SURVEYING PROGRAMS OLIVETTI P602

This material was prepared for the benefit of Olivetti Corporation of America customers. Before using, the material should be verified by qualified technicians since Olivetti Corporation of America disclaims any responsibility for any inaccuracies that may be involved.

GLOSSARY

Bearings and North Azimuth

Bearings and Azimuth are two ways of expressing the direction of a straight line in a horizontal plane.

A North Azimuth is the angle, measured in a clockwise direction, from North. It may have any value from 0° to 360°.

A Bearing is expressed in two parts, an Angle and Quadrant. The Angle is from South or North, and never greater than 90°. There are four Quadrants which are coded as follows:

$$
N E=1 \quad S E=2 \quad S W=3 \quad N W=4
$$

Any line with a direction between North and East, is in the first Quadrant. The Angle is measured clockwise from North.

Any line with a direction between South and East, is in the second Quadrant. The Angle is measured counter-clockwise from South.

Any line with a direction between South and West, is in the third Quadrant. The Angle is measured clockwise from the South.

Any line with a direction between North and West, is in the fourth Quadrant. The Angle is measured counter-clockwise from the North.

NE quadrant, $\mathrm{A}=\mathrm{B}$

SW quadrant, $A=180^{\circ}+B$

SE quadrant, $\mathrm{A}=180^{\circ}-\mathrm{B}$

$$
\mathrm{N}
$$

NW quadrant, $A=360^{\circ}-B$

Microcomputer Systems MIB\#94

Page 4 of 9 Pages

Included and Deflected Angles

Included Angles may have any value between -360° and $+360^{\circ}$, and are turned from the Backsight. Included angles turned to the right are negatıve, turned to the left they are positive. Deflected Angles may have a value between -180° and $+180^{\circ}$, and are turned from the continuation of the previous line. Deflected Angles turned right are positive, turned to the left they are negative.
$\mathrm{D}=$ Deflected $\quad \mathrm{I}=$ Included

I and D both positive

I positive, D negative

I and D both negative

Vertical Angles

The Angle measured from the horizontal. The cosine of the angle times the measured distance (uphill or downhill) equals the adjusted horizontal distance.

Zenith Angle

The Angle measured from the vertical. The sine of the angle times the measured distance (uphill or downhill) equals the adjusted horizontal distance.

Temperature Correction

This corrects the recorded length of a steel tape. $68^{\circ} \mathrm{F}$ is the base temperature. For temperatures over this the steel tape will measure short due to expansion. For temperatures less than $68^{\circ} \mathrm{F}$ the tape measures long due to contraction.

Page 6 of 9 Pages

Latitude and Departure

For computations and mapping. Each line has a North/South or Latitude, and East/West or Departure. North and East have a positive sign, South and West a negative sign. In a closed survey, the sum of the Latitudes and the sum of the Departures should be zero. The sums are used to compute the absolute error
$\left(\sqrt{(\Sigma L)^{2}+(\Sigma D)^{2}}\right)$
and the relative error. (Absolute divided by the Total Length) The latitude is computed by multiplying the cosine of the angle by the length. The departure is computed by multiplying the sine of the angle by the length.

Coordinates

These are described as Northings, or North/South, and Eastings, or East/West. When coordinates are given the Northings or North/ South is always first. Coordinates are computed by adding the latitude of the present point to the Northing of the previous point and the Departure of the present point to the Easting of the previous point.

P602
TABLE OF CONTENTS

| Code | 502.01 | Date | Page $1 / 4$ |
| :--- | :--- | :--- | :--- | :--- |

| ritle

 Conversion of Bearings to Azimuth and Vice Versa
 Number of sides | |
| :--- | :--- | :--- | :--- |

The bearing of a line is its angle as measured from the NS line and so must be between 0° and 90°. Since a circle has 360°, the quadrant must also be given.

Each of the indicated angles is 30° but they lie in different quadrants, respectively NE, SE, SW, and NW. To enter the quadrant, the following coding is used:

$$
\begin{aligned}
& \mathrm{NE}=1 \\
& \mathrm{SE}=2 \\
& \mathrm{SW}=3 \\
& \mathrm{NW}=4
\end{aligned}
$$

Azimuth is the angle a direction makes from due north measured in a clock-wise direction

The bearings and azimuths of the above lines are:

Bearing	Azimuth
N $30^{\circ} \mathrm{E}$	30°
S $30^{\circ} \mathrm{E}$	150°
S $30^{\circ} \mathrm{W}$	210°
N $30^{\circ} \mathrm{W}$	330°

olivetti PGOR

| Code 502.01 | Date | Page $2 / 4$ |
| :--- | :--- | :--- | :--- |

Sample run: Depress V if the bearing is given or W if the azimuth is given.

Bearing given			v
Bearing	degrees	29	5
	minutes	37	s
	seconds	23	s
	quadrant	2	s
Azimuth	degrees	150	A 0
	minutes	22	A 0
	seconds	37	Bo

	48	S
Bearing	27	5
	41	5
	3	S
	228	AO
	27	AO
	41	BO

Azimuth given W

Azimuth	150
	22
	37
Bearing	29
	37
	23
	2

Azimuth

228	5
27	5
41	5

Bearing

$$
\begin{array}{rl}
48 & A 0 \\
27 & A O \\
41 & B O \\
3 & B O
\end{array}
$$

olivetti P GOP

Code	502.01	Date	Page 3/4

Accuracy: Same as the decimal wheel settings.
Method: Angles are reduced to seconds before conversion ($C \sqrt{ }$), and afterwards are changed back to degrees, minutes and seconds. (D,

Let Bearing $=B$

$$
\text { Quadrant }=Q
$$

$$
\text { Azimuth }=\mathrm{A}
$$

If B and Q are given

$$
\begin{array}{ll}
A=648000\left[\frac{Q}{2}\right]+B & \text { if } Q \text { is odd } \\
A=648000\left[\frac{Q}{2}\right]-B & \text { if } Q \text { is even }
\end{array}
$$

If A is given

$$
\begin{aligned}
& Q=\left[\frac{2 A+648000}{648000}\right] \\
& B=\left[\frac{Q}{2}\right] 648000-A
\end{aligned}
$$

Integer division is used throughout so the quotients in brackets contain no fractional part.

	Code	502.01	Dato	Page 4/4

Title

Conversion of Bearings to Azimuth and Vice Versa

| Number of sides 1 | Lower Decimal Wheel as desired | Upper Decimal Wheal as desired |
| :--- | :--- | :--- | :--- |

ro	01	R 1				Ab	b
Cr	14	A 0				A	8
B 1	B S	80					
S	F ${ }^{\text {¢ }}$	01					
1	$B \cdot$					A	c
A 1	A 1						
01	01						C
11	00					A	
R 1	W						d
A S	c ${ }^{\text {d }}$					A	0
RV	S						
81	1					A	e
A 8	R S					A	E
B:	F ${ }^{\text {S }}$						
rv	S					A	¢
R 1	-						
BS	R S					A	F
F ${ }^{\text {P }}$	FX						
8 -	s						
01	-					Bc	Rc
V	ci					BC	RC
IN	d 1						
ro	ro					B	Rd
Cs	R S						
1 .	F.					B	RD
$B 1$	14					Be	Re
B S	14						
F.	81					B	RE
14	R 1						
08	B:					B	R
01	11						
A 1	A 0					B	RF

648000 BFO
60 RFO

olivetti P EOP

Code 502.02	Date	Page $1 / 4$

Title		
Computation of Bearings From Angle Observations		
Number of Sides	1	Lower Declmal Wheel as desired

This program computes bearings of successive traverses, given the azimuth or bearing of the first one, and successive angles, either included or deflected. Angles are expressed in degrees, minutes and seconds, and may be entered either positive or negative.

Quadrants are coded as follows:

NW	NE
4	1
SW 3	SE
2	

The final bearing should be the same as the initial bearing; this gives a check on the accuracy of the entries. The following is a typical traverse using included angles

Included Angles		v			
			Deflected angles		W
Bearing of DA $\begin{aligned} & \text { Degrees } \\ & \text { Minutes } \\ & \text { Seconds } \\ & \text { Quadrant }\end{aligned}$	29	s	Bearing of DA		
	40	s		29	s
	0	s		40	s
	1	s		0	s
				1	s
Included angle at A	58	s	Deflected angle at A		
	6	s		121	s
	10	s		53	s
				50	s
Bearing of $A B$	28	A0			
	26	A 0	Bearing of $A B$	28	A 0
	10	$B 0$		26	A 0
	2	bo		10	$B{ }^{\text {d }}$
				2	Do
Included angle at B	138	s	Deflected angle at B		
	35	s		41	s
	50	s		24	S
				10	s
Bearing of BC	12	A 0	Bearing of BC		
	58	A 0		12	A 0
	0	$B 0$		58	A 0
	3	bo		0	B 0
				3	00
Included angle at C	58	s	Deflected angle at C		
	29	s		121	s
	40	s		30	s
				20	s
Bearing of CD	45	40	Bearing of CD		
	31	AO		45	AO
	40	B0		31	A 0
	4	00		40	BO
				4	00
Included angle at D	104	s	Deflected angle at D		
	48	s		75	s
	20	s		11	s
				40	s
Bearing of DA	29	A 1	Bearing of DA		
	40	A 0		29	A 0
	0	80		40	A 0
	1	00		0	80
				1	-0

olivetti P GOZ

Code	502.02	Date	Page

Accuracy: Equal to the decimal wheel setting.

Method:

All angles are reduced to seconds ($C \sqrt{ }$) and converted to degrees, minutes, seconds ($D \sqrt{ }$) and quadrant before printing.

E converts from bearing to azimuth
If the running total after n angles is $B n$, and the nth angle is An, then

$$
\begin{array}{ll}
B_{n}=B_{n-1}-A_{n}+648000 & \text { if } A_{n} \text { is the included angle } \\
B_{n}=B_{n-1}+A_{n} & \text { if } A_{n} \text { is the deflected angle }
\end{array}
$$

Code 502.02	Date	Page 4/4

Computation of Bearings From Angle Observations

60 RF 0
648000 BFO
1296000 BfO

Code	502.03	Date	Page $1 / 4$

Correction of Angular Errors				
Number of Sides	Lower Decimal Wheel	0	Upper Decimal Wheel	0

This program sums angles either included or deflected or at a point. It also counts the number of angles entered. It prints the actual total, the number of angles, the nominal total (either 360 or $(n-2) 180$), and the difference in seconds.

The computer prints the corrected angles.
Angles are expressed in degrees, minutes and seconds and up to 32 angles can be entered.

Decimals of a second cannot be entered.
When finished with entries, depress Z if angles were included or at a point; depress Y if angles were deflected.

olivetti P GOR

Code	502.03	Date	Page $2 / 4$

To Start		V	To Start		v
A_{0}	50	s	A_{0}	129	s
	12	s		47	s
	45	s		15	5
A_{1}	60	s	A_{1}	119	5
	32	s		28	s
	0	s		0	s
A_{2}	69	5	A_{2}	110	s
	16	s		43	s
	10	s		50	s
For included angles		2	For deflected angles		${ }^{Y}$
Number of angles	3	00	Number of angles	3	60
Nominal total	180	A 0	Nominal total	360	A 0
Error	- 55	A 1	Error	55	A 0
Corrected angles			Corrected angles	129	A
A	12	As	A_{0}	47	A 0
	27	AO		33	A 0
A_{1}	60	A 0	A_{1}	119	A 0
	31	AO		28	A 0
	42	AO		18	A 0
	69	A 0	A_{2}	110	AO
	15	AO		44	A 0
${ }^{\text {a }}$	51	AO		9	A 0

olivetti P GOR

Code 502.03	Date	Page	$3 / 4$

Accuracy: To the nearest second.
Method: The angles are reduced to seconds and stored in their corresponding registers. The angles are totalled in B, and counted in b.

The actual total is subtracted from the nominal total (360degrees or ($\mathrm{n}-2$) 180 degrees), to give the error, C_{n}, for n angles.

The correction for the first angle is $\mathrm{E}_{1}=\mathrm{Cn} / \mathrm{n}$ with no fraction. This is applied to the angle which is converted to degrees, minutes and seconds before printing.

This leaves an error of $C_{n-1}=\left(C_{n}-E_{1}\right)$ for ($n-1$) angles, which is used to correct the next angle.

This method distributes the error without remainder, even if C_{n} is not exactly divisible by n.

| Code 502.03 | Date | Page $4 / 4$ |
| :--- | :--- | :--- | :--- |

Title Correction of Angular Errors				
Number of slide	Lower Decimal Wheel	0		

Code 502.04	Date	Page $1 / 4$

| Ttile
 Summation of Latitudes and Departures

 Number of Sides | |
| :--- | :--- | :--- | :--- | :--- |

This program calculates latitude and departure from bearing and length. It also sums latitudes and departures for several successive courses of a traverse. It can be followed by program 50205 for calculation of error of closure, and correction of the traverse, or by program 50206 to force closure.

It can also be used to establish coordinates from bearings and lengths of a proved traverse with acceptable error of closure.

Error correction: If the angle has been entered incorrectly, enter the length as 0 and then continue with correct entries. If the error is in the length or is only noticed after the length has been entered, re-enter the same angle and re-enter the length as a negative number. This will bring the traverse back to the point of the last correct entry and the traverse may be continued from there.

Sample run: If this program is to be followed by program 50205 or 50206 , enter the starting coordinates as 0,0 .

olivetti P GOP

Code 502.04	Date	Page $2 / 4$	
V			

		0	S
	Degrees	28	S
Bearing	Minutes	26	S
	Seconds	10	S
	Quadrant	2	S
	Length	256.67	S
	Latitude	-225.7047	A ${ }^{\text {d }}$
	Departure	122.2207	A ${ }^{\text {d }}$
	Sum of Latitudes	-225.7024	Fo
	Sum of Departures	122.2207	$f \diamond$
	Degrees	12	S
	Minutes	58	S
Bearing	Seconds	0	S
of BC	Quadrant	3	S
	Length	151.05	S
	Latitude	-147.1983	A ${ }^{\circ}$
	Departure	-33.8932	A ${ }^{\text {d }}$
	Sum of Latitudes	-372.9007	Fo
	Sum of Departures	88.3275	$f \circ$
	Degrees	45	S
	Minutes	31	S
Bearing	Seconds	40	S
of CD	Quadrant	4	S
	Length	270.11	S
	Latitude	189.2291	A ${ }^{\circ}$
	Departure	-192.7478	As
	Sum of Latitudes	-183.6715	Fo
	Sum of Departures	-104.4203	f \bigcirc
	Degrees	29	S
Bearing	Minutes	40	S
of DA	Seconds	0	S
	Quadrant	1	S
	Length	211.11	S
	Latitude	183.4376	A ${ }^{\text {d }}$
	Departure	104.4895	A 0
	Sum of Latitudes	-0.2339	Fo
	Sum of Departures	0.0692	$f \circ$
	Sum of Lengths (Manual Print-Out)	888.9400	C \bigcirc

olivetti p gaz

| Code 502.04 | Date | Page $3 / 4$ |
| :--- | :--- | :--- | :--- |

Accuracy: The sines and cosines necessary to determine the latitudes and departures are calculated to 10 decimal places.

Method: The angles are reduced to degrees. If the angle is greater than 45 the cosine is computed. If it is less than 45 the sine is computed. Then the sine or cosine is computed from:

$$
\sin \theta_{n}=\sqrt{1-\cos ^{2} \theta_{n}} \quad \text { or } \quad \cos \theta_{n}=\sqrt{1-\sin ^{2} \theta_{n}}
$$

The signs are adjusted for quadrant.
If \ln is the length of the nth course,
latitude $=\ln \cos \theta_{n}$
departure $=\ln \sin \theta_{n}$
The coordinates are the sums of the latitudes and departures added to the starting coordinates.

To use project co ordinates and compute error to
 be sure to observe aloebraic sign

The data is then placed in program or as follows:
i) Clear computer (reset)
2) Program with card (05)
4) Enter curer for N on key board than. Key in to memory using F, \uparrow
5) Enter error for E on key board then key in to memory using [F] [a] 国
6) EMTER som of lengths on key boded then key in to memory using © \mathbb{I}
7) Key in V
8) Enter N(oriond coons)
10) Enter Lat then dep and continue as programed

Code 502.04	Date	Page 4/4

Summation of Latitudes and Departures

162000 REO
60 BEO

Code	502.041	Date	Page	$/ 5$

Title						

This program is used for traverses where the data is kept in delfected angles. It produces the latitude and departure of each course and the coordinates of the turning points. Further there is provision for curved sections in the traverse. For these sections, the traverse proceeds from the beginning of the curve to the radius point and from there to the end of the curve. The chord length and arc length of the curve are computed. At the end of the traverse, the following data is produced:

1) Area - square feet
2) Area - acres
3) Error of closure - north
4) Error of closure - east
5) Total length of the traverse
6) Total error of closure
7) Relative error of closure

Sample run: For curved sections traverse to the radius point. On leaving, depress w before entering angle awayfrom center, if the curve bulges out of the area surveyed, depress ${ }^{\text {en }}$ if it bulges into the area surveyed. Central angles must be less than 180°

Note that the program has 2 SIDES.
Enter the first side as usual. Then depress SECOND SIDE key and enter second side.

Code	502.041	Date	Page $2 / 5$

A

A

AB

B

B

BC

C
$-101.788 \quad$ BO
$-61.160 \quad 00$
4997.477 C0

- 216.508 co
5099.266 CO North
-155.347 c) East
$\begin{array}{ll}0 & s \\ 0 & s\end{array}$

5362.25
- 235.75
s
0 S
0 S
2 S
275.00 S
262.983
80.40200

Starting Coordinates North
East
Initial Bearing
Degrees
Minutes
Seconds
Quadrant
Length
-262.983 日0 Latitude 80.402 b0 Departure Coordinates
$48 \quad S \quad$ Deflected Angle
118.75 S Length

Leaving Radius Point Curved Section Bent Inward

C

CD

$y=$		Leaving Radiu Curved Sectio
119	S	
0	S	
0	S	
118.750	E 0	Length
102.840	80	
- 59.375	00	
5100.318	Co	
-275.883	co	
120.540	A 0	Chord Length
126.427	A 0	Arc Length

olivetti P GOP

| Code 502.041 | Date | Page $3 / 5$ |
| :--- | :--- | :--- | :--- |

Sample run (continued)

olivetti PGOZ

Code	502.041	Date	Page	$4 / 5$

Accuracy: The latitudes and departures are calculated to nine significant digits.
Method: All angles are converted to seconds. The azimuth of each course is equal to the original azimuth plus the sum of the deflected angles B_{i} to that point.
The angle is then converted to radians, θ_{i}

$$
\text { latitude } L_{i}=1_{i} \cos \theta_{i}
$$

departure $D_{i}=1_{i} \sin \theta_{i}$
where $l_{i}=$ length of that course.
The coordinates n

$$
\begin{aligned}
& X_{i}=X_{o}+_{j=1} L_{j} \\
& Y_{i}=Y_{o}+\sum_{j=1}^{n} D_{j}
\end{aligned}
$$

are computed, where X_{o}, Y_{o} are the coordinates of the first point.
Area $=\frac{1}{2}\left|\sum_{i=1}^{n}\left[2\left(X_{i}-X_{0}\right)+L_{i+1}\right] D_{i+1}\right|$
For curved sections, the central angle is assumed to be less than 180°.
Then the central angle $C_{i}=180^{\circ}-\left|B_{i}\right|$
and arc length $=\frac{\pi}{180} C_{i}$
chord length $=2 \sin \left(\frac{C_{i}}{2} \frac{\pi}{180}\right)$
Area $=\frac{R^{2}}{2} \frac{C_{i} \pi}{180}$
This area is added if the curve bulges out, subtracted if it bulges in.
The errors north and east are calculated as the sum of the latitudes and departures respectively and the total error is the square root of the sum of the squares.

The relative error is the total error divided by the total length of the traverse.

Code	502.041	Date	Page	$5 / 5$

Traverse by Deflected Angles

Number of Sides	2	Lower Decimal Wheel as de sired	Upper Decimal Wheel \quad FL

Code	502.05	Date	Page $1 / 4$

Title \quad Correction of Latitudes and Departures (Compass Rule)		
Number of Sides	Lower Decimal Wheel	Upper Decimal Wheel

This program is used following program 50204 to correct the courses of a traverse using the compass rule. In this method, the angles and lengths are assumed to be measured with equal precision and therefore contribute equally to the error of closure.

Each course is corrected proportionate to its length.
It automatically prints the sum of the latitudes, sum of departures and sum of traverse lengths. The absolute and relative lengths are computed.

If the errors are within permitted limits, the coordinates of the starting point are entered followed by the latitudes and departures of each course.

The program then supplies the corrected latitudes, departure, bearing and length of each course.

Verification is provided by comparing the uncorrected length of each traverse with the original survey, and by comparing the coordinates of the end point with those of the starting point.

Sample run: DO NOT press General Reset after running program 50204.

olivetti P GOP

Sum of Latitudes
Sum of Departures
Sum of Lengths Absolute Error Relative Error

N/S Coordinate of A E/W Coordinate of A

Latitude
Departure Length
Adjusted Latitude Adjusted Departure Adjusted Length N/S
E/W
Adjusted Bearing of $A B$

BC
$C D$

DA

| Code 502.05 | Date | Page $2 / 4$ |
| :--- | :--- | :--- | :--- |
| V | | |

olivetti P GOR

Code 502.05	Date	Page $3 / 4$

From Program 50204 these results are printed:

Sum (or error) of latitudes	$=\mathrm{F}$
Sum (or error) of departures	$=\mathrm{f}$
Sum of lengths	$=\mathrm{C}$

The machine computes and prints:
Absolute error $=\sqrt{F^{2}+f^{2}}=A$
Relative error $=A / C$
It also computes without printing:
Relative latitude error $\mathbf{x}=\mathrm{F} / \mathrm{C}$
Relative departure errory $y=f / C$
On re-entry of latitude (X) and departure (Y), the machine computes and prints:
Uncorrected length e
$=\sqrt{X^{2}+Y^{2}}$
Corrected latitude D
$=X-e x$
Corrected departure d
Corrected length
$=Y-e y$
$=\sqrt{D^{2}+d^{2}}$
Coordinates, which are progressive totals of D and d
The machine also computes $\theta=\operatorname{Tan}^{-1}\left(\frac{d}{D}\right)$ and converts this angle from radians to give the corrected bearing.
see 04 for error entry to propudm
ollvettl P gat

Code	502.05	Date	Page	$4 / 4$

| ritle

 Correction of Latitudes and Departures (Compass rule)
 Number of Sides Lower Decimal Wheel | Upper Decimal Wheol |
| :--- | :--- | :--- |

Code	$502.0 \overline{8}$	Date	Page $\quad 1 / 3$

This program computes the coordinates of an inaccessible point if its bearings from two known stations are given.

Bearings are expressed in degrees, minutes and seconds. Quadrants are coded as follows:
$\mathrm{NE}=1$
$\mathrm{SE}=2$
$\mathrm{SW}=3$
$\mathrm{NW}=4$

Sample run: V

	12	s
Bearing of first line	58	s
	0	S
	3	s
Coordinates of station	77.455	s
	62.208	s
Bearing of second line	45	s
	31	s
	40	5
	4	5
Coordinates of station	81.731	s
	39.617	s
Coordinates of intersection	62.8531	A 0
	58.8458	10
distance from first station distance from second station	14.9839	- 0
	26.9466	E 0

olivetti p EOE

| Code | 502.08 | Date | Page $\quad 2 / 3$ |
| :--- | :--- | :--- | :--- | :--- |

Method: The sin and cos of the first angle θ, are computed and the signs are adjusted for quadrant. The coordinates of the station $\mathrm{X}_{\mathrm{N}}, \mathrm{X}_{\mathrm{E}}$ are stored. This is repeated for the second angle ϕ and station $Y^{\prime}{ }^{\prime} Y_{E}{ }^{N}$.
Let $\quad Z_{N}=Y_{N}-X_{N}$

$$
Z_{E}=Y_{E}-X_{E}
$$

then the distance to the first station from the intersection is

$$
\frac{Z_{N} \sin \theta-Z_{E} \cos \theta}{\sin \phi \cos \theta-\sin \theta \cos \phi}=s
$$

and the distance to the second station is

$$
\frac{Z_{N} \sin \phi-Z_{E} \cos \phi}{\sin \phi \cos \theta-\sin \theta \cos \phi}=t
$$

and the coordinates of intersection are

$$
\begin{aligned}
& X_{N}+Z_{N^{s}} \\
& X_{E}+Z_{E^{s}}
\end{aligned}
$$

Accuracy: The answers are accurate to 9 significant digits.
ollvotll P EOR

Code 502.08	Date	Page	$3 / 3$

Code 502.09	Date	Page $1 / 3$

Title				
Intersection of Line and Curve				
Number of Sides	1	Lower Declmal Wheel as desired	Upper Decimal Wheel	FL

Given a circular curve and a line intersecting the curve, this program will compute the coordinates of the points of intersection.

Quadrants are coded as follows:

NE	$=1$	
SE	$=$	2
SW	$=3$	
NW	$=4$	

Sample run:

$$
\begin{aligned}
& \begin{array}{lrl}
& V \\
\text { Bearing of line } & 45 & S \\
31 & 5 \\
& 40 & S \\
& 4 & 5
\end{array} \\
& \text { Point of line } \quad 31.73 \text { s } \\
& \begin{array}{crr}
\text { Center of circle } & 27.45 & S \\
\text { radius } & 12.21 & S \\
& 15 & S
\end{array} \\
& \text { First intersection- } 23.8345 \\
& \text { Second intersection } 12.8280 \\
& 8.8633 \text { AO }
\end{aligned}
$$

olivetti P GOP

| Code 502.09 | Date | Page $2 / 3$ |
| :--- | :--- | :--- | :--- |

Method:
Let the bearing of the line $=\theta$
the point on the line
the center of the circle

$$
\begin{aligned}
& =\theta \\
& =\left(X_{N}, X_{E}\right) \\
& =\left(\mathrm{Y}^{\prime}, \mathrm{Y}_{\mathrm{E}}\right) \\
& =r
\end{aligned}
$$ the radius of the circle $=r^{\prime} N^{\prime}{ }^{\prime}{ }^{\prime}$

$$
\begin{aligned}
Z_{N} & =X_{N}-Y_{N} \\
Z_{E} & =X_{E}-Y_{E} \\
a & =Z_{E} \cos \theta-Z_{N} \sin \theta \\
c & =\sqrt{r^{2}-a^{2}}
\end{aligned}
$$

Then the solutions are:

$$
\begin{aligned}
& \mathrm{Y}_{\mathrm{N}}-a \cos \theta \pm c \sin \theta \\
& \mathrm{Y}_{\mathrm{E}}+a \sin \theta \pm c \cos \theta
\end{aligned}
$$

Accuracy: The accuracy depends on the central angle of the curve cut off by the two points of intersection. Accuracy may be lost when the central angle is very small.

$$
\begin{aligned}
& \text { Accurdin is loot when the line } \\
& \text { dpprodches being tangent to } \\
& \text { curve }
\end{aligned}
$$

Code 502.09	Date	Page	$3 / 3$

Intersection of Line and Curve

| Code 502.10 | Date | Page $1 / 3$ |
| :--- | :--- | :--- | :--- |

| Title | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Intersection of Two Circles | | | | |
| | | | | |
| Number of Sides | 1 | Lower Decimal Wheel | | |

This program is used to find the coordinates of a point where its distance from two known points are given.

A red light will light if there is no solution.

Sample run:

X_{N}	17.53	5
X_{E}	-143.95	s
$\mathrm{R}^{\text {E }}$	269.11	s
Y_{N}	-24.82	s
Y_{E}	81.74	s
R	150.00	s
First Solution	123.6124	Ad
	103.3690	A 0
Second Solution	170.9961	A 0
	48.0867	A 1

olivetti p goz

Code 502.10	Date	Page	$2 / 3$

Method:

Let X_{N},	X_{E}
R_{N}	the coordinates of the first point
Y_{N},	Y_{E}
	the distance from this point

$$
\begin{aligned}
& Z_{N}=Y_{N}-X_{N} \\
& Z_{E}=Y_{E}-X_{E} \\
& a=\sqrt{Z_{N}^{2}+Z_{E}^{2}} \\
& r=\frac{R}{a} \\
& s=\frac{S}{a}
\end{aligned}
$$

Then the solutions are:

$$
\begin{aligned}
& X_{N}+a Z_{N} \pm b Z_{E} \\
& X_{E}+a Z_{E} \mp b Z_{N}
\end{aligned}
$$

Accuracy: The accuracy depends on the size of the central angle subtended by the intersection points. For very small central angles, accuracy may be lost.

-	code	502. 10	Date	Page	3/3

Intersection of Two Circles

| Number of Sides | L | Lower Decimal Wheel as desired | Upper Decimal Wheel $F L$ |
| :--- | :--- | :--- | :--- | :--- |

olivetti pege

Code	502.12	Date	Page	$1 / 3$

Title				
Triangle with Three Sides Given				
Number of Sides	1	Lower Declmal Wheel as desired		

This program is used to find the angles of a triangle where the three sides are known.

If there is no solution, the red light will light.

Sample run:

a	500	S
b	300	S
c	400	S
Area in sq. ft.	60000.0000	A 0
acres	1.3774	A 0
	89.0000	0
A	59.0000	0
	59.9999	A 0
	36.0000	0
B	52.0000	0
	11.6315	A 0
	53.0000	0
C	7.0000	0
	48.3684	A 0

olivetti P GOP

| Code | 502.12 | Date | Page $\quad 2 / 3$ |
| :--- | :--- | :--- | :--- | :--- |

Method: the sides are rearranged so that a is the smallest side.
The semiperimeter $s=\frac{a+b+c}{2}$ is computed
then the area $\Delta=\sqrt{(s-a)(s-b)(s-c)}$
$B=\arctan [\Delta / s(s-b)]$
$C=\arctan [\Delta / s(s-c)]$
$\mathrm{A}=\frac{\pi}{2}-\mathrm{B}-\mathrm{C}$

These are rearranged to print out in the order A, B, C corresponding to the order of entry of their opposing sides.

Accuracy: if one of the angles is close to 180°, accuracy may be lost.

| Code | 502.12 | Date | Page $3 / 3$ |
| :--- | :--- | :--- | :--- | :--- |

Triangle with Three Sides Given

| Number of Sides 1 | Lower Decimal Wheel as desired | Upper Decimal Wheel FL |
| :--- | :--- | :--- | :--- |

60 RFO
114.591559026164 RfO

43560 REO
1.57079632679489 REO

| Code 502.13 | Date | Page $1 / 4$ |
| :--- | :--- | :--- | :--- |

Title				
Triangle with Two Sides and One Angle Given				
Number of Sides	Lower Decimal Wheel	Upper Decimal Wheel		

This program is used to solve a triangle when two sides and an angle are known whether included or opposite.

Sample run: If a, C, b are known, depress V; if C, b, c are known, depress W. In the second case, there are two possible solutions.

olivetti P EOP

Code	502.13	Date	Page 2/4

C

v
a

C
b
b
c
$\begin{array}{ll}28 & 5 \\ 46 & 5 \\ 10 & 5\end{array}$

Area in sq. ft. acres
$\begin{array}{ll}2.5098 & S \\ 5.5540 & A O \\ 0.0001 & A O\end{array}$
93.0000
1.0000
42.4789 AO

58.0000	0
12.0000	0
7.5210	10

b
Area in sq. ft.
acres

A

C

| 121.0000 | 0 |
| ---: | ---: | ---: |
| 47.0000 | 0 |
| 52.4789 | 10 |

2.5625 co

olivetti P GOR

Code	502.13	Date	Page	$3 / 4$

Method:

If $\mathrm{a}, \mathrm{b}, \mathrm{C}$ are given:
The sin and cos of C are computed

$$
\begin{aligned}
& \text { area }=\frac{a b \sin C}{2} \\
& C=\sqrt{a^{2}+b^{2}-2 a b \cos C} \\
& B=2 \tan ^{-1} \frac{b \sin C}{a+c-b \cos C} \\
& A=180^{\circ}-B-C
\end{aligned}
$$

If $\mathrm{C}, \mathrm{b}, \mathrm{c}$ given

$$
a=b \cos C \pm \sqrt{c^{2}-b^{2} \sin ^{2} C}
$$

There are two possible solutions depending on the sign of the radical.

$$
B=2 \tan ^{-1} \frac{b \sin C}{a+C-b \cos C} \quad A=180^{\circ}-B-C
$$

Accuracy: If C is the included angle then accuracy is lost for C very small. If C is opposite a given side, then accuracy is lost for C small or for one of the unknown angles close to 90°.

Triangle with Two Sides and One Angle Given

$3.14159265358979 R \in 0$
180 BEO
60 REO
43560 BFO

| Title

 Triangle With One Side and Two Angles Given

 Number of Sldes | |
| :--- | :--- | :--- | :--- | :--- |

This program computes the missing parts of a triangle when given two angles and any side.

Sample run: If included side is given depress V; if given side is not included, depress W.

Code 502.15	Date	Page $2 / 4$

Included Side
v

	28	s
A	46	s
	10	s
c	4.4321	s
B	29	s
	25	s
	57.519	5
C	121.00000	A 0
	47.00000	A 0
	52.48100	00
a	2.50980	AO
b	2.56254	AO
area in sq. ft.	2.73308	AO
acres	0.00006	AO

Side Not Included W
c
35 s
69 s
47 S
35 s

C
$\begin{array}{ll}56 & S \\ 35 & 5 \\ 46 & 5\end{array}$

A
$\begin{array}{ll}53.00000 & 10 \\ 36.00000 & \text { AO } \\ 39.00000 & 00\end{array}$
a
33.75042 AD
b
39.34520 AO
area in sq. ft. 554.27970 A0 acres

$$
0.01272 \text { AO }
$$

olivetti P GOR

| Code 502.15 | Date | Page $3 / 4$ |
| :--- | :--- | :--- | :--- |

Method: Given A, c, B or c, B, C, the missing angle is computed as 180° minus the sum of the two given angles.

Then:

$$
\begin{aligned}
& \mathrm{a}=\frac{\mathrm{c} \sin \mathrm{~A}}{\sin C} \\
& \mathrm{~b}=\frac{\mathrm{c} \sin \mathrm{~B}}{\sin C} \\
& \text { Area }=\frac{\mathrm{ab} \sin C}{2}
\end{aligned}
$$

Accuracy: Accuracy is lost if any of the angles of the triangle is very small.

Code 502.15	Dres	Poge 4/4

Triangle With One Side and Two Angles Given

| Number of sides | Lower Decimal Wheel as desired | Upper Decimal Wheel FL |
| :--- | :--- | :--- | :--- |

Code	502.21	Date

| TItie
 Circular Curve, Given Radius and Angle or Arc Length

 Number of Sides | |
| :--- | :--- | :--- | :--- |

This program computes the following parameters of a circular curve given the radius and the angle or arc length:

1) Arc length or angle
2) Tangent Length
3) Chord Length
4) Area of sector
5) Area of segment
6) Area of triangle bounded by chord and 2 radii.

The angle subtended at the center must be less than 180°.
Sample run: If arc length is given, depress V; if the central angle is given, depress W.

olivetti PGOE

| Code 502.21 | Date | Page $2 / 4$ |
| :--- | :--- | :--- | :--- |

Method: Given the radius and either the arc or the angle, the other is found by the relation

$$
\begin{aligned}
& \operatorname{arc}=\text { radius } X \text { angle in radians } \\
& \text { then } \cos \frac{\theta}{2} \text { is computed } \\
& \text { and } \sin \frac{\theta}{2}=\sqrt{1-\cos ^{2} \frac{\theta}{2}} \\
& \text { Tangent }=R \sin \frac{\theta}{2} / \cos \frac{\theta}{2} \\
& \text { Chord }=2 R \sin \frac{\theta}{2} \\
& \text { Sector }=\frac{1}{2} R \theta^{2} \\
& \text { Segment }=\operatorname{sector}-\operatorname{triangle} \\
& \text { Triangle }=R^{2} \sin \frac{\theta}{2} \cos \frac{\theta}{2}
\end{aligned}
$$

Accuracy: Accuracy may be lost for central angles close to 180°.

| Code 502.21 | Date | Page $3 / 4$ |
| :--- | :--- | :--- | :--- |

| Code | 502.21 | Date | Page $4 / 4$ |
| :--- | :--- | :--- | :--- | :--- |

Circular Curve, Given Radius and Angle or Arc Length

| Number of sides | Lower Decimal Wheel as desired | Upper Decimal Wheel $\quad F L$ |
| :--- | :--- | :--- | :--- |

P0	1	*	b1				A^{\top}	b
S	R S	A 1	$B X$				A^{\prime}	8
f 1	E:	01	F X					
S	B.	\%	C:					
F 1	R S	1*	C -				$A^{\prime}{ }^{\prime}$	c
f 1	E	RW	A 1				A^{\prime}	c
\pm	- *	$A X$	Co					C
c :	ro	B1	c 1				Ad	d
c 1	R S	A 1						
ro	- X	d 1					$A D^{\prime}$	D
BS	B S	-						
EX	E:	Af					$A e^{\prime}$	e
RS	c 1	15					A^{\prime}	E
et	C 1	RW						
r 1	S	B 1					$A^{\prime}{ }^{\text { }}$	7
0	Fi	r ${ }_{\text {W }}$						
R S	χ	F X					AF^{\prime}	F
EX	A 1	$0:$						
P:	f 1	$r 0$					Bc^{\prime}	Rc
0	CJ	01						
RS	W	B:					B^{\prime}	RC
EX	c 1	A 0						
A0	c d	D 1					Bd'	Rd
CJ	R S	A *					BD'	RD
v	- -	A 0						
/W	1	$f 1$					Be	Re
ro	A S	$F X$						
S	R V	A 1					BE	RE
01	1	di					B^{\prime}	Rf
S	-	t					Bf	R
B1	-	A 0					BF	RF
S	rV	61						

90 BEO
60 REO

olivetti P GOE

Code	502.22	Date	Page $1 / 3$

Title Circular Curve Given Radius and Chord					
Number of sides	1	Lower Decimal Wheel as desired	Upper Decimal Wheel FL		

This program computes the following parameters for a circular curve, when the radius and chord length are given:

1) Tangent length
2) Arclength
3) Area of sector
4) Area of segment
5) Area of triangle bounded by chord and two radii
6) Angle subtended at center

The computation is always made for the subtended angly less than 180°.
The red light goes on if there is no solution.

Sample run:

chord length	8956.14	5
radius	5216.48	5
Tangent length	8730.83	A 0
Arc length	10769.25	A 0
Sector area	28088790.43	A 0
Segment area	16107502.91	A 0
Triangle area	11981287.52	00
Central angle	118.00	
	17.00	0
	6.88	A

olivetti P GOP

Code	502.22	Date

Method:
If the radius R and the chord C are given, the following computations are made:

Tangent	$=\frac{C R}{\sqrt{4 R^{2}-C^{2}}}$
A	$=$ arctan $\left(\frac{C}{\sqrt{4 R^{2}-C^{2}}}\right)$
Arc	$=2 R A$
Sector	$=R^{2} A$
Segment	$=R^{2} A-T r i a n g l e$
Triangle	$=\frac{1}{4} C \sqrt{4 R^{2}-C^{2}}$
Angle	$=\frac{360 A}{\pi}$

Accuracy: Accuracy may be lost when the central angle is close to 180°.

Code 502.23	Date	Page $1 / 4$

| Title |
| :--- | :--- | :--- | :--- | :--- |
| Circular Curve With T wo Tangents Given |

If two tangents to a circular curve are given by their bearings and the point where they intersect, this program will compute the points of intersection with the circular curve, the angle subtended, the arc length between intersection points and the distance along the tangents to the points of intersection.

Code	502.23	Date	Page	$2 / 4$

Sample run:

olivetti P GOZ

| Code | 502.23 | Date | Page $3 / 4$ |
| :--- | :--- | :--- | :--- | :--- |

Accuracy: Accuracy may be lost if the two tangents are almost parallel.
Method: The two bearings A, and B are converted to azimuth in seconds.
Then

$$
\begin{aligned}
& \mathrm{a}=\frac{\mathrm{B}-\mathrm{A}}{2} \\
& \mathrm{~b}=\frac{\mathrm{B}-\mathrm{A}}{2}
\end{aligned}
$$

The central angle $=180^{\circ}-2|a| . \sin a, \cos a, \sin \mathrm{~b}$, and $\cos \mathrm{b}$, are computed. Let R be the radius of the circle.
tangent length $T=R \cot a$
and the intersections are

$$
\begin{aligned}
& X_{N}+T(\cos b \cos a+\sin b \sin a) \\
& X_{E}+T(\sin b \cos a-\cos b \sin a) \\
& X_{N}+T(\cos b \cos a-\sin b \sin a) \\
& X_{E}+T(\sin b \sin a+\cos b \sin a)
\end{aligned}
$$

| Code 502.23 | Date | Page $4 / 4$ |
| :--- | :--- | :--- | :--- | :--- |

Titte			
Circular Curve With T wo Tangents Given			
Number of sides	1	Lower Decimal Wheel as desired	Upper Decimal Wheel FL

60 BeO
648000 ReO
206264.806247096 REO

Code	502.24	Date	Page $1 / 4$

Title			
	Circular Curve, Offsets from Tangent		
Number of Sides	1	Lower Decimal Wheel as desired	Upper Decimal Wheel $F L$

This program computes the offsets of a circular curve of given radius from a set of stations on the tangent, and also the total central angle for the curve to the last station. It is used when it is desired to lay off a small circular curve by tape alone.

Code	502.24	Date	Page	$2 / 4$

Sample run:

olivetti P GOR

Code 502.24	Date	Page $3 / 4$

Accuracy: The offsets are computed to 14 significant figures, and the angle to 10 significant figures.

Method: For $\mathrm{R}=$ Radius and $\mathrm{D}=$ Distance along tangent,

$$
\text { offset }=R-\sqrt{R^{2}-D^{2}}
$$

and

$$
\text { central angle }=\arctan \left[\frac{\mathrm{R}}{\sqrt{\mathrm{R}^{2}-\mathrm{D}^{2}}}\right]
$$

This angle is converted from radians to degrees, minutes and seconds.

Title
Circular Curve, Offsets from Tangent

