ABSTRACT

This program designs rectangular or tee shaped reinforced concrete beams in accordance with the 1971 ACI Building code. The ultimate strength criteria is used by the program. Price \$60.00

INPUT

OUTPUT

General beam dimensions Concrete and steel strengths Design moments Minimum area of steel required Maximum area of steel allowed Ultimate moment capacity of section Area of steel required for each moment

CONCRETE BEAM DESIGN (ULTIMATE) .

Data: C. P. 64

Width of compressive zone at top (B)	=	30	in.
Flange thickness - D if Rectangular - (T)	=	2.5	in.
Effective depth (D)	=	19	in.
Width of tension zone at bottom (W)	=	10	in.
Yield strength of flexural steel (fy)	=	60	ksi
28 day compressive strength of concrete (f'c)	=	4	ksi
Computations:			
Area of minimum steel = $WD/5f_{v}$	=	0.6333	in. ²
Maximum steel allowed by ACI - $.75 P_b$	=	6.1703	in. ²
Ultimate moment capacity of section (M _u)	=	467.3605	k-ft.
For ultimate moment M_X	=	300	k-ft.
Area of steel required (A_s)	`=	3.7352	in.2
For ultimate moment M _X	=	350	k-ft.
Area of steel required (A_s)	=	4.3980	in. ²
For ultimate moment M _x	==	400	k-ft.
Area of steel required (A_s)	=	5.1120	in. ²
For ultimate moment My	=	450	k-ft.
Area of steel required (\hat{A}_{s})	=	5.8930	in.2
For ultimate moment M _X	=	500	k-ft.
Area of steel required (A_s)	=		$in.^2$
For ultimate moment M _X	=	432	k-ft.
Area of steel required (As)	=	5.6030	in. ²

CONCRETE BEAM DESIGN (ULTIMATE) .

Data: C. P. 64

Width of compressive zone at top (B)	=	10	in.
Flange thickness - D if Rectangular - (T)	=	13.3	in.
Effective depth (D)	=	13.3	in:
Width of tension zone at bottom (W)	=	1 0	in.
Yield strength of flexural steel (f_v)	=	6.0	ksi
28 day compressive strength of concrete (f'c)	=	4	ksi
Computations:			
Area of minimum steel = $WD/5f_{c}$	_	0 . 4 4 3 3	in 2
Maximum steel allowed by ACI - $.75 P_b$		2.8320	in.2
Ultimate moment capacity of section (M _u)	=	137.6500	k-ft.
For ultimate moment M _X	=	125	k-ft.
Area of steel required (A_s)	`=	2.5145	in.2
For ultimate moment M _X	==	110	k-ft.
Area of steel required (A_s)	=	2.1504	in. ²
For ultimate moment M _X	=	100	k-ft.
Area of steel required (A_{s})	=	1.9207	in. ²
For ultimate moment M _x	=		k-ft.
Area of steel required (A_s)	=		in.2
For ultimate moment M _X	=		k-ft.
Area of steel required (As)	=		in. ²
For ultimate moment M _X	=		k-ft.
Area of steel required (As)	=		$in.^2$

