ABSTRACT

This program computes the precast and composite section properties for double tees and single tees with or without sloping webs. Flanges must be uniform in thickness. Transformed section properties can also be computed if steel is to be considered.

Price \$60.00

INPUT

OUTPUT

Dimensions of tee Elasticity of steel and concrete Area and location of steel Transformed topping width Centroid for top and bottom Moment of inertia Section modulus for top and bottom Area

SECTION PROPERTIES

C.P. - 3

Data:

Depth of stem (a) Width of stem (b) Width of flange (c) Width of stem (d) Modulus of Elasticity of steel (E_S) Modulus of Elasticity of concrete (E_C) Area of Steel reinforcement (A_S) Flange Thickness (e) Center of gravity of steel (f)	2 9 6 9 6 3 • 2 5 3 0 0 0 0 3 0 0 0 3 • 0 4 2	in. in. in. ksi. ksi. in. ² in. in.
Calculations:		
Distance from bottom to neutral axis (Yb) Moment of Inertia (I) Section Modulus bottom (Sb) Distance from top to neutral axis (Yt) Area (.A) Section Modulus Top S Thickness of topping (k) Transformed width of topping (C)	23.1282 63979.2773 2766.2886 6.8718 673.0000 7211.5328 3	in.4 in.3 in. in.2 in.3 in. in. in.
Area of composite section (A_t) Centroid of composite section (Y_b) Centroid of composite section (Y_t) Inertia of composite section (I_t) Section modulus wrt. bottom (S_b) Section modulus wrt. top (S_t)	853:0000 25.3168 9.6832 79391.5260 3135.9226 6198.8935	in. ² in. in. in. in. 3 in. ³

SECTION PROPERTIES

C.P. - 3

Data:

Depth of stem (a)	=	2.0	in.
Width of stem (b)	=	. 5	in.
Width of flange (c)	=	30	in.
Width of stem (d)	=	2	in.
Modulus of Elasticity of steel (E _s)	=	29000	ksi.
Modulus of Elasticity of concrete (E_c)	=	1000	ksi.
Area of Steel reinforcement (A _s)	=	2	$in.^2$
Flange Thickness (e)	=	3	in.
Center of gravity of steel (f)		2	in.

Calculations:

Distance from bottom to neutral axis (Y _b) Moment of Inertia (I) Section Modulus bottom (S _b)		17.2091 in. 17011.9200 in. 988.5421 in. ³
Distance from top to neutral axis (Y_t)	=	5.7909 in.
Area (.A)	2	391.5000 in.2
Section Modulus Top S	=	2937.6988 in.
Thickness of topping (k)	=	2 in.
Transformed width of topping (C)	-	65 in.
Area of composite section (A_{+})	=	524.5000 in.2
Centroid of composite section (Y _b)	=	18.0922 in.
Centroid of composite section (Y.)	=	6.1078 in.
Inertia of composite section (I+)	=	21564.4409 in.4
Section modulus wrt. bottom (Sb)	=	1141.4467 in. ³
Section modulus wrt. top (S.)	=	2520 6396 in 3

۰.

ABSTRACT

This program computes fixed end moments and reaction for beams with any number and/or combination of loads such as point loads, triangular loads, uniform loads, and applied moments. Triangular and uniform loads may be partially or fully distributed on the beam. End joints can be pinned or fixed on either end or on both ends.

Price \$60.00

INPUT

OUTPUT

Load description Joint type Span length Left moment Right moment Left reaction Right reaction C. P. 7

SAMPLE PROBLEM

Given:

• 1

Ja = 1Jb = 0Span Length L= 34 ft.

Loading 1

Loading 2

Type of Loading = 1 W = 1.2 k/ft. A = 12 ft. B = 10 ft.

Type of Loading = 2 Number of Loads, N = 3 P(1) = 15 k A(1) = 2 ft. P(2) = 5 k A(2) = 4 ft. P(3) = 15 k A(3) = 32 ft.

Type of Loading = 3 $W = 1.2 \ k/ft.$ S = +1 A = 9 ft. B = 3 ft.

Loading 4

Type of Loading = 3 W = 1.2 k/ft.S = -1 $A = 22 \, ft.$ B = 6 ft.

Loading 5

Type of Loading = 4 Mo = 150 k-ft.

A(1) = 17'

	Left Joint Type, Ja Right Joint Type, Jb Span Length, L Loading 1, Type of Loading Applied Uniform Load, W Distance from Left Support, A Distance Load is Applied, B Left Reaction, Ra Right Reaction, Rb Left Moment, Ma Right Moment, Mb			3 • 1	1 0 34 1 1.2 12 10 1852 8148 2941 0000 2	S S S S S S S S S S S S S S S S S S S
	Loading 2, Type of Loading Number of Loads, N P(1) A(1) P(2) A(2) P(3) A(3) Summation of Ra, Loading 1 and 2 Summation of Rb, Loading 1 and 2 Summation of Ma, Loading 1 and 2 Summation of Mb, Loading 1 and 2 Loading 3, Type of Loading Maximum Value of Triangular Load, W Slope of Triangular Load Distance from Left Support, A Distance Load Is Applied, B			9 . 7 . 3 . 0 .	3 15 2 5 4 15 32 9 4 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 5 8 2 9 4 6 7 0 6 7 9 4 6 7 9 4 6 7 9 9 4 6 7 9 9 4 6 7 9 9 4 6 7 9 6 7 9 4 6 7 9 9 4 6 7 9 6 7 9 4 6 7 9 9 4 6 7 9 9 4 6 7 9 9 4 6 7 9 6 7 9 4 6 7 9 6 7 9 6 7 9 6 7 9 6 7 9 6 7 9 6 7 9 6 7 9 6 7 9 6 7 9 7 9	S S S S S S S S S S S S S S S S S S S
	Summation of Ra, Loading 1,2 and 3 Summation of Rb, Loading 1,2 and 3 Summation of Ma, Loading 1,2 and 3 Summation of Mb, Loading 1,2 and 3 Loading 4, Type of Loading Maximum Value of Triangular Load, W Slope of Triangular Load Distance from Left Support, A Distance Loas Is Applied, B			0.7.4.0.	8764 9236 4538 0000 	e O E O F O S S S S S
•	Summation of Ra, Loading 1,2,3 and 4 — Summation of Rb, Loading 1,2,3 and 4 — Summation of Ma, Loading 1,2,3 and 4 — Summation of Mb, Loading 1,2,3 and 4 —		3 1 -16	2 . 9 . C . 0 .	4162 9838 8070 0000 4	e 0 E 0 F 0 S
-	Loading 5. Type of Loading Applied Moment, Mo Distance from Left Support, A(1) Summation of Ra, Loading 1,2,3,4 and 5 Summation of Rb, Loading 1,2,3,4 and 5 Summation of Ma, Loading 1,2,3,4 and 5 Summation of Mb, Loading 1,2,3,4 and 5	J 	- 2 - 2 - 14	7 • 4 • 2 •	150 17 4530 9470 0570 0000	S e Ø E Ø F Ø

Conclusions:

Left Reaction, Ra = 27.45 kips Right Reaction, Rb = 24.95 kips

Left Moment, Ma = -142.06 k-ft.

Right Moment, Mb = 0

#10 BEAM DEFLECTION ANALYSIS

ABSTRACT

This program computes the deflection at any point X along the span due to applied end moments, uniform load, and any number of point loads. Deflection due to each load type plus total deflection is output. Price \$65.00

INPUT

OUTPUT

Span length Elasticity and inertia Location of desired deflection - X End moments Uniform and point loads

Deflection due to uniform load Deflection due to end moments Deflection due to each point load Total deflection at X

DEFLECTION ANALYSIS

C.P. 10

Data;

	Span length (L) Modulus of elasticity (E) Moment of inertia (I) Location of desired deflection (X) Moment at left end (M1) Moment at right end (M2)		- 40 30000 705 15 200	ft. ksi. in. ⁴ ft. k-ft. k-ft.
	Uniform load on span (W)	=	0.6	k/ft.
Calc	ulations;			
	$D_w = 72(W)X(L^3 - 2L(X)^2 + X^3)/E(I)$	=	1.5127	in.
	$D_{m} = \frac{288(X-L)X}{E(I)L} \left[L(2M1+M2) + X(M2-M1) \right]$	=	-2.7127	in.
	Location of load P(1)	=	10	ft.
	Load P(1)	=	25	kips
	Deflection at X due to P(1)	=	1.8617	in.
	Total deflection at X	=	0.6617	in.
	Location of load P(2)	=	25	ft.
	Load P(2)	=	26	kips
	Deflection at X due to P(2)	=	2.2902	in.
	Total deflection at X	=	2 . 9519	in.

etc.

,

#22 SECTION PROPERTIES

ABSTRACT

This program computes the section properties for any shape that can be represented by rectangles, triangles, circles, and rolled sections. Circles may be subtracted or added from the shape. Listed below are some of the sections the program will solve. Price \$75.00

> Single and double tees ASSHO girders Hollowcore slabs Rolled sections with plates added Section built up out of plates Combination of rolled sections with plates

INPUT

OUTPUT

Element type Element dimensions Area Centroid with respect to top and bottom Moment of inertia Radius of gyration Section modulus with respect to top and bottom

Given:

Conclusions:

Area of section (A)	=	31.2600	in. ²	
Centroid of section wrt. base (Yb)	=	5.4613	in.	
Moment of inertia of section (I)	=	519.0743	in.	
Section modulus wrt. base (S _b)	=	95.0459	in. ³	
Radius of gyration (r)	=	4.0749	in.	
Section modulus wrt. base (S _t)	=	76.4615	in. ³	
Centroid of section wrt. top (Y_t)	=	6.7887	in.	

SECTION PROPERTIES

Data; C.P. 22

Numb Numb Numb Numb	ber of rectangles (NR) ber of rolled shapes (NRO) ber of triangles (NT) ber of circles (NC)	= = =	3 2 0 0
Widt Dept Dista Widt Dept Dista	th of rectangle 1 (B1) th of rectangle 1 (D1) ance to centroid rectangle 1 (Y1) th of rectangle 2 (B2) th of rectangle 2 (D2) ance to centroid rectangle 2 (Y2)	= = = =	10 in. 1 in. 0.5 in. 1.0 in. 3 in. 5 in.
Widt Dept Dista	th of rectangle NR (B _{NR}) th of rectangle NR (D _{NR}) ance to centroid rectangle NR	= = =	7 in. 1 in. 9.5 in. 2
Area Dista Inert	of rolled shape 1 (A1) ance to centroid of shape 1 (Y1) ia of shape 1 about its centroid (I1)	=	$\begin{array}{c} 3.38 \text{ in.} \\ 10.57 \text{ in.} \\ 1.32 \text{ in.} \end{array}$
Area Dista Inert	of rolled shape N (AN) ance to centroid of shape N (YN) ia of shape N about its centroid ()	= = IN)=	$\begin{array}{r} 2.38 \text{ in.}^2 \\ 8.158 \text{ in.} \\ 2.49 \text{ in.} \end{array}$
Widt Dept Dista	th of triangle 1 (B1) th of triangle 1 (D1) ance to centroid of triangle 1 (Y1)	=	in. in. in.
Widt Dept	h of triangle NT h of triangle NT ance to centroid of triangle NT	=	in. in.

Radius of circle 1 Distance to centroid of circle 1 Radius of circle 2 Distance to centroid of circle 2	= . = =	in. in. in. in.
Radius of circle NC Distance to centroid of circle NC	= =	in. in.
Computations;		
Area of section (A) Centroid of section wrt. base (Y _b) Moment of inertia of section (I)	= = =	31.2600 in.2 5.4613 in. 519.0743 in.4
Section modulus wrt. base (S _b)	=	95.0159 in. ³
Radius of gyration (r) Total depth of section (d) Section modulus wrt. top (S _t)	= = =	4.0749 in. 12.25 in. 76.4615 in. ³
Centroid of section wrt. top (Yt)	=	6.7887 in.

#25 BEAM ANALYSIS

ABSTRACT

This program computes the reactions and then the shear and moment at any number of locations along the beam due to point loads, uniform load and end moments. Maximum positive moment and points of inflection are easily obtained.

Price \$60.00

INPUT

OUTPUT

Point loads and locations Span length End moments Uniform load Location of desired analysis Reactions Shear at X Moment at X

STRUCTURAL ANALYSIS

C.P. - 25

Data:

Uniform continuous load (w) Number of point loads (N) Span length (L) Applied moment at left (M1)	-	2	1.3 3 40 100	k/ft. ft. k-ft.
Applied moment at right (M2) Location of load 1 A(1)		-	100 10	ft.
Location of load 2 A(2)		=	20	ft
Location of load 3 A(3)		-	30	к ft.
Value of load P(3)		2	3	k
Left Reaction (R1) Right Reaction (R2)	•	=	30.5000 30.5000	k k
Location from left support (X) Shear at X Moment at X		8 8 1	10 14.5000 140:0000	ft. k k-ft.
Location from left support (X) Shear at X Moment at X		2	20 -1.5000 220.0000	ft. k k-ft.
Location from left support (X) Shear at X Moment at X		2	30 -17:5000 140.0000	ft. k k-ft.