE condition. The serial port
is normally .connected to the audio cassette output
interface so that the SAVE command can normally be
used for saving programs and storing data in cassette
files.

To SAVE a program which is in the workspace on
cassette tape, proceed as follows:

1.. Rewind the tape.

2. Type SAVE <RETURN>. It is optional, but

good practice, to now type NULL 8.

Type LIST but not <RETURN>.

Start the recorder in the record mode.

5. As soon as the leader passes over the tape

head, depress .
<RETURN>.

6. When the listing is .complete, turn off the
tape recorder and optionally type LOAD
<RETURN> <SPACE BAR> <RE-
TURN?> to revert to normal operation.

ol

C. NULL COMMAND

The NULL command inserts zeros at the beginning
of each line as it is stored on tape. It has the form

NULL M

where M is an integer from @ to 8. The integer M is
the number of zeros to be inserted at the beginning of
each line. When the NULL command is used, the
programmer should avoid extra long lines in the pro-
gram to be SAVEd. Lines of 64 characters or less are
generally safe.

-

CHAPTER 11

DISK INPUT AND OUTPUT

The disk BASICs, OS-65D and OS-65U, contain
complete disk operating systems. These systems dif-
fer in their commands and procedures. Below is a

brief description of the data and program file com-

mands available in each system. The programmer
should consult his operating systems manual fer a
more detailed discussion.

-

A. 0S-65D COMMANDS

This system permits accessing BASIC programs,
assembler source files and data files by name.

I/O DEVICES #6 & #7

These devices are the CHANNELS under which
DISK file I/O operates. Device #6 permits random (in
any order) access file operation while devices #6 and
#7 may be used in conjunction with sequential (one
after the other) files.

OPEN COMMAND

The open command permits the OPENing of a data
file for sequential or random access. The format for
the OPEN command is

DISK OPEN, device number, “filename”

CLOSE COMMAND

The CLOSE command closes a file to pefmit the
opening of another file. Typing

DISK CLOSE,X

where X is a specific device number, will close that
device.

28

DISK! COMMAND

The DISK! command permits the programmer to
send commands to the OS-65D disk operating system.
This command may be entered in the immediate mode
or used in a program. Examples include:

DISKI‘PUT PROG1”
DISK!'LOAD PROG1”
DISK!*“IO ,03”

GET COMMAND

The GET command brings a specific record from
the disk to the workspace and sets the INPUT and
PRINT pointers (device #6) to the beginning of the
record. Typing

DISK GET,N

will find record number N, and set the I/O pointers.

PUT COMMAND

The PUT command places a specific record on the
disk. Typing

DISK PUT

will cause the contents of the disk buffer (#6) to be
placed in the disk file.

EXIT COMMAND

The EXIT command will transfer control to
0S-65D Disk Operating System. Just type

EXIT

to enter the OS-65D DOS.

B. 0S-65U COMMANDS
OPEN COMMAND

The OPEN command is used to OPEN a data file
for access. The command has two possible formats:

OPEN ‘“‘filename’’,''password’’,channel number

and
OPEN - ‘‘filename’’,channel number

The channel number must be an integer between
one and eight. After OPENing a file, the file is re-
ferred to by the channel it was opened under rather
than by its name. If a file is opened with the correct
password, the system may read or write to the file
regardless of that file’s access rights. If agfile is
opened without the correct password, the system may
only access the file in the manner defined by 7its ac-
cess rights (e.g. read only, write only, none, etc.).

CLOSE COMMAND

The CLOSE command permits a file to be closed.
Closing a file frees the channel the file was opened
under. Simply typing

CLOSE
closes all the channels currently open. Typing
CLOSE X

where X is a specific channel number, closes only
that channel.

INDEX COMMAND

The INDEX is a reserved system variable. This
command takes two forms the first being

INDEX (channel number)
An example of the program usage would be
X=INDEX(1)

After the execution of this statement, X would
equal the value of the INDEX for channel 1. This
INDEX value is simply a relative pointer into the file
opened under a particular channel. When a file is
opened, the INDEX of the channel the file was
opened under is set to zero.

29

The second form of the INDEX function is
INDEX (channel number) = expression

This form permits ‘‘bumping’’ the INDEX to point
anywhere within the data file. Note the power of the
INDEX function in permitting the user to define the
file formats to be whatever is desired.

PRINT 9, COMMAND

This command has the form:
PRINT% channel number, variable expression

where the variable expression may be string or
numeric. This statement directs the variable to be

_printed into the data file opened under the channel

““‘channel number’’. The variable(s) will be printed
into the file starting at the current position of the
INDEX of that channel.

INPUT % COMMAND

This command has the form:
INPUT% channel number, variable(s)

This command INPUTS data from the file opened
under ‘‘channel number’’ and assigns the data to the
variables(s) that appear in the INPUT% statement.
The data is INPUT form the file starting at the current
position of the INDEX. The INPUT% statement
terminates upon the receipt of a carriage return.

FIND COMMAND
The FIND command has the form

FIND “‘string expression,” channel number

The FIND command executes a high speed search
for the string expression in the file opened under
“‘channel number’’. The search starts from the cur-
rent position of the INDEX for that channel. If the
string is found, the INDEX for that channel points at
the string in the file. If the string is not found, the
INDEX for that channel is set to 1,0¢¢,000,0¢¢. Note

e

that the FIND command rhay be used to find subsets,
e.g., ' :

FIND “ABCD’’,1

would find the subset ““ABCD’’ in the string
“ABCDEFG”’. The FIND command also permits
“*don’t care”’ characters within the string it is search-
ing for. That is,

FIND “AB&HI” 1

would find “*“ABCHI”” and ‘““ABZHI"".

s

, , pe
FLAG COMMAND

The FLAG command permits the user to tailor his
system toward a specific application. The FLAG
command has the form:

FLAGN

where N is the flag number of the option desired. The
options and their flag numbers are presented in the
08-65U operating system manual.

DEV COMMAND

The device command specifies which device is to
be the current mass storage unit. It has the form:

DEV U

where U is the unit. Unit specifications are A, B,C or
D for floppy disks, E, F, G or H for hard disks and K
through Z for machines connected in a network.

B

CHAPTER 12

INDIRECT FILES

A BASIC program can-be moved in memory to a
location other than the workspace. Memory-holding a
program in this manner is called an indirect file. An
indirect file can be used to merge two programs and
to transfer programs between disks having different
systems such as 0S-65D and OS-65U. A pr‘(:lcedure
for performing each of these operations is given be-
low. The specific commands necessary to perform
these operations vary according to the system used,
so the procedures are discussed separately from the
commands.

A. MERGING PROGRAMS

If a program needs a lot of corrections or the addi-
tion of substantial amounts of code, such as sub-
routines, a separate file can be created containing the
additions. This file can then be merged into the pro-
gram. Three procedures for merging files are dis-
cussed in this section. The first can be used with
BASIC-in-ROM; the second can be used with OS-
65D; and the third can be used with OS-65D and OS-
65U. ;

The following procedure can be used to merge two
BASIC-in-ROM programs.

(1) Store PROGI1 onto a cassette,

(2) Load PROG?2 into the workspace, and

(3) Load PROGI1 into the workspace without
entering NEW.

If each of the programs has a line with the same
number the line in PROG1 will be the one that ap-
pears in the merged program.

The following procedure can be used to merge two
programs in OS-65D. Start with both programs, say
PROG1 and PROG2, stored on a diskette.

1) Load PROGI into the workspace:
DISK!""LOAD PROG1”

Enter

EXIT

31

The number of tracks necessary to hold
PROG1 will be displayed, say N tracks. Re-
turn to BASIC by entering

RE BA

2) Run the disk utility CREATE and create a file
PROG3 to hold the merged programs. If
PROG?2 already has enough space the merged
program can be stored as PROG2.

3) The number, N, of tracks necessafy to store
PROGI1 was determined in step 1). Run
CREATE again and make a file called
“DATA”’ with 4 times N tracks for a 5 inch
diskette and 6 times N tracks for an 8 inch
diskette. Answer NO to the query about
pages per track. Specify 4 pages per track.

4) Load PROGI into the workspace:

DISK!“LOAD PROG1”

5) Enter the following POKESs to create a 4 page
buffer and to disable the scrolling of the
screen (the screen will hold the buffer).

POKE 8998,0
POKE 8999,208
POKE 9000,0
POKE 90@1,212
POKE 9770,¢

6) Enter on a single line:

DISK OPEN,6,''DATA’’:DISK!"'10, 22":LIST

A listing of the workspace will appear on the
screen while PROGI1 is being stored in the
file DATA.

7) When the listing is finished, reset the I/O
pointers and close the file by entering:

DISK!:*“10 02,02"":DISK CLOSE,6

8) Load PROG?2 into the workspace by enter-
ing:

DISKI"LOAD PROG2”

9) Reopen the file DATA and merge PROGI
into PROG2 by entering:

DISK OPEN,6, ‘DATA"":DISK!“10 20"

1) Reset the I/O pointers, close the file, and
enable scrolling by entering:

DISK!“10 §2,¢2"":DISK CLOSE, 6
POKE 9770,64

11) Store the merged file by entering: ,

DISK!“PUT PROG3”

12) Clean house by rebooting the system.

: %

If each of the programs has a line with the same

number, the line in PROG1 will be the one that ap-
pears in the merged program.

To merge two BASIC programs using indirect files:

1) determine the starting page number N of the
indirect file,

2) load one program into the workspace,

3) move this program to the indirect file,

4) load the second program into the workspace,

5) move the first program back from the indirect
file to the workspace.

If each of the programs has a line with the same
number the line in the first program will be the one
that appears in the merged program.

B. MOVING PROGRAMS BETWEEN
INCOMPATIBLE DISKS

To transfer a program between incompatible disks:

1) determine the starting page number N of the
indirect file,

2) boot up BASIC and load the program into the
workspace,

3) move the program to the indirect file using
the POKEs for the system on this disk,

4) boot up BASIC on the other disk; clear the
workspace with NEW,

5) move the program from the indirect file to the
workspace using the POKEs. for the system
on this new disk,

6) PUT the program on the new disk.

s

32

C. STARTING PAGE NUMBER OF
INDIRECT FILE

The starting page number N of an indirect file can
usually be set at 128 in OS-65D and 144 in OS-65U. If
the program is quite large these values may not work.
The indirect file must fit into memory above the pro-
gram in the workspace. A value for N is given by:

N = highest page in memory—pages unused
in memory

the highest page in memory can be obtained by:
?PEEK(133)

and the number of pages unused in memory can be
obtained by

?INT(FRE(X)/256) ,or

if FRE(X) is negative, by:
?INT(65536+FRE(X))/256)

The starting page of the workspace is approx-
imately
page 5¢ (317E) for OS-65D on an 8 inch disk,
page 51 (327E) for OS-65D on a § inch disk, and
page 96 (600¢) for OS-65U.
The number of pages used by the program is:

highest page —starting page —pages left.

If the number of pages used exceeds the number of
pages left there is not enough memory available to put
this program in an indirect file.

D. FROM WORKSPACE TO INDI-
RECT FILE

To move a program from the workspace to an indi-
rect file:

1) enable the indirect file function with the fol-
lowing POKES, where N is the starting page

number.
POKE 9554,N for 0S-65D
POKE 14646,91 and

POKE 11667,N for OS-65U

u

2) LIST the program betwéén square brackets

as follows: With the program in the work-

space, type

LIST[<RETURN>
(wait for listing to end)
} <@> <RETURN>

If the‘keyboard is a polled keyboard use
these commands instead:

LIST <SHIFT/K> <RETURN> .-
(wait for listing to end)
<SHIFT/M> <@> <RETURN>

The first bracket *“[*’, <SHIFT/K> will not appear
on the video screen. The second bracket appears
twice as ‘1. o
If the end of the listing appears garbled the
indirect file was not placed high enough in
memory and the end of the program in the
workspace has been overwritten.

33

E FROM INDIRECT FILE TO
WORKSPACE |

To move a program from an indirect file to the
workspace: :

1) enter the appropriate POKEs, where N is the
starting page number of the indirect file

POKE 9368,N for 0S-65D
POKE 14721,24 and .
‘POKE 11667,N for OS-65U

2) enter the command:
<CTRL/X> <RETURN>

A listing of the program in the indirect file will ap-
pear ending with the bracket closure ‘‘I]”’. On some
systems there will be a harmless error message before
or after the listing. To see the contents of the work-
space enter the command LIST.

hd]

CHAPTER 13

LINKING PROGRAMS TO MACHINE LANGUAGE ROUTINES

The USR function permits leaving a BASIC pro-
gram, executing a machine language routine, and then
returning to the BASIC program.

e

A. USR FUNCTION 3
The USR function has the form

USR(X)

where X is an arithmetic expression. The value of X
can be sent to the machine language routine and a
single value can be returned as USR(X).

If no paramenters are passed the function is used in
the form

N Y = USR(X)

where N is a line number, and X and Y are dummy
variables. Control passes to the machine language
routine at line N and then returns to the next line. It
is often more convenient to use the second form and
pass parameters by PEEK and POKE rather than to
use the parameter passing feature of the USR func-
tion. If no parameters are passed, Y is assigned the
value of X.

Before the machine language routine can be called
by the USR function its starting address must first be
POKEd into memory. The location depends upon the
version of BASIC that is used. Letting LO denote the
decimal value of the low byte of the starting address
and HI denote the decimal value of the high byte, one
of the following POKEs must be used:

POKE11, LO and
POKE 12, HI for ROM BASIC

POKE 574, LO and
POKE 575, HI

POKE 8778, LO and
POKE 8779, HI

for OS-65D

for OS-65U

For example, if the routine starts at $40¢@ then 44 is
the high byte and @@ is the low byte. Converting to
decimal, HI is 64 and LO is @.

34

PASSING PARAMETERS

The machine language routine begins by calling a
routine whose starting address is a $0096. This
routine converts the argument X into a 16 bit two’s
complement number which is then stored. The stor-
age location of this number depends upon the BASIC
used; as follows:

HIGH BYTE LOW BYTE BASIC USED
$OPAE SOPAF ROM BASIC
$00B1 $ppB2 65D and 65U

The value of X is now available for the machine
language routine.

The machine language routine ends by placing the
value to be returned to the BASIC program in the ac-
cumulator (high byte) and the Y register (low byte);
then calling a subroutine that starts at $00@8. This
subroutine will pass the value to the BASIC program
as USR(X) and then return control to the BASIC pro-
gram.

EXAMPLE

An example is given in this section of a program in
65D BASIC and a machine language routine that are
linked by and have parameters passed by the USR
function. In the example, the argument of the USR
function is an integer H between @ and 255. The value
of H is passed to the machine language routine which
then returns as USR(H) the number of times the
character whose ASCII value is H appears on. the
video screen.

The BASIC program:

19 POKE 574,90

20 POKE 575,64

30 INPUT “ENTER CHARACTER’:A$
40 H=ASC(A$)

5@ N=USR(H)

60 PRINT N

70 END

The machine language routine:

-

10
29
3¢
49
5¢
7 3FFC
80 3FFC 6C@¥6P@ CALL
90 4009
11¢ 4000 20FC3F START
179 4993 A5B2 |
180 4995 A2D@
190 4997 BE194¢
200 499A A200
210 49pC 8E184¢
220 49QF SE3640
230 4¢12 8E3749
240 4¢15 A¢¢8
250 4¢17 DDFFFF COMP
260 491A D@g8
270 491C EE3749
28¢ 491F D@@3
299 4¢21 EE364¢
300 4024 E8 END
310 4¢25 DPFQ
320 4027 EE19490
330 4p2A 88
340 4¢2B DPEA
350 492D AD364¢
360 4030 AC3749
37¢ 4933 6CP80Y
380 4036 09
380 4041 09

COUNT

;passing parameters to USR function

:N=USR(H)

;H=character number V¢< =H<=255

;N=count of how -many times the character

; appears on the screen

*=$3FFC

JMP (6)
*=$4000

JSR CALL
LDASB2 &
LDX #$D§ -
STX COMP+2

LDX #0

STX COMP+1
STX COUNT
STX COUNT+1

LDY #8

CMP $FFFF,X
BNE END
INC COUNT+1
BNE END

INC COUNT
INX

BNE COMP

INC COMP+2

DEY |
BNE COMP
LDA COUNT
LDY COUNT+1
JMP (8)

BYTE 0,0 ‘-

These two programs can be combined into the fol-
lowing one; the machine language routine is- directly

integerize H

the result
screen addr (hi)
screen addr (1o)
initialize counter
~ this many pages per screen
dummy address

count it

do this if lo half rolls over

POKED into memory after converting each hex in-
struction to its decimal equivalent.

2 FOR I=¢ TO 2

4 READ V

6 POKE 1638¢+1,V

8 NEXT

19 FOR =9 TO 55

2¢ READ V

3¢ POKE 16384+1,V

49 NEXT

5¢ POKE 574,9

60 POKE 575,64

7¢ INPUT“ENTER CHARACTER”;A$

89 H=ASC(A$)

99 N=USR(H)
10¢ PRINT N
11¢ DATA 108,6,0
120 DATA 32,252,63,165,178,162,208
130 DATA 142,25,64,162,0,142,24,64
140 DATA 142,54,64,142,55,64,160,8
15¢ DATA 221,255,255,2(18,8,238,55
160 DATA 64,2(8,3,238,54,64,232,2(8
170 DATA 24(,238,25,64,136,2(38,234
189 DATA 173,54,64,172,55,64
199 DATA 108,8,0,0,0

36

"»

CODE
o0
@1
02
03
04

@5
06
o7
08
?9

PA
?8
@C
@D
oE

oF
10
11

12
13

14
15
16
17
18

19
1A
1B
1C
1D

1E
1F
20
21
22

23
24
25
26
27

28
29
2A

 APPENDIX 1

CHAR
NUL

~ SOH
STX
ETX
EOT

ENQ
ACK
BEL
BS
HT

LF
VT
FF
CR
SO

Si

DLE
DCH1
DC2
DC3

DC4
NAK
SYN
ETB
CAN

EM
SuB
ESC
FS
GS

RS
us

SP
!

"

CODE CHAR

2B
2C
2D
2E
2F

30
31

¥ 32
. 33

34

35
36
37

38

39

3A
3B
3C
3D
3E

3F
40
4
42
43

44
45
46
47
48

49
4A
4B
4C
4D

4E
4F
50
51
52

53
54
55

37

+

OCO~NOO A= N

VoA

IOTMMO OW>»@E -

cCH»w IOUVEZ Trrxe-—

ASCIHl CHARACTER CODES

CODE
56
57
58
59
5A

5B
5C
5D
6E
5F

60
61
62
63
64

65
66
67
68
69

6A
6B
6C
eD

6E

6F
70
71
72
73

74
75
76
77
78

79
TA
7B
7C
7D

7E
7F

CHAR

Xg<Cc ™ O©TTOQUVTO 33— Xx"T TJQTO0 QOOCT >=N O N<KXsS<

e N

DEL

APPENDIX 2

ERROR CODES

DISK ROM

BASIC BASIC .

BS B h Bad subscript: Matrix outside DIM statement range,
etc.

CN c Jd Contipue Errors: Attempt to inappropriately con-

" tinue from BREAK or STOP.

DD D Double Dimension: Variable dimensioned twice Re-
member subscripted variables default to demension
19.

FC F o Function Call Error: Parameter passed to function
out of range.

ID I Illegal Direct: INPUT and DEFIN statements can-

" not be used in direct mode.

LS L h Long String: String longer than 255 characters.

NF N "y NEXT without FOR.

oD 0 Out of Data: More reads than data.

oM o M Out of Memory: Program too big or too many
GOSUBs, FOR-NEXT loops or variables.

ov (0) ‘ Overflow: Result of calculation too large.

RG R \I RETURN without GOSUB.

SN S J Syntax Error: Typo, etc.

ST S h String Temporaries: String expression too complex.

™ T | Type Mismatch: String variable mismatched to

. numeric variable.

UF U e Undefined Function.

Us U h Undefined Statement: Attempt to jump to nonexis-
tent line number.

/9 / _‘ Division by Zero.

The following messages are not available in ROM BASIC.

0S Out of String Space: Same as OM.

DV Device Error. Only available in OS-65U. See oper-
ators manual for list of Dsik Error Codes.

FS Full Stack: Stack overflow. Only available in OS-
65U.

38

"

PAGE
19

29
20
21
17
28
29

15
20

23
39
18
28
28
13
28
19
29
30
23
12
17
28
23
24
11
11
11

APPENDIX 3

KEYWORD INDEX WITH EXAMPLES

NAME
ABS
AND
ASC
ATN
CHRS$
CLEAR
CLOSE

CONT
COS
DATA
DEF
DEV
DIM
DISK
DISK!
END
EXIT
EXP
FIND
FLAG
FN
FOR
FRE
GET
GOSUB

GOTO

IF

EXAMPLES

ABS(X)

IF B>b AND B<S5 THEN 1¢¢
ASC(X$)

ATN(X)

CHRS$(D)

CLEAR

DISK CLOSE,6

CLOSE
CLOSE 3

CONT

COS(X)

DATA 4,78,*BIG”
DEF FNA(X)=X*SIN(X)
DEV A

DIM A(20,50),B$(2,4,5)
DISK CLOSE,5
DISK!‘PU PROG1"
END

EXIT

EXP(X)

FIND “LOAN’’,2

- FLAG #3

DEF FNA(X)=X*SIN(X)
FOR I=1 TO 19

FRE(X)

DISK GET ,1

GOSUB 15¢

ON X GOSUB 100,209
GOTO 199 _
ON X GOTO 109,206

IF X<5 GOTO 279

39

BASICS
ALL
ALL
ALL
ALL
ALL
ALL
65D

65U
65U

ALL
ALL
ALL
ALL
65U
ALL
65D
65D
ALL
65D
ALL
65U
65U
ALL
ALL
ALL
65D
ALL
ALL
ALL
ALL
ALL

PAGE
11

29
29

29
19
21
21

15

15
27
28 |
19
21

15
12

27
12
24
28
28
28

25
25

29
28

NAME

INDEX
INDEX<
INPUT

INPUT%
INT
LEFTS$
LEN
LET
LIST

LOAD

LOG
MID$

NEW
NEXT

NOT
NULL
ON

OPEN

OR
PEEK
POKE
POS
PRINT

PRINT%
PUT

-

EXAMPLES

IF S>B THEN PRINT‘‘TOO BIG”

X = INDEX(1)
INDEX<1> =3 + N

INPUT“ENTER YOUR NAME’’;N$

INPUT#8,D$
INPUT% 2,X,Y
INT(X)

B$ = LEFT$(AS,5)
X = LEN(AS)

"LET X = Z + COS(Y)

LIST

LIST 109
LIST —10¢
LIST 16¢—
LIST 100—20¢

LIST#1,16-2¢

LOAD

DISK!“LOAD PROG1”
LOG(X)

A$=MID$(BS,2,3)
A$=MID$(BS,2)

NEW

NEXT
NEXT I

NOT(A<5 AND B=§)
NULL 8

ON X GOTO 109,206

ON X GOSUB 109,206

DISK OPEN,6, FILE3”
OPEN“FILE2”,"“PASS”,3
OPEN*‘FILE2”,3

IF A<R OR A>S THEN 29§
PEEK(23456)

POKE 32456 ,76

POS(X)

PRINT X,Y;*TOO LARGE”
PRINT#4, “LINE PRINTER”
PRINT% 2,X

DISK PUT

40

BASICS
ALL

65U

65U
ALL
65D,65U
65U

- ALL

ALL
ALL
ALL

ALL
ALL
ALL
ALL
ALL

65D,65U
ROM,65U
65D

ALL

ALL
ALL

ALL

ALL
ALL

ALL
ALL
ALL
ALL
65D
65U
65U
ALL
ALL
ALL
ALL
ALL
65D,65U
65U
65D

S E R T RSN TNt

PAGE
.29

16

23
21
19
15

27
19
20

26
13
13
21

20
1
12
34
22
25

NAME

READ
REM
RESTORE
RETURN
RIGHTS
RND

RUN

SAVE
SGN
SIN
SPC(
SQR
STEP
STOP

' STR$

TAB(
TAN
THEN
TO
USR

VAL

WAIT

EXAMPLES
DISK!"“PUT PROG1”

READ S,T :
REM DETERMINE THE RATIO
RESTORE

RETURN

A$=RIGHT$(BS,3)

RND(1)

RUN
RUN 26¢
RUN‘‘PROG2

SAVE

SGN(X-5)

SIN(X)

SPC(4)

SQR(X)

FOR X=1TO 2 STEP .5

STOP

A$=STR$(X)
TAB(12)

TAN(X-B)

IF A<B THEN GOSUB 20¢
FOR I=1TO 5 |
USR(X)

VAL(AS$)

WAIT L]
WAIT LJ,K

41

 BASICS

65D
ALL
ALL

ALL

ALL

~ ALL

ALL
ALL

ALL
65D,65U
ROM, 65U
ALL

ALL

- ALL
. ALL

ALL
ALL
ALL
ALL
ALL
ALL
ALL

~ALL

ALL

ALL
ALL

INDEX
A) E
Absolute (ABS)ovviieieniannnn. Teeeid9 END i e 13
Additionooiiiii i i e 3 Equal operatoroovveeverinnenieinannnn. 4
AND e e e 3,4 Error Codesooiiiiiiiiiieiiinenninnnnnas 38
Arithmetic Relational Operators..................4 Execution of programcccevvnienian.n 14
AITAYS . ot iiitine ittt iee et tieeian s % ..18 Exponential (EXP)cccoviiunn.. 2, 3,19
ASCII (ASC) i eiiiieiii it e iiieeeeeaeaaeeans 20
Codesooviii i e 37 F
B Falsecooviiiiiiiii i 2
FRE (Memory Left)cooivviiiiiiiin... 17
BREAK ...ooiviiii 16 FOR ..ot 12
Bytes Free......coviiiniiiiiiiiniiiiiiiinaan, 17 Function
ASC e i i e e e e i B 20
c CHRS ..ottt e 21
Carat ... i i e e 3 EXP oot 19
Cassette INT i i ittt e eennennns 19
150079 > FO 27 LEFTS ... 21
SAVE .t 27 LEN ..ot 21
Characters MID$ 21
Special ...l 1 RIGHTSoooiniiiiiiiiiin 21
STRING (CHRS) .« v eveeeeeeaaeanananss 21 RND ..o 19
(6) 5127, N S U 17 SGN Lo 19
(6/6) N TSRS 15 SQN L. 20
CTRL STRE .t e e 20
LG LT DT S PR S S R A 16 STRINGooitiiii 20
i iy v e S v FE bt wdIe b 2 e e e e e 33 USR Lo 34
VAL . e e 22
D WAIT .ottt et eeeninnaninenns 25
Data ...t i e 6 G
Define (DEF)oviiiiiiiiiiiiiiiiininnnnnsn 23
Device INPUT/OUTPUToiviivninnnnn.. 9 GOSUB ...ttt it i ie e 23
Dimension (DIM)cccviiiiiininiieeennn.. 18 GOTO . ettt e eieaiaaaanaes 11
Disk (INPUT/OUTPUT)ivviiiiiinnnens 28 Greater than operatorooveivinveeennnnn 4
CLOSE ...ttt ittt e 28
5] o U C RSO DML TSN 30 1
1)] S P 28
EXIT oo e e 28 8 G RS PP P S 11
FIND oo i 29 INPUT .. i i tis it enens 6
FLAG .« oo oo i i i, 30 DeVICES . ittt i i i e 9
€3) LS 28 Integer (INT)oivniiiiiiiiiinnnn, 2, 19
INDEXottt i iiniaeneenn 29
1131205 7 SO SR 29 K
OPEN .ottt e e 29
PUT v v i v e ses eiiesssionessinvne s 28 Keyboard conventionscoeveeiennn.. 1
DIVISION L. iiiii i i i e 3 Keywordsoiiiiiiiieiiineannaaann. 1
42

L
LEFTS ..o i i e it 21
LEN ittt et it i 21
Less than operatorceeeivevnnecnnias 4
LET ... e e e 6
Line numbercoiiuiiiiiinieieennnananss 6
| 50 04 R O S R NP (. SR LI e S s L S 15
LOAD ...ttt ittt i e es 27
Logarithm (LOG) ..ottt iiinneeniennnns 19
Loops, Nested00vun. Geesass 12, 13
M
Machine language program 35, 36
Merge programs e i S vy e ees3l
Mid String (MID$) R % ..21
Multiply ...\ oottt iiiiinneriennnnns eeee3
N
NEW it s it it eaaeneaaens 15
NEXT .ottt it ieedennnaennnenns 12
NOT oo it it e senaaeeeans 3,4
NULL: L L i i iidv i st amn s aaan 27
(o)
[0 S S I PP e A SR G R I 12
OR i o i e v i i s e i v s 3, 4
Output deviCes ...vvvrnnsivirieererinnneeneenins 9
P
PEEK ... e iiivan et smanssnnassnsens 25
POKE ...t e it et s 25
POS . i i i e e dhdie e e e e e 9
PRINT ..ttt it ieeneeieanns 7
Programmingcvovieruineeinneennnsannes 14
R
Random (RND)coviennninenninannanns. 19
READ ...ttt it e i anns 6
Real . . i viiiin e dainidasnss siisinwnsvnnies 2
REM (Remarks)cvvivnineniinenisnnanannnn 16
RESET ..ttt ittt eiaaaaaaaans 16
RESTORE ittt iiiiieinaaananan 7
RETURN ...t iiiiiie i ieeannes 23
RIGHTS ..ot i e e i e i 21
RUN i e it eeaiaaes 14, 15

43

S
SAVE it i i e e ie i e e, 27
SHIFT ..ottt ieiieiiiinsnnsenneseanaans 1
P R ST AR DU AP SF R 33
O L WD SR TP 33
L B NS S-S I SO B I SR PO 3
5 e R SRP SN PR S R ais APl O TS 16
g RV DR PR NN BELE TN 16
SigN (SGN) tiiiiiiiiii ittt iiinensnsan 19
R 2 G SR L AN S Gt PRI AR 9
Square root (SQR)vviiiiniiiiiiiiiecaaaann 20
STEP ittt i et e 13
STOP. .. ittt vvieeinanasiadinanessasnsnes 13, 16
STRING ..ottt iiiiiiiiieneans 2, 20, 21
Subroutinec.iiiiiiiiiii i 23
GOSUB ...ttt it iiieiininaaananens 23
SUBTRACT ..coviviiiieinniinnnsannennns R
T
K .Y O U S ST ST, A T e s 8
TAPE INPUT/OUTPUTc.iviiiiiininiinnns 27
THEN .. oottt ieieieinsasnnnns 11
Trigonometric functions...............cvcovue. 19, 20
ATN iivioiiss ienvnsssine seviss b essneioiie 20
COS i i vnsades diveesumioriivess iisnst e 20
SIN........... T E i e e e 20
TAN e e et ee s asie s ean s osin e aniaseinssne 20
IO i i iviviersinivasenosniosssins cunin 2
U
U SR ittt itis i etneciiieeetaanassannans 34
A%
VAL .. iiiiiiiiiiiiiiinennnn. Vit v v 22, 41
Variables
INTEGER . .iiviiieiiiieninnnoneionsenseans 2
NUMERIC ..ottt iiiieeinnennenns 2
31111) (- AP C SR PR P RPA U SPCPAPEPPP 18
STRING ..ttt iiieiiisesiiesesneennnns 2
Subscriptedttt 18
w y
WAL i i i it ieennnannnes 25

v

