0S-65D V3.0
USER'S MANUAL
PRELIMINARY COPY
October, 1978

(C)

k’OHIO SCTIENTIFIC, INC.

0S-65D V3.0 User's Manual
Table of Contents

Features

Introduction

Using the System in BASIC :
Menu=-Oriented Disks ..ieveviennnns S e A I AR
Development Disks '

BASIC and the Immediate Mode

Loading, Saving and Running BASIC Programs

Floppy Disk FOrMAtS .cuvervnrereeessrosninonnsaannssnns
Utilizing Named Program Files

Mini-Floppy Disk Directory

Full Size Floppy Disk Directory :
Saving a BASIC Program On Disk Via a Named File
Loading a BASIC Program From Disk By File Name

Deleting Files

Backing Up Files)

Modifying BEXEC* and Applications Diskscovevunnn
Advanced Features of 0S-65D V3.0 9-Digit BASIC

BASIC I/0 Handling :

BASIC to DOS Interface

Data Files in BASIC tveverviinenenronnsosonennns AR i
Sequential Data Files

Steps to Using Sequential Data Files

Random Data Files

Steps to Using Random Data Files «cevvierniniinnennns e
Using the Assembler/Editer

Using the Extended Monitor

System Overview

System Architecture PRI L Ay e e e e e
Memory Map

Utility Programs
Create File Utility e e e e R e e
Change Parameter Utility
Delete File Utility
Directory Utility

Sorted Directory Utility vuieeemeeerneeenennennenss '

Random Access File List Utility
- Rename File Utility
Sector Directory Utility v
Sequential File Lister Utility ..ceieiinnnnneennn.
Trace Utility
File Zeroing Utility
0S-65D V3.0 Kernel

" Changing I/0 Distributor FLEgS «:eeecnceeenrnnoenenenn

Transferring Disk Sectors

Executing a Machine Code File

Using Indirect Files :

Kernal Ubllitias ol v ueiavis s e osiaiste sl e s s s sane
Initializing Diskettes

Copying Diskettes

0S-65D V3.0 for the I-P

I-P Pico DOS

Appendix
0S5-65D0 V3.0 User's Guide

Manual (C) 1978 OHIO SCIENTIFIC, INC.

85D V3.0 (C) 13978 OHIO SCIENTIFLC, INC.
~©.9-Digit BASTC {(£) MICROSOFT. IN -

Features

*Convenient to use "conventional" disk operating system

*Availégle for all OSI 6502 mini-floppy and 8" floppy
configurations : : ?

*Supports 9-Digit BASIC, Assembler/Editor, Extended Macﬁine
Code Monitor and tranéient code programs

*Utilizes named files and-manﬁally allogated files inter-

changeabl

?

*Features convenient to use BASIC oriented sequential and
random access data files

*Supports up to four fldppy drives

*Supports 430 serial, 550 serial (16 port) parallel printer,
cassette and memory I/0O as well as serial console and/dr
keyboard with video console

*Can be directly converted to a locked menu-oriented system .

for end users

*Contains all 0S=-65D V2.0 features as a subset and can read

version 2 files and assign file names %to them
*Supports multiple variable length disk buffers and variable

length sectors on diskette

Introduction : , i

(@

0S-65D Version 3.0 is a conveniént to usekdisk operating
system which fully supports Micrdsoft's 9-Digit Extended BASIC,
a 6502 resid;nt Assembler/Editor, 6502 Extended Machine Code
Monitor and variqus I/0 devices. ;The operating system is
available for all Ohio Scientific mini-floppy and full size
floppy disk configurations. - The system is convenient for
beginners to use via the programming language BASIC. It
supports writing¢ programs in BASIC, storing programs on disk,
recalling prograﬁs‘and reading and writing sequential and
random access data files in BASIC. The system also fully
supports assembler language programming for the 6502. In
ccnjunction'with its assembler and machine code capabil}ties,
it offers an extensive machine code debugging aid, the Extend_ed ‘
Monitor. The system-is also well suited to utilize machine ccde
subroutines in conjunction with BASIC programs. It has several
advanced features such as variable sector length and the capability
of its’stand-alone disk operating system kernel to support cther
languages. |

This manual will cover the above features starting with
fundamental operation of the system for the BASIC progranmmer
and advancing to more detailed levels. The manual is written
to permit the user to fully utilize the computer system at the
BASIC language level,.without ever having to read those portions
of the manual covering assembler level operation. For the user's
convenience, a condensed User's Guide that covers all features CC.

¢

0S-65D Version 3.0 is included at the end of this manual.

(@

%

o

Using the Svstem in BASIC

Before using any floppy diskettes,‘pleasékcaféfully read

all the warnings about the care and handling of diskettes and

the floppy disk system in the main operator's manual accompany=-

ing your computer. Once you have the isystem prcoperly connected

and powered up, place the 65D Version 3.0 disketée, label side

up, in the "A" drive of your disk system. There are basically

two types of 65D 3.0 diskettes: Development disks and menu-

oriented Applications disks. Both boot up directly in the

- programming language"BASiC and execute a BASIC program called

BEXEC*, With either type of diskette, the proper procedure is

as follows:

1.

T) 20'

f 3}

Place the diskette into the disk drive.
Close the drive door.

Depress the reset butten in front of the CPU or the

‘break key on the computer's keybocard depending on

the model of the computer you have.

Check to be sure the shift lock key is in the locked
or down position on polled keyboard systers,

Depress the "D" key. This selects the f{loppy disk
bootstrap which will locad the operating system from
disk into memory. A series of messages will appear
on the screen.

Menu-Oriented Disks

-

Applications disks display a menu when booted which is a list

of numbers and program descriptions, and finally, a message such

as "YOUR SELECTION?". To select the desired program, you simply

type the number corresponding to the desired selection and cdepress

thekRETURN‘key. The operating system will then load that program ”

and execute it,

Note that‘ ‘alla, inputs you tYpe in,.tok thé computer must be (.
‘f,fbliowed by preséinqﬁﬁhe RETURN kéy, This is referred to as '
“lineéoriented\iﬁput".r It offers a tremendous advantage over
cha:atter oriented‘input in that u?til'the RETURN key‘isfpressed,
‘typihg’errors‘can‘be coirected by-mereiy typing a ﬁelete
charécter'after]the7etrory then tYping the correct character.

(on various keyboards the,aelaﬁe character (hex'codé'sé) may be

- a shift-o, unaerliﬁe or back arrow.) ‘oh video terminals with
;kbackspace capablllty the erroneous character is then erased and
the cursor is left at the proper position for entry of the correct
character. On~printingvtérminalsrthat have backspace capability
the erronecus character cbviously canhoﬁ be e:ased.f However, the

print head is left correctly positionedeor.entry‘of'tha.éorrectg :

character.;bon terminals without_backspace capability~the cursbr/'
ptint hea& is’not repositiéhed bdt the;delete is performed per-
: mlttlng simple ccrrect;on of errors. As many deleté‘key strokes
as needed can be used at . any time. For éxample, if’twc:characters,
kwere typed in error, two delete key strokes can be QSéd to eliminzte
them. In addition to the single character délete;;a'cqntrol-U key
_ entry~may be ésed t§ delete~a whole line. This is done by pressing‘k
 the U key whlle holdlng the CTRL key down. |

Menu-oriented operatlng systems prov1de operatlcnal messages
as you go so it is usually not. necessary to refer to thls manual
kwhlle operating an Applications d;sk. It is possible tp gain
access to the internal soffware of an AgplicationS‘diSR'by typing"'

in. the prop“er’ responée when the menu is displayéd. Th:x.s featuref .
(N

will be covered later, after the user has galned a ;amlllar*ty

with Deve’opment dlsks.

Development Disks

Developmen£ disks are specifically for users who wish to
write their own programs. Development di?ks contain utility
programs whict will provide assis;ancs_in developing software
instead ofkproviding end user application programs. A Development
disk will boot’in with a message such as "0S-65D Version 3.0"
followéd by'soﬁe other meésages'andya selection of’possible
functions, ultimately asking the queétioh "FUNCTION?".k The
functions in this menu are utility programs which will be'covéred
latear. |

BASIC and the Immediate Mode

The first objective in mastering 65D Version 3.0 is to learn

to utilize the programming;languagebBASIC in the immediate mode
and to write simplelprog:ams. This is accomplished by selecting

a Development disk, booting it’in by typing D and answering |
"UNLOCK" to "FUNCTION?". (Note that the RETURN key must be hit at
the completion of each line of input;) This operation initializes
BASIC, prepares it for end user programming and returns the user
to the BaSIC immediatekmode displaying the pfompter "OK". At

tﬂis point, the computer will accept almost all standard BASIC
staterments in the immediate mode. The‘immediéte rnocde can ke used
-ih conjunction with any standard BASIC textbook for méstering the
concepts of the programming language BASIC. The following is a
short introduction to programming in BASIC and sorme sample prograrms
(_. that can be run. Once you have mastered elerentary programming in
BASIC, proceed toc the next section which covers loading BASIC

crograms from disk and storing BASIC programs on disk.

PROGRAM EXAMPLE

The following program example demonstrates some of the
more fundamental concepts of BASIC. This program may be
entered when the computer replies "OK". Enter the program
exactly as it appears, including all punctuation, etc.

1y PRINT "HELLO! I'M YOUR NEW COMPUTER!" <§?TUR§>>

20 PRINT <RETURD> |

3y END <RETURD>

No&, check the pro§ram to be sure you have entered it
correctly. Type in the word LIST and '<éETUR§>>, This
instructs the computer to print out the program as stored
within the computer's memory. |

L1ST <RETURN>

To have the éomputer execute ("run") the program, type in:

RUN @TU@

The computer should then print:

HELLO! I'M YOUR NEW COMPUTER!

Thé BASIC,languagé makes it easy to modify (edit) a
program. Errors within a line may be corrected by retyping
the line. Additional statements may be incorporated into a
program by sequencing the new line numbers within the existing
program. The following additions to the example program
demdnstrate these editing concepts.

5 FOR X=g TO 3¢ <RETURY>

25 NEXT X <RETURY>

To examine the program as amended, type LIST <§?TUR§>>.

‘To execute the new program, type RUN @TU@ . Ll

(@

The computer operating manual contains a more in-depth
discussion of BASIC, several sample brograms and a reference
manual on EASIC.:

You may also wish to refer to one of the many BASIC

programming texts now available for an in-depth study of BASIC.

Loading, Saving and Running BASIC Prégrams , C'

0S-65D Version 3.0 allows the user to LOAD, SAVE and RUN
BASIC programs .specified by starting track number or by up to
a six character file name. This un%que approach allows maximum
versatility in that the user can allow the disk system to locate
the space for files or can manually specify exactly where files
appear on the disk, aS'desired.. :

Floppy Disk Formats

Floppy disks are divided into concentric circles called
tracks. Each track can be further divided into entities called
"sectors". An 8" floppy disk has 77 usable tracks. Miniofloppy
disks have f:om 35 to 40 usable tracks depending ﬁpon the guality

of the read/write head in the floppy diskette drive and the (}

quality of the floppy media. Tracks are numbered from 0 up such
that the 5th physical track on the disk is track 4. 0S-65D

Version 3.0 stores BASIC programs starting on track boundaries

and uses an integer number of tracks to store each program.

That is, it stores programs on a single sector per track. Pro-
grams that aré multiple tracks in lengthlare stared on contiguous
tracks, that is, if a program is 3 tracks long and is specified
to be stored on track 40, it is, in fact, stored on track 40, 41
'and 42, On 8" floppies, approximately 2800 bytes or characters
are stored per track. On mini-floppies, approximately 2000 bytes’
or characters are stored per track.

Not all of the diskette is available to store user programs.

Part of the diskette is occupied by the operating system, the L‘

language processors such as BASIC and the Assembler, utility programs

N

and possibly other end user programs and data files. It is
necessary to maintain é directcrY»of What.is on the disk both
to be able to select desired information from the disk andé tc
know what portioﬁs of the disk are available for future storage.
For the moment, we will bypass the methods of obtaining dir-
ectories and proceed to storing a prograonn diskette and
recalling it.‘

First, type a short program'intoikhe:computer in BASIC
and RUN it. Then, follow the proceduré below. Note, when

,] z
you type EXIT, the system will report the number of tracks

.required to store the procgram. On 8" floppies store the

program on track 73; on 5" floppies store the program on track

34.

-

Procedure for Saving a Program on Disk by Track Number

A, After the program has been entered:

1. Type EXIT.(By now you should be remermbering tc hit
the RETURN key after each line of input.)

2, BASIC will report number of tracks needed for storace.
Then the DOS prompter A* will appear.

3. Type PUT (track number) where (track number} = 73 for
the example on 8" floppies and 34 on 5" floppies.

WARNING: PUT (track number) will place new programs
right over old files on the disk, so be sure
that the tracks you specify don't contain
other important software (in the example,
they don't).

4., Type RETURN BASIC or RE BA in shorthand.

5. The BASIC prompter "OK" should appear with the program
still in memory.

Type NEW to clear the program from memory and reinitialize
the work space. Now follow the procedure on the next page,

specifying track 73 for 8" floppies and track 34 on a 5" flopoy.

Procedure for Loading a Program from Disk by Track Number

¢

1. Type EXIT . ‘

2. Ignore the track size report BASIC puts out

3. Type LOAD (track number) where (track number) is
the starting track of the desired program
i

4. Type RE BA

S. The BASIC prompter "OK" should appear with the
program in memory

6. RUN or LIST the program as desired

The‘preceding prbcess could be considered tedicus for
bringing in prog;ams to be run. There is a much shorter way
of bringing in programs and running them. This can be demonstrated
by tfping NEW to initialize the work space and then typing the
statement RUN (track number) where (track number) is 73 or 34.
This brings the program into the work space and automatidally C.

starts executing it.

-10-

(@

Utilizing Named Program Files

It is somewhat difficult to have to remember the locaticns
of all programs by track number. For example, it is easy to
forget whether a ﬁzogram you want is on track 72 or track 27.
Therefore, it is desirable to be able to utilize a name for a
program instead of its track number. |

To utilize named files on the disk, utility programs which
are present on the diskette must be used. These programs are
written in BASICG and include DIR, CREATE and DELETE. There are
more utility programs; but these are the only ones necessary
for saving and recalling named BASIC programs. DIR is the
directory program. This program, when executed, lists or prints
out a directory of the disk files by name and track utilization.

»

Disk files can include BASIC programs, BASIC data files, assembler

source code, machine code and other special files such as the

4

utilities programs. To obtain a disk directcry, simple type

(3

RUN"DIR while in the BASIC immediate mode. Or type DIR directlv
to the question"FUNCTION?" when the system is booted. The
difectory program then asks if you waﬁt line printer output in-
stead of console output. It then follows with the directory of
file names and track ranges. The feollowing two listings show
the standard directory for mini-floppy and 8" flopry Develcpment

disks.

-11-

Mini-Floppy Disk Directory

0S-65D VERSION 3.0
-~ DIRECTORY ==

0S-65D3
BEXEC*
CHANGE
CREATE
DELETE
DIR
DIRSRT
RANLST
RENAME
SECDIR
SEQLST
TRACE
ZERO
ASAMPL

TRACK RANGE

g-12
14-14
15-16
17-19
2g-24
21-21
22-22
23-24
25-25
26-26
27-28
29-29
3g-31
32-32

5@ ENTRIES FREE OUT OF 64

-12-

Full Size Floppy Disk Directory

0s-65D VYERSION 3. @
-- DIRECTORY --

1 FILE NAME TRACK RANGE
0sS6SD3 6 - 8
BEXEC* 3 - 9
CHANGE 19 - 198
CREATE 13 - 14

- DELETE 15 - 1S5
“ . DIR 16 - 16
DIRSRT 47 - 17

RANLST 18 - 19

RENAME 20 - 29

SECDIR 24 - 21

SEQLST 22 - 23

TRACE 24 - 24

ZEROC a5 - 26

ASAMPL 27 - 27

S8 ENTRIES FREE QUT OF 64

The directory listing shows: the.t, the program named DIR (‘
resides en“track 16 so that, inzfact the'prOQram could'be '
~run on an 8" floppy by the statement RUN"16 just as well as
it could be bv the statement RUN"DIR. For more 1nformatlon
on the directory program and the sorted directory progrem,
DIRSRT, refer to the utilities deseription portioﬁ of the manual.

Saving a BASIC Program on Disk Via a Named File

' Inferder to save a érogram~cn disk as a named file, the
disk file must exist on the dlsk and appear in the dLrectory.
kA file is created on dlsk by use of the CREAIE utility program.
Thls p;ogram allcws the creatlon cf a disk flle of any size from
one track to the total free space of the disk. The file must have a

six character file name which is unigue, that is, the name canno(.

‘be the same as that of an ex1$t1ng file. The CREATE‘ﬁtility

alsc checks to make sure that the tracks 5pec1;1ed are not in use
"at the moment tc'preclude the poss;bzlxty«of over-wrltlng or
destroying other data on the disk. To utilize t?e CREATE p*og’=7,
sim?ly typekBUN“CRBATE. To start, CREATE a one track long pre-
gram called TEST. For more detalled Lnforﬂatlon on *he CREAT;
program, refer to the utilities description portion of:tue manual.
Once a file such as the example file TEST'has been created with
the CREATE utility}eyou can directlybstore a program in it. Key
ina short program and run‘it. Then to store this pregramkoﬁ
‘disk in the file TEST, type the following statement; DISK!"PUT‘
TEST". Thls statement saves t;e program currently in the work
space undex:,the file name TEST. If TEST cdoes not exist' .5;- you L’.

misspell it,fthe»ﬁisk"operating system will repocrt the error.

Loading a BASIC Program From Disk By File Name

(@

To load and run a BASIC program by file name, use the sare
procedure as you have used for utility programs. Simple ty?e
the statement RUN"TEST". If‘you want to bring the proqfam into
the work space without running it, type DISK!"LOAD TEST". This
ldads the prograﬁ into the work space but does not execute it.
After these exercises have been comp‘e ed, you can verify the
existence of the flle TEST by *unnlng the directory progrém and
observing what track it appears on.

Deleting Files

After utilizing a diskette for awhile, it may be desirable
to remove a file from the disk because the file is no longer
needed or possibly because the program is becoming toc larce

for that particular file and the £ile must be recreated a larger

- size, Files éan be removed from the directory‘and subsecue tly
from the disk by use of the Delete Utility. Refer to the utility
documentétion portion of this manual for instructions on the use
of this utility.

Other Useful Features For Loading and Saving Programs on Disk

| We have now covered all the fundémentalsirequired to put
programs on a diskette and recall ther from a diskette. The
following discussion will provide additional insights into the
use of the disk system for BASIC programs and other files.

Tips for File Use

File names can be up to six characters long ané are generally

three to six characters. The first character in the file name

must be alphabetic and the name cannot include spaces. 'The

e e i

directory program lists out file names as they appear in the (‘

directory. For this reason, a sorted directory program, DIRSRT,
is available. It softs the directory in alphabetic order or
track number-order. The disk also contains a renaming utility
called RENAME which allows a filegname to be changed.

Tips On File Size

The OS-GSD approach to data files.req?ires that the user
know how large his file is initially. For programs, this should
not be a problem. |

7 To be séfe,rthe user can simply specify a disk file size
as ;érge as or slightly larger than the available RAM for BASIC
programs. Fcr example, with the mini-disk system with 20K of

RAM Slightlyjless than 8K is available for programs, thgs,'a

four track file will handle any program that can be typed into <.
the machine. The user should always maintain a scratch file,
usually with the naﬁe SRATCH, which is larger than the memory

- size 6f the computer or simply have a large block of free tracks.
This file or block of tracks can act as temporary storage in
sevefal situations. For example, the user types in a program
and then remembers that he did not create a file for it. The
procedure is to simply store the program in SRATCH, create an
appropriate file, reload the program from SRATCH and store it
under its proper name. Another case ccmes up when a BASIC
program outgrows its file size. The program is then stored in
SRATCH, the old file is deleted and then recreated in a larger

size. These procedures w'i’ll also be valuable for data files . .

which will be discussed later.

-16-

(‘ ‘Backing Up Files

On ccmputér systems with two or more(diSR drives, it is
recommended that ;ge user‘periodically recopy his entire disk to
a "back up" disk by use of the Copy Utility. The Copy Uﬁility
'is a machine code utility and is déscrfbed in the utilities
documentation gortion of the manual. On single drive sysiens,
the best approaéh is to back up work by performing all disk
file functions oﬁ two diskettes. That is, when a new program
is being generated, a‘file for it should ;e created on two
diskettes ahd then ﬁhen~the program is entered in the machine,
it should be saved on both diskettes by storing it on one disk,
remcving’that disk from the system, placing the other diskette

“ in place ahd storing it in that diskette. This is a somewhat

tedious process which is why dual drive systems are popular.

Modifying BEXEC* and Applications Disks

We have now covered enough information to allow the antnmszw-
tion of existing Applications diskettes and the creation of new
Applications diskattes, All 0S-65D Version 3.0 diskettes boot up
in BASIC znd call in and exécute the BASIC program called BTXnc*,
On Applications disks, this program contains a menu of available

* BASIC programs. On Development disks it may contain a menu of
some of the utilities., To access the operating system, that is,
to unlock an Applications disk such that programs may be listed
and modified, the user must type either UNLOCK or PASS to the
guestion "YOUR SELECTION?" depending upon the particular diskette.

f. The system then reports that it is open for modificaticn. By

unlocking the Applications diskette and examining the listing of

the menu program, the user can determine where programs are

located on the disk. Programs can then be called in via the
LOAD command, modified and saved back on disk. Additional
programs can be saved on the disk and menu changes can be

made as required. The Applicationsidisks do not contain the
named file utility programs CREATE, DIR, etc., but can be
utilized in conjunction with these programs if they are brought
in from a Development disk. Likewise, the user can generate

new Applications disks by simply changing BEXEC* on a Development

d
disk as desired for menu and locked operation.

-] 8=

®

Advanced Features‘of 0S-65D Version 3.0 9-Digit BASIC

The 9-Digit BASIC in 0S-65D Versicn 3.0 contains;se¢eral
extensions to Microsoft 9-Digit BASIC. These extensions zrcvide:

1. Input/output distribution to various devices

2. Interfaces to the disk opergting system kernel

3. Extensions for sequential and random access disk
data files

We will now discuss each of these extensions in detail.

BASIC I/O Handling

BASIC input: and output is performed with the following
commands : INPUT, PéINT and LIST. Under 0S=-65D BASIC, these
statements can be utilized in the normal way for input and
output to the console device. Also, input/output can be
selectively routed from/to various other devices on the system

.

including a terminal, modem or cassette at the serial rort,

video display, 430 board based UART, memory buffer, line orin

et

e

2]

’

/
/

two disk buffers, 16 port serial board and a null device. 1In

LB}
~

el
ot

output can be routed from/to these devices bv simrly tvcing
: p oLy Ly C

Ps

fu

pound sign (#) and the device number (as listed in the table below

immediately following the INPUT, PRINT or LIST command.

Input Devices Output Devices

1. Serial Port (ACIA) 1. Serial Port (ACIA)

2. Keyboard on 440/540 Board 2. Video on 440/540 Board
3. UART on 430 Board 3. UART on 430 Board

4. Null 4, Line Printer

S. Memory 5. Memory

6. Disk Buffer 1 6. Disk Buffer 1

7. Disk Buffer 2 7. Disk Buffer 2

8. 550 Board Serial Port 8. 550 Board Serial Port
9. Null 9. Null

The following are examples of the use'of these statements. (‘
INPUT #8,DS
PRINT #4, "LINE PRINTER"
LIST #6
For instance, to store a progr;m on cassette that exists
on disk, the user simply calls that program into memory and types
:LIST#l or LIST#3 depending on which port his cassette interface
'is connected to. This lists that program on that device. To
butput to a printer, the user simply types PRINT #4 and the out-
pﬁt will be routéd to the line printer. Memory cutput, device 3,
is useful for various experimenter situations such as directly

displaying information on the 540 video screen without scrolling.

This particular application is covered in the Character Graphics (g

Reference Manual, Device 6 and device 7 are memory buffers for
use with disk files. The use of these disk file buffers will
covered in the following sectidn. Care must be taken not to
‘route input or output to non-existent or turned cff peripheral
devices since this will cause the computer system to "hang" and
will require a reset which may destroy data in memory.

BASIC to LOS Interface

0S-65D Version 3.0 utilizes a stand alone command processor
for the disk operating system., That is, disk operation can be
performed even if BASIC is not preéent in memory. Full discussion
of the disk operating commands are in another section of the ménual
and in the User's Guide. We have already covered some of these
commands such as LOAD and PUT. The programmer can leave BASIC L/‘

and enter the DOS command mode by typing EXIT. If he does not

-=72N=

@

alter the BASIC interpreter in memory or the work space he can
return to BASIC by typing RETURN BASIC or in shorthand form

RE BA. The user can also execute a single DOS command without
leaving BASIC byﬁ;tilizing ;he statement DISK!"string" where
string is an operating system command. This statement can be

part of a BASIC program, thus, allowing the user to conveniently

utilize all the disk operating system commands as part of any

BASIC program.

Data Files in BASIC

(@

In many applications it is a préctical necessity to store
many variablegﬁin such a way that they can be recalled at a
later date. Specifically, after the power has been turned on and
- off several times. Such a collectgon of variables is referred
to as a data file. There are two fundamental types of data files
available under 0S-65D Version 3.0; sequential files and random
files. 7

Sequential Data Files

A,sequential data file is a file in which information is
output to the file sequentially, one item right after another
from the beginning to end of the file. To read information from

the file one must sequentially input it. Examples of usgs for

sequential files, would be store a large numeric array or to (.
store information that can be searched seguentially such as

names and phone numbers. Let's walk through the process of

- having a name and phone number in a sequential file. First,

a file of adequate length must be created. Then a program must

be written which outputs names and phone numbers to this data file.
Another program can be written that reads the individual string
entries which are,‘in fact, names and phone numbers and compares
them with a target name which is the name a user is searching for.
If this name is found in the file, the next string from the

file will be the desired phone number. Each file is terminated

by an "end of file" marker which the programmer can use or the

programmer may utilize other technigues for his own end of file.. .
: i

For instance, in the telephone program, the string "END" could

-22-

be utilized as the "end of file“ indication. This would be the
(. : last string output to the file and could be :checked‘ for when
inputting information from the file. 0S-65D allows the user
one or two disk buffers for use with one or two files. This
means that the user can héve one or t@o sequential files in use
in his program at any‘given time. These files are referred to
as devices 6 and 7. To utilizé files as device 6 and 7, obvioﬁsly :
one must equate them to physical files on disk. This is done by
use of the OPEN command which equates a named file to a particular
device number. %or example, the statement, DISK OPEN 6,"TEST2"
opens the previcuslyAcreated disk file TEST2 and eguates it to
device 6. Onée this statement has been executed, a statement
such as PRINT#6,A$ will print_the string A$ tc the file TEST2.
b Likewise, information can be input from a file by the statetent
| INPUT#G,BS. When this statement is executed, the next variable
in tﬁe data file TEST2 will be read into string variable BS.
At the end of a program or when one has completed their use of
a particular data file, the statement DISK CLOSE,6 should be
executed which closes the data file and assures that all upéates
to the file are made. Two data files may be in use simultanecsly
by openihg one on device 6 and one on device 7. Then INPUTS and
PRINTS to device 6 and 7 ﬁan be made interchangéably. More than
two data files can be used in a program by simply closing and re-
opening files, as needed.

Steps to Using Sequential Data Files

The following steps must be taken to create and £ill a

p sequential file with information.

-23-

Using the CREATE utility, create a file to hold the (.
sequential output progrém with a name such as PROGL.

Créatgﬁa data file with a name such as TEST2.

Execute the Change Utility by’typing RUN" CHANCE.

Use the Change Utility to';llocate space for one

disk~buffer at the beginhing of the BASIC program.

Refer to the section oﬁkdisk utilities for explicit
information on:using the Change Utility.

When the CHANGE progfam is complete, the work,space'

[:
has been reconfigured with space allocated for a disk

buffer. The program for use of the single disk file

should be entered at this time. The following program

may be used. It will place four strings in the disk (~

file TEST2.

1g DISK‘O?EN)G,"TBST2"

20 FOR I=1 TO 4

3¢ PRINT #6,"STRING",I

43 NEXT I

| 5§ DISK CLOSE,6 |

Store the program on disk under the name specified in
Step 1.

Run the program‘which should output the strings to the

disk file TEST2.

Use the utility program,SEQLST to list out the contents

of the data file TEST2. Refer to the utilities portion

of the manual for directions. EEE | (.

Make the fbllowing changes to the program to use it to

(. list out the file.

30 INPUT #6,DS
35 PRINT DS$
9. Run the modified program. The results should be the
same as they were when SEQLST was run.

Random Data Files

In may instances, seguential files become Qery impractical.
For instance, in an inventory application, one would like to ke
able to quickly access an inventory item for reference or
change. This re;uires'the use of a random data file. Random
data files differ from sequential files in that groups of entries
are combined into records. These records can be randomly (non-
sequentially) accessed. For instance, a random data file could
Q have a hundred records. A program could quickly access any or:e
of these records by record number; For example, the contents of
record 58 could be brought in and the contents of record 72 could
be brought in without lookiﬁé at any of the records in between.
65-65D Version 3.0 supports one random access file at a time as
device 6. This can be used in conjunction with an optional
sequential file as device 7. The length of individual records
within a random access file can be adjusted by the user but are
é;ctory set at 128 bytes. There can be any number of individual
variable enﬁries within a record of 128 bytes and one record can
overflow into the next so that if the user wanted 256 character
records for instance, he would just utilize even record nurbers.

P The following example will use the same data file, TEST2, and use

it as a random file with a total of ten records. To reuse this

-25=-

sequential data file as a random file, we must first perform -

{_

some housekéeping. This housékeeping is performed with the

- Zero Utility. The Zero Utility}etases all information'in’a
file. To aqccm?lish this, type RUN"ZERO. kThen specify TEST2
as the file to be erased. A more complete discussion on the
Zero Utility function is present in the utilities portion of
vthié manual. After TESTZ-has been zeroed, proceed withfthe
'4fOllowing steps. | |

Steps té‘Using”Random Dﬁté Files

; ¢ ,
- 1. Create a new program file or utilize the same program

file as in the sequentiél‘exercise.
2. Execute the Change Utility and allocate space fof,one
disk buffer. | |
3. Type in the following program: B sl (.
'~ 1¢ DISK OPEN,6,"TEST2" ' |

239 FOR I=g TO 9
3¢ DISK GET,I
4g FOR J=1 TO 2
'S¢ PRINT#6, "STRING";I;J
64 NEXT J
79 DISK PUT
8§ NEXT I
99 DISK CLOSE,6
4, Save the program under the file name specified in
Step 1. k . |
5. S Run the program to £ill TEST2 with'ten records. of

information. : T : L’

-26- ey

@

6. Utilize the random file list utility RANLST to list
out the information placed in TEST2. Note that RANLST
only lists one string per record so it does not list
the second string we wrote to each file record.

7. Modify the original program viga the following lines:

5? INPUT #6,D$
55 PRINT D$
79 (deletéd)

8. Execute the modified'program to observe the output
‘informa;ion. - Output information should be the same
as was originally placed in the filé.

Note that in the above example, an inner FOR loop is used to
write'éach of two strings to each record of the file., Execution
of the PRINT statement for each étring causes the data follow;d'
by a carriage return character ﬁo be written to the file. Al-
though the carriage :etﬁrn character occupies a character of
file space, its use after each item written to the file greatly
simplifies inputting the data. If a record were written as a single
long string, commas would have to be written out between each itém~
or the usér would have to provide the detailed programming to break
the long string into its séparate.ite%s whenever the string was
input. It is much simpler to write each item with a separate PRINT
statement. There is also another limitation preventing long strings

from being read. The BASIC input buffer is 72 characters long.

Conseguently, longer strings are truncated on input,

-27-

Using the Assembler/Editor Q

0S=-65D Version 3.0 suppdrts an interactive Assembler/
Editor. The Aséembler/Editor can be brought in by proceeding
with the normal boot in procedure toiBASIC’s immediate mode.
Then type EXIT followed by ASM. This brings in the Assembler/
Editor and places the computer in the Editor's immediate mode.
Assembler/Editor's operation is as specified in the separate
Assembler/Editor Manual, except for the extensions to the
Assembler coﬁered_hére. The Assembler/Editor is an extra
cost option. The Assembler/Editcr utilizes two types of
filés. Source files which contain the assembler code and
optional object files which contain the machine code generated
by the assembly. Under 0S-65D Version 3.0, source files can ke (.
named or specified by track number. Object files can be stored
in variable sector forﬁat for placement anywhere in memory or
can be stored in named file mode if they are set up to resicde
in the standard work space. In addition, the disk operatiné
system includes an execute object file command (XQT file name)
which allows the direct and convenient execution of machine
code files providing they are linked to the coperating syster
and reside in the normal work space area. Named files must be
created via the BASIC utility before the assembly process is
begun. The user has the option of exiting from the Assembler

to the DOS for DOS level commands by the use of the EXIT command

and returning by typing RE ASM after completing a command. Or, ‘
a command can be sent directly to the DOS by simply preceeding it Qv

with an exclamation point (!). For example, !LOAD file name

loads a source code file into the assembler's work

returns control to the Assembler/Editor.
return to the Assembler 1f the Asserbler is in

processor area. Likewise, you can only return

BASIC is in the transient rrocessor area.

vou

to

=

sgace and
can only

‘ol
A

transi

4
M

th

2SIC i

if the 2Asserbler

was last used, you will have to type *the DOS command BASIC‘tQ‘

reboot BASIC. If BASIC was last used, you will have to tyoe

the DOS command ASM.

Using the Extended Monitor

(@

0S-65D Version 3.0 also includes an Extended Mééhine Code
Monitor for debugging programs at the byte level. This utility
is particularly useful for assembler code work. The Extended
Monitor can be entered by booting:in the system, exiting BASIC
by typing EXIT and by typing EM which boots in the Assembler/
E&itor and Extended Mohitor and leaves thé system in the extended
monitor command mode. The 0S-65D Version 3.0 User's Guide, at
the end.of this panual, provides a complete list of the Extended

Monitor's commands.

-30~-

System Overview

(" The 0S-65D Version 3.0 is a hichly refined surer set of

e

s
N

.r)A

ce

£

the original 0S-65D operating system which was £first introcd:

in 1976. Version 3.0 is a compact, highly responsive operatin

W)

e
-

[aad

S

i

system for BASIC, assembler and machinq cocde prograrming.

a

*44.

Lol

res

¢}

suitable for all computer syster uses except the rmost derand
business applications where 0S-65U and 0S-DMS shoulé be utilized.

Svstem Architecture

(ol

Version 3.0:utilizes a stand-alone DOS complete with ccrman
interpreter. The DOS.and‘command interpreter are part of the DOS
kernel and can be utilized without a programming language. In
addition to the DOS kernel, the system contains ar I/O distributcr
which supports all standard Chio Scientific I/C cda2vices ané can

Q route input and output 'through common locaticns to any cormbiration
of these input and output devices. The syster supcorts a transient
processor area, specifically for Microsoft BASIC, the €302 nsserhler’
Editor and the Extended Monitor and can be used for anyv other AIN2
language processors which may be installed on the svstem. The
principal source code or cbject file work space starts at 217E
hex for 8" floppies and 327E for mini-floppies. The folluwinc

memory map Shows the overall lavout cf the syster,

0-FF
100-FF

200-22FF

2300-3178
2300-2658B
265C-ZA4A
2A4B-2E78
2F79-3178

317E up to BFFF

System Memory Map

6502 Page Zero

6502 Stack

Transient Processor Area for BASIC or Assembler
or other language nrocessor;

0S-65D V3.0 (to 3278 on mini-floppy versions)
I/0 Routines

Disk Drivers

bperating System Kernel

Swapper

Source File Work Space (327E up for mini-floppy)
Disk buffers when present normally occupy from
317E up, offsetting the work space (327§ on

mini-floppy'versions)

-32~

@

o

@

Utility Program

O
n
|
[94)
il

A complete set of utility programs are provided in the

0y
ot
-4

Iin nc

Version 3.0 for use in creating new files, ccpving files,
directories of f#les or file contents, etc. These preogrars rav ke
used without any knowledge cf their implementatioﬁ. However, thev
are all written in BASIC and may be used by the interested reader

as sample programs demonstrating various prograrring ancd file

accessing technigues.

4]
(3]
0
[¢]

Descriptions of the cperation cf the utility : Jrars argear

on the following pages.

Create File Utility

This utility program is used to create new named files.
Note that a file must have been created with this program

H
- before it can be referenced by any of the file commands. To

create a file, type:

RUN "CREATE"

The program output and the kind of input you may enter
in response are as shown below. Any unacceptable response will
result in an error message and/or a repeat of the reguest for
input.

FILE CREATION UTILITY

PASSWORD? -

The program continues with an explanation of its <.
operation:

CREATES AN ENTRY IN.DIRECTORX FOR A NEW FILE AND INITIALIZEZS .

THE TRACKS THAT THE NEW FILE WILL RESIDE ON. THE TRACKS

WILL CONTAIN NULLS WITH A RETURN AT THE END OF THE TRACK.

FILE NAME?

Enter a one to six character file name that is not a durlicate
of an.existing file name. It must start with a letter.

FIRST TRACK OF FILE?

Enter the number of the first track the file is to resice
on. Note that a file always begins on a track boundary and

resides on-a whole number of tracks.

NUMBER OF TRACKS IN FILE?) .
Enter the number of tracks on which the file is tc resice. (v

All tracks assigned to a file must not have been previcuslyv assicned

(@

The program then continues with:
12 (8 for mini-floppy) PAGES PER TRACK. IS THIS OK?
Type YES if the specified number of pages per track is

acceptable; oﬁherwise, type NO. If you type NO, the following
question is asked: ? |

HOW MANY PAGES PER TRACK THEN?

Enter the number of pages of storége ycu want. each track
to conta@n. Any number up to the default number of pages is |
acceptable. Forﬁfull size diskettes this is twelve‘pagés’and‘
for mini—diskett;s it is eight pages per track.

The file will now be created and its name and ﬁrack

location will be entered into the directory. Each of the

tracks of the file will be initialized to nulls with a return

¢

character at the end of each track.

Change Parameter Utility ; : Q

This htility program is used,to chaﬁge the syster carareters
for,termiﬁalﬁwidth and for the work spacé limits. v

'The’definedkterminal width,v?lue for the syéter is'uSed by
the BASIC interpreter to provide éutomatic line rol;over when
lines longer than thé terminal width are output. A carriage
return and line feed characfer are autcmatically inserted into
the dutput line when it hits the terminal width.‘ Thus, long
lihes are outputfas two or more lines rather than a single
truncated line. Since'some serial terminals and all OSI video
systems automatiéally prﬁvide line ;ollover; you méy‘not need
to change this parameter. Note that changing terminal wicdth

with this utility program provides only a temporary chaace. ‘:

Whenever the system is rebooted or’BASIC is cold started (bv
typing BAS) , the ﬁerminal width is set back to its default

value 132. If you write a BASIC progrém that requires a
different teiminal width, then you must run this utility prcarar
to appropriately change the terminal width pararmeter prior tc
krunning that BASIC program. Or, you can include into the BZSIC

program the following commands which setup terminal width (&

]

is
a BASIC Variablé which must contain the desired terminal wideh)
POKE 23,WD
NC = INT(WD/14) *14
POKE 24 ,NC

The second PCKE, above, sets the column bevond which there are

" no more 14 character output fields. (Fourteen is the nurber of@

character positions allotted to each outgut field when corras

-36~

are used to separa%e the variables'in a‘PRINT statement.)

The "work space” is that RAM area where the asserbler zand
BASIC source programs reside. It is used to hold these source
programs and variqgs tables, lists, etc., that are used during

assembly or BASIC program interpretation. The work space

normally begins at 12670 (hex 317E) for full size flocpoy disk

systems and at 12526 (hex 327E) for mini-floppy disk svsters.

The end of the work space is normally the end of the main mermory
(that memory which starts at address zero and is contiguous ug

4

to some higher address). |

The BASIC command RUN "file name" and the DOS commands
LOAD and PUT provide a means to easily load a disk file into
the work space and to_put a file that is in the work space back
onto disk either by name cr by track number. Such files are,
referred to as LOAD/PUT (or L/P) files.

The Change Parameter Utility Program permits chances té
the work space limits so that you can reserve space in a LCAD/PUT
file for disk I/0 buffers, asserbly lancuace chject code or
whatever. The following diagram shows relevant work space

adcdresses.

-37-

 Full Size
- Floppy Disk
System

Depends on Size

Normal End of Work Space

‘of System Memory |

or No. of Pages
Specified

User Defined

User Defined

18814 (497E)

12 Pages

15742 (3D7E)

Buffer Size is

3072 (C00) Bytes

12 Pages
12670 (317E)

Room at the Top
(if present)

Source code,

tables, lists, etc.

storage used
by BASIC

Changed Start of Work Space

Additional Room
(if present)

Second Buffer
(if present)

- am. em am em em em ew s e am em e

First Buffer
(if present)

Changed End of Work Space

Normal Start of Work Space

Mini-Floppy (f
Disk ‘

sttem

Depends of Size

- of System Memory

or No. of Pages
Specified

User Defined

User Defined (

17022 (4277)

8 Pages

14974 (3A7E)

Buffer Size 1is

2048 (800) Bytes.
8 Paces

12926 (327E)

@

OS-SSb_VB.O Work Space Addresses in Decimal (Hexadecimal)

-38-

To change system parameters, type:

RUN "CHANGE"

The program output and the kind of input you may enter in
response are as s;;wn below. Any unacceptable response will
result in an error message and/or a repeat of the request for
input. -

CHANGE PARAMETER UTILITY

THE TERMINAL WIDTH IS SET FOR 132

DO YOU WANT TO CHANGE IT (Y/N)?

Enter YES o; NOL If you enter YES, the program requests
a new value for the terminal width.

NEW VALUE?

Enter a new value from 14 through 255,

The program continues with:

BASIC & ASSEMBLER USE xx K WORK SPACES (yyy PAGES)

WOULD YOU LIKE TO CHANGE THIS (Y/N)?

This refers to the total amount of main memory available to
the system software. Each K (1024 bytes) contains foﬁrVZSS byte
pages. A change to this parameter will make a portion of highest
memory unavailable to systems software. Note that such memory
will not be included within LOAD/PUT files.

Enter YES or NO. If you enter YES, the program reguests
the number of pages to be used by system software.

HOW MANY PAGES SHOULD THEY USE?

Enter a number of pages from 50 through 191.

The program continues with:

CHANGE BASIC'S WORK SPACE LIMITS (Y/N)?

Enter YES or NO, - If you enter NO, the program terminates.

-39~

If you enter YES, thé program requests the following: (.

HOW MANY 12 (8 for mini-floppy) PAGE BUFFERS DO YOU

WANT BEFORE THE WORK SPACE?

Enter 0, 1 or 2 to reserze that many track buffers at the
ﬁeginning of the work space. .Note that device 6 memory bufferec
I/0 uses the first buffer by default while device 7 uses the
second buffer by default. Of course, these defaults can be
changed with appropriate POKES. If no buffers are specified,
the program asks: |

WANT TO LEAVE ANY ROOM BEFOREVTHE WORK SPACE?

Enter YES or NO. If you enter NO, the program outputs
the address of the start of the BASIC work space as shown
below. If YES is entered, proceed to the "HOW MANY sBYTES?" , _
guestion below. (‘

If one or more buffers was specified, the program continues
with:

WANT TO LEAVE ANY ADDITIONAL ROOM?

Enter YES or NO., If you enter YES, the following gquestion
is asked:

HOW MANY BYTES?

Enter the number of additicnal bytes to be allocated
before the start of the work space.

The program then outputs the new address for the start
of the work space and the total number of bytes reserved for
buffers, etc.

THE BASIC WORK SPACE WILL BE SET TO START AT aaaaa L.

LEAVING bbbb BYTES FREE IN FRONT OF THE WORK SPACE

IS THAT ALRIGHT?

Qb Enter YES or NO. 1If you enter NO, the program requests
that you specify an exact lower limit address for the work space.
NEW LOWER LIMIT?
Enter a lower limit address. The program then confirms this
value by outputting: A }
bbb BYTES WILL BE FREE BEFORE THE WORK SPACE
The program then continues with:
YOU HAVE xx K OF RaM
DO YOU WANT TO LEAVE ANY. ROOM AT THE TOP?
Enter YES or NO. If you enter YES, the following guestion
is asked:
HOW MANY BYTES?
Enter the number of bytes to be allocated between the top
% of the work space and the end of main memory. -
The program then outputs:
THE BASIC WORK SPACE WILL BE SET TO END AT ccccc
LEAVING dddd BYTES FREE AFTER THE WORK SPACE
IS THAT ALRIGHT?
Enter YES or NO. If you enter NO, the program reguests
thet you specify an exact number limit address for the work space.
NEW UPPER LIMIT?
Enter an upper limit address. The program then confirms
this value by outputting:
eeee BYTES WILL BE FREE AFTER THE WORK SPACE.
Note that the reservation of space after the work space is
not recorded on disk with a program when it is saved in a file.

@
\.

Th: allocation is only recorded as a RAM resident change to the

AT -

BASIC interpreter and remains in effect until explicitly

changed again, or BASIC is reloaded by typing BAS in the
DOS command mode. Later, running a program that results
in an "Out of Memory" (OM) error may be the result of a
reduced work space that is no longer required.

Program output continues with:

YOU WILL HAVE fffff BYTES FREE IN THE WORK SPACE

IS THAT ALRIGHT?

Enter YES or NO. If NO is entered, the Change Parameter
[
Utility Program restarts from the beginning. Otherwise, the

requested changes are made, the work space contents are cleared

and the program terminates.

. K

-42-

(‘ Delete File Utility

This utility program may be used to délete»a named file
fror the airectory. This frees the tracks on which that file
residéd,‘but it does not actually alter the contents of those
tracks. Consequently, until a new file is created residing
on those tracks or the tracks are otherwise changed, the
contents of the old (deleted).filefare‘still.recoverable‘ﬁy
a direct track number access. To delete a named file, type:

RUN "DELETE!

The program output and the kind of input you may enter
in response are as shown belo&. Any unacceptable response
'will result in an‘efror message and/or a repeat cf the reguest

t

for input. .

DELETE UTILITY

REMOVES AN ENTRY FROM THE DIRECTORY
PASSWCRE?

Enter the appropriate password.

The program continues with:

FILE NAME? |

Enter the name of‘the file to be deleted.

file will now be deleted from the directory.

&)
[{]

h

Directory Utility

This utility program is used to output a list of-all current- ‘
ly existing named files and the numbers of the tracks on which
they reside. To output a directory, type:

RUN "DIR" ;

The program output and the kind of input you may enter in
response are as shown below. -

LIST ON LINE PRINTER INSTEAD OF DEVICE #d?

Enter YES or NO. (d is the current output device assignment.)
If you enter YES, the directory output will be on device 4; other-
wise, it will be on the currently assigned device. If you answer
YES and there is no device 4 on the system, the directory will
not be output.

A sample directory output appears below. - | (.

0S-65D VERSION 3.0

== DIRECTORY =-

FILE NAME TRACK RANGE
0S-65D3 g-8
BEXEC* 9-9
CHANGE 1g-1g
CREATE 13-14
DELETE 15-15
DIR 16-16
DIRSRT 17-17
RANLST 18-19
RENAME 20-20
SECDIR 21-21
SEQLST 22-23
TRACE 24-24
ZERO 25-26
ASAMPL 27-27
5¢ ENTRIES FREE OUT OF 64 | @

The above directory shows that the system software cccuries

-44-

tracks zero through eight. 0S-65D3 is not a file in the
écnventional sense, but appears in the directly solely to
delineate and reserve the tracks occupied by system software.
Track nine contains the BASIC Executive, BEXEC*. This is a
BASIC program which always runs when the system is booted and
which may be customized as needed to s&it your application.

In general, tracks ten through 26 contain the various utility

~ programs; however, note that tracks 1l and 12 are free. Track

27 contains the sample assembler language prograr, ASAMPL.
.]

-4 5=

Sorted Directory Utilitv

(@

This utility program may be used to output a list of all
currently existing named files and the'numbers of the tracks
on which they reside. This output can be in alpha numeric
order by file name or by track numb;r. To output a sorted
directory, type:

RUN "DIRSRT"

The program output and the kind of input you'may enter in
- response are as shown below. Any unacceptable fesponse‘will
result in an error message and/or a repeat of the reguest for
input; . |

SORTED DIRECTORY UTILITY

SORTED BY NAME OR TRACK (N/T)?

Enter N or T to specify a named or a track sort, respectively(.‘

The program continues with:

LIST ON LINE PRINTER INSTEAD OF DEVICE £4?

Enter YBS or NO. (d is the current output device assignment.)
If you enter YES, the directory output will be on device 4; other-
wise, it will be on the currently assigned output device. If vou
answer YES and there is no device 4 on the system, the directory
will not be output.

If neither N or T was entered above

THEN IT WILL BE UNSORTED
is output and the directory list will be in the same order as

the actual -entries in the directory.

Sample directory outputs sorted by name and track number @

appear on the next page.

OS~€5D VERSION 3.0

-- DIRECTORY --
FILE NAME TRACK RANGE
ASAMPL S 27-27
BEXEC* 9-9
CHANGE ‘ 19-19g
CREATE ~ ; 13-14
DELETE ; " 15=15
DIR , : 16=16
DIRSRT 17-17
0S-65D3 - g-8
RANLST 18-19
RENAME 20=-27
SECDIR 21-21
SEQLST 22-23
TRACE 24-24
ZERO 25-26

5@ ENTRIES FREE OUT OF 64

0S-65D VERSION 3.0

-~ DIRECTORY =~
FILE NAME TRACK RANGE
0S~-65D3 ~ g-g
BEXEC* 9-9
CHANGE 19-1g
CREATE 13-14
DELETE 15-15
DIR 16-16
DIRSRT 17-17
RANLST 18-19
PENAME 4 20-2¢
SECDIR 21-21
SEQLST 22-23
TRACE 24-24
ZERO . 25-26
ASAMPL ‘ - 27-27

54 ENTRIES FREE OUT OF 64

Random Access File List Utility : ’(T i

This utility program may be used to list the contents of
a random access;ﬁile eitﬁer a’siﬁgle record at a time or in
groups of contiguous records. Théfprogram assumes 128 byte
recérds. To list a random file, typ;;

RUN "RANLST"

The:proéram output and the kind of input you may enter in
response are as shown below. Any unacceptable response will
result in an errorAmessége and/or a repeat of the’requesf for
input. |

RANDOM ACCESS FILE READ

FILE NAME?
Enter the name of the‘random access file to be listed. ;
 EXAMINE SINGLE RECORDS OR GROUPS (§/G)? (‘

Enter S or G. If S is entered, the number of the sincgle
record to be listed is requested.

RECORD NUMBER?

Enter the number of’the record to be listed. (Records aré
numbered from zero through n.) The séécified recdrd is listed,
then the RECORD NUMBER guestion is again asked. To terminate
the program; merely type a (return);to fhis guestion.

If G is entered, above, the range of record numbers to be
listed are requeéted.

FIRST RECORD?

Enter the number of the first record to be listed.

LAST RECORD? ; I e @
. g J

Enter the number of the last record to be listed.

-48-

The specified records are listed, then the "SINGLE RECORDS OR
GROUPS" question is again asked. To terminate the pr&gram,
merely type a (réturn) to this question.

JNote that this program reads and lists a single string
from the start of each record. Random files with more than
one entry (an entry is a string of printing characters followed

by a return) per record will not be fully listed by this program.

Rename File Utility) (.

This utility program may be used to change ﬁhe name in the
directory of any file listed in the directory. To rename a
file, type: i |

RUN "RENAME"

The program output and the kind of inpﬁt you may enter in
response are as shown belqw. Any unacceptable response will
result in an error message and/or a repeat of the request for
input. ¢

RENAME UTILITY

OLD NAME?

Enter the name of the file to be renamed as it currently
exists in the directory. " C.

The program then outputs: :

RENAME "aaaaaa" TO? (aaaaaa is the o0ld name.)

Enter the new name for the file of one to six characters,
the first being a letter.

The name will be changed and the utility program will

terminate.

Sector Directory Utility

This utility program may be used to output the number
and sizé of each sector on each of a Specified range of tracks.
To output a sector directory,ktypé:

RUN "SECDIR"

‘The program output and tﬁekkind of input you may énter
in response are as shown below. Any unacceptable response will
result in an error message'and/or a repeat of the request for
input. t

SECDIR

USES 0S-63D'S DIR COMMAND TO PRINT OUT A SECTCR MAP

OF A GIVEN RANGE OF TRACKS .

"FIRST TRACK? |

Enter any valid track number greater than zero and less

‘than the total number of existing tracks (76 for full size disks

cr 39 for mini-disks).
LAST TRACX?

‘Enter any valid track number greater than that entered for

the first track.

A sector map for the specified tracks will be output, then
the program will terminate. A sample of such is shown below.
SECTOR MAP DIRECTORY

TRACK g1
g1-g5
g2-g5

TRACK g2
gl-gB
etc.

OK

In the sample, track 1 has two sectors, both five pages

in length. Track 2 has one sector of 11 (hex B) pages. (‘

-52-

‘ Sequential File Lister Utility

_Thisfutility program may be used to list the contents of
a sequential file. ghsequential file is one in which all entries
within the file are contiguous with no in%ervéning gaps. To list
a sequential file, type: _
RUN "SEQLST"
The program output and thé kind of input you may enter in
response are as shown below. Any:unacceptable response will |
result in an error messége and/or a repeat of the request for
~input.
SEQUENTIAL FILE LISTER
_ TY?E A CONTROL~C TO STOP
6. FILE NAME? _ ’ [
Enter the name of the sequential file to be listed.
‘The specified Eile is listed until you type a Control-C or
the and of the file is reached in which case the program terminates
with the following end-of-file message:

ERR #D ERROR IN LINE 100

CK

Trace Utility 5 : , A '
; e | = ¢
This utility program may be used to initiate or terminate
a BASIC prqg:ém iine number trace. To trace a BASIC pzegram,
type: |
RUN "TRACE"
- The program output and the input you may enter in re#ponse
are as shown below. Any unacéeptable respoﬁse will result in a
repéat'of the request for input.
TRACE UTILITY |
WHEN BASIC'S TRACE FEATURE IS ENABLED,‘BASIC WILL PRINT
OUT EACH LINE NUMBER OF THE PROGRAM BEFORE IT IS EX;ECUTBD.
ENABLE OR DISABLE (E/D)?

Enter E to enable the trace or D to disable the trace. Iii_

the trace is being enabled,
160

wili bé output. The "160" is a trace of‘the last lire of the
utility program. Now run the program you wish to test with
liné number tracing. |

| Note that the execution of any program - including utility
programs such as this one - will include line number outputs
while the trace is enabled. This will not adversely affsct the

operatioh of the program.

@

=54~

—

°

file, This fills the entire data file with null (hex g§) characters

File Zerqing Uxility

This utility preogram is used to zeroc the contents of a data

which are ignored (skippé& over) during BASIC input. You may
find it advantaéécus to "zero" random data files before entering
data into them in‘order to provide a "background" that is
"transparent" (not seen} by a BASIC INPUT command. Tb zero a
file, type:

RUN "ZERO" !

The program output and the kind of input you may enter in
response are as shown below. Any unacceptable response will
result in an error message and/or a repeat of the request for
input.

6 FILE ZERO UTILITY

COMPLETELY ERASES THE CONTENTS CF A DATA FILE

PASSWORD?

Enter the appropriate password.

FILE NAME?

Enter the name of the file to be zeroed.

The program continues with:

IS IT A NORMAL 12 (8 for a mini-floppy) PAGE DATA FILE?

Enter YES or NO. If NO is entered, the‘following message
i1s output:

THEN HOW MANY PAGES PER TRACK?

Enter 1 through 12 (8 for a mini-floppy) to specify the nurmber

‘ 256 byte pages per track in the file.

The file will be zeroed and the program will terminate.

0S-65D V3.0 Kernel

‘®
The 0S-65D V}.O kernel contains its own command interpreter

for handling_ghose commands that are basic to the system. These

fincludercomménds for initializingkdiskettes, selecting a disk

drive, transferring specific diskisectors and files, initiating

various language processors, etc. All kernel commands are listed

in the,Usér’s Guide with brief descriptions of their function.

Those requiring further explanation are also covered below.

: '
Accessing the Kernel

‘Upon initializing the system, type UNLOCK to the guestion
"FUNCTION?". Then type EXIT. The DOS kernel prompter A* then

appears and any kernel commands may be entered.

Changing I/0 Distributor Flags ' ‘ .
IO nn,mm ‘Changes input and output flag
I0nn Changes input flag only
I0 ,mm Changes output flag only

This command changes I/0 distributor flags to specify from
which device system input is to be taken and to which device or
devices system output is to be sent. ‘The values nn and mm shown

above in the command are taken from the following table:

-56-

nn Input Device mm Output Device

(q Null gg Null

Serial Port (ACIA at FCgg) #l1 Serial Port (ACIA at FCgQ)
g2 Keyboard on 440/540 Board g2 Video on 440/540 Board
g4 UART on 430 Board g4 UART on 430 Board
g8 Null , g8 Line Printer
1§ Memory o 1g Memory
2Fd Disk Buffer 1 2@ Disk Buffer 1
40 Disk Buffer 2 ' 490 Disk Buffer 2
84 550 Board Serial Port 8¢ 550 Board Serial Port

‘Note that the above values are hexidecimal numbers each of which
corresponds to the setting of one bit within the flag byte. Setting
no bits in an I/? flag byte specifies the "null device". Output to
the null device is thrown away. Input from the null device yields
undefined data. If more thén one bit is set in the input flag,
input is taken from the lowest numbered device (other than null)
and the other bits are ignored. More than one bit set in the
output flag results in output being sent to each device for which .

e appropriate bit is set. For example, the command "IO ,g9"
would result in all output going to both the Serial ACIA Port
énd the Line Printer.

Some of the above devices need further explanation.

Memory input is from RAM starting at the address contained
in locations 238A (low) and 238B (high) with an automatic incre-
mentation of the address after each character is input. Memory
output is to RAM starting at the address contained in locations
2391 (low) and 2392 (high) with an automatic incrementation of
the address after each character is output. The addresses in
these locations can be changed by the user in order to do memory
I/0 to any available RAM area. The command MEM nnnn,mmmm is

v‘ovided for this purpose. The nnnn is a four hex digit address

-57-

for input, mrmm is an ocutput addrsss,

(®

Disk buffer I/0 cperates similar tc memory I/0O described

above. Howasver, I/O to the disk buffers also results in automatic

disk transfers whenever a buffer (track) boundary is crossed. 1In

: i
order for this disk I/O to properly take place, a few parameters

must be set up before performing any of the actual input/output

operations.

OPEN.) .The

(These parameters are set up in BASIC by the command

parameters and their locations are:

Disk Buffer

2326 (low) ,
2328 (low) ,
232A
2328
232C
232D

- Disk Buffer

2 Locations

232E (low),
2330 (iow),
2332
22323
2334
23358

232F (high)
2331 (high)

Buffer start address (normally 317E)*
Buffer end address +1 (normally 3D7E)"
First track cf file (BCD) '
Last track of file (BCD)

Current track in buffer (BCD)

Buffer dirty flag (0 = clean)

R g

Buffer start address (normally 3D7E’
Buffer end addéress +1 (normally 4%7E)"
First track of file (BCD)

Last track of file (BCD)

Current track in buffer (BCD)

Buffer dirty flag (0 = clean)

Locations cf the current buffer addresses are:

Disk Euffar
Disk Zuffesr
Disk Buffer
Disk Buffer

Proper

includes:

- Setting

1 Iaput
2 Input
1 Output
Z Cutpu*

23AC (low) and 232D (high)
23FD {(low) and 23FE (high)
23C3 (low) and 23CA (high)

2416 (low) and 2416 (high)

initialization of these parameters prior to disk I/0

address +1

- Setting

cf file -1

After ccmpleting o,utput‘ to disk, the current buffer ccnten@

may be left dirty.

*Add hex

the current buffer addresses tc the buffer end

the current track in buffer to the first track

(Data has been written to the buffer, but the

127 o these addresses in mini-flcppy systems.

=58~

disk hasn't yet been updated by transferring the buffer out to
disk.) 1If this is so, as indicated by a non-zero buffer dirty
flag, the user must verform the final disk transfer. This can
be done by reading past the end of the current buffer which will
cause a page fault and update the disk. |

Transferring Disk Sectors

CALL address=track,sector
SAVE track,sector=address/nage
U These commands transfer a specified track, sector between

RAM and disk. Tée address must always be four'hexidecimal digits,
track must be two decimal digits and sector one decimal digit.
Pages must be one hexidecimal digit within the range 1-D for
full size floppies and 1 throuch 8 for mini-flcppies. A given sector
can be referenced ohly if all lowered numbered sectors exist on
the specified track.

NOTE: This version of 0S-65D contains more comprehensive
disk'transfer error checks than previd%s versions. As a result,
unéer some circumstances, error 9 will be reported when attemptiﬁg
to read or write earlier version diskettes. The D9 command should
be entered when this occurs to temporarily defeat the checks for
error 9. The s?stem should be reinitialized after completing the

transfer to restore error 9 checks. .

Executing a Machine Code File

XQT file name
This command loads the file "file name"” into the work space

at hex 3179 up (3279 up in mini-floppy syvstems) and transfers control

to locaticon 317E (327E). The "file name" can be either the name of

-59-

a previously defined file or a track number. Relative lecation
four of the file (which loads into 317D) must contain the nunber (.
of tracks to be loaded. '
Assembly language programs can be developed for use with
the XQT command by assembling them with an origin of 317E (327E)
and by enﬁering the size of the program in tracks in location
317D (327D),prior to saving the program on disk with the PUT
command. Since the Assembler work space also resides at this
address, a‘two-étep procedure must be used to create a program
" A , ’
with this origin.
1. Assemble the program with an origin of 317E (327E),
but with a memory offset (set with the Assembler Mnnnn
command) that places the object code into some available
memory .
2. Use the Extended Monitor move command to move the program
from the selected available memory area to the start of
the work space, enter the programs size in tracks. then .
save the program on disk with the PUT command. : C.
For example, with available memory at hex 8000 up, you could use
an offset of 5000. The program would then be placed into memory
at 817E up (317E + 5000). A complete sample dialog for creating
.such a program is shown below with user input underlined and
eicplanatory comments.
A*aASM ‘ : Loads the Assembler

0ST 5502 ASSEMBLER
COPYRIGHT 1976 BY OSI

.1LOAD file name ' Loads the assembler source flle
«M5000 .. Sets memory offset »

.éz ~ Assemble object code into merory
+EXIT ~ Exit Assembler

AFRE EM : Enter the Extended Monltor

EM V2.0

tM317E=817E,1111 Moves the object code to work space
:@317D Set up size of program 1n tracks
3I7D5/7d4 g2 e.g., 2 tracks

:EXIT Exit the Extended Monitor

A?PUT file name PUT machine language prograr on C.lS:(L‘

-60=

Using Indirect Files

(‘ Often it is desirable to be able to merge two or more
BASIC or Assembler source files or transfer BASIC programs
between inéompatible systems such as 0S-65D and OS-GSG. The
Indirect File provide; a mechanism for doing this.

In order to use an indirect file, youimust have enough
RAM to hold the required program(s) in the BASIC or Assemblef
work space and another copy of the program(s) above the work
space. The top of the work space can be appropriately set up
with the Assembler Hnnnn command or the BASIC Change Utility
Program. Then the indireét file mechanism is set up with

this address +1 by entering it into the following locaticns:

decimal' hex .
9554 2552 Indirect file output address (high)
9368 2498 Indirect file input address (high)

The low part of these addresses is fixed at f#7.
Transfers to and from the indirect file are then performed

as follows:

Dumping Source from the Work Space to an Indirect File

l. Load the source into the BASIC or Assembler work space
with the LOAD command.

2. Output the source but type a [after typing LIST or
PRINT and before hitting the RETURN key. This turns
the indirect file output on.

3. At the completion of the cutput type a]. This will
be echoed as]] and will turn the indirect file out-
put off,

Loading Source from an Indirect File to the Work Space

l. Clear the work space by typing NEW in BASIC or INIZ,Y

-61-

in the Assembler.. Or, load the source file into the
work space into which the indirect file is to be merged.. .

Type a Control-X. The indirect file data will be loaded
into the work space. When the] character is loaded at
the end of the file, the indirect file anut will be
automatlcally terminated.

-2~

Kernel Utilities

For normal use, only two operations from the KERNEL mode
will be rquired - Initializing Diskettes and Copying Diskettes.

Initializing Diskettes

Once the kernel is entered, a new diskette can be
initialized for use by 0S-65D V3.0 by re&o&ing the operating
system disk and placing the diskette to be copied in the "A"
drive. |
Then type T

INT
The machine answers

ARE YOU SURE?

You answer |

Y | »

After the initialization is complete, the prompter A* will re-

appear. If an error message is reported during the initializaticn

process, the diskette is probably bad and should be discarded.

khkAhkkhkhkhkhrtdkhhk

* NOTE *
Kk hd kkhkdk kR

OSI mini-floppy systems have write protect capability,
Write protected diskettes have a label covering a notch

on ocre side of the disk. A write protected disk will
immediately report an error upon initialization or copying
attempts. Simply remove the write protect label before
using.

Copying Diskettes

Diskettes can be copied on dual drive systems as follows:
1. First initialize the new diskette as specified above.

2. Place the newly initialized diskette in the "B" (or lower)

-6 3-

NOTE:

drive and the diskette to be copied in the "A" drive.

With the KERNEL mode prompter A* on the sc‘reen, type (.
CA g2gd=¢gl,2 for 8" floppies or
CA_ g2g8=13,1 for 5“ floppies

Tyrpe)
GO g2g¢g

The disk copier will appear on the screen. Select 1

and copy from drive "A" to drive "B",

Specify from track § to 34 on mini-floppies and from
track § to 76 on 8" floppies.

' _
As each track is copied, its track number will appear
on the screen.

If an error is reported during copying, reinitialize
the B diskette and repeat the process. If the error
persists, the new diskette is probably bad and should
not be used, '

0S-65D V3.0 can be used to initialize and copy disk&ttes (l
for all previous versions of 0S-65D but not vice versa. .
In fact, the use of Version 3.0 is recommended over the

use of earlier versions for this purpose.

-64-

0S-65D Version 3.0 for the I-P

A version of 0S-65D V3.0 is available for use with mini-
floppies on the OSI I-P Personal Computer. It is identical
to that‘described*througbout this manual with the following
exceptions: i

- the device 4 line printer driver is not 1ncluded

- the dev1ce 3 UART input/output drivers are not
included ‘
l‘ 3

- ohly~the 440 style video 1is supported (24 character
display) &s appropriate to the I-P display

- the device 1 serial ACIA port address is changed to
Fg@gyg as appropriate to the I- -P

-55=-

I-P Pico DOS

A version of 0S-65D V3.0 is available as a "Pico-DOS" for (.
use with mini-floppiés on the OSI I-P éersonal Computer. This
system extends the 6-Digit BASIC LOAD and SAVE commands to permit
files to be savéd on a diskette as well as on the usual cassette.

In order to use the Pico DOS, iﬁsert a Pico DOS diskette
into the A mini-floppy drive and type a D in response to the
D/C/W/M?!message. The Pico DOS will boot up with the following
message: . '

MINI-65D3 V1.0

MEMORY SIZE? 8955

TERMINAL WIDTH?
Note that the memory size has'automatically been specified.
This is because the Pico DOS occupies memory above this point.

Continue with the initialization by entering terminal wid=" (‘
as usual, »

The new commands available under the Pico DOS are:

LOAD n i

SAVE n

where n is a program, number 1 through 8.

-66-

(@

DS—SSD V3. 5 DISK OPERATING SYSTEM

COMMANDS

- —— — —— - —— —— - — —

BRASIC

1

Y
CALL NNNN=TT.S

D3

DIR NN

~ EM

EXAM NNNMN=TT

GO NNHN

HOME

INIT

INIT TT

IO NN, MM

IO MM
IO NN
LOAD FILNAM

LoRD TT

MEM. NNNN. MMMM

EXAMINE TRACK.

USER‘S GUIDE

i

LOARD THE ASSEMBLER AND EXTENDED MONITOR.
TRANSFER CONTROL TO THE ASSEMBLER.

LOAD BASIC AND TRANSFER CONTROL TO IT.

LOAD CONTENTS OF TRACK, "TT" SECTOR. "S8"
TO MEMORY LOCATION "“NNMN".

DISABLE ERROR 9. THIS IS REQUIRED TO RERD SOME
EARLIER VYERSIOMN FILES (V¥i. 5. V2. 8). PLEARSE
REFER TO COMPATABLITY DISCUSSION LATER.

PRINT SECTOR MAP DIRECTORY OF TRACK "NN".

LOAD THE ASSEMBLER AND EXTENDED MONITOR.
TRANSFER CONTROL TO THE EXTENDED MONITOR.

- LOAD ENTIRE TRACK CONTENTS,
INCLUDING FORMATTING INFORMATION. INTO LQCRTIOM
"NNNN".

TRANSFER CONTROL <(GO> TO LOCATION "NNHNN".

RESET TRACK COUNT 7O ZERG AND HOME THE CURRENT
DRIVE’S HERD TQ TRACK ZERO. '

INITIALIZE THE ENTIRE DISK. IE. ERASE THE
ENTIRE DISKETTE (EXCEPT TRACK @) AND WRITE
NEW FORMATTING INFORMATION ON EACH TRACK.

SAME AS "INIT"., BUT ONLY OPERATES ON TRACK "TT".

" CHANGES THE INPUT I/0 DISTRIBUTOR FLAG TO "NN",

AND THE OUTPUT FLAG TO "MM"
CHANGES ONLY THE OUTPUT FLAG.
CHANGES ONL? THE INPUT FLAG
LOADS NAMED SOURCE FILE,

"FILNARM" INTO MEMORY

LORDS SOURCE FILE INTQ MEMORY GIVEN STRARTING
TRACK NUMBER "TT".

SETS THE MEMORY I/0 DEVICE INPUT POINTER TO
"HNNNN", AND THE QUTPUT POINTER TO "MMMM",

-1-

PUT FILNAM SAVES SOURCE FILE IN MEMORY ON THE NAMED DISK

FILE "“FILNAM".

PUT TT SAVES SOURCE FILE IN MEMORY ON TRACK "TT" AND <~
| FOLLOWING TRACKS. - (]
RET ASM ' RESTART THE ASSEMBLER.
RET BAS _RESTART BASIC.
RET EM RESTART THE EXTENDED MONITOR.
RET MON RESTART THE PROM nou&roa C(VIA R3T VECTOR).

SAVE TT, S=NNNN/P SAVE MEMORY FROM LOCATION "NNNN" ON TRACK "TT"

SELECT X ' SELECT DISK DRIVE, "X" WHERE "X" CAN BE;

SECTOR "S" FOR "P"“ PRGES.

1

AR, B, C, OR D. SELECT ENABLES THE REQUESTED
DRIVE AND HOMES THE HERD TO TRACK 8.

XQT FILNAM LOAD THE FILE., “FILNAM" AS IF IT WAS A SOURCE

FILE, RAND TRANSFER CONTROL TO LOCARTION $317E.

NOTE:

ONLY THE FIRST 2 CHARACTERS ARE USED IN RECOGNIZING A
COMMAND. THE REST UP TO THE BLANK ARE IGNORED.

THE LINE INPUT BUFFER CAN ONLY HOLD 18 CHARACTERS INCLUDING '
THE RETURN. . ¥]

THE COMMAND LOOP CAM BE REENTERED AT $2ARS51.

FILE NAMES MUST START WITH A "A" TO "2" AND CAN BE ONLY
€ CHARACTERS LONG.

THE DICTIONARY IS ALWAYS MAINTAINED ON DISK. THIS PERMITS
THE INTERCHANGE OF DISKETTES.

" THE FOLLOWING CONTROL KEYS ARE VYALID:

CONTROL - @ CONTINUE OUTPUT FROM R CONTROL-S
CONTROL - 8§ STOP OUTPUT TO THE CONSOLE.
CONTROL - U DELETE ENTIRE LINE AS INPUT.
BACKARROW DELETE THE LAST CHARARCTER TYPED.

ERROR NUMBERS

- am

- —————— — . — - — . ——— —— ———— - -

1 - CAN’‘T READ SECTOR <(PARITY ERRQO®)

2 - CAN’T WRITE SECTOR (REREAD ERRGOR). : ‘
3 - TRACK ZERO IS WRITE PROTECTED RGRINST THAT OPERATION. Qv

4 - DISKETTE IS WRITE PROTECTED

S -

SEEK ERROR (TRACK HEADER DOESN’T MRTCH TRACK).

o D -

“

-4

(1)

o O W » v

- DRIWVE NOT RERDY.

- 5YNTAX ERROR IN COMMAND LINE.

- BARD TRHCK NUMBER.

- CAN’T FIND TRACK HERDER WITHIN ONE REY OF DISKETTE
- CAN‘T Ff&b SECTOR BEFORE ONE REQUESTED

- BAD SECTOR LENGTH %ALUE. f

- CAN“T FINWND THAT NAME IN DIRECTQRY.

- RERD/WRITE ATTEMPTED PHQT END OF NAMED FILE!

1

1

i

BEXEC

CHANGE

CRERATE

DELETE
DIR

DIRSRT
RANLST
RENAME
SECDIR
SEQLST

TRACE

ZEROQ

PROGRAM WHICH GAINS CONTROL ON BOOT IN END USER SYSTEMS.
PERMITS ADJUSTMENT OF THE FOLLOWING:

- TERMINAL WIDTH FOR BARSIC.

- THE HIGHEST PRGE 0OF MEMOR'Y AVARILABLE, WHICH

- IS5 WHAT BASIC AND ASM USE WHEN LOADED. *

- THE ADJUSTMENT OF THE WORKSPRCE LIMITS FOR

- BASIC. THE RESULT IS A EMPTY UWORKSPARCE TO
THE USER SPECIFICATIONS. h

ENTER R FILE NAME INTO THE DIRECTORY. AND ZERC QUT
THE CREATED FILE ON DISK.

REMOVE A FILE NRME FROM DIRECTORY.

PRINT UNSORTED DISK DIRECTORY.

PRINT SORTED <(BY NAME OR TRACK)> DIRECTORY.
GENERAL RHNDOM‘RCCESS FILE LIST UTILITY

RENAME R FILE NARME IN DIRECTORY.

PRINT A SECTOR MAP DIRECTORY OF DIS3K.

GENERAL SEQUENTIAL FILE LIST UTILITY.
ENABLE OR DISABLE STATEMENT NUMBER TRACE FEATURE.

INITIARLIZE CONTENTS OF A CATA FILE TO ZERCS.

T0 FLAG BIT SETTINGS

- ——— — . ——— — — — ——— - ——— " — . — —— —) — D o, - ——

INPUT:

BIT © - ACIA ON CPU BOARD (TERMIMAL). (‘
BIT 1 - KEYBORRD ON 448./548 BOARD. i
BIT 2 - UART ON 438 BOARD (TERMINALD.
BIT 3 - NULL. ¢
BIT 4 - MEMORY INPUT (AUTO INCREMENTING).
BIT 5 - MEMORY BUFFERED DISK IMPUT.
BIT 6 - MEMORY BUFFERED DISK INPUT.
BIT 7 - 558 BOARD ACIA INMNPUT. AS SELECTED BY "AINDEX"

AT LOCATION $2323 (8395 DECIMALD.

OUTPUT:
:]

BIT 8 - ACIA ON CPU BOARD (TERMINMNAL)D. :
BIT 1 - VYIDEO OUTPUT 0ON 448/54Q BOARD.
BIT 2 - UART ON 438 BOARR ¢(TERMINALD
BIT 2 - LINE PRINTER INTERFACE.
BIT 4 - MEMORY CUTFUT J(RUTO INCREMENTING).
BIT S - MEMORY BUFFERED DISK QUTPUT
BIT 6 - MEMORY BUFFERED DISK QUTFUT.
BIT 7 - S58 BOARRD ACIA OUTPUT. AS SELECTED BY "AINDEX"
SOURCE FILE FCORMAT * CI

RELATIYE DISK ADDRESS MEMORY ADORESS USAGE

8 31773 SOURCE START <LOW>

1 £317A SQURCE START (HIGH)
2 $317EB SOURCE END <LOW>

3 $317C SOURCE END ({HI>

; $317D NUMBER OF TRACKS REQ.

AND ON. .. $3417E AND ON. . . SQURCE TEXT

DCDIFRECTORY FORMAT

- - — —— —— — —_— - — — — ——— — - ——— — — —— —————

TWO SECTORS (41 AMD 2> ON TRACK 8 HOLD THE DIRECTORY. ERCH ENTRY
REGQUIRES 8 BYTES. THUS THERE ARE A TOTAL OF 54 ENTRIES BETWEEN THE
TWO SECTORS. THE ENTRIES ARE FORMATTED AS FOLLOWS:

- 5 ASCII & CHRRACTER NAME QOF FILE.
BCD FIRST TRACK QF FILE
BCD LAST TRACK OF FILE (INCLUDED IN FILE>

NO©

@

MEMORY ALLOCATIONMN

QeeY - 22FF BASIC OR ASSEMBLER/EXTENCDED MONITOR.

2298 - 22FE COLD START INITIARLIZATION ON BOOT.

23268 - 265B INPUT/0QUTPUT HANDLERS.
263C - 2A4A FLOPPY DISK DRIVERS.
2A48B - 2EVS8 0S-65D V3. 8 OPERATING SYSTEM KERNEL.

2E79 - 2F78 DIRECTORY BUFFER.
2F79 - 3178 PAGE 8/1 SWARP BUFFER.
3179 - 317D SOURCE FILE HERDER.

317 - SOURCE' FILE.

DISKETTE ALLOCRARATION

6 8 0S-65D 93.'.8 (BOOTSTRAP FORMAT LOARDS TO 2299 FOR 2 PRGES).
1 SECTOR 1 - REMAINDER OF 0S-65D V3.9 (LOADS TO 2R0Q FOR
S PAGES). :

SECTOR 2 - TRACK ZERO READ/URITE UTILITY AND COPIER.
(LORDS TO 8208 FOR S5 PRGES).

2 - 4 9 DIGIT MICROSOFT 6582 BRSIC.
5 - 6 6502 RESIDENT ASSEMBLER/EDITOR.
7 EXTENDED MONITOR.
8 SECTOR 1 - FIRST PRGE OF DIRECTORY.
SECTOR 2 - SECOND PAGE OF DIRECTORY.
S SECTOR 3 - OVERLAY PAGE FOR 3 DIGIT BASIC.
SECTOR 4 - PUT/GET OVERLAY FOR 3 DIGIT BASIC.

9 - 76 USER PROGRAMS AND 08-65D UTILITY BASIC PROGRAMS.

S DIGIT BASIC EXTENTIONS

. - —
A

pS INPUT PNDSGN<{DEVICE NUMBERD., (INPUT IS SET TO NEW DEYICE,
OUTPUT IS SET TO NULL DEWICE
IF DEWICE NUMBER > 3, AND
NULL INPUTS ARRE IGNORED IF
DEVICE NUMBER > 3.

INFUT "TEXT": PNDSGN<DEVICE NUMBER>, (PRINT "TEXT" AT CURRENT
' OUTPUT DEVICE. THEN FUNCTION
AS ABOYE) (~

PRINT PNDSGNCDEVICE NUMBERD, (PRINT OUTPUT FOR THIS COMMAND
‘ AT NEW DEVYICED

LIST PHNDSGNLKDEVICE NUMBERZ. {LIST PROGRHH OR SEGMENTS OF
PROGRAM TO NEW DEVICE?
i
WHERE <DEYICE NUMBER> FOR OQUTPUT IS:

- ACIA TERMINAL
- 448,548 VIDEO TERMINAL

- 438 UART PORT

- LINE PRINTER

- MEMORY OUTPUT ,
-4 MEMORY BUFFERED DISK OUTPUT <BIT 5O
- MEMCRY BUFFERED DISK OUTPUT ¢(BIT 6>
- S58 ACIA CUTPUT

- NULL OUTPUT

VONGOULGNP.

<DEVICE NUMBER> FOR INPUT IS:

- ACIA TERMINAL

- 449/543 KEYBOARD

- 438 URRT PORT L

- NULL DEVICE .
MEMORY INPUT

- MEMORY BUFFERED DISK INPUT (BIT 5)

- MEMORY BUFFERED DISK INPUT (BIT &)

- 558 ACIA INPUT
= NULL INPUT

W ONGU &0
|

AND WHERE PNDSGN IS A POUND SIGN.

EXIT EXIT TO 0S-65D ¥3.0

RUN <3TRING> ' LOAD AND RUN FILE WITH NHHE IN
CSTRINGS.

DISK ! <{STRING> SEND <STRINGD> TO 0S-é5D ¥3. @ RS A

COMMAND LINE.

DISK OPEN. <DEVYICE>, <STRING> OPEN SEQUENTIAL RCCESS DI3K FILE

WITH FILE NAME, <STRING>. USING

MEMORY BUFFERED DISK I/0 DISTRIBUTOR

DEVICE NUMBER & OR 7. RERDS

FIRST TRACK OF FILE TO MEMORY AND SETS
‘ UP THE MEMORY PCINTERS TO STARRT arF

BUFFER. "

DISK CLOSE, <DEVWICE> FORCES A DISK WRITE OF THE CURRENT .
BUFFER CONTENTS TO CURRENT TRACK. -

DISK GET, {RECORD NUMBER> USING LAST FILE OPENED ON THE LUN
6 DEVICE. A CALCULATED TRACK IS RERD
INTO MEMORY. WHERE THAT TRACK IS:
INT(CREC. NUM. >/24)>+BASE TRACK GIVEN
IN LAST OPEN COMMAND

@

IT ALSO SETS BOTH MEMORY POINTERS TO:
128+« ({REC. NUM. >=INT(<REC. NUM. >-243>
+BASE BUFFER ADDRESS FOR LUN & DEWICE

DISK PUT WRITE DEYICE & BUFFER CQUT TO DIGK.

THE EFFECT IS THE SAME RS A
"DISK CLOSE. &".

LOCATION OLD NEW FUNCTION
asra 353 13 DISABLE + AND : TERMINATORS ON STRING INPUT
2976 ' ?4 13 !
2073 173 36 + IGNORE CONTROL-C
2893 SS 28 DISRBLE BREAK ON NULL INPUT
2894 83 11 "REDO FROM START"
741 76 i@ REMOYE KEYWORDS, "WREW" AND "LIST™
7508 78 ia

OTHER FPOKES TO BASIC

- - G - — - — — - — T D > D - —— - - — = ——— —— — - —— — ——— -

LOCATION FUNCTION
23 TERMINARL WIDTH

2883, 8722 IF BOTH ARE 8 A NULL INPUT TO A "INFUT" STRTEMENT
YIELDS AN EMPTY STRING OR A 6. IF BOTH ARE 27 THEN
THE INPUT STARTEMENT FUNCTIONS AS NORMAL.

8947 USRC(KX> DISK OPERATION CODE:
@ - WRITE TO DRIVE A

. 3 - RERD FROM DRIVE A
6 - WRITE TO DRIVE B
9 - REARD FROM DRIVE B

s8286 TRACK NUMBER FOR USR<CX)> DISK QPERATION
9822 SECTOR NUMBER FOR USR(X> DISK COPERATION
9823 PAGE COUNT FOR USRZX> DISK WRITE. OR

NUMBER OF PAGES READ IN BY DISK REARD

9824 LOW BYTE OQF ADDRESS OF MEMORY BLOCK FOR USRI
DISK OPERATION

2825 HIGH BYTE OF ADDRESS OF MEMORY BLOCK FOR
USR{X> DISK OJOPERARTION

3393
3994

8935

98398
39899

9105
9486

9132
9133

94558
9156

9243
9214

9238
29239

9086

LOCATION OF JSR TO A USR FUNCTION. PRESET TO <
JSR s22D4., IE. SET UP FOR USR(X)> DISK OPERATION

I-/0 DISTRIBUTOR INPUT FLARG

I/0 DISTRIRUTOR QUTPUT FLAG

INDEX TO CURRENT ACIA ON 55@ BQARD. IF NUMBERED
FROM 9-TO 15 THE VALUE POKED HERE IS 2 TIME3 THE
RCIA NUMBER.

LOCATICON OF A RANDCOM NUMBER SEED. THIS LOCATICON
IS CONSTANTLY INCREMENTED DURING KEYBQARD POLLING

HAS PAGE NUMBER OF HIGHEST RAM LOCATION FOQUND ON
05-65D”S CQLD STRRT BOOQT IN THIS IS THE DEFAULT
HIGH MEMORY RDDRESS FOR THE ASSEMBLER AND BASIC

- LOW BYTE ADDRESS FOR MEMORY INFUT

HIGH BYTE fiDDRESS FOR MEMORY INPUT

LOW BYTE ADDRESS FOR MEMORY QUTPUT
HIGH BYTE ADDRESS FOR MEMORY OQUTPUT

LOW BYTE ADDRESS FOR MEMORY BUFFERED DISK INPUT
HIGH BYTE ADDRESS FOR MEMORY BHFFERED DISK INPUT
BIT S DEVICE. DEFRULTS TO $317E.

LOW BYTE ADDRESS FOR MEMORY BUFFERED DISK QUTPUTs
HIGH BYTE ARDDRESS FOR MEMORY BUFFERED DISK QUTPUT (‘
BIT S DEVYICE. DEFRULTS TO $347E.

LOW BYTE ARDDRESS FOR MEMOR'Y BUFFERED DISK INPUT
HIGH BYTE ADDRESS FOR MEMORY BUFFERED DISK INMPUT
BIT 6 DEVICE. DEFAULTS TGO $3D7E.

LOW BYTE ADDRESS FOR MEMORY BUFFERED DISK QUTPUT
HIGH BYTE ADDRESS FOR MEMORY BUFFERED DISK OUTPUT
BIT 6 DEYICE. DEFARULTS TO $3D7VE.

MEMOR'Y BUFFERED DISK I/0 BIT S DEVICE PARRAMETERS:
8998-8999 - BUFFER START ADDRESS ({3317ED
S9028-9@84 - BUFFER END ADDRESS ($3D7ED

saa - FIRST TRACK OF FILE

3883 - LAST TRACK OF FILE

sga4 - CURRENT TRACK IN BUFFER
388sS - DIRTY BUFFER FLAG <8=CLEAN>

MEMORY BUFFERED DISK I/0 BIT & DEVICE PARAMETERS:

9826-9a87 - BUFFER START ADDRESS «<$3D7E>

98@38-9@09 - BUFFER END RDDRESS ($437ED

990419 - FIRST TRACK OF FILE

sSai14 - LAST TRACK OF FILE

seiz2 —= CURRENT TRACK IN BUFFER

9843 - DIRTY BUFFER FLAG (9=CLERN) L‘

LOCATION QF THE 24 USED BY THE RANDOM ACCEZS FILE
CALCULATION ROUTINES. THIS LOCATION SHOULD ONLY

BE ALTERED AFTER THE OPEN HAS CQCCURRED FOR THE
RANDOM ACCESS FILE BECARUSE THE PUT GET CODE IS LOARD-

o

" ED INTC THE DIRECTORY BUFFER. THIS IS WHERE THIS
24‘RESIDES; MAKING IT A 48 GIYES ONE 64 BYTE RECORDET.

(. 3368 » HIGH BYTE RDDRESS FOR INDIRECT FILE INPUT /{LOW=28)

3554 kHIGH BYTE RDDRESS FOR INDIRECT FILE DUTPUT (LOW= QOJ

E 'EXIT TO 03-65D ¥3. 8.
HCHEX NUM> SET HIGH MEMORY LIMIT TO <HEX NUMD.
MCHEX NUMY . SET MEMORY OFFSET FOR A3 ASSEMBLY TO <HEX NUM>.

'<CMD LINED SEND <CMD LINE> TO 0S-63D V3. @ AS A ‘COMMAND TO
BE EXECUTED AND THEN RETURN TQ AS3SEMBLER.

CONROL-I TAB 8 SPACES. ALSO:

CONTROL-U 7 SPACES.
CONTROL-Y 6 SPACES.
CONTROL-T S SPACES.
CONTROL-R 4 SPACES.

Q CONTROL-E 3 SPACES. .

CONROL-C ABORT CURRENT OPERATION

EXTENDED MONITOR

- O - ——— ——— — — - A - — — — - — — - — — -

PTEXT SENT “"TEXT" TO 05S-€5D Y2. @ AS A COMMAND
@NNNN ' OPEN MEMORY LOCATIOM "HMNN" FOR EXAMINARTICN.
SUBCOMMANDS:

LF = OPEM NEAXT LQCATION
CR - CLOSE LOCARTION.
DD - PLACE "DD" INTO LOCATION.
. ; " = PRINT ASCII VALUE OF LOCATION.
/ - REQOPEN LOCATIOM
UPARROMW -~ OPEN PREVYIQUS LOCRTION.

f - PRINT AC FROM BREARKPQIMT
BN, LLLL PLACE BREAKPOINT "N" <(4-8> AT LOCATION, "LLLL"
c CONTINUE FROM LAST BREAKPOQINT.
. DNNMM. MMMM DUMP MEMORY FROM "NNNN" TO "MMMM"
(| EN ELIMINATE BREAKPOINT "MN".
EXIT EXIT TO 0S-A&5D Y3. 9

FNMNMN. MMMM=D0D FILL MEMORY FROM "MNNN" TQO "MMMM"-1 WITH "C0O"

-9-

: = : , : | . e

SMNNN TRANSFER CONTROL TO LOCATION "MNNN".

HHNNM. MMMMCOFS HEXDECIMAL CALCULATOR PRINTS RESULT OF. (‘
: : CSHNNMYCORPD"MMMM" WHERE <OQFP2 IS + — &

I " PRINT BREAK INFORMATION FOR LAST ERERKFOTNT

Ko . PRINT STACK PCINTER FEOM ERERKPOTMT

B LORD MEMORY FROM CASSETTE.

MHNNN=MMMM. LLLL MOVE MEMORY BLOCK “NMNN" TO “LLLL“-i T LOCATION
‘ "NNNN" AND UP IN MEMORY ;

 NHEXSNNNM. MMMM SERRCH FOR STRING OF BYTES "HEX" <1-4) BETWEEMN

!I

| MEMORY LOCATION "MMNN" AND “MMMM* -1

o PRINT, OVERFLOW/REMAINDER FROM HEM CALCLLATOR
P | PRINT PROCESSOR STATUS WORD FROM BRERKPOINT
GNNMM : ‘ DISASSEMBLE 23 LINES FROM LOCATION "HNNN"

A LINEFEED CONTIMUES DISASSEMELY FOR 23 MORE
RMMMM=NNNN. LLLL RELOCATE "HMNN" TO "LLLL"-1 TCO LOCATICON "MMMM".

SMMMM. MMNN ' SAYE MEMORY BLOCK. "MMMM® TO "NMNMN"-1 ON CASSZETTE. (.

T : PRINT BRERKPOINT TARELE
2 ?IEN‘CONTENTS‘DF CASZETTE.

WTEXTIMMMM, NNNN SERRCH FOR ASCII STRING "TEXT" BETWEEM "MMMM" ANC
: AND "NNNN"-1.

% : PRINT X IMDEX REGISTER FROM LAST BREARK
Y , PRINT ¥ INDEX REGISTER FROM LAST EREAK
NOTE: ALL COMMANDS ARE LINE BUFFERED BY 0s-65D

- THUS QONLY 18 CHARACTERS PER LINE ARE ALLOMWED
AND CONTROL-U AMD BACKARROW RPPL'Y.

DISETTE COPIEFR

i —" - — - — - — —— —— - — - — - ——

THE DISKETTE COPY WUTILITY IS FOUND ON TRACK 1 SECTOR 2. IT

SHOULD BE LORDED INTO LOCATION 200 WITH A "CA @29@=&1.2" TQ STRRT IT
TYPE. "GQ ©28" TO SELECT THE COPIER TYPE AR "1 THE COPIE'

AUTOMATICALLY FORMATS THE DESTINATION DISKETTE BEFORE WRITING ON Ir’kv

i

TRACK 8 READAMWRITE UTILITY

—— - — " . G G S T . - T - —— . —— — — — — — . - —— — ——— ———— ——— - — -

THIS UTILITY PERMITS THE READING OF DATA ON TRACK @ ANYWHER
INTOQ MEMOR'Y. ALSO THE CAPARBLITY IS AVAILABLE TO WRITE ANY BLOCK OF
MEMQORY TO TRACK @ SPECIFYING A LOARD ADDRESS AND PAGE COUNT.
THE TRACK ZERO FORMAT IS AS FOLLOWS:
- 4 MILLISECOND DELAY AFTER THE INDEX HOLE.
- THE LOAD ADDRESS OF THE TRACK IN HIGH-LQW FORM
- THE PAGE COUNT 0OF HOMW MUCH DATA IS QN TRACK ZERQ

TRACK FORMATTING

THE REMAINING TRACKS ARE FORMATTED AS FOLLOWS:

1 MILLISECOND DELAY AFTER THE INDEX HOLE.
A. 2 BYTE TRACK START CODE. $43 3$57.

BCD TRACK NUMBER.

A TRACK TYPE CODE., ARLUWAYS A $358.

THERE CAN BE ANY MIXTURE OF VARIOUS LENGTH SECTORS HERERFTER.

THE TOQTAL PAGE COUNT CAN NOT EXCEED 12 PRGES IF MORE THAN ONE SECTOR
IS OM ANY GIVEN TRACK. 13 PAGES CAN BE PLACED ON A TRACK IF ONLY ONE
SECTOR RESIDES ON R TRACK. EACH SECTOR IS WRITTEN IN THE FOLLOWING
FORMAT:

- PREVIOUS SECTOR LENGTH (4 IF NONE BEFORE> TIMES

808 MICROSECONDS OF DELAVY.

- SECTOR START CODE, #$76.

-~ SECTOR NUMBER IN BINRRY.

- SECTOR LENGTH IN BINARY.

- SECTOR DRTA.

COMPATARABILITY WITH EARLIER OQOS—6S3SDhhs

- - —— - ——— - — - - —— - o D D = - T - —— . " T Y > - - —— - — —— ———

THE EARRLIER VYERSIONS OF 0S-65D (IE. EARLIER THAN 3. 8> HAD A
AUIRK OF COPERATION. MWHEN THEY ATTEMPTED TO DO A READ THE HERAD WAS
LORDED AND THE ACIA INITIALIZED AT THE RISING EDGE OF THE INDEX HOLE.
SINCE THE ERRLIER 635D’S FORMAT INCLUDED NO GAP AFTER THE INDEX HOLE.
THE ACIA MAY BE INITIALIZED IN THE MIDDLE OF A BYTE. THIS WOULD SET
THE ACIA OUT OF SYNC WITH THE DATA. IT WOULD THEN TRKE SEVERAL
REVOLUTIONS OF THE DISKETTE BEFORE THE ACIA GOT BACK IN SYNC RND THE
TRACK HEADER FOUND. FOR THIS REASON THERE MAY BE PROBLEMS IM RERDING
EARLIER YERSION FILES. THE ERROR ENCOUNTERED IS ERROR 3. THIS ERRCQR
INDICATES THAT THE TRACK HERDER WAS NOT FOUND IN ONE REVOLUTION. S0
THAT EARRLIER VYERSION FILES CAN BE COPIED OVER TO THE NEW SYSTEM. THE
D2 COMMAND IS ARYAILABLE. IT PREVENTS THE ERROR 9 ERROR CHECKING.

