ABSTRACT

This program computes the precast and composite section properties for double tees and single tees with or without sloping webs. Flanges must be uniform in thickness. Transformed section properties can also be computed if steel is to be considered.

Price $\quad \$ 60.00$

INPUT

Dimensions of tee
Elasticity of steel and concrete Area and location of steel Transformed topping width

OUTPUT

Centroid for top and bottom Moment of inertia
Section modulus for top and bottom Area

$$
\text { C.P. - } 3
$$

Data:

Depth of stem (a)
Width of stem (b)
Width of flange (c):
Width of stem (d)
Modulus of Elasticity of steel (E_{S})
Modulus of Elasticity of concrete (E_{C})
Area of Steel reinforcement ($\mathrm{A}_{\mathbf{s}}$)
Flange Thickness (e)
Center of gravity of steel (f)

Calculations:

Distance from bottom to neutral axis (Y_{b}) = Moment of Inertia (I)
Section Modulus -- bottom (S_{b})
Distance from top to neutral axis (Y_{t})
Area (.A)
Section Modulus -- Top S
Thickness of topping (k)
Transformed width of topping (C)
Area of composite section (A_{t})
Centroid of composite section (Y_{b}) Centroid of composite section $\left(Y_{t}\right)$
Inertia of composite section (I_{t})
Section modulus wrt. bottom (S_{b})
Section modulus wrt. top $\left(S_{t}\right)$
23.1282 in. 63979.2773 in. ${ }^{4}$ 2766.2886 in. 3
$=\quad 8.8718 \mathrm{ln}$.
$=$
$=$
$=$
$=$
673.0000
7211.5328

3 in .
60
$=$
$=$
$=$
9.6832
$=79391.5260$
$=3135.9226$
$=$
In. h_{3}
in.
in.
in.
in. 2
in.
in. 4
in. 3
in. 3
in.
in.
in.
in.
3.25 in.

30000 ksi .
3000 ksi.
3.0 in. ${ }^{2}$
in.
in.

SECTION PROPERTIES

C.P. - 3

Data:

Depth of stem (a)	=	20 in .
Width of stem (b)	=	5 in .
Width of flange (c):	=	$\because:$ in.
Width of stem (d)	=	$? \mathrm{in}$.
Modulus of Elasticity of steel (E_{S})	=	20097 ksi.
Modulus of Elasticity of concrete (E_{C})	=	19? ${ }^{\text {gsi. }}$
Area of Steel reinforcement (A_{S})	=	? in. ${ }^{2}$
Flange Thickness (e)		3 in .
Center of gravity of steel (f)	$=$? in.

Calculations:

Distance from bottom to neutral axis (Yb)	=	17.2001 in.
Moment of Inertia (I)	$=$	17011.9290 in. ${ }^{4}$
Section Modulus -- bottom (S_{b})	=	$988.5 \wedge ?^{9}$ in. ${ }^{3}$
Distance from top to neutral axis (Y_{t})	$=$	5.7909 ln.
Area (.A)	=	$30 \wedge .50 \cap \cap \mathrm{ln} .2$
Section Modulus -- Top S	=	2937.9889 ln^{3}
Thickness of topping (k)	=	$\underline{i n}$.
Transformed width of topping (C)	=	65 in .

Area of composite section (A_{t}) Centroid of composite section

$$
\begin{array}{lr}
= & 17.2001 \mathrm{in.} \\
= & 17019.9290 \mathrm{in}^{4} \\
= & 988.5129 \mathrm{in}^{3}
\end{array}
$$

$$
\text { Centroid of composite section }\left(Y_{\mathrm{t}}\right)
$$

Inertia of composite section (I_{t})
Section modulus wrt. bottom (S_{b})
Section modulus wrt. top $\left(S_{t}\right)$

ABSTRACT

This program computes fixed end moments and reaction for beams with any number and/or combination of loads such as point loads, triangular loads, uniform loads, and applied moments. Triangular and uniform loads may be partially or fully distributed on the beam. End joints can be pinned or fixed on either end or on both ends.

Price $\quad \$ 60.00$

INPUT

Load description
Joint type
Span length

OUTPUT

Left moment
Right moment
Left reaction
Right reaction
C. P. 7

SAMPLE PROBLEM

Given:

$$
\begin{aligned}
& \mathrm{Ja}=1 \\
& \mathrm{Jb}=0 \\
& \text { Span Length } \mathrm{L}=34 \mathrm{ft} .
\end{aligned}
$$

Solution: The beam must be broken down into the following five loadings.

Loading 1

Type of Loading $=1$
$\mathrm{W}=1.2 \mathrm{k} / \mathrm{ft}$.
$A=12 \mathrm{ft}$.
$B=10 \mathrm{ft}$.

Loading 2

Type of Loading $=2$
Number of Loads, $\mathrm{N}=3$
$P(1)=15 k$
$A(1)=2 \mathrm{ft}$.
$P(2)=5 k$
$A(2)=4 \mathrm{ft}$.
$P(3)=15 k$
$A(3)=32 \mathrm{ft}$.

Loading 3

Type of Loading $=3$
$\mathrm{W}=1.2 \mathrm{k} / \mathrm{ft}$.
$S=+1$

$A=9 \mathrm{ft}$.
$B=3 \mathrm{ft}$.

Type of Loading $=3$
$W=1.2 \mathrm{k} / \mathrm{ft}$.
$S=-1$
$A=22 \mathrm{ft}$.
$B=6 \mathrm{ft}$.

Loading 5

Type of Loading $=4$ $\mathrm{Mo}=150 \mathrm{k}-\mathrm{ft}$.
$A(1)=17^{\prime}$

Conclusions:

Left Reaction, $\mathrm{Ra}=27.45 \mathrm{kips}$
Right Reaction, $\mathrm{Rb}=24.95 \mathrm{kips}$

Left Moment, $\mathrm{Ma}=-142.06 \mathrm{k}-\mathrm{ft}$.
Right Moment, $\mathrm{Mb}=0$

ABSTRACT

This program computes the deflection at any point X along the span due to applied end moments, uniform load, and any number of point loads. Deflection due to each load type plus total deflection is output.

Price $\$ 65.00$

INPUT

Span length
Elasticity and inertia
Location of desired deflection - X
End moments
Uniform and point loads

OUTPUT

Deflection due to uniform load
Deflection due to end moments
Deflection due to each point load
Total deflection at X

C.P. 10

Data;

Span length (L)
Modulus of elasticity (E)
Moment of inertia (I)
Location of desired deflection (X)
Moment at left end (MI)
Moment at right end (M2)
Uniform load on span (W)
$=\quad 40 \mathrm{ft}$.
$=\quad 30000 \quad \mathrm{ksi}_{4}$
$=$
$=$
$=$
$=$
$=$
Calculations:
$D_{W}=72(W) X\left(L^{3}-2 L(X)^{2}+X^{3}\right) / E(I) \quad=\quad 1.5127 \quad$ in.
$D_{m}=\frac{288(X-L) X}{E(I) L}[L(2 M 1+M 2)+X(M 2-M 1)]=-2.7127 \quad$ in.
Location of load $P(1)$
Load P(1)
Deflection at X due to $P(1)$
Total deflection at X

Location of load $P(2)$
Load $P(2)$
Deflection at X due to $P(2)$
Total deflection at X
$=\quad 1$
$=$
=
=
$=$
=
$=$
$=$
ft. kips
in. in.
ft. kips in. in.
etc.

Abstract

This program computes the section properties for any shape that can be represented by rectangles, triangles, circles, and rolled sections. Circles may be subtracted or added from the shape. Listed below are some of the sections the program will solve. Price $\$ 75.00$

Single and double tees ASSHO girders Hollowcore slabs Rolled sections with plates added Section built up out of plates Combination of rolled sections with plates

\section*{INPUT}

Element type Element dimensions

OUTPUT

Area Centroid with respect to top and bottom Moment of inertia Radius of gyration Section modulus with respect to top and bottom

Given:

Conclusions:

$$
\begin{array}{ll}
\text { Area of section (A) } & =31.2600 \text { in. }{ }^{2} \\
\text { Centroid of section wrt. base }\left(Y_{\mathrm{b}}\right) & =5.4613 \text { in. } \\
\text { Moment of inertia of section }(\mathrm{I}) & =519.0743 \text { in. } \\
\text { Section modulus wrt. base }\left(\mathrm{S}_{\mathrm{b}}\right) & =95.0459 \text { in. } \\
\text { Radius of gyration }(\mathrm{r}) & =4.0749 \text { in. } \\
\text { Section modulus wrt. base }\left(\mathrm{S}_{\mathrm{t}}\right) & =76.4615 \text { in. } \\
\text { Centroid of section wrt. top }\left(\mathrm{Y}_{\mathrm{t}}\right) & =6.7887 \text { in. }
\end{array}
$$

Data; C.P. 22

Radius of circle 1	$=$	in.
Distance to centroid of circle 1	$=$	in.
Radius of circle 2	$=$	in.
Distance to centroid of circle 2	$=$	in.
Radius of circle NC	$=$	in.
Distance to centroid of circle NC	$=$	in.

Computations;

Area of section (A)	$=$	$39 . ? 6$ in. 2
Centroid of section wrt. base (Y_{b})	$=$	5.0613 in.
Moment of inertia of section (I)	=	$599.0713 \mathrm{in}.{ }^{4}$
Section modulus wrt. base (S_{b})	=	95.0159 in. ${ }^{3}$
Radius of gyration (r)	$=$	4.0719 in .
Total depth of section (d)	=	12.25 in.
Section modulus wrt. top (S_{t})	$=$	76.46, ${ }^{\text {in }}{ }^{3}$
Centroid of section wrt. top (Y_{t})	$=$	6.7897 in.

\#25 BEAM ANALYSIS

C. P. -25

Data:

Uniform continuous load (w)
Number of point loads (N)
Span length (L)
Applied moment at left (M1)
Applied moment at right (M2)
Location of load 1 A(1)
Value of load P(1)
Location of load 2 A(2)
Value of load $\mathrm{P}(2)$
Location of load 3 A(3)
Value of load P(3)

Left Reaction (R1)
Right Reaction (R2)
Location from left support (X)
Shear at X
Moment at X
Location from left support (X)
Shear at X
Moment at X
Location from left support (X)
Shear at X
Moment at X
$=$
$=$
$=$
$=$
$=$
$=$
$=$
$=$
$=$
$=$
$=$
$\begin{array}{lr}= & 30.5000 \mathrm{k} \\ = & 30.5000 \mathrm{k} \\ = & 10 \mathrm{ft.} \\ = & 14.5000 \mathrm{k} \\ = & 140: 0000 \mathrm{k}-\mathrm{ft} .\end{array}$
$=\quad 20 \mathrm{ft}$.
$=\quad-1.5000 \mathrm{k}$
$=220.0000 \mathrm{k}-\mathrm{ft}$.
30 ft.
$=-17.5000 \mathrm{k}$
$=140.0000 \mathrm{k}$-ft.

