
OS-65D V3.0
USER'S MANUAL

PRELIMINARY COPY

October, 1978

(C) OHIO SCIENTIFIC, INC .

•

•

0S-65D V3.0 us~r'~ Manual

Table of Contents

Features 1
Introduction 2
Using the System in BASIC 3
M·enu--Ori-ent-ed Disks -... -..... -.... -..... _. • ; 3
Development Disks 5
BASIC and the Immediate Mode 5
Loading,. Saving and Running BASIC Programs 8
Floppy- _-D-is_k_. Formats _ -.. _ -• -.. -... -., ... •- .. -.. - .8
Utilizing Named Program Files 11
Mini-Floppy Disk Directory 12
Full Size Floppy Disk Directory 13
Saving a BASIC Prqgram .On Disk Via a Named File 14
Loading a BASIC Progra.'Il From Disk By File Name 15
Deleting Files 15
Backing Up Files 17
Modifying BEXEC"c and Appl1.cations Disks•........ 17
Advanced Features of 0S-6SD V3.0 9-Digit BASIC 19
BASIC I/0 Handling 19
BASIC to DOS Interface 2 0
·Data File-s in. BASIC ... -......... -• _ _ 2--2
Sequential Data Files 2 2
Steps to Using Sequential Data Files 23
Random Data Files 25
Steps to Using Random Data Files•......•... ,. .. 2 6
Using the Assembler/Editor 28
Using the Extended Monitor . 3 o
System Overview · 3 l
System Architecture 31
Memory Map 3 2

Utility Programs 3 3
. Cre21.te File. Utility•.•....•.•...............•. 34

Change Para.met er . Utility 3 6
Delete File Utility 4 3
Directory Utility 4 4-
Sorted Directory Utility 4 6
Random Access File List Utility 48
Rename File Utility 50
Sector Directory Utility 51
Sequential File Lister Utility•...... 53
Trace Utility 54
File Zeroing Utility 5 s

OS-65D v~~o Kernel 56 ·
Changing I/0 Distributor Flags 5 6
Transfer~ing Disk Sectors 59
Executing a Machine Cod~ File 59
Using Indirect Files 61
Kern al Ut il i ti es• • 6 3
Initializing Diskettes 6 3
Copying Diskettes 6 3
0S-65D V3.0 far the I-P 65
I-P Pico DOS 66

.Appendix
0S-65O V3.Q User's Guide

?,fanual CC) 19.7 8 OHIO SCIENTIFIC, INC.
65D VJ ,0 (C) 1978 OHIO SCIENTIFIC,
9•Di£:it BASIC• (C) M:CROSOFT.· INC.

ct

*Convenient to use "conventional" disk operating system

*Available for ail OSI 6502 mini-floppy and 8" floppy

configurations

*Supports 9-oigit BASIC, Assembler/Editor, Extended Machine

Code Monitor and transient code programs

*Utilizes named files and mantlally allocated files inter­

changeably
I

*Features convenient to use BASIC oriented sequential and

random access data files

*Supports up to four floppy drives

*Supports 430 serial, 550 serial (16 port) parallel printer,

cassette and memory I/0 as well as serial console and/or

keyboard with video console

*Can be directly converted to a locked menu-oriented system

for end users

*Contains all OS-65D V2 .O features as a subset and can read

version 2 files and assign fi.le names to them

*Supports multiple variable length disk buffers and variable

length sectors on diskette

-1-

Introduction

OS-650 Version 3. O is a convenient to use disk operating

system which fully supports Microsoft's 9-Digi t Extended BASIC,

a 6502 resident ASsembler/Editor, 6502 Extended Machine Code
i

Monitor and various I/0 devices. 'The operating system is

available for all Ohio Scientific mini-floppy and full size

floppy disk configurations. The system is convenient -for

beginners to use via the programming language BASIC. It

supports writingr programs in BASIC, storing programs on disk,

recalling programs an:d reading and writing sequential and

random access data files in BASIC. The system also fully

supports assembler language programming fer the 6502. In

conjunction with its assembler and machine code capabil,_!ties, ~

it .offers an extensive machine code debugging aid, the Extended(.

Monitor.. The system is also well suited to utilize machine cede

subroutines in conjunction with BASIC prograrr:s. It has several

advanced features such as variable sector length arid the capability

of its stand-alone disk operating system kernel to .support ct:!1et

languages.

This manual wil.l cover the above features starting with

fundamental operation of the syStem for the BASIC programmer

and advancing to more detailed levels. The manual is written

to permit the user to fully utilize the computer system at the

BASIC language level, without ever having to read those portions

of the manual covering assembler level operation. For the user's

convenience, a condensed User's Guide that covers all features

OS-65D Version 3. O is included at the end of this manual.

Using the Svstem in BASIC

Before using any floppy diskettes, please care£ully read

all the warnings about the care and handling Of diskettes and

the floppy disk s'fstem in the main operator's manual accompany­

ing your computer. Once you have the :system properly connected

and powered up, place the 65D Version 3.0 diskette, label side

up, in the "A" drive of your disk system. There are basically

two types of 65D 3. 0 diskettes: Development disks and menu­

oriented Applications disks. Both boot up directly in the

progral'I'.ming language ·BASIC and execute a BASIC program called

BEXEC*. With either type of diskette, the proper procedure is

as follows:

l~ Place the diskette into the disk drive.

2. · Close the drive door.

3. Depress the reset button in front of the CPU or the
_ break key on the computer's keyboard deoending on
the model of the computer you have.

4. Check to be sure the shift lock key is in the locked
or down pcsi tion on polled keyboard syste!':'.S.

5. Depress the "D" key.
bootstrap which will
disk into memory. A
on the screen.

Menu-Oriented Disks

This selects the floppy disk
load the operating system frorr.
series of messages will appear

Applications disks display a menu when bcoted which is a list

of nu."nbers and program descriptions, and finally, a message such

as "YOUR SELECTION?". To select the desired progra!c!, you simply

type the number corresponding to the desired selection and depress

the RETUR..'l key. The operating system will then load that program

and execute it.

-J-

Note that all inputs you type into the computer must be

followed by pressing the RETURN key. This is referred to as

lfline-oriented. inputf'. It offers a tremendous advantage over

character oriented input in that until the RETURN key is pressed,
j

· typing errors can> be corrected by merely typing a delete

character after the error, then typing the correct character.

(On various keyboards the delete character (hex code SF) may be

a shift-O, underline or back arrow.} On video terminals with

backspace capability the erroneous character is then erased and

· t.'le cursor is left at the proper position for entry of the correct

character. On printing terminals that have backspace capability

the erroneous character obviously cannot be erased. However, the

print head is left correctly positioned for entry of th~ correct f

character. On terminals without backspace capability the cursor~

print head is not repositioned but the delete is performed per­

mitting simp).e correction of errors. As many delete key strokes

as needed can be used at any time. For example, if two characters

were typed in error, two delete key strokes can be used to eliminate

them. In addition to the single character delete, a control-U key

entry may be used to delete a whole line. This is done by pressing

the U key while holding the CTRL key down.

Menu-oriented operating systems provide operational rnessaae2:

as you go so it is usually not necessary to refer to this manual

while operating an Applications disk. It is possible to gain

access to the internal software of an Applications disk by typing

in the proper response when the menu is displayed. This feature(.
·~.

will be covered later, after the user has gained a familiarity

with Development disks.

..,,:1_

Ce
Development Disks

Development disks are specifically for users who wish to

write their own programs •. Development disks contain utility
i

programs which will provide assist;.ance in developing software

instead of providing end user application programs. A Development

disk will boot in with a message such as "OS-65D Version 3.0"

followed by some other messages and a selection of possible

functions, ultimately asking the question "FtJNCTION?". The

functions in this menu are utility programs which will be covered

later.

BASIC and the Immediate Mode

The first objective in mastering 65D Version 3.0 is to learn

to utilize the programming language BASIC in the immediate mode

and to write simple programs. This is accomplished by selecting

a Development disk, booting it in by typing D and answering

"UNLOCK" to "FUNCTION?". {Note that the RETUR..">i key must be hit at

the completion of each line of input.) This operation initializes

BASIC, prepares it for end user programming and returns the user

to the !ASIC immediate mode displaying the prompter "OK". At

this point, the computer will accept almost all star.dard BASIC

statements in the immediate mode. The irr~ediate mode can be used

in conjunction with any standard BASIC textbook for mastering the

concepts of the programming language BASIC. The following is a

sqort introduction to programming in BASIC and sc~e sa~ple progra~s

that can be run. Once you have mastered elerr.entary prograr::rr.ing in

BASIC, proceed to the next section which covers loading BASIC

programs from disk and storing BASIC programs on disk.

PROGRAM EXAMPLE

The following program example demonstrates some of the

more fundamental concepts of BASIC. This program may be

entered when ~eie computer replies "OK". Enter the program

exactly as it appears, including all punctuation, etc.

li1 PRINT "HELLO! I'M YOUR NEW COMPUTER!" <€sTORN>

2~ PRINT ~TU~

3~ END <RETU~

Now, check ~he program to be sure you have entered it

correctly. Type in the word LIST and ~TU~ • This

instructs the computer to Print out the program as stored

within the computer's memory.

LIST ~TU~
• To have the computer execute ("run") the program, type in:

RUN -<€eTU~
The computer should then print:

HELLO! I'M YOUR NEW COMPUTER!

The BASIC language makes it easy to modify (edit) a

program. Errors within a line may be corrected by retyping

the line. Additional statements may be incorporated into a

program by sequencing the new line nwr.bers within the existing

program. The following additions to the example program

demonstrate these editing concepts.

5 FOR X=~ TO 3~ ~TURN>

25 NEXT X ~TURN>

To examine the program as aniended i type LIST ~TUR..3)- .

To execute the new program, type RUN <€,ETu~ .

-6-

The computer operating manual contains a more in-depth

discussion of BASIC, several sample programs and a reference

manual on BASIC.

You may also wish to refer to one of the many BASIC

programming texts now available for an in7depth study of BASIC.

-7-

Loading, Saving and Running BASIC Programs

OS-65D Version 3 .0 allows the user to LOAD, SAVE and RON

BASIC programs _specified by starting track number or by up to

a six character file name. This un~que approach allows maximum
I

versatility in that the user can allow the disk system to locate

the space for files or can manually specify exactly where files

appear on the disk, as desired.

Floppy Disk Formats

Floppy disks are divided into concentric circles called

tracks. Each track can be further divided into entities called

"sectors". An 8" floppy disk has 77 usable tracks. Mini-floppy

disks have from 35 to 40 usable tracks depending upon the quality

of the read/write head in the floppy diskette drive and t!?'e

quality of the floppy media. Tracks are n'UI!lbered from O up such

that the 5th physical track on the disk is track 4. OS-65D

Version 3. 0 stores BASIC programs starting on track boundaries

and uses an integer number of tracks to store each program.

That is, it stores programs on a single sector per track. Pro­

grams that are multiple tracks in length are stored on contiguous

tracks, that is, if a program is 3 tracks long and is specified

to be stored on track 40, it is, in fact, stored on track 40, 41

and 42. On 8" floppies, approximately 2800 bytes or characters

are stored per track. On mini-floppies, approximately 2000 bytes

or characters are stored per track.

Not all of the diskette is available to store user programs.

Part of the diskette is occupied by the operating system, the

Ce

language processors such as BASIC and the Assembler, utility programs

-8-

and possibly other end user programs and data files. It is

necessary to maintain a directory of what is on the disk both

to be able to select desired information from the disk and to

know what portions of the disk are available for future storage.

For the moment, we will bypass the methods of obtaining dir­

ectories and proceed to storing a program on diskette and

recalling it.

First, type a short program· into 'the computer in B.ASIC

and RUN it. Then, follow the procedure below. Note, when
f

you type EXIT, the system will report the nuniber of tracks

required to store the program. On 8" floppies store the

program on track 73; on 5" floppies store the program on track

34.

Procedure for Saving a Program on Disk bv Track Nu~ber

A. After the program has been entered:

1. Type EXIT.(By now you should be remerrbering to hit
the RETURN key after each line of input.)

2. BASIC will report number of tracks needed for stora9e.
Then the DOS prompter A* will appear.

3. Type PUT (track number) where (track nurr.b.er} = 73 for
the example on 8" floppies and 34 on 5" floppies.

WARNING: PUT (track number) will place new ?rograms
right over old files on the disk, so be sure
that the tracks you specify do:1't contain
other important software (in the example,
they don't) .

4. Type RETURN BASIC or RE BA in shorthand.

5. The BASIC prompter "OK" should appear with the prograrr
still in memory.

Type NEW to clear the program from memory and reinitialize

the work space. Now follow the procedure on the next page,

specifying track 73 for 8" floppies and track 34 on a 5" floppy.

-9-

Procedure for Loading a Program from Disk by Track Number

l. Type EXIT

2. Ignore the track size report BASIC puts out

3. Type :!.'CAD (track number) where (track number} is
the starting track of the desired program

4. Type RE BA

5. The BASIC prompter "OK" should appear with the
program in memory

6. RON or LIST the program as desired

The preceding process could be considered tedious for
•

bringing. in programs to be run. There is a much shorter way

of bringing in programs and running them. This can be demonstrated

by typing NEW to initialize the work space and then typing the

statement RUN (track number) where (track number) is73 or 34.

This brings the program into the work space and automati~ally

starts executing it.

-10-

ce
Ctilizing Named Program Files

It is somewhat difficult to have to remember the locations

of all programs by track number. For example, it is easy to

forget whether a program you want is on track 72 or track 27.

There fore, it is desirable to be able to utilize a name for a

program instead of its track number.

To utilize named files on the·disk, utility programs which

are present on the diskette must be used. These programs are

written in BASIC and include DIR, CREATE and DELETE. The!'e are

more utility programs, but these are the only ones necessary

for saving and recalling named BASIC programs. DIR is the

directory program. This program, when executed, lists or prints

out a directory of the disk files by name and track utilization.

Disk files can include BASIC programs, BASIC data files, asser..bler

source code, machine code and other special files such as the

utilities programs. To obtain a disk directcry, simple type

RUN"DIR while in the BASIC immediate mode. Or type DIR directly

to the question"FUNCTION?" when the system is bootee.. The

directory program then asks if you want line printer output in­

stead of console output. It then follows with the directory of

file names and track ranges. The following two listings show

the standard directory for mini-flop;:,y and 8" floppy Develo:;:,rnent

disks.

-11-

OS.,;650 VERSION 3 .0
-• DiaECTORY --

Fl:LE NAME

OS-6503
. BEXEC"'.

CH~GE
CEATE
DELETE
DIR
DIRSR'l'
RANI.ST
RENAME
SECDIR. ·
SEQLST
TRACE.
ZERO
ASAMJ?tae

TRACK RANGE

g-12
l4-l4
l5-.l6
l7-l9
2r,-2~·
21-21
22-22 · ..
23;..24
25-25
26-26
27-28
2'9-29

· Jfl-31
32-32

Full Size Floppy Disk Directory

OS-65D VERSION 3. 0

-- DIRECTORY --

~ FILE NAME TRACK RANGE
·-------~----------------
0S6503 0 - 8
BEXEC• 9 - 9
CHANGE j,_0 - 10
CREATE 13 - 14

Ce
DELETE j_S - 15
DIR 16 - 16
OIRSRT 17 - 17
RANLST j,_8 - 19
RENAME 20 - 20
SECOIR 21 - 21
SEQLST 22 - 23
TRACE 24 - 24
ZERO 25 - 26
ASAMPL 27 - 27

58 ENTRIES FREE OUT OF 64

-

The directory listing shows that the program named DIR

resides on track 16 so t.i.iat, in fact, the progra.'il could be

run on an 8" floppy by the statement RUN"l6 just as well as

it could be by the statement RUN"D+R. For more information

on the directory program and the sorted directory program,

DIRSRT,refer to the utilities description portion of the manual.

Saving a BASIC Program on Disk Via a Named File

In order to save a program on disk as a named file, the

disk file must exist on the disk and appear in the directory.
f

A file is created on disk by use of the CP.EATE utility program.

This program allows the creation of a disk file of any size from

one track to the total free space of the disk. The file must have a

six character file name which is unique, that is, the name canno(.

be the same as that of an existing file. The CREATE utility

also checks to make sure that the tracks specified are not in use

at the moment to preclude the possibility of over-writing or

destroying other data on the disk. To t:tilize t·'1e CREATE proqra:.-,

simply type RtJN" CREATE. To start, CREATE a one track long pro­

gram called TEST. For more detailed information on the CREATE

program, refer to the utilities description portion of the manual.

Once a file such as the example file TEST has been created wit.::

the CREATE utility, you can directly store a program in it. Key

in a short program and run it. Then to store this program on

disk in the file TEST, type the following statement: DISK!"PUT

TEST". This statement saves the program currently in the work

space under the file name TEST. If TEST does not exist or you L.
misspell it, the disk operating syste:rr. will report the error.

ce
Loading a BASIC Progra.1'{1. From Disk By File Na.'T',e

To load and run a BASIC program by ,file name, use the sare

procedure as you have used for· utility programs. Simple type

the statement R'UN"TEST". If you want to bring the program into

the work space without running it, type DISK!" LOAD TEST". This

loads the program into the work space but does not execute it.

After these exercises have been completed, you can verify the

existence of the file TEST by running the directory program and

observing what tfack it appears on.

Deleting Files

After utilizing a diskette for awhile, it may be desirable

to remove a file from the disk because the file is no longer

needed or possibly because the program is becoming toe large

for that particular file and the file must be recreated a ?arger

size. Files can be removed from the directory and subseque:itly

from the disk by use of the Delete Utility. Refer- to the u::ility

documentation portion of this manual for instructions on the use

of this utility.

Ot.11.er Useful Features For Loadincr and Saving Programs on Disk

We have now covered all the fundamentals required to ?Ut

programs on a diskette and recall theIT' from a diskette. The

following discussion will provide additional insights into the

use of the disk system for BASIC programs and other files.

Tips for File Use

File names can be up to six characters long and are general:.y

three to six characters. The first character in the file na:""e

must be alphabetic and the name cannot include spaces. The

-15-

For this reason; a sorted directory program, DIRSRT,
, ', .. , ·.

is available._ It sorts the, dire.cto.ry in alphabetic ordet: or

track nllmber orde.r. The disk also contains a renaming utility
i

called RENAME which al.lows a file name.to be changed.

Ties On File Size •.

·-_ The OS-650 approach to .. data files .reciuires that the user

know how large his file is initially. - Fo·r programs,· 1:.his should

not be a problem.-
.-

'!'o be safe, the user can simply speci-fy a disk file size

as large as or slightly la.J:"ger than the available RAM for BASIC

programs. For example, with the mini-d:i.sk system with 20K of
. .

RAM slightly less than 8K is available for p:rogra."ns,. thus, a
. . ,!O"·

·_ four track file will handJ.e any program that cari be typeq. into
. . . . -

the machine. The· user shoy.ld always maintain a scratch file,

J1SualJ.y with the name SRA'l'C:S, which is larger than the. memory

- size of the computer or simply have a large block of free tracks.

This -file or block -of tracks. ean .act as tempol:'ary storage in

severa:l situations. For example,· the user types in a program

and then remembers that he did. not create a file for it. The

procedure is to SJ.mply store the program in SRATCH ,- create an

·· appro.priate file, re~oad · th.e program f rdm s RAT CH and store· i~'

under its proper name;.)mother case comes up when a BASIC

pr.ogx:-am 01,1tgrows •its file size. The· program is·. then. stored in

SRATCH ,. the old file is deleted and then recreate·d in a larger

size_. Thes~ prdcedures will also be v~l1,1able for datc1 files

which will pe discus$e.<i later.

Backing Up File~

on computer systems with two or more disk driv'?s ,. it. ir;

recommended that t_he user periodically recopy his ent: ire di :-;k tr

a "back up" disk by use of the Copy Utility. The C'opy lit i 1 it·;
l

is a machine code utility and is described in the ut.i lit_ i e~;

documentation portion of the manual. On single drive syster•i;,

the best approach is to back up work by performing all disk

file functions on two diskettes. That is, when a new proqnrn'

is being generat~d, a file for it should be created on two

diskettes and then when the program is entered in the machine,

it should be saved on both diskettes by storing i l on one di,: Ii: ,

removing that disk from the system, placing the other diskcuc,

in place and storing it in that diskette. This is a ;;nmewh:it

tedious. process which is why dual drive systems are popular.

Modifying BEXEC* and Applications Disks

...

We have now covered enough information to allow the cu,; tr)m i ;- • ,-

tion of existing Applications diskettes and the creation of new

Applications diakattea. All OS-65D Version 3 .O diskettes bnnt up

in BASIC and call in and execute the BASIC program callecl nrxr:r:*.

On Applic~tions disks, this program contains a menu of availobls:

~ BA.S:C programs. On Development disks it may contain a menu of

some of the utilities. To access the operating system, that is,

to unlock an Applications disk such that programs may be listerl

and modified, the user must type either UNLOCK or PASS to the

question "YOUR SELECTION?!' depending upon the particular diskette. c• The system then reports that it is open for modification. By

ur:.locking the Applications diskette and examining the listing of

-17-

the menu program, the user can determine where programs are

located on the disk. Programs can then be called in via the

LOAD command, modified and saved back on disk. A.dditional

programs can be __ saved on the disk and menu changes can be

made as required. The Applications disks do not contain the

named file utility programs CREATE, DIR, etc., but can be

utilized in conjunction with these programs if they are brought

in from a Development disk. Likewise, the user can generate

new Applications disks by simply changing BEXEC* on a Development
•

disk as desired for menu and locked operation.

-18-

Ce

Advanced Features of OS-65D Version 3.0 9-Digit BASIC

The 9-Digit BASIC in OS-65O Version 3 .O contains several

extensions to Microsoft 9-Digit BASIC. These extensions prcvide:

1. Input/o-utput distribution to various devices

2. Interfaces to the disk operating system kernel
i

3. Extensions for sequential and random access disk
data files

We will now discuss each of these extensions in detail.

BASIC I/O .Handling

BASIC input~and output is performed with the following

commands: INPUT, PRINT and LIST. Under OS-6 5D BASIC, these

statements can be utilized in the normal way for input and

output to the console device. Also, input/output can be

selectively routed from/to various other devices on the syste:r::

including a terminal, modem or cassette at the serial port,

video display, 430 board based UART, rnernorJ buffer, line printer,

two disk buffers, 16 port serial board and a null device.

output can be routed from/to these devices by simply typing a

pound sign {if) and the device number (as listed in the table be 101-..:)

'
immediately following the INPUT, PRINT or LIST cornnand.

In out Devices

l. Serial Port (ACIA)
2. Keyboard on 440/540 Board
3. UART on 430 Board
4. Null
5. Memory
6. Disk Buffer l
7. Disk Buffer 2
8. 550 Board Serial Port
9. Null

-19-

l.
2.
3.
4.
5.
6 •
7.
8.
9 •

Output Devices

Serial Port (ACIA)
Video on 440/540 Beard
UART on 4 30 Beare
Line Printer
Memory
Disk Buffer l
Disk Buf :er 2
550 Boa.:::-d Serial
Null

The following ,are '.examples of' the use of these ·statements. (.

INPOT. t8,D$

PRINT #4, .· "LINE PRINTER".

For instance,. to store a progr.am on cassette that exists

on· disk, the user simply calls that program. into memory· and types

'"LIST#l or LlSTtJ depending 9n Which port his cassette interface .•.
is connected to. This lists. that program> on that device. To

~v:tput to a printer, the user simply types PRINT i4 and the out­

• put will be routed to the line printer. Memory cut-put, device 5 ,

is-useful for various experimenter situations such>as directly
.

displaying j,nformation on the 540 video screen without. scroiling.

This particuJ.ar ~pplication is covered in thtt Character <4"aphics

Reference> Manual. Device 6 and de.vice 7 are memory buffers for

use with disk. fJ .. les. The use of these disk file buffers will

covered in the: following section. Care must be taken not to

'route input oz- ouq,ut to non-existent or t~rned of! per.ipheral

. devices since. this will cause tile computer system to "hang" and

wil.l req:ui.re a reset which may destroy data in memoey. ·

BASIC to DOS Interface

os_.650 Version 3 .o ut±l.izes a stand alone command processor

for ·1:ne· disk operating systeith That. is, disk operation can l:;)e
-. -· .

(;;,,,,;,.. ."'

pe.t";ormed even if: BASIC' is not present in memory. Full di$cussiori

of the disk opera.ting command.s are in another section of the manual

an,F in the u~ez-' s Guide. We have already covered. some of these

comina.nds , suc:h as LOAO and PUT. The programmer can leave BASIC

and; enter the DOS commancf mode by. typing EXIT. :rf he does not

alter the BASIC interpreter in memory or the work space he car.

return to BASIC by typing RETUFN BASIC or in shorthand form

RE BA. The user can also execute a single DOS command wi thou.t

leaving BASIC by utilizing the statement DISK!" string" where

string is an operating system command~ This statement can be

part of a BASIC program, thus, allowing the user to conveniently

utilize all the disk operating system commands as part of any

BASIC program.

-21-

Data File$ in BASIC

In many applications it is a practical necessity to store
< ,:. .,

many variables in such a way .that they oan be recalled at a
• • ... - : , • <

later date .. Specif:ic:ally, after the power has been turned on and
j

of.f several times •.. Such a collection of var;i.ables is referred

to as a data file. Th$re are two f,;mdamental types of data files

available under os~650 Version 3. O} sequential files and random

Sequential Data files

·A sequential data file is a file in which information is·

~utput to the file sequentially, one.item right after another

fro.m the beginning to end of the file. T.o re ad information from

the file one must seqttentially input it. Examples of us~s for

sequential files, would be stor,e a. large numeric arra~t or to

store information that. can. be searched sequentially such as

names. anc;l phone nUltlbers. Let's walk through the prQcess. of.

having a name and phone number in·a sequential file. first,

a file of adequate 1en·qth must. be created. Then a program must.

be written which outputs names and phone numbers to this data file.

Another program can be written that. reads the individual string

entries which are, in fact 1. names. and phone numbers· and compares

them with a .target name which is the name a user is sea~ching fo:r.
. .

If this name i.s. found in the. file, .the next string from the

file will be the desired phone number. ;Each file· is• terminated

by an "end of.·. file'1 marker .wnich the pro~rammer can us·e or the

prpgrammer may utilize oth"r techniques · for his. own .end of file ·tc•
For instance, in the telephone program, . the. string "EN.D" could

.· . .. : .

. -22-

be utilized as the "end of file" indication. This would- be the

last string output to the file and could be checked'for when

inputting information from the file. OS-650 allows the user

one or two disk buffers for use with one or two files. This

means th.at the user can have one or t'f,,{O sequential files in use
I

in his program at any given time. These files a.re referred to

as devices 6 and 7. To utilize £iles as device 6 and 7, obviously

one must equate them to physical files on disk. This is done by

use of the OPEN command which equates a named file to a particul,ar
f

device number. For example, the statement, DISK OPEN 6 1 ftTEST2"

opens the previously created disk file TEST2 and equates it to

device 6. once this statement has been executed, a statement

such as PRINT#6 ,A$ will print the string AS to the file TEST2.

Likewise, information can b.e input from a file by the statettren t

INPOT#6 ,B$. When this statement is executed, the next variable

in the data file TEST2 will be read into string variabl~ BS.

At the end of a program or. when one has completed their use of

a particular data file, the st~tement DISK CLOSE, 6 should be

executed which closes the. data file and assures that all upc.ates

to the file are made. Two data files may be in use simultaneosly

by opening one on de,vice 6 and one on device 7 • Then· INPUTS and.

PRINTS to device 6 and 7 can be made interchangeably. More than

two data files can be used in a· program by simply clos.ing and re­

opening files, as needed.

Steos to OsingSeouential Data.Files

The following steps must be taken to create .and fill a

sequential file with .:information.

-23-

1. Using the CREATE utility, create a file to hold the

sequential output program with a name such as PROGl.

2. Creat~-- a data file with a name such as TEST2.

3. Execute the Change Utility by typing RUN" CHANGE.

Use the Change Utility to allocate space for one

disk buffer at the beginning of the BASIC program.

Refer to the section on disk utilities for explicit

information on using the Change Utility.

4. When the ~ANGE program is complete, the work space

has been reconfigured with space allocated for a disk

buffer. The program for use of the single disk file

should be entered at this time. The following program

may be used. It will place four strings in the ~isk

file TEST2.

lj DISK OPEN, 6 , "'I'EST2"

2$1 FOR I=l TO 4

3J1 PRINT #6, "STRING", I

4/1 NEXT I

5$1 DISK CLOSE,6

5. Store the program on disk under the name specified in

Step l.

6. Run the program which should output the strings to the

disk file TEST2.

7. Use the utility program SEQLST to list out the contents

of the data file TEST2. Refer to the utilities portion

of the manual for directions.

8. Make the following changes to the program to use it to

Ce

Ce

list out the file.

30 INPUT #6 , D$

35 PRINT D$

9. Run the modified program. The results should be the

same as they were when SEQLST was run.

Random Data Files

In may instances, sequential files become very impractical.

For instance, in an inventory application, one would like to be

able to quickly access an inventory item for reference or
f

change. This requires the use of a random data file. Random

data files differ from sequential files in that groups of entries

are co~bined into records. These records can be randomly {non­

sequentially) accessed. For instance, a random data file could

have a hundred records. A program could quickly access any one

of these records by record number. For example, the contents of

record 58 could be brought in and the contents of record 72 could

be brought in without looking at any of the records in between.

OS-65O Version 3.0 supports one random access file at a time as

device 6. This can be used in conjunction with an optional

sequential file as device 7. The length of individual records

within a random access file can be adjusted by the user but are

factory set at 128 bytes. There can be any number of individual

variable entries within a record of 128 bytes and one record can

overflow into the next so that if the user wanted 256 character

records for instance, he would just utilize even record nurrbers.

The following example will use the same data file, TEST2, and use

it as a random file with a total of ten records. To reuse this

-25-

sequential data file as a random file, we must first perform

some housekeeping. This housekeeping is performed with the

Zero Utility. The Zero Utility erases all information in a

file~ To accomplish this, type RUN 11 ZERO. Then specify TEST2

as the file to be erased. A more cpmplete discussion on the

Zero Utility function is present in the utilities portion of

this manual. After TEST2 has been zeroed, proceed with the

.. following steps.

Steps to Using Random Data Files
(

l. Create a new program file or utilize the same program

file as in the sequential exercise.

2. Execute the Change Utility and allocate space for one

disk buffer.

3. Type in the following program:

l(J DISK OPEN,6,"TEST2"

2~ FOR I=~ TO 9

3f] DISK GET ,I

4~ FOR J=l TO 2

5~ PRINT#6, "STRING!'; I ;J

6~ NEXT J

1(J DISK PUT

SrJ NEXT I

9rJ DISK CLOSE,6

4. Save the program und.er the file !'lame specified in

Step 1.

5. Run the program to fill TEST2 with ten records of

information.

-26-

6. Utilize the random file list utility RANLST ·to list

out the information placed in TEST2. Note that RANLST

only lists one string per record so it does not list

the second string we wrote to each. file ·record.

7. Modify the original program. vi,1 ·the following lines:

Sf1 INPUT #6,DS

55 PRINT. D$

1() (deleted)

8. Execute the modified program to observe the output

' information. -Output information should be the same

as was originally placed in the file.

Note that in the above example, an inner FOR loop is used t.O

write each of two strings to each record of the file. Execution

•
of thePB:INT statement for eachstring causes the data followed

by a carriage return character to be written to the file. Al­

though the carriage return character occupies a character of

file space, its use after each item written to the file greatly

simp.lifies inputting the data. If a record were written as a single

long· s·tring, commas would have to be written out between each iteM

or the user would have to provide the detailed programming.to break

the long string into its separate.items whenever the string was

input. It is much simpler to write each iter:'! with a separate PRI~JT

statement. There is also another limitation preventing lor.g strings

from being read. The BAS!C input buffe.r is 72 characters long.

<;:onsequently, longer strings are truncated on inpu.t.
. . .

-27-

Using the Assembler/Editor

OS-650 Version 3.0 supports an interactive Assembler/

Editor. The Assembler/Editor can be brought in by proceeding
i

with the normal boot in procedure to BASIC's immediate mode.

Then type EXIT followed by ASM. This brings in the Asse~bler/

Edi tor and places the computer in the Edi tor's imrnedi ate rnoc.e.

Assembler/Edi tor's operation is as specified in the separate

Assen,.bler/Editor Manual, except for the extensions to the

Assembler covered here. The Assembler/Editor is an extra

cost option. The Asse~bler/Editcr utilizes two types of

files. Source files which contain the assembler code and

optional object files which contain the machine code generated
•

by the assembly. Under OS-650 Version 3.0, source files can be

named or specified by track nUirher. Object files can be storec.

in variable sector format for placement anywhere in memory or

can be stored in named file mode if they are set up to resic1e

in the standard work space. In addition, the disk operating

system includes an execute object file command (XQT fil~ name)

which allows the direct and convenient execution of machine

code files providing they are linked to the operating syste~

and reside in the normal work space area. Na.med files must be

created via the BASIC utility before the asserr.bly orocess is

begun. The user has the option of exiting from the Asse~.bler

to the DOS for DOS level commands by the use of the EXIT corr~and

and returning by typing RE ASM after completing a corr~and. Or,

a corr.mane can be sent directly to the DOS by simply preceeding i~

with an e.xclarnation point (!) . For example, ! LOAD file name

Ce

loads a source code file into the asserrbler's work s~ace a~~

returns control to the Asserr.bler/Edi tor. Note

return to the Assembler if the Asserrbler is in

rou can on.:..r

trar.s ier.t

processor area. Likewise, you can only return to BJ.SIC if

BASIC is in the transient processor area. So, if the ~sserhler

was last used, you will have to type the DOS co~~and BASIC tc

reboot BASIC. If BASIC was last used, you will have to ty9e

the DOS co~mand ASM.

-29-

Using the Extended Monitor

, . . ce
OS-65D Version 3 .o also includes an Extended Machine Coce

Monitor for debugging programs at the byte level. This utility

is particularly useful for assembler code work. The Extended

Monitor can be entered by booting,in the system, exiting BASIC

by typing EXIT and by typing EM which boots in the Assembler/

Editor and Extended Monitor and leaves the system in the extended

monitor command mode. The OS-650 Version 3.0 User's Guide, at

the end of this manual, provides a complete list of the Extended
f

Monitor's commands.

Ce

-30-

Sys ter.-i overview -

The OS-65D Version J .Q is a highly re finec st:per set o::

the original OS-65D operating system which was first introdt;.ced

in 19 76. Version_ ·J. 0 is a compact1 highly responsi ·:e opera t:.i.tg

sy· stem for- BASIC, assembler and machine. code prograr.-:rrcing. It is
. j

suitable for all computer system uses except tr.e li'.ost der,ar:cir:::

business applications where OS-65U and os-or.:S shot:ld be utilized ..

Svstem Architecture

Version 3 .or utilizes a stand-alone DOS cor::plete .with ccrrr.:and

interpreter. The DOS.and command interpreter are part of the DOS

kernel and can be util i.zed without a prograrrr.ing language. !n

addition to the DOS kernel, the system contains an I/0 dist;-ibutcr

whi<:h supports all standard Oh,io Scientific I/0 c~vices and can

route input and output through corr.I!"on locations to any corbit'latior:

of these input and output devices. 'Ihe syste:-- sup::orts a tr-ar:sie:.t

processor area, spe=ifically for Yicroso::'t 3AS!C, the E502 _:-,s:;e,:-:2..e~- ·

Editor and the Extended Mani tor and can be used fer ar-.y ether i; 51"\ 2

language processors which nay be installed on the syster.-:. "!'he

princ:ipal source coqe or cbject file work space starts at 317:E

hex for 8,. floppies and 32 TE for mini-floppies. :'he folh,wir:~

memory map shows the overall lavout cf the syster:-.

0-FF

100-FF

200-22FF

System Memory Map

6502 Page Zero

6502 Stack

Transient Processor Area for BASIC or Assembler

or other language orocessor

2300-3178 OS-65O V3 .o (to 3278 on mini-floppy versions)

2300-265B I/O Routines

265C-2'A4A Disk Drivers
f

2A4B-2E78 Operating System Kernel

2F79-3178 Swapper

3l7E up to BFFF Source File Work Space (327E up for mini-floppy)

Disk buffers when present normally occupy from

3l 7E up, offsetting the work space (J27E on (e
mini-floppy versions)

-32-

ce Utility Program

A complete set of utility prograns are provided in tt~ CS-6~

Version 3 .0 for use~· in creating new files, ccFyir.g files, p.::-ir.-;.i~;

directories of files or file contents, •tc. These procrars ~a~ ~e

used without any knowledge cf their irr:pler.-entation. Howe~:er, they

are all written in BASIC and may be used by the ir.terested reader

as sample programs demonstrating various prot;rar..r.1.r.g ar.c file

accessing techniques.

Descriptions of the operation cf the utility prcgrar.s a;Fear

on the following pages.

...

create File Utility

This utility; program is.used to create new named.files .

. Note that a file must have .been craated with this prograrr.

before it can. be referenced .by any of the file comir.ands. To

create a ~ile, type:

RUN ,iCREATE•
. .

The program output and the kindof·input you may enter

in response are as shown below. Any unacceptable response will

result in an error message aind/or a repeat of the request for

input.

FILE CREATION . UTILITY

PASSWORD?

The program continues with an explanation of its

operation:

C.
CREATEq AN ENTRY IN DI.REcrORY FOR A NEW FILE P..!JD INITI.?..LIZF::=

THE TRACKS THAT THE NEW FILE WILL RES IDE ON. THE TRACKS

WILL CONTAIN NULLS WITH A RETUR..T\J AT THE tND OF THE TRACK.

FILE NAME?

Enter a.one to six character file name that is not a.duplicate

of an existing file name •. It inust start with a letter. . .,·

FIRST TRACK OF FILE?

Enter the nUITtber of the first track. the file is to reside

on. · Note that. a. file a.lways begins on a track boundary and

resides on a whole number of tracks.

NUMBER OF TRACRS IN FILE?

Ente_r th.e number df tracks' on which the file is. to. res i,,de •. c•
All tracks assigned to a file must. not havebeee:previously assignee

ce

(e

The progra-n then continues with:

12 (8 for mini-floppy) PAGES PER TRACK. IS THIS OK?

Type YES if the specified number of pages per track is
-·-

accept ab le; otherwise, type NO. If you type NO, the following

question is asked:

HOW r,t .• ANY PAGES PER TRACK THEN?

Enter the nu::,:,.ber of pages -of storage you want each track

to contain. Any number up to the default number of pages is

acceptable. For full size diskettes this is twelve pages anc

for mini-diskettei it is eight pages per track.

The file will now be created and its name and track

location will be entered into the directory. Each of the

tracks of the file will be initialized to nulls with a return ..
character at the end of each track.

-35-

. '

Change Parameter-• Utility ·

This utility progra.--n is· used to cha."lge the sys.ter oara::-eters

for terminal .-width and for. the work space limits~

The. defined terminal width value for the systetr is -used by. . . !

the BASIC interpreter to provide automatic line rollover when

lines longer than the terminal widtll are output. A carriage

return and line feed character are automatically inserted into

the output line when it hits the terminal wicth. Thus, loner

lines are output_(as two or more lines rather than a single

truncated line. Si.nee ·some serial terminals and all OSI video

systems automatically provide line rollover, you may ndt need

to change this parameter. Note that changing terminal wicth

with this utility program px:-ovides only a temporary cha.nqe.

Whenever the system is rebooted or BASIC is cold started (by

typing BAS) , the terminal width is setback to its default

value 132. If you write. a BASIC program that requires a

different terminal width, then you must run this utility prccrcJ.r-

to aE)propriately change the terminal width p_ararreter prior tc

running that BASIC program. or, you can include into. the BJ:..S!C
. .

program the following commands which setup terrr.inal wict!: n·n:> is

a BASIC variable which. must contain the desired te.r:c:ina·l .!.;idth) :

POKE 43,WD

NC = INT{WD/14) *14

POKE. 24 ,NC

The second. POKE-, above, s.ets the column beyond whi:ch there are

no more 14 character output fields~ (Fourteen is tb,e nur.ber pf~

character ?OSitions · allotted, to each output field t,rhen ccm"'as

Ce
are used to separate the variables in a PRINT statement.)

The "work space" is that RAM area where the asser-bler

BASIC source programs reside. It is used to hold these so:.:rce

programs and various tables, lists, etc., that are used d:.rring

assembly or BASIC program interpretation. The work space
l

normally begins at 12670 (hex 317E) for full size flop;,y disk

systems and at 12926 (hex 327E) for mini-floppy disk systers.

The end of the work space is norm'ally the end of the main ~errory

(that memory. which starts at address zero and is contiguous up

to some higher address}.

The BASIC command RUN "file name" and the DOS commands

LOAD and PGT provide a means to easily loac a disk file into

the work space and to put a file that is in the work space back

onto disk either by name er by track number.

referred to as LOAD/Ptrr (or L/P) files.

Si.:ch files are

The Change Parameter Utility Program per::::i ts char.ges te

"

the work space limits so that you can reserve space in a LCJ'..D/PC'!

file for disk I/0 buffers, asser.b ly language object code or

whatever. The following diagram shows re le van t we rk space

addresses.

'

-37-

Full.Size
Floppy Disk
· System ·

Depends. on-~'Size ·
; of system · Memory
or No. 0£ Page~
Specified

•. Use.r Defined

User Defined

18814. (497E}

12 Pages

iS742 (3D7E)

Buffer Size is
3072, (COO) Bytes

12 Pages

12670 (3l7E)

Room at ,the Top
(if present)

.. - - ·-
Changed End of Work s·pace

Source code ,
tables, lists, etc.

· storage used
.. • by BASIC .

Changed Start of work Spac

Additional Room
(if present)

- - - - - - - - - - - - -
Second Buffer
(if present)

- - - - - - ~ - - - - - -
First Buffer
(if present.}

Normal Start .of. Work Space

Mini-Floppy
Disk

sys~em

Depends. of Size
of System Memory
or No. of Pages
Specified

User Defined

User OE!ffined · Ce

8 Paqes

14974 (JA7t)

Buffer Size is
2048 (BOO) Sytes-

8 Pages

12926 (32iE)

OS-650 VJ. O Work Space Add.resses in Decimal (HeMadeci::-,ai)

To change system parameters, type:

RUN "CHANGE II

The program output and the kind of input you may enter in

response are as shown below. Any unacceptable response will

result in an error message and/or a repeat of the request for

input.

CHANGE PARAMETER UTILITY

THE TERMINAL WIDTH IS SET FOR 132

DO YOU WANT TO CH.ANGE IT (Y/N)?
(

Enter YES or NO. If you enter YES, the program requests

a new value for the terminal width.

NEW VALUE?

Enter a new value from 14 through 255.

The program continues with:

BASIC & ASSEMBLER USE xx K WORI< SPACES (yyy PAGES)

WOULD YOU LIKE TO CHANGE THIS (Y/N)?

This refers to the total amount of main memory available to

the system software. Each K (1024 bytes) contains four 256 byte

pages. A change to this parameter will make a portion of highest

memory unavailable to systems software. Note that such memory

will not be included within LOAD/PUT files.

Enter YES or NO. If you enter YES, the program requests

the number of pages to be used by system software.

HOW MANY PAGES SHOULD THEY USE?

Enter a number of pages from 50 through 191.

The proqrarn continues with:

Er.ter YEd oc NO. If you enter NO, the program terminates.

-39-

•

•

\

•

•

If you enter YES, the program requests the following: ce
HOW MANY 12 (8 for mini-floppy) PAGE BUFFERS DO YOU

WANT ___ BEFORE THE WORK SPACE?

Enter 0, l or 2 to reserve that many track buffers at the
!

beginning of the work space. Note that device 6 memory bufferec

I/O uses the first buffer by default while device 7 uses the

second buffer by default. Of course, these defaults can be

changed with appropriate POKES. If no buffers are specified,

the program asks:

WANT TO LEAVE ANY ROOM BEFORE THE WORK SPACE?

Enter YES or NO. If you enter NO, the program outputs

the address of the start of the BASIC work space as shown

below. If YES is entered, proceed to the "HOW .MANY "BYTES?"

question below. Ce
If one or more buffers was specified, the program continues

with:

WANT TO LEAVE ANY ADDITIONAL ROOM?

Enter YES or NO. If you enter YES, the following question

is asked:

HOW MANY BYTES?

Enter the number of additional bytes to be allocated

before the start of the work space.

The program then outputs the new address for the start

of the work space and the total number of bytes reserved for

buffers, etc.

THE BASIC WOF.K SPACE WILL BE SET TO STAR!' AT aaaaa

LEAVING bbbb BYTES FREE IN FRONT OF THE WORK SPACE

IS THAT ALRIGHT?

r.,_ Enter YES or NO. If you enter NO, the ;?rogram requests

'9that you specify an exact lower limit address. for the work space.

NEW LOWER LIMIT?

Enter a lower limit address. The program then confirms this

value by outputting:

bbbb BYTES WILL BE FREE BEFORE THE WORK SPACE

The program then continues ·with:

YOU HAVE xx K OF RAM

DO YOU WANT TO LEAVE ANY ROOM AT THE TOP?

Enter YES or NO. If you enter YES, the following question

is asked:

HOW MANY BYTES?

Enter the number of bytes to be allocated between the top

the work space and the end of main memory.

The program then outputs:

THE BASIC WORK SPACE WILL BE SET TO END AT ccccc

LEAVING dddd BYTES FREE AFI'ER THE WORK SPACE

IS THAT ALRIGHT?

Enter YES or NO. If you enter NO, the program requests

th,.,t you specify an exact number limit address for the work space.

NEW UPPER LIMIT?

Enter an upper limit address. The program then confirms

this value by outputting:

eeee BYTES WILL BE FREE AFI'ER THE WORK SPACE.

Note that the reservation of space after the work space is

not recorded on disk with a prograni when it is saved in a file.

Th: allocation is only recorded as a RAM resident change to the

,11 -

BASIC interpreter and remains in effect until explicitly

changed again, or BASIC is reloaded by typing BAS in the

00S command mode. Later, running a program that results

in an "Out of -Memory" (OM) error may be the result of a

reduced work space that is no longe,r required.

Program output continues with:

YOU WILL HAVE fff ff BYTES FREE IN THE woru< SPACE

IS THAT ALRIGHT?

Enter YES or NO. If NO is entered, the Change Parameter
•

Utility Program restarts from the beginning. Otherwise, the

requested changes are made, the work space contents are cleared

and the program terminates.

-42-

Delete File Utilitv

This utility program. may be used to delete a naftled file

frcnr:- the directory. This frees the tracks on which that file

resiaed, but it does not actually al~er the contents of those

tracks. Consequently, until a new file is created residing

on those tracks or the tracks are otherwise changed., tne

contents of the old (deleted). file ::are still recoverable by

a .direct track number access. To delete a named file, type:

RUN .. DELETE!'

The program output and the kind of input you may enter

in response are as shown below. Any unacceptable response

will result in an error message and/or a repeat of the request

for input.

DELETE UTILITY

REMOVES. AN ENTRY FROM -THE DIRECTORY

PASSWORD?

Enter the appropriate password.

The program. contin~s with: ·

FILE NAME?

Enter the name of the file tq be deleted.

Th,e file will now be deleted from the directory.

Directory Utility

This utility program is used to output a list of all current_(.

ly existing named files and the numbers of the tracks on which

they reside. To- output a directory, type:

RUN flDIR"

The program output and the kind of input you may enter in

response are as shown below.

LIST ON LINE PRINTER INSTEAD OF DEVICE #d?

Enter YES or NO. {dis the current output device assignment.)

If you enter YES, the directory output will be on device 4; other­

wise, it will be on the currently assigned device. If you answer

YES and there is no device 4 on the system, the directory will

not be output.

A sample directory output appears below.

OS-6 SD VERSION 3. 0

DIRECTORY

FILE NAME TRACK Rk'\J GE --------------------------------
OS-65D3
BEXEC*
CHANGE
CREATE
DELETE
DIR
DIRSRT
RANLST
RENAME
SECDIR
SEQLST
TRACE
ZERO
ASAMPL

~-8
9-9

1i-1i
13-14
15-15
16-16
17-17
18-19
2P'-2~
21-21
22-23
24-24
25-26
27-27

5~ ENTRIES FREE OUT OF 6 4

The above directory shows that the system software occupies

-44-

tracks zero through eight. OS-6503 is not a file in the

conventional sense, but appears in the directly solely to

delineate and reserve the tracks occupied by system software.

Track nine contains• the BASIC Executive, BEXEC*. This is a

BASIC program which always runs when the system is booted. and

which may be customized as needed to suit your application.

In general, tracks ten through 26 contain the various utility

programs; however, note that tracks 11 and 12 are free. Track

27 contains the sample assen-.bler language prograre, ASAf-1..PL •
•

-45-

,,

Sorted Di rectory Utility

This utility program may be used to outpllt a list of all

currently exisf::!ng named files and the numbers of the tracks

on which they reside. This output can be in alpha numeric

order by file name or by track ntlI't'ber. To output a sorted

directory, type:

RUN "DIRSRT"

The program output and the kind of input you may enter in

response are as shown below. Any unacceptable response will

result in an error message and/or a repeat of the request for

input.

SORl'ED DIRECTORY UTILITY

SORTED BY NAME OR TRACK (N/T)?

Enter N or T to specify a named or a track sort, res:ectivel.~<:e

The program continues with:

LIST ON LINE PRINTER INSTEAD OF DEVICE =d?

Enter YES or NO. (d is the current output device assignment. J

If you enter YES, the directory output will be on device 4; other­

wise, it will be on the currently assigned output device. If you

answer YES and there is no device 4 on the system, the directory

wi 11 :1ot be output.

If neither N or T was entered above

THEN IT WILL BE UNSORTED

is output and the directory list will be in the same order as

the actual· entries in the directory.

Sample directory outputs sorted by name and track nurober

appear on the next page.

-46-

OS-~5D VERSION 3. 0

DIRECTORY

FILE NAME TRACK RANGE

------------------ ------------
ASAMPL
BEXEC*
CHANGE
CREATE
DELETE
DIR
DIRSRT
OS-6503
RANLST
RENAflE
SECDIR
SEQLST
TRACE
ZERO

;

27-2i
9-9

lli1-lli1
13-14
15-,,,15
16~16
17-17

lit-8
18-19
2'1-21
21-21
22-23
24-24
2S-26

50 ENTRIES FREE Ot.JT OF 6 4

OS-6SD VERSION 3.0

DIRECTORY

FILE NAME TRACK RANGE

OS-6503
BEXEC*
CHANGE
CREATE
DELETE
DIR
OIRSRT
RANLST
P.ENA.ME
SECDIR
SEQLST
TRACE
ZERO
ASAi.'1PL

1-8
9-9

1i-1g
13-14
15-15
16-16
17-17
18-19
2i-2rJ
21-21
22-23
24-24
25-26
27-2i

59] ENTRIES FREE OUT OF 6 4

.. .

f

Random Access File List Utility

This utility program may be used to list the 'contents of

a random access file either a single record at a time or in

groups of contiguous records. The program assumes 128 byte

records. To list a random file, type:

RON '' RANLST ''

The program output and the kind of input you may enter in

response are as shown below. Any unacceptable response will

result in an error message and/or a repeat of the request for

input.

RANDOM ACCESS FILE READ

FILE NAME?

Enter the name of the random access file to be listeq,.

EXAMINE SINGLE RECORDS OR GROUPS (S/G)?

Enter S orG. If Sis entered, the nun-ber of the single

record to be listed is requested.

RECORD NUMBER?

Enter the number of the record to be listed. (Records are

numbered from zero through n.) The specified record is listed,

then the RECORD NUMBER question is again asked. To terminate

the program, merely type a (return) to this question.

If G is entered, above, the range of record numbers to be

listed are requested.

FIRST RECORD?

Enter the number of the first record to be listed.

LAST RECORD?

Enter the number of the last record to be listed.

-48-

The specified records are listed, then the "SINGLE RECORDS OR

GROUPS" question is again asked. To terminate the program,

merely type a (return) to this question.

Note that this program reads and lists a single string ,

' from the start of each record. Random files with more than

one entry (an entry is a string of printing characters followed

by a return) per record will not be fully listed by this prograrn.

Rename File Utili tv

This utility program may be used to change the name in the

directory of any file listed in the directory. To rename a

file, type:

RUN ,"RENAME"

The program output and the kind of input you may enter in

response are as shown below. Any unacceptable response will

result in an error message and/or a repeat of the request for

input.

RENAME UTILITY

OLD NAME?

Enter the na.,ne of the file to be renamed as it currently

exists in the directory.

The program then outputs:

RENAME "aaaaaa" TO? (aaa.aaa is the old name.)

Enter the new name for the file of one to six characters,

the first being a letter.

The name will be changed and the utility program will

terminate.

Sector Directorv Utilitv

This utility program may be used to output the number

and size of each sector on each of a specified range of tracks.

To output a sector directory, type:

RON "SECDIR"

The program output and the kind of input you may enter

in response are as shown below. Any unacceptable response will

result in an error message and/or a repeat of the request for

input.

SECDIR

USES OS-65D'S DIR COM!-'J!..ND TO PRINT OL"T A SECTOR MAP

OF A GIVEN RANGE OF TRACKS

FIRST TRACl<?

Enter any valid track number greater than zero and less

than the total number of existing tracks (76 for full size disks

or 39 for mini-disks).

LAST TRACK?

Enter any valid track number greater than that entered for

the first track.

A sector map for the specified tracks will be output, then

the program will terminate. A sample of such is shown below.

SECTOR MAP DIRECTORY

TRACK)11
;!l-)3'5
)12-)15

TPACK 53'2
~H-~B
etc.
OK

In the sample, track l has two sectors, both five pages

in length. Track 2 has one sector of ll (hex. B) pages.

-52-

ca Sequential File Lister Utility

This utility program may be used to list the contents of

a sequential file. A sequential file is one in which all entries

within the file are contiguous with no intervening gaps.. To list

a sequential file, type:

RON "SEQLST"
..

The program output and the kind of input you may enter in

response are as shown below. Any unacceptable response will

result in an error message and/or a repeat of the request for

input.

SEQUE!-lTIAL FILE LISTER

TY:?E A CONTROL-C TO STOP

FILE NAME?

Enter the name of the sequential file to be listed.

The specified file is listed until you type a Control-C or

the and of the file is reached in which case the program terminates

with the following end-of-file message:

ERR #D ERROR IN LINE 100

OK

Tra~e Utility

This utility program __ may be used to initiate or t,rmin~te

a BASIC program ·1ine number trace.· To trace .a BASIC p~r;,gram,

type:

The program output and _the input you may enter in respons·e

are as· shown below. Any unacceptable response will result in a

repeat of the request for input .•

TRACE O'l'ILITY

WHEN BASIC'S TRACE FEATURE IS ENABLED, BASIC WIL~,iPRINT
. .

our EACH LINE NUMBER OF THE PROGRAM BEFORE IT IS EXECUTED.

ENA.SU: OR .DISABLE (E/D)-?

Enter E to _enable the trace or D to disabl.e the tr.ace.

the trace is being enabled;

160

OK

will be output.. The 11160" is a trace> of the last line <:if the

utility prograin. Now- run the program you wish to tes1: with.

line number. tracing:.

Note that the execution of any program.;.;. including utility

prog.:x:-ams such as this one - will include line number outputs

whiJ.e the tra.ce is enabled. · This will not adversely affect the

operation of the program.

File Zeroing Utility .

• This utility progra.in is used to zero the contents of a data

file. This fills t.."le ent.ire data file with null (hex ~i) characters

which are .ignored (skipped over} during BASIC input. You may

find it advantageous to "zero" random data files before entering

data into them in order to provide a "b.ackground., that is

.,transparent" {not seen} by a BASIC INPUT command. To zero a

file, type:

RUN "ZEROn •

The program output and the kind of input you may enter in

response are as shown below. Any unacceptable response will

result in an error message and/or a repeat of the request. for

~. in.put.

• FI!..E ZERO UTILITY

COMPLETELY ERASES THE CONTENTS OF A DATA FILE

PASSWORD?

Enter the appropriate password.

FILE NAM;:?

Enter the name of the file to be zeroed.

The program continues with:

IS IT A NOru-t.AL 12 (8 for a mini-floppy) PAGE DATA FILE?

Enter YES or NO. If NO is entere.d, the following message

is output:

THEN HOW MANY PAGES PER TRJ1.CK?

Enter. l through 12 (8 for a mini-floppy) . to specify the nur..ber.

256 byte pages per track in the file.

The file will be zeroed· and the program will terminate.

os-65D V3.0 Kernel

The· OS-65D v3.-0 kernel· contains its own cozr.mand interpreter
. . .

for. handling _!:hose cor.itnands · that are basic to the system. These

include commands .for lnitializing diskettes, selecting a disk
l

drive, transferring specific.disk sectors and files, initiating

various language processors, etc. All kernel· commands are listed

in the .User's Guide with brief descriptions of th.eir function.

Those requiring further explanation are also covered below.

f

Accessing the Kernel

·upon initializing the system, type UNLOCK to the question

"FUNCTION?". Then type EXIT. The 00S kernel prompter A* then

appears and any kernel commands may be entered.

Changing I/0 Distributor. Flags

IO :nn•,mm Changes input and output flag

IO nn Clianges input flag only

IO ,mnt Changes output flag only

This command changes I/0 distributor flags to specify from

which de~!ice system input is to be taken and to which device or

devices system output is to be sent. The values nn and w.m shown

above in· the command are taken from the following tal:Ue.:

-s6.:.

nn Input Device

Null
Serial Port (ACIA at Fci,>
Keyboard on 440/540 Board
UART on 430 Board
Null
Memory
Disk Buffer l
Disk Buffer 2
550 Board Serial Port

mm Output Device

gg Null
$!1 Serial Port (ACIA at FC,;;J)
~2 Video on 440/540 Board
i4 UART on 430 Board
JS Line Printer
lf Memory
21 Disk Buffer l
4f Disk Buffer 2 s, 550 B6ard Serial Port

· Note that the above values are hexidecimal numbers each of which

corresponds to the setting of one bit within the flag byte. Setting

no bi ts in an I/0 .flag byte specifies the "null device". Output to
f

the null device is thrown away. Input from the null device yields

undefined data. If more than one bit is set in the input flag,

input is taken from the lowest numbered device (other than null)

and the other bits are ignored. More than one bit set in the

output flag results in output being sent to each device for which

{e.e appropriate bit is set. For example, the command "IO ,19"

would result in all output going to both the Serial ACIA Port

and the Line Printer.

Some of the above devices need further explanation.

Memory input is from RAM starting at the address contained

in locations 238A (low) and 238B (high) with an automatic incre-

mentation of the address after each character is input. ?-fernery

outpu"t: is to RAM starting at the address contained in locations

2391 (low) and 2392 (high) with an automatic incrementation of

the address after each character is output. The addresses in

these locations can be changed by the user in order to do memory

I/0 to any available RAM area. The command MEM nnnn ,rmnrmn is

1 .ovided for this purpose. The nnnn is a four hex digit address
~ ... ·

-57-

for input, mnunm is ar. ou,;p~t address. (.

Disk buffer I/O. op'8rates similar tc nem9ry I/0 described

above. Howev-er ~ !./0 to the disk buffers also results in automatic

disk transfers whenever a buffer {track) boundary is crossed. In
i

order for this disk I/0 to properly taka place, a few parameters

must be set up before performing any of the actual input/output

operations. {'!'hese <parameters are set up in: BASIC bY t.he command

OPEN.) .The parameters and their locations are:

Disk Buffer

2326 (lowj ,
2328 (low) I

232A
232B
232C
2320

Disk- Buffer

232E· (low),
23.30 (low) ,
2332
2~33
2334
2335'

, Locations ~

•
2327 (high)
2329 (' • 1-, \ a;1.g:..,

2 Location:::;

232F (high}
2331 (high)

Buffer start address {normally 3l 7E) *
.Buffer e~d address +l (normally 3D7E) e
First track cf file (BCD)
Las.t track of. file (BCD}
Current -=rack in buffer (BCD)
Buf.fer dirty flag (0 = clean)·

. C•···
Buffer start address (normally· 3D7E.
Buffer end add=ess +l · (normallv
First track of file {BCD). -
Last track of file (BCC)
Current track in buffer (BCD)
Bu.ffer dirty flag (0 = clean)

49.7E)'

Locations of ~'1e cul;"rent buffer addresses are:

Ois!t .61l.ffar l Input 23AC (low) and 23AO (high)
Disk Buffer 2 Input 23FO (low) and 23FE (high)
Disk Buffer l Output 23C3 (1¢t.v} and 23CA (high)
Disk Bufrer 2 Output 2416 (low) and 2416 (high)

Prope; initialization of these parameters prior to disk 1/0

includes:

- Set1:ing the currentbuffer addresses to the·buffer end
address +l

- Setting the.current track in buffer to the first t;rack
ef file -l

After completing outputito disk, the current buff~r contenc•.
may be left dirty. (Data has bee:i. writ.ten to the buffer, but the

*Add h\:!x ld!J to these ade.ri::._ss-=-s 1.·"" -•n.; Fi oo'"'' te..., P,- ,...- ~ :-Y sys .. u·,S.

disk hasn't yet been updated by transferring the buffer out to

disk.) If this is so, as indicated by a non-zero buffer dirty

flag, the user must perform the final disk trans fer. This can

be done by reading past the end of the current buffer which will

cause a page fault and update the disk.

Transferring Disk Sectors

CALL address=track,sector

SAVE track, sector=address/page

These commands transfer a specified track, sector between
t

RAM and disk. The address must always be four hexidecimal digits,

track must be two decimal digits and sector one decimal digit.

Pages must be one hexidecimal digit within the range 1-D for

full size floppies and l through 8 for mini-floppies. A qiven sector

can be referenced only if all lowered numbered sectors exist on

the specified track.

NOTE: This version of OS-65D contains more comprehensive

• ii •
disk trans fer error checks than previous versions. As a result,

under some circumstances, error 9 will be reported when attempting

to read or write earlier version diskettes. The D9 command should

be entered when this occurs to temporarily defeat the checks for

error 9. The system should be reinitialized after completing the

trans fer to restore error 9 checks.

Executing a Machine Code File

XQT file name

This command loads the file "file name" into the work space

at hex 3179 up (3279 up in mini-floppy systems) and transfers control

to location 317E (327E). The "file name" can be either the name of

-59-

a previously defined file or· a track number. Relative location·

· four of the file (whieh loads into .3170) must contain the nunber

of tracks to be loaded.

Assembly language progl:'ams can be developed for use with

the XQT command-by assembling them with an origin of 3l 7E (327E)

and by entering the size of the program in tracks in location

3170 (3270). prior to saving.the program on disk with the. PUT

command. Since the Assembler work space also resides at this

address, a two-step· procedure must be used to create a program
t

with this origin.

1. Assemble the program with an origin of 3l7E (327E),
but with a memory offset (set with the Assembler Mnnnn
command) that places the object code into some available
memory.

2. Ose the ·extended Monitor move command to move the program
from the selected available memory area to the start of
the work space, enter the programs size in .tracks,.. then
save the program.on disk with the POT command.

For example, with available memoey at hex 8000 up, you.could use

an offset of 5000., The progra.Iri would then be placed into tne!!!ory

at 8l 7E up (317E + 5000) • A complete sample dialog. for creating·

•uch. a program is shown below with user. input underlined and

explanatoey comments.

A*ASM .
OSr-6"502 ASSEMBLER
COPYRIG"dT 1976 BY OSI
• ! LOAD f il.e name
.i-isooo
.AJ -.EXIT
A~EM
EM V'.t .O
:M317E=817E,llll

Loads the Assembler

Loads the assembler source f:i.le
Sets memory offset
AssE!mble object eode into merrory
Exit Assembler ·
Enter the Exten-dedMonitor

Moves the o):>ject code to work space
Set up size of program in tracks
e . g • , 2 tracks ·

Ee

:@3170
311oJad r12
:EXIT -
A~£ile name

Exit the Extended Monitor . · . . .
· PUT ma.chine language prograir. on diskc•

Using . Indirect Files

Often it is desirable to be able to merge two or more

BASIC or Assembler source files or trans fer BASIC programs

between incompatible systems such as OS-650 and OS-65tT. The

Indirect File pro.Vides a mechanism for doing this.
. . I

In order to use an indirect file, you must have enough

RAM to hold the required program(s) in the BASIC or Assembler

work space and another copy of the program (s) above the work

space. The top c,f the work space can be appropriately set up

with the Assembler Hnnnn command or the BASIC Change Utility

Program. Then the indirect file mechani&mis set up with

this address +l by entering it into tl1e following locations:

d~cimal hex -
9554 2552 Indirect file output address (high)

9368 2498 Indirect file input address (hi.ah)

The low part of these addresses is fixed at $JO'.

· Transfers to and from the indirect file are then performed

as follows:

OU!!Pirig Source f,:omthe Work Space toan Indirect File

l. Load the source into the. BASIC or Assembler work space
with. the LOAD command.

2. Output the source but type a · [after typing LIST or
PRINT and before hitting the RETUR..~ key. This turns
the indirect file output on.

3. At the completion of the output type a.] • Th.is will
be echoed as J] and will turn the indirect file out­
put off.

Loading Source from an Indirect File to the Work Space

l. Clear the work space by typing NEW in BASIC or INIZ,Y

-61•

,.

, - ' .,

in the. Assembl~:r •. · or, load the· source file ·into the _
work spa.ce l+ito_ w~ich ~e ~~direc~ file is ~o be mergec.r~ ·_ ..

2. Type a Control.-X. The. indirect file. data will. be loaded'. ·
.. .into the .work. space. When the I character is · loaded at

the end of the fil.e, the ind.irect file input will be
autom,aticall::ytenninated.

-62-

C.

•
Kernel Utilities

For normal use, only two operations from the KERNEL mode

will be rquired - Initializing Diskettes and Copying Diskettes.

Initializing Diskettes

once the kernel is entered, a new diskette can be

ini tializec. for use by OS-6 SD V3. O by removing the operating

system disk and placing the diskette to be copied in the "A"

drive.

Then type

INT

The machine answers

AP.E YOU SURE?

You answer

y

After the initialization is complete, the prompter A* will re-

..

appear. If an error message is reported during the initialization

process, the diskette is probably bad and should be discarded.

* N O T E *

OSI mini-floppy systems have write protect capability.
Write protected diskettes have a label covering a notch
on one side of the disk. A write protected disk will
imr.:ediatel:r report an error upon initialization or copying
atte~pts. Simply remove the write protect label before
using.

Copying Diskettes

Diskettes can be copied on dual drive systems as follows:

1. First initialize the new diskette as specified above.

2. Place the newly initialized diskette in the "B" (or lower)

-63-

drive and the diskette to be copied in the "A" drive.

3. With the KERNEL mode prompter A* on the screen, type

CA f2~i=il,2 for 8" floppies or

~-j2g~=l3,l for 5" floppies

4. Type

GO i2f19

5. The disk copier will appear on the screen. Select 1
and copy from drive "A" to drive "B".

6. Specify from track fl to 34 on mini-floppies and from
track fl to 76 on 8" floppies.

f

7. As each track is copied, its track number will appear
on the screen.

8. If an error is reported during copying, reinitialize
the B diskette and repeat the process. If the error
persists, the new diskette is probably bad and should
not be used.

NOTE: OS-65O V3.0 can be used to initialize and copy disk~ttes
for all previous versions of OS-65D but not vice versa.
In fact, the use of Version 3 .O is recommended over the
use of earlier versions for this purpose.

-64-

,.
L

OS-650 Version 3.0 for the I-P

A version of 0S-65D V3 .O is available for use with mini­

floppies on the OSI I-P Personal Computer. It is identical

to that des cribea· throughout this manual with the following

exceptions:

- the device 4 line printer driver is not included

- the device 3 UARI' input/output drivers are not
included

- only-the 440 style video is supported (24 character
display) as appropriate to the I-P display

- the device l serial ACIA port address is changed to
F<;f!J'l as appropriate to the I-P

-65-

I-P Pico DOS.

A version of OS ... {;50 V3.0 .is available as a "Pico-D0S 1' for

use with mini-floppies on the OSI l:.-P Personal. Compute1;. This

system extends the 6•Digit BASIC LOA,O and. SAVE commands to per!!',i t

files t.o be .saved on .a diskette as well as on the usual cassette .

. In order to use the •P:±co 00S, irisert a Pico DOS diskette

into the A mini-floppy drive· .and type a D in respons.e to the

D/C/W,/}i?tmessage. The Pico DOS will boot up with the fol-lowing

message:

MINI-6503Vl.O

· MEMORY SIZE? 8955

. TEIOCCNAL WIDTH?

Note that the memory size .has automatically been specified.

This is. b$cause the Pico DOS occupies memory above this point. ,..

Continue with the initialization by entering terminal widt.·

as usual.

The new commands available µnder the Pico DOS are:

LOAD n

.SAVE n

where n. is a program, number. l through 8.

USER"'S GUIDE

os--6SD V3. 0 DISK OPERATING S'T1STEr11

COMMFlt..,,DS

------~------.. ----
FISM LOAD THE' ASSEMBLER AND cXTENOED MONITOP..

TRANSFER CONTROL TO THE ASSEMBLER.

BASIC LOAD BASIC AND TRANSFER CONTROL TO IT:

' l
CALL NNNN=TT, $ LOAD CONTENTS OF TRACK, II TT It SECTOR., II s ..

TO MFMORY LOCATION "NNNN " .

. · 09 Ol:SABLE ERROR 9. THIS IS REQUIP.f:'.0 TO. REAO SOME
EARLIER VERSION FILES (V1. 5., V2: 0). PLEASE
REFER TO COMPATR8L:tTY Dl:SCUSS:!ON LATER ..

DIR NH PRINT SECTOR MAP DIRECTOR'/ OF TRACK "NN''.

EM

GO NNNN

HOME

·IN:IT

:tNIT .TT

IO NN.-MM

IO ,MM

IO. NN

LOAD FILNAM

LOAD TT

MEM NNNN., MMMM

LOAD THE ASSEMBLER ANO EXTENDED MONITOR,
TRANSFER CONTROL TO THE EXTENOED MONITOR .

. EXAM:INE TRACK. LOAD ENTIRE TRACK CONTENTS~
INCLUDING FORMATTING INFOR1'1FITION, INTO LOCAT!iJN
"NNNN 11 •

TRANSFER CONTROL <GO) TO LOCA7ION "NNNN ...

RESET TRACK COUNT TO ZERO ANC, HOME THE CURREH't
DRIVE' S HERD TO· TR-ACK ZERO~ ·t

INITIALIZE THE .ENTIRE DISK. IE. ERAS.E THE
ENTIRE OISKETTE. < EXCEPT TRACK 0> AND J.JR:ti'E
NEW FORMATTING INFORMATION ON EACH .TRACK.

SAME AS "INIT'', BUT ONL'1' OPERATES ON TP.ACK "TT".

CHANCES THE'. INPUT I/0 DISTRIBUTOR FL.AG TO "NN'',
ANO THE OUTPUT FLAG TO "MM".

CHANCES ONLY THE OUTPUT FLAG.

CHANCES ONLY THE INPUT FLAG.

LOAOS NAMED SOURCE FILE, "FIL.NAl'l" INTO. MEMORY:

L.OADS SOURCE: FILE: INTO Me'.MOR'r' GIVE~, STARTING
TRACK NlJMBER "TTII.

. .

SETS THE MEMOR'r' I/0 DE\.'ICS: iNPUT P0It41ER TO
"NNNN", ANO THE OUTPUT POINTER TO "MMMM".

-l-

PUT FILNAM SAVES SOURCE FILE IN MEMOR"r' ON THE NAMED DISK
FIL£ "FILNAM".

?IJT TT SAVES SOURCE FILE IN MEMORY ON TRACK "TT" AND
FOLLOWING TRACKS.

RET ASM RESTART THE ASSEMBLER.

RET SAS _RESTART BASIC.

RET EN RESTART THE EXTENDED MONITOR.

RET MON RESTART THE PROM MONITOR <VIA RST VECTOR).

SAVE TT,S•NNNN/P SAYE MEMORY FROM LOCATION "NNNN" ON TRACK "TT"
SECTOR "S" FOR "P" PACES.

,,
SELECT X SELECT DISK DRIVE, .. X" WHERE II>(II CFIN BE;

A, B, C, ORD. SELECT ENABLES THE REQUESTED
DRIVE AND HOMES THE HEAD TO TRACK 0.

XQT FILNAM

NOTE:

LOAD THE FILE, "FILNAM" AS IF IT WAS A SOURCE
FILE, AND TRANSFER CONTROL TO LOCATION $317E.

- ONLY THE FIRST 2 CHARACTERS ARE USED IN RECOCNIZINC A
COMMAND. THE REST UP TO THE BLANK ARE IGNORED.

- THE LINE INPUT BUFFER CAN ONL"r' HOLD 18 CHARACTERS INCLUD"INC
THE RETURN.

- THE COMMANO LOO? CAN BE REENTERED AT $2ASi.

FILE NAMES MUST START WITH A "A" TO "Z" ANO CAN BE ONLY
E CHARACTERS LONG.

- THE DICTIONARY IS ALWAYS MAINTAINED ON DISK. THIS PERMITS
THE INTERCHANGE OF DISKETTES.

-- THE FOLLOWINC
CONTROL -
CONTROL -
CONTROL. -
BACKARROW

CONTROL KEYS ARE VALID:
Q CONTINUE OUTPUT FROM A CONTROL-S.
S . STOP OUTPUT TO TME CONSOLE.
U DELETE ENTIRE LINE AS INPUT.

DELETE THE LAST CHARACTER TYPED.

ERROR NUMBERS

i - CAN'T READ SECTOR <PARITY ERROR).

2 - CAN'T WRITE SECTOR <REREAD ERROR).

3 - TRACK ZERO IS WRITE PROTECTED AGAINST THAT OPERATION.

4 - DISKETTE IS WRITE PROTECTED.

5 - SEEK ERROR <TRACK HEADER DOESN'T MATCH TRACK).

-~-2-

Ce

6 - DRIVE NOT READ~

7 - SYNTAX ERROR IN COMMAND LINE.

8 - BAD TRACK NUMBER.

9 - CAN-'T FIND TRACK HEA.DER 1,JITHIN ONE REV OF ()ISKETTE

A - CAN'T FIND SECTOR BEFORE ONE REQUESTED.

B - SAD SECTOR LENGTH VALUE

C - CAN~T FIND THAT NAME IN DIRECTORY.

0 - READ/WRITE ATTEMPTED PAST END OF NAMED FILE!

,,
f

TRANSIENT UTILITIES

BEXEC* - PROGRAM WHICH GAINS CONTROL ON BOOT IN END USER SYSTEMS.

CHANGE - PERMITS ADJUSTMENT OF THE FOLLOWING:
- TERMINAL WIDTH FOR BASIC.
- THE HIGHEST PAGE OF MEMORY AVAILABLE, WHICH

IS WHAT BASIC AND ASM USE WHEN LOADED. •
- THE ADJUSTMENT OF THE WORKSPACE LIMITS FOR

BASIC. THE RESULT IS A EMPTY WORKSPACE TO
THE USER SPECXFICRTIONS.

CREATE - ENTER A FILE NAME INTO THE DIRECTORY. AND ZERO OUT
THE CREATED FILE ON DISK.

DELETE - REMOVE A FILE NAME FROM DIRECTORY.

DIR - PRINT UNSORTED DISK DIRECTORY.

DIRSRT - PRINT SORTED CBY NAME OR TRACK) DIRECTORY.

RANLST - GENERAL RANDOM ACCESS FILE LIST LITILIT'-r'.

RENAME - RENAME A FILE NAME IN DIRECTORY.

SECDIR - PRINT A SECTOR MAP DIRECTORY OF DISK.

SEQLST - GENERAL SEQUENTIAL FILE LIST UTILIT'T'.

TRACE - ENABLE OR DISABLE STATEMENT NUMBER TRACE FEATURE.

ZERO - INITIALIZE CONTENTS OF A DATA FILE TO ZE.ROS.

-3-

z~o FLAG BIT SETTINGS
-~--

INPUT:

BIT 8 - ACIA ON CPU BOARD (TERMINAL>.
BIT 1 - KEYBOARD ON 440/540 BOARD.
BIT 2 - UART ON 430 BOARD (TERMINAL).
BIT 3 - NULL.
BIT 4 - MEMORY INPUT <AUTO INCREMENTING).
BIT 5 - MEMORY -BUFFERED DISK INPUT.
BIT 6 - MEl'lORY BUFFERED DISK INPUT;
BIT 7 - 550 BOARD ACIA INPUT. AS S'ELECTED B'T' "AINDEXI'

AT LOCATION S2323 (8995 DECIMAL>.

OUTPUT:

BIT 0 - FICit, ON CPU BOARD < TERMI~~AL).
BIT~ - YIDEO OUTPUT ON 440/540 BOARD.
BIT 2 - UART ON 430 BOAR <TERMINAL).
BIT 3 - LINE PRINTER INTERFACE.
BIT 4 - MEMORY OUTPUT (AUTO INCREMENTING).
BIT 5 - MEMORY BUFFERED DISK OUTPUT.
BIT 6 - MEMORY BUFFERED DISK OUTPUT.
BIT 7 - ~50 SOARD ACIR OUTPUT. AS SELECTED

SOURCE FILE FORMAT

RELATIVE DISK ADDRESS 1'1EMOR'-r' ADDRESS USAGE

B'r' II AINDEX ..

8 $317'3 SC1URCE START <LOW)
:1 $317A SOURCE START <HIGH)
2 $(31.78 SOURCE END .:LOW)
3 $3:l.7C SOURCE ENO •~HI)
4 $31.70 NLll1BER OF TRACKS REQ.
5 AND ON ... $31.7E ANC> ON ... SOIJRCE TEXT.

TWO SECTORS<~ ANO 2) ON TRACK 8 HOLD THE DIRECTORY. EACH ENTRY

REQUIRES 8 B'T'TES. THUS THERE ARE A TOTAL OF 64 ENTRIES BETWEEN THE
TWO SECTORa THE ENTRIES ARE FORMATTED AS FOLLOWS:

0 - 5
6
7

ASCII 6 CHARACTER NAME OF FILE.
BCD FIRST TRACK OF FILE.
BCD LAST TRACK OF FILE <INCLUDED IN FILE>.

-4-

MEMORY ALLOCAT~ON
------------------~---------------

0000 - 22FF

2200 - 22FE

2380 - 2658

265C - 2A4A

2A48 2E78

2E79 - 2F78

2F79 - 3178

3179 - 317P

31.7£ -

BASIC OR ASSEMBLER/EXTENDED MONITOR.

COLD START INITIALIZATION ON BOOT.

INPUT/OUTPUT HANDLERS.

FLOPPY D:ISK DRIVERS.

OS-650 Y3. 0 OPERATJ:NG SYSTEM KERNEL.

DIRECTORY BUFFER.

PAGE 0/1. SWAP BUFFER.

SOURCE FILE HEADER.

SOURCE FILE.

DISKETTE ALLOCATION

,,

8 OS-650 V3.0 (BOOTSTRAP FORMAT LOADS TO 2200 FOR 8 PAGES>

1. SECTOR 1 - REMAINDER OF OS-650 V3. 0 <LOADS TO 2A00 FOR
5 PAGES).

SECTOR 2 - TRACK ZERO READ/WRITE UTILITY ANO COPIER.
<LOAOS TO 0200 FOR 5 PAGES). ·

2 - 4 9 OIGIT MICROSOFT 6502 BASIC.

5 - 6 6502 RESIDENT ASSEMBLER/EDITOR.

7 EXTENDED MONITOR.

S SECTOR 1 - FIRST PAGE OF DIRECTOR'T'.
SECTOR 2 - SECOND PAGE OF DIRECTORY.
SECTOR 3 - OVERLAY PAGE FOR 9 DIGIT BASIC.
SECTOR 4 - PUT/GET OVERLAY FOR 9 DIGIT BASIC.

9 - 76 USER PROGRAMS AND OS-650 UTILITY BASIC PROGRAMS.

9 DZGZT BASIC EXTENTIONS
--

INPUT PNDSGN<DEVICE NUMBER>, <INPUT IS SET TO NEW DEVICE,
OUTPUT IS SET TO NULL DEVICE
IF DEVICE NI..IM6S:R)· 3, FIND
NULL INPUTS ARE IGNORED IF
DEVICE NUMBER > 3.)

INF'IJT "TE~<T".; PNDSGN<.:DEVICE NUMBER:>, <PRINT "TEXT" AT CURRENT
OUTPUT DEVICE~ THEN FUNCTIONri
AS ABOVE) \.

PRINT PNDSGNCDEVICE NUMBER>, (PRINT OUTPUT FOR THIS COMMAND
AT NEW DEVICE)

LIST PNDSGN<DEVICE NIJMSER>, <LIST PROGRAM OR SEGMENTS OF
PROGRAM TO NEW DEVICE)

j

WHERE (DEVICE NUMBER> FOR OUTPUT IS:

j_ .- ACIA TERMINAL
2 - 440/540 VIDEO TERMINAL
3 - 430 UART PORT
4 - LINE PRINTER
5 .- MEMORY OUTPUT ,,
6 J MEMORY BUFFERED OISK OUTPUT <BIT 5)
? - MEMORY BUFFERED OISl< OUTPUT <BIT 6)
8 - 550 AC:Ifl OUTPUT
9 - NULL OUTPUT

<DEVICE NUMBER) FOR INPUT IS:

1 - ACIA TERMINAL
·2 - 440/540 KEYBOARD

3 - 438 UART PORT
4 - NULL DEVICE
5 - MEMORY INPUT
6 - MEMORY SUFFERED DISK INPUT <BIT 5)
7 - MEMORY SUFFERED DISK I:NPUT <BIT 6)
8 - 550 ACIA INPUT
9 - NULL INPUT

AND WHERE PNDSGN IS A POUND SIGN.

EXJ:T

RUN <STRING:>

DISK ! <STRING)

EXIT TO OS-650 VJ. 0

LOAD ANO RUN FILE WITH NAME IN
<STRING:>.

SEND <STRING:> TO OS-tSSD V"3. 0 AS A
COMMAND LINE.

DISK OPEN,<DEVICE),<STRING✓ OPEN SEQUENTIAL ACCESS DISK FILE
WITH FILE NAME, <STRING:>, USING
MEMORY BUFFERED DISK I/0 DISTRIBUTOR
DEVICE NUMBER 6 OR 7. READS

BUFFER.

DISK CLOSE,<DEVICE>

DISK GET,<RECORD NUMBER>

FIRST TRACK OF FILE TO MEMORY AND SETS
UP THE MEMORY POINTERS TO START OF

FORCES A DISK WRITE OF THE CURRENT
BUFFER CONTENTS TO CURRENT TRACK.

USING LAST FILE OPENED ON THE LUN
6 DEVICE, A CALCULATED TRACK IS READ
INTO MEMORY. WHERE THAT TRACK IS:
INT<<REC. NUM.)/24)+BASE TRACK GIVEN
IN LAST OPEN COMMAND

ce
IT ALSO SETS BOTH MEMORY POINTERS TO:
128* < <REC. NUM. :>-INT< <REC. NUM,)/24))
+BASE BUFFER ADDRESS FOR LUN 6 DEVICE

DISK Pl,JT WRITE DEVICE~ BUFFER OUT TO DISK.
THE EFFECT IS THE SAME AS A
11 DISK CLOSE., 6 11 .

END USER POKES TO BASIC

LOCATION OLD NEW FUNCTION

2972 sa 13 DISABLE ·' AND : TERMINATORS ON STRING INPUT
2976 44 13 ,,

I
2073 173 96 f IGNORE CONTROL-C

2893 S5 28 DISABLE BREAK ON NULL INPUT.
2894 09 11 "REDO FROM START"

741 76 10 REMOVE KEYWORDS, II NE!,," ANC) "LIST"
750 78 10

OTHER POKES TO BASIC

LOCATION FUNCTION

23 TERMINAL WIDTH

2888,8722 IF BOTH ARE 0 A NULL INPUT TO A "INPUT" STATENENT
YIELDS AN EMPTY STRING OR A 0. IF BOTH ARE 27 THEN
THE INPUT STATEMENT FUNCTIONS AS NORMAL.

89:1.7 USR<X) DISK OPERATION CODE:
8 - WRITE TO DRIVE A
3 - READ FROM DRIVE A
6 - WRITE TO DRIVE 8
9 - READ FROM DRIVE B

9826 TRACK NUMBER FOR USRCX> DISK OPERATION

9822 SECTOR NUMBER FOR USRCX) DISK OPERATION

9823

9824

PAGE COUNT FOR USR < X > DISK WRITE., OR
NUMBER OF PAGES READ IN SY DISK READ

LOW BYTE OF ADDRESS OF MEMORY BLOCK FOR USRCX)
DISK OPERATION

9825 HIGH BYTE OF ADDRESS OF MEMORY BLOCK FOR
USR<X) DISK OPERATION

8954

$993

LOCATION OF JSR TO A USR FUNCTION. PRESET TO
JSR :S2204. IE. SET UP FOR USR<X) DISK OPERATION

I/0 DISTRIBUTOR INPUT FLAG

8994 I/0 DISTRIBUTOR OUTPUT FLAG

8995 INDEX TO CURRENT ACIA ON 550 BOARD. IF NUMBERED
FROM 9~TO ~5 THE VALUE POKED HERE IS 2 TIMES THE
ACIA NUMBER.

8996 LOCATION OF A RANDOM NUMBER SEED. THIS LOCATION
IS CONSTANTL'1' INCREMENTED DURING KEYBOARD POLLING

8960 HAS PAGE NUMBER OF HIGHEST RAM LOCATION FOUND ON
OS-6SD'S COLD START BOOT IN. THIS IS THE DEfAULT
Hit;H MEMOR'i' ADDRESS FOR THE ASSEMBLER ANO BASIC

9098 LOW BYTE ADDRESS FOR MEMOR'T' INPUT
9099 HIGH BYTE ~DORESS FOR MEMORY INPUT

9~g5 LOW BYTE ADDRESS FOR MEMORY OUTPUT
9~06 HIGH SYTE ADDRESS FOR MEMORY OUTPUT

9~32 LOW BYTE ADDRESS FOR MEMORY BUFFERED DISK INPUT
91.33 HIGH 8'1'TE ADDRESS FOR MEMORY 8~.IFFERED DISK INPLIT

BIT 5 DEVICE. DEFAULTS TO $31. 7E.

LOW 8'1'TE ADDRESS FOR MEMORY BUFFERED DISK OUTPUT"'
HIGH B'Y'TE ADDRESS FOR MEMOR'T' BUFFERED DISK OUTPUT
BIT 5 DEVICE. DEFAULTS TO $31. 7E.

92:13 LOW BYTE ADDRESS FOR MEMORY BUFFERED DISK INPUT
92:14 HIGH B'T'TE ADDRESS FOR MEMORY BUFFERED DISK INPUT

BIT 6 DEVICE. DEFAULTS TO $307E.

9238 LOW BYTE ADDRESS FOR MEMORV BUFFERED DISK OUTPUT
9239 HIGH BYTE ADDRESS FOR MEMORY BUFFERED DISK OUTPUT

BIT 6 DEVICE. DEFAULTS TO $307~

8998 MEMOR'1' BUFFERED DISK I/0 BIT 5 DEVICE PARAMETEM'.S:

9006

~2042

8998-8999 - BUFFER START ADDRESS ($317E>
9000-908:1 - BUFFER END ADDRESS <S3D7E)
9002 FIRST TRACK OF FILE
9003 - LAST TRACK OF FILE
9004 - CURRENT TRACK IN BUFFER
9005 - DIRTY BUFFER FLAG C0=CLEAN)

MEMORY BUFFERED DISK I/0 BIT 6 DEVICE PARAMETERS:
9006-9007 - BUFFER START ADDRESS ($3D7E)
9008-9009 - BUFFER END ADDRESS ($497E)
90~0 - FIRST TRACK OF FILE
90~~ - LAST TRACK OF FILE
90~2 - CURRENT TRACK IN BUFFER
90~3 - DIRTY BUFFER FLAG (0:CLEAN>

LOCATION OF THE 24 USED 8'1 THE RANDOM ACCESS FILE
CALCULATION ROUTINES. THIS LOCATION SHOULD ONLY
BE ALTERED AFTER THE OPEN HAS OCCURRED FOR THE
RANDOM ACCESS FILE BECAUSE THE PUT GET CODE IS LOAD-

-8-

' '

<e

·. ED INTO THE DIRECTORY SUFFER. THIS IS WHERE THIS
24 RESIDES~ . MAKING IT A··· 48 GIVES ONE .64 s·,TE RECORDS.

3369 HIGH 8 1/TE AOORESS FOR INDIRECT F:CLE INPUT ,:1..ow=t;,8)·

9554 HIGH SYTE ADDRESS FOR INbIRECT F:CLE OUTPUT <LOW=~0)

EXTENT:I:ONS TO
... ----·---------------------~----------.... ---------------

E · EXIT TO OS-650 './3. 8.

H<HEX NOM> SET HIGH MEMORY LIMIT TO <HEX NUM>.

M<HEX NUM1 SET MEMORY OFFSET FOR A3 ASSEMBLY TO <1-iEX NLIM'.>.

!<CMOLINE) SEND <t;MO LINE> TO OS-650 'v'3. 0 AS A·coMMAND TO
BE EXECUTED AND THEN RETURN TO ASSEMBLER.

CONROL-I

CONROL-C

TAB 8 SPACES.

CONTROL-U
CONTROL-Y
CONTROL-T
CONTROL-R
CONTROL-£

ALSO:

1 SPACE'.$.
6 SPACES.
5 SPACES.
4 SPACES.
3 SPACES.

ABORT CURRENT OPERATION

EXTENDED MON:CTOR
---------~~------~------~-------

!TEXT

@NNNN

A·

DNNHH:.MMMM

EN

EXIT

FNNNN,MMMM=OO

SENT "TEXT" TO os~65D V3. 0 AS A COMMAND.

OPEN MEMOR'1' LOCATION "NNNN'' FO~ EXAM'IHATI.ON.
SUBCOMMANDS: .

LF - OPEN NEXT LOCATION.
.CR - CLOSE LOCATION.
DD - PLACE "DO" INTO LOCATION.
" - PRJ:NT ASCII VALLIE OF LOCATION:
I . - REOPEN LOCRTJ:ON:
UPARROW - OPEN PREVIOLIS LOCATION.

PRJ:NT AC FROM BREAKPOINT.

PLACE BREAKPOINT "N" <1-S) AT LOCATION, "LLLL".

CONTINUE FROM LAST BREAKPOINT.

DUMP MEMOR¥ FROM "NNNN" TO "MMMM".

ELIMINATE BREAKPOINT "N".

EXIT iO OS-650 V3. 0.

FILL MEMORY FROM "NNNN" TO. "Mf'1MM"-:1 WITH "C•C•".

GNNNN

I

)(

••NNNN1t<OP:> 11 MMMM 1• WHERE·. <OP> IS + ..,. * ./.
' • : < •

PRINT SREAf< INF'ORMATION F'CrR LFtSt · BREFtt<POINT

' '

PR:tNT STACK POINTER FP.OM BP.E:AK?OTNT

LCtftC> MEMOR'T' FROM CASSETTE.

Mt-,NNN:;:M1'tMM., LLLL MOVE MEMOR'r' BLOCK 11MMMM" TO '.'L.LLL 11 -:t TO LOCATTDN
II NNNN" AND IJP Ilf MEMOP.'T'

NHEX>NNN~t. t"IMNM SEARCH FOR STRING. OF B'-r'TES II HEX" (l -4 :> BETWEE'N

0

QNNNM

: j MEMQR'I LOCATION "t-lNNN II AND . "MMMt·t•." '- l.

PRINT• OVERFLOl,!✓'REMAINDEP. FP.OM HE:-«: t:Al.C:IJLATOR.

PRINi- PROCESSOR S.TATUS WdFfti F.RO.l'f BREAKPOINT.

OISASSEM8LE ZJ LJ:NES FP.OM LOCATINJ "NNNNt1
A LINEFEED CONTINUES OISASSEl'lBL'r' F'OR 23 MOPE

RMMMM=NNNN.,.Ll..LL.. RELOCATE "NNNN'' TO "LLLL.,.-1 TC1 LOC:ATIC1N "MMMM>".

SMMMM;NNNN

T

V

SAVE MEr-tOR\i' BLOCK.,
. . U,.'

"MMM1'!" TO "NNNH"-1 ON CASSETTE.

PRINT BREAKPOINT TABLE:

YIEW CONTENTS OF CASSETTE:

WTEXT)·MMMM:, NNNN SEAP.CH FOR FISCI:C STRING '' TE;•:T" 8ETUEEN "t1MMM'' AW:

X

ANO ttNNNNH -1.

PR:IHT X . INDEX REGISTER FF?C1M LAST 8F!E.Af<

PRINT 'r' It-tDE,.:. REG!STEP' FROM LAST BREAK.

NOTE: ALL COMMANDS ARE LINE BUFFERED 8'1" OS-65(>.
THUS ONI.. Y 18 CHARACTERS P.EP. LINE AP-E ALLCIL~EI:•
ANO CONTROL-U ANO BACKARROW APPL ''I".

THE OISKETTE COP'T' UTILITY IS FOUND ON TRAC}~' i SECTOR· 2. !T
SHOULD BE LO.APED INTO LOCRTION. a00 14ITH A ''Cft 0200==01:., 2". TO START IT .
T'T'PE, "GO 0a0e11 ' TO SELECT THE C:OPieR .· T'r'PE A · 0 1 11 • ·, THE COPIE.
At.JTOMflTICRLL 'T' FORMA'rS TH~ DESTINATION Dl:~l<~E'TTg BE:FOPE 1,iP.ITING ON IT. C: .. · ' '

ce --~---
THIS UTILITY PERMITS THE READING OF DATA ON TRACK 0 ANYWHEP

INTO MEMORY. ALSO THE CAPABLITY IS AVAILABLE TO WRITE ANY BLOCK 0~
MEMORY TO TRACK 0 SPECIFYING A LOAD ADDRESS AND PAGE COUNT.

THE TRACK Z-ERO FORMAT IS AS FOLLOWS:
- 1 MILLISECOND DELAY AFTER THE INDEX HOLE.
- THE LOAD ADDRESS OF THE TRACK IN HIGH-LOW FORK
- THE PAGE COUNT OF HOW ~UCH DATA IS ON TRACK ZERO.

TRACK FORMATT:Z::NG

THE REMAINING TRACKS ARE FORMATTED AS FOLLOWS:
- 1 MIJ..LISECONO DELAY AFTER THE INDEX HOLE.
- A 2 BYTE TRACK START CODE~ $43 $57.
- BCD TRACK NUMBER.
- A TRACK TYPE CODE, ALWAYS A $58.

THERE CAN BE ANY MIXTURE OF VARIOUS LENGTH SECTORS HEREAFTER.
THE TOTAL PAGE COUNT CAN NOT EXCEED 12 PAGES IF MORE THAN ONE SECTOR
IS ON ANY GIVEN TRACK. 13 PAGES CAN BE PLACED ON A TRACK IF ONLY ONE
SECTOR RESIDES ON A TRACK. EACH SECTOR IS WRITTEN IN THE F'OLLOvlING
FORMAT:

- PREVIOUS SECTOR LENGTH <4 IF NONE BEFORE) TIMES
808 MICROSECONDS OF DELAY.

- SECTOR START CODE, $76.
- SECTOR NUMBER IN BINARY.
- SECTOR LENGTH IN BINARY.
- SECTOR DATA.

COMPATAB~LIT~ W~TH EARLIER OS-6SDS
------~-----------~----~-----~--------------------------------------

THE EARLIER VERSIONS OF OS-650 <IE. EARLIER THAN 3. 0) HAD A
QUIRK OF OPE~ATION. WHEN THEY ATTEMPTED TO DO A READ THE HEAD WAS
LOADED AND THE ACIR INITIALIZED AT THE RISING EDGE OF THE INDEX HOLE.
SINCE THE EARLIER 65o~s FORMAT INCLUDED NO GAP AFTER THE INDEX HOLE,
THE ACIR MAY BE INITIALIZED IN THE MIDDLE OF A BYTE. THIS WOULD SET
THE ACIA OUT OF SYNC WITH THE DATA. IT WOULD THEN TAKE SEVERAL
REVOLUTIONS OF THE DISKETTE BEFORE THE ACIA GOT BACK IN SVNC AND THE
TRACK HEADER FOUND. FOR THIS REASON THERE MAY BE PROBLEMS IN READING
EARLIER VERSION FILES. THE ERROR ENCOUNTERED IS ERROR 9. THIS ERROR
INDICATES THAT THE TRACK HEADER WAS NOT FOUND IN ONE REVOLUTION. SO
THAT EARLIER VERSION FILES CAN BE COPIED OYER TO THE NEW SYSTEM, THE
09 COMMAND IS AVAILABLE. IT PREVENTS THE ERROR 9 ERROR CHECKING.

•

•

•

