

1/BASIC Concepts

This chapter gives an in-depth description of how to use the full power of Model 111
BASIC. Programmers require this information in order to build powerful and
efficient programs. However, if you are still somewhat of a novice, you might want
to skip this chapter for now, keeping in mind that the information is here when you
needit.

This chapter is divided into four sections:

1. Overview — Elements of a Program. This section defines many of the terms
we will be using in the chapter.

2. How BASIC Handles Data. Here we discuss how BASIC classifies and stores
data. This will show you how to get BASIC to store your data in its most efficient
format.

3. How BASIC Manipulates Data. This will give you an overview of all the
different operators and functions you can use to manipulate and test your data.

4. How to Construct an Expression. Understanding this topic will help you form
powerful statements instead of using many short ones.

11

TRS-80 MODEL il

Overview — Elements of a
Program

This overview defines the elements of a program:
The program itself, which consistsof . . .
Statements, which may consistof . . .
Expressions
We will refer to these terms during the rest of this chapter.

Program

A program is made up of one or more numbered lines. Each line contains one or
more BASIC statements. BASIC allows line numbers from 0 to 65529 inclusive. You
may include up to 255* characters per line, including the line number. You may
also have two or more statements to a line, separated by colons.

*You can only type in 240 characters for new lines; using the Edit Mode, you can
add the extra 15 characters.

Here is a sample program:

Line BASIC Colon between BASIC statement
nimeer J/ ‘stateynt statements /
/—_/\/_\

100 CLS:* PRINT “NORMAL MODE...”

110 PRINT “ABCDEFGHIJKLMNOPQRSTUVWXYZ"

120 FOR 1=1TO1000: NEXT |

130 CLS: PRINT CHR$(23); “DOUBLE-SIZE MODE...”
140 PRINT “ABCDEFGHIJKLMNOPQRSTUVWXYZ"

150 END

When BASIC executes a program, it handles the statements one at a time, starting at
the first and proceeding to the last. Some statements, such as GOTO, ON . . . GOTO,
GOSUB, change this sequence.

1/2

TN

Statements

A statement is a complete instruction to BASIC, telling the Computer to perform
specific operations. For example:

GOTO 100

Tells the Computer to perform the operations of (1) locating line 100 and (2)
executing the statement on that line.

END
Tells the Computer to perform the operation of ending execution of the program.

Many statements instruct the computer to perform operations with data. For
example, in the statement:

PRINT “SEPTEMBER REPORT”

the data is SEPTEMBER REPORT. The statement instructs the Computer to print the
data inside the quotes.

Expressions

Anexpression is actually a general term for data. There are four types of
expressions:

1. Numeric expressions, which are composed of numeric data. Examples:

(1+5.2)/3

D

5.B

3.7682

ABS(X) + RND(0)
SIN@ + E)

2. String expressions, which are composed of character data. Examples:

A%

“STRING”

“STRING” + “DATA”

MOS$ + "DATA”

MID$(AS$,2,5) + MID$(“MAN",1,2)
M$ + A$ + B$

1/3

TRS-80 MODEL Il
——————————

3. Relational expressions, which test the relationship between two expressions.
Examples:

A=1
A$ > B$

4. Logical expressions, which test the logical relationship between two
expressions. Examples:

A$ = “YES” AND B$ = “NO”
C>5 OR M<B OR 0O>2
578 AND 452

Functions

Functions are automatic subroutines. Most BASIC functions perform computations
ondata. Some serve a special purpose such as controlling the video display or
providing data on the status of the computer. You may use functions in the same
manner that you use any data— as part of a statement.

These are some of BASIC’s functions:

INT
ABS
STRING$

How Basic Handles Data

Model Il BASIC offers several different methods of handling your data. Using these
methods properly can greatly improve the efficiency of your program. In this
section we will discuss:

1. Ways of Representing Data
a. Constants
b. Variables
2. How BASIC Stores Data
a. Numeric (integer, single precision, double precision)
b. String
3. How BASIC Classifies Constants
4. How BASIC Classifies Variables
5. How BASIC Converts Data

1/4

Ways of Representing Data

BASIC recognizes data in two forms — either directly, as constants, or by reference
to a memory location, as variables.

Constants

All datais input into a program as ‘‘constants’’ — values which are not subject to
change. For example, the statement:
PRINT “1PLUS1EQUALS";, 2

contains one string constant,
1 PLUS 1 EQUALS

and one numeric constant
2

In these examples, the constants “‘input’” to the PRINT statement. They tell PRINT
what data to print on the Display.

These are more examples of constants:

3.14159 “L.O. SMITH”
1.775E+3 “0123456789ABCDEF”
“NAME TITLE” ~123.45E-8
57 “AGE”

Variables

A variable is a place in memory — a sort of box or pigeonhole — where data is
stored. Unlike a constant, a variable’s value can change. This allows you to write
programs dealing with changing quantities. For example, in the statement:

A$ = “OCCUPATION"

The variable A$ now contains the data OCCUPATION. However, if this statement
appeared later in the program:

A$ = “FINANCE”

The variable A$ would no longer contain OCCUPATION. It would now contain the
data FINANCE.

1/5

TRS-80 MODEL il

Variable Names

In BASIC, variables are represented by names. Variable names must begin with a
letter, A through Z. This letter may be followed by one more character — either a
digit or a letter.

For example
AM A A1l B1 AB
are all valid and distinct variable names.

Variable names may be longer than two characters. However, only the first two
characters are significant in BASIC.

For example:
SUM SuU SUPERNUMERARY

are all treated as the same variable by BASIC.

Reserved Words

Certain combinations of letters are reserved as BASIC keywords, and cannot be used
in variable names. For example:

OR LAND LENGTH MIFFED

cannot be used as variable names, because they contain the reserved of
OR, AND, LEN, andIF, respectively.

See the Appendix for alist of reserved words.

Simple and Subscripted Variables

All of the variables mentioned above are simple variables. They can only refer to
one data item.

Variables may also be subscripted so that an entire list of data can be stored under
one variable name. This method of data storage is called an array. For example, an
array named A may contain these elements (subscripted variables):

A(0) A(1) A(2) A(3) A(4)

1/6

TN

You may use each of these elements to store a separate data item, such as:

A(0) =
A()—72
(2=
(3) =
(4)=

In this example, array A is a one-diniensional array, since each element contains
only one subscript. An array may also be two-dimensional, with each element
containing two subscripts. For example, a two-dimensional array named X could
contain these elements:

X(0,0) = 8.6 X(0,1)=3.5
X(1,0)=7.3 X(1,1) = 32.6

With BASIC, you may have as many dimensions in your array as you would like.
Here is an example of a three-dimensional array named L which contains these 8
elements:

L(0,0,0) = 35233 L(0,1,0) = 96522
L(0,0,1) = 52000 L(0,1,1) = 10255
L(1,0,0) = 33333 L(1,1,0) = 96253
L(1,0,1) = 53853 L(1,1,1) = 79654

BASIC assumes that all arrays contain 11 elements in each dimension. If you want
more elements you must use the DIM statement at the beginning of your program to
dimension the array.

For example, to dimension array L, put this line at the beginning of the program:
DIML(1,1,1)

to allow room for two elements in the first dimension; two in the second; and two in
the third foratotal of 2 « 2 « 2 = 8 elements.

See the Arrays chapter later on in this manual.

1/7

TRS-80 MODEL lli
|

How BASIC Stores Data

The way that BASIC stores data determines the amount of memory it will consume
and the speed in which BASIC can process it.

Numeric Data

You may get BASIC to store all numbers in your program as either integer, single
precision, or double precision. In deciding how to get BASIC to store your numeric
data, remember the tradeoffs. Integers are the most efficient and the least precise.
Double precision is the most precise and least efficient.

Integers
(Speed and Efficiency, Limited Range)

To be stored as an integer, a number must be whole and in the range of — 32768 to
32767. Aninteger value requires only two bytes of memory for storage. Arithmetic
operations are faster when both operands are integers.

Pr.

For example:
1 32000 -2 500 —12345

can all be stored as integers.

Single-Precision Type
(General Purpose, Full Numeric Range)

Single-precision numbers can include up to 7 significant digits, and can represent
normalized values* with exponents up to +38, i.e., numbers in
the range:

[-1x10%,-1x10*] [1x 10, 1 x 10°*]
A single-precision value requires 4 bytes of memory for storage. BASIC assumes a
number is single-precision if you do not specify the level of precision.

*In this reference manual, normalized value is one in which exactly one digit
appears to the left of the decimal point. For example, 12.3 expressed in normalized
formis 1.23x 10.

1/8

For example:

10.001 -200034 1.774E6 6.024E-23 123.4567

can all be stored as single-precision values.

Note: When used in a decimal number, the symbol E stands for *‘single-precision
times 10 to the power of ... Therefore 6.024E-23 represents the single-precision
value:

6.024x 1023

Double-Precision Type
(Maximum Precision, Slowest in Computations)

Double-precision numbers can include up to 17 significant digits, and can represent
values in the same range as that for single-precision numbers. A double-precision
value requires 8 bytes of memory for storage. Arithmetic operations involving at
least one double-precision number are slower than the same operations when all
operands are single-precision or integer.

For example:

1010234578
-8.7777651010
3.1415926535897932
8.00100708D12

can all be stored as double-precision values.

Note: When used in a decimal number, the symbol D stands for “‘double-precision
times 10 to the power of ...”” Therefore 8.00100708 D12 represents the value
8.00100708 x 102

1/9

TRS-80 MODEL il

String Data

Strings (sequences of characters) are useful for storing non-numeric information
such as names, addresses, text, etc. You may store any ASCII characters as a string.
(A list of ASCII characters is in the Appendix).

For example, the data constant:
Jack Brown, Age 38

can be stored as a string of 18 characters. Each character (and blank) in the string is
stored as an ASCII code, requiring one byte of storage. BASIC would store the above
string constant internally as:

Hex “ ﬁ

A string can be up to 255 characters long. Strings with length zero are called “‘null”
or ‘‘empty’’.

How BASIC Classifies Constants

When BASIC encounters a data constant in a statement, it must determine the type of
the constant: string, integer, single precision, or double precision. First, we will list
the rules BASIC uses to classify the constant. Then we will show you how you can
override these rules, if you want a constant stored differently:

Rule 1
If the value is enclosed in double-quotes, it is a string. For example:

“YES”
“3331 Waverly Way”
“1234567890"

the values in quotes are automatically classified as strings.

Rule2

If the value is not in quotes, it is a number. (An exception to this rule is during data
input by an operator, and in DATA lists. See INPUT, INKEY$, and DATA)

1/10

For example:

123001
1
~7.3214E+6

are all numeric data.
Rule 3
Whole numbers in the range of — 32768 to 32767 are integers. For example:

12350
-12
10012

are integer constants.
Rule 4

If the number is not an integer and contains seven or fewer digits, it is
single-precision. For example:

1234567
—-1.23
1.3321

are all single-precision.

Rule S

If the number contains more than seven digits, it is double precision. For example,
these numbers:

1234567890123456
—1000000000000.1
2.777000321

are all double precision.

111

TRS-80 MODEL il

Type Declaration Tags

You can override BASIC’s normal typing criteria by adding the following ‘‘tags’’ to
the end of the numeric constant:

! Makes the number single-precision. For example, in the statement:
A=12.345678901234!

the constant is classified as single-precision, and shortened to seven digits:
12.34567

E Single-precision exponential format. The E indicates the constant is to be
multipled by a specified power of 10. For example:

A=1.2E5

stores the single-precision number 120000in A.

Makes the number double-precision. For example, in statement:
PRINT 3#/7
the first constant is classified as double-precision before the division takes
place.
D Double-precision exponential format. The D indicates the constant is to be

multipled by a specified power of 10. For example:
A=1.23456789D — 1
The double-precision constant has the value 0.123456789.

How BASIC Classifies Variables

When BASIC encounters a variable name in the program, it classifies it as either a
string, integer, single- or double-precision number.

BASIC classifies all variable names as single-precision initially. For example:
AB AMOUNT XY L

are all single-precision initially. If this is the first line of your program:
LP =12

BASIC will classify LP as a single-precision variable.

112

However, you may assign different attributes to variables by using definition
statements at the beginning of your program:

DEFINT — Defines variables as integer

DEFDBL — Defines variables as double-precision

DEFSTR — Defines variables as string

DEFSNG — Defines variables as single-precision. (Since BASIC classifies all
variables as single-precision initially anyway, you would only need to use
DEFSNG if one of the other DEF statements were used.

For example:
DEFSTR L

makes BASIC classify all variables which start with L as string variables. After this
statement, the variables:

L LP LAST

can all hold string values only.

Type Declaration Tags

As with constants, you can always override the type of a variable name by adding a
type declaration tag at the end. There are four type declaration tags for variables:

% Integer

! Single-precision

Double-precisionn
$ String

For example:
1% FT% NUM% COUNTER%

are all integer variables, regardless of what attributes have been assigned to the
letters 1, F, Nand C.

T! RY! QUAN! PERCENT!

are all single-precision variables, regardless of what attributes have been assigned
to the letters T, R, Qand P.

X# RR# PREV# LSTNUM#

are all double-precision variables, regardless of what attributes have been assigned
tothe letters X, R, Pand L.

1/13

TRS-80 MODEL il

Qs CA$ WRD$ ENTRY$S

are all string variables, regardless of what attributes have been assigned to the
letters Q,C, Wand E.

Note that any given variable name can represent four different variables. For
example:

AB# A5! A5% A5%
are all valid and distinct variable names.

One further implication of type declaration: Any variable name used without a
tag is equivalent to the same variable name used with one of the four tags. For
example, after the statement:

DEFSTR C

the variable referenced by the name C1 is identical to the variable referenced by the
name C18$.

How BASIC Converts Numeric Data

Often your program might ask BASIC to assign one type of constant to a different
type of variable. For example:

A% = 2.34

In this example, BASIC must first convert the single precision constant 2.34 to an
integer in order to assign it to the integer variable A%.

You might also want to convert one type of variable to a different type, such as:

A# = A%
Al = A#
Al = A%

The conversion procedures are listed on the following pages.

1/14

Single- or double-precision to integer type
BASIC returns the largest integer that is not greater than the original value.

Note: The original value must be greater than or equal to -32768, and less
than 32768.

Examples
A%=—-10.5
Assigns A% the value -11.
A%=32767.9
Assigns A% the value 32767.
A% =2.5D3
Assigns A% the value 2500.
A% = —123.45678901234578
Assigns A% the value -124.
A% = —32768.1

Produces an Overflow Error (out of integer range).

Integer to single- or double-precision

Noerror is introduced. The converted value looks like the original value with zeros
to the right of the decimal place.

Examples
A+# =32767

Stores 32767.000000000000 in A#.
Al=—-1234

Stores-1234.000in A!.

1/15

TRS-80 MODEL il

Double- to single-precision

This involves converting a number with up to 17 significant digits into a number
with no more than seven. BASIC chops off (truncates) the least significant digits to
produce a seven-digit number. Before Printing such a number, BASIC rounds it off
(4/5 rounding) to six digits.

Examples
Al=1.234567890124567

Stores 1.234567 in A! However, the statement:
PRINT A!

will display the value 1.23457, because only six digits are displayed. The full seven
digits are stored in memory.

Al=1.3333333333333333

Stores 1.333333in A!.

Single- to double-precision

To make this conversion, BASIC simply adds trailing zeros to the single-precision
number. If the original value has an exact binary representation in single-precision
format, no error will be introduced. For example:

A#=15
Stores 1.5000000000000 in A#, since 1.5 does have an exact binary representation.

However, for numbers which have no exact binary representation, an error is
introduced when zeros are added. For example:

A#=13
Stores 1.299999952316284 in A#.

Because most fractional numbers do not have an exact binary representation, you
should keep such conversions out of your programs. For example, whenever you
assign a constant value to a double-precision variable, you can force the constant to
be double-precision:

A#=13# A#=1.3D
Both store 1.3 in A#.

Here is a special technique for converting single-precision to double-precision,
without introducing an error into the double-precision value. It is useful when the
single-precision value is stored in a variable.

1/16

Take the single-precision variable, convert it to a string with STR$, then convert the
resultant string back into a number with VAL. That is, use:

VAL (STRS$ (single-precision variable))
For example, the following program:

10 A!l=13
20 A#=A!
30 PRINTA#

prints a value of:
1.299999952316284
Compare with this program:

10A!=1.3
20 A# =VAL (STRS$(A)
30 PRINT A#

which prints a value of:
1.3

The conversion in line 20 causes the value in A! to be stored accurately in
double-precision variable A#.

Illegal Conversions

BASIC cannot automatically convert numeric values to string, or vice versa. For
example, the statements:

AS$ = 1234
A% = “1234”

are illegal. (Use STR$ and VAL to accomplish such conversions.)

117

TRS-80 MODEL il

How BASIC Manipulates Data

You have many fast methods you may use to get BASIC to count, sort, test and
rearrange your data. These methods fall into two categories:

1. Operators
a. numeric
b. string
c. relational
d. logical

2. Functions

Operators

An operator is the single symbol or word which signifies some action to be taken on
either one or two specified values referred to as operands.

In general, an operator is used like this:

operand-1 operator operand-2
operand-1I and -2 can be expressions. A few operations take only one operand,
and are used like this:

operator operand

Examples:
6+2

The addition operator + connects or relates its two operands, 6 and 2, to produce
the result 8.

-5
The negation operator — acts on a single operand S to produce the result negative 5.

Neither 6 + 2 or — 5 can stand alone; they must be used in statements to be
meaningful to BASIC. For example:

A=6+2
PRINT -5

1/18

Operators fall into four categories:
® Numeric

® String

® Relational

® [ogical

based on the kinds of operands they require and the results they produce.

Numeric Operators

Numeric Operators are used in numeric expressions. Their operands must always
be numeric, and the result they produce is one numeric data item.

In the descriptions below, we use the terms integer, single-precision, and
double-precision operations. Integer operations involve two-byte operands,
single-precision operations involve four-byte operands, and double-precision
operations involve eight-byte operands. The more bytes involved, the slower the
operation.

There are five different numeric operators. Two of them, sign + and sign —, are
unary, that is, they have only one operand. A sign operator has no effect on the
precision of its operand.

For example, in the statement:
PRINT —77, +77

the sign operators — and + produce the values negative 77 and positive 77,
respectively.

Note: When no sign operator appears in front of a numeric term, + is assumed.

The other numeric operators are all binary, that is, they all take two operands.
These operators are:

+ Addition
- Subtraction
* Multiplication
Division
[or D Exponentiation. Press the (J) key to type in this operator.

1/19

TRS-80 MODEL il

Addition

The + operator is the symbol for addition. The addition is done with the precision
of the more precise operand (the less precise operand is converted).

For example, when one operand is integer type and the other is single-precision, the
integer is converted to single-precision and four-byte addition is done. When one
operand is single-precision and the other is double-precision, the single-precision
number is converted to double-precision and eight-byte addition is done.

Examples:

PRINT 2+3
Integer addition.

PRINT 3.1 +3

Single-precision addition.

PRINT 1.2345678901234567 + 1
Double-precision addition.

Subtraction T

The — operator is the symbol for subtraction. As with addition, the operation is
done with the precision of the more precise operand (the less precise operand is

converted).
Examples:

PRINT 33 - 11
Integer subtraction.

PRINT 33 - 11.1
Single-precision subtraction.

PRINT 12.345678901234567 — 11
Double-precision subtraction.

1/20

Multiplication

The * operator is the symbol for multiplication. Once again, the operation is done
with the precision of the more precise operand (the less precise operand is
converted).

Examples:

PRINT 33*11
Integer multiplication.

PRINT 33*11.1
Single-precision multiplication.

PRINT 12.345678901234567 * 11
Double-precision multiplication.

Division

The/ symbol is used to indicate ordinary division. Both operands are converted to

single or double-precision, depending on their original precision:

® [feither operand is double-precision, then both are converted to
double-precision and eight-byte division is performed.

® Ifneither operand is double-precision, then both are converted to
single-precision and four-byte division is performed.

Examples:
PRINT 3/4

Single-precision division.

PRINT 3.8/4
Single-Precision division.

PRINT 3/1.2345678901234567
Double-precision division.

1/21

TRS-80 MODEL il

Exponentiation

The symbol [denotes exponentiation. It converts both its operands to
single-precision, and returns a single-precision result.

Note: To enter the [operator, press (1.

For example:
PRINTS8[.3

prints 6 to the .3 power.

String Operator

BASIC has a string operator (+) which allows you to concatenate (link) two
strings into one. This operator should be used as part of a string expression. The
operands are both strings and the resulting value is one piece of string data.

The + operator links the string on the right of the sign to the string on the
left. Forexample:

PRINT “CATS” + “LOVE” + “MICE”
prints:
CATSLOVEMICE

Since BASIC does not allow one string to be longer than 255 characters, you will
get an error if your resulting string is too long.

Relational Operators

Relational operators compare two numerical or two string expressions to form a
relational expression. This expression reports whether the comparison you set up

in your program is true or false. It will return a — 1 if the relation is true; a 0 if it
is false.

1/22

Numeric Relations

This is the meaning of the operators when you use them to compare numeric

expressions:
< Lessthan
> Greater than
= Equalto
<> or >< Notequalto
=< or<= Less thanorequal to
=>o0r>= Greater than orequal to

Examples of true relational expressions:

1<2
2<>5
2<=5
2<=2
5>2
7=7

String Relations

The relational operators for string expressions are the same as above, although their
meanings are slightly different. Instead of comparing numerical magnitudes, the
operators compare their ASCII sequence. This allows you to sort string data:

< Precedes
> Follows
= Has the same precedence
>< or <> Does not have the same precedence
<= Precedes or has the same precedence
>= Follows or has the same precedence

BASIC compares the string expressions on a character-by-character basis. When
it finds a non-matching character, it checks to see which character has the lower
ASCIicode. The character with the lower ASCII code is the smaller (precedent) of
the two strings.

Note: The appendix contains a listing of ASCII codes for each character.

Examples of true relational expressions:
I(A” < itBl1

The AsClIicode for A is decimal 65; for B it’s 66.
“CODE” < “COOL”

I

1/23

TRS-80 MODEL il

The ASCII code for O is 79; for D it’s 68.

If while making the comparison, BASIC reaches the end of one string before
finding non-matching characters, the shorter string is the precedent. For
example:

“TRAIL” < “TRAILER”

Leading and trailing blanks are significant. For example:
AT < A

ASCII for the space character is 32; for A, it’s 65.
“7 —80” < “Z—80A"

The string on the left is four characters long; the string on the right is five.

How to Use Relational Expressions

Normally, relational expressions are used as the test in an IF/THEN statement. For
example:
IF A=1 THEN PRINT “CORRECT” e

BASIC teststosee if Aisequalto 1. If itis, BASIC prints the message.
IF A$ < B$ THEN 50

If string A$ alphabetically precedes string B$, then the program branches to line
50.

IF R$ =“YES” THEN PRINT A$
If R$ equals YES then the message stored as A$ is printed.

However, you may also use relational expressions simply to return the true or
false results of a test. For example:

PRINT 7=7
Prints — 1 since the relation tested is true.
PRINT “A” > “B”

Prints 0 because the relation tested is false.

1/24

G

Logical Operators

Logical operators make logical comparisons. Normally, they are used in IR THEN
statements to make a logical test between two or more relations. For example:

IFA =1 OR C=2 THEN PRINT X
The logical operator, OR, compares the two relations A=1and C=2.

Logical operators may also be used to make bit-comparisons of two numeric
expressions.

For this application, BASIC does a bit-by-bit comparison of the two operands,
according to predefined rules for the specific operator.

Note: The operands are converted to integer type, stored internally as 16-bit,
two’s complement numbers. To understand the results of bit-by-bit
comparisons, you need to keep this in mind.

The following table summarizes the action of Boolean operators in bit

manipulation.
Meaning of First Second
Operator | Operation Operand | Operand | Result
AND When both bits are 1, the 1 1 1
result will be 1. Otherwise,| 1 0 0
the result will be 0. 0 1 0
0 0 0
OR Result will be 1 unless both| 1 1 1
bits are 0. 1 0 1
0 1 I
0 0 0
NOT Result is opposite of bit. 1 0
0 1

1/26

TRS-80 MODEL il

Hierarchy of Operators

When your expressions have multiple operators, BASIC performs the operations
according to a well-defined hierarchy, so that results are always predictable.

Parentheses

When a complex expression includes parentheses, BASIC always evaluates the
expressions inside the parentheses before evaluating the rest of the expression.
For example, the expression:

8- (3—-2)
1s evaluated like this:

3-2=1
8-1=7

With nested parentheses, BASIC starts evaluating the innermost level first and
works outward. For example:

4*(2-(3—-4))
1s evaluated like this:

3-4=—1
2-(-1)=3
4*3=12

Order of Operations

When evaluating a sequence of operations on the same level of parenthesis,
BASIC uses a hierarchy to determine what operation to do first.

The two listings below show the hierarchy BASIC uses. Operators are shown in
decreasing order of precedence. Operators listed in the same entry in the table
have the same precedence and are executed as encountered from left to right:

Numerical operations:
[or (Exponentiation)
+, — (Unary sign operands [not addition and subtraction])
*’/
+, — (Addition and subtraction)
< > =, <=, =, <>
NOT
AND
OR

1/26

String operations:

Forexample, in the line:
X*X + 5[2.8

BASIC will find the value of 5 to the 2.8 power. Next, it will multiply X * X, and
finally add this value to the value of 5 to the 2.8. If you want BASIC to perform the
indicated operations in a different order, you must add parentheses. For
example:

X*(X + 5[2.8)
or
X*(X +5)[2.8
Here’s another example:
IF X=0 OR Y>0 AND 2Z=1 THEN 255

The relational operators = and > have the highest precedence, so BASIC
performs them first, one after the next, from left to right. Then the logical
operations are performed. AND has a higher precedence than OR, so BASIC
performs the AND operation before OR.

If the above line looks confusing because you can’t remember which operator is
precedent over which, then you can use parentheses to make the sequence
obvious:

IF X=0 OR ((Y>0) AND (Z=1) THEN 255

1/27

TRS-80 MODEL i

-

Functions

A function is a built-in sequence of operations which BASIC will perform on data.
A function is actually a subroutine which usually returns a data item. BASIC
functions save you from having to write a BASIC routine, and they operate faster
than a BASIC routine would.

A function consists of a keyword which is usually followed by the data that you
specify. This data is always enclosed in parentheses; if more than one data item is
required, the items are separated by commas.

If the data required is termed ‘ ‘number’’ you may insert any numerical expression.
If itis termed ‘‘string’’ you may insert a string expression.

Examples:
SQR(A + 6)

Tells BASIC to compute the square root of (A + 6).
MID$ (A$, 3, 2)

Tells BASIC to return a substring of the string A$, starting with the third character,
with alength of 2.

Functions cannot stand alone in a BASIC program. Instead they are used in the
same way you use expressions — as the data in a statement.

For example
A = 8SQR(7)
Assigns A the data returned as the square root of 7.
PRINT MID$(AS$,3,2)
Prints the substring of A$ starting at the third character and two characters long.

If the function returns numeric data, it is a numeric function and may be used in a
numeric expression. If it returns string data, it is a string function and may be
used in a string expression.

=

1/28

How to Construct an Expression

Understanding how to construct an expression will help you put together
powerful statements — instead of using many short ones. In this section we will
discuss the two kinds of expressions you may construct:

® Simple
® Complex

as well as how to construct a function.

As we have stated before, an expression is actually data. This is because once
BASIC performs all the operations, it returns one data item. An expression may be
string or numeric. It may be composed of:

® Constants
® Variables
® Operators
@ Functions

Expressions may be either simple or complex:

A simple expression consists of a single term: aconstant, variable or function.
If it is a numeric term, it may be preceded by an optional + or — sign.

For example:
+A 33 -5 SQR(8)

are all simple numeric expressions, since they only consist of one numeric term.
A$ STRINGS (20,A$) “WORD” “M”

are all simple string expressions since they only consist of one string term.

Here’s how a simple expressigll is formed:

_..,{,/TT CONSTANT
| | vaARIABLE
> FUNCTION |

A complex expression consists of two or more terms (simple expressions)
combined by operators. For example:

A-1 X+32-Y 1=1 AANDB ABS (B) + LOG(2)

are all examples of complex numeric expressions. (Notice that you can use the
relational expression (1 =1) and the logical expression (5 AND 3) as a complex
numeric expression since both actually return numeric data.)

A$+B$ WARYA] STRING$(10, “A”) + “M”

are all examples of complex string expressions.

1/29

TRS-80 MODEL Il

This is how a complex numeric expression is formed:

@@@$ VOO
|

SIMPLE -
EXPRESSION

This is how a complex string expression is formed:

he SIMPLE EXPRESSION

Most functions, except functions returning system information, require that you
input either or both of the following kinds of data:

® One or more numeric expressions
® One or more string expressions.

This is how a function is formed:

- L,
KEYWORD w EXPRESSION) [

If the data returned is a number, the function may be used as a term in a numeric
expression. If the data is a string, the function may be used as a term in a string
expression.

1/30

2/Commands

Whenever a prompt > is displayed, your Computer isin the ‘Immediate’’ or
“Command’’ Mode. You can type in a command, it, and the Computer will
respond immediately. This chapter describes the commands you'll use to control
the Computer — to change modes, begin input and output procedures, alter
program memory, etc. All of these commands — except CONT — may also be used
inside your program as statements. In some cases this is useful; other times it is
Jjust for very specialized applications.

The commands described in this chapter are:

AUTO CONT EDIT RUN
CLEAR CSAVE LIST SYSTEM
CLOAD DELETE LLIST TROFF
CLOAD? NEW TRON

AUTO line number, increment

Tumns on an automatic line numbering function for convenient entry of programs —
all you have to do is enter the actual program statements. You can specify a
beginning line number and an increment to be used between line numbers. Or you
can simply type AUTO and press (ENTER), in which case line numbering will begin at
10 and use increments of 10. Each time you press (ENTER), the Computer will
advance to the next line number.

Examples: to use line numbers
AUTO 10,20, 30.. . .
AUTOS5,5 5.10,15.. ..

AUTO 100 100,110,120, . .
AUTO 100, 25 100, 125.150.. . .
AUTO,10 0,10.20.. . .

To turn off the AUTO function, press the key. (Note: When AUTO brings up
aline number which is already being used, an asterisk will appear beside the line
number. If you do not wish to re-program the line, press the key to turn off
AUTO function.)

21

TRS-80 MODEL il

CLEAR 1

When used without an argument (e.g., type CLEAR and press (ENTER)), this
command resets all numeric variables to zero, and all string variables to null. When
used with an argument (e.g., CLEAR 100), this command performs a second
function in addition to the one just described: it makes the specified number of bytes
available for string storage.

Example: CLEAR 100 makes 100 bytes available for strings. When you turn on the
Computer a CLEAR 50 is executed automatically.

CLOAD ‘‘file name’’

Lets you load a BASIC program stored on cassette. Place recorder/player in Play
mode (be sure the proper connections are made and cassette tape has been re-wound
to proper position). The file name may be any single character except the
double-quote (**).

Note: See ‘‘Using the Cassette Interface’” in the Operation Section for instructions
on which baud rate to use.

Entering CLOAD will turn on the cassette machine and load the first program
encountered. BASIC also lets you specify a desired ‘‘file’” in your CLOAD
command. For example, CLOAD “A” will cause the Computer to ignore programs
on the cassette until it comes to one labeled ‘A’’. So no matter where file *“A’ is
located on the tape, you can start at the beginning of the tape; file *“A’’ will be
picked out of all the files on the tape and loaded. As the Computer is searching for
file ““A’’, the names of the files encountered will appear in the upper right corner of
the Display, along with a blinking ““*’’.

Only the first character of the file name is used by the Computer for CLOAD,
CLOAD?, and CSAVE operations.

Loading a program from tape automatically clears out the previously stored
program. See also CSAVE,

2/2

CLOAD? “‘file name’’

Lets you compare a program stored on cassette with one presently in the Computer.
This is useful when you have saved a program onto tape (using CSAVE) and you
wish to check that the transfer was successful. You may specity CLOAD?
““file-name’’ . If you don’t specify a file-name, the first program encountered will
be tested. During CLOAD?, the program on tape and the program in memory are
compared byte for byte. If there are any discrepancies (indicating a bad dump). the
message “BAD’” will be displayed. In this case, you should CSAVE the program
again. (CLOAD?, unlike CLOAD, does not erase the program memory.)

Be sure to type the question mark or the Computer will interpret your command as
CLOAD.

CONT

When program execution has been stopped (by the key or by a STOP
statement in the program), type CONT and to continue execution at the point
where the stop or break occurred. During such a break or stop inexecution, you
may examine variable values (using PRINT) or change these values. Then type CONT
and and execution will continue with the current variable values. CONT,
when used with STOP and the key, is primarily a debugging tool.

NOTE: You cannot use CONT after EDITing your program lines or otherwise
changing your program. CONT is also invalid after execution has ended normally.
See also STOP.

CSAVE ‘‘file name”’

Stores the resident program on cassette tape. (Cassette recorder must be properly
connected, cassette loaded, and in the Record mode, before you enter the CSAVE
command.) You must specify a file-name with this command. This file-name may
be any alpha-numeric character other than double-quote (*’). The program stored
on tape will then bear the specified file-name, so that it can be located by a CLOAD
command which asks for that particular file-name. You should always write the
appropriate file-names on the cassette case for later reference.

Examples:
CSAVE*1” saves resident program and attaches label *“1°’
CSAVE"A” saves resident program and attaches label “‘A”’

See also CLOAD. and ‘ ‘Using the Cassette Interface’” in the Operation Section.

[

2/3

TRS-80 MODEL Il

DELETE line number-line number

Erases program lines from memory. You may specify an individual line or a
sequence of lines, as follows:

DELETE line number Erases one line as specified

DELETE line number-line number Erases all program lines starting
with first line number specified
and ending with last number
specified

DELETE-line number Erases all program lines up to
and including the specified
number

The upper line number to be deleted must be a currently used number.

Examples:

DELETES Erases line 5 from memory (error if line 5
not used)

DELETE 11-18 Erases lines 11, 18 and every line in between

If you have just entered or edited a line, you may delete that line simply by entering
DELETE. (use a period instead of the line number).

EDIT line number

Puts the Computer in the Edit Mode so you can modify your resident program. The
longer and more complex your programs are, the more important EDIT will be. The
Edit Mode has its own selection of subcommands, and we have devoted Chapter 9
to the subject.

LIST line number-line number

Instructs the Computer to display all programs lines presently stored in memory. If
you enter LIST without an argument, the entire program will scroll continuously up
the screen. To stop the automatic scrolling, press and @ simultaneously.
This will freeze the display. Press any key to release the ‘‘pause’” and continue the
automatic scrolling.

2/4

To examine one line at a time, specify the desired line number as an argument in the
LIST command. To examine a certain sequence of program lines, specify the first
and last lines you wish to examine.

Examples:

LIST 50 Displays line 50

LIST 50-150 Displays line 50, 150 and everything in between

LIST 50— Displays line 50 and all higher-numbered lines

LIST. Displays current line (line just entered or edited)

LIST —-50 Displays all lines up to and including line 50

LLIST

Works like LIST, but outputs to the Printer

LLIST Lists current program to printer.

LLIST 100 - Lists line 100 to the end of the program to the
line printer.

LLIST 100-200 Lists line 100 through 200 to the line printer.

~ LLIST. Lists current line to the line printer.

LLIST-100 Lists all lines up to and including line 100 to the line
printer.

See LIST.

NEW

Erases all program lines, sets numeric variables to zero and string variables to null.
It does not change the string space allocated by a previous CLEAR number
statement.

NEW is used in the following program to provide password protection.

10 INPUT Ad%: IF A% <> "E" THEN &33:0
2B REM

3@ REM REST OF PROGRAM HERE
4@ REM

645519 END

65528 NEW

You can’t run the rest of the program until you enter the correct password, in this
caseankE.

0 —

2/5

TRS-80 MODEL Il

RUN line number

Causes Computer to execute the program stored in memory. If no line number is
specified, execution begins with lowest numbered program line. If a line number is
specified, execution begins with the line number. (Error occurs if you specify an
unused line number.) Whenever RUN is executed, Computer also executes a
CLEAR.

Examples:

RUN Execution begins at lowest-numbered line
RUN 100 Execution begins at line 100

RUN may be used inside a program as a statement; it is a convenient way of starting
over with a clean slate for continuous-loop programs such as games.

To execute a program without CLEARing variables, use GOTO.

SYSTEM

Puts the Computer in the System Mode, which allows you to load object files

(machine-language routines or data). Radio Shack offers several .
machine-language software packages, such as the Editor-Assembler. You can also

create your own object files using the TRS-80 Editor/Assembler.

To load an object file: Type SYSTEM and (ENTER

*?

will be displayed. Now enter the file name (no quotes are necessary) and the tape
will begin loading. During the tape load, the familiar asterisks will flash in the
upper right-hand corner of the Video Display. When loading is complete, another

*9

will be displayed. Type in a slash-symbol / followed by the address (in decimal
form) at which you wish execution to begin. Or you may simply type in the
slash-symbol and without any address. In this case execution will begin at
the address specified by the object file.

NOTE: BASIC object files are stored as blocks. Further, each block has its own
check sum. Should a check sum error occur while loading, the leftmost asterisk will
change into the letter C. If this occurs you will have to reload the entire object file.
(If the tape motion doesn’t stop, hold down until READY returns.)

See ‘‘Using the Cassette Interface’” in the Operation Section for information on
which baud rate to use and the procedures for loading a system tape.

2/6

TROFF

Turns off the Trace function. See TRON.

TRON

Turns on a Trace function that lets you follow program-flow for debugging and
execution analysis. Each time the program advances to anew program line, that
line number will be displayed inside a pair of brackets.

For example, enter the following program:

18 PRINT "LINE i@°

2@ INPUT "PRESS <ENTER: TO PEGIN THE LOOP"3; X
3@ PRINT "HERE WE GO..."

40 GOTO 30

Now type in TRON (ENTER), and RUN (ENTER).

<iAXLINE 18

<2PFPRESGS <ENTER> TO BEGIN THE LOOP7
TEDFHERE WE GO.w.

SA40FC3BHERE WE GO. ..

CHAF 3B FHERE WE Q0. ..

etc.

(Press (SHIFTD and @ simultaneously to pause execution and freeze display. Press
any key to continue with execution.)
As you can see from the display, the program is in an infinite loop.

The numbers show you exactly what is going on. (To stop execution, press

BREAK).)

To turn off the Trace function, enter TROFF. TRON and TROFF may be used inside
programs to help you tell when a given line is executed.

For Example
58 TRON
60 A = A+
7@ TROFF

might be helpful in pointing out every time line 60 is executed (assuming execution
doesn’t jump directly to 60 and bypass 50). Each time these three lines are
executed, <<60> <<70>> will be displayed. Without TRON, you wouldn’t know
whether the program was actually executing line 60. After a program is debugged,
TRON and TROFF lines can be removed.

217

3/Input-Output

The statements described in this chapter let you send data from Keyboard to
Computer, Computer to Display, and back and forth between Computer and the
Cassette and the Line Printer (if you have one). These will primarily be used inside
programs to input data and output results and messages.

Statements covered in this chapter:

PRINT
INPUT
(@ (PRINT modifier) DATA
TAB ((PRINT modifier) READ
USING (PRINT formatter) RESTORE
LPRINT
PRINT # -1(Output to Cassette)
INPUT #-1(Input to Cassette)
PRINT item list

Prints an item or a list of items on the Display. The items may be either string
constants (messages enclosed in quotes), string variables, numeric constants
(numbers), variables, or expressions involving all of the preceding items. The
items to be PRINTed may be separated by commas or semi-colons. If commas are
used, the cursor automatically advances to the next print zone before printing the
next item. If semi-colons are used, no space is inserted between the items printed on
the Display. In cases where no ambiguity would result, all punctuation can be
omitted.

Examples:

@ X = 5
4@ PRINT 253 "I18 EQUAL TO"s X 4+ 2
5@ END

BO A% = "STRING®
@ PRINT A$3 A%y A% " "5 A%
1@ END

130 X = 25
14@ PRINT 25 IS5 EauUal. TO" X
15@ END

188 A = 52 B = 16 C = 3
196 PRINT ARC
2@ END

31

TRS-80 MODEL lli

O

Postive numbers are printed with a leading blank (instead of a plus sign); all
numbers are printed with a trailing blank; and no blanks are inserted before or after
strings (you can insert them with quotes as in line 90).

In line 140 no punctuation is needed; but in line 190 zero will print out because ABC
is interpreted as a single variable which has not been assigned a value yet.

23@ PRINT "ZONE 1" "ZONE 2", "ZONE 3"s"ZONE 4"s"ZONE 1 ETCY
240 END

There are four 16-character print zones per line.

270 PRINT "ZONE 1"s3"ZONE 3"
28@ END

The cursor moves to the next print zone each time a comma is encountered.

300 PRINT "PRINT STATEMENT #10"s

31@ PRINT "PRINT STATEMENT #:z0@"
3@ END

A trailing semi-colon overrides the cursor-return so that the next PRINT begins
where the last one left off (see line 300).

If no trailing punctuation is used with PRINT, the cursor drops down to the beginning
of the next line.

PRINT @ position, item list

Specifies exactly where printing is to begin. The @ modifier mustbe a number
from 0 to 1023. Refer to the Video Display worksheet, Appendix C, for the exact
position of each location 0-1023:

100 PRINT @ 550, “LOCATION 550”
RUN this to find out where location 550 is.

100 PRINT @ 550, 550; @ 650, 650

3/2

Whenever you PRINT @ on the bottom line of the Display, there is an automatic
line-feed, causing everything displayed to move up one line. To suppress this, use a
trailing semi-colon at the end of the statement.

Example:

100 PRINT @ 1000, 1000;
110GOTO 110

Use a trailing semi-colon or comma any time you want to suppress the line feed.

PRINT TAB (expression)

Moves the cursor to the specified position on the current line (modulo * 128 if you
specify TAB positions greater than 127). TAB may be used several times in a PRINT
list.

The value of expression must be between 0 and 255 inclusive.
Example:
10 PRINT TAB (5) “TABBED 5”; TAB(25) “TABBED 25”

No punctuation is required after a TAB modifier.

340 PFROM PRINT TARB(EXPRESSION)

A58 X = ©

369 PRINT TAR(X) X35 TAB(X 4 2) X 4 23 TAR(X ¢+ 3) X + 3
37@ END

Numerical expressions may be used to specify a TAB position. This makes TAB very
useful for graphs of mathematical functions, tables, etc. TAB cannot be used to
move the cursor to the left. If cursor is beyond the specified position, the TAB is
ignored.

*Modulo A cyclic counting system. Modulo 64 means the count goes from zero to
63 and then starts over at zero.

3/3

TRS-80 MODEL il

PRINT USING string; item list

This statement allows you to specify a format for printing string and numeric
values. It can be used in many applications such as printing report headings,
accounting reports, checks, or wherever a specific print format is required.

The PRINT USING statement uses the following format:
PRINT USING string ; value

String and value may be expressed as variables or constants. This statement will
print the expression contained in the string, inserting the numeric value shown to
the right of the semicolon as specified by the field specifiers.

The following field specifiers may be used in the string:

This sign specifies the position of each digit located in the
numeric value. The number of # signs you use establishes the
numeric field. If the numeric field is greater than the number
of digits in the numeric value, then the unused field positions
to the left of the number will be displayed as spaces and
those to the right of the decimal point will be displayed as
ZET0S.

The decimal point can be placed anywhere in the numeric
field established by the # sign. Rounding-off will take place
when digits to the right of the decimal point are suppressed.

) The comma— when placed in any position between the first
digit and the decimal point— will display a comma to the left
of every third digit as required. The comma establishes an
additional position in the field.

** Two asterisks placed at the beginning of the field will cause all
unused positions to the left of the decimal to be filled with
asterisks. The two asterisks will establish two more positions

in the field.

$ A dollar-sign will be printed ahead of the number.

$$ Two dollar signs placed at the beginning of the field will act
as a floating dollar sign. That is, it will occupy the first position
preceding the number.

**$ If these three signs are used at the beginning of the field, then

the vacant positions to the left of the number will be filled by
the * sign and the $ sign will again position itself in the first
position preceding the number.

® ® ® ® Causesthe number to be printed in exponential (E or D) format.
or [[[[This will be displayedasa ““[*".

P

3/4

+ Whena + signis placed at the beginning or end of the field, it
will be printed as specified asa + for positive numbers or as
a — fornegative numbers.

- When a — signis placed at the end of the field, it will cause a
negative sign to appear after all negative numbers and will
appear as a space for positive numbers.

%spaces % To specify a string field of more than one character,
% spaces % is used. The length of the string field will be 2
plus the number of spaces between the percent signs.

! Causes the Computer to use the first string character of the current value.

Any other character that you include in the USING string will be displayed as a string
literal.

The following program will help demonstrate these format specifiers:

1@ INPUT "TYPE IN FORMATs THEN DATA"3 A%s A
2B PRINT USING A%s A
@0 GOTO 18

RUN this program and try various specifiers and strings for A$ and various values
forA.

For Example:

*RUN

TYPE IN FORMATs THEN DATA7 ##.#. 12,12

1z.1

TYPE IN FORMATs THEN DATA? ##.#: 1.34

1.3

TYPE IN FORMAT: THEN DATA7 ###. ##4. 1000.33

L1iaae. 33

TYPE IN FORMATs THEN DATA?
The % sign is automatically printed if the field is not large enough to contain the
number of digits found in the numeric value. The entire number to the left of the
decimal will be displayed preceded by this sign.

*RUN

TYPE IN FORMATs THEN DATA7 ##.##, 12,127

12.13

TYPE IN FORMATs THEN DATA7?

Note that the number was rounded to two decimal places.

3/5

TRS-80 MODEL 1li

TYPE IN FORMAT: THEN DATA7 +##.##, 12,12
+12.13

TYPE IN FORMAT: THEN DATA? "THE ANSWER IS5 +##. . ##%, ~12.1%
THE ANSWER IS5 -12.12

TYPE IN FORMATs THEN DATA7? $. ##+y 13,12
12,12+

TYPE IN FORMATs THEN DATA7 ##.##+y —-12.12
12,12~

TYPE IN FORMATs THEN DATA? fit. ##-s 12,12
12.12

TYPE IN FORMATs THEN DATA? ##.##-s 12,12

12.18-

TYPE IN FORMATs THEN DATA7? "x*#$# IN TOTAL."s 12.12
*%12 IN TOTAL.
TYPE IN FORMATs THEN DATA7 $H##.##, 12,12
$ 1z2.12
TYPE IN FORMAT: THEN DATA?7 $$H##H. 84, 12,12
3 D
TYPE IN FORMATs THEN DATA7 %x&###. ##s 12,12
*exblz. 12
TYPE IN FORMATs THEN DATA7? "#sH#d4d. ##H4" s 1234567
1s 2344570
TYPE IN FORMATs THEN DATA?

Another way of using the PRINT USING statement is with the string field specifiers
‘1> and % spaces %.

Examples:

PRINT USING “"; string
PRINT USING “ % %"; string

The “‘!*’ sign will allow only the first letter of the string to be printed. The *‘%
spaces %’ allows spaces + 2 characters to be printed. Again, the string and
specifier can be expressed as string variables. The following program will
demonstrate this feature:

18 INPUT "TYPE IN THE FORMATs THEN THE STRING DATA": A%: B$
20 PRINT USING A% B$
3@ GOTO 1@

and RUN it:

TYPE IN THE FORMAT. THEN THE STRING DATA? !s ABCDE

A

TYPE IN THE FORMATs THEN THE STRING DATA? %Zs ABCDE
AB

TYPE IN THE FORMATs THEN THE STRING DATA? % %» ABCDE
ABCD

TYPE IN THE FORMAT: THEN THE STRING DATA?
R

3/6

Multiple strings or string variables can be joined together (concatenated) by these

specifiers. The ‘“!”” sign will allow only the first letter of each string to be printed.
For example:

1@ INPUT "TYPE IN THREE NAMES"3 Ads Pés (%
20 PRINT USING "!"35 A%s By CH
3@ GOTO 18

AndRUNIL. . .
»RUN
TYPE IN THREE NAMES? ARGy DEFs GHI
ADG

TYPE IN THREE NAMES?

By using more than one ‘*!”’ sign, the first letter of each string will be printed with
spaces inserted corresponding to the spaces inserted between the **!” signs. To
illustrate this feature, make the following change to the last little program:

20 PRINT USING "! ' %5 Adsy B$s (%
AndRUNIt. . .

»RUN

TYPE IN THREE NAMES? ABCs DEFs GHI

ADG

TYPE IN THREE NAMESY

Spaces now appear between letters A, D and G to correspond with those placed
between the three *“!’” signs.

Try changing ““!!!""to ““%%"’’ in line 20 and run the program.

The following program demonstrates one possible use for the PRINT USING
statement.

510 CLS

220 A% = "xxbdd, HH#HEE., ## DOLLARS"

530 INPUT "WHAT I8 YOQUR FIRST NAME"; F%
54@ INPUT "WHAT IS8 YOUR MIDDLE NAMEY: M$
55@ INPUT "WHAT 15 YOUR LAST NAME": L%
560 INPUT "ENTER THE AMOUNT PAYABLE": P
57@ PRINT: PRINT "PAY TO THE ORDER OF "

[YT JERNT)

580 PRINT USING "!'. '. % L's Fés M$s L&
608 PRINT: PRINT USING A% P
620 END

3/7

TRS-80 MODEL Il

RUN the program. Remember, to save programming time, use the **?”” sign for
PRINT. Your display should look something like this:

WHAT I8 YOUR FIRST NAME? ALBERT

WHAT 185 YOUR MIDDLE NAME? BARCUSBSI

WHAT I8 YOUR LAST NAME? COOGEY

ENTER THE aMOUNT PAYABLE? 123835.34

FAY TO THE ORDER OF A. B. COOGEY

¥uxxnd]z 385,30 DOLLARE

If you want to use a double-precision amount without rounding oft or going into
scientific notation, then simply add the double precision sign (#) after the variable
Pin Lines 560 and 600. You will then be able to use amounts up to 16 decimal
places long.

INPUT item list

Causes Computer to stop execution until you enter the specified number of values
via the keyboard. The INPUT statement may specify a list of string or numeric
variables to be input. The items in the list must be separated by commas.

100 INPUT X$, X1, Z8, Z1

This statement calls for you to input a string-literal, a number, another string literal
and another number, in that order. When the statement is encountered, the
Computer will display a

?
You may then enter the values all at once or one at atime. To enter values all at

once, separate them by commas. (If your string literal includes leading blanks,
colons, or commas, you must enclose the string in quotes.)

For example, when line 100 (above) is RUN and the Computer is waiting for your
input, you could type

JIM,50,JACK,40 ENTER

The Computer will assign values as follows:

X$="JIM” X1=50 Z$="JACK”" Z1=40
If you (ENTER) the values one at a time, the Computer will display a
??

. . indicating that more data is expected. Continue entering data until all the
variables have been set, at which time the Computer will advance to the next
statement in your program.

3/8

.

o

Be sure to enter the correct type of value according to what is called for by the INPUT
statement. For example, you can’t input a string-value into a numerical variable. If
you try to, the Computer will display a

?REDO
?

and give you another chance to enter the correct type of data value, starting with the
first value called for by the INPUT list. The Computer will accept numeric data for
string input.

NOTE: You cannot input an expression into a numerical value — you must input a
simple numerical constant.
Example:

18 INPUT X1+ Y1%
2@ PRINMT X1 Y14

2@ END

FRUN

77+ 3

YTREDO

7 i@

77 “THIS IS A COMMA - °

16 THIS IS5 A COMMA

[t was necessary to put quotes around **THIS IS A COMMA."* because the string
contained acomma.

If you type in more data elements than the INPUT statement specifies, the Computer
will display the message

7EXTRA IGNORED
and continue with normal execution of your program.

If you press (ENTER) without typing anything, the variables will have the values they
were previously assigned.

You can also include a ¢ ‘prompting message’’ in your INPUT statement. This will
make it easier to input the data correctly. The prompting message must
immediately follow <“INPUT"*, must be enclosed in quotes, and must be followed by
a semi-colon.

Example:

1@ INPUT "ENTER NAMEs AGE"3 N$s A
2@ PRINT "HELLOs "3 N%3 "5 YOU ARE AT LEAST"3 A * 363535 "DAYS OLD®

RUN

ENTER NAME: AGE? DO RAMEYs 31

HELLOs DO RAMEYs YOU ARE AT LEAST 11315 DAYS OLD
1

3/9

TRS-80 MODEL Il
——

DATA item list

Lets you store data inside your program to be accessed by READ statements. The
data items will be read sequentially, starting with the first item in the first DATA
statement, and ending with the last item in the last DATA statement. Items in a DATA
list may be string or numeric constants — no expressions are allowed. If your string
values include colons, commas or leading blanks, you must enclose these values in
quotes.

It is important that the data types in a DATA statement match up with the variable
types in the corresponding READ statement. DATA statements may appear anywhere
itis convenient in a program. Generally, they are placed consecutively, but this is
not required.

Examples:

12 READ Nis$s NZ$s N3s N4
2B DATA THIS IS ITEM ONE, THIS IS5 ITEM TWOs 3+ 4
3@ PRINT Ni#%s N2$s N3s N4

See READ, RESTORE.

READ item list

Instructs the Computer to read a value from a DATA statement and assign that value
to the specified variable. The first time a READ is executed, the first value in the first
DATA statement will be used; the second time, the second value in the DATA
statement will be read. When all the items in the first DATA statement have been
read, the next READ will use the first value in the second DATA statement; etc. (An
Out-of-Data error occurs if there are more attempts to READ than there are DATA
items.) The following program illustrates a common application for READ/DATA
statements.

3/10

760
718
720
738
740
758
760
778
7860

PRINT "NAME","AGE"

READ N#%

IF N$ = "END" THEN PRINT "END OF LIBT": END
READ AGE

IF AGE < 18 PRINT N$s AGE

GOTO 71@

DATA "SMITHs JOHN"s 30@s "ANDERSONsT.M."s 20
DATA "JONESs BILL"s 15 "DOE, SallY"s 21
DATA "COLLINSs ANDY"s 17s END

The program locates and prints all the minors’ names from the data supplied. Note
the use of an END string to allow READing lists of unknown length.

See DATA, RESTORE

RESTORE

Causes the next READ statement executed to start over with the first item in the first
DATA statement. This lets your program re-use the same DATA lines.

Example:

810
gz
830
840
850
860

READ X
RESTORE
READ Y
PRINT Xs Y
DATA 5@, 68
END

Because of the RESTORE statement, the second READ statement starts over with the
first DATA item.

See READ, DATA

3/11

TRS-80 MODEL il

LPRINT

This command or statement allows you to output information to the Line Printer.
For example, LPRINT A will list the value of A to the line printer. LPRINT can also be
used with all the options available with PRINT except PRINT @.

Examples:
LPRINT variable or expression lists the variable or expression to the line printer.
LPRINT USING prints the information to the line printer using the format specified.

LPRINT TAB will move the line printer carriage position to the right as indicated by
the TAB expression.

Example:
10 LPRINT TAB (5) “NAME” TAB (30) “ADDRESS” STRING$(63,32) “BALANCE”
will print NAME at column 5, ADDRESS at column 30, and BALANCE at column 100.

See PRINT.

PRINT #-1, item list

Prints the values of the specified variables onto cassette tape. (Recorder must be
properly connected and set in Record mode when this statement is executed.)

Example:

890 Al = -3@.334: B$ = "STRING-VALUE"
P00 PRINT #-1. Als B&sy "THAT’S ALL"
i@ END

This stores the current values of Al and B$, and also the string-literal *‘THAT’S
ALL”’. The values may be input from tape later using the INPUT #-1 statement. The
INPUT #-1 statement must be identical to the PRINT # -1 statement in terms of
number and type of items in the PRINT #-I/INPUT lists. See INPUT #-1.

Special Note:

The values represented in item [ist must not exceed 248 characters total; otherwise
all characters after the first 248 will be truncated. For example, PRINT #—1, A#,
B#,C#,D#,E#,F#,G#,H#,1#,J#, A$ will probably exceed the maximum
record length if A$ is longer than about 75 characters. If you have a lengthy list, you
should break it up into two or more PRINT# statements.

312

INPUT #-1, item list

Inputs the specified number of values stored on cassette and assigns them to the
specified variable names.

Example:
50 INPUT #-1,X,P$,T$

When this statement is executed, the Computer will turn on the tape machine, input
values in the order specified, then turn off the tape machine and advance to the next
statement. If a string is encountered when the INPUT list calls for a number, a bad
file data error will occur. If there are not enough data items on the tape to *‘fill’’ the
INPUT statement, an Qut of Data error will occur.

The Input list must be identical to the Print list that created the taped
data-block (same number and type of variables in the same sequence.)

Sample Program

Use the two-line program supplied in the PRINT# description to create a short data
file. Then rewind the tape to the beginning of the data file, make all necessary
connections, and put cassette machine in Play mode. Now run the following
program.

1@ INPUT #-1s Als B%s L%

2@ PRINT Als B&s LS

AP OIF L$ = "THAT’S ALLY THEN END

4@ REM PROGRAM COULD GO BACK TO LLINE 1@ FOR MORE DATA

This program doesn’t care how long or short the data file is, so long as:
1) the file was created by successive PRINT# statements identical in form to
line 10
2) thelastitem in the last data triplet is “THAT'S ALL™.

3/13

4/Program Statements

MODEL III BASIC makes several assumptions about how to run your program. For

example:

* Variables are assumed to be single-precision (unless you use type declaration
characters — see Chapter 1, ‘‘Variable Types’’).

* A certain amount of memory is automatically set aside for strings and arrays —
whether you use all of it or not.

* Execution is sequential, starting with the first statement in your program and
ending with the last.

The statements described in this chapter let you override these assumptions, to give
your programs much more versatility and power.

NOTE: All BASIC statements except INPUT and INPUT#-1 can be used in the
Immediate Mode as well as in the Execute Mode.

Statements described in this chapter:

Tests
Type Assignment & Sequence of (Conditional
Definition Allocation Execution Statements)

DEFINT CLEAR~R END IF
DEFSNG DIM STOP THEN
DEFDBL LET GOTO ELSE
DEFSTR GOSsuB

RETURN

ON...GOTO

ON. .. GOSuB

FOR-NEXT-STEP

ERROR

ONERROR GOTO

RESUME

REM

4/1

TRS-80 MODEL il

DEFINT letter range

Variables beginning with any letter in the specified range will be stored and treated
asintegers, unless a type declaration character is added to the variable name. This
lets you conserve memory, since integer values take up less memory than other
numeric types. And integer arithmetic is faster than single or double precision
arithmetic. However, a variable defined as integer can only take on values between
—32768 and + 32767 inclusive.

Examples:
10 DEFINTA, I, N

After line 10, all variables beginning with A, Lor N will be treated as integers. For
example, Al, AA, I3 and NN will be integer variables. However, A1#, AA#,13#
would still be double precision variables, because of the type declaration
characters, which always over-ride DEF statements.

10 DEFINTI-N

Causes variables beginning with I, J, K, L, M or N to be treated as integer
variables.

DEFINT may be placed anywhere in a program, but it may change the meaning of
variable references without type declaration characters. Therefore it is normally
placed at the beginning of a program.

See DEFSNG, DEFDBL, and Chapter 1.

DEFSNG letter range

Causes any variable beginning with a letter in the specified range to be stored and
treated as single precision, unless a type declaration character is added. Single
precision variables and constants are stored with 7 digits of precision and printed
out with 6 digits of precision. Since all numeric variables are assumed to be single
precision unless DEFined otherwise, the DEFSNG statement is primarily used to
re-define variables which have previously been defined as double precision or
integer.

Example:
100 DEFSNG I, W-Z

Causes variables beginning with the letter L or any letter W through Z to be treated
as single precision. However, [% would still be an integer variable, and 1# a double
precision variable, due to the use of type declaration characters.

See DEFINT, DEFDBL, and Chapter 1.

e

4/2

DEFDBL letter range

Causes variables beginning with any letter in the specified range to be stored and
treated as double-precision, unless a type declaration character is added. Double
precision allows 17 digits of precision; 16 digits are displayed when a double
precision variable is PRINTed.

Example:
10 DEFDBL S-Z, A-E

Causes variables beginning with one of the letters S through Z or A through E to be
double precision.

DEFDBL is normally used at the beginning of a program, because it may change the
meaning of variable references without type declaration characters.

See DEFINT, DEFSNG, and Chapter 1.

DEFSTR letter range

Causes variables beginning with one of the letters in the specified range to be stored
and treated as strings, unless a type declaration character is added. If you have
CLEARed enough string storage space, each string can store up to 255 characters.

Example:
10 DEFSTR L-Z

Causes variables beginning with any letter L through Z to be string variables, unless
atype declaration character is added. After line 10 is executed, the assignment
L1 = “WASHINGTON" will be valid.

See CLEAR 1, Chapter 1, and Chapter 5.

4/3

TRS-80 MODEL il
S

CLEAR~n

When used with an argument n (n can be a constant or an expression), this statement
causes the Computer to set aside n bytes for string storage. In addition all variables
are set to zero. When the TRS-80 is turned on, 50 bytes are automatically set aside for
strings.

The amount of string storage CLEARed must equal or exceed the greatest number of
characters stored in string variables during execution; otherwise an Out of String
Space error will occur.

Example:
10 CLEAR 1000
Makes 1000 bytes available for string storage.

By setting string storage to the exact amount needed, your program can make more
efficient use of memory. A program which uses no string variables could include a
CLEAR 0 statement, for example. The CLEAR argument must be non-negative, or an
error will result.

DIM name (diml, dim2, . . ., dimK)

Lets you set the *‘depth’’ (number of elements allowed per dimension) of an array
or list of arrays. If no DiM statement is used, a depth of 11 (subscripts 0-10) is
allowed for each dimension of each array used. To create an array with more than
three dimensions, you must use DIM.

Example:
10 DIM A(5), B(2,3), C%(20)

Sets up a one-dimension array A with subscripted elements 0-5; a two-dimension
array B with subscripted elements 0,0 to 2,3; and a one-dimension string array C$
with subscripted elements 0-20. Unless previously defined otherwise, arrays A and
B will contain single-precision values.

DIM statements may be placed anywhere in your program, and the depth specifier
may be a number or a numerical expression.

Example:

40 INPUT “NUMBER OF NAMES”, N
50 DIM NA(N,2)

To re-dimension an array, you must first use a CLEAR statement, either with or
without an argument. Otherwise an error will result.

4/4

Example Program:

12 AA(4L)y = 11.5
2@ DIM aad(7)
READY

FRUN

7DD ERROR IN 2@
READY

See Chapter 6, ARRAYS.

LET variable = expression

May be used when assigning values to variables. Radio Shack Model I1I BASIC does
not require LET with assignment statements, but you might want to use it to ensure
compatibility with those versions of BASIC that do require it.

Examples:

100 LETA$="AROSEISAROSE”
110 LETB1=1.23
120 LETX=X-2Z1

In each case, the variable on the left side of the equals sign is assigned the value of
the constant or expression on the right side.

END

Terminates execution normally (without a BREAK message). Some versions of
BASIC require END as the last statement in a program; with Model I1l BASIC it is
optional. END is primarily used to force execution to terminate at some point other
than the physical end of the program.

Example:;

1@ INPUT 81, 82
2@ GOSUR 100

30 REM MORE PROGRAM LINES HERE...

99 END : REM PROTECTIVE END-BLOCK
120 H = SQR(S1%81 + SZ*82)

113 RETURN

The END statement in line 99 prevents program control from ‘crashing”’ into the
subroutine. Now line 100 can only be accessed by a branching statement such as 20
GOSUB 100.

O e |

4/5

TRS-80 MODEL Il

STOP

Interrupts execution and prints a BREAK IN line number message. STOP is primarily
adebugging aid. During the break in execution, you can examine or change
variable values. The command CONT can then be used to re-start execution at the
point where it left off. (If the program itself is altered during a break, CONT cannot
be used.)

Example:

18 X = RND(I®)
2@ 5TOP

3@ GOSULE 1808
99 END

1808 REM

1831@ RETURN

Suppose we want to examine what value for X is being passed to the subroutine
beginning at line 1000. During the break, we can examine X with PRINTX.

T

GOTO line number

Transfers program control to the specified line number. Used alone, GOTO line
number results in an unconditional (or automatic) branch; however, test statements
may precede the GOTO to effect a conditional branch.

Example:
200 GOTO10
When 200 is executed, control will automatically jump back to line 10.

You can use GOTO in the Immediate Mode as an alternative to RUN. GOTO line
number causes execution to begin at the specified line number, without an
automatic CLEAR. This lets you pass values assigned in the Immediate Mode to
variables in the Execute Mode.

See IF,THEN,ELSE,ON... GOTO.

4/6

GOSUB line number

Tranfers program control to the subroutine beginning at the specified line number
and stores an address to RETURN to after the subroutine is complete. When the
Computer encounters a RETURN statement in the subroutine, it will then return
control to the statement which follows GOSUB.

If you don’t RETURN, the previously stored address will not be deleted from the area
of memory used for saving information, called the stack. The stack might
eventually overflow, but, even more importantly, this address might be read
incorrectly during another operation, causing a hard-to-find program error. So. . .
always RETURN from your subroutines. GOSUB, like GOTO may be preceded by a
test statement. See IF,THEN,ELSE,ON...GOSUB.

Example Program:

182 Gosup 200

1180 PRINT "RACK FROM THE SUBROUTINE": END
200 PRINT "EXECUTING THE SUBROUTINE"

218 RETURN

READY

FRUN

EXECUTING THE SUBROUTINE

BACK FROM THE SUBROUTINE

Control branches from line 100 to the subroutine beginning at line 200. Line 210

instructs Computer to return to the statement immediately following GOSUB, that
is, line 110.

RETURN

Ends a subroutine and returns control to statement immediately following the most
recently executed GOSUB. If RETURN is encountered without execution of a
matching GOSUB, an error will occur. See GOSUB.

4/7

TRS-80 MODEL lii

ON n GOTO line number, ..., line number

This is a multi-way branching statement that is controlled by a test variable or
expression. The general format for ON 7 GOTO is:

ON expression GOTO Ist line number, 2nd line number, . . ., Kth line number
expression must be between 0 and 255 inclusive.

WhenON. . . GOTO is executed, first the expression is evaluated and the integer
portion. . . INT(expression). . . is obtained. We’ll refer to this integer portion as J.
The Computer counts over to the Jth element in the line-number list, and then
branches to the line number specified by that element. If there is no Jth element
(thatis, if J > K or J = 0 in the general format above), then control passes to the next
statement in the program.

If the test expression or number is less than zero, or greater than 255, an error will
occur. The line-number list may contain any number of items.

For example:
100ONMIGOTO 150, 160, 170, 150, 180

says ‘‘Evaluate MI. If integer portion of Ml equals 1 then go to

line 150;

If itequals 2, then go to 160;

Ifitequals 3, then go to 170;

Ifitequals 4, then go to 150;

Ifitequals S, then go to 180;

If the integer portion of MI doesn’t equal any of the numbers 1 through 5,
advance to the next statement in the program.””

Sample Program

102 INPUT "ENTER A NUMBER"3 X

110 ON SGN(X) + 2 GOTO 200, 210, 220
202 PRINT "NEGATIVE": END

21@ PRINT "ZERO": END

220 PRINT "POSITIVE": END

SGN(X) returns — 1 for X less than zero; 0 for X equal to zero; and + 1 for X greater
than 0. By adding 2, the expression takes on the values 1, 2, and 3, depending on
whether X is negative, zero, or positive. Control then branches to the appropriate
line number.

4/8

PN

ON n GOSUB line number, ..., line number

Works like ON n GOTO, except control branches to one of the subroutines specified
by the line numbers in the line-number list.

Example:

128 INPUT "CHOOGE 1s 2y OR 3"3 1
118 ON I GOSUBR 200, 381, 480

120 END

200 PRINT "SUBROUTINE #1": RETURN
3@ PRINT "SUBROUTINE #2": RETURN
408 PRINT "SUBROUTINE #3": RETURN

The test object n may be a numerical constant, variable or expression. It must have
anon-negative value or an error will occur.

See ON n GOTO.

FOR counter = exp TO exp STEP exp
NEXT counter

Opens an iterative (repetitive) loop so that a sequence of program statements may
be executed over and over a specified number of times. The general form is
(brackets indicate optional material):

line# FOR counter-variable = initial value TO final value [STEP increment]

line # NEXT [counter-variable]

In the FOR statement, initial value, final value and increment can be constants,
variables or expressions. The first time the FOR statement is executed, these three
are evaluated and the values are saved, if the variables are changed by the loop, it
will have no effect on the loop’s operation. However, the counter variable must
not be changed or the loop will not operate normally.

The FOR-NEXT-STEP loop works as follows: the first time the FOR statement is
executed, the counter is set to the *‘initial value.’’ Execution proceeds until a NEXT
statement is encountered. At this point, the counter is incremented by the amount
specified in the STEP increment. (If the increment has a negative value, then the
counter is actually decremented.) If STEP increment is not used, an increment of 1 is
assumed.

4/9

TRS-80 MODEL Il

Then the counter is compared with the final value specified in the FOR statement. If
the counter is greater than the final value, the loop is completed and execution
continues with the statement following the NEXT statement. (If increment was a
negative number, loop ends when counter is less than final value.) If the counter has
not yet exceeded the final value, control passes to the first statement after the FOR
statement.

Example Programs:

18 FOR I = 1@ TO 1 STEP ~1
20 PRINT I3
3@ NEXT
READY
*RUN
ie 9 8 7 & 5 4 3 2 1
READY

i FOR K = @ TO 1 STEP .3
20 PRINT K3

30 NEXT

READY

+RUN

B .3 6 .9

READY

After K = .91is incremented by .3, K = 1.2. This is greater than the final value 1,
therefore loop ends without ever printing final value.

i3 FORK = 4 T0O @
20 PRINT K3
30 NEXT
READY
*RUN
4
READY

No STEP is specified, so STEP 1 is assumed. After K is incremented the first time, its
valueis 5. Since 5 is greater than the final value 0, the loop ends.
ip J = 3: K=8: L =2

7@ FOR I = J TO K + 1 8TEP L

3 J = 0 K =0: L =0

40 PRINT I3

5@ NEXT

READY

*RUN

3 5 7 9

READY

4/10

P

T

The variables and expressions in line 20 are evaluated once and these values
become constants for the FOR-NEXT-STEP loop. Changing the variable values later
has no effect on the loop.

FOR-NEXT loops may be ‘‘nested’’:

18 FOR I =1 70 3
20 PRINT "OUTER LOOP"Y

1 FOR J = 1 TO 2

40 PRINT * INNER LOOP"
50 NEXT J

60 NEXT I

RUN

OUTER LOOP

INNER LOOP

INNER LOOP
OUTER LOOP

INNER LOOP

INNER L.OOP
OUTER LOGP

INNER LLOOP

INNER LOOP
READY

Note that each NEXT statement specifies the appropriate counter variable; however,
this is just a programmer’s convenience to help keep track of the nesting order. The
counter variable may be omitted from the NEXT statements. But if you do use the
counter variables, you must use them in the right order; i.e., the counter variable
for the innermost loop must come first.

Itis also advisable to specify the counter variable with NEXT statements when your
program allows branching to program lines outside the FOR-NEXT loop.

Another option with nested NEXT statements is to use a counter variable list.
Delete line 50 from the above program and change line 60:
60 NEXTJ,I

Loops may be nested 3-deep, 4-deep, etc. The only limit is the amount of memory
available.

4/11

- TRS-80 MODEL 1l

ERROR code

Lets you ‘‘simulate”” a specified error during program execution. The major use of
this statement is for testing an ON ERROR GOTO routine. When the ERROR code
statement is encountered, the Computer will proceed exactly as if that kind of error
had occurred. Refer to Appendix B for a listing of error codes and their meanings.

Example Program:

1A ERROR 1
READY

FRUN

INF O Error o in 108
READY

1 is the error code for *‘attempt to execute NEXT statement without a matching FOR
statement’’.

See ON ERROR GOTO, RESUME.

ON ERROR GOTO line number

When the Computer encounters any kind of error in your program, it normally
breaks out of execution and prints an error message. With ON ERROR GOTO, you can
set up an error-trapping routine which will allow your program to *‘recover’’ from
an error and continue, without any break in execution. Normally you have a
particular type of error in mind when you use the ON ERROR GOTO statement. For
example, suppose your program performs some division operations and you have
not ruled out the possibility of division by zero. You might want to write a routine to
handle a division-by-zero error, and then use ON ERROR GOTO to branch to that
routine when such an error occurs.

Example:

1@ ON ERROR GOTO 100
MA=1/70

9@ END

120 PRINT"ERROR # "3 ERR/Z2 + 1
118 RESUME 90

In this “‘loaded’” example, when the Computer attempts to execute line 20, a
divide-by-zero error will occur. But because of line 10, the Computer will simply
ignore line 20 and branch to the error-handling routine beginning at line 100.

NOTE: The ON ERROR GOTO must be executed before the error occurs or it will
have no effect.

412

AT

The ON ERROR GOTO statement can be disabled by executing an ON ERROR GOTO 0.
If you use this inside an error-trapping routine, BASIC will handle the current error
normally.

The error handling routine must be terminated by a RESUME statement. See
RESUME.

RESUME line number

Terminates an error handling routine by specifying where normal execution is to
resume.

RESUME without a line number and RESUME 0 cause the Computer to return to the
statement in which the error occurred.

RESUME followed by a line number causes the Computer to branch to the specified
line number.

RESUME NEXT causes the Computer to branch to the statement following the point
at which the error occurred.

Sample Program with an Error Handling Routine

&H@5 ON ERROR GOTO 640

618 INPUT "SEERING SQUARE ROOT OF"35 X

628 PRINT SQROX)

633 GOTO 610

&40 PRINT "IMAGINARY ROOT:"3 SQR(-X)s35 " * I
650 RESUME 610

660 END

RUN the program and try inputting a negative value.

You must place a RESUME statement at the end of your error trapping routine, so
that later errors may also be trapped.

4/13

TRS-80 MODEL il

REM

Instructs the Computer to ignore the rest of the program line. This allows you to
insert comments (REMarks) into your program for documentation. Then, when you
(or someone else) look at a listing of your program, it’ll be alot easier to figure out.
If REM is used in a multi-statement program line, it must be the last statement.

Example Program:
718 REM %% THIS REMARK INTRODUCES THE PROGRAM *%
72B REM ®# AND POSSIBLY THE PROGRAMMER. TOO. #%

730 REM %% #%
740 REM %% THIS REMARK EXPLAING WHAT THE ¥
750 REM *% VARIOUS VARIABLES REPRESENT: *x
760 REM %% C = CIRCUMFERENCE R = RADIUS *%
7¢/® REM *% D = DIAMETER "
780 REM

Any alphanumeric character may be included in a REM statement, and the
maximum length is the same as that of other statements: 255 characters total.

In Model 11l BASIC, an apostrophe * (SHIFT) (7)) may be used as an abbreviation
for :REM.

186 A=l TTHIGs TOO I8 A REMARK

IF true/false expression THEN action-clause

Instructs the Computer to test the following logical or relational expression. If the
expression is True, control will proceed to the “‘action’’ clause immediately
following the expression. If the expression is False, control will jump to the
matching ELSE statement (if there is one) or down to the next program line.

In numerical terms, if the expression has a non-zero value, it is aiways equivalent to
alogical True.

Examples:
1@ IF X > 127 THEN PRINT "OUT OF RANGE": END

If X is greater than 127, control will pass to the PRINT statement and then to the END
statement. Butif X is not greater than 127, control will jump down to the next line
in the program, skipping the PRINT and END statements.

IF @ <= X AND X <= ¥ THEN Y = X + 188

If both expressions are True then Y will be assigned the value X + 180. Otherwise
control will pass directly to the next program line, skipping the THEN clause.

See THEN, ELSE.

4/14

THEN statement or line number

Initiates the ‘‘action clause’” of an IF-THEN type statement. THEN is optional except
when it is required to eliminate an ambiguity, as in IF A < 0 100. THEN should be
used in IF-THEN-ELSE statements.

ELSE statement or line number

Used after IF to specify an alternative action in case the IF test fails. (When no ELSE
statement is used, control falls through to the next program line after a test fails.)

Examples:
100 INPUT A$: IF A% = "VYES" THEN 300 ELSE END

Inline 100, if A$ equals **YES’ then the program branches to line 300. Butif A$
does not equal *“YES™*, program skips over to the ELSE statement which then
instructs the Computer to end execution.

200 IF & < B OTHEN PRINT "A<B" ELSE PRINT "Bo=A4Y

If A is less than B, the Computer prints that fact, and then proceeds down to the next
program line, skipping the ELSE statement. If A is not less than B, Computer jumps
directly to the ELSE statement and prints the specified message. Then control
passes to the next statement in the program.

FH@EOIF AR AR THEN B o= 1768 A = A/30 ELBE Z6@

If A>.001 is True, then the next two statements will be executed, assigning new
values to B and A. Then the program will drop down to the next line, skipping the
ELSE statement. Butif A>.001 is False, the program jumps directly over to the
ELSE statement, which then instructs it to branch to line 260. Note that GOTO is not
required after ELSE.

IF-THEN-ELSE statements may be nested, but you have to take care to match up the

IFs and ELSEs.

8210 INPUT "ENTER TWO NUMBERS"S: As B

820 IF A <= B THEN IF A < B PRINT A3: ELSE PRINT "NEITHER
"3: ELSE PRINT B3

830 PRINT "I8 SMALLER"

848 END

RUN the program, inputting various pairs of numbers. The program picks out and
prints the smaller of any two numbers you enter.

4/15

5/Strings

““Without string-handling capabilities, a computer is just a super-powered
calculator.”” There’s an element of truth in that exaggeration; the more you use the
string capabilities of Model 111 BASIC, the truer the statement will seem.

In Model Il BASIC any valid variable name can be used to contain string values, by
the DEFSTR statement or by adding a type declaration character to the name. And
each string can contain up to 255 characters.

Moreover, you can compare strings to alphabetize them, for example. You can take
strings apart and string them together (concatenate them). For background
material to this chapter, see Chapter 1, *‘Variable Types’’ and ‘Glossary’’, and
Chapter4, DEFSTR.

Functions covered in this chapter:

FRE (string) LEFTS STRING$

INKEY$ MID$ TIMES

LEN RIGHT$ VAL

ASC STR$

CHRS$

NOTE :Whenever string is given as a function argument, you can use a string
expression or constant.

String Space

Fifty bytes of memory are set aside automatically to store strings. If you run out of
string space, you will get an OS error and you should use the CLEAR n command to
save more space.

Note: CLEAR also sets variables to zero or null strings.

To calculate the space you’ll need, multiply the amount of space each variable takes
(See VARPTR) by the number of string variables you are using, including temporary
variables.

Temporary variables are created during the calculation of string functions.
Therefore even if you have only a few short string variables assigned in your
program, you may run out of string space if you concatenate them several times.

5/1

TRS-80 MODEL lii

ASC (string)

Returns the ASCII code for the first character of the specified string. The
string-argument must be enclosed in parentheses. A null-string argument will cause
an error to occur.

100 PRINT ASC("A")
110T$="AB": PRINTASC (T$)

Lines 100 and 110 will print the same number.

The argument may be an expression involving string operators and functions:
200 PRINT ASC(RIGHTS$(TS, 1))

Refer to the ASCII Code Table, Appendix C.

CHRS (expression)

Performs the inverse of the ASC function: returns a one-character string whose
character has the specified ASCII, control or graphics code. The argument may be
any number from 0 to 255, or any variable expression with a value in that range.
Argument must be enclosed in parentheses.

100 PRINT CHR$(35) Prints a number-sign #

Using CHRS, you can even assign quote-marks (normally used as string-delimiters)
to strings. The ASCII code for quotes ** is 34. So A$ = CHR$(34) assigns the value ** to
AS.

418 A% = CHR$(34)
420 PRINT "HE SAIDs "3 A%; "HELLO."3 A%

5/2

o,

E

CHRS$ may also be used to display any of the graphics or special characters. (See
Appendix C, Character Codes.)

468 CLE

470 FOR T = 129 TO 191
488 PRINT I35 CHR$(I)s
498 NEXT

300 GOTO 560

(RUN the program to see the various graphics characters.)

Codes 0-31 are display control codes. Instead of returning an actual display
character, they return a control character. When the control character is PRINTed,
the function is performed. For example, 23 is the code for 32 character-per-line
format; so the command, PRINT CHR$(23) converts the display format to 32
characters per line. (Hit CLEAR, execute CLS, or execute PRINT CHR$(28) to return to
64 character-per-line format.)

FRE (string)

When used with a string variable or string constant as an argument, returns the
amount of string storage space currently available. Argument must be enclosed in
parentheses. FRE causes BASIC to start searching through memory for unused string
space. If your program has done a lot of string processing, it may take several
minutes to recover all the ‘‘scratch pad’’ type memory.

500 PRINT FRE(AS$), FRE(LS), FRE (*Z")
All return the same value.

The string used has no significance; it is adummy variable. See Chapter 4,
CLEARn~.

FRE(number) returns the amount of available memory (same as MEM).

5/3

TRS-80 MODEL lii

INKEY$

Returns a one-character string determined by a keyboard check. The last key
pressed before the check is returned. If no key has been pressed, anull string
(length zero) is returned. This is a very powerful function because it lets you input
values while the Computer is executing — without using the key. The
popular video games which let you fire at will, guide a moving dot through a maze,
play tennis, etc., may all be simulated using the INKEY$ function (plus a lot of other
program logic, of course).

Characters typed to an INKEYS$ are not automatically displayed on the screen.

INKEYS is often placed inside some sort of loop, so that the keyboard is scanned
repeatedly.

Example Program:

34 CLG
55@ PRINT @ 548, INKEY$: GOTO 550

RUN the program,; notice that the screen remains blank until the first time you hit a
key. The last key hit remains on the screen until you hit another one. (The last key
hitis always saved. The INKEYS$ function uses it until it is replaced by a new value.)

INKEYS$ may be used in sequences of loops to allow the user to build up a longer
string.

Example:

59@ PRINT "ENTER THREE CHARACTERS®

4D A% = INKEY$: IF A% = "" THEN 600 ELSE PRINT A%;
&1 B$ = INKEY$: IF B$ = "* THEN 610 ELSE PRINT B%;
620 C% = INKEY®: IF C$ = "" THEMN 6200 ELSE PRINT (%3
630 D$ = A% + B$ + C%

A three-character string D$ can now be entered via the keyboard without using the

ENTER) key.

NOTE: The statement IF A$ =" " compares A$ to the null string. There are no
spaces between the double-quotes.

e,

5/4

LEFTS (string, n)

Returns the first n characters of string. The arguments must be enclosed in
parentheses. string may be a string constant or expression, and n may be a numeric
expression.

Example Program:

&70 A% = "TIMOTHY?
&80 B% = LEFTS (A%s 3)
690 PRINT Bgs " ~THAT'S SHORT FOR "5 A%

LEN (string)

Returns the character length of the specified string. The string variable, expression,
or constant must be enclosed in parentheses.

730 A% = 0
740 B$ = "TOM

750 PRINT A$» B$, B$ + BS

76@ PRINT LEN(A$)s LEN(B$)s LEN(B$+BE$)

5/5

TRS-80 MODEL Il

MIDS$ (string,p,n)

Returns a substring of string with length n and starting at position p. The string
name, length and starting position must be enclosed in parentheses. string may be a
string constant or expression, and n and p may be numeric expressions or constants.
For example, MID$ (L$,3,1) refers to a one-character string beginning with the third
character of LS.

If no argument is specified for the length n, the entire string beginning at position p
is returned.

Example Program:

The first three digits of a local phone number are sometimes called the *‘exchange’’
of the number. This program looks at a complete phone number (area code,
exchange, last four digits) and picks out the exchange of that number.

800 INPUT "AREA CODE AND NUMBERS (NO HYPHENSs PLEABE)": P4%
810 EX$ = MID$ (P%s 4:3)
820 PRINT "NUMBER I8 IN THE "3 EX#: " EXCHANGE."

RIGHTS (string, n)

Returns the last n characters of string. string and n must be enclosed in parentheses.
string may be a string constant or variable, and n may be a numerical constant or
variable. If LEN(string) is less than or equal to n, the entire string is returned.

1@ INPUT "ENTER A WORD"3: M%

2@ IF LENM(MS) = @ THEN 1@

2@ PRINT "THE LAST LETTER WaG: "5 RIGHTS(M$s1)
48 GOTO 19

STRS (expression)

Converts a numeric expression or constant to a string. The numeric expression or
constant must be enclosed in parentheses. STR$(A), for example, returns a string
equal to the character representation of the value of A. Forexample, if A=58.5,
then STR$(A) equals the string ¢“ 58.5”". (Note the leading blank in ** 58.5°"). While
arithmetic operations may be performed on A, only string operations and functions
may be performed on the string ‘* 58.57".

PRINT STR$(X) prints X without a trailing blank; PRINT X prints X with a trailing
blank.

5/6

Example Program:

HB6@ A = 58.%5: B = ~-58.9
878 PRINT STR$(A)

88@ PRINT STR$(R)

B9@ PRINT STR$(A+B)

P08 PRINT STR&(A) + STR$(B)

STRINGS (n, ‘‘character’’ or number)

Returns a string composed of n character-symbols. For example,
STRING$(30,‘ ¢k ’) returns € € s sfe s sk sk sk sk sk sk skosk skoksk skeskok skoskok sk sk sk kel . STRING$ iS

useful in creating graphs, tables, etc.
The argument # is any numerical expression with a value of from zero to 255.

character can also be a number from 0-255; in this case, it will be treated as an
ASCII, control, or graphics code.

Example:

18 ClLEAR 2@

280 FOR I=128 TO0 191
30 A% = STRINGH(H441)
4@ PRINT A%y

58 NEXT 1

5/7

TRS-80 MODEL Il

TIMES

Returns today’s date and time. Your Model I1I contains a built-in clock. To use this
clock, you will want to first set it to the correct date and time. To do this, you may
type and run this little program:

1@ DEFINT A-Z

20 DIM TM(3)

30 CL = 16924 :

4@ PRINT "INPUT & VALUES: MOs DAs YRs HRs MNs 58°
5@ INPUT TM(@)s TM(1)s TM(Z)s TM(3)s TM{4)s TM(3)
6@ FOR 1 = @ TO 5

70 POKE CL — I, TM(I)
8@ NEXT I

98 PRINT “CLOCK IS GET®

1@ END

Once you have set the date and time with this program, you may request it any time
you want. For example, this program line:

10 PRINTTIME$
causes the Computer to print today’s date and time.

If you do not set the date and time, the Computer will keep time anyway. However,
the date and time will be set at zero when you first turn on the Computer or reset it.

NOTE: The clock is turned off during cassette operations and at certain other
times. Therefore it will need to be corrected periodically.

VAL (string)

Performs the inverse of the STR$ function: returns the number represented by the
characters in a string argument. The numerical type of the result can be integer,
single precision, or double precision, as determined by the rules for the typing of
constants (See page 1/10 in this section). For example, if A$ = **12* and B$ = **34”
then VAL (A$ + “.” + B$) returns the value 12.34. VAL(A$ + “E” + B$) returns the
value 12E34, thatis 12 x 103,

VAL operates a little differently on mixed strings — strings whose values consist of
anumber followed by non-numeric characters. In such cases, only the leading
number is used in determining VAL; the non-numeric remainder is ignored.

For example: VAL (““100 DOLLARS’’) returns 100.

5/8

This can be a handy short-cut in examining addresses, for example.

Example Program:

540
552
560
7@

REM "WHAT SIDE OF
REM EVEN = NORTH. ODD = GOUTH

INPUT "ADDRESS: NUMBER AND STREETYS
C = INT(VAL({AD$)/2) * =

STREET?"

GRB IF ¢ = VAaL(AD$) THEN PRINT "NORTH SIDE":
GHR PRINT "SOUTH SIDE": GOTO 9460

AD$

GOTO 960

RUN the program, entering street addresses like **1015 SEVENTHAVE™”.

If the string is non-numeric or null, VAL returns a zero.

5/9

6/Arrays

Anarray is simply an ordered list of values. In Model 111 BASIC these values may be
either numbers or strings, depending on how the array is defined or typed. Arrays
provide a fast and organized way of handling large amounts of data. To illustrate
the power of arrays, this chapter traces the development of an array to store
checkbook data: check numbers, dates written, and amounts for each check.

In addition, several matrix manipulation subroutines are listed at the end of this
chapter. These sequences will let you add, multiply, transpose, and perform other
operations onarrays.

Note: Throughout this chapter, zero-subscripted elements are generally i gnored

for the sake of simplicity. But you should remember they are available and should
be used for the most efficient use of memory. For example, after DIMA(4), array A

contains 5 elements: A(0), A(l), A(2), A(3), A(4).

~ For background information on arrays, see C hapter 4, DIM, and Chapter 1,

“Arrays’’.

A Check-Book Array

Consider the following table of checkbook information:

Check # Date Written Amount
025 1-1-78 10.00
026 1-5-78 39.95
027 1-7-78 23.50
028 1-7-78 149.50
029 - 1-10-78 4.90
030 1-15-78 12.49

Note that every item in the table may be specified simply by reference to two
numbers: the row number and the column number. For example, (row 3, column 3)
refers to the amount 23.50. Thus the number pair (3,3) may be called the *‘subscript
address’’ of the value 23.50.

Let’s set up an array, CK, to correspond to the checkbook information table. Since
the table contains 6 rows and 3 columns, array CK will need two dimensions: one for
row numbers, and one for column numbers. We can picture the array like this:

A(1,1)=025 A(1,2)=1.0178 A(1.3)=10.00

A(6,1)=030 A(6,2)=1.1578 A(6,3)=12.49

10—

6/1

TRS-80 MODEL il
A ———

Notice that the date information is recorded in the form mm.ddyy. where

mm = month number, dd = day of month, and yy = last two digits of year. Since CK
is a numeric array, we can’t store the data with aipha-numeric characters
such as dashes.

Suppose we assign the appropriate values to the array elements. Unless we have
used a DIM statement, the Computer will assume that our array requires a depth of
10 for each dimension. That is, the Computer will set aside memory locations to
hold CK(7,1).CK (7,2).. . . . CK(10.1),CK(10,2) and CK(10.3). In this case, we don’t
want to set aside this much space, so we use the DIM statement at the beginning of
our program:

4@ DIM CK{&s3)

Now let’s add program steps to read the values into the array CK:

530 FOR ROW 1 TO &

60 FOR COL 1 7O 3

7@ READ CKR{ROWs COL.)

80 NEXT COLs ROW

9@ DATA @25, 1.0178, 10.00
100 DATA D26s 1.0578, 39.95
110 DATA B27y 1.0778, 23.50
130 DATA B28, 1.0778, 149.50
130 DATA B29s 1.1078y 4.90
148 DATA @30, 1.1578s 12.49

I

Now that our array is set up, we can begin taking advantage of its built-in structure.
For example, suppose we want to add up all the checks written. Add the following
lines to the program:

158 FOR ROW = 1 TO &

168 SUM = SUM + CKR({ROWs3)

178 NEXT

182 PRINT "TOTAL OF CHECKS WRITTEN"3
190 PRINT USING "$$H#H#.H#H#"5 BUM

Now let’s add program steps to print out all checks that were written on a given day.

200 PRINT "SEEKING CHECKS WRITTEN ON WHAT DATE (MM.DD YY)":
218 INPUT DT

220 PRINT: PRINT "ANY CHECKS WRITTEN ARE LISTED BELOW:"

230 PRINT "CHECK #"s "AMOUNT": PRINT

240 FOR ROW = 1 TO 6

25@ IF CK(ROWsZ) = DT THEN PRINT CK(ROWs1)s CK{ROWs3)

260 NEXT

It’s easy to generalize our program to handle checkbook information for all 12
months and for years other than 1978.

6/2

All we do is increase the size (or *‘depth’’) of each dimension as needed. Let’s
assume our checkbook includes check numbers 001 through 300, and we want to
store the entire checkbook record. Just make these changes:

A0 DIM CK{ZB@:3) TGET UP A 300 BY 3 ARRAY
5@ FOR ROW = 1 TO 30@

and add DATA lines for check numbers 001 through 300. You’d probably want to
pack more data onto each DATA line than we did in the above DATA lines.

And you’d change all the ROW counter final values:

153 FOR ROW = 1 TO 30@
4@ FOR ROW = 1 TO 3200

Other Types of Arrays

Remember, in Model 111 BASIC the number of dimensions an array can have (and

the size or depth of the array), is limited only by the amount of memory available. Also
remember that string arrays can be used. For example, C$(X) would automatically

be interpreted as a string array. And if you use DEFSTR A at the beginning of your
program, any array whose name begins with A would also be a string array. One
obvious application for a string array would be to store text material for access by a
string manipulation program.

1@ CLEAR 1200
2@ DIM TXT$(1@)

would set up a string array capable of storing 10 lines of text. 1200 bytes were
CLEARed to allow for 10 sixty-character lines, plus 600 extra bytes for string
manipulation with other string variables.

6/3

TRS-80 MODEL il
S

Array/Matrix Manipulation Subroutines

To use this subroutine, your main program must supply values for two variables N1
(number of rows) and N2 (number of columns). Within the subroutine, you can
assign values to the elements in the array row by row by answering the INPUT
statement.

18 FOR ROW = 1 TO NI

28 OFOR COL o= L TO NE

@ PRINT "ENTER DATA FOR "3 ROW: "z2's COL

48 TNPUT A {ROW C0L)

SO NEXT GOl

HEONEXT ROW

TH ORETURN

To use this subroutine, your main program must supply values for three variables
N1 (size of dim #1), N2 (size of dim #2) and N3 (size of dim #3). Within the
subroutine, you can assign values to each element of the array using READ and
DATA statements. You must supply I x J x K elements in the following order: row by
row for K =1, row by row for K =2, row by row for K = 3, and so on for each value
of N3.

480 REM REQUIRES DATA STMTS.
4180 FOR K = 1 TO N3

420 FOR I = 1 TO Ni

433 FOR J = 1 TO Nz

440 READ A(IsJsK)

450 NEXT Js Is K

468 RETURMN

Main program supplies values for variables N1, N2, N3. The subroutine prints the
array.

368 FOR K = 1 TO N3
370 FOR I = 1 TO N1
580 FOR J = 1 TO N2

3980 PRINT ACIsJsK) s
608 NEXT J:i PRINT
613 NEXT I PRINT
628 NEXT Ki: PRINT
30 RETURN

6/4

Main program supplies values for variables N1, N2, N3. Within the subroutine,
you can assign values to each element of the array using the INPUT statement.

&H6B FOR K o= 1 TO N3

78 PRINT "PAGE"S K

680 FOR I = 1 TO NI

698 PRINT "INPUT ROW"3s I
780 FOR J = 1 TO N&

718 INPUT AT JsK)

720 NEXT J

73@ O NEXT 1

740 PRINT: NEXT K

75 RETURN

Multiplication by a Single Variable: Scalar Multiplication (3 Dimensional)

780 FOR K = 1 TO N3

790 FOR J = 1 TO Nz

8@ FOR I = 1 TO NI

Bi@ B(Is«JsK) = A(IsJsK) * X
828 NEXT 1

830 NEXT J

840 NEXT K

858 RETURM

Multiplies each element in MATRIX A by X and constructs matrix B

Transposition of a Matrix (2 Dimensional)

888 FOR I = 1 TO NI
89@ FOR J = 1 TO Nz
Que B(JsI) = A(I.d)
1@ NEXT J
gz@ NEXT 1

930 RETURN
Transposes matrix A into matrix B

6/5

TRS-80 MODEL il
R —————————

Matrix Addition (3 Dimensional)

60 FOR K = 1 TO N3

Q7Ea FOR J = 1 TO NZ

980 FOR I = 1 TO NI

@ C{I+JsK) = A(IsJTsK) + B(Is Jy K)
10060 NEXT I

1810 NEXT J

1220 NEXT K

1836 HETURN

Array Element-wise Multiplication (3 Dimensional)

186G FOR K = 1 TO N3
1870 FOR J = 1 TO N2
1288 FOR I = 1 TO Ni

109@ COIsJsK) = A(TsJsK) % B{lyJeK)
1100 NEXT 1
1118 NEXT J
1128 NEXT K
1138 RETURN

Multiplies each element in A times its corresponding element in B.

Matrix Multiplication (2 Dimensional)

116@ FOR T = 1 TO N1

11780 FOR J = 1 TO N

VIgH Coledy = @

11983 FOR K = 1 TO N3

1208 C(IsJ) = CUIsJd) + ACIsK) % B{K«J)
1218 NEXT K

1228 NEXT J

1230 NEXT I

1248 RETURN

A must be an N1 by N3 matrix; B must be an N3 by N2 matrix. The resultant matrix
Cwill be an N1 and N2 matrix. A, B, and C must be dimensioned accordingly.

6/6

7/Arithmetic Functions

Model [1] BASIC offers awide variety of intrinsic (*‘built-in’") functions for
performing arithmetic and special operations. The special-operation functions are
described in the next chapter.

All the common math functions described in this chapter return single-precision
values accurate to six decimal places. ABS, FIX and INT return values whose
precision depends on the precision of the argument.

The conversion functions (CINT, CDBL, etc.) return values whose precision depends
onthe particular function. Trig functions use or return radians, not degrees. A
radian-degree conversion is given for each of the functions.

For all the functions, the argument must be enclosed in parentheses. The argument
may be either a numeric variable, expression or constant.

Functions described in this chapter:

ABS COS INT SGN
ATN CSNG LOG SIN
CDBL EXP RANDOM SQR
CINT FIX RND TAN
ABS (x)

Returns the absolute value of the argument. ABS(X) =X for X greater than or equal to
zero, and ABS(X) = — X for X less than zero.

100 IF ABS(X)<1E -6 PRINT “TOO SMALL"

ATN (x)

Returns the arctangent (in radians) of the argument; that is, ATN(X) returns ‘‘the
angle whose tangent is X’’. To get arctangent in degrees, multiply ATN(X) by
57.29578.

100'Y = ATN(B/C)

77

TRS-80 MODEL lli

CDBL (x)

Returns a double-precision representation of the argument. The value returned will
contain 17 digits, but only the digits contained in the argument will be significant.

CDBL may be useful when you want to force an operation to be done in
double-precision, even though the operands are single precision or even integers.
For example CDBL (1%)/J% will return a fraction with 17 digits of precision.

100 FOR 1% =1TO 25 : PRINT 1/CDBL(1%), : NEXT

CINT (x)

Returns the largest integer not greater than the argument. For example, CINT (1.5)
returns 1; CINT(— 1.5) returns — 2. For the CINT function, the argument must be in
the range — 32768 to + 32767. The result is stored internally as a two-byte integer.

CINT might be used to speed up an operation involving single or double-precision
operands without losing the precision of the operands (assuming you’re only
interested in an integer result).

100K% = CINT(X#) + CINT(Y#) L

COS(x)

Returns the cosine of the argument (argument must be in radians). To obtain the
cosine of X when X is in degrees, use COS(X*.01745329).

100Y =COS(X +3.3)

CSNG (x)

Returns a single-precision representation of the argument. When the argument is a
double-precision value, it is returned as six significant digits with ‘‘4/5 rounding’’
in the least significant digit. So CSNG(.6666666666666667) is returned as .666667;
CSNG(.3333333333333333) is returned as .333333.

100 PRINT CSNG (A# +B#)

7/2

EXP (x)

Returns the ‘ ‘natural exponential”” of X, that is eX. This is the inverse of the LOG
function, so X = EXP(LOG(X)).

100 PRINT EXP(—X)

FIX (x)

Returns a truncated representation of the argument. All digits to the right of the
decimal point are simply chopped off, so the resultant value is an integer. For
non-negative X, FIX(X) = INT(X). For negative values of X, FIX(X) = INT(X) + 1. For
example, FIX(2.2) returns 2, and FIX(—2.2) returns — 2.

100Y = ABS(A - FIX(A))

This statement gives Y the value of the fractional portion of A.

INT(x)

Returns an integer representation of the argument, using the largest whole number
that is not greater than the argument. Argument is not limited to the range — 32768
to +32767. The result is stored internally as a single-precision whole number.
INT(2.5) returns 2; INT(— 2.5) returns — 3; and INT(1000101.23) returns

1000101.

100 Z=INT(A*100 +.5)/100

Gives Z the value of A rounded to two decimal places (for non-negative A).

LOG(x)

Returns the natural logarithm of the argument, that is, loge (argument). This is the
inverse of the EXP function, so X = LOG (EXP (X)). To find the logarithm of a number
to another base b, use the formula LOGp (X) = LOGg(x)/LOG(b).For example,
LOG(32767)/LOG(2) returns the logarithm to base 2 of 32767.

100 PRINT LOG(3.3*X)

7/3

TRS-80 MODEL 1l

RANDOM

RANDOM is actually a complete statement rather than a function. It reseeds the
random number generator. If a program uses the RND function, you may want to put
RANDOM at the beginning of the program. This will ensure that you get an
unpredictable sequence of pseudo-random numbers each time you turn on the
Computer, load the program, and run it.

18 RANDOM

2@ PRINT RNDOE)

E@ Govo 2@ THOOLINE LE JUST ONCE
RND(x)

Generates a pseudo-random number using the current pseudo-random *‘seed
number’’ (generated internally and not accessible to user). RND may be used to
produce random numbers between 0 and 1, or random integers greater than 0,
depending on the argument.

RND(0) returns a single-precision value between O and 1. RND(integer) returns an
integer between 1 and integer inclusive (integer must be positive and less than
32768). For example, RND(55) returns a pseudo-random integer greater than zero
and less than 56. RND(55.5) returns a number in the same range, because RND uses
the INTeger value of the argument.

100 X=RND(2):0ONXGOTO 200,300

SGN(x)

The “‘sign’’ function : returns — 1 for X negative, O for X zero, and + 1 for X
positive.

100 ONSGN(X) +2 GOTO 200,300,400

7/4

—

SIN(x)

Returns the sine of the argument (argument must be in radians). To obtain the sine
of X when X is in degrees, use SIN(X*.01745329).

100 PRINT SIN(A*B - B)

SQR(x)

Returns the square root of the argument. SQR(X) is the same as X[(1/2), only faster.

100Y = SQR(X[2 — H[2)

TAN(x)

Returns the tangent of the argument (argument must be in radians). To obtain the
tangent of X when X is in degrees, use TAN(X*.01745329).

100 Z=TAN(2*A)

NOTE: A great many other functions may be created using the above functions.
See Appendix E, ‘‘Derived Functions’.

7/5

8/Special Features

Model 111 BASIC offers some unusual functions and operations that deserve special
highlighting . Some may seem highly specialized; as you learn more about
programming and begin to experiment with machine-language routines, they will
take on more significance. Other functions in the chapter are of obvious benefit and
will be used often (for example, the graphics functions).

Functions, statements and operators described in this chapter:

Error-Routine Other Functions

Graphics: Functions: and Statements:
SET ERL INP
RESET ERR MEM
CLS ouT
POINT PEEK

POKE

POS

USR

VARPTR

SET(x,y)

Turns on the graphics block at the location specified by the coordinates x and y. For
graphics purposes, the Display is divided up into a 128 (horizontal) by 48 (vertical)
grid. The x-coordinates are numbered from left toright, O to 127. The y-coordinates
are numbered from top to bottom, 0 to 47. Therefore the point at (0,0) is in the
extreme upper left of the Display, while the point at (127,47) is in the extreme
lower right corner. See the Video Display Worksheet in the Appendix.

The arguments x and y may be numeric constants, variables or expressions. They
need not be integer values, because SET(x,y) uses the INTeger portion of x and y. SET
(x,y) is valid for:

0<=x<128
0<=y<48

8/1

. TRS-80 MODEL lil ;

Examples:
100 SET (RND(128) — 1,RND(48) - 1)
Lights up a random point on the Display.
100 INPUT X,Y: SET (X)Y)

RUN to see where the blocks are.

RESET (x,y)

Turns off a graphics block at the location specified by the coordinates x and y. This
function has the same limits and parameters as SET(x,y).

200 RESET (X,3)

CLS

““Clear-Screen’’ — turns off all the graphics blocks on the Display and moves the
cursor to the upper left corner. This wipes out alphanumeric characters as well as
graphics blocks. CLS is very useful whenever you want to present an attractive
Display output.

1@ CLS
20 SET(RND(128)—-1s RND(48)-1)
30 GOTO 20

POINT(x,y)

Tests whether the specified graphics block is “‘on’” or ““off””. If the block is “‘on”’

(that is, if it has been SET), then POINT returns a binary True (-1 in Model 111

BASIC). If the block is “‘off’”, POINT returns a binary False (0 in Model 111 BASIC). Typically,
the POINT test is put inside an IF-THEN statement.

100 SET (50, 28) : IF POINT (50,28) THEN PRINT “ON" ELSE PRINT “OFF”

This line will always print the message, “ON’’, because POINT(50,28) will return a
binary True, so that execution proceeds to the THEN clause. If the test failed, POINT
would return a binary False, causing execution to jump to the ELSE statement.

8/2

ERL

Returns the line number in which an error has occurred. This function is primarily
used inside an error-handling routine accessed by an ON ERROR GOTO statement. If
no error has occurred when ERL is called, line number 0 is returned. However, if an
error has occurred since power-up, ERL returns the line number in which the error
occurred. If error occurred in direct mode, 65535 is returned (largest number
representable in two bytes).

Example Program using ERL

180 CLEAR 10

28 ON ERROR GOTO 10200

2@ INPUT "ENTER YOUR MESGAGE": M%

4@ INPUT "NOW ENTER A NUMBER"3 N

5@ 7 = 1/N

6@ PRINT "INPUT VALUES OKAY--TRY AGAIN TO CAUSE AN ERRORY
78 GOTO 30

100@ IF ERL=3@ AND (ERR/& +

1318 IF ERL=4@ AND (ERR/Z +

102@ IF ERL=5@ AND (ERR/2z +

1838 ON ERROR GOTO B: REBUME
1042 PRINT "MESSAGE TOO LONG--10 LETTERS MAXIMUM": RESUME

14) THEN 1240
6) THEN 1858
11) THEN 1060

[S
[H I I

-1@5@ PRINT "NUMBER TOO LARGE": RESUME

126@ PRINT "DIVISION RY ZERO IN LINE 5@0--ENTER NON-ZERO NUMBER"
1870 RESUME 40

RUN the program. Try entering a long message; try entering zero when the program
asks for a number. Note that ERL is used in line 1000 to determine where the error
occurred so that appropriate action may be taken.

ERR/2+1

Similar to ERL, except ERR returns a value related to the code of the error rather
than the line in which the error occurred. It is commonly used inside an error
handling routine accessed by an ON ERROR GOTO statement. See Appendix B,
““Error Codes.”’

ERR/2 + 1 =true error code
(true error code — 1)*2=ERR

Sample Program

See ERL.

8/3

TRS-80 MODEL il

INP (port)

Returns a byte-value from the specified port. There are 256 ports, numbered 0-255.
For example

100 PRINT INP(50)
inputs a byte from port 50 and prints the decimal value of the byte.

You do not need to access the Z-80 ports to make full use of the TRS-80.

MEM

Returns the number of unused and unprotected bytes in memory. This function may
be used in the Immediate Mode to see how much space a resident program takes up;
or it may be used inside the program to avert OM (Out of Memory) errors by
allocating less string space, DIMensioning smaller array sizes, etc. MEM requires no
argument.

Example:

100 IF MEM < 80 THEN 900

Enter the command PRINT MEM (in the Immediate Mode) to find out the amount of
memory not being used to store programs, variables, strings, stack, or reserved for
object-files.

8/4

OUT port, value

Outputs a byte value to the specified port. OUT is not a function but a statement
complete in itself. It requires two arguments separated by a comma (no
parenthesis): the port destination and the byte value to be sent.

port and value are in the range 0 to 255.

PEEK((address)

Returns the value stored at the specified byte address (in decimal form). To use this
function, you’ll need to refer to two sections of the Appendix: the Memory Map (so
you’ll know where to PEEK) and the Table of Function Ascll and Graphics Codes
(so you’ll know what the values represent).

If you’re using PEEK to examine object files, you’ll also need a microprocessor
instruction set manual (one is included with the TRS-80 Editor/Assembler
Instruction Manual).

PEEK is valuable for linking machine language routines with Model I11 BASIC
programs. The machine language routine can store information in a certain memory
location, and PEEK may be used inside your BASIC program to retrieve the
information. For example,

A=PEEK (17999)
returns the value stored at location 17999 and assigns that value to the variable A.

Peek may also be used to retrieve information stored with a POKE statement. Using
PEEK and POKE allows you to set up very compact, byte-oriented storage systems.
Refer to the Memory Map in the Appendix to determine the appropriate locations
for this type of storage. See POKE, USR.

POKE address, value

Loads a value into a specified memory location. POKE is not a function but a
statement complete in itself. It requires two arguments: a byte address (in decimal
form) and a value. The value must be between O and 255 inclusive. Refer to the
Memory Map in the Appendix to see which addresses you’d like to POKE.

To POKE (or PEEK) an address above 32767, use the following formula: —1 *
(65536-desired address) = POKE OR PEEK address. For example, to POKE into
address 32769, use POKE — 32767, value.

8/5

TRS-80 MODEL Il

Since the Video Display is memory-mapped, you can output to the Display directly
by POKEing ASCII data into Video RAM. Video RAM is from 15360 to 16383.
Example:

g CLs :

28 FOR M = 15340 TO 163803
30 POKE Ms 191

4@ NEXT M

5 GOTO HE

RUN the program to see how fast the screen is * ‘painted’” white.

Since POKE can be used to store information anywhere in memory, itis very
important when we do our graphics to stay in the range for display locations. If we
POKE outside this range, we may store the byte in a critical place. We could be
POKEing into our program, or even in worse places like the stack. Indiscriminate
POKEing can be disastrous. You might have to reset or power off and start over
again. Unless you know where you are POKEing — don’t.

See PEEK, USR, SET, and CHR$ for background material. Also see the Owners
Section for examples on special uses of POKE.

POS(x)

Returns a number from 0 to 63 indicating the current cursor position on the Display .
Requires a ‘‘dummy argument’’ (any numeric expression).

100 PRINT TAB(40); POS(0)

prints 40 at position 40. (Note that a blank is inserted before the “*4”" to
accommodate the sign; therefore the ‘4’ is actually at position41.) The 0"’ in
“‘POS(0)”’ is the dummy argument.

8/6

USR (x)

This function lets you call a machine-language subroutine and then continue
execution of your BASIC program.

‘“Machine language’’ is the low-level language used internally by your Computer.
It consists of Z-80 microprocessor instructions. Machine-language subroutines are
useful for special applications (things you can’t do in BASIC) and simply because
they can do things very fast (like white-out the Display).

Writing such routines requires familiarity with assembly-language programming
and with the Z-80 instruction set. For more information on this subject, see the
Radio Shack book, 7RS-80 Assembly-Language Programming, by William Barden,
Jr., and the instruction manual for Radio Shack’s EDITOR-ASSEMBLER (26-2002).

Getting the USR routine into memory

1. You should first reserve the area in high memory where the routine will be
located. This is done immediately after power-up by answering the MEMORY
SIZE? question with the address preceding the start address of your USR
routine. For example, if your routine starts at 32700, then type 32699 in
response to MEMORY SIZE?.

2. Then load the routine into memory.

A. Ifitis stored on tape in the SYSTEM format (created with
EDITOR-ASSEMBLER), you must load it via the SYSTEM command, as
described in Chapter 2. After the tape has loaded press to return to
the BASIC immediate mode.

B. Ifitisa short routine, you may simply want to POKE it into high memory.

Telling BASIC where the USR routine starts

Before you can make the USR call, you have to tell BASIC the entry address to the
routine. Simply POKE the two-byte address into memory locations 16526-16527:
least significant byte (LSB) into 16526, most significant byte (MSB) into 16527.

For example, if the entry point is at 32700:
32700 decimal = 7FBC hexadecimal
LSB = BC hexadecimal = 188 decimal
MSB = 7F hexadecimal = 127 decimal
Souse the statements:
POKE 16526, 188
POKE 16527, 127
to tell BASIC that the USR routine entry is at 32700.

8/7

TRS-80 MODEL il

Making the USR call

At the point in your BASIC program where you want to call the subroutine, insert a
statement like

X = USR(N)
where N can be an expression and must have a value between — 32768 and
+ 32767 inclusive. This argument, N, can be used to pass a value to your routine
(see below) or you can simply consider it adummy argument and not use it at all.

When BASIC encounters your X = USR(N) statement, it will branch to the address
stored at 16526-16527. At the point in your USR routine where you want to return
to the BASIC program, insert a simple RET instruction — unless you want to return a
value to BASIC, in which case, see below.

Passing an argument to the USR routine

If you want to pass the USR(N) argument to your routine, then include the following
CALL instruction at the beginning of your USR routine.:

CALLOA7FH
This loads the argument N into the HL register pair as a two-byte signed integer.

Returning an argument from the USR routine

To return an integer value to the USR(N) function, load the value (a two-byte signed
integer) into HL and place the following jump instruction at the end of your routine:
JP @A9AH

Control will pass back to your program, and the integer in HL will replace USR(N).
For example, if the call was
X=USR(N)

Then X will be given the value in HL.

USR routines are automatically allocated up to 8 stack levels or 16 bytes (a high and
low memory byte for each stack level). If you need more stack space, you can save
the BASIC stack pointer and set up your own stack. See SYSTEM, PEEK, and POKE.
Also see the Technical Information Chapter in the Owners Section.

8/8

VARPTR (variable name)

Returns an address-value which will help you locate where the variable name and
its value are stored in memory. If the variable you specify has not been assigned a
value, an FC error will occur when this function is called.

If VARPTR(integer variable) returns address K.
Address K contains the least significant byte (LSB) of 2-byte integer.
Address K + 1 contains the most significant byte (MSB) of integer.

You can display these bytes (two’s complement decimal representation) by
executing a PRINT PEEK (K) and a PRINT PEEK (K + 1).

If VARPTR(single precision variable) returns address K:
(K)* = LsBofvalue
(K +1) = Nextmostsignificant byte (Next MSB)
(K +2) = MSB with hidden (implied) leading one. Most significant
bit is the sign of the number
(K +3) = exponent of value excess 128 (128 is added to the exponent).

If VARPTR(double precision variable) returns K:

(K) = LSB of value

(K+1) = NextMSB

(K+...)= Next MSB

(K +6) = MSB with hidden (implied) leading one. Most significant
bitis the sign of the number.

(K+7) = exponent of value excess 128 (128 is added to the exponent).

For single and double precision values, the number is stored in normalized
exponential form, so that a decimal is assumed before the MSB. 128 is added to the
exponent. Furthermore, the high bit of MSB is used as a sign bit. Itis set to O if the
number is positive or to 1 if the number is negative. See examples below.

You can display these bytes by executing the appropriate PRINT PEEK(x) where x =
the address you want displayed. Remember, the result will be the decimal
representation of byte, with bit 7 (MSB) used as a sign bit. The number will be in
normalized exponential form with the decimal assumed before the MSB. 128 is
added to the exponent,

If VARPTR(string variable) returns K:

K = length of string

(K+ 1) = LSB of string value starting address
(K+2) = MSB of string value starting address
* (K) signifies ‘‘contents of address K”’

The address will probably be in high RAM where string storage space has been set
aside. But, if your string variable is a constant (a string literal), then it will point to
the area of memory where the program line with the constant is stored, in the
program buffer area. Thus, program statements like A$=*"HELLO" do not use string
storage space.

8/9

TRS-80 MODEL Il

For all of the above variables, addresses (K — 1) and (K —2) will store the TRS-80
Character Code for the variable name. Address (K - 3) will contain a descriptor code
that tells the Computer what the variable type is. Integer is 02; single precision is
04; double precision is 08; and string is 03.

VARPTR(array variable) will return the address for the first byte of that element in
the array. The element will consist of 2 bytes if it is an integer array; 3 bytes ifitisa
string array; 4 bytes if it is a single precision array; and 8 bytes if itis a double
precision array.

The first element in the array is preceded by:

1. A sequence of two bytes per dimension, each two-byte pair indicating the
“‘depth’’ of each respective dimension.

A single byte indicating the total number of dimensions in the array.

A two-byte pair indicating the total number of elements in the array.

A two-byte pair containing the ASCII-coded array name.

A one-byte type-descriptor (02 = Integer, 03 = String, 04 = Single-Precision,
08 = Double-Precision).

SNoh W

Item (1) immediately precedes the first element, Item (2) precedes Item (1),
and so on.

The elements of the array are stored sequentially with the first dimension-subscripts
varying ‘‘fastest’’, then the second, etc.

Examples:

A! = 2 will be stored as follows
2 = 10 Binary, represented as .1E2 = .1x2?
Soexponent of Ais 128 + 2 = 130 (called excess 128)

MSB of A is 10000000;
however, the high bit is changed to zero since the value is positive (called hidden or
implied leading one).
So Alis stored as
Exponent (K +3) MSB (K+2) Next MSB (K +1) LSB (K)
130 0 0 0
Al'= — .5 will be stored as
Exponent (K +3) MSB (K +2) Next MSB (K + 1) LSB (K)
128 128 0 0
A!=7 will be stored as
Exponent (K +3) MSB (K +2) Next MSB (K+1) LSB (K)
131 96 0 0
Al=—-T:
Exponent (K + 3) MSB (K +2) Next MSB (K+1) LSB (K)
131 224 0 0

Zero is simply stored as a zero-exponent. The other bytes are insignificant.

|

8/10

9/Editing

You have probably found it is very time consuming to retype long program lines,
simply because of a typo, or maybe just to make a small change.

Model 11l editing features eliminate much of this extra work. In fact, it’s so easy to
alter program lines, you’ ll probably want to experiment with multi-statement lines,
complex expressions, etc.

Commands, subcommands, and special function keys described in this chapter:

EDIT n@)
ENTER OD n@)
n(SPACEBAR O nS)c
n @ @) nK)c
SHIFD® BE)

@

(D
EDIT line number

This command puts you in the Edit Mode. Y ou must specify which line you wish to
edit, in one of two ways:

EDIT line-number Lets you edit the specified line.
If line number is not in use,

or an FC error occurs

EDIT. Lets you edit the current pro-

gram line — last line entered or
altered or in which an error has
occurred.

For example, type in and the following line:

100FOR| = ITO10STEP .5:PRINTI, | [2,1 [3:NEXT
This line will be used in exercising all the Edit subcommands described below.
Now type EDIT 100 and hit (ENTER). The Computer will display:

100m

You are now in the Edit Mode and may begin editing line 100.

9/1

TRS-80 MODEL il

NOTE: EDITing a program line automatically clears all variable values and
eliminates pending FOR/NEXT and GOSUB operations. If BASIC encounters a syntax
error during program execution, it will automatically put you in the EDIT mode.
Before EDITing the line, you may want to examine current variable values. In this
case, you must type Q as your first EDIT command. This will return you to the
command mode, where you may examine variable values. Any other EDIT
command (typing E, pressing ENTER, etc.) will clear out all variables.

ENTER) key

Hitting ENTER) while in the Edit Mode causes the Computer to record all the
changes you’ve made (if any) in the current line, and returns you to the Command
Mode.

n(SPACEBAR

In the Edit Mode, hitting the Space-bar moves the cursor over one space to the right
and displays any character stored in the preceding position. For example, using line
100 entered above, put the Computer in the Edit Mode so the Display shows:

100w

Now hit the Space-Bar. The cursor will move over one space, and the first character
of the program line will be displayed. If this character was a blank, then a blank will
be displayed. Hit the Space-Bar until you reach the first non-blank character:

100Fm

is displayed. To move over more than one space at a time, hit the desired number of
spaces first, and then hit the space-bar. For example, type 5 and hit Space-bar, and
the display will show something like this (may vary depending on how many blanks
you inserted in the line):

100FOR ==

Now type 8 and hit the Space-bar. The cursor will move over 8 spaces to the right,
and 8 more characters will be displayed.

9/2

n

Moves the cursor to the left by n spaces. If no number n is specified, the cursor
moves back one space. When the cursor moves to the left, all characters inits
““path’” are erased from the display, but they are not deleted from the program
line. Using this in conjunction with D or K or C can give misleading Video Displays
of your program lines. So, be careful using it! For example, assuming you’ve used
nSpace-Bar so that the Display shows:

100FORI=1TO10m
type 8 and hit the @Skey. The display will show something like this:

100FORI=m (will vary depending on number of blanks in
your line 100)

SHIFD (V)

Hitting SHIFT and(Dkeys together effects an escape from any of the Insert
subcommands: X, 1 and H. After escaping from an Insert subcommand, you’ll still
be in the Edit Mode, and the cursor will remain in its current position. (Hitting

is another way to exit these Insert subcommands).

L (List Line)

When the Computer is in the Edit Mode, and is not currently executing one of the
subcommands below, hitting L. causes the remainder of the program line to be
displayed. The cursor drops down to the next line of the Display, reprints the
current line number, and moves to the first position of the line. For example, when
the Display shows

100m
hit L (without hitting (ENTER) key) and line 100 will be displayed:

100FORI=1TO10STEP.5:PRINTI, I [2,] {3:NEXT
100m

This lets you look at the line in its current form while you’re doing the editing.

9/3

TRS-80 MODEL lli

X (Extend Line)

Causes the rest of the current line to be displayed, moves cursor to end of line, and
puts Computer in the Insert subcommand mode so you can add material to the end
of the line. For example, using line 100, when the Display shows

100m

hit X (without hitting (ENTER))and the entire line will be displayed; notice that the
cursor now follows the last character on the line:

100FOR|=1TO10STEP .5:PRINTL,1 [2,1 [3:NEXTm

We can now add another statement to the line, or delete material from the line by
using the (X key. For example, type :PRINT**DONE™ at the end of the line. Now hit
ENTER). If you now type LIST 100, the Display should show something like this:

100FOR1=1TO10STEP.5:PRINT1,1{2,1 [3:NEXT:PRINT “DONE”

I (Insert)

Allows you to insert material beginning at the current cursor position on the line.
(Hitting will actually delete material from the line in this mode.) For example,
type and the EDIT 100 command, then use the Space Bar to move over to the
decimal point in line 100. The Display will show:

100FORI=1TO10STEP .m

Suppose you want to change the increment from .5 to .25. Hit the Tkey (don’t hit
ENTER)) and the Computer will now let you insert material at the current position.
Now hit 2 so the Display shows:

100FOR|=1TO10STEP .2m

You’ve made the necessary change, so hit (SHIFT (@ to escape from the Insert
Subcommand. Now hit L key to display remainder of line and move cursor back to
the beginning of the line:

100FORI=1TO10STEP.25:PRINTI, I [2,1 {3: NEXT : PRINT “DONE"
100m

You can also exit the Insert subcommand and save all changes by hitting (ENTER) .
This will return you to Command mode.

9/4

A (Cancel and Start Again)

Moves the cursor back to the beginning of the program line and cancels editing
changes already made. For example, if you have added, deleted, or changed
something in a line, and you wish to go back to the beginning of the line and cancel
the changes already made: first hit SHIFT(E) (to escape from any subcommand you
may be executing); then hit A. (The cursor will drop down to the next line, display
the line number and move to the first program character.)

E (Exit)

Causes Computer to end editing and save all changes made. You must be in Edit
Mode, not executing any subcommand, when you hit E to end editing.

Q (Quit)

Tells Computer to end editing and cancel all changes made in the current editing
session. If you’ve decided not to change the line, type Q to cancel changes and leave
Edit Mode.

H (Hack)

Tells Computer to delete remainder of line and lets you insert material at the current
cursor position. Hitting (H) will actually delete a character from the line in this
mode. For example, using line 100 listed above, enter the Edit Mode and space
over to the last statement, PRINT**DONE’". Suppose you wish to delete this statement
and insert an END statement. Display will show:

100FORI=1TO10STEP.25:PRINTI,1 [2,] {3:NEXT :m
Now type H and then type END. Hit key. List the line:

100FORI=1TO10STEP.25:PRINTI,I 2,1 [3:NEXT:END
should be displayed.

9/5

TRS-80 MODEL lli

nD (Delete)

Tells Computer to delete the specified number n characters to the right of the
cursor. The deleted characters will be enclosed in exclamation marks to show you
which characters were affected. For example, using line 100, space over to the
PRINT command statement:

100FORI=1TO 10STEP .25 'm

Now type 19D. This tells the Computer to delete 19 characters to the right of the
cursor. The display should show something like this:

100FOR1=1TO10STEP .25 IPRINTL I {2,] [3:!m

When you list the complete line, you’ll see that the PRINT statement has been
deleted.

nC (Change)

Tells the Computer to let you change the specified number of characters beginning
at the current cursor position. If you type C without a preceding number, the
Computer assumes you want to change one character. When you have entered n
number of characters, the Computer returns you to the Edit Mode (so you’re not in
the nC Subcommand). For example, using line 100, suppose you want to change
the final value of the FOR-NEXT loop, from ‘10"’ to **15”’. In the Edit Mode, space
over to just before the ‘0”7 in *“10°".

100FORI=1TO im

Now type C. Computer will assume you want to change just one character. Type 5,
then hit L. When you list the line, you’ll see that the change has been made.

100FOR1=1TO15STEP .25:NEXT :END
would be the current line if you’ve followed the editing sequence in this chapter.

The @ does not work as a backspace under the C command in Edit mode. Instead, it
replaces the character you want to change with a backspace. So it should not be
used. If you make a mistake while typing in a change, Edit the line again to correct
it, instead of using 9.

9/6

nSc (Search)

Tells the Computer to search for the nth occurrence of the character ¢, and move the
cursor to that position. If you don’t specify a value for n, the Computer will search
for the first occurrence of the specified character. If character ¢ is not found, cursor
goes to the end of the line. Note: The Computer only searches through characters to
the right of the cursor.

For example, using the current form of line 100, type EDIT 100 (ENTER)) and then
hit 2S: . This tells the Computer to search for the second occurrence of the colon
character. Display should show:

100FORI1=1TO15STEP .25:NEXTm

You may now execute one of the subcommands beginning at the current cursor
position. For example, suppose you want to add the counter variable after the NEXT
statement. Type I to enter the Insert subcommand, then type the variable name, I.
That’s all you want to insert, so hit SHIFT (Pto escape from the Insert subcommand.
The next time you list the line, it should appear as:

100FOR1=1TO 15STEP .25:NEXT|: END

nKc (Kill)

Tells the Computer to delete all characters up to the nth occurrence of character c,
and move the cursor to that position. For example, using the current version of line
100, suppose we want to delete the entire line up to the END statement. Type EDIT
100 (), and then type 2K:. This tells the Computer to delete all characters up
to the 2nd occurrence of the colon. Display should show:

100!FOR1=1TO 15STEP .25 :NEXT |'m

The second colon still needs to be deleted, so type D. The Display will now show:
100 IFOR1=1TO 15 STEP .25 : NEXT |!!:!m

Now hit and type LIST 100 ().

Line 100 should look something like this:
100 END

9/7

