

-a

•

OHIO SCIENTIFIC

,:

BASIC REFERENCE MANUAL

:\
© Copyright 1981 by Ohio.Scientific Inc .

Printed in the United States of America.
,-

All rights reserved. This book, or any part thereof, may not be reproduced without the permission of the publishers.

Although great care has been taken 1n the preparation of thismanual to insure the technical correctness, no responsibility is assumed by Ohio Scient,f;c
for any consequences resulting from the. use of its contents. Nor does Ohio Scientific assume any responsibility for any infringements of patents or 0the·
rights of third parties which may result from its use.

If you discover misprints or errors, please send a. letter to the attention of: Documentation Department, Ohio Scientific Inc,. 1333 S. Chillicothe Roac
Aurora, Ohio, 44202

Ill

\

CONTENTS

rER PAGE
ction .. ', ... iv
TATION•................ :•....................................• 1
CEYBOARD CONVENTIONS •••••.•.....••••...•..••••• ~ •••..• • ••••••••••.•.•••••••.••••..••• 1
,PECIAL CHARACTERS •••.•••....•..•••..••.••..•••.•.•.•••••••••.••••••••••••••••••.•••• 1
<EYWORDS .•••.••..••.•.....••••.•.•..•••••.••• ·\;.:· : ~ .• • • • • • • • • • • • . . • . • • . . • • • • . • • • • • • . • • • • 1
:MENTS OF BASIC•.................................... 2-s
:ONSTANTS .•••••.•••.••..•••••.•.•••.••..•.•••.• 4 • · ••••••••••••••••••••••••••••••••••••••• 2
~umeric Constants ..••..••...••••.•..•.••..•..•••••..•...••••••..••••••••••.•.••.•••••••.• 2
,tring Constants •...••••..•••••..•..•.•.•••••••••••••..•.••••••••..•.•.••••.•.•..•••. • • 2
.ogical Constants ••••••.••...•••.•...•........••.•••••...•...•••..•••••.••••••••••....•••• 2
if ARIABLES ... 2
~umeric Variables ••.••....•••••••••••.•.•••.•••.••••..•••.••••••••...•••••..•••••••.••••• 2
nteger Variables •••....•.•.••.•..•..•.•.••••••••••••.•••••••••••..••••••••••••.•••••••••. 2
;tring Variables •••••••.•••••••••..•....•••••••••..••••••••••••••••••.•••••••••••••.•.••••• 2
,RITHMETIC OPERATORS ANO EXPRESSIONS .•.•.•••••••..•••••...•.•.•..••.•••••.....•• 3
i31T OPERATORS ANO, OR, AND NOT ...•....••••••.•..••..•••••••.•..•••.••••..••..•••. 3, 4
~ELATIONAL OPERATORS AND EXPRESSIONS .•••..•••..••••.••.•.....•.••••..•••..•...• 4
:OMPARING STRINGS ••...•••..•........•••.•••...•.••••••..•...•.••.••••....•...••..•••• 4
STRING EXPRESSIONS •....•............••••....•.•••.•....••.•.•••.•••...••......•..• 4, 5
SIGNMENT, INPUT AND OUTPUT .. s-10
LET STATEMENT . • • • • • • • • . • • . • . . • . • • • • • • • • • . • • . . . • • • • • • • • • • • • • • . • . • • • 6
INPUT STATEMENT •....•.•.••...•........•••..•..•..••..•.....••••.•••••••.••....••.••..• 6
F\EAD AND DAT A STATEMENTS ..•...•..•..•••...••..••....•••••..•••••••••.•.....•.•••• 6, 7
F\ESTORE STATEMENT•.•.••.•....•.•••••.••..•••••••••••••••••..•.•••••.•••..•.••.•• 7
i>RI NT ST A TEM ENT • • • . . • • • . . • • . . • • • • . • . . • • • . . . • • • • • . . • . . . • • . • • • • . . • • . • • • • • • . • • . • • 7
ifERTICAL SPACING OF OUTPUT •...••...•••..•....•.•...•.•••..••••...••••..•....••.••..• 7
HORIZONTAL SPACING OF OUTPUT .. 8, 9
Zoned Format ...••..• : • • • • • • • • • . . . • . . • • • • • • • . . • • . • • • • . • • • . • . • • • • . • • • • . . • • . . • • . • • . . • . • • 8
Compressed Format . • • . . • . • • • • • • • . . • • . • • • • • • • • • • • . • • • • • • . . • • • • • • • • • • • . • • • • . . • • . • • • • • • • • • • 8
TAB Function •.....•.••....•••.•••.••••••••••••••.••••••••••••••.•••••.••.••••..•.•••••• 8, 9
SPC Function • • . . • . • • . . . • • • . • • . • . . . • • • • • • • • • • • . • • • • • • • • • • . • • • • . • • • • • • • • • • • • • • • • • • • 9
PciS Function • . . . • . . . • . • . • . . • . • • • . • . • • • . • • • • • • • • • . . • • • • • • • . . • • . . • • • • • • . • . • . • • . • • • 9
DEVICE SPECIFIED INPUT AND OUTPUT .•..•••.•••.•.•••.••..•..•••.•.••••••.•••..•... 9, 10
~ONEY-MODE OUTPUT ..•...•••......•....••.•••..•••••••.••.••.••.•.•.•.••••.•.•..•••••• 10
OGRAM CONTROL ...•........ 1·1-13
GOTO STATEMENT • . . . • • • • • • . • • • • • • • • • • • • . • • • . • . . . • . • . . . • . . • . . • • • • • • . . • 11
IF ••• GOTO ST AT EM ENT • • . . . • . . • . • • . . • • • • • • • . • • • • . • • • • • • • • • . • • . . • • • . . • . • • 11
IF •.• THEN STATEMENT ••••••••••••••••.••••.•.••••••••.••••.••...•••••••...•.•..•• 11, 12
O.tit ... GOTO STATEMENT . . • . . • • • • • . • • • • • . • • • • • • • . . • • • . • • • • . • • • • • • • • • • • • • • • • • • • 12
FOR AND NEXT STATEMENTS ..•..•••.•••••.••.••.••••.•••••••••.•••.••••••••••••..•• 12, 13
Step Clause • . . • • . • • • • • • . • . • • . • • • • • . . • • . . • . • • • • • • . . . • . • • . • . • • • • • • • • • • . . • • • • . • • . . • • • • • • • • • 13
Nested Loops . • . • . • • • • • • • • • . • . • • • • . • . . 13

CHAPTER PAGE
F. STOP STATEMENT • . . • . • • . . • • • • . • • . . . • . . • • • . . • • . • • . • • . • • • . 13
G. END STATEMENT ...••..•...•.•••..•.•..••••.•.•..•.•.....••..•..•.•••......•.. , • . . • • 13

5. PROGRAMMING ...•..•..•... : • 14-17
A. BASIC PROGRAMS ..•.•.•...•....••..............•.•......................••.... ·. 14
B. IMMEDIATE MODE . • . • . . • • • . • • . . • • • • . . • . . • • • • • . • • • . 14
C. COMMANDS•..........•........................•........ 14-16

NEW Command . . • • • • • . . • • • • • . . • • • • . • 15
RUN Command . . • • • . . • . . . • • . . • • • . . . • . . • • • • . • . . . • • . . • . . • • . • . • • . • • • • • . . 15 ·
LIST Command ..•..•••..•...•. .-·:~ ...•...•......•.........•....••..••...•• ••..••. : •..••.. 15
CONT Command .••..••...••••..•.•.....••... :: •..•••.•.•.••.•.....•.....••••..••.... 15, 16

D. INTERRUPTING EXECUTION .••...•..••..•.•...•...•..•.....•.......•.....•••..•..•...•.. 16
E. EDITING A PROGRAM•........ _ , . 16
F. DOCUMENTATION•.••...•. '>,.,,:.. ••.•••••••••••••••••••••••••••••••••• , •.••••••••••••••• 16

REM Statement • . . . •.. . • . . • . • • • • • • . • . . • • . . 16
G. SAVJNG SPACE . . . • • . . . • . • • . • • • • . • • • • • • •. • • • . . . • • . • . . . 17

FRE Function • • . . . • • • • • • • • • • • . • . . . • • . • • • • . . • • • • . . 17
CLEAR Statement . . . • . . • • . • • • . • • • . • • . • • . • • • . . • • . • . • . . . • • • • • • 17
Suggestions • • • • • . • . • . • • • • • • • . • . • • . • . • • . . • • • . . • . . • • . • 17

6. ARRAYS ..•.. 18
A. SUBSCRIPTED VARIABLES • • . • • • • • . . • • • . . . • • . • • . • • 18
B. DIM STATEMENT ..••.•..•.•.•••.••••.•••••••...•••..•....•.•••............•.•••........•. 18

7. FUNCTIONS•..•. 19- 22
A. MATHEMATICAL FUNCTIONS ..•.•....•.•...•••...•.....•................•.•••..•••... 19, 20

ABS Function • • • . • . . • • . . . • • • • • . • • • • 19
EXP Function • . • • . . • • • • • • • • • • . . . • . . . • 19
LOG Function . . . • . . • • . • . • • . . • . • • • . • . . • • • • • 19
INT Function . • . . • • • • • . • . • • . • . • . . . • • . • • • 19
RND Function • • • . . • • . . . • . • • . . . • • • • . • • . • • • . . • • 19
SG N Function•....•.......•...••.• , •••...........•............. , . . • . • 19
SQR Function • . • . . . • . . • . • • . . . • • . • . . • . • • • . 20
Trigonometric Functions . • . . . • • . • • • • . . . • . . • • • . • • • • • . . • • • • • 20

B. STRING FUNCTIONS • • • . . • . . • • . • . . . • . . • • • • • . . . • 20- 22
ASC Function • • • • . . . • . . • . . • • . • • • • . • • • • . • • • • . . • • • • • • . . 20-21
CHR$ Function •.•..•...•......••••...•..••..•••...••.... ·. • • . . • . • . • • . . . • • • . • • . • . . . 21
LEFT$ Function • . • . • . • • • • • • • • . • . . . • • • . . . • • . . . • . 21
LEN Function • . • . . . • . . • . • • • • • • . • • . . . • • • . . . • • • . . . • 21
MID$ Function • . . • . . • . . • • • . • • . • • • • 21
RIGHT$ Function • • . • . . • • . • . • . • • • • . • • • • . . . • 21
STR$ Function . . . • • • . . . • • • • • • . . • . . • . . . • 21
VAL Function • • • • . . • . . • 22

8. ·SUBPROGRAMS•............ , 23, 24
A. STATEMENT FUNCTIONS••.....•........•...•...•.••...•.•.....•.....•....•..•....• 23

DEF Statement . . . • • • . . • • . • . .. • • • . . . • • • . . 23
B. SUBROUTINES••..........•..•..•••.•.••.•....•...•.•...............•.....•.. 23, 24

GOSUB And RETURN Statements ... 23, 24
ON ... GOSUB Statement • • • • . . . • .. . • . . . • • • • • .. 24

9. DIRECT MEMORY CONTROL ... 25, 26
A. POKE STATEMENT • • • . • • • • • • • . . . • . • 25
B. PEEK FUNCTION • • • . . • . . • • . . • . • • . • • • • • . . • • • • • • • 25
C. WAIT FUNCTION .•.•••........•.•.••...••..• , ...•............•........•.............. 25, 26

ii

CHAPTER 2

ELEMENTS OF BASIC

A. CONSTANTS
There are three types of constants in BASIC:

numeric, string, and logical.

NUMEFHC CONSTANTS

Numeric constants may bave one of three forms: · ·
integer; real, and . exponential. · The integer form con­
sists of a signed or unsigned string of decimal digits
with no decimal point. Examples of the integer form
would be 3 and - 596. The real form has a decimal
point. Examples of the real form would be 3.57 and ·

. -0.56. The exponential form is rEn where r is in real
form and n is in integer form; The exponential form
corresponds to scientific notation. For example,
.+}004-)0156789 in exponential form would be
L56789E-6 and 123778641 would be 1.23778641E+8.

All three forms of numeric constants are converted
internally to. the exponential form. The range of
values is from ~•1.7014 E+38 to 1.7014 E+38{2 to the.
power 127). The smallest positive value is 2 to the
-128 power or 2~9387 E-39.

If a program calculates a value greater than 1.7014
E+38 a:n overflow error occurs. If a program calcu'"
lates a value less than -1.7014 E+38 no underflow
error occurs;,:~ value of zero results. · · ·

Numeric constants have· nine significant digits. ii)
the disk BASICs arid six significant digits in ROM
BASIC. If more digits are used (not including the dec­
imal point or exponent) the number is truncated. For
example1: 987654321 ll is 9.87654321£+ 10 in OS-65D.

STRING CONSTANTS•

A string constant consists of a collection of up to ·
255charf1.ctersenclosedin quotes. Examples of string
constants are "RATIO'' ,"J.9", and "". Any char~
acter in the ASCII table except " (double quotes)
may be used fn a string constant.

2

LOGICAL CONSTANTS

There are two logical constants in BASIC, They are
TRUE and FALSE. TRUE is represented internally
by -:-l (all bits set) and FALSEhy t (all bits reset).

B. VARIABLES
A constant can be represented by a variable .. There

are three types· of variables in BASIC: numeric, in­
teger, and string. Each type may be simple or sub~
scripted. Simple variables are discussed in this chap~
. ter; subscripted variables are· diS<;usse:d in. Chapter 6.

NUMERIC VARIABLES

A variable name consists of either. a. letter or alet'­
ter followed by another letter or decimal .digit.
Examples of numeric variables •are A, Xll, and S2 ..

A name with more than two letters can be used.
Their use, however, should be watched closely be­
cause only the first two characters &fa variable name
are stored. Thus COVE and COUNT are. considered
to be the same variable (CO).

INTEGER VARIABLES

Numbers can be stored in integer form in BASIC by .·
adding a % (percent sign) to the variable name.
Examples of valid integer variable names would be
A%, BA%, and S2%. The.range•ofanintegervariable
in - 32767 to + 32767. Integer variables cannot be
used with BASIC in ROM.

STRING VARIABLES

String variables are represented in BASIC by add~
ing a$ (dollar sign) to the variable nanie. Examples of
valid string variable names would be A$, BA$, and
S2$.

...

C. ARITHMETIC OPERATORS AND
EXPRESSIONS

The arithmetic operators are represented by the fol­
lowing characters:

+ addition
subtraction

* multiplication
I division

exponentiation .. .-<

The carat representing exponentiation is.entered by
<SHIFT/N> on polled keyboards. . _ ·

An arithtnetic expression calculates a nulfi.erical
value. It consists of a list of variables or constants
separated by arithmetic operators or brackets.
Examples of arithmetic expressions are A+ B, B + 3,
A + 5, and (B A2)-4* A *C.

No two operators should appear next to each other
in an expression. The expression A/-2 is valid but
should be written as A/(-2).

Multiplication is never implied. Thus· 3(A + B) and
(A+ B)(A + C) are invalid and should be written as
3*(A+B) and (A+B)*(A+C).

In order to avoid ambiguity in the evaluation of ex­
pressions a preference is established among the
operators. The preference is 1) brackets, 2) exponen­
tiation, 3) negation, 4) multiplication and division, and
5) addition and. subtraction. Expressions enclosed in
brackets are performed first starting with the inner­
most pair of brackets. All operations at one level are
performed before proceeding to the next level. Thus

2 + 16 / 2 A 3 is 4

Operations at the same level are performed from
left to right. Thus

2 A 3 A 2 is (2 A. 3) A 2 or 64

It is recommended that the programmer insert
brackets in expressions to make them more readable
and to ensure that the correct calculation is per­
formed.

D. BIT OPERATORS AND, OR, AND
NOT

The logical (or bit) operators AND, OR, and NOT
operate bit-by-bit on the internal binary representa­
tions of the numbers. Each bit in the result is deter­
mined by comparing corresponding bits in the two
numbers.

3

The operator AND sets a bit in the result to 1 if
both corresponding bits in the numbers are 1. The
operator OR sets a bit to l in the result if either one
or both bits in the numbers are 1. The operator NOT
operates on a single number· and reverses the bits.

X y XANDY

1 1 1
1 0 ·0
0 1 0
0 0 0

X y XANDY

1 1 1
OR 1 0 1

0 1 1
0 0 0

NOT~/_!_;.__,_ __ N_O_;_X~

Some examples will serve . to show how the logical
operations work:

63 AND 16=16

15 AND 14=14

-1 AND 8=8

4 OR 2=6

1111112
AND 01000~2

63=binary 111111
and 16= binary 10000
so 63 AND 16=16.

15= binary 1111 and 14=bi­
nary 1110 so 15 AND 14=bi­
nary 1110=14.

The two's complement repre"
s e n fat i o n o f - I i s
111111111111 lllh (all bits of
the two-byte number set to
1). Therefore, - l=binary
llllllllllllllll and 8=bi­
nary 1000, so -1 AND 8=8.

4=binary 100 and 2=binary
10 so 4 OR 2=binary ll~a:6.

...

-1 OR -2=-1 -!=binary
111111111111 I 111 and - 2 =
1111111111111110, so -I OR
-2=-1.

NOT 0=-1 The bit complement of six­
teen zeros is sixteen ones,
which is the two's comple­
ment representation of - 1.

NOT X=-(X+l) the two's complement of ,any
number is the bit complement
plus one.

A typical use of logical operations is 'masking'.,,
testing a binary number for some predetermined pa~­
tern of bits. Such numbers might come from the com-·
puter' s input ports and would then reflect the condi­
tion of some external device.

The action of the bit operators on the logical values
-1 (TRUE) and 0 {FALSE) is the same as the famil­
iar Boolean operators in the propositional calculus.
This action is reviewed in the next section.

E. RELATIONAL OPERATORS AND
EXPRESSIONS

The relational operators are represented by the fol­
lowing characters:

<
>
<=or=<
>=or=>
<>or><

equal
less than
greater than .
less than or equal
greater than or equal
not equal

Just as an arithmetic expression calculates a numer­
ical value a relational expression calculates one of the
two logical values TRUE or FALSE. Examples of re­
lational expressions are:

A < = B Is A less than or equal to B?
(A2 - B) <> 3 Is A2 minus B unequal to 3?

The bit operators AND, OR, and NOT can be used in
relational expressions. If El and E2 are logical con­
stants then

E 1 AND E2 is TRUE only when both El
and E2 are TRUE, otherwise
FALSE

4

El OR E2 is TRUE when either one or
both of E 1 and E2 are TRUE,
otherwise FALSE

NOT El is TRUE when El is FALSE,
otherwise FALSE

Examples would be the following expressions
which are in fact equivalent:

A< 0 OR A> 3

NOT (A>= 0AND A<= 3)

Relational operators may not be chained. The ex­
pression

l<A<5

is invalid and should be written

(1 < A) AND (A < 5)

The order of preference of arithmetic operators ex­
tends to relational operators and bit operators. The
order of preference is 1) brackets, 2) exponentiation,
3) negation, 4) multiplication and division, 5) addition
and subtraction, 6) all relational operators, 7) NOT, 8)
AND, 9) OR. For example

NOT 2 * 3 > 5 is FALSE

F. COMPARING STRINGS
Strings may be compared using relational oper­

ators. The comparison is made in the same manner as
a dictionary ordering. Corresponding characters in
the two strings are compared moving from left to
right. One character is considered less than another if
it precedes it in the ASCII table. Thus "ABE" is less
than "ABF", "2" is greater than "12", and "$" is
less than "%". An example of a relational expression
involving strings is

NOT (A$<= B$ AND C > 5)

G. STRING EXPRESSIONS
String expressions consist of string constants,

string functions, or string variables connected by the
string operator +. The result of a string expression is
a string. The string operator + means concatenation.

...

For example,

10 A$="HELLO "
20 B$=''THERE"
30 C$ =A$+ B$
40 PRINT C$

results in the output:

HELLO THERE

5

CHAPTER 3

ASSIGNMENT, INPUT AND OUTPUT

BASIC programs usually input data from the
keyboard and output data to the screen. They_,can,
however, communicate with a variety of other de­
vices. Tape and disk input and output are discussed in
CHAPTERS 10 and 11.

A. LET STATEMENT
The assignment of values to variables is performed

by the LET statement. The forms are:

N LET A= B
N A= B

where N is a line number, A is a variable, and Bis an
expression. The keyword LET is optional. The ex­
pression B is evaluated and its value is assigned to A.
Examples of valid assignment statements are:

10 LET X = 3.14159
20 A$ = "YES" + 8$
30 Z = 2 < 3
40 N% = 3.999

Numeric and integer variables may be assigned
either numeric or logical values. If a numeric value is
assigned to an integer variable it is truncated. The
value assigned to N% above is the integer 3. The
value assigned to Z above is -1, representing the log­
ical value TRUE. 'string variables may be assigned
only string values. Attempts to assign values to the
wrong type of variable results in a type-mismatch
error.

Chaining assignment statements as in the statement

1~ A = B = C

will evaluate A to a logical value. The value of A will
be -1 (TRUE) if Bis equal to C, or 0 (FALSE) if Bis
not equal to C. So, the expression

would be evaluated from left to right as

10 A=((B=C)=0)

6

8. INPUT STATEMENT
Input is obtained using the INPUT statement. The

forms are:

N INPUTS
N INPUT#M, S

where N is a line number, S is a list of variables sepa­
rated by commas, and Mis a device number.

An example of the first form is:

1~ INPUT A,B

When this INPUT statement is executed, a question
mark appears on the screen. Values are entered from
the keyboard separated by commas.

The INPUT statement allows a comment to be
printed along with the question mark. For example:

1~ INPUT "YES OR NO";A$

displays

YES OR NO?

on the screen. The response from the keyboard is as­
signed to the string variable A$.

The second form is discussed under DEVICE
SPECIFIED INPUT AND OUTPUT (Section H).

C. READ AND DATA STATEMENTS
The READ and DAT A statements are always used

together. The READ statements "read" the values in
the DAT A statements.

The DAT A statement has the form

N DATA S

where N is a line number and S is a list of constants
separated by commas. For example,

10 DATA 1.5, "HI", HI, -66

...

Strings may appear either quoted or unquoted. If
unquoted, leading blanks are ignored and trailing
blanks are included.

The values appearing in DATA statements are
combined into a list in the order in which they appear.
Thus the statement

1,» DATA 2,3,5

is equivalent to the two statements

10 DATA 2,3
2¢ DATA 5

The READ statement has the form

N READS
~ ."

where N is a line number and S is a list of variables
separated by commas. Each READ statement assigns
values to the variables in its list by accessing the
DATA list. The next READ statement proceeds in the
DATA list where the previous READ statement left
off. For example,

10 READ A,8$,C$.
2¢ READ C
30 DATA 1.5,TYPE
40 DATA 40,50

is equivalent to

10 LET A=1.5
20 LET B$="TYPE"
30 LET C$"" "40"
4¢ LET C=50

Numeric values may be read into string variables.
However, if an attempt is made to read a string into a
numeric variable, a syntax error occurs in the line
containing the string.

If there are more items in the DAT A list than are
read, the rest are ignored. On the other hand, if the
DAT A list contains too few items, then an out-of-data
error occurs and the program is terminated.

D. RESTORE STATEMENT
The RESTORE statement resets the pointer in the

DATA list to the first DATA item. The RESTORE
statement has the form:

N RESTORE

where N is a line number. For example:

10 DATA 10,20
20 READ A
3¢ READ B

7

assigns A the value 10 and B the .value 20. While

10 DATA 10,20
20 READ A
30 RESTORE
4¢ READ B

assigns both A and B the value 10.

. E. PRINT STATEMENT
The PRINT statement is used for output. The forms

are:

N PRINTS
N PRINT#M,S

where N is a line number, S is a list of expressions,
and Mis a device number.

The second form is discussed under DEVICE
SPECIFIED INPUT AND OUTPUT (Section H).

The following example of a PRINT statement:

10 LET A=3.15
20 LET 8$="TOTAL IS"
30 PRINT 8$;A

results in

TOTAL IS 3.15

appearing on the screen.
A question mark can be used instead of PRINT

when entering a program. The following examples are
equivalent:

10 ?"THE VALUE IS ";B
10 PRINT"THE VALUE IS ";B

The question mark only appears when the program
is first typed, and is replaced by PRINT when the
program is listed.

F. VERTICAL SPACING OF OUTPUT
Vertical spacing is accomplished by using the

PRINT statement without an output list. This, in ef­
fect, prints a blank line. For example,

10 PRINT"LINE ONE"
20 PRINT
30 PRINT"LINE TWO"

...

results in the output:

LINE ONE

LINE TWO

Using a colon to allow multiple statements on a line
and using ? for PRINT, three lines are skipped by this
example:

1(/J ?:?:?

Because the question mark is replaced by f>RINT
when the program is listed, the programmer should be
careful of overrunning the end of a line if he uses a lot
of question marks for PRINTS. .

The following example will skip 32 lines or cleali:the
screen.

1(/J FOR 1=1 to 32: PRINT:NEXT

G. HORIZONTAL SPACING OF OUT­
PUT

BASIC has several features that can be used to
control horizontal spacing: zoned output, compressed
output, the TAB function, the SPC function, and the
POS function.

ZONED FORMAT

Each line of output is divided into 14-space zones.
The use of commas in the output list specifies zoned
format. For example,

1 (/J PRINT«t23456789(/J123456789(/Jt 234567890"
20 A=1.2:B=-5
3(/J PRINT A,B
4(/J PRINT A,,B

results in the output:

123456789(/)123456789(/)123456789(/J
1.2 -5
1.2 -5

All values are left-justified in their zones. Positive
numerical values have a space in the first position in­
stead of a plus sign.

If a PRINT statement ends with a comma, the next
PRINT statement outputs to the next zone instead of
the next line. The statement:

10 PRINT A,B

8

is equivalent to the two statements:

1(/J PRINT A,
20 PRINT B

If a value will not fit into the 14 spaces allowed for
a zone (for example, a long string), the next zone is
skipped.

COMPRESSED FORMAT

The use of a semicolon in the output list of a
PRINT statement specifies compressed format. String
values are printed next to each other. Numeric values
are printed with a trailing blank. Positive numeric
values also have a leading blank instead of a plus
sign. For example,

1(/J B=-40:A=3.5
2(/J C$="THE ANSWERS "
3(/J D$="ARE "
40 E$=" AND "
5(/J PRINT C$;0$;A;E$;B

results in the output:

THE ANSWERS ARE 3.5 AND -4(/J

If a PRINT statement ends with a semicolon, then
the next statement outputs to the same line instead of
the next line. For example,

1(/J PRINT A;
20 PRINT B

and

1(/J PRINT A;B

are equivalent.

TAB FUNCTION

The TAB function is used in the same way as the
TAB key on a typewriter. The general form is

TAB(X)

where X is a arithmetic expression whose value is one
less than the position where the next value is to be
printed. An example:

10 PRINT A;TAB(3*X);B

...

Semicolons should be used with the TAB function.
If followed by a comma, printing begins in the next
zone. Note the effect of commas in lines 50 and 60 of
this example:

10 PRINT''12345678901234567~1234567890"
20 A=12.3:B=-5
30 A$="A"
40 PRINT A;TAB(8);B
50 PRINT A,TAB(8);B
6(/) PRINT A$,TAB(8),B

results in the output:

1234567890123456789(1)1234567890
12.3 -5
12.3 -5

A -5

SPC FUNCTION

The SPC function is used to print spaces in output.
The general form is

SPC(X)

where X is a numerical expression whose value is the
number of spaces to be printed. For example,

Hj PRINT" 123456789(/)1234567890"
2(/1 PRINT''A";SPC(S);"B"
3(11 PRINT"A" ,SPC(5);"B"

results in the output:

12345678901234567890
A B
A B

Note that the comma in line 30 produces spacing
within the zone.

POS FUNCTION

A PRINT statement can print a sequence of up to
132 characters in length. The position function returns
(as an integer between 0 and 132) the position in the
sequence of the last character printed. Its form is

POS(X)

where X is a dummy argument. The value of X is ig­
nored. For example,

10 PRINT"01234";POS(X)

9

results in the output:

01234 5

There may be a difference between the position of a
character in the output sequence and its position on
the screen. This is because a video screen displays
either 32 or 64 characters per line; the output se­
quence, which can be as long as 132 characters, may
extend over several lines. Thus, when POS(X)=64

· the cursor is at the left margin of the screen.

H. DEVICE SPECIFIED INPUT AND
OUTPUT

The disk BASICs, OS-65D and OS-65U, allow a
device to be specified in PRINT, INPUT, and LIST
statements. A device is specified by typing a pound
sign followed by the device number. Some examples:

INPUT #8,0$
PRINT #4, "LINE PRINTER"
LIST #6

Input and output can be routed from or to various
devices on the system including a terminal, modem or
cassette at the serial port, video display, 430 board
based UART, memory buffer, line printer, two disk
buffers, 16 port serial board and a null device. The
following table lists the device numbers:

650 INPUT DEVICES

1. Serial Port (ACIA)
2. Keyboard on 440/54f Board
3. UART on 43¢ Board
4. Nulf
5. Memory
6. Disk Buffer 1
7. Disk Buffer 2
8. 55¢ Board Serial Port
9. Null

65D OUTPUT DEVICES

1. Serial Port (ACIA)
2. Video on 44(11/540 Board
3. UART on 43(11 Board
4. Line printer
5. Memory
6. Disk Buffer 1
7. Disk Buffer 2
8. 550 Board Serial Port
9. Null

For example, to store a program on cassette that
exists on disk, the user calls that program into mem­
ory and types LIST#l or LIST#3 depending on
which port his cassette interface is connected to. This

-

lists that program on that device. To output to a print­
er, the user types PRINT#4 and the output will be
routed to the line printer. Memory output, device #5,
is useful for various experimenter situations such as
directly displaying information on the 540 video
screen without scrolling.

Device #6 and device #7 are memory buffers for
use with disk files.

Care must be taken not to route input or output to
non-existent or turned-off peripheral devices since
this will cause the computer system to "bing"
and will require a reset which may destroy data in
memory. For 65u device numbers, please refer to the
manual.

I. MONEY-MODE OUTPUT
Money-mode output of numeric variables is avail­

able in OS-65U BASIC. Any numeric variable output
in the money-mode is automatically truncated to two
digits after the decimal point. For example, 3.149
would be output as 3.14. Rounding up can be accom­
plished by adding .005 to the number to be output.

. ,

10

The money-mode also inherently provides left or right
justification of the output in one of the 14-space out­
put zones. A variable to be output in money-mode is
preceded by either $R or $L, depending on whether it
is to be left or right-justified in its field. Values are
printed with a leading and following blank. When
right-justified, values end two spaces inside the right
edge of the field. For example:

10 X=1.429
20 Y=2.222
30PRINT"123456789¢12345678901234567890"

• 40 PRINT $L,X
50 PRINT $R,Y

results in the output:

123456789~123456789~123456789¢
1.42 .

2.22

BASIC turns on the money-mode when it
encounters either $L or $R in and output list. The
next numeric variable encountered in the output list is
printed in money-mode, and then money-mode is
turned off. String variables should not be used in
money-mode because they do not turn it off .

CHAPTER 4

PROGRAM CONTROL

Normally, program execution proceeds sequen­
tially. The order of execution can be alte£ed by the
control statements described in this chapter.

A. GOTO STATEMENT
The GOTO statement is an unconditional transfer

statement. It has the form

N GOTO M

where N and M are line numbers. In OS-65U the
directive M can also be a variable. Because blanks
are ignored in BASIC, it can also be written GO TO.

When the GOTO· is ·executed· control· transfers· to
line M, rather than to the next statement. For exam­
ple,

10 GOTO 30
20 PRINT "LINE 20"
30 PRINT "LINE 30"

results in the output

When used in the immediate mode (see CHAPTER
5.B), GO TOM starts execution of the program in the
workspace at line M.

B. IF ... GOTO STATEMENT
The IF • . . GOTO statement is a conditional trans­

fer statement. It has the general form:

N IF X GOTO M

where N and M are line numbers and X is a relational
or arithmetic expression. In OS-65U the directive M
can also be a variable. If the value of X is TRUE then
the next statement executed is line number M; if X is
FALSE control transfers to the line following N. For
example,

100 IF A< = 5 GOTO10

11

results in control passing to line 10whenever A is less
than or equal to 5 and to the line following 100
whenever A is greater than 5.

- If X is an arithmetic expression, the value of X is
treated as FALSE whenever Xis zero. If the value of
Xis nonzero then Xis treated asTRUE. For exam­
ple,

1~ IF SIN(A) GOTO 300

and

100 IF SIN(A) < > 0 GOTO 300

are equivalent.

The difference between statements and lines (which
can contain several statements) becomes very impor­
tant when using the IF . . . GOTO statement. It
should never be followed by a second statement on
the sam.e line; the second statement is never exe­
cuted. Regardless of whether Xis TRUE or FALSE.
control always passes to a different line.

C. IF ... THEN STATEMENT
The IF ... THEN statementis a conditional trans-

fer statement. It occurs in two forms:

N IFS THEN M
N IFS THEN R

where N and M are line numbers, S is a relational or
arithmetic expression and R is a statement. If S is an
arithmetic expression, the value of S is tre~ted as
FALSE whenever S is.· zero .. If the value of S is non­
zero then S is treated as TRUE.

The first form is equivalent to the IF . . • GOTO
statement described above. For example,

10 IF Z < > (/J THEN 3(/)0

and

10 IF Z THEN 30(/J

both transfer control to line 300 whenever Z is non­
zero.

With the second form, the statement R is executed
whenever S is TRUE. If S is FALSE, R is ignored
and control passes to the following line. These state­
ments, for example,

10 INPUT "ENTER X";X
2fl) IF X > (/J THEN PRINT"X IS POSITIVE"
30 X < = (/J THEN PRINT"X IS NOT POSITIVE"

will cause one, but not both, of the phrases .,','.X IS
POSITIVE" or "X IS NOT POSITIVE" to be
printed.

Multiple statements can appear in the place of
statement R. If S is FALSE all of the statements fol-
lowing THEN are ignored. For example, ~.

IF Z >~THEN PRINT"Z IS POSITIVE":GOTO 3~~

prints "Z IS POSITIVE" and transfers control to line
300 when Z is positive. If Z is not positive, control
passes to the next line in the program.

D. ON ... GOTO STATEMENT
The ON . . . GOTO statement is a conditional

transfer statement having the general form:

NON S GOTO L

where N is a line number, S is an arithmetic expres­
sion, and L is a list of line numbers separated by
commas. In OS-65U each line number in the list can
be represented by a variable. The expression S is
evaluated and truncated. Control then passes to the
S-th line number in the list. For example,

transfers control to line 100 if Z is 1, to line 200 if Z is
2, and line 300 if Z is 3. If Z is less than 1 or greater
than 3 then the ON . . . GOTO statement is ignored
and control passes to the following statement.

E. FOR-NEXT STATEMENTS
It is often desirable to repeat a segment of a pro­

gram. Looping back over a portion of a program is
usually accomplished in BASIC with a FOR-NEXT
loop. The FOR and NEXT statements are used to­
gether to form the loop.

12

The FOR statement has the forms:

N FOR V =XTO Y
N FOR V = X TO Y STEP S

where N is a line number, V is a single numeric or
integer variable, and X and Y are arithmetic ex­
pressions. The value of X is called the initial value
assigned to the index variable V, the value of Y is the
limit of V, and the value of S is the increment.

The NEXT statement has two forms:

N NEXT
N NEXT V

where N is a line number and V is the same index
variable appearing in the FOR statement. The index
variable is optional in the NEXT statement for a
single loop, but should appear if loops are nested.

The FOR statement is the first statement in the
program loop. The NEXT statement is the last state­
ment in the loop. The collection of statements be­
tween the FOR statement and the NEXT statement is
called the body of the loop and comprises the block of
statements that are repeated.

The following actions take place with the first form
of the FOR statement. When the FOR statement is
executed, the index is assigned the initial value. Then
the body of the loop is executed. Th/o actions, incre­
ment and check, take place when the NEXT state­
ment is executed. First, the index variable is in­
cremented by adding one to its value. Second, the
value of the index variable is now compared to the
limit. If the value of the index variable exceeds the
limit, control transfers to the statement following
NEXT. If the index variable is less than or equal to
the limit, control transfers to the first statement in the
body of the loop. For example,

10 FOR I = 1 TO 5
20 PRINT I
3¢ NEXT

causes the numbers from 1 to 5 to be printed in a
column.

Because the index is not compared to the upper
limit until the end of the loop, the body is always exe­
cuted at least once.

The expressions X, Y and S are evaluated only
once, when the FOR statement is executed. Thus the
looping is unaffected if the variables comprising these
expressions are assigned new values within the body
of the loop. Looping may be affected if the value of
the index variable is changed within the body of the
loop.

Control may transfer out of the body of the loop.
Transfer into the body with a statement other than a
RETURN from a GOSUB, may lead to unexpected
results.

...

STEP CLAUSE

The second form of the FOR statement contains the
STEP clause. In the first form, the index variable is
incremented by 1 on each pass through the loop. In
the second form, the index variable is incremented by
the value of S. If S is positive, then control passes out
of the loop to the statement following NEXT when
the index variable exceeds the limit. If the increment
is negative, control passes out of the loop when the
index variable is less than the limit. If the increment
is zero, no check is made and the loop repeats in°
definitely .. Consider these examples:

STATEMENT VALUES OF X

FOR X=l TO 2 STEP .5 1,1.5,2
FOR X= 1 TO 5 STEP 10 1
FOR X=HfTO 1 STEP -1 10,9,8,7 ,6,5,4,3,2, 1.
FOR X=l to 10 STEP 0 1,1,l, ...

NESTED LOOPS

Loops may be nested. For example,

1~ FOR b=1 TO 2
21j) FOR J=1 TO 3
30 PRINT l,J
4(.3 NEXT J
50 NEXT I

results in the output

1
1
1
2
2
2

1
2
3
1
2
3

Note that the inner loop is completed with each
step .of the outer loop.

Care must be taken to be sure the loops are
properly nested and not overlapped as would

13

occur if lines 40 and 50 above were reversed.
Lines 40 and 50 can also be written in a
shorthand form as " 40 NEXT J ,I ".

Exiting in the middle of FOR-NEXT loops-and
then reusing the same loop variables as loop
variables can create unexpected NEXT without
FOR errors. Such errors can be avoided by
using different loop variables.

F. STOP STATEMENT
Program execution is halted with a STOP state­

ment. Its form is:

N STOP

where N is a line number. There may be more than
one STOP statement in a program. When execution is
halted a BREAK message with the line number is
printed. For example,

1 ~ PRINT "HERE"
20 STOP

results in the output:

HERE
BREAK IN 20

A program that has been halted by a STOP state­
ment· can be restarted where it left off by the · CONT
command (see page 15).

G. END STATEMENT
The END statement is often u~ed as the last state­

ment in a program. Like the STOP statement, it ter­
minates execution. It has the form:

NEND

where N is a line. number. The END statement is op­
tional. If used, it need not be the last statement in the
program, and there may be more than one END
statement. In contrast · to the STOP statement, no
BREAK message is printed and the program cannot
be restarted where it left off.

CHAPTER 5

PROGRAMMING

A. BASIC PROGRAMS
A BASIC program can be entered into the comput­

er whenever the BASIC prompt

OK

appears on the screen. A BASIC program is com-·
posed of lines. Each line begins with a number (called
the line number) followed by a list of BASIC state­
ments separated by colons. For example,

1"A=60
2'1 B = N2 : C = N3
3~ PRINT B, C

Any integer from 1 to 63999 can be used as a line
number.

The lines of the program are typed one at a time. A
line can hold 71 characters. A statement is not
allowed to overlap two lines. (Since a line on the
screen contains either 32 or 64 characters, a state­
ment may overlap lines on the screen.)

· After each line is typed the <RETURN> key is
depressed.

After all of the program has been entered it is exe­
cuted by typing the command

RUN

without a line number and followed by <RETURN>.
Normally, the statements in a program are executed
starting with the lowest line number and then to the
next lowest, and so on. Statements on the same line
are executed in order from left to right.

If the program above were run, the screen would
appear as follows:

OK
H~ A= 6~
20 B = A/2 : C = A/3
30 PRINT B, C
RUN

3(/) 20

OK

The program is entered after the OK prompt. The
RUN command is given and execution proceeds as
follows:

14

Line 10: The value of 60 is assigned _to the
variable A.

Line 20: The value of A is divided by 2 and
assigned to the variable B (now 30).
Then the value of A is divided by 3
and assigned to the variable C (now
20).

Line 301: The values of B and C are printed.

The output consists of the two numbers 30 and 201•

The OK prompt reappears after execution is com­
pleted. The computer is ready for another instruction.

The program is stored in a region of memory re­
ferred to as the workspace. The program will remain
in the workspace until erased by the NEW command,
replaced by a program loaded from tape or disk, or
lost by unplugging the computer.

B. IMMEDIATE MODE
As each line is typed it is stored in a memory loca­

tion referred to as a buffer. If the line begins with a
line number it is added to the program in the wor:k­
space. If the line does not begin with a number it is
executed immediately. This immediate execution fea­
ture is called the immediate mode or calculator mode
of BASIC. Most BASIC statements can be used in
the immediate mode. Examples:

PRINT SIN(.315)

and

. FOR I=1TO100:PRINT 1'3:NEXT

C. COMMANDS
A command is an instruction that is usually used in

the immediate mode as apposed to a statement which
is an instruction that usually appears within a pro­
gram.

NEW COMMAND

Ifa program resides in the workspace any new lines
that are entered· with a line number· will be added to
it. In order to create new programs the workspace
must be reset by the NEW command. Ithas the form

NEW

Because the NEW command returns from a BASIC
program to the immediate mode, itis not as useful as
other commands when used within a program. But
the NEW command can be used within a program for
read pr9tection by using NEW in place of an END
commands.

RUN COMMAND

The RUN command has the following forms:

RUN
RUNM
RUN"N

where M is · a line number and N is the name of a
program stored on disk or a track number. The first
form starts execution of the program in the work­
space at the lowest line number. The second form
starts execution of the program in· the workspace at
the line numbered M. The third form causes the pro­
gram named N to be loaded from disk and executed
starting at the lowest line number. If N is a number
then the program on track number N will be loaded
and executed starting at the lowest line number.
Examples:

RUN 135
RUN" ACCOUNT
RUN"23

All of the forms of the RUN command can be used
within a program. When· used in a program, the. first
form simply restarts the program; the second form
acts in a manner similar to the GOTO statement ex­
cept that the variable table is cleared; the third form
is the most useful. The third form can be used to"c- .
hain" programs so that they are executed one after
the other. Programs are chained by having the last
statement in each program be a RUN command giv­
ing the name of the next· program to be executed.

15

LIST COMMAND

The LIST command causes a segment of the pro­
gram in the workspace to be printed, usually on the
screen. It has the forms:

1) LIST
2) LIST F
3) LIST#D
4) LIST#D,F

The first form lists the entire program on the
screen.
. The letter F represents one• of the following forms
which are illustrated by example using the second
form above:

LIST 10
LIST -10

UST 10-
UST 10-20

lists only line •
lists from the beginning to
line 10
list from line 11 to the end
lists from line 1,f to line 2(b

The letter D is an output device number. If a hard­
copy printer were device number 1, then the entire
program would be printed by

LIST#1

and lines 10 through 20 would be printecl by

LIST#1, 10-20

Device numbers are discussed in Ch.~pter 3 under
heading DEVICE SPECIFIED INPUT AND OUT­
PUT (Section H).

It is often desirable to ''page through" a program
by stopping and restarting the LIST •command. In
ROM BASIC listing can be halted by depressing
<CTRL/C>. Listing can be restarted on line number
N by LIST N - . This procedure can also be used in
the disk BASICs, but there is an easier procedure:
listing can be halted by <CTRL/S> and restarted
where it left off by <CTRL/Q>.

The output of LIST to the screen can be toggled in
OS-65U BASIC by <CTRL/0>. This differs from the
features described above in thatthe listing continues;
it simply doesn't appear on the screen.

Since LIST returns from a BASIC program to the
immediate mode it is not very useful as a program •
statement.

CONT COMMAND

The continue• command has the following form:

CONT

-

The continue command can only be used in the
immediate mode.

When a program is halted by a <CTRL/C> or
STOP statement a pointer is set in the program at the
point of interruption. The program can be restarted
where it left off by the CONT command. Restarting
the program need not take place immediately. For
example, the immediate mode·can be used for LIST­
ing and PRINTing without disturbing the pointeL
This provides the programmer with a very useful de­
bugging procedure:

1) Place STOP statements at convenient points
within the program.

2) RUN the program. \; • • .
3) When a STOP is executed a BREAK mes­

sage with the line number will be printed.
The ·program segment that was just exe­
cuted can be listed using the LIST com­
mand, and the present values of. variables ·
can be determined by using the PRINT
statement in the immediate mode. For
example,

LIST 10~200
PRINT A,B,C$

NOTE: If a new line of text is added to the program,
these pointers are cleared and a continue error will be
given if CONT is used.

D. INTERRUPTING EXECUTION
A program that is running can be halted by depress­

ing <CTRL/C>. It can be restarted where it left off
with the CONT command.

The keyboard is continually checked during execu­
tion to see if a <GTRL/C> has been depressed. This
feature can be disabled by one of the following POKE
statements; it must be disabled when a program polls
the keyboard.

A <BREAK>, or on some systems <RESET>,
will also halt program execution. In ROM BASIC a
<BREAK> followed by a warm start <W> will re­
turn to BASIC with the program in the workspace in­
tact. In 65D and 65U-BASIC the program must be
reloaded from disk following a <BREAK> or <RE­
SET>.

The LIST command can also be halted; see LIST
COMMAND above.

E. EDITING A PROGRAM
Corrections can be made in a line as it is being

typed. A <SHIFT/0> will backspace and delete the
last character. Multiple deletions can be made by re­
peating the <SHIFT/0>. In ROM BASIC ·the char­
acters will still appear on the screen with cursor
marks after them. · The line will appear in corrected
form after a LIST command.

A line can be deleted as it is being typed by enter­
ing a "commercial at" symbol, @. On polled
keyboards @ is entered by <SHIFT/P>.

If a new line is entered with the same line number
as a previous line it will replace the previous version.
Thus a line can be removed from a program by simply
typing its line number followed by <RETURN>.

F. DOCUMENTATION
Remarks can be placed in BASIC programs with

the REM statement. These comments can often be
very useful to a person reading the program. They are
ignored by the computer when. the program is exe­
cuted.

REM STATEMENT

The remark statement· has the· form:

N REM R

where N is a line number and R is a remark. For
example:

1 V,(/J REM SUBROUTINE TO FIND RATIO
250 X=T/D:REM X IS THE RATIO

As shown by the above examples a remark may
appear as the only statement on a line or. follow other
statements. However, another statement should not
follow a REM statement on the same line. It would
not be executed; everything after REM is ignored on
execution.

DISABLE <CTRLJC>
POKE 530,1

ENABLE <CTRLJC>
POKE 53(/J,0

BASIC USED
ROM

POKE 2073,96
POKE 2(/)73,96

POKE 2(/J73, 173
POKE 2¢73, 76

16

OS-65O
OS-65O

G. SAVING SPACE
\\Titing a procedure so that it will fit into the avail­

able workspace can be a significant programming dif­
ficulty. BASIC provides some features that can be of
help.

FRE · FUNCTION
The amount of workspace available to the pro­

grammer can be determined by the free function .. The
free function returns the number of bytes· of memory
in the workspace that are unused. It has the form:

FRE(X)

where X is a dummy variable. A programmer who
wishes to expand an existing program should run the
program before using the free function; additional
memory is required during execution for the variable
table. After the program is executed, the following
line can be entered in the immediate mode:

PRINT. FRE(X)

If more than 32K of memory is available the FRE
function returns a value that has cycled negative.
That is, values increase in the order l,2, ... ,
32767, -32768,-32767 , When FRE(X) is negative
the number of available bytes can be determined by

PRINT 65536+FRE(X)

If the FRE function causes the computer to
"hang," it should be preceded by the CLEAR state- ·
menL Sincethe FRE function may cause the comput­
er to "hang," the programmer should save the pro~
·gram in the workspace on tape or. disk before using
PRE.

CLEAR STATEMENT

As variables are encountered in a program they are
put in a variable table along with their values. The

17

clear statement clears the variable table and RE­
STOREs the DATA pointer. It has the form:

N CLEAR

where N is a line number. The CLEAR statement can
be used to· reduce the amount of memory that a pro­
gram requires by removing variables that are no
longer needed.

The following example illustrates the effect. of the
CLEAR statement. The PRE function is used to de­
termine the amount of workspace remaining unused.

1 ~ PRINT FRE(X)
20 A=2:A$="X"
30 PRINT FRE(X)
40 PRINT A,A$
50 CLEAR
60 PRINT FRE(X)
7(b PRINT A,A$

OK
RUN
31923
31911
2 X
31923
(b

SUGGESTIONS

The first place a programmer can look for addi­
tional space is the overall design of the program.
After tlult, some simple fixes can be tried. For example:

1) Use subroutines for repeated code and
functions for repeated calculations.

2) Remove blanks:
10 FOR I = l TO 10

and
10 FORI=lTOlf

are equivalent.
3) Remove REM statements ..
4) Remove line numbers by putting more

statements per line.
5) Reuse variable names.
6) Use smaller names such as A for Al.
7) Put variables in arrays; an array of 10 ele­

ments uses less space than 10 different vari­
able names.

8) Integer arrays use .. less space in memory
than real arrays.

CHAPTER 6

ARRAYS

Large quantities of data can be handled in BASIC
by organizing the data into arrays. Arrays can be one
or multi-dimensional. The elements of an array are
subscripted variables.

A. SUBSCRIPTED VARIABLES
Variables may be simple or subscripted. Sub­

scripted variables have the form

N(L)

where N is an arithmetic, integer, or string variable;
and L is a list of arithmetic expressions, called sub­
scripts, separated by commas. Examples:

N1(2)
V$(5.6,4*X)
RA%(S,T,W)

The arithmetic expressions used as subscripts are
evaluated and then truncated to integer values. Sub­
scripts can have values between 0 and W, inclusive.
Larger subscript values are allowed if the array is di­
mensioned in a DIM statement.

18

B. DIM STATEMENT
The dimension statement has the form

N DIM L

where N is a line number and L is a list of subscripted
variable names. For example,

10 DIM A(20),B$(1,2)
20 DIM X1 (N*2)

The array A is a one-dimensional arithmetic array
having twenty-one elements: A(0), ... , A(20). The
array B is a two-dimensional string array having the
six elements: B$(0,0), B$(0,l), B$(0,2), B$(1,0),
B$(1,l), and B$(1,2).

Arrays can have variable subscripts. For example,

1¢ INPUT"WHAT IS THE DIMENSION OF M";N
2¢ DIM M(N)

Dimension statements are usually placed together
at the beginning of the program. However, dimension
statements can occur anywhere in a program. Space
is allocated as they are encountered. The dimension
statement must be executed before the array is used.
A double dimension error occurs if an array is
encountered in a DIM statement after one of the ele­
ments of the array has been encountered. A double
dimension error also occurs if an array is encountered
in more than one DIM statement ..

CHAPTER7

FUNCTIONS

A. MATHEMATICAL FUNCTIONS .~ •'
The following mathematical functions are supplied

in each version of BASIC. In general, the arguments
of these functions may be any arithmetic expression.
~xceptions. are noted in the discussion of e~J:l func-
tion. , •

ABS FUNCTION

The absolute value function returns the absolute
value of its argument: ABS(X) is equal to · X if X is
greater than or equal to zero and ABS(X) is equal to
-X if Xis less than zero. For example, ABS(-7.5) is
7.5.

EXP FUNCTION

The exponential function returns e=2.71828.
raised to the power of its argument. For example,
EXPO) is e, The argument of EXP must be less than
88.0296919.

INT FUNCTION

The integer function returns the greatest integer
less than or equal to its argument. For example,
INT(6.6) is 6 and INT(-3.2) is -4.

LOG FUNCTION

The logarithm function returns the natural log­
arithm (log to the base e) of its argument. The argu­
ment must be positive. The log to another base, say
B, of Xis LOG(X)/LOG(B).

19

RNO FUNCTION

The random number generating function returns a
·number between 01 and L This function is usually
used to generate a sequence of pseudo-random val­
ues. For example, in ROM BASIC this program:

5 X = RND(-1)
HP FORl=1 TO 5
2fi) PRINT RND(1);
3~ NEXT

results in the output:

163997 .56961 .865247 .3236~2 .412642

If the argument is positive, it is a dummy argument.
That is, its value is not important; RND only checks
to see if it is positive. As long as the argument re­
mains positive, RND will generate the next number in
the sequence using the last value returned. The ran­
dom number sequences are periodic. The example
above repeats after 1861 calls to RND.

If the argument is negative, RND will start a new
sequence with a new period based on the value of the
argument. Thus negative arguments serve as seeds.
The same sequence is generated if the same negative
seed is used.

If the argument is zero, RND will return the previ­
ous· value again.

If the programmer wishes to have a program gen­
erate a different random number sequence each time
the program is run, he· should devise a procedure for
choosing the seeds. Such a procedure might be based
on PEEKing various memory locations.

A random number N between two numbers A
and B (A<N<B) can be obtained by N =
A+RND(X)*(B-A).

SGN FUNCTION

The sign function returns the sign of the argument.
Plus one is returned for positive arguments, minus
one for negative arguments, and zero is returned if
the argument is zero.

..

SQR FUNCTION

The square root function returns the square root of
its argument. For example, SQR(4) is 2. The argu­
ment must be positive.

TRIGONOMETRIC FUNCTIONS

The trigonometric functions require·their arguments
to be in radians. To convert degrees to radians;.,ra-

• dians = .0174532925 * degrees.

SEC(X) = 1/COS(X)

CSC(X) = 1/SIN(X)

COT(X) = 1/TAN(X)

ARCSIN(X} =ATN(X/SQR(-X*X +1))

ARCCOS(X) = -ATN(X/SQR(-X*X+1)) +1.57~8

ARCSEC(X) = ATN(SQR(X*X-1))

The sine, cosine, tangent, and arctangent functions
are supplied by BASIC. They are called by the fol­
lowing forms: SIN(X), COS(X), TAN(X), and
ATN(X); where the argument is an arithmetic ex­
pression. The value of the argument of ATN(X) must
be between - 1 and 1.

The following functions, while not intrinsic to
BASIC, can be calculated using the existing BASIC
functions as follows:

ARCCSC(X) = ATN(1/SQR(X*X,...1)) +(SGN(X)-1)*1.57~8

ARCCOT(X} = ATN(1/X)

SINH(X) = (EXP(X)-EXP(-X))/2

COSH(X) = (EXP(X)+EXP(-X))/2

TANH(X) = EXP(-X)/(EXP(X)+EXP (-X)) *(-2)+1

SECH(X) = 2/(EXP(X)+EXP(-X))

CSCH{X) = 2/(EXP(X)-EXP(-X))

COTH(X) = EXP(-X)/(EXP(X)-EXP (-X))*2+1

ARCSINH(X) = LOG(X+SQR(X*X+1))

ARCCOSH(X) = LOG{X +SQR(X*X-1))

ARCTANH(X) = LOG((l+X)/(1-X))/2

ARCSECH(X) = LOG((SQR(-X*X+1) +1)/X)

ARCCSCH(X) = LOG((SGN(X)*SQR(X*X+ 1)+1/)X

ARCCOTH(X) = LOG((X + 1)/(X-1))/2

B. STRING FUNCTIONS
A string function is either a function whose argu- .

ment is a string or a function which returns a string.
String functions may return either numeric values or
strings. Those that retum strings have names ending
with a dollar sign.

20

ASC FUNCTION

The ASCII function returns the ASCII value in dec­
imal of the first character in the argument; It has the
form

ASC(X$)

where X$ is a string expression. For example,
ASC(" BIG") is 66.

CHR$ FUNCTION

The character function returns a one-character
string. The character returned is the one whose dec­
imal ASCII value is the argument. It has the-form

CHR$(X)

. where X is an arithmetic expression whose value is
between 0 and 255. The character function is. essen­
tially the opposite of the ASC function. For exltnple,
CHR$(66) IS "B".

LEFT$ FUNCTION

The left function returns a left-most substring of a
string. It has the form

LEFT$(X$, Y)

where X$ is a string expression and Y is a positive
arithmetic expression. The Y left-most characters of
X$ are returned. For example, LEFT$(''123456" ,3) is
"123". If Y exceeds the length of the string, the
string is returned.

LEN FUNCTION

The length function returns the length of a string. It
has the form ..

LEN(X$)

where X$ is a string expression. For example,
LEN("OUT") is 3.

MID$ FUNCTION

The middle function returns a middle substring of a
string. It has the two forms

MID$(X$,Y)
MID$(X$,Y,Z)

where X$ is a string expression, Y is a positive arith­
metic expression and Z is a. nonnegative arithmetic

21

expression. The first form returns the substring of X$
starting in the Y-th position to the end of the string.
For example, MID$(" 123456" ,3) is "3456". The sec­
ond form returns a substring of length Z . starting in
the Y-th position. For example, MID$(" 12345" ,3,2)
is "34". IfY exceeds the length of the string, the
string of length zero, " ", is returned. If Z goes past
the end of the string, the substring starting in the Y-th
position· to the end of the string is returned.

RIGHT$ FUNCTION

The right function returns a right-most substring of
a string. It has the form

RIGHT$(X$,Y)

where X$ is a string expression and Y is a positive
arithmetic expression. The right-most Y characters of
X$ are returned. For example, RIGHT­
$('' VALUE'' ,3) is.' 'LUE''. If Y exceeds the· length of
the string the string is returned.

STR$ FUNCTION

The string function returns the value of the argu­
ment as a string. It has the form

STR$(X)

where X is an arithmetic expression. For example,
STR$(12.3) is " 12.3", a string of length 4. For posi­
tive numbers, a leading blank instead of a plus sign is
returned. The results are the same as when X is
PRINTed; except that no trailing blank is included in
the string. Some forms are converted; for example,

1 (/J PRINT''1234567890123456789(/J''
2(/J A(1)=15.1
3(/J A(2)=-25
4(/J A(3)=12.r/JE+2
50 A(4)=100000000000
6(/J FOR I = 1 TO 4
7</J A$=STR$(A(I))
Sq! PRINT A$, LEN(A$) : NEXT

results in the output

12345678901234567890
15.1 5

-25 3
120¢ 5
1E+11 6

VAL FUNCTION

The value function returns the numeric value of a
string. It is the opposite of the STR$ function. Its
fonn is

VAL(X$)

22

where X$ is a string expression representing a
number. For example, VAL(''0Ji35") is 3.5E-03. If
X$ does not · represent a number the value f is re,.
turned.

CHAPTER 8

SUBPROGRAMS

A calculation that needs to appear more than once
in a program. can be written as a subprogram. The
subprogram can be called each time it is needed; thus
avoiding the necessity of rewriting the calculation.
There are two types of subprograms in BASIC:

, .
statement functions and subroutines. A stai>Dment
function consists of a one-statement calculatlon. A
subroutine can be a self-contained program.

A. STATEMENT FUNCTIONS
In addition to the functions supplied by the system,

the user can create functions called statement func­
. tions. Statement functions are defined by the DEF
statement.

DEF STATEMENT

The define function statement has the form

N DEF FNX(A) = E

where N is a line number, X . and A are simple
numeric variables, and Eis an arithmetic expression.
The name . of the function consists of the letters FN
followed by a;variable name. The variable A is called
the dummy variable. The expression E may reference
other functions; including those defined by DEF
statements. The use of the variables X and A in the
function does not affect their use elsewhere . in · the
program; The define function statement cannot be
used in the immediate mode.

Consider the following program:

1 ¢ DEF FNS(P) = P + P A 2
20 X = 2
3¢ PRINT FNS(X+1)

The output is

12

The function FNS is defined in line 10 to be P plus
the square of P. In line 30, the programmer has re"

23

placed the dummy argument P by an arithmetic ex­
pression, X + l. At this point in the program the
v.alue of X + l is 3, so J is substituted for each occur­
ence of P in the defining expression. The result,
3 + 3 A 2 = 12, is assigned to FNS(X + 1).

B. SUBROUTINES
A subroutine consists of a program segment ending

with a RETURN statement. A GOSUB statement
calls the subroutine by transferring control to the first
line of the subroutine. When the return statement at
the end of the subroutine is encountered, control re­
turns to. the statement following the GO SUB state­
ment.

GOSUB AND RETURN STATEMENTS

The form of the GOSUB statement is

N GOSUB M

where N and M are line numbers. In 65U the direc­
tive M can also be a variable.) Control is transferred
to line number M. The form of the RETURN state­
ment is

N RETURN

where N is a line number. For example,

10 PRINT "START"
20 GOSUB 50
30 PRINT "OUT OF SUBROUTINE"
40 END
50 PRINT "IN SUBROUTINE"
60 RETURN

results in the output

START
IN SUBROUTINE
OUT OF SUBROUTINE

·-

Subroutines can call other subroutines including
themselves. Subroutines may have logical branches
each of which ends in a RETURN statement.

It is convenient to picture the transfer of control as
follows: As the GOSUBs are encountered they are
stacked one on the other; when a RETURN state­
ment is encountered one of the GOSUBs is peeled off
the top of the stack. Control then passes to the next
statement following the GOSUB that was on top of
the stack.

If a RETURN statement is encountered with no
GOSUB on the stack, a RETURN-without-GOSUB
error occurs. For this reason, subroutines are placed
after a STOP or END statement denoting the end of
the main logical sequence in the program. \:

ON ... GOSUB STATEMENT

The ON . . . GOSUB statement is a conditional
transfer statement similar to the ON . . . GOTO
statement. It has the form

24

NON S GOSUB L

where N is a line number, S is an arithmetic expres­
sion, and L is a list of line numbers separated by
commas. The expression S is evaluated and trun­
cated. Control then passes to the S-th line number in
the list L. When a RETURN is encountered, control
returns to the statement following the ON
GOSUB statement. For example,

20 ON Z GOSUB 100,2¢0,3~0

transfers control to statement 100 if Z = 1, to state­
ment 200 if Z = 2, and to statement 300 if Z = 3. If Z
is less than 1 or greater than 3 then the ON_ . . .
GOSUB statement is ignored and control passes to
the following statement. (In 65U each line number
can also be represented by a variable.)

...

CHAPTER 9

DIRECT MEMORY CONTROL

The following features of BASIC can be very useful
to the experienced programmer. Care mus(be exer~
cised with these statements and functions because
they manipulate the memory of the computer directly.
An improper operation with any of these com~ands
can cause a system crash, wiping out BASIC$nd the
user's programs. ~ _

The function of each memory location varies with
the computer's configuration. The programmer should
consult his operating systems manual for a "memory
map'' and a listing of the most useful parameters used
by PEEK, POKE, and WAIT.

A. POKE STATEMENT
The POKE statement stores a value into a memory

location. It has the form

N POKE I, J

where N is a line number, and I and J are arithmetic
expressions whose values are integers. The value of I
is a memory location expressed in decimal and the
value of J is placed in location I. The value of J must
be between 0 and 255 inclusive. For example,

1~ FOR I = 14822 TO 14828
20 POKE I, A(I)
3~ NE~T

stores the array A in the memory locations 14822 to
14828.

The expression J cannot contain _ the PEEK func­
tion. No error results; the value is not POKED.

A value cannot be POKED into a ROM memory
location.

B. PEEK FUNCTION
The PEEK function reads a location memory. It

functions as the opposite of the POKE statement. It
has the form

PEEK(I)

25

where I is a memory location or I/0 location ex­
pressed in decimal. For example,

1~ FOR I = 14822 TO 14828
2~ A(I) = PEEK(I)
30 NEXT

assigns the values in memory locations 14822 to 14828
to the array A. A memory location can store one
byte; the value returned by the PEEK function is
therefore an integer between 0 and 255.

If a write-only memory location is PEEKed the
value returned may not· be the actual value in the lo­
cation.

C. WAIT FUNCTION
The WAIT function halts program execution, or

causes the program to "wait", until a particular bit in
memory is set or reset. It has the forms

WAIT I, J
WAIT I, J, K

where I is a memory location expressed in decimal,
and J and K are integers between 0 and 255. The
WAIT function in the first form reads the status of
memory location I then ANDs the result (see THE
BIT OPERATORS AND, OR, AND NOT) with J
until a nonzero result is obtained.

The bit operator OR compares two binary numbers
bit~by-bit and sets a bit in the result to l if one or both
of the corresponding bits in the two numbers is 1. The
logical operation "exclusive" OR is similar, but sets a
bit to l in the result if exactly one of the correspond­
ing bits in the two numbers is 1.

The WAIT function in the second form reads the
status of memory location I, exclusive ORs that value
with K, and then ANDs _ that result with J until a non­
zero result is obtained.

The WAIT function is used for fast service of input
status flags. For example,

WAITX, 1

..

wiH cause the execution of a BASIC program to halt
and then continue when bit zero of memory location
X goes low.

The WAIT function is not available on some spe­
cialized disks. To determine if WAIT is available on a

26

disk, boot up the disk and PEEK four consecutive
memory locations starting at 713 in OS-65D (starting
at 9029 in OS-65U). If WAIT is available, the values
returned will be 87, 65, 73, and 212. These numbers
are the ASCII values of W, A, I, and T plus 128.

CHAPTER 10

TAPE INPUT AND OUTPUT

This chapter discusses the commands prnvided in
ROM BASIC for input and output to cassette tape.

.\:
A. LOAD COMMAND IN ROM B~SIC

The load command switches input from the
keyboard to serial input port 1. It has the form

LOAD

The LOAD command can be executed in the im­
mediate mode or as part of a stored program.

When the BASIC interpreter encounters a LOAD
command, it switches input from the keyboard to se­
rial input port 1. Input continues from this port until
the user depresses the space bar on the terminal or a
program modifies a flag in memory by the statement
POKE 515,0 (POKE 515,255 also turns on LOAD).
Serial port 1 is normally connected to an audio cas­
sette interface.

To LOAD programs which are stored on tape into
the computer, proceed as follows:

1. Rewind the tape.
2. Cold start the machine or type NEW <RE-

TURN>.
3. Type LOAD but not <RETURN>.
4. Start the tape in play-back mode.
5. As soon as the leader. passes over the tape

head, depress
<RETURN>.

6. Upon completion of a LOAD, tum off the
tape recorder type <SPACE BAR> and then
<RETURN>.

B. SAVE COMMAND IN ROM BASIC
The SAVE command causes output to be routed to

both the video screen and serial port 1. It has the
form

SAVE

27

The SAVE command can be executed in the im­
mediate mode or as part of a stored program.
_ When the BASIC interpreter encounters the SAVE
command, it routes output to both the video screen
and serial port 1. This mode of operation continues
until a LOAD command is encountered which auto­
matically clears the SAVE condition. The serial port
is normally connected to the audio cassette output
interface so that the SA VE command can normally be
used for saving programs and storing data in cassette
files.

To SAVE a program which is in the workspace on
cassette tape, proceed as follows:

1. Rewind the tape.
2. Type SAVE <RETURN>. It is optional, but

good practice, to now type NULL 8.
3. Type LIST but not <RETURN>.
4. Start the recorder in the record mode.
5. As soon as the leader passes over the tape

head, depress
<RETURN>.

6. When the listing is complete, turn off the
tape recorder and optionally type LOAD
<RETURN> <SPACE BAR> <RE­
TURN> to revert to normal operation.

C. NULL COMMAND
The NULL command inserts zeros at the beginning

of each line as it is stored on tape. It has the form

NULL M

where M is an integer from 0 to 8. The integer M is
the number of zeros to be inserted at the beginning of
each line. When the NULL command is used, the
programmer should avoid extra long lines in the pro­
gram to be SAVEd. Lines of 64 characters or less are
generally safe.

...

CHAPTER 11

DISK INPUT AND OUTPUT

The disk BASICs, OS-65D and OS-65U, contain
complete disk operating systems. These systems dif­
fer in their commands and procedures. Below is a
brief description of the data and program file com­
mands available in each system. The programm~r
should consult his operating systems manual AA a
more detailed discussion.

A. OS-65D COMMANDS
This system permits accessing BASIC programs,

assembler source files and data files by name.

1/0 DEVICES #6 & #7

These devices are the CHANNELS under which
DISK file I/0 operates. Device #6 permits random (in
any order) access file operation while devices #6 and
#7 may be used in conjunction with sequential (one
after the other) files.

OPEN COMMAND

The open command permits the OPENing of a data
file for sequential or random access. The format for
the OPEN command is

DISK OPEN, device number, "filename"

CLOSE COMMAND

The CLOSE command closes a file to permit the
opening of another file. Typing

DISK CLOSE,X

where X is a specific device number, will close that
device.

28

DISK! COMMAND

The DISK! command permits the programmer to
send commands to the OS-65D disk operating system.
This command may be entered in the immediate mode
or used in a program. Examples include:

DISK!"PUT PROG1"
DISK!"LOAD PROG1"
DISK!"IO ,03"

GET COMMAND

The GET command brings a specific record from
the disk to the workspace and sets the INPUT and
PRINT pointers (device #6) to the beginning of the
record. Typing

DISK GET,N

will find record number N, and set the 1/0 pointers.

PUT COMMAND

The PUT command places a specific record on the
disk. Typing

DISK PUT

will cause the contents of the disk buffer (#6) to be
placed in the disk file.

EXIT COMMAND

The EXIT command will transfer control to
OS-65D Disk Operating System. Just type

EXIT

to enter the OS-65D DOS.

B. OS-65U COMMANDS
OPEN COMMAND

The OPEN command is used to OPEN a data file
for access. The command has two possible formats:

OPEN ''filename"," password» ,channel number
and

OPEN "filename'',channel number

The channel number must be an integer between
one and eight. After OPENing a file, the file is re­
ferred to by the channel it was opened under rather
than by its name. If a file is opened with the correct
password, the system may read or write to the file
regardless of that file's access rights. If ai;;fife is .--
opened without the correct password, the system may
only access the file in the manner defined by its ac­
cess rights (e.g. read only, write only, none, etc.).

CLOSE COMMAND

The CLOSE command permits a file to be closed.
Closing a file frees the channel the file was opened
under. Simply typing

CLOSE

closes all the channels currently open. Typing

CLOSE X

where X is a specific channel number, closes only
that channeL

INDEX COMMAND

The INDEX is a reserved system variable. This
command takes two forms the first being

INDEX (channel number)

An example of the program usage would be

X=INDEX(1)

After the execution of this statement, X would
equal the value of the· INDEX for channel 1. This
INDEX value is simply a relative pointer into the file
opened under a particular channel. When a file is
opened, the INDEX of the channel the file was
opened under is set to zero.

29

The second form of the INDEX function is

INDEX (channel number) = expression

This form permits "bumping" the INDEX to point
anywhere within the data file. Note the power of the
INDEX function in permitting the user to define the
file formats to be whatever is desired.

PRINT% COMMAND

This command has the form:

PRINT% channel number, variable expression

where the variable expression may be string or
numeric. This statement directs the variable to be
printed into the data file opened under the channel
"channel number". The variable(s) will be printed
into the file starting at the current position of the
INDEX of that channel.

INPUT% COMMAND

This command has the form:

INPUT% channel number, variable(s)

This command INPUTS data from the file opened
under "channel number" and assigns the data to the
variables(s) that appear inthe INPUT% statement.
The data is INPUT form the file starting at the current
position' of the INDEX. The INPUT% statement
terminates upon the receipt of a carriage return.

FINO COMMAND

The FIND command has the form

FIND "string expression," channel number

The FIND command executes a high speed search
for the string expression in the file opened under
"channel number". The search starts from the cur­
rent position of the INDEX for that channel .. If the
string is found, the INDEX for that channel points at
the string in the file. If the string is not found, the
INDEX for that channel is set to 1,000,000,000. Note

..

·. thatth.e FIND command may be used to find su.bsets,
e.g.,

FIND "ABCP", 1

would find the subset "ABCD'' in the string
"ABCDEFG". The FIND command also permits
"don't care'' characters within the string ifis search­
ing for. That is,

FIND "AB&Hf', 1

would find. "ABCHF' and "ABZHI".

FLAG COMMAND·

.The FLAG commarid permits the user to tailor his
system toward a specific application~ The FLAG .
command has the form:

FLAGN.

where N is the flag number of the option desired. The
options and their flag numbers are presented in the
OS-:-65U operating system manual. ·

DEV COMMAND

The device command specifies which deYice is. to
be the current mass storage unit. It has the form:

DEVU

where U is. the unit. Unit specifications are A, B,C or
D for floppy disks, E, F, G or H for hard disks and K
through Z for machines connected. in: a network;

INDIRECT FILES

A BASIC program can be moved in memory to a
location other than the workspace. Memory>holding a
program in this manner is called an indirect file. An
indirect file can be used to merge two programs and
to transfer programs between disks having different
systems such as OS-65D and OS-65U. A PtOcedure
for performing each of these operations is gi\ren be­
low. The specific commands necessary to perform
these operations vary according to the system used,
so the procedures are discussed separately from the
commands.

A. MERGING PROGRAMS
If a program needs a lot of corrections or the addi­

tion of substantial amounts of code, such as sub­
routines, a separate file can be created containing the
additions. This. file can then be merged into the pro­
gram. Three procedures for merging files are dis­
cussed in this section. The first can be used with
BASIC-in-ROM; the second can be used with OS-
65D; and the third can be used with OS-65D and OS-
65U.

The following procedure can be used to merge two
BASIC-in-ROM programs.

(1) Store PROGl onto a cassette,
(2) Loi;1.d PROG2 into the workspace, and
(3) Load PROGi into the workspace without

entering NEW.

If each of the programs has a line with the same
number. the line in PROG 1 will be the one that ap­
pears in the merged program.

The following procedure can be used to merge two
programs in OS-65D. Start with both programs, say
PROGl and PROG2, stored on a diskette.

1) Load PROGl into the workspace:

DISK!"LOAD PROG1"

Enter

EXIT

31

The number of tracks necessary to hold
PROGi will be displayed, say N tracks. Re­
turn to BASIC by entering

RE BA

2) Run the disk utility CREATE and create a file
PROG3 to hold the merged programs. If
PROG2 already has enough space the merged
program can be stored as PROG2.

3) The number, N, of tracks necessary to store
PROGi was determined in step 1). Run
CREATE again and make a file called
"DATA" with 4 times N tracks for a 5 inch
diskette and 6 times N tracks for an 8. inch
diskette. Answer NO to the query about
pages per track. Specify 4 pages per track.

4) Load PROG 1 into the workspace:

DISK!"LOAD PROG1"

5) Enter the following POKEs to create a 4 page
buffer and to disable the . scrolling of the
screen (the screen will hold the buffer).

POKE 8998,r/J
POKE 8999,2(/)8
POKE 9(/Jr/Jr/J,0
POKE 9r/Jr/J1,212
POKE 977r/J,r/J,

6} Enter on a single line:

DISK OPEN ,6," DATA": DISK!" 10, 22":LIST

A listing of the workspace will appear on the
screen while PROG 1 is being stored in the
file DATA.

7) When the listing is finished, reset the 1/0
pointers and close the file by entering:

DISK!:"I0 02,02":DISK CLOSE,6

8) Load PROG2 into the workspace by enter­
ing:

DISK!"LOAD PROG2"

..

9) Reopen the file DATA and merge PROGI
into PROG2 by entering:

DISK OPEN,6,"DATA":DISK!"IO 20"

10) Reset the 1/0 pointers, close the file, and
enable scrolling by entering:

DISK!"IO 02,02" :DISK CLOSE, 6
POKE 9770,64

11) Store the merged file by entering:

DISK!"PUT PROG3"

12) Clean house by rebooting the system.
\,:

If each of the programs has a line with the same
number, the line in PROGi will be the one that ap­
pears in the merged program.

To merge two BASIC programs using indirect files:

1) determine the starting page number N of the
indirect file,

2) load one program into the workspace,
3) move this program to the indirect file,
4) load the second program into the workspace,
5) move the first program back from the indirect

file to the workspace.

If each of the programs has a line with the same
number the line in the first program will be the one
that appears in the merged program.

B. MOVING PROGRAMS BETWEEN
INCOMPATIBLE DISKS

To transfera program between incompatible disks:

1) determine the starting page number N of the
indirect file,

2) boot up BASIC and load the program into the
workspace,

3) move the program to the indirect file using
the POKEs for the system on this disk,

4) boot up BASIC on the other disk; clear the
workspace with NEW,

5) move the program from the indirect file to the
workspace using the POKEs for the system
on this new disk,

6) PUT the program on the new disk.

32

C. STARTING PAGE NUMBER OF
INDIRECT FILE

The starting page number N of an indirect file can
usually be set at 128 in OS-65D and 144 in OS-65U. If
the prngram is quite large these values may not work.
The indirect file must fit into memory above the pro­
gram in the workspace. A value for N is given by:

~ = highest page in memory-pages unused
m memory

the hi~hest page in memory can be obtained by:

?PEEK(133}

and the number of pages unused in memory can be
obtained by

?INT(FRE(X)/256) ,or

if FRE(X) is negative, by:

?INT(65536+FRE(X))/256)

The starting page of the workspace is approx-
imately

page 50 (317E) for OS-65D on an 8 inch disk,
page 51 (327E) for OS-65D on a 5 inch disk, and
page 96 (6000) for OS-65U.

The number of pages used by the program is:

highest page-starting page-pages left.

If the number of pages used exceeds the number of
pages left there is not enough memory available to put
this program in an indirect file.

D. FROM WORKSPACE TO INDI­
RECT FILE

To move a program from the workspace to an indi­
rect file:

1) enable the indirect file function with the fol­
lowing POKES, where N is the starting page
number.

POKE 9554,N

POKE 14646,91 and
POKE 11667,N

for OS-650

for0S-65U

2) LIST the program between square brackets
as follows: With the program in the work­
space, type

LIST[<RETURN>
(wait for listing to end)
] <@> <RETURN>

If the keyboard is a polled keyboard use
these commands instead:

LIST <SHIFT/K> <RETURN>--·
(wait for listing to end)
<SHIFT/M> <@> <RETURN>

The first bracket "[", <SHIFT/K> will not appear
on the video screen. The second bracket a1'Ile°ars
twice as "]]''.

If the end of the listing appears garbled the
indirect file was not placed high enough in
memory and the end of the program in the
workspace has been overwritten.

33

E. FROM INDIRECT FILE TO
WORKSPACE

To move a program from an indirect file to the
workspace: '

1) enter the appropriate POKEs, where N is the
starting page number of the indirect file

POKE 9368,N

POKE 14721,24 and
POKE 11667,N

2) enter the command:

<CTRL/X> <RETURN>

for OS-65D

.
for OS-65U

A listing of the program in the indirect file will ap­
pear ending with the bracket closure "]]". On some
systems there will be a harmless error message before
or after the listing. To see the contents of the work­
space enter the command LIST.

..

CHAPTER 13

LINKING PROGRAMS TO MACHINE LANGUAGE ROUTINES

The USR function permits leaving a BASIC pro­
gram, executing a machine language routine, and.then
returning to the BASIC program.

A. USR FUNCTION
The USR function has the form

USR(X)

where X is an arithmetic expression. The value of X
can be sent to the machine language routine and a
single value can be returned as USR(X).

If no paramenters are passed the function is used in
the form

N Y = USR(X)

where N is a line number, and X and Y are dummy
variables. Control passes to the mathine language
routine at line N and then returns to the next line. It
is often more convenient to use the second form and
pass parameters by PEEK and PO KE rather than to
use the parameter passing feature of the USR func­
tion. If no parameters are passed, Y is assigned the
value of X.

Before the machine language routine can be called
by the USR function its starting address mustfirst be
POKEd into memory. The location depends upon the
version of BASIC that is used. Letting LO denote the
decimal value of the low byte of the starting address
and HI denote the decimal value of the high byte, one
of the following PO KEs must be used:

POKE11, LO and
POKE 12, HI for ROM BASIC

POKE 574, LO and
POKE 575, HI for OS-65O

POKE 8778, LO and
POKE 8779, HI for OS-65U

For example, if the routine starts at $4000 then 40 is
the high byte and 00 is the low byte. Converting to
decimal, HI is 64 and LO is 0.

34

PASSING PARAMETERS

The machine language routine begins by calling a
routive whose starting address is a $0006. This
routine converts the argument X into a 16 bit two's
complement number which is then stored. The stor­
age location of this number depends upon the BASIC
used; as follows:

HIGH BYTE
$(/Jf/JAE
$f/Jf/JB1

LOW BYTE
$(/J(/JAF
$0082

BASIC USED
ROM BASIC
650 and 65U

The value of X is now available for the machine
language routine.

The machine language routine ends by placing the
value to be returned to the BASIC program in the ac­
cumulator (high byte) and the Y register (low byte);
then calling a subroutine that starts at $0008. This
subroutine will pass the value to the BASIC program
as USR(X) and then return control to the BASIC pro­
gram.

EXAMPLE

An example is given in this section of a program in
65D BASIC and a machine language routine that are
linked by and have parameters passed by the USR
function. In the example, the argument of the USR
function is an integer H between 0 and 255. The value
of H is passed to the machine language routine which
then returns as USR(H) the number of times the
character whose ASCII value is H appears on the
video screen.

The BASIC program:

1 '/J POKE 57 4,0
2'/J POKE 575,64
3'/J INPUT "ENTER CHARACTER";A$
4'/J. H=ASC(A$)
5'/J N=USR(H)
60 PRINT N
7(/J END

The machine language routine:

.. l

1(/J

2(/J

3(/J

4(/J

5(/J

7(/J 3FFC

8(/J 3FFC 6C¢6(/J(/J CALL

9(/J 4(/J(/Jf/J

11 (/J 4(/J(/J(/J 2(/JFC3F START

17(/J 4(/J(/J3 A582

18(/J 4(/J(/JS A2D(/J

19(/J 4(/J(/)7 SE 194(/J

2(/Jr/J 4(/Jf/JA A2</J</J

21 (/J 4(/Jf/JC 8E1841(/J

22(/J 4(/J(/JF 8E364(/J

230 4(/J12 8E374(/J

24(/J 4(/J15 A(/Jf/J8

25(/J 4(/J17 DDFFFF COMP

26(/J 4(/)1 A D(/J(/J8

27(/J 4(/J1C EE374</J

28</J 4(/)1 F Dr/J(/J3

29(/J 4(/J21 EE364(J

300 4(/)24 E8 END

31(/J 4(/J25 D(/JF(/J.
-

320 4(/J27 EE 194(/J

33</J 4(/J2A 88

340 4028 0(/JEA

35(/J 4</J2D A0364(/J

36</J 403</J AC374(/J

37(/J 4(/)33 6C(/J8(/J(/J

38(/J 4(/)36 (/J(/J COUNT

38(/J 4(/)41 f/J(/J

;passing parameters to USR function

;N=USR(H)

;H=character number 0<=H<=255

;N=count of how many times the character

; appears on the screen

*=$3FFC

JMP (6)

*=$4(/J(/J(J

JSR CALL

LDA $82 \; A

LDK #$D(/J

STX COMP+2

LDX #(/J

STX COMP+1

STX COUNT

STX COUNT+1

LDY #8

CMP $FFFF,X

BNE END

INC COUNT+1

BNE END

INC COUNT

INX

BNE COMP

INC COMP+2

DEY

BNE COMP

LOA COUNT

LOY COUNT+1

JMP (8)

.BYTE(/J,(/J

integerize H

the result

screen addr (hi)

screen addr (lo}

initialize counter

this many pages per screen

dummy address

count it

do this if lo half rolls over

These two programs can be combined into the fol­
lowing one; the machine language routine is directly

POKED into memory after. converting each hex in­
struction to its decimal equivalent.

35

..

.,

2 FOR!=¢ TO 2

4 READ V

6 POKE 16380+I,V

8 NEXT

1¢ FOR =0 TO 55

20 READ V

30 POKE 16384+I,V

40 NEXT

50 POKE 574,0

60 POKE 575,64

7(/J INPUT"ENTER CHARACTER";A$

8¢ H=ASC(A$)

90 N=USR(H)

100 PRINT N

110 DATA 108,6,¢

120 DATA 32,252,63,165,178,162,208

130 DATA 142,25,64,162,(/J,142,24,64

14(/J DATA 142,54,64, 142,55,64, 16(/J,8

15¢ DAT A 221,255,255,208,8,238,55

160 DAT A 64,208,3,238,54,64,232,208

170 DATA 240,238,25,64, 136,2¢8,234

180 DATA 173,54,64, 172,55,64

190 DATA 108,8,0,0,¢

36

...

APPENDIX 1

ASCII CHARACTER CODES
CODE CHAR CODE CHAR CODE CHAR

00 NUL 28 + 56 V
01 SOH 2C 57 w
02 STX 2D 58 X
03 ETX -~ 2E 59 y

04 EOT 2F I SA z

05 ENQ 30 0 58 [

06 ACK 31 1 SC I
07 BEL .\: 32 2 50 1
08 BS ~. 33 3 SE /\
09 HT 34 4 SF

0A LF 35 5 60
08 VT 36 6 61 a
0C FF 37 7 62 b
0D CR 38 8 63 C

0E so 39 9 64 d

0F SI 3A 65 e
10 OLE 38 66 f
11 DC1 3C < 67 g
12 DC2 3D = 68 h
13 DC3 3E > 69

14 OC4 3F ? 6A j
15 NAK 40 @ 68 k
16 SYN 41 A 6C I
17 ETB 42 8 60 m
18 CAN 43 C 6E n

19 EM 44 D 6F 0

1A SUB 45 E 70 p
18 ESC 46 F 71 q
1C FS 47 G 72 r
10 GS 48 H 73 s

1E RS 49 I 74 t
1F us 4A J 75 u
20 SP 48 K 76 V

21 4C L 77 w
22 40 M 78 X

23 # 4E N 79 y
24 $ 4F 0 7A z
25 % 50 p 78 {

26 & 51 Q 7C }

27 52 R 7D

28 (53 s 7E
29) 54 T 7F DEL
2A * 55 u

37

;..

DISK
BASIC

BS

CN

DD

FC

ID

LS

NF

OD

OM

OV

RG

SN

ST

TM

UF

us

/0

OS

DV

FS

ROM
BASIC

B •
C .J

D
..,,.

F ..,,.
I ..,,.
L ..
N

0 _,,,,.
0 ,
0 ..
R \
s .J
s !II
T ,
u-......
u ..
I ...-

APPENDIX 2

ERROR CODES

Bad subscript: Matrix outside DIM statement range,
etc .

Conti.v:ue Errors: Attempt to inappropriately con­
tinue from BREAK or STOP.

J

Double Dimension: Variable dimensioned twice Re­
member subscripted variables default to demension
10 .
Function Call Error: Parameter passed to function
out of range .

Illegal Direct: INPUT and DEFIN statements can­
not be used in direct mode .

Long String: String longer than 255 characters.

NEXT without FOR.

Out of Data: More reads than data.

Out of Memory: Program too big or too many
GOSUBs, FOR-NEXT loops or variables .

Overflow: Result of calculation too large.

RETURN without GOSUB.

Syntax Error: 'fypo, etc .

String Temporaries: String expression too complex.

Type Mismatch: String variable mismatched to
numeric variable.

Undefined Function .

Undefined Statement: Attempt to jump to nonexis­
tent line number.

Division by Zero.

The following messages are not available in ROM BASIC.

Out of String Space: Same as OM.

Device Error. Only available in OS-65U. See oper­
ators manual for list of Dsik Error Codes.

Full Stack: Stack overflow. Only available in OS-
65U.

38

••

APPENDIX 3

KEYWORD INDEX WITH EXAMPLES

PAGE NAME , EXAMPLES BASICS

19 ABS ABS(X) ALL •

3 AND IF B>0 AND B<5 THEN 100 ALL

20 ASC A ASC(X$) ALL ' -~
20 ATN ATN(X) ALL

21 CHR$ CHR$(1) ALL

17 CLEAR CLEAR ALL

28 CLOSE DISK CLOSE,6 65D

29 CLOSE 65U
CLOSE 3 65U

15 CONT CONT ALL

20 cos COS(X) ALL

6 DATA DATA 4,78,"BIG" ALL

23 DEF DEF FNA(X)=X*SIN(X) ALL

30 DEV DEVA 65U

18 DIM DIM A(20,50),B$(2,4,5) ALL

28 DISK DISK CLOSE,5 65D

28 DISK! DISK!"PU PROGl" 65D

13 END END ALL

28 EXIT EXIT 65D

19 EXP EXP(X) ALL

29 FIND FIND "LOAN" ,2 65U

30 FLAG FLAG 03 65U

23 FN DEF FNA(X)=X*SIN(X) ALL

12 FOR FOR l:=::1 TO 10 ALL

17 FRE FRE(X) ALL

28 GET DISK GET ,1 65D

23 GOSUB GOSUB 150 ALL

24 ' ON X GOSUB 100,200 ALL

11 GOTO GOTO 100 ALL

11 ON X GOTO 100,200 ALL

11 IF IF X <5 GOTO 270 ALL

39

--

PAGE NAME EXAMPLES BASICS
11 IF S> B THEN PRINT"TOO BIG" ALL

29 INDEX X:;:: INDEX(l) 65U

29 INDEX< INDEX<l> :;:: 3 + N 65U

6 INPUT INPUT"ENTER YOUR NAME";N$ ALL

9 INPUT#8,D$ 65D,65U

29 INPUT% INPUT% 2,X,Y 65U

19 INT INT(X) ALL

21 LEFT$ B$:;:: LEFT$(A$,5) ALL

21 LEN X:;:: LEN(A$) ALL

6 LET \: LET X = Z + COS(Y) ALL

15 LIST ~ LIST ALL
LIST 100 ALL
LIST -100 ALL
LIST 100- ALL
LIST 100-200 ALL

15 LIST#l,10-20 65D,65U

27 LOAD LOAD R6M,65U

28 DISK!"LOAD PROGi" 65D

19 LOG LOG(X) ALL

21 MID$ A$= MID$(B$,2,3) ALL
A$=MID$(B$,2) ALL

15 NEW NEW ALL

12 NEXT NEXT ALL
NEXT I ALL

3 NOT NOT(A<5 AND B=0) ALL

27 NULL NULL 8 ALL

12 ON ON X GOTO 100,200 ALL

24 ON X GOSUB 100,200 ALL

28 OPEN DISK OPEN,6,"FILE3" 65D

28 OPEN"FILE2", "PASS" ,3 65U

. 28 OPEN"FILE2" ,3 65U

3 OR IF A <R OR A>S THEN 290 ALL

25 PEEK PEEK(23456) ALL

25 POKE POKE 32456 ,76 ALL

9 POS POS(X) ALL

7 PRINT PRINT X,Y;"TOO LARGE" ALL

9 PRINT#4, "LINE PRINTER" 65D,65U

29 PRINT% PRINT% 2,X 65U

28 PUT DISK PUT 65D

40

-

PAGE NAME EXAMPLES BASICS

29 DISK!"PUT PROGi" 65D

6 READ READ S,T ALL

16 REM REM DETERMINE THE RATIO ALL

7 RESTORE RESTORE ALL

23 RETURN RETURN ALL

21 RIGHT$ A$= RIGHT$(B$,3) ALL

19 RND .,..,: RND(l) ALL

15 RUN RUN ALL i

RUN 2~0
,

ALL
RUN"PROG2 65D,65U

\:
~

27 SAVE SAVE ROM,65U

19 SGN SGN(X-5) ALL

20 SIN SIN(X) ALL

9 SPC(SPC(4) ALL

20 SQR SQR(X) ALL

13 STEP· FOR X=l TO 2 STEP .5 ALL

13 STOP STOP ALL

21 STR$ A$=STR$(X) ALL

8 TAB(TAB(12) ALL

20 TAN TAN(X-B) ALL

. l1 THEN IF A <B THEN GOSUB 200 ALL

12 TO FOR I=l TO 5 ALL

34 USR USR(X) ALL

22 VAL VAL(A$) ALL

25 WAIT WAITI,J ALL
WAIT I,J,K ALL

41

INDEX

A E

Absolute (ABS) :.' 19 END•................ ·: 13
Addition 3 Equal operator 4
AND 3, 4 Error Codes 3 8
Arithmetic Relational Operators •.............. ".,' .4
Arrays \: 18

Execution of program 14
Exponential (EXP) 2, 3, 19

ASCII (ASC) ~ ... 20
Codes•...................... 37 F

B False .. 2

BREAK 16
PRE (Memory Left) 17
FOR : 12

Bytes Free 17 Function
ASC•........... 20

C CHR$ 21

Carat .. 3 EXP 19

Cassette INT .. 19

LOAD 27 LEFT$ 21

SAVE 27 LEN 21

Characters MID$ 21

Special 1 RIGHT$ 21

STRING (CHR$) 21 RND 19

CLEAR 17 SGN 19

CONT .. 15 SQN .. 20

CTRL STR$ 20

C .. 16 STRING 20

X .. 33 USR 34
VAL 22

D WAIT•................. 25

Data ; 6
Define (DEF) 23 G

Device INPUT/OUTPUT 9 GOSUB• 23
Dimension (DIM) 18 GOTO .. 11
Disk (INPUT/OUTPUT) , 28 Greater than operator 4

CLOSE 28
DEV 30 I
DISK! 28
EXIT 28 IF .. 11

FIND· 29 INPUT .. 6

FLAG 30 Devices 9

GET 28 Integer (INT) 2, 19

INDEX 29
INPUT% 29
OPEN 29

K

PUT 28 Keyboard conventions I
Division 3 Keywords 1

42

L s
LEFT$ · 21 SAVE .. 27
LEN ... 21 SHIFT .. 1
Less than operator 4 K ... 33
LET .. 6 M .. 33
Line number 6 N ... 3
LIST __, 15 0 .. 16
LOAD : 27 P .. 16
Logarithm (LOG) 19 Sign (SGN) 19
Loops, Nested 12, 13 SPC ... 9

Square root (SQR) 20
M STEP .. 13

Machine language program 35, 36
Merge programs , 31
Mid String (MID$)'\:, :.21
Multiply . : ;· _ 3

STOP ~ 13, 16
STRING 2, 20, 21
Subroutine 23

GOSUB 23
SUBTRACT• ~ ... 3

N

NEW ... 15
T

NEXT .. 12 TAB .. 8
NOT .. 3, 4 TAPE INPUT/OUTPUT 27
NULL 27 THEN .. 11

Trigonometric functions 19, 20
0 ATN 20

ON .. 12
OR ... 3, 4
Output devices 9

cos 20
SIN ':·~··•.................... 20
TAN 20

True•...•.......... 2

p

PEEK ... 25 u
POKE ... 25 USR ... 34
POS : 9
PRINT .. 7
Programming 14 V

VAL 22, 41
R Variables

Random (RND) 19 INTEGER 2

READ ... 6 NUMERIC 2

Real ... 2 Simple 18

REM (Remarks)•.......................... 16
RESET 16

STRING 2
Subscripted 18

RESTORE , 7
RETURN 23
RIGHT$ 21 w
RUN 14, ·15 WAIT : 25

43

-

