PERECI, INC.

4087 GLENCOE AVENUE MARINA DEL REY, CALIFORNIA 90291

TELEPHONE (213) 822-7545

APPLICAIION NOTE
DOUBLE DENTSITY RECORDIVG ON
MODEL 70 AND MODEL 270 DISKETTHE DRIVES
1.0 DOUBLE DENSITTY RECORDING TECHNIQUES

1.1 General

Diskette drives throughout the industry have nade use of double frequency code because this code has simple encoding and decoding, compatibility with IBM 3740 systems; and excellent timing margins. However, this code is limited to 1.9×10^{6} bits per surface in the IBM 3740 format, 2.52×10^{6} bits in an efficient 32 hard sectors format, or 3.2×10^{6} bits unformatted.

User pressure on the diskette drive manufacturers has been to increase the storage on the diskette. One way this has been successfully accomplished is by use of double density recording codes. Both MFM and $M^{2} \mathrm{FM}^{\mathrm{M}}$ code have been successfully used to provide 5.05×106 bits per surface in a 32 hard sectors format.
1.2 Recording Codes ,

Successful double density recording has been accomplished on flexible disk drives with MFM and M2FM techniques. Other techniques are also available, but they require much more complex encoding and decoding logic in the controller. Therefore PerSci has elected to use IFM and MCMM as the double density codes for its diskette drives. Both of these codes are readily decoded with the aid of phase locked loop (DIJ) type data separators, such as the PerSci double density data separator.
1.2.1 M Code

Double frequency code, widely used in diskette drives, encodes serial binary information, or "information bits", in the following manner:

Double Frequency Rules

1. Clock bit rule: a transition occurs at every cell boundary.
2. Data bit rule: a transition occurs at the center of a cell if the information bit is a 1 , a transition does not occur at the center of a cell if the information bit is a 0 .

RFM modifies Rule 1 in the following manner:

MITM Rules

1. Clock bit rule: a transition occurs at boundaries between cells having successive 0 information bits.
2. Data bit rule: a transition occurs at the center of a cell if the information bit is a 1 , no transition occurs at the center of the cell if the information bit is a 0 .

The following timing diagrams will serve to show the similarities and also illustrate that MFM requires half the maximum transition rate of double frequency code.

As is illustrated by the timing diagram, the highest and lowest frequency involved in MFM is $1 / 2$ the corresponding frequency for double frequency code at the same data rate. Therefore twice the data rate is available for the same transition rate.
1.2.2 $\mathrm{M}^{2} \mathrm{FM}$ Code

A further modification of coding Ruie 1 results in M2FM.
M²FM Rules
l. Clock bit rule: a transition (clock bit) occurs at the boundard between two adjacent cells if no clock bit was written at the previous boundary and the boundary is between successive information bit 0^{\prime} s.
2. Data bit rule: a transition (data bit) occurs in the middle of a cell if the cell contains an information bit l.

The following timing Diagram will show the differences in MFM and $M^{2} F M$.

As is illustrated by the timing diagram, the highest frequency in MPM is the same as in MFM. However, the lowest frequency in M^{2} FM is $4 / 5$ the lowest frequency in MFM. Also note that clock bits in M2FM are not as close to other transitions as in MFM.
2.0 DISTORTIONS DUE TO MEDIA

2.1 General

High efficiency recording codes such as MFM and M2 ${ }^{2}$ M were developed to overcome the limitations of distortions due to the media. Although more efficient than double frequency code, they are still limited by the same distortions.

The information content in the unprocessed readback of any saturated magnetic recording system is contained in the peaks of that readback. Receiving the information requires determining if a peak did or did not occur in a given time "window". The peaks are found by electronically taking the derivatives of the readback, and finding the time when the derivative goes to zero. In the PerSci system, a 200 ns pulse is produced at each zero crossing of the derivative; this pulse is the "read data" pulse. A "data separator" circuit is then used to convert these pulses into clock pulses to define cell boundaries on the "separated clock" line and data pulses at the center of the cell. when the information bit within the cell was determined to be a "I.". Four distortions due to head and media interfere with this process. They are: amplitude distortion, shouldering, peak shift, and asymmetry.

2.2 Amplitude Distortion

Track 76 is recorded on a radius of 2.03 inches. Track 00 is recorded on a radius of 3.62 inches. Since the same number of bits is recorded on all tracks, the bits per inch (packing density) is 1.78 times as great on Track 76 as it is on Track 00 . Amplitude of readback is dependent upon packing density and head tolerance. The output of an acceptable low amplitude head from high frequency at Track 76 may be only 10% of the amplitude from an acceptable high output head to low frequencies at Track 00 . This effect defines the dynamic range over which the read circuits must work. The effect is present in any saturated magnetic disk recording system.

2.3 Shouldering

As packing density becomes lower, the pulses on the diskette take on some of the characteristics of isolated pulses. That is, the pulses begin to flatten and form "shoulders".

The derivative of these "shoulders" slips toward 0, forming "saddies". If these saddles reach 0 , this is recognized as a transition and a spurious clock or data pulse is produced. In practice, this derlvative never quite reaches 0, but as it gets low the system becomes susceptible to noise. The wide dynamic range discussed in the previous section precludes effective amplitude discrimination; therefore, the shouldering effect must be controlled by other means. Double frequency code and MFM code limit frequencies to a 2-to-1 spread and $M^{2} \mathrm{FM}$ limit frequencies to a 2.5-to-1 spread. Keeping the range of frequencies to $2.5-t o-1$ and specification of maximum resolution of the head at Track 00 eliminates errors due to this cause.

2.4 Peak Shift

As packing density becomes higher, the shoulders disappear. However, at the transition between a high frequency and lower frequency region of the readback, the peak of the last high frequency half cycle is shifted in time toward the lower frequency. This is the most important single effect limiting the amount of data that can be put on the media. This effect can shift a data pulse into the clock window, or a clock pulse into the data window. The magnitude in time of peak shifts in MFM code and double frequency code is the same; however, the decode window for MEM before considering any effects is half that of double frequency code at half the transition rate, since the practical decode wiridow is the theoretical window with no time distortion effectis minus all time distortion effects. This practical decode window gets rapidly small with increases in peak shift.

M2FM has a greater high frequency to low frequency ratio than MFM. Therefore, peak shifts can be slightly greater. However, clock pulses in M ${ }^{2}$ FM code are never close to another pulse. Therefore there is less peak shift on clock pulses thian on data pulses, and the decode window can be widened for da.ta pulses and narrowed for clock pulses. Therein lies the advantage of M2FM.

Practical systems using both MFM and M2FM have been built. Write precompensation is used in these systems to reduce the effect of peak shift. Write precompensation consists of recognizing from the data that a peak shift will occur, and then writing the transition offset in a compensating time.

The amount of peak shift is controlled by specification of the heads. The ratio of amplitude of high frequency output to low frequency output from a head or a specified track of known quality is directly related to peak shift. This is known as head resolution. PerSci uses heads with a minimum resolution of 55% measured at Track 76 on an IBM 3740 diskette for double density applications. All Persci heads also must have a maximum resolution of 90% at Track 00 . This prevents overcompensation as well as keeping "shouldering" under control.

2.5 Asymmetry

The design of the head can cause an asymmetrical readback, even though no dysymmetry is caused by the read and write electronics. This effect is known as "pulse pairing" or "middle pulse jitter". It adds algebraically to peak shift, and cannot be compensated. This is controlled by specification and testing of the head.

DOUBLE DENSITY WITH PFR SCI DRIVES

3.2

Write Precompensation
Write precompensation is necessary for reliable operation using either $M^{2} F M$ or MFM codes. It is accomplished by examining the data to be written and finding transitions from regions of high density to regions of low density, or low density to high density, and shifting the encoded write data pulse to compensate for peak shift.
M^{2} FM and MFM codes are similar enough to create virtually identical patterns which must be compensated. (Maximum peak shift for MFM at 500 Khz occurs when pulses $2 \mu s e c$ apart are preceeded or followed by a puise $4 \mu s e c$ away. M 2 FM pulses $2 \mu \mathrm{sec}$ apart can be preceeded or followed by a pulse $5 \mu \mathrm{sec}$ away. Peak shift in both instances is essentially the same.) Compensating the following six encoded write data patterns will work for both codes. Successful systems using both MFM and M2FM have been built using 300 nsec heavy compensation and 100 nsec light compensation.

UNCOMPENSATEED WRITE DATA PATTERNS

$3 \cdot 3$

Format
In addition to the data stored in a sector, certain "bookkeeping" functions need to be performed. Also, provision must be made to accommodate both electrical and mechanical timing tolerances. These effects must be considered
in constructing a format. PerSci dual density drives are formatted from an OEM type 33 hole diskette. PerSci drives provide sector separation and count down, providing from 32 to 2 sectors from such a diskette. (A l-sector format is available by sectoring from the index pulse.)

A 32-sector format will be worked out as an example; other sectors basically can be obtained from the same method and information.

1. Time to Lock Phase Locked Oscillator

$$
\text { Data Separator }-T \text { PLO }=50 \mu \mathrm{sec} \text {. }
$$

2. Kiming Jitter in Sector Detection

$$
T \cdot S J=50 \mu \mathrm{sec} .
$$

3. Read Gate Delay $-\operatorname{RGD}=2(T S J)+$ TPLO

$$
\begin{aligned}
\operatorname{RGD} & =2(50 \mu \mathrm{sec})+50 \mu \mathrm{sec} . \\
& =150 \mu \mathrm{sec} .
\end{aligned}
$$

4. Write Preamble $-W P R=2($ TSJ $)+\mathrm{RGD}$

$$
W P R=2(50)+150
$$

WPR $=250 \mu \mathrm{sec}$.
2 Byte $=16 \mu \mathrm{sec}$.

$$
\begin{aligned}
& \frac{250 \text { usec }}{16 \mu \mathrm{sec}}=15.6 \text { Bytes } \\
& \text { Use } 16 \text { Bytes }=256 \mu \mathrm{sec} .
\end{aligned}
$$

5. Maximum Time for Disk to Travel from Read Write Head to Erase Head, $472 \mu \mathrm{sec}$. (Use this time for postamble.)
6. Sector Pulse Position Tolerance - SPP

$$
S P P=5^{\prime} \text { arc }=81 \mu \mathrm{sec}
$$

7. Time Shrinking Due to Speed Variation -

$$
\text { TSS }=172 \mu \mathrm{sec}
$$

8. Time/Sector, Nominal - TS

$$
\begin{aligned}
\text { TS } & =\frac{166.7 \times 10^{3}}{32} \mu \mathrm{sec} \\
& =5209 \mu \mathrm{sec}
\end{aligned}
$$

```
9. Tlme for Data - TD
\[
\begin{aligned}
& I D=T S-(R G D+W P R+T S S+S P P) \\
& I D=5209-(250+472+172+81) \\
& T D=4234 \text { usec }
\end{aligned}
\]
\[
\frac{4234}{16}=264 \text { Bytes }
\]
10. 32 Sector Format
```

256 BYTES DATA.
I BYIE ID FJAG
1 BYTEE TRACK ADDRESS
1 BYTE SECTOR ADDRESS
2 BYTES CRCC
19 BYITES OS PREAMBLE
31 BYTES OS POSTAMBLE

3.4 Data Separation

PerSci provides data separation circuits for double density as an option with the Model 70 and Model 270 diskette drives. Some users, however, prefer to put this function into their controller. The data separation function consists of generating serial data pulses on one line and a continuous train of clock pulses on another. These pulses are 200 nsec pulses from logic high to logic low on Persci drives.

Both MFM and MCFM codes quarantee only a certain number of total pulses per unit time. Clock pulses are not quaranteed; in fact, long periods of data without clocks commonly occur with these codes. This makes a phase locked loop type of data separator mandatory. The PerSci data separator, of course, is a phase locked loop type.

The data separator has two modes of operation; acquisition and data. The system is switched to acquisition mode by the leading edge of a sector pulse. The system is switched to data mode 140μ seconds later. Since acquisition occurs in the preamble, which is all $0^{\prime} s$, all pulses at this time must be recognized as clock. Therefore any data pulse detected during acquisition time corrects the clock and data recognition logic. During data mode the correction logic is inhibited. Although only $50 \mu \mathrm{sec}$ are required to lock the loop, the lito $\mu \mathrm{sec}$ are required to insure that the preamble has been read for $50 \mu \mathrm{sec}$.

The difference in MFM and $M^{2} \mathrm{MM}$ separators is the $55 / 45$ window used for M$M^{2} F M$ versus the $50 / 50$ window used for MIM. A window is the time the system is looking for a data pulse or clock pulse. The data window is gated with read data to allow a flip flop set by a read data pulse to be interpreted as a data pulse. This flip flop is reset by the trailing edge of data window. A one shot is triggered when this flip flop is reset, thus generating data pulses with jitter removed. Another one shot is fired on the leading edge of the data window, thus generating the continuous train of clock pulses.

The following waveforms will illustrate MPM decoding. M$M^{2} F M$ is similar:

INFORMATION BITS
READ DATA
PHASE LOCKED OSCIIIAIOR
DATA WINDOW
DATA FLIP FLOP
SEPARATED DATA
SEPARATED CLOCK

Author: Jefferson II. Haman PerSci, Inc.

This Document was scanned and contributed by:

楊arry A. Matzuan

