Part II/ BASIC For TRSDOS Version 6 Reference
Manual

Introduction

This part of the manual is about the BASIC language. BASIC for
TRSDOS Version 6 is an “interpreter.” When you run a program, it
executes each statement one at a time. This makes it quick and easy
to use. It also allows you to take advantage of many of TRSDOS
Version 6's features, such as:

® Faster running programs
® Better graphics capabilities
® More print positions on the screen

About this Manual

Notations

This is a reference manual, not a tutorial. We assume you already
know BASIC and are using this manual to quickly find the information
you need.

Section Ill — Operations. This section shows how to load BASIC.
It also demonstrates how to write, run and save a BASIC
program on disk.

Section IV — The BASIC Language. This section includes a
definition for each of BASIC’s keywords (statements and
functions) in alphabetical order. In addition, it shows how to write
a program to store data on disk.

IMPORTANT NOTE: If you have read “Getting Started with TRS-80
BASIC”, you need to know the differences between TRSDOS Version
1 and TRSDOS Version 6 BASIC. Appendix E shows these
differences. These differences will often prevent a BASIC program
written for TRSDOS Version 1 from running under TRSDOS Version
6, unless the program is modified. You also need to know how to use
“disk files.” This is explained in Chapter 5.

CAPITALS material which must be entered exactly as it
appears.

italics words, letters, characters or values you must
supply from a set of acceptable entries.

... (ellipsis) items preceding the ellipsis may be repeated.

X'NNNN’ NNNN is a hexadecimal number.

O’NNNNN’ NNNNN is an octal number.

KEYNAME one of the keys from your keyboard.

2-3

Terms

Terms Used in

buffer

[parameters]

[expressions]

syntax

- /‘\\

a blank space character (ASCII code 32). For
example, in

BASICbBPROG
there are two spaces between BASIC and PROG.

a number between 1 and 15. This refers to an
area in memory that BASIC uses to create and
access a disk file. Once you use a buffer to create
a file, you cannot use it to create or access any
other files; you must first close the file. You may
only access an open file with the buffer used to
open it.

information you supply to specify how a command
is to operate. Parameters enclosed in brackets are
optional.

values you supply for a function to evaluate.
Expressions enclosed in brackets are optional.

a command with its parameter(s), or a function .
with its argument(s). This shows the format to use ‘
for entering a keyword in a program line.

Chapter 7 for Brevity:

line

integer

string

number

dummy number
or dummy string

a numeric value that identifies a BASIC program
line. Each line has a number between 0 and
65529.

any integer expression. It may consist of an
integer, or several integers joined by operators.
Integers are whole numbers between —32768 and
32767.

any string expression. It may consist of a string, or
several strings joined by operators. A string is a
sequence of characters which is to be taken
verbatim.

any numeric expression. It may consist of a
number, or several numbers joined by operators.

a number (or string) used as a parameter to meet
syntactic requirements, but whose value is
insignificant.

2-4

P

Part I is organized this way:
Section 1ll. Operations

Chapter 1.
Chapter 2.

Chapter 3.

Sample Session

Command Mode
Execution Mode

Line Edit Mode

Section V. The BASIC Language

Chapter 4.
Chapter 5.
Chapter 6.
Chapter 7.

BASIC Concepts

Disk Files

Introduction to BASIC Statements and Functions
BASIC Statements and Functions

2-5

Pl

Section IIl/ Operations

Chapter 1/ Sample Session

Loading BASIC

The easiest way to learn how BASIC operates is to write and run a
program. This chapter provides sample statements and instructions to
help familiarize you with the way BASIC works.

The main steps in running a program are:

A) Loading BASIC

B) Typing the program

C) Editing the program

D) Running the program
)

Saving the program on disk
) Loading the program back into memory

mm

After you power up your system and install the diskette, the TRSDOS
Version 6 start-up logo is displayed. Then, the following prompt
appears: Date?

To answer this prompt, type today’s date in this format: DD/MM/YY;
then press (ENTER). For example, for December 1, 1983, type:

12/91/83 (ENTER

The computer converts these numbers to: Thu, Dec 1, 1983 and
displays the message “TRSDOS Ready”. This indicates that you are
at the Operating System level. To load BASIC into the system, type:

BASIC (ENTER

A paragraph with copyright information appears on your screen,
followed by: Ready

You may now begin using BASIC.

Options for Loading BASIC

When loading BASIC, you can also specify a set of options. They are:

BASIC [program] ([F =number of files] [,M = highest memory
location})

Program specifies a program to run immediately after BASIC is
started.

F= specifies the maximum number of data files that may be open at
any one time (from 0-15). If you omit this option, the number of files
defaults to three. Each file you specify uses 564 bytes of memory.

M= specifies the highest memory location for BASIC to use. Omit
this option unless you are going to call assembly-language
subroutines. (In that case, you may want to set the amount of
memory well below the high-memory modules of TRSDOS.) If you

2-9

omit this option, the system allocates all memory up to the HIGHS$
marker to BASIC. HIGHS$ can be adjusted through the MEMORY
library command. See the TRSDOS Reference Manual for more
details.

Examples

TRSDOS Ready
BASIC PAYROLL (F=5) (ENTER

initializes BASIC, then loads and runs the program PAYROLL,; allows
five data files to be open; uses all memory available.

TRSDOS Readvy
BASIC (M=45256) (ENTER

initializes BASIC; allows three data files to be open; sets the highest
memory location to be used by BASIC at 45056.

TRSDOS Readvy
BASIC (M=32788: F=6) (ENTER)

initializes BASIC; sets the highest memory location at 32768, allows
six data files to be open. Notice that the sequence in which the M=
and F= options are specified is irrelevant.

TRSDOS Ready
BASIC

initializes BASIC; allows three data files to be open; uses all memory
available.

Typing the Program

Let's write a small BASIC program. Before pressing (ENTER) after each
line, check the spelling. If you have made any mistakes, use the
key to correct them.

190 A$="WILLIAM SHAKESPEARE WROTE" (ENTER
15 B$="THE MERCHANT OF VENICE" (ENTER
20 PRINT As$i B$ (ENTER

Check your spelling again. If it is still not perfect, enter the line
number where you made the mistake. Then type the entire line again.

For example, suppose you had typed:

15 B#="THE VERCHANT OF VENICE"
To correct line 15, re-type it:

15 B$="THE MERCHANT OF VENICE"
Then type:

RUN

2-10

Your screen should display:

WILLIAM SHAKESPEARE WROTE THE MERCHANT OF
VENICE

BASIC replaced line 15 in the original program with the most recent
line 15.

NOTE: BASIC “reads” your program lines in numerical order. It
doesn't matter if you entered line 15 after line 20; it will still read and
execute 15 before “looking” at 20.

BASIC has a powerful set of commands which allow you to correct
mistakes without having to re-type the entire line. These commands
are discussed in Chapter 3, the “Line Edit Mode.”

Saving the Program on Disk

You can save any of your BASIC programs on disk. To do this, you
assign it a “filespec”.

For example, if you wanted to save the program we just wrote, you
could assign it the filespec “AUTHOR”. Type the following command:

SAVE "AUTHOR" (ENTER

It takes a few seconds for the computer to find’a place on disk to
store our program. When this process is completed, it displays Ready.
The program is now saved on disk.

IMPORTANT NOTE: A filespec can have a maximum of eight
alphanumeric characters. It can also have an optional extension, up to
three characters long. A slash / must be included between the
filespec and the extension. The first character of both the filespec and
the extension must be a letter.

Example
SAVE "AUTHOR/WIL" (ENTER

You may also add a drive number to your filespec by typing a colon :
and the drive number.

Example
SAVE "AUTHOR:1" (ENTER

tells the computer to save “AUTHOR” on the disk in Drive 1.
Otherwise, the computer assumes you to save it on the first available
drive. If you do specify a disk drive, make sure you have a disk in that
drive.

2-11

Loading the Program

If, after writing or running other programs, you wanted to go back and
use this program again, you must “load” it back into memory. To do
this, type: LOAD *“filespec”, R

Example
LOAD "AUTHOR", R (ENTER

tells the computer to load the program "AUTHOR” from disk into
memory; option R tells the computer to run it.

Another way to load and run a program is to type: RUN “filespec”.
RUN automatically loads and runs the program specified by
“filespec”.

The SAVE, LOAD and RUN commands are discussed in more detail
in Chapter 7.

2-12

Chapter 2/
Command And Execution Modes

This chapter describes BASIC's command and execution modes. The
command mode is for typing in program lines and immediate lines.
The execution mode is for executing programs and immediate lines.

Command Mode
Whenever you enter the command mode, BASIC displays the prompt:
Ready

In the command mode, BASIC does not “read” your input until you
complete a “logical line” by pressing ENTER). This is called “line
input”, as opposed to “character input”.

A logical line is a string of up to 255 characters and is always
terminated by pressing (ENTER). Of these 255 characters, 249 are
reserved for the line itself; the other six are reserved for the line
number and the space following the line number.

A physical line, on the other hand, is one line on the display. It
contains a maximum of 80 characters.

For example, if you type 100 R’s and then press (ENTER), you have
two physical lines, but only one logical line.

Interpretation of a Line

BASIC always ignores leading spaces in the line — it jumps ahead to
the first non-space character. If this character is not a digit, BASIC
treats the line as an immediate line. If it is a digit, BASIC treats the
line as a program line.

For example, if you type:

PRINT “THE TIME IS" TIME$
BASIC takes this as an immediate line.
But if you type:

19 PRINT “THE TIME IS" TIME$
BASIC takes this as a program line.

Immediate Lines

An immediate line consists of one or more statements separated by
colons. The line is executed as soon as you press (ENTER). For
example:

Readvy
CLS: PRINT "THE SQUARE ROOT OF Z I8" SQR(Z)

is an immediate line. When you press (ENTER), BASIC executes it.

Program Lines

A program line consists of a line nhumber in the range 0 to 65529,
followed by one or more statemenis separated by colons. When you
press (ENTER), the line is stored in memory, along with any other lines
you have entered this way. The program is not executed until you
type RUN or another execute command. For example:

160 CLS: PRINT "THE SQUARE ROOT OF 2 IS"
SOR(2)

is a program line. When you press (ENTER), BASIC stores it in
memory. To execute it, type:

RUN (ENTER

NOTE: If you include numeric constants in a line, BASIC evaluates
them as soon as you press (ENTER); it does not wait until you RUN the
program. If any numbers are out of range for their type, BASIC
returns an error message immediately after pressing (ENTER).

Special Keys in the Command Mode

Backspaces the cursor, erasing the preceding

or CTRD(H) character in the line. Use this to correct typing
errors before pressing (ENTER). —

SPACE _BAR Enters a blank space character and advances the
CUrsor.

BREAK Interrupts line entry and starts over with a new
line.

CTRL(YD) Line feed — starts a new physical line without

or (V) ending the current logical line.

CAPS Switches the display to either all uppercase or
uppercase/lowercase mode.

ENTER Ends the current logical line. BASIC “takes” the
line.

SHIFT Deletes the current line.

Execution Mode

When BASIC is executing statements (immediate lines or programs),
it is in the execution mode. In this mode, the contents of the video
display are under program control.

Special Keys in the Execution Mode

SHIFD(@) Pauses execution. Press any other key (except -
BREAK) to continue. /\

2-14

BREAK Terminates execution and returns you to command
mode.

ENTER Interprets data entered from the keyboard as a
response to the INPUT statement.

Chapter 3/ Line Edit Mode

This mode enables you to “debug” (correct) programs quickly and
efficiently. It allows you to correct a program line without having to
re-type the entire line.

If your computer encounters a syntax error while executing a
program, it automatically puts you in the “line edit mode.” The display

shows:
Syntax error in line number
Ready
line number

(line number is the program line in which the error occurred.) In this
case, you are ready to use the edit mode commands and
subcommands described later in this Chapter.

However, if you wish to activate the line editor yourself (because you
have noticed a mistake or wish to make a change in a long program
line), type:

EDIT line number (ENTER

This lets you edit the specified line number. (If the line number you
specify has not been used, an “Undefined line number” error occurs.
If you do not have a space after the word EDIT, a “Syntax error”
occurs.)

You may also type:
EDIT . (ENTER

The period after EDIT means that you want to edit the current
program line, the last line entered, the last line altered, or a line in
which an error has occurred. Notice that you need to type a blank
before the period; otherwise, BASIC gives you a “Syntax error”
message.

For example, type the following line and press (ENTER). (To type the

~

exponent sign “ press (CLEARC)).

100 FOR I = 1 TO 1@ STEP ,5: PRINT I, I"2+ I"3:
NEX

This line will be used in exercising all the edit subcommands
described below.

Now type EDIT 100 and press ENTER). The computer displays:
100

This starts the editor. You may now begin editing line 100.

2-17

Special Keys in the Edit Mode

ENTER

Pressing (ENTER) in the edit mode records all the changes you made in
the current line and returns you to the command mode.

Space bar

Pressing the space bar moves the cursor over one space to the right
and displays any character stored in the preceding position. For
example, using line 100 entered above, put the computer in the edit
mode so the display shows:

1090

Now press the space bar. The cursor moves mover one space and
the first character of the program line is displayed. If this character
was a blank, then a blank is displayed. Press the space bar again

until you reach the first non-blank character:

1902 F

is displayed. To move over more than one space at a time, type the
desired number of spaces first, then press the space bar. For
example, type 6 and press the space bar. The display should show
something like this (depending on how many blanks you inserted in
the line):

102 FOR I =

Now type 8 and press the space bar. The cursor moves over eight
spaces to the right, and eight more characters are displayed.

19¢ FOR I =1 TO 1@

L (List Line)

displays the remainder of the program line (unless the computer is
under one of the insert subcommands listed below). The cursor drops
down to the next line of the display, reprints the current line number,
and moves to the first position of the line.

For example, when the display shows
100
press L (without pressing (ENTER)). Line 100 is displayed:

1002 FOR I = 1 TO 19 STEP ,8: PRINT I, 12, I°3:
NEXT 10@

This lets you look at the line in its current form while you're doing the
editing.

T

Insert Subcommand Mode

The insert subcommand mode allows you to add material to a line
while editing it. The three keys you can use to enter this subcommand
mode are X, | and H.

X (Extend Line)

Displays the rest of the current line. Typing (XD also moves the cursor
to the end of the line and puts the computer in the insert
subcommand mode. This enables you to add material to the end of
the line.

For example, using line 100, when the display shows
100

press (X)) (without pressing (ENTER)) and the entire line is displayed,
notice that the cursor now follows the last character on the line:

i¢@ FOR I = 1 70O 19 BSTEP .5: PRINT I, I°2,
I°3: NEXT

We can now add another statement to the line, or delete material
from the line by using the key. For example, type

: PRINT "DONE"
ENTER

at the end of the line. If you typed:
LIST 100
the display should show something like this:

189 FOR I = 1 70O 19 S8TEP .5: PRINT I, I°Z,
I*3: NEXT: PRINT "DONE"™

NOTE: If you want to continue editing the line, press SHIFD(A) to get
out of the insert subcommand mode.

I (Insert)
Inserts material beginning at the current cursor position on the line.
For example, type

EDIT 1@0
ENTER

then use the space bar to move over to the decimal point in line 100.
The display shows:

19¢ FOR I = 1 TO 1@ STEP .

Suppose you want to change the increment from .5 to .25. Press the
(I key (don't press (ENTER)). The computer lets you insert material at

2-19

the current position. Type 2 now, and the display shows:
100 FOR I = 1 TO 1@ STEP .2

You have made the necessary change, so press (SHIFD(A) to escape
from the insert subcommand. Now press to display the remainder
of the line and move the cursor back to the beginning of the line:

100 FOR I = 1 TO 1@ STEP .,25: PRINT I, I"Z:
I°3: NEXT: PRINT "DONE"
100

NOTE: You can also exit the insert subcommand and save all
changes by pressing (ENTER). This returns you to command mode.

H (Hack and Insert)

Deletes the remainder of a line and lets you insert material at the
current cursor position.

For example, using line 100, enter the edit mode and space over until
just before the PRINT “DONE” statement. Suppose you wanted to
delete this statement and insert an END statement. The display
shows:

100 FOR I = 1 TO 1@ STEP .25: PRINT I, I"2;
1°3: NEXT:
Press (H), then type END and press (ENTER). List the line:
100 FOR I = 1 TO 1@ STEP ,25: PRINT I, 12,
I“3: NEXT: END
should be displayed.

NOTE: To continue editing the line, press (SHIFT to get out of the
insert subcommand mode.

A (Cancel and Restart)

Moves the cursor back to the beginning of the program line and
cancels editing changes already made.

For example, if you have added, deleted, or changed something in a
line, and you wish to go back to the beginning of the line and cancel
the changes already made: first press (SHIFD(A) (to escape from any
subcommand you may be executing); then press (A). The cursor
drops down to the next line, displays the line number and moves to
the first character position.

E (Save Changes and Exit)

Ends editing and saves all changes made. You must be in edit mode,
not executing any subcommand, when you press (E) to end editing.

2-20

Q (Cancel and Exit)

Ends editing and cancels all changes made in the current editing
session. If you've decided not to change the line, type (@ to cancel
changes and leave the edit mode.

If a syntax error is detected during program execution, BASIC starts
the editor. To examine variable values, you must press Q before
typing any other command.

nD (Delete)

Deletes the specified number n of characters to the right of the
cursor. The deleted characters appear enclosed in exclamation points.

For example, using line 100, space over to just before the PRINT
statement:

190 FOR I = 1 TO 1@ STEP .25:

Now type 19D. This tells the computer to delete 19 characters to the
right of the cursor. The display should show something like this:

189 FOR I = 1 TO 1® STEP .25: A\PRINT I, I°2,
I°3:\

When you list the complete line, you will see that everything from the
PRINT to the next statement has been deleted.

nC (Change)

Lets you change the specified number of characters beginning at the
current cursor position. If you type C without a preceding number, the
computer assumes you want to change one character. When you
have entered n number of characters, the computer returns you to the
edit mode (so you're not in the nC subcommand).

For example, using line 100, suppose you want to change the final
value of the FOR NEXT loop, from “10” to “15”. In the edit mode,
space over to just before the “0” in “10”.

10¢ FOR I = 1 TO 1

Now press (€). The computer assumes you want to change just one
character. Press (5), then press (L). When you list the line, you will
see that the change has been made.

1002 FOR I = 1 TO 15 STEP .25: NEXT: END

would be the current line if you've followed the editing sequence in
this chapter.

2-21

nSc (Search)

Searches for the nth occurrence of the character ¢, and moves the
cursor to that position. If you don’t specify a value for n, the computer
searches for the first occurrence of the specified character. |f
character ¢ is not found, cursor goes to the end of the line.

NOTE: The computer only searches through characters to the right of
the cursor.

For example, using the current form of line 100 type EDIT 100
(ENTER), then press (2)(8)(=). This tells the computer to search for
the second occurrence of the colon character. The display should
show:

1@ FOR I = 1 7O 15 STEP .23: NEXT

You may now execute one of the subcommands beginning at the
current cursor position. For example, suppose you want to add the
counter variable after the NEXT statement. Type | to enter the insert
subcommand, then type the variable name, |. That's all you want to
insert, so press (SHIFT)(A) to escape from the insert subcommand
mode. The next time you list the line, it should appear as:

182 FOR I = 1 7O 15 STEP .25: NEXT I: END

nKc (Search and ""Kill")

Deletes all characters up to the nth occurrence of character ¢, and
moves the cursor to that position.

For example, using the current version of line 100, suppose we
wanted to delete the entire line up to the END statement. Type EDIT
100 (ENTER), then type (2)(KD(). This tells the computer to delete all
characters up to the 2nd occurrence of the colon.

1@d \FOR I = 1 TO 13 STEP ,23: NEXT IN

should be displayed. The second colon still needs to be deleted, so
type D. The display now shows:

10@ \FOR I = 1 TO 15 STEP .25: NEXT I\\:\
Press and type LIST 100
Line 100 should look something like this:

1@® END

n (=)

Moves the cursor to the left by n spaces. If no number n is given, the
cursor moves back one space. When the cursor backspaces, all
characters in its path are erased from the display, but they are not
deleted from the program. Use the space bar to advance the cursor
forward and re-display the erased characters.

2-22

PN

Section IV/ The BASIC Language

Chapter 4/ BASIC Concepts

This chapter explains how to use the full power of BASIC for
TRSDOS Version 6. This information can help programmers build
powerful and efficient programs. If you are still something of a novice,
you might want to skip this chapter for now, keeping in mind that the
information is here when you need it.

The chapter is divided into four sections:

A. Overview — Elements of a Program. This section
defines many of the terms we will be using in the chapter.

B. How BASIC Handles Data. Here we discuss how BASIC
classifies and stores data. This shows you how to get BASIC to store
your data in its most efficient format.

C. How BASIC Manipulates Data. This gives you an
overview of ali the different operators and functions you can use to
manipulate and test your data.

D. How to Construct an Expression. This topic can help
you in constructing powerful statements instead of using many short
ones.

A- Overview: Elements of a Program

This overview defines the elements of a program.
A program is made up of “statements”; statements may have several
“expressions.”

We will refer to these terms during the rest of this chapter.

Program

A program is made up of one or more numbered lines. Each line
contains one or more BASIC statements. BASIC allows line numbers
from 0 to 65529 inclusive. You may include up to 255 characters per
line, including the line number. You may also have two or more
statements to a line, separated by colons.

* You can type a maximum of 249 characters per line. BASIC
reserves the remaining six characters for the line number and for the
space following the line number.

Here is a sample program:

2-25

Line BASIC Colon between _BASIC statement

r—

1069 CLS:"PRINT "NORMAL MODE..."
119 PRINT "ABCDEFGHIJKLMNOPQRSTUVKWXYZ"
120 FOR I = 1 T0O 100@: NEXT I

130 CLS: PRINT CHR$(23)3% "“DOUBLE-SIZE MODE..."
14¢ PRINT "ABCDEFGHIJKLMNOPQRSTUVMWXYZ"
130 END

When BASIC executes a program, it handles the statements one at a
time, starting with the first and proceeding to the last. Some
statements, such as GOTO, ON . .. GOTO, GOSUB, change this
sequence.

Statements

A statement is a complex instruction to BASIC, telling the computer to
perform specific operations. For example:

GOTO 129

tells the computer to perform the operations of (1) locating line 100,
(2) transferring control to that line and (3) executing the statement(s)
on that line.

END

tells the computer to perform the operation of ending execution of the
program.

Many statements instruct the computer to perform operations with
data. For example, in the statement:

PRINT"SEPTEMBER REPORT"

the data is SEPTEMBER REPORT. The statement instructs the
computer to print the data inside quotes.

Expressions

An expression is actually a general term for data. There are four
types of expressions:

1. Numeric expressions, which are composed of numeric data.
Examples:

{1 + 3.2)/3

D

S*B

3.7682

ABS(X) + RND(2)
SIN(3 + E)

2-26

2. String expressions, which are composed of character data.
Examples:

At

"STRING"

"STRING" + "DATA"

MO$ + "DATA"

MID(A%:2:3) + MIDS("MAN" »1,2)
M + A% + B%

3. Relational expressions, which test the relationship between two
expressions.

Examples:

A=1
At B

4. Logical expressions, which test the logical relationship between
two expressions.

Examples:

A$="YES" AND B$="ND"
C»5 OR M<B OR @3:-2
578 AND 452

Functions

Functions are automatic subroutines. Most BASIC functions perform
computations on data. Some serve a special purpose, such as
controlling the video display or providing data on the status of the
computer. You may use functions in the same manner that you use
any data: as part of a statement.

These are some of BASIC's functions:

INT
ABS
STRINGS

For example, ABS returns the absolute value of a nhumeric
expression. The following example shows how this function works:

PRINT ABS(7%(-35)) (ENTER
35
READY

B- How BASIC Handles Data

BASIC for TRSDOS Version 6 offers several different methods of
handling your data. Using these methods properly can greatly improve
the efficiency of your program. In this section we discuss:

2-27

Ways of Representing Data
Constants
Variables
How BASIC Stores Data
Numeric (integer, single precision, double precision)
String
How BASIC Classifies Constants
How BASIC Classifies Variables
How BASIC Converts Data

Ways of Representing Data

BASIC recognizes data in two forms: directly (as constants), or by
reference to a memory location (as variables).

Constants

All data is input into a program as “constants” — values which are
not subject to change. For example, the statement:

PRINT "1 PLUS 1 EQUALS": £

contains one string constant (1 PLUS 1 EQUALS), and one numeric
constant (2).

In these examples, the constants “input” to the PRINT statement.
They tell PRINT what data to print on the display.

These are more examples of constants:

3.14159 “L.O.SMITH”
1.775E+3 “0123456789ABCDEF”
“NAME TITLE” —123.45E-8
57 “AGE”

Variables

A variable is a place in memory where data is stored. Unlike a
constant, a variable’'s value can change. This allows you to write
programs dealing with changing quantities. For example, in the
statement:

A = "OCCUPATION"

The variable A$ now contains the data OCCUPATION. However, if
this statement appeared later in the program:

A% = "FINANCE"

The variable A$ would no longer contain OCCUPATION. It would now
contain the data FINANCE.

Variables can also store numeric values. For example:
A = 134

2-28

Variable Names

In BASIC, variables are represented by names. Variable names must
begin with a letter, A through Z. This letter may be followed by one or
more characters (digits or letters).

For example:
AM A Al BALANCE EMPLOYEE2
are all valid and distinct variable names.
Variable names may be up to 40 characters long. All characters are
significant in BASIC.
Reserved Words

Certain combinations of letters are reserved as BASIC keywords and
operator names. These combinations cannot be used as variable
names. For example:

OR LEN OPTION

cannot be used as variable names. However, they may be embedded
in a variable name. For example, OPTIONS is a valid variable name.

TRSDOS Version 6 requires that all reserved words be delimited. This
means that you must leave a blank space between a reserved word
and any variables, constants or other reserved words. See Appendix
F for a list of BASIC's reserved words.

Simple and Subscripted Variables

Variables may also be “subscripted” so that an entire list of data can
be stored under one variable name. This method of data storage is
called an array. For example, an array named A may contain these
elements (subscripted variables):

A(0) A1) A2) A@3) A(4)

You may use each of these elements to store a separate data item,
such as:

A(0) = 5.3
A(l) = 7.2
A(2) = 8.3
A(3) = 6.8
A4) = 37

In this example, array A is a one-dimensional array, since each
element contains only one subscript. An array may also be
two-dimensional, with each element containing two subscripts. For
example, a two-dimensional array named X could contain these
elements:

2-29

X(0,0) = 8.6 X(0,1) = 3.5
X(1,0) = 7.3 X(1,1) = 32.6

With BASIC, you may have as many dimensions in your array as your
program space allows. Here is an example of a three-dimensional
array named L which contains these eight elements:

L(0,0,0) = 35233 L(0,1,0) = 96522
L(0,0,1) = 52000 L(0,1,1) = 10255

L(1,0,0) = 33333 L(1,1,0) = 96253
L(1,0,1) = 53853 L(1,1,1) = 79654

BASIC assumes that all arrays contain 11 elements in each
dimension. If you want more elements you must use the DIM
statement at the beginning of your program to dimension the array.

[t

For example, to dimension array L, put this line at the beginning of
the program:

DIM L(1s14+1)

to allow room for two elements in the first dimension; two in the
second, and two in the third for a total of 2 x 2 * 2 = 8 elements.

How BASIC Stores Data

The way BASIC stores data determines the amount of memory it
consumes and the speed in which BASIC can process it.

Numeric Data

You may get BASIC to store all numbers in your program as either

integer, single precision, or double precision. In deciding how to get
BASIC to store your numeric data, remember the tradeoffs. Integers
are the most efficient and the least precise. Double precision is the

most precise and least efficient.

Integers
(Fastest in Computations, Limited in Range)

To be stored as an integer, a number must be whole and in the range
of —32768 to 32767. An integer value requires two bytes of memory
for storage. Arithmetic operations are faster when both operands are
integers.

For example:
1 3200 -2 500 — 12345
can all be stored as integers.

2-30

T

N

Single Precision
(General Purpose, Full Numeric Range)

Single-precision numbers can include up to seven significant digits,
and can represent normalized values* with exponents up to 38, i.e.,
numbers in the range:

[-1 % 10%,-1 x 10" %] [1 x 10%,1 x 107%]

If a number is raised to a power greater than 38, an “Overflow” error
occurs. If it is raised to a power lower than —38, no errors are
generated and program execution continues.

A single-precision value requires four bytes of memory for storage.
BASIC assumes a number is single precision if you do not specify the
level of precision.

* In this manual, normalized value is one in which exactly one digit
appears to the left of the decimal point. For example, 12.3 expressed
in normalized form is 1.23 x 10.

For example:
10.001 — 200034 1.774E6 6.024E 23 123.4567

can all be stored as single-precision values. But even though BASIC
stores a number with up to seven digits of precision, when printing i,
only six digits are shown.

NOTE: When used in a decimal number, the symbol E stands for
“single-precision times 10 to the power of . . ."” Therefore 6.024E - 23
represents the single-precision value:

6.024 x 102

Double Precision
(Maximum Precision, Slowest in Computations)

Double-precision numbers can include up to 16 significant digits, and
can represent values in the same range as that for single-precision
numbers. A double-precision value requires eight bytes of memory for
storage. Arithmetic operations involving at least one double-precision
number are slower than the same operations when all operands are
single precision or integer.

For example:

1010234578
—8.7777651010
3.141592653589793
8.00100708D12

can all be stored as double-precision values.

NOTE: When used in a decimal number, the symbol D stands for
“double precision times 10 to the power of . . .” Therefore

2-31

8.00100708D12 represents the value
8.00100708 x 10'®

Strings

Strings (sequences of characters) are useful for storing non-numeric
information such as names, addresses, or text. You may store ASCl
characters, as well as any of the graphic and non-ASCIl symbols, in a
string. (A list of Character Codes is included in Appendix C).

For example, the data constant:
Jack Brown, Age 38

can be stored as a string of 18 characters. Each character (and
blank) in the string is stored as an ASCII code, requiring one byte of
storage.

BASIC would store the above string constant internally as:

Hex
Code

ASCIH
Char-
acter

A string can be up to 255 characters long. Strings with length zero
are called “null” or “empty”.

How BASIC Classifies Constants

When BASIC encounters a data constant in a statement, it must
determine the type of the constant: string, integer, single precision, or
double precision. First, we will list the rules BASIC uses to classify the
constant. Then we will show you how you can override these rules, if
you want a constant stored differently:

Rule 1
If the value is enclosed in double-quotes, it is a string.
For example:

“YES”
“3331 Waverly Way”
“1234567890"

are all classified as strings.
Rule 2

If the value is not in quotes, it is a number. (An exception to this rule
is during data input by an operator, and in DATA lists. See INPUT,
INKEY$, and DATA)

2-32

For example:

123001
1
—7.3214E + 6

are all numeric data.

Rule 3

Whole numbers in the range of —32768 to 32767 are integers.
For example:

12350
-12
10012

are integer constants.

NOTE: If you enter a number as a constant in response to a
command that calls for an integer, and the number is out of integer
range, BASIC converts the number to single or double precision.
When the number is printed, it appears with a type-declaration tag at
the end.

Rule 4

If the number is not an integer and contains seven or fewer digits, it is
single precision.

For example:

1234567
-1.23
1.3321

are all classified as single precision.
Rule 5

If the number contains more than seven digits, it is double precision.
For example, these numbers:

1234567890123456
—1000000000000.1
2.777000321

are all classified as double precision.

Type Declaration Tags

You can override BASIC’s normal typing criteria by adding the
following “tags” at the end of the numeric constant:

! Makes the number single precision. For example, in the
statement:

2-33

A = 12,345678901234!

BASIC classifies the constant as single precision, and shortens it
to seven digits. However, if you tell BASIC to print the value of A,
only six digits are printed out:

12.3457

E Single-precision exponential format. The E indicates that the
constant is to be multiplied by a specific power of 10. For
example:

A = 1.2ES
stores the single-precision number 120000 in A.
Makes the number double precision. For example, in statement:
PRINT 3%/7

BASIC classifies the first constant as double precision before the
division takes place.

D Double-precision exponential format. The D indicates the
constant is to be multiplied by a specified power of 10. For
example, in:

A = 1,23456789D - !
the double-precision constant has the value 0.123456789.

How BASIC Classifies Variables

When BASIC encounters a variable name in the program, it classifies
it as either a string, an integer, a single-precision number, or a
double-precision number.

BASIC classifies all variable names as single-precision initially. For
example:

AB AMOUNT XY L

are all single precision initially. If this is the first line of your program:
LP = 1.2

BASIC classifies LP as a singie-precision variable.

However, you may assign different attributes 1o variables by using
definition statements at the beginning of your program:

DEFINT - Defines variables as integer

DEFDBL - Defines variables as double-precision

DEFSTR - Defines variables as string

DEFSNG - Defines variables as single-precision. (Since BASIC
classifies all variables as single precision initially

2-34

——

anyway, you would only need to use DEFSNG if one
of the other DEF statements was used).

For example:
DEFSTR L

makes BASIC classify all variables which start with L as string
variables. After this statement, the variables:

L LP LAST

can all hold string values only.

Type Declaration Tags

As with constants, you can always override the type of a variable
name by adding a type declaration tag at the end. The four types of
declaration tags for variables are:

% Integer
! Single precision
Double precision

$ String
For example:
1% FT% NUM% COUNTER%

are all integer variables, regardiess of what attributes have been
assigned to the letters |, F, N, and C.

T! RY! QUAN! PERCENT!

are all single-precision variables, regardless of what attributes have
been assigned to the letters T, R, Q, and P.

X# RR# PREV# LSTNUM#

are all double-precision variables, regardless of what attributes have
been assigned to the letters X, R, P, and L.

Q$ CAS WRD$ ENTRY$

are all string variables, regardless of what attributes have been
assigned to the letters Q, C, W, and E.

Note that any given variable name can represent four different
variables. For example:

AS5# A5! A5% A5%
are all valid and distinct variable names.

One further implication of type declaration: Any variable name
used without a tag is equivalent to the same variable name used with
one of the four tags. For example, after the statement:

2-35

TN

DEFSTR C

the variable referenced by the name C1 is identical to the variable
referenced by the name C1$.

How BASIC Converts Numeric Data

Often your program might ask BASIC to assign one type of constant
to a different type of variable. For example:

A% = 2,34

In this example, BASIC must first convert the single-precision constant
2.34 to an integer in order to assign it to the integer variable A%.

You might also want to convert one type of variable to a different
type, such as:

A% = AY
Al = A%
Al = Al

The conversion procedures are explained on the following pages.

Single or double precision to integer type
BASIC rounds the fractional portion of the number. —

NOTE: The original value must be greater than or equal to — 32768,
and less than 32768.

Examples
A% = 32766.7
assigns A% the value 32767.
A% = 2.,5D3
assigns A% the value 2500.
A% = -123.,45678901234578
assigns A% the value —123.
A% = -32768.5

produces an Overflow Error (out of integer range).

Integer to single or double precision

No error is introduced. The converted value looks like the original
value with zeros to the right of the decimal place.

Examples
Ax = 32767
Stores 32767.000000000000 in A#.

2-36

Al = -1234
Stores —1234.000 in Al.

Double to single precision

This involves converting a number with up to 16 significant digits into
a number with no more than seven digits. BASIC rounds the number
to seven significant digits. Before printing it, BASIC rounds it off to six
digits.
Examples

Al = 1,2345B78B90124567
stores 1.234568 in Al. However, the statement:

PRINT A

displays the value 1.23457, because only six digits are disptayed. The
full seven digits are stored in memory.

Al = 1,3333333333333333
stores 1.333333 in Al

Single to double precision

To make this conversion, BASIC simply adds trailing zeros to the
single-precision number. If the original value has an exact binary
representation in single-precision format, no error is introduced. For
example:

A# = 1,3

stores 1.5000000000000 in A#, since 1.5 does have an exact binary
representation.

However, for numbers which have no exact binary representation, an
error is introduced when zeros are added. For example:

A = 1.3
stores 1.299999952316284 in A#.

Because most fractional numbers do not have an exact binary
representation, you should keep such conversions out of your
programs. For example, whenever you assign a constant value to a
double-precision variable, you can force the constant to be double
precision:

A = 1,3# A% = 1,3D
both store 1.3 in A#.

Here is a special techrique for converting a single precision value to
double precision, without introducing an error into the double-precision

2-37

C- How BASIC

value. It is useful when the single-precision value is stored in a
variable.

Take the single-precision variable, convert it to a string with STRS,
then convert the resultant string back into a number with VAL. That is,
use:

VAL(STR$(single-precision variable))
For example, the following program.

1@ A = 1.3
20 A% = Al
30 PRINT A=®

prints a value of:
,299999952316284
Compare with this program:

10 A 1.3
20 A UAL(STR$ (A1)
30 PRINT A=

which prints a value of:
1.3
The conversion in line 20 causes the value in Al to be stored
accurately in double-precision variable A#.
Illegal Conversions

BASIC cannot automatically convert numeric values to string, or vice
versa. For example, the statements:

A = 1234
A7 = "1234"

are illegal. They would return a “Type mismatch” error. (Use STR$
and VAL to accomplish such conversions.)

Manipulates Data

You have many fast methods you may use to get BASIC to count,
sort, test, and rearrange your data. These methods fall into two
categories:

1. Operators
a. numeric
b. string
c. relational
d. logical

2. Functions

2-38

TS

Operators

An operator is the single symbol or word which signifies some action
to be taken on either one or two specified values referred to as
operands.

In general, an operator is used like this:

operand-1 operator operand-2
6 + 2

The addition operator + connects or relates its two operands, 6 and
2, to produce the result 8.

Operand-1 and -2 can be expressions.
A few operations take only one operand, and are used like this:

operator operand
- 5

The negative operator — acts on single operand 5 to produce the
result negative 5.

Neither 6 + 2 nor —5 can stand alone; they must be used in
statements to be meaningful to BASIC. For example:

A =6 + 2
PRINT -5

Operators fall into four categories:

® Numeric
® String

® Relational
® Logical

based on the kinds of operands they require and the results they
produce.

Numeric Operators

Numeric Operators are used in numeric expressions. Their operands
must always be numeric, and the results they produce is one numeric
data item.

In the description below, we use the terms integer, single-precision,
and double-precision operations. Integer operations involve two-byte
operands, single-precision operations involve four-byte operands, and
double-precision operations involve eight-byte operands. The more
bytes involved, the slower the operation.

There are five different numeric operators. Two of them, sign + and
sign —, are unary, that is, they have only one operand. A sign
operator has no effect on the precision of its operand.

2-39

For example, in the statement:
PRINT =774 +77

the sign operators — and + produce the values negative 77 and
positive 77, respectively.

NOTE: When no sign operator appears in front of a numeric term, +
is assumed.

The other numeric operators are all binary, that is, they all take two
operands.

These operators are, in order of precedence:

"~

Exponentiation

*, | Multiplication, Division
+,- Addition, Subtraction
Exponentiation

The symbol ~ denotes exponentiation. It converts both its operands
to single precision and returns a single-precision result.

NOTE: To enter the ~ operator, press CLEARI(S).
For example:

PRINT 6.3
prints 6 to the .3 power.

Multiplication

The * operator is the symbol for multiplication. Once again, BASIC
uses the precision of the more precise operand to perform the
operation (the less precise operand is converted).

Examples:
PRINT 33 * 11%
integer multiplication is performed.
PRINT 33 * 11.1
single-precision multiplication is performed.
PRINT 12.345678901234567 * 11
double-precision multiplication is performed.
Division
The / symbol is used to indicate ordinary division. Both operands are

converted to single precision or double precision, depending on their
original precision:

2-40

o

® If either operand is double precision, then both are converted to
double precision and eight-byte division is performed.

® [f neither operand is double precision, then both are converted to
single precision and four-byte division is performed.

Examples:
PRINT 3/4
single-precision division is performed.
PRINT 3.8/4
single-precision division is performed.
PRINT 3/1.234536789@1234567
double-precision division is performed.
Addition

The + operator is the symbol for addition. The addition is done with
the precision of the more precise operand (the less precise operand is
converted).

For example, when one operand is integer type and the other is
single precision, the integer is converted to single precision and
four-byte addition is performed. When one operand is single precision
and the other is double precision, the single-precision number is
converted to double precision and eight-byte addition is performed.

Examples:
PRINT 2 + 3
integer addition is performed.
PRINT 3.1 + 3
single-precision addition is performed.
PRINT 1.2345678901234567 + 1
double-precision addition is performed.

Subtraction

The — operator is the symbol for subtraction. As with addition, the
operation is done with the precision of the more precise operand (the
less precise operand is converted).

Examples:
PRINT 33 - 11
integer subtraction is performed.

2-41

PRINT 33 - 11.1
single-precision subtraction is performed.
PRINT 12,345678901234567 - 11

double-precision subtraction is performed.

String Operator

BASIC has a string operator (+) which allows you to concatenate
(link) two strings into one. This operator should be used as part of a
string expression. The operands are both strings and the resulting
value is one piece of string data.

The + operator links the string on the right of the sign to the string on
the left. For example:

PRINT "CATS" + "LOVE" + “MICE"
prints:

CATSLOVEMICE
Since BASIC does not allow one string to be longer than 255
characters, you will get an error if your resulting string is too long.
Relational Operators

Relational operators compare two numerical or two string expressions
to form a relational expression. This expression reports whether the
comparison you set up in your program is true or false. It returns a
—1 if the relation is true; a 0 if it is false.

Numeric Relations

This is the meaning of the operators when you use them to compare
numeric expressions:

< Less than

> Greater than

= Equal to
<> or >< Not equal to
=< or <= Less than or equal to
=> or >= Greater than or equal to

Examples of true relational expressions:

1 < 2
2 <> 5
2 <= 5
2 <= 2
5 > 2
7 = 7

2-42

.

String Relations

The relational operators for string expressions are the same as
above, although their meanings are slightly different. Instead of
comparing numerical magnitudes, the operators compare their ASCli
sequence. This allows you to sort string data:

< Precedes
> Follows
>< oor <> Does not have the same precedence
<= Precedes or has the same precedence
> = Follows or has the same precedence

BASIC compares the string expressions on a character-by-character
basis. When it finds a non-matching character, it checks to see which
character has the lower ASCII code. The character with the lower
ASCII code is the smaller (precedent) of the two strings.

NOTE: Appendix C contains a listing of ASCII codes for each
character.

Examples of true relational expressions:
“A” < “B”

The ASCII code for A is decimal 65; for B it's 66.
“CODE” < “COO0L”

The ASCII code for O is 79; for D it's 68.

If while making the comparison, BASIC reaches the end of one string
before finding non-matching characters, the shorter string is the
precedent. For example:

“TRAIL” < “TRAILER”
Leading and trailing blanks are significant. For example:
CAT <A
ASCII for the space character is 32; for A, it's 65.
“Z-80" < “Z-80A”
;I_'he string on the left is four characters long; the string on the right is
ive.
How to Use Relational Expressions

Normally, relational expressions are used as the test in an IF/THEN
statement. For example:

IF A = 1 THEN PRINT "CORRECT"

BASIC tests to see if A is equal to 1. If it is, BASIC prints the
message.

2-43

1F A% « B% THEN 39

if string A$ alphabetically precedes string B$, then the program
branches to line 50.

IF R$ = "YES" THEN PRINT A%
if R$ equals YES then the message stored as A$ is printed.

However, you may also use relational expressions simply to return the
true or false results of a test. For example:

PRINT 7 = 7

prints — 1 since the relation tested is true.
PRINT "A" > "B"

prints 0 because the relation tested is false.

Logical Operators

Logical operators make logical comparisons. Normally, they are used
in IF/THEN statements to make a logical test between two or more
relations. For example:

IF A = 1 OR C = 2 THEN PRINT X
The logical operator, OR, compares the two relations A = 1and .
C=2

Logical operators may also be used to make bit comparisons of two
numeric expressions.

For this application, BASIC does a bit-by-bit comparison of the two
operands, according to predefined rules for the specific operator.

NOTE: The operands are converted to integer type, stored internally
as 16-bit, two's complement numbers. To understand the results of
bit-by-bit comparisons, you need to keep this in mind.

The following table summarizes the action of Boolean operators in bit
manipulation.

2-44

Meaning of First Second

Operator Operation Operand Operand Result
AND When both bits 1 1 1
are 1, the re- 1 0 0
sults will be 1. 0 1 0
Otherwise, the 0 0 0
result will be 0.
OR Result will be 1 1 1 1
unless both bits 1 0 1
are 0. 0 1 1
0 0 0
NOT Result is oppo- 1 0
site of bit. 0 1
XOR When one of the bits 1 1 0
is 1, the result is 1 0 1
1. Otherwise, the 0 1 1
result is 0. 0 0 0
EQV When both bits are 1 1 1
1 or both bits 1 0 0
are 0,the 0 1 0
result is 1. 0 0 1
IMP The result is 1 1 1 1
unless the first 1 0 0
bit is 1 and the 0 1 1
second bit is 0. 0 0 1

Hierarchy of Operators

When your expressions have multiple operators, BASIC performs the
operations according to a well-defined hierarchy so that results are
always predictable.

Parentheses

When a complex expression includes parentheses, BASIC always
evaluates the expressions inside the parentheses before evaluating
the rest of the expression. For example, the expression:

8- 383-2

is evaluated like this:
3-2=1
8 -1=7

2-45

With nested parentheses, BASIC starts evaluating the innermost level
first and works outward. For example:

4x%(2 - (83— 4)
is evaluated like this:

3-4=—1
2 - (1) =3
4%3 =12

Order of Operations

When evaluating a sequence of operations on the same level of
parentheses, BASIC uses a hierarchy to determine what operation to
do first.

The two listings below show the hierarchy BASIC uses. Operators are
shown in decreasing order of precedence and are executed as
encountered from left to right:

For Numeric Operations:

() (Parentheses)
~ (Exponentiation)
+,— (Unary sign operands [not addition and
subtraction}) .
*,/ (Multiplication and division)
+,— (Addition and subtraction)
<> = <=>=,<>
NOT
AND
OR
XOR
EQV
IMP

For String Operations:

+
<> ===, >

For example, in the line:
X*X+ 5728

BASIC finds the value of 5 to the 2.8 power. Next it multiplies X*X,
and finally it adds the value of 5 to the 2.8. If you want BASIC to
perform the indicated operations in a different order, you must add
parentheses. For example:

X # (X + 5)°2.8
or
X # X + (5~2.8) —

2-46

-

Here’s another example:
IF ¥+ @ OR Y »@ AND Z =1 THEN GOTO 255

The relational operators = and > have the highest precedence, so
BASIC performs them first, one after the next, from left to right. Then
the logical operations are performed. AND has a higher precedence
than OR, so BASIC performs the AND operation before OR.

If the above line looks confusing because you can’t remember which
operator is precedent over which, then you can use parentheses to
make the sequence obvious:

IF ¥ = @ OR ((Y > @) AND (Z = 1)) THEN GOTO Z35

Functions

A function is a built-in sequence of operations which BASIC performs
on data. BASIC functions save you from having to write a BASIC
routine, and they operate faster than a BASIC routine would.

Examples:
SOR (A + B)

tells BASIC to compute the square root of (A + 6).
MID$ (A%,3,2)

tells BASIC to return a substring of the string A$, starting with the
third character, with a length of 2.

BASIC functions are described in more detail in Chapter 7.

If the function returns numeric data, it is a numeric function and may
be used in a numeric expression. If it returns string data, it is a string
function and may be used in a string expression.

D- How to Construct an Expression

Understanding how to construct an expression will help you put
together powerful statements — instead of using many short ones. In
this section we will discuss the two kinds of expressions you may
construct:

e Simple
o Complex

as well as how to construct a function.

2-47

As we have stated before, an expression is actually data. This is
because once BASIC performs all the operations, it returns one data
item. An expression may be string or numeric. It may be composed
of:

e Constants
e Variables
® Operators
e Functions

Expressions may be either simple or complex:

A simple expression consists of a single term: a constant, variable
or function. If it is a numeric term, it may be preceded by an optional
+ or — sign, or by the logical operator NOT.

For example:
+A 33 -5 SQR(8)

are all simple numeric expressions, since they only consist of one
numeric term.

A$ STRINGS (20,A$) “WORD” “M”

are all simple string expressions, since they only consist of one string
term.

Here’s how a simple expression is formed:

TN
CONSTANT
nom

[VARIABLE

1

Y

FUNCTION

A complex expression consists of two or more terms (simple
expressions) combined by operators. For example:

A-1 X+32-Y 1=1 AANDB ABS(B)+LOG(2)

are all examples of complex numeric expressions. (Notice that you
can use the relational expression (1=1) and the logical expression (A
AND B) as a complex numeric expression since both actually return
numeric data.)

A$ + BS “Z" + 2% STRING$(10, “A”) + “M”
are all examples of complex string expressions.

2-48

This is how a complex numeric expression is formed:

SIMPLE -
EXPRESSION

This is how a complex string expression is formed:

Most functions, except functions returning system information, require
that you input either or both of the following kinds of data:

e One or more numeric expressions
® One or more string expressions

This is how a function is formed:

2-49

If the data returned is a number, the function may be used as a term
in a numeric expression. If the data is a string, the function may be
used as a term in a string expression.

SIN(A) STRS$(X) VAL(A) LOG(.53)
are all examples of functions.

2-50

Chapter 5/ Disk Files

You may want to store data on your disk for future use. To do this,
you need to store the data in a “disk file.” A disk file is an organized
collection of related data. It may contain a mailing list, a personnel
record, or almost any kind of information. This is the largest block of
information on disk that you can address with a single command.

To transfer data from a BASIC program to a disk file, and vice-versa,
the data must first go through a “buffer”. This is an area in memory
where data is accumulated for further processing.

With BASIC, you can create and access two types of disk files. The
difference between these two types is that each is created in a
different “mode.” The mode you choose determines what kind of
access you will have to the file: sequential access or direct access.

Sequential-Access Files

With a sequential-access file, you can only access data in the same

order it was stored: sequentially. To read from or write to a particular
section in the file, you must first read through all the contents in the

file until you get to the desired section.

Data is stored in a sequential file as ASCII characters. Therefore, it is
ideal for storing free-form data without wasting space between data
items. However, it is limited in flexibility and speed.

The statements and functions used with sequential files are:

OPEN WRITE# EOF
PRINT# INPUT # LOC
PRINT# USING LINE INPUT# CLOSE

These statements and functions are discussed in more detail in
Chapters 6 and 7.

Creating a Sequential-Access File

1. To create the file, OPEN it in “O” (output) mode and assign it a
buffer number (from 1 to 15).

Example
OPEN "0", 1, "LIST/EMP"

opens a sequential output file named LIST/EMP and gives buffer 1
access to this file.

2. To input data from the keyboard into one or more program
variables, use either INPUT or LINE INPUT. (The difference
between these two statements is that each recognizes a different
set of “delimiters”. Delimiters are characters that define where a
data item begins or ends).

2-51

ST

Example
LINE INPUT,» "NAME? "3 N$
inputs data from the keyboard and stores it in variable N$.

3. To write data to the file, use the WRITE# statement (you can also
use PRINT#, but make sure you delimit the data).

Example
WRITE# 1, N%

writes variable N$ to the file, using buffer 1 (the buffer used to
OPEN the file). Remember that data must go through a buffer
before it can be written to a file.

4. To ensure that all the data was written to the file, use the CLOSE
statement.

Example
CLOSE 1

closes access to the file, using buffer 1 (the same buffer used to
OPEN the file).

Sample Program

19 OPEN "O"y 1, “LIST/EMP" ’A\
29 LINE INPUT “NAME? "iN%$
30 IF N$é = "DONE" THEN GO

4¢ WRITE# 1, N%
5@ PRINT: GOTO 20
6@ CLOSE 1

RUN

NOTE: The file “LIST/EMP” stores the data you input through the
aid of the program, not the program itself (the program
manipulates data). To save the program above, you must assign it
a name using the SAVE command (refer to Chapter 1).

Example
SAVE "PAYROLL"
would save the program under the name “PAYROLL".

NOTE: Every time you modify a program, you must SAVE it again
(you can use the same name); otherwise, the original program
remains on disk, without your latest corrections.

5. To access data in the file, reOPEN it in the “I” (input) mode.
Example
OPEN “I", 1, "LIST/EMP"

2-52

OPENSs the file named LIST/EMP for sequential input, using
buffer 1.

6. To read data from the file and assign it to program variables, use
either INPUT# or LINE INPUT#.

Examples
INPUT® 1, N$

reads a string item into N$, using buffer 1 (the buffer used when
the file was OPENed).

LINE INPUT# 1, N%
reads an entire line of data into N$, using buffer 1.

INPUT# and LINE INPUT# each recognize a different set of
“delimiters” for reading data from the file. Delimiters are characters
that define the beginning or end of a data item. See Chapter 7 for
a detailed explanation of these statements.

Sample Program

1@ OPEN "I", 1+ "LIST/EMP"
20 IF EOF(1), THEN 100
30 INPUT# 1+ N&
o 49 PRINT N$
S¢ GOTO 2@
100 CLOSE

Updating a Sequential-Access File
1. To add data to the file, OPEN it in “E” (extend) mode.
OPEN "E", 1, "LIST/EMP"

opens the file LIST/EMP so that it can be extended. The data you
enter is appended to LIST/EMP.

2. To enter new data to the file, follow the same procedure as for
entering data in “O” mode.

The following program illustrates this technique. It builds Upon the
file we previously created under the name LIST/EMP.

NOTE: Read through the entire program first. If you encounter
BASIC words (commands or functions) that are unfamiliar to you,
refer to Chapter 7 for their definitions.

NEW
1@ OPEN "E", 1, "LIST/EMP"
2@ LINE INPUT "TYPE A NEW NAME OR PRESS <NZ&"3
30 IF N$ = "N" THEN GO
49 WRITE# 1, N$
— S@ GOTO 2@
6@ CLOSE

2-53

N%

If you want the program to print on your display the information
stored in the updated file, add the following lines:

78 OPEN “I"s 1, "LIST/EMP"
8@ IF EOF(1) THEN 20200

9@ INPUT# 1, N

169 PRINT N$

119 GOTO 82

20900 CLOSE

RUN

Once you have RUN this program, SAVE it.
Example

SAVE "PAYROLLZ" ‘saves the new pProgram

Direct-Access Files

With a direct-access file, you can access data almost anywhere on
disk. It is not necessary to read through all the information, as with a
sequential-access file. This is possible because in a direct-access file,
information is stored and accessed in distinct units called “records”.
Each record is numbered.

Creating and accessing direct-access files requires more program
steps than sequential-access files. However, direct-access files are
more flexible and easier to update.

One important note: BASIC allocates space for records in numeric
order. That is, if the first record you write to the file is number 200,
BASIC allocates space for records 0 through 199 before storing
record 200 in the file.

The maximum number of logical records is 65,535. Each record may
contain between 1 and 256 bytes.

The statements and functions used with direct-access files are:

OPEN FIELD LSET/RSET
GET PUT CLOSE
LOC MKD$ MKI1$

MKS$ CVD CVi

CVS

These statements and functions are discussed in more detail in
Chapters 6 and 7.

Creating a Direct-Access File

1. To create the file, OPEN it for direct access in “D” mode (“R” may
also be used. It stands for “random access”, which is simply
another name for direct access).

2-54

- ~

Example
OPENs "D", 1, "LISTING", 32

opens the file named “LISTING”, gives buffer 1 direct access to
the file, and sets the record length to 32 bytes. (If the record length
is omitted, the default is 256 bytes). Remember that data is
passed to and from disk in records.

2. Use the FIELD statement to allocate space in the buffer for the
variables that will be written to the file. This is necessary because
you must place the entire record into the buffer before putting it
into the disk file.

Example
FIELD 1+ 20 AS N$, 4 AS A%$,B AS P%

allocates the first 20 positions in buffer 1 to string variable N$, the
next four positions to A$, and the next eight positions to P$. N$,
A$ and P$ are now “field names”.

3. To move data into the buffer, use the LSET statement. Numeric
values must be converted into strings when placed in the buffer.
To do this, use the “make” functions: MKIi$ to make an integer
value into a string, MKSS$ for a single-precision value, and MKD$
for a double-precision value.

Example

LBET Né=Xs$
LSET A%=MKE$(AMT)

Note: RSET right justifies a string into the buffer. For example, RSET
N$ = X$.

4. To write data from the buffer to a record (within a direct-access
disk file), use the PUT statement.

PUT 1., CODE%

writes the data from buffer 1 to a record with the number CODE%.
(The percentage sign at the end of a variable specifies that it is an
integer variable.)

The following program writes information to a direct-access file:

1@ OPEN "D"s 1, “"LISTING", 32

20 FIELD 1+ 20 AS N$: 4 A5 A%, B AS P$
30 INPUT "2-DIGIT CODEs @ TO END"3 CODEZ
4¢ IF CODEZ = @ THEN 13@

3¢ INPUT "NAME"3 X%

6@ INPUT "AMOUNT"3: AMT

78 INPUT "PHONE"3F TEL®

8@ LSET N$ = X&¢

9@ LSET A% = MKS&(AMT)

2-565

199 LSET P$ = TELS®
11@ PUT 1., CODEZ
129 GOTO 3¢

13¢ CLOSE 1

The two-digit code that you enter in line 30 becomes a record
number. That record number will store the name(s), amount(s) and
phone number(s) you enter when lines 50, 60 and 70 are
executed. The record is written to the file when BASIC executes
the PUT statement in line 110.

After typing this program, SAVE it and RUN it. Then, enter the
following data:

2-DIGIT CODE:s @ TO END?T 20
NAME? SMITH

AMOUNT? 34,55

PHONE? S5B67-9000

2-DIGIT CODE, @ TO END? @

BASIC stored SMITH, 34.55, and 567-9000 in record 20 of file
LISTING.

Accessing a Direct-Access File

1.

OPEN the file in “D” mode (“R” can also be used).
Example
OPEN "D": 1:"FILE",32

Use the FIELD statement to allocate space in the buffer for the
variables that will be read from the file.

Example
FIELD 1+ 20 AS N$, 4 AS A%, B8 AS P%

Use the GET statement to read the desired record from a direct
disk file into a buffer.

Example
GET 1., CODEY
gets the record numbered CODE% and reads it into buffer 1.

Convert string values back to numbers using the “convert”
functions: CVI for integers, CVS for single-precision values, and
CVD for double-precision values.

Example

PRINT N$%
PRINT CUS{(A%)

2-56

The program may now access the data in the buffer.

The following program accesses the direct-access file “LISTING”
(created with the previous program). When BASIC executes line

30, enter any valid record number from “LISTING”. This program
will print the contents of that record.

19 OPEN "D"s 1, "LISTING", 32

29 FIELD 1,20 A5 N%,4 AS A%.,B A5 P%

30 INPUT "Z2-DIGIT CODE, @ TO END"3 CODEZ
35 IF CODEZ = @ THEN 1000

49 GET =1, CODEZ

30 PRINT N&

6@ PRINT USING "$$#.##"35 CUS(A%)

7@ PRINT Ps: PRINT

8¢ GOTO 3@

1000 CLOSE 1

After typing this program, SAVE it and RUN it. When BASIC asks
you to enter a 2-digit code, enter 20 (the record we created
through the previous program). Your display should show:

2-DIGIT CODEs © TO END? 20
SMITH

$34.,35

567-9000

If you entered a record number which is not a part of “LISTING”,
your display would show:

$0.00

If you wanted to go back and update “LISTING”, simply LOAD the
previous program (the one that created “LISTING”) and RUN it.

2-57

Chapter 6/ Introduction To
BASIC Statements And Functions

BASIC is made up of keywords. These keywords instruct the
computer to perform certain operations.

Chapter 7 describes all of BASIC's keywords. This chapter explains
the format used in Chapter 7. It also introduces you to BASIC’s two
types of keywords: statements and functions.

Format for Chapter 7

Keyword

Syntax parameter(s) or (expression(s))

Brief definition of keyword.
Detailed definition of keyword.
Example(s)

Sample Program(s)

This format varies slightly, depending on the complexity of each
keyword. For instance, some keywords are used alone (without
parameters or expressions). Others have several possible syntaxes.
As a general rule, definitions for statements are longer than definitions
for functions. That is because a statement is a complete instruction to
BASIC, while a function is a built-in subroutine which may only be
used as part of a statement.

Some keywords have several sample programs, others don't have
any at all. We added programs to illustrate useful applications which
may not be readily apparent. Remember that this manual is to be
used as a reference, not a tutorial on how to program in BASIC.

IMPORTANT NOTE: BASIC for TRSDOS Version 6 requires that
keywords be delimited by spaces. This means that you must leave a
space between a keyword and any variables, constants or other
keywords. The only exceptions to this rule are characters which are
shown as part of the syntax of the keyword.

For example, if you typed:
DELETE.

BASIC would return a “Syntax error.” You must leave a blank space
between the word DELETE and the period.

For a definition of the terms and notation used in Chapter 7, see page
2-4 of the Introduction.

2-59

Statements

A program is made up of lines; each line contains one or more
statements. A statement tells the computer to perform some operation
when that particular line is executed. For example,

109 STOP

tells the computer to stop executing the program when it reaches line

100.

Statements for assigning values to variables and defining memory

space:
CLEAR

COMMON
DATA

DEFDBL
DEF FN

DEFINT
DEFSNG
DEFSTR
DEF USR
DIM
ERASE
LET

MID$
OPTION BASE

RANDOM
READ

RESTORE
SWAP

clears all variables, allocates memory and
stack space.

passes variables to a CHAINed program.
stores data in your program so that you may
assign it to a variable.

defines variables as double precision.
defines a function according to your
specifications.

defines variables as integers.

defines variables as single precision.
defines variables as strings.

defines the entry point for USR routines.
dimensions an array.

erases an array.

assigns a value to a variable (the keyword
LET may be omitted).

replaces a portion of a string.

declares the minimum value for array
subscripts.

reseeds the random number generator.
reads data stored in the DATA statement and
assigns it to a variable.

restores the DATA pointer.

exchanges the values of variables.

Statements for altering program sequence:

CHAIN

END
FOR/NEXT
GOSUB
GOTO

IF... THEN ... ELSE

ON...GOSUB

loads another program and passes variables
to the current program.

ends a program.

establishes a program loop.

transfers program control to the subroutine.
transfers program control to the specified line
number.

evaluates an expression and performs an
operation if conditions are met.

evaluates an expression and branches to a
subroutine.

2-60

L~

SN

ON...GOTO
RETURN

STOP
WHILE . .. WEND

WAIT

evaluates an expression and branches to
another program line.

returns from a subroutine to the calling
program.

stops program execution.

executes statements in a loop as long as a
given condition is true.

suspends program execution while monitoring
the status of a machine input port.

Statements for storing and accessing data on disk:

CLOSE
FIELD

GET

INPUT#

LINE INPUT#
LSET

OPEN
PRINT#
PRINT# USING

PUT
RSET

WRITE#

closes access to a disk file.

organizes a direct-access buffer.

gets a record from a direct-access file.
inputs data from a disk file.

inputs an entire line from a disk file.

moves data (and left-justifies it) to a field in a
direct-access file buffer.

opens a disk file.

writes data to a sequential disk file.

writes data to a disk file using the specified
format.

puts a record into a direct-access file.
moves data (and right-justifies it) to a field in
a direct-access file buffer.

writes data to a sequential file.

Statements for debugging a program:

CONT
ERL

ERR

ERROR

ON ERROR GOTO
RESUME

TROFF

TRON

continues program execution.

returns the line number where an error
occurred.

returns an error code after an error.
simulates the specified error.

sets up an error-trapping routine.
terminates an error-handling routine.
turns the tracer off.

turns the tracer on.

Statements for inputting or outputting data to the video display or the

line printer:

CLS

INPUT

LINE INPUT
LIST

LLIST
LPRINT
PRINT
WRITE

clears the display.

inputs data from the keyboard.

inputs an entire line from the keyboard.
lists a program to the display.

lists program to line printer.

prints data at the line printer.

prints data to the display.

prints data on the display.

2-61

Statements for performing system functions or entering other modes
of operation:

AUTO automatically numbers program lines.

CALL calls an assembly-language subroutine.

DELETE erases program lines from memory.

DEF USR specifies the starting address of an
assembly-language subroutine.

EDIT edits program lines.

KILL deletes a disk file.

LOAD loads a program from disk.

MERGE merges a disk program with a resident
program.

NAME renames a disk file.

NEW erases a program from RAM.

ouT sends a byte to a machine output port.

POKE writes a byte into a memory location.

RENUM renumbers a program.

RUN executes a program.

SAVE saves a program on disk.

SOUND generates a sound

SYSTEM returns to TRSDOS.

Functions

A function is a built-in subroutine. It may only be used as part of a
statement.

Most BASIC functions return numeric or string data by performing
certain built-in routines. Special print functions are used to control the
video display.

Numeric Functions (return a number):

ABS computes the absolute value.

ASC returns the ASCII code.

ATN computes the arctangent.

CDBL converts to double precision.

CINT returns the largest integer not greater than
the parameter.

CcOSs computes the cosine.

CSNG converts to single precision.

EXP computes the natural exponential.

FIX truncates to whole number.

FRE returns the number of bytes-in memory not
being used.

INSTR searches for a specified string.

INP returns the byte read from a port.

INT returns the largest whole number not greater
than the argument.

LEN returns the length of the string.

LOG computes the natural logarithm.

2-62

-

MEM returns the amount of memory.

PEEK returns a byte from a memory location.
RND returns a pseudorandom number.

SGN returns the sign.

SIN calculates the sign.

SQR calculates the square root.

TAN computes the tangent.

USR calls an assembly-language subroutine.
VAL returns the numeric value of a string.
VARPTR returns an address for a variable or buffer.

String Functions (return a string value):

CHR$ returns the specified character.

DATES returns today’s date.

ERRS$ returns the latest TRSDOS error number and
message.

HEXS$ converts a decimal value to a hexadecimal
string.

LEFTS$ returns the left portion of a string.

MID$ returns the mid-portion of a string.

OCT$ converts a decimal value to an octal string.

RIGHTS returns the right portion of a string.

SPACES returns a string of spaces.

STR$ converts to string type.

STRINGS returns a string of characters.

TIMES returns the time.

Input/Output Functions (perform input/output to the keyboard, display,
line printer or disk files):

INKEY$ returns the keyboard character.

INPUTS returns a string of characters from the
keyboard.

POS returns the cursor column position on the
display.

ROW returns the row position on the display.

SPC prints spaces to the display.

CvD restores data from a direct disk file to double
precision.

CVI restores data from a direct disk file to integer.

CVS restores data from a direct disk file to single
precision.

EOF checks for end-of-file.

INPUTS inputs a string of characters from a sequential
disk file.

LOC returns the current disk file record number.

LOF returns the disk file’'s end-of-file.

MKI$ converts an integer value to a string for
writing it to a direct-access disk file.

MKS$ converts a single-precision number to a string
for writing it to a direct-access file.

MKD$ converts a double-precision value to a string

for writing it to a direct-access file.

2-63

o

Chapter 7/ Statements And Functions

ABS

Function
ABS(number)

Computes the absolute value of number.

ABS returns the absolute value of the argument, that is, the
magnitude of the number without respect to its sign.

If number is greater than or equal to zero, ABS(number)=number. |f
number is less than zero, ABS(negative number) =number.

Example

¥ = ABS(Y)
computes the absolute value of Y and assigns it to X.
Sample Program

199 INPUT "WHAT’S THE TEMPERATURE OUTSIDE

(DEGREES F)}"§ TEMP

110 IF TEMP < @ THEN PRINT "THAT'S" ABS(TEMP)
"BELOW ZERO! BRR!": END

120 IF TEMP = @ THEN PRINT "ZERO DEGREES! MITE
COLD!": END

13@ PRINT TEMP "DEGREES ABOVE ZERO? BALMY!":
END

2-65

ASC

Function

ASC(string)

Returns the ASCII code for the first character of string.

The value is returned as a decimal number. If string is null, an “lllegal
function call” error occurs.

Example
PRINT ASC("A")
prints 65, the ASCII code for “A”.

Sample Programs

ASC can be used to make sure that a program is receiving the proper
input. Suppose you've written a program that requires the user to
input hexadecimal digits 0-9, A-F. To make sure that only those
characters are input, and exclude all other characters, you can insert
the following routine.

182 INPUT "ENTER A HEXADECIMAL YALUE
(B-9,:A4-F)"iN$

11® A = ASC(N®%) ‘det ASCII code

12¢ IF AX47 AND A<S38 OR A:B4 AND A<{71 THEN
PRINT “"OK.,": GOTO 1e0@

130 PRINT "WALUE NOT OKR." : GOTO 1090

ASC can also be used to program the special function keys, as in the
following program.

18@ CLS : PRINT "Enter ANY Kevboard Character
119 IN$ = INKEY$: IF IN$% = "" THEN GOTO 110
120 & = ASC(IN®)

130 IF A = 129 THEN IN% CHR$(13) + "F1 KEY" +

CHR&(13)

149 IF A = 13¢ THEN IN$ = CHR$(13) + "FZ KEY" +
CHR$(13)

150 IF A = 131 THEN IN$% = CHR$(13) + "F3 KEY" +
CHR$(13)

16¢ PRINT IN%3
17¢ GOTO 110
182 END

2-66

P

ATN

AUTO

Function
ATN(number)

Computes the arctangent of number in radians.

ATN returns the angle whose tangent is number. The result is always
single precision, regardless of number’s numeric type.

To convert this value to degrees, multiply ATN(number) by 57.29578.
Example

¥o= ATN(Y/3)
computes the arctangent of Y/3 and assigns the value to X.

Statement
AUTO [line number][,increment]

Automatically generates a line number every time you press (ENTER).
Immediately following the line number, you can enter your text for that
line.

AUTO begins numbering at /ine and displays the next line using
increment. The default for both values is 10. A period (.) can be
substituted for line. In this case, BASIC uses the current line number.

IF AUTO generates a line number that has already been used, it
displays an asterisk after the number. To save the existing line, press
ENTER) immediately after the asterisk. AUTO then generates the next
line number.

To turn off AUTO, press BRERK). The current line is canceled and
BASIC returns to command level.

2-67

CALL

Examples
AUTO
generates lines 10, 20, 30, 40.
AUTD 109, S50
generates lines 100, 150, 200, 250 . . .

Statement
CALL variable [(parameter list)]

Transfers program control to an assembly-language subroutine stored
at variable.

Variable contains the address where the subroutine starts in memory.
Variable may not be an array variable.

Parameter list contains the values that are passed to the external
subroutine. Parameter list may contain only variables.

A CALL statement with no parameters generates a simple Z-80
“CALL” instruction. The corresponding subroutine should return with a
simple “RET".

The method for passing parameters depends upon the number of
parameters to pass:

1. If the number of parameters is less than or equal to 3, they
are passed in the registers. HL contains the address pointing
to parameter 1. DE contains the address pointing to
parameter 2. BC contains the address pointing to parameter
3.

2. If the number of parameters is greater than 3, they are
passed as follows:

HL contains the address pointing to parameter 1.
DE contains the address pointing to parameter 2.

BC points to the low byte of a contiguous data block
containing parameters 3 through n (that is, to the low byte of
parameter 3).

2-68

N

CDBL

Note that with this scheme, the subroutine must know how many
parameters to expect in order to find them. The calling program is
responsible for passing the correct number of parameters.

When accessing parameters in a subroutine, remember that they are
pointers to the actual arguments passed.

NOTE: The number, type and length of the parameters in the calling
program must match with the parameters expected by the subroutine.
This applies to BASIC subroutines, as well as those subroutines
written in assembly language.

See also USR and VARPTR.
Example

119 MYROUT = &HDQO®
120 CALL MYROUT(I»JK)

We assume that D000 is the address for an assembly-language
routine. The values of |, J, and K (which we also assume were given
elsewhere) are passed to that routine.

Function
CDBL(number)

Converts number to double precision.

CDBL returns a 17-digit value. This function may be useful if you want
to force an operation to be performed in double precision, even
though the operands are single precision or integers.

Sample Program

210 A=454.67

229 PRINT A3 CDBL(A)

RUN

454,67 454.6700134277344
Ready

2-69

CHAIN

Statement
CHAIN [MERGE] “filespec” [,[line] [,ALL] [,DELETE line-line]]

Loads a BASIC program named filespec, chains it to a “main”
program, and begins running it.

Filespec must have been saved in ASCII format before you can
CHAIN it. To do this, use SAVE with the ‘A’ option.

Line is the first line to be run in the CHAINed program. If omitted,
execution begins at the first program line of the CHAINed program.

The ALL option passes every variable in the main program to the
chained program. If omitted, the main program must contain a
COMMON statement to pass variables. If you will be CHAINing
subsequent programs (and passing variables), each new program
must contain a COMMON statement.

The MERGE option “overlays” the lines of filespec with the main
program. See MERGE to understand how BASIC overlays (merges)
program lines.

The DELETE option deletes lines in the overlay so that you can
MERGE in a new overlay.

Examples
CHAIN "PROG2"

loads PROG2, chains it to the main program currently in memory, and
begins executing it.

CHAIN "SUBPROG/BAS", ALL

loads, chains and executes SUBPROG/BAS. The values of all the
variables in the main program are passed to SUBPROG/BAS.

Sample Program 1

19 REM THIS PROGRAM DEMONSTRATES CHAINING
USING COMMON TO PASS VARIABLES.
20 REM SAVE THIS MODULE ON DISK AS "PROGL"
USING THE A OPTION,
32 DIM A®(Z) ,B$(2)
49 COMMON A$ () »B& ()
50 A%(1)="UARIABLES IN CDMMON MUST BE ASSIGNED *

2-70

P

B® A$(2)="YALUES BEFORE CHAINING"

70 B(l)="":Bs(Z2)=""

B® CHAIN "PROGZ"

8¢ PRINT : PRINT B#${(1): PRINT : PRINT B$(Z):
PRINT

100 END

Save this program as “PROG1”, using the ‘A’ option (Type: SAVE
“filespec’’, A). Type NEW, then enter the following program.

19 REM THE STATEMENT "DIM A&(Z),B$(2)" HMAY
ONLY BE EXECUTED ONCE.

20 REM HENCE, IT DOES NOT APPEAR IN THIS
MODULE.

39 REM SAVE THIS MODULE ON THE DISK AS "PROGZ"
USING THE A OPTION.

4¢ COMMON A®() +B$ ()

S50 PRINT: PRINT A$(1)3As$(2)

B2 B$(1)="NDTE HOW THE OPTION OF SPECIFYING A
STARTING LINE NUMBER®

7@ B${(2)="WHEN CHAINING AVOIDS THE DIMENSION
STATEMENT 1IN ‘PROG1’."

80 CHAIN "PROG1" .80

99 END

Save this program as “PROG2”, using the ‘A’ option. Load PROG1
and run it. Your screen should display:

YARIABLES IN COMMON MUST BE ASSIGNED VALUES
BEFORE CHAINING, NOTE HOW THE OPTION OF
SPECIFYING A STARTING LINE NUMBER WHEN
CHAINING AYOIDS THE DIMENSION STATEMENT 1IN
‘PROGL .

Type NEW and this program:
Sample Program 2

1¢ REM THIS PROGRAM DEMONSTRATES CHAINING
USING THE MERGE AND ALL OPTIONS,

20 A$="MAINPROG"

32 CHAIN MERGE "OVURLAYL"™, 1020, ALL

49 END

Save this program as “MAINPROG”, using the ‘A’ option. Enter NEW,
then type:

1200 PRINT A%$3" HAS CHAINED TO OURLAYL1."

1010 A$="0OURLAY1L"

1020 B$="DURLAYZ"

1830 CHAIN MERGE “OWRLAYZ2", 1008®. ALL » DELETE
1020-1040

1904e END

2-71

CHR$

Save this program as “OVRLAY1", using the ‘A’ option. Enter NEW,
then type:

1220 PRINT A$3 " HAS CHAINED TO ":iB$i","
1010 END

Save this program as “OVRLAY2”, using the ‘A’ option. Load
MAINPROG and run it. Your screen should display:

MAINPROG HAS CHAINED TO OVRLAY1L.
OURLAY1 HAS CHAINED TO DBVRLAYZ.

NOTE

The CHAIN statement with the MERGE option leaves the files
open and preserves the current OPTION BASE setting.

If the MERGE option is omitted, CHAIN does not preserve
variable types or user-defined functions for use by the chained
program. That is, any DEFINT, DEFSNG, DEFDBL, DEFSTR, or
DEF FN statements containing shared variables must be restated
in the chained program.

When using the MERGE option, user-defined functions should be
placed before any CHAIN MERGE statements in the program.
Otherwise, the user-defined functions will be undefined after the
merge is complete.

Function
CHR$(code)

Returns the character corresponding to an ASCII or control code.

This is the inverse of the ASC function. CHR$ is commonly used to
send a special character to the display.

Examples
PRINT CHR$(35)

prints the character corresponding to ASCII code 35 (the character
is #).

2-72

P

CINT

PRINT CHR$(1G6)

puts the display into its black-on-white mode, also called reverse
video mode. PRINT CHR$(28) returns it to white-on-black and
converts all reverse video characters into graphics characters. See
Appendix C for more information.

Sample Program

The following program lets you investigate the effect of printing codes
32 through 255 on the display. (Codes 0-31 represent certain control
functions.)

10@ CLS

11@ INPUT *TYPE IN THE CODE (32-253)"3% C
120 PRINT CHR$(C)

130 GOTO 11@

For a complete list and discussion of output to the video display, see
the Character Codes table in Appendix C. See also the sample
program given for the ASC function of BASIC.

Function
CINT(number)

Converts number to integer representation.
CINT rounds the fractional portion of number to make it an integer.

For example, PRINT CINT(1.5) returns 2; PRINT CINT(— 1.5) returns
— 2. The result is a two-byte integer.

Sample Program

PRINT CINT(17.63)
18
Ready

2-73

CLEAR

Statement
CLEAR [,memory location] [,stack space]

Clears the value of all variables and CLOSEs all open files.

Memory location must be an integer. It specifies the highest memory
location available for BASIC. The default is the current top of memory
(as specified when BASIC was loaded or by the location of HIGHS).
This option is useful if you will be loading a machine-language
subroutine, since it prevents BASIC from using that memory area.

Stack space must also be an integer. This sets aside memory for
temporarily storing internal data and addresses during subroutine calls
and during FOR/NEXT loops. The default is 512 bytes or one-eighth
of the memory available, whichever is smaller. An “Out of memory”
error occurs if there is insufficient stack space for program execution.

NOTE: BASIC allocates string space dynamically. An “Out of string
space” error occurs only if no free memory is left for BASIC.

Since CLEAR initializes all variables, you must use it near the
beginning of your program, before any variables have been defined
and before any DEF statements.

Examples:
CLEAR

clears all variables and closes all files.
CLEAR 45000

clears all variables and closes all files; makes 45000 the highest
address BASIC may use to run your programs.

CLEAR: B1202, 200

clears all variables and closes all files; makes 61000 the highest
address BASIC may use to run your programs, and allocates 200
bytes for stack space.

2-74

CLOSE

Statement
CLOSE [buffer, ... |

Closes access to a file.

Buffer is a number from 1 - 15 used to OPEN the file. If no buffers
are specified, BASIC closes all open files.

This command terminates access to a file through the specified
buffer. If a buffer was not assigned in a previous OPEN statement,
then

CLOSE Ekuffer
has no effect.

Do not remove a diskette which contains an open file. CLOSE the file
first. This is because the last records may not have been written to
disk yet. Closing the file writes the data, if it hasn't already been
written.

See also OPEN and the chapter on ‘Disk Files’.
Examples
CLOSE 1, 2, 8

terminates the file assignments to buffers 1,2, and 8. These buffers
can now be assigned to other files with OPEN statements.

CLOSE FIRSTYZ + COUNTY

terminates the file assignment to the buffer specified by the sum
FIRST% + COUNT%.

2-75

CLS

COMMON

Statement
CLS

Clears the screen and moves the cursor to the upper-left corner. All
characters on the screen are erased.

Sample Program

S4¢ CLS

330 FOR I = 1 70 24

360 PRINT STRINGS (79,:33)
370 NEXT 1

380 GOTO 540

Statement
COMMON variable, . ..

Reserves space for variables so they can be passed to a CHAINed
program.

COMMON may appear anywhere in a program, but we recommend
using it at the beginning.

The same variable cannot appear in more than one COMMON
statement. To specify array variables, append “()” to the variable
name. If all variables are to be passed, use CHAIN with the ALL
option and omit the COMMON statement.

NOTE: array variables used in a COMMON statement must have
been declared in a DIM statement.

2-76

P

CONT

Example

99 DIM D(3d)
100 COMMON A By Cy D) GH
11@ CHAIN "PROG3": 10

line 100 passes variables A, B, C, D and G$ to the CHAIN command
in line 110.

See also CHAIN.

Statement
CONT

Resumes program execution.

You may only use CONT if the program was stopped by the (BREAK
key, a STOP or an END statement in the program.

CONT is primarily a debugging tool. During a break or stop in
execution, you may examine variable values (using PRINT) or change
these values. Then type CONT (ENTER); execution continues with the
current variable values.

You cannot use CONT after editing your program lines or otherwise
changing your program. CONT is also invalid after execution has
ended normally.

Example

1@ INPUT A, By C

20 K=A"2

30 L=B"3/ .2

44 STOP

5@ M=C+40*K+100: PRINT M

Run this program. (To enter the ", press (CLEAR (3).) You will be
prompted with:

Type:
1, 2, 3 (ENTER

2-77

COS

The computer displays:
Break in 4o
You can now type any immediate command.
For example:
PRINT L
displays 30.7692. You can also change the value of A, B, or C.
For example:
C =4
changes the value of C in the program. Type:
CONT
your screen displays: 144,
See also STOP.

Function
COS(number)

Computes the cosine of number.

COS returns the cosine of number in radians. The number must be
given in radians. When number is in degrees, use COS(number *
.01745329).

The result is always single precision.
Examples
Y = COS(X * ,@1745329)
stores in Y the cosine of X, if X is an angle in degrees.
PRINT COS(5.8) - COS(85 % ,42)
prints the arithmetic (not trigonometric) difference of the two cosines.

2-78

CSNG

Function
CSNG(number)

Converts number to single precision.

if number is double precision, when its single-precision value is
printed, only six significant digits are shown. BASIC rounds the
number in this conversion.

Example

PRINT CSNG(.1453885509)
prints .145389
Sample Program

280 Ux = B76.,2345678B#%

290 PRINT Usi CSNG(U%)

RUN

B76.23435678000001 876,233
Ready

2-79

CVD, CVI, CVS

Function
CVD(eight-byte string)
CVS(four-byte string)
CVi(two-byte string)

Convert string values to numeric values.

These functions let you restore data to numeric form after it is read
from disk. Typically, the data has been read by a GET statement, and
is stored in a direct access file buffer.

CVD converts an eight-byte string to a double-precision number. CVS
converts a four-byte string to a single-precision number. CVI converts
a two-byte string to an integer.

CVD, CVI, and CVS are the inverses of MKD$, MKI$, and MKSS$,
respectively.

Examples

Suppose the name GROSSPAYS$ references an eight-byte field in a
direct-access file buffer, and after GETting a record, GROSSPAY$
contains an MKD$ representation of the number 13123.38. Then the
statement

A = CUD(GROSSPAYS)

assigns the numeric value 13123.38 to the double-precision variable
A#.

Sample Program

This program reads from the file “TEST/DAT”, which is assumed to
have been previously created. For the program that creates the file,
see MKD$, MKI$, and MKS$.

1429 OPEN "D"» 1y "TEST/DAT", 14

1430 FIELD 1+ 2 AS I1%: 4 AS IZ2%, B AS I3%
1449 GET 1

143¢ PRINT CVYIC(I1$), CUS(IZ%), CUD(I3%)
1469 CLOSE

NOTE: GET without a record number tells BASIC to get the first
record from the file, or the record following the last record accessed.

2-80

7

//—\

DATA

Statement
DATA constant, ...

Stores numeric and string constants to be accessed by a READ
statement.

This statement may contain as many constants (separated by
commas) as will fit on a line. Each will be read sequentially, starting
with the first constant in the first DATA statement, and ending with the
last item in the last DATA statement.

Numeric expressions are not allowed in a DATA list. If your string
values include leading blanks, colons, or commas, you must enclose
these values in double quotation marks.

DATA statements may appear anywhere it is convenient in a
program. The data types in a DATA statement must match up with
the variable types in the corresponding READ statement, otherwise a
“Syntax error” occurs.

Examples

1349 DATA NEW YORK, CHICAGO: LOS ANGELES:
PHILADELPHIAs DETROIT

stores five string data items. Note that quote marks aren’t needed,
since the strings contain no delimiters and the leading blanks are not
significant.

1350 DATA 2.72, 3.14159, ¢.0174533, 57.29578
stores four numeric data items.
1360 DATA "SMITH: T.H." s, 38, "THORN: J.R.", 41

stores both types of constants. Quote marks are required around the
first and third items because they contain commas (commas are
delimiters within data fields).

Sample Program

NEW

18 PRINT "CITY", "STATE", "ZIP"

20 READ C$.5%,7

30 DATA "DENVER ", COLORADO+ 80211

4@ PRINT C%$:5%,2

This program READS string and numeric data from the DATA
statement in line 30.

2-81

DATES$

Function
DATES

Returns today’s date.

The operator sets the date when TRSDOS is started up.
(This system supports dates between January 1, 1980 and December
31, 1987).

During a program, if you request the date, BASIC displays it in this
fashion:

©3/12/83
Sample Program

1298 PRINT "Inwventory Check:"

1192 IF DATE$% = "@01/31/80" THEN PRINT "“Todavy 1is
the last dav of January 1980, Time to
rerform monthly inventory.": END

2-82

AT

P

DEFDBL/INT/SNG/STR

Statement
DEFDBL Jetter, . ..
DEFINT letter, . . .
DEFSNG letter, . . .
DEFSTR letter, . . .

Defines any variables beginning with letter(s) as: (DBL) double
precision, (INT) integer, (SNG) single precision, or (STR) string.

NOTE: A type declaration character always takes precedence over a
DEF statement.

Examples

19 DEFDBL L-P

classifies all variables beginning with the letters L through P as
double-precision variables. Their values include 17 digits of precision,
though only 16 are printed out.

12 DEFSTR A
classifies all variables beginning with the letter A as string variables.
1@ DEFINT I-N,» W.Z

classifies all variables beginning with the letters | through N, W and Z
as integer variables. Their values are in the range — 32768 to 32767.

1@ DEFSNG I+ Q-T

classifies all variables beginning with the letters | or Q through T as
single-precision variables. Their values include seven digits of
precision, though only six are printed out.

2-83

DEF FN

Statement
DEF FN function name [(variable, . . .)] =function definition

Defines function name according to your function definition.

Function name must be a valid variable name. The type of variable
used determines the type of value the function will return. For
example, if you use a single-precision variable, the function will
always return single-precision values.

Variable represents those variables in function definition that are to
be replaced when the function is called. If you enter several variables,
separate them by commas.

Function definition is an expression that performs the operation of the
function. A variable used in a function definition may or may not
appear as variable. If it does, BASIC uses its value to perform the
function. Otherwise, it uses the current value of the variable.

Once you define and name a function (by using this statement), you
can call it and BASIC performs the associated operations.

Examples
DEF FNR = RND(99)+9

defines a function FNR to return a random value between 10 and 99.
Notice that the function can be defined with no arguments.

212 DEF FNW# (A#,B#)=(A%-B#)x(As-Dx)
280 T = FNW#(I#, %)

defines function FNW# in line 210. Line 280 calls that function and
replaces parameters A# and B# with parameters |# and J#. (We
assume that 1# and J# were assigned values elsewhere in the
program.)

NOTE: Using a variable as a parameter in a DEF FN statement has
no effect on the value of that variable. You may use that variable in
another part of the program without interference from DEF FN.

2-84

S

P

DEF USR

Statement
DEF USR(digit]=address

Defines the starting address for the assembly-language subroutine
identified by digit.

A program may contain any number of DEF USR statements, allowing
access to as many subroutines as necessary. However, only 10
definitions may be in effect at one time.

If you omit digit, BASIC assumes USR0.
See also USR, VARPTR and CALL.
Examples

DEF USR3 = &H7DQO

assigns the starting address 7D00 hexadecimal, 32000 decimal, to the
USRS call. When your program calls USR3, control branches to your
subroutine beginning at 7D00.

DEF USR = (BASE + 16)
assigns the starting address of BASE + 16 to the USR@ subroutine.

2-85

DELETE

Statement
DELETE linel - line2

Deletes from line1 through line2 of a program in memory.

A period (“.”) can be substituted for either line? or line2 to indicate
the current line number.

Examples
DELETE 70
deletes line 70 from memory. If there is no line 70, an error will occur.
DELETE 5@-11@
deletes lines 50 through 110 inclusive.
DELETE -4¢
deletes all program lines up to and including line 40.
DELETE -,

deletes all program lines up to and including the line that has just
been entered or edited.

DELETE .
deletes the program line that has just been entered or edited.

2-86

DIM

Statement
DIM array (dimension(s)), array (dimension(s)), . ..

Sets aside storage for arrays with the dimensions you specify.

Arrays may be of any type: string, integer, single precision or double
precision, depending on the type of variable used to name the array.
If no type is specified, the array is classified as single precision.

When you create the array, BASIC reserves space in memory for
each element of the array. All elements in a newly- created array are
set to zero (numeric arrays) or the null string (string arrays).

NOTE: The lowest element in a dimension is always zero, unless
OPTION BASE 1 has been used.

Arrays can be created implicitly, without explicit DIM statements.
Simply refer to the desired array in a BASIC statement. For example,

A(S) = 300

creates array A and assigns element A(5) the value of 300. Each
dimension of an implicitly-defined array is 11 elements deep,
subscripts 0 — 10.

Examples
DIM AR(100)

sets up a one-dimensional array AR(), containing 101 elements:
AR(0), AR(1), AR(2), . .., AR(98), AR(99), and AR(100).

NOTE: The array AR() is completely independent of the variables
AR.

DIM L1IZ(B:253)

sets up a two-dimensional array L1%(,), containing 9 x 26 integer
elements. L1%(0,0), L1%(1,0), L1%{2,0), . . . ,L1%(8,0),

L1%(0,1), L1%(1,1), . . . ,L1%(8,1), . . . ,L1%(0,25), L1%(1,25), . . .,
L1%(8.25).

Two-dimensional arrays like AR(,) can be thought of as a table in
which the first subscript specifies a row position, and the second
subscript specifies a column position:

2-87

D@ 21 Q2 B3 Ve @423 @24 P25
1.0 11 142 1,3 e 1423 1:24 1:25
719 741 742 743 Ve 723 724 7125
8.0 8.1 82 8.3 RN 823 8.:24 8,25
DIM B1(2,3:8)s CR(Z2:+5:8)» LY$(53,2)

sets up three arrays:

B1(,,) and CR (,,) are three-dimensional, each containing 3+6+9
elements.

LY(,) is two-dimensional, containing 513 string elements.

EDIT

Statement
EDIT line

Enters the edit mode so that you can edit line.
See the chapter on the “Edit Mode” for more information.
Examples
EDIT 100
enters edit mode at line 100.
EDIT .

enters edit mode at current line.

2-88

-

Pl

END

END

Statement

Ends execution of a program.

This statement may be placed anywhere in the program. It forces
execution to end at some point other than the last sequential line.

An END statement at the end of a program is optional.

Sample Program

40
50
55
GO

INPUT 51 5Z
GOsUB 1e0
PRINT H

END

100 H=5QR(G1%*81 + B52*82)
119 RETURN

line 60 prevents program control from “crashing” into the subroutine.
Line 100 may only be accessed by a branching statement, such as
GOSUB in line 50.

2-89

EOF

Function

EOF(buffer)

Detects the end of a file.

This function checks to see whether all characters up to the
end-of-file marker have been accessed, so you can avoid “Input past
end” errors during sequential input.

EOF(buffer) returns 0 (false) when the EOF record has not been read
yet, and —1 (true) when it has been read. The buffer number must
access an open file.

Sample Program

The following sequence of lines reads numeric data from DATA/TXT
into the array A(). When the last data character in the file is read,
the EOF test in line 30 “passes”, so the program branches out of the
disk access {oop.

1470 DIM ACL1DO) ‘ASSUMING THIS I8 A SAFE VALUE
1488 OPEN "I",s 1 "DATA/THT®

14990 I% = 0

153@9 IF EOF{(1) THEN 1340

151@ INPUT#1, ACIZ)

182e 17 = 1% + 1

1530 GOTO 130¢

1549 REM PROG. CONT. HERE AFTER DISK INPUT

2-90

.

T

ERASE

Statement
ERASE array, ...

Erases one or more arrays from a program.

This lets you to either redimension arrays or use their previously
allocated space in memory for other purposes.

If one of the parameters of ERASE is a variable name which is not
used in the program, an “lllegal Function Call” occurs.

Example

430 ERASE CsF
469 DIM F(38)

line 450 erases arrays C and F. Line 460 redimensions array F.

2-91

ERL

Statement
ERL

Returns the line in which an error has occurred.

This function is primarily used inside an error-handling routine. If no
error has occurred when ERL is called, line number 0 is returned.
Otherwise, ERL returns the line number in which the error occurred. If
the error occurred in the command mode, 65535 (the largest number
representable in two bytes) is returned.

Examples
PRINT ERL
prints the line number of the error.
E = ERL
stores the error’s line number for future use.

For an example of how to use ERL in a program, see ERROR.

2-92

o

PN

ERR

ERRSS$

Statement
ERR

Returns the error code (if an error has occurred).

ERR is only meaningful inside an error-handling routine accessed by
ON ERROR GOTO. See Appendix D for a list of Error Codes.

Example
IF ERR = 7 THEN 1220 ELSE 2000

branches the program to line 1000 if the error is an “Out of Memory”
error (code 7); if it is any other error, control goes instead to line
2000.

For an example of how to use ERR in a program, see ERROR.

Function
ERRSS

Returns a system error number and message.

This function returns the number and description of the TRSDOS
error that caused the latest BASIC disk-related error. If no TRSDOS
error has occurred, ERRS$ returns a null string.

Example
PRINT "THE LATEST TRSDOS ERROR IS "3 ERRS®

prints the latest error number message.

2-93

ERROR

Statement
ERROR code

Simulates a specified error during program execution.

Code is an integer expression in the range 0 to 255 specifying one of
BASIC's error codes.

This statement is mainly used for testing an ON ERROR GOTO
routine. When the computer encounters an ERROR code statement, it
proceeds as if the error corresponding to that code had occurred.
(Refer to Appendix D for a listing of Error Codes and their meanings).

Example
ERROR 1

a “Next Without For” error (code 1) “occurs” when BASIC reaches
this line.

Sample Program

112 ON ERROR GOTO 400

1290 INPUT "WHAT IS YOUR BET"3 B

130 IF B:5@@¢ THEN ERROR 21 ELSE GOTO 4zZ@

4@ IF ERR = 21 THEN PRINT "HOUSE LIMIT IS
$3000"

419 IF ERL = 13@ THEN RESUME 500

429 5 = G+B

439 GOT0 120

509 PRINT "THE TOTAL AMOUNT OF YOUR BET I8"i§

31¢ END

This program receives and totals bets until one of them exceeds the
house limit.

TN

2-94

EXP

EXP(number)

Function

Calculates the natural exponent of number.

Returns e (base of natural logarithms) to the power of number. This is

the inverse of the LOG function; therefore, number =

EXP(LOG(number)). The number you supply must be less than or

equal to 87.3365.
The result is always single precision.
Example

PRINT EXP(-2)
prints the exponential value .135335.
Sample Program

31@ INPUT "NUMBER"S N
320 PRINT "E RAISED 7O THE N POWER IS"

EXP(N)

2-95

FIELD

Statement
FIELD buffer, length AS field name, . ..

Divides a direct-access buffer into one or more fields. Each field is
identified by field name and is the /ength you specity.

Field name must be a string variable.

This divides a direct file buffer so that you can send data from
memory to disk and disk to memory. FIELD must be run prior to GET
or PUT.

Before “fielding” a buffer, use an OPEN statement to assign that
buffer to a particular disk file. (The direct access mode, i.e., OPEN
“D”, ... must be used.) The sum of all field lengths should equal the
record length assigned when the file was OPENed.

You may use the FIELD statement any number of times to “re-field” a
file buffer. “Fielding” a buffer does not clear the buffer's contents; only
the means of accessing it. Also, two or more field names can
reference the same area of the buffer.

See also the chapter on “Disk Files”, OPEN, CLOSE, PUT, GET,
LSET, and RSET.

Example
FIELD 3, 128 AS A%, 128 AS B$

tells BASIC to assign two 128-byte fields to the variables A$ and B$.
If you now print A$ or B$, you will see the contents of the field. Of
course, this value would be meaningless unless you have previously
used GET to read a 256-byte record from disk.

NOTE: All data — both strings and numbers — must be placed into
the buffer in string form. There are three pairs of functions (MKI$/CVI,
MKS$/CVS, and MKD$/CVD) for converting numbers to strings and
strings to numbers.

FIELD 3+ 16 AS NM$%, 25 A5 AD%:, 1@ AS CY$,» 2 AS
5T$, 7 AS ZIP$%

assigns the first 16 bytes of buffer 3 to field NM$; the next 25 bytes to
ADS; the next 10 to CY$; the next 2 to ST$; and the next 7 to ZP$.

2-96

P

FIX

Function
FIX(number)

Returns the truncated integer of number.

All digits to the right of the decimal point are simply chopped off, so
the resultant value is a whole number. For a negative, non-whole
number X, FIX(X) = INT(X) + 1. For all others, FIX(X) = INT(X).

The result is the same precision as the argument (except for the
fractional portion).

Examples

PRINT FIX (2.8)
prints 2.

PRINT FIX(-2.6)

prints -2.

2-97

FOR/NEXT

Statement
FOR variable = initial value TO final value [STEP increment]
NEXT [variable]

Establishes a program loop.

A loop allows for a series of program statements to be executed over
and over a specified number of times.

BASIC executes the program lines following the FOR statement until
it encounters a NEXT. At this point, it increases variable by STEP
increment. If the value of variable is less than or equal to final value,
BASIC branches back to the line after FOR, and repeats the process.
If variable is greater than final value, it completes the loop and
continues with the statement after NEXT.

If increment has a negative value, then the final value of variable is
actually lower than the initial value. BASIC always sets the final value
for the loop variable before setting the initial value.

NOTE: BASIC skips the body of the loop if initial value times the sign
of STEP increment exceeds final value times the sign of STEP
increment.

Example

20 FOR H=1 TO -19® STEP -2
3¢ PRINT H
49 NEXT H

the initial value of H times the sign of STEP increment is greater than
the final value of H times the sign of STEP increment, therefore
BASIC skips the body of the loop. (The sign of STEP increment is
negative in this case.)

Sample Program

828 I=5

830 FOR I = 1 TQ I + B
849@ PRINT I3

830 NEXT

RUN

2-98

this loop is executed ten times. It produces the following output:
1 2 3 4 5 6 7 8 9 10

Nested Loops

FOR/NEXT loops may be “nested”. That is, a FOR . .. NEXT loop
may be placed within the context of another FOR . .. NEXT loop.

The NEXT statement for the inside loop must appear before the
NEXT for the outside loop. If nested loops have the same end point, a
single NEXT statement may be used for all of them.

Sample Program

g8® FOR I = 1 TO 3

899 PRINT "OUTER LOOP"
9¢9 FOR 4 = 1 TO 2

919 PRINT "INNER LOOP"
929 NEXT J

930 NEXT 1

This program performs three “outer loops” and within each, two
“inner loops”.

The NEXT statement can be used to close nested loops by listing the
counter variables (but make sure not to type the variables out of
order). For example, delete line 920 and change 930 to:

NEXT J» 1

NOTE: In nested loops, if the variable(s) in the NEXT statement is
omitted, the NEXT statement matches the most recent FOR
statement.

2-99

FRE

GET

Function
FRE(dummy number) or (dummy string)

Returns the number of bytes in memory not being used by BASIC.

NOTE: FRE forces a "garbage collection” before returning the number
of free bytes. This may take up to one and a half minutes. Using FRE
periodically results in shorter delays for each garbage collection.

Examples
PRINT FRE("44")

prints the amount of memory left.
PRINT FRE(44)

prints the amount of memory left.

Statement
GET buffer [,record]

Gets a record from a direct-access disk file and places it in a buffer.
Before using GET, you must OPEN the file and assign it a buffer.

When BASIC encounters GET, it reads the record number from the
file and places it into the buffer. The actual number of bytes read
equals the record length set when the file is OPENed.

If record is omitted, BASIC gets the next record (after the last GET)
and reads it into the buffer.

2-100

N

GOSUB

Examples
GET 1

gets the next record into buffer 1.
GET 1, 25

gets record 25 into buffer 1.

Statement
GOSUB line

Goes to a subroutine, beginning at line.

You can call subroutine as many times as you want. When the
computer encounters RETURN in the subroutine, it returns control to
the statement which follows GOSUB.

GOSUB is similar to GOTO in that it may be preceded by a test
statement. Every subroutine must end with a RETURN.

Example

GOSUB 1000
branches control to the subroutine at 1000.
Sample Program

26¢@¢ GOSUB Z28e

279 PRINT "BACK FROM SUBROUTINE": END
28¢ PRINT "EXECUTING THE SUBROUTINE®
290 RETURN

transfers control from line 260 to the subroutine beginning at line 280.
Line 290 instructs the computer to return to the statement immediately
following GOSUB.

2-101

GOTO

Statement
GOTO line

Goes to the specified line.

When used alone, GOTO line results in an unconditional (automatic)
branch. However, test statements may precede the GOTO to effect a
conditional branch.

You can use GOTO in the command mode as an alternative to RUN.
This lets you pass values assigned in the command mode to
variables in the execute mode.

Example

GOTO 100
transfers control automatically to line 100.
Sample Program

10 READ R

28 IF R = 13 THEN END
38 PRINT "R="iR

40 A=3.14*R"2

30 PRINT "AREA ="3iA
6@ GOTO 1@

7% DATA 54712 13
RUN

line 10 reads each of the data items in line 60; line 50 returns
program control to line 10. This enables BASIC to calculate the area
for each of the data items, until it reaches item 13.

NOTE: To enter the ~ symbol, press (CLEAR) ().

2-102

N

HEX$

Function
HEXS$(number)

Calculates the hexadecimal value of number.

HEXS$ returns a string which represents the hexadecimal value of the
argument. The value returned is like any other string: it cannot be
used in a numeric expression.That is, you cannot add hex strings.
You can concatenate them, though.

Examples

PRINT HEX$(30), HEX$(50), HEX$(9d)
prints the following strings:

1E 32 5A

e = HEX$(X/16)

Y$ is the hexadecimal string representing the integer quotient X/16.

IF...THEN.. . ELSE

Statement
IF expression THEN statement(s) or line
[ELSE statement(s) or line]

Tests a conditional expression and makes a decision regarding
program flow.

If expression is true, control proceeds to the THEN statement or line.
If not, control jumps to the matching ELSE statement, line, or down to
the next program line.

2-103

Examples
IF ¥ » 127 THEN PRINT "QUT OF RANGE" : END

passes control to PRINT, then to END if X is greater than 127. If X is
not greater than 127, control jumps down to the next line in the
program, skipping the PRINT and END statements.

If A < B THEN PRINT "A < B" ELBE PRINT "B < A"

tests the first expression, if true, prints “A < B”. Otherwise, the
program jumps to the ELSE statement and prints “B < A",

IF X = @ AND ¥ <3 @ THEN ¥ = X + 18¢

assigns the value X + 180 to Y if both expressions are true.
Otherwise, control passes directly to the next program line, skipping
the THEN clause.

IF A% = "YES" THEN 21@ ELSE IF A% = "NO" THEN
a49e ELSE 37¢

branches to line 210 if A$ is YES. If not, the program skips over to
the first ELSE, which introduces a new test. If A$ is NO, then the
program branches to line 400. If A$ is any value besides NO or YES,
the program branches to line 370.

Sample Program

IF THEN ELSE statements may be nested. However, you must take
care to match up the IFs and ELSEs. (If the statement does not
contain the same number of ELSE'’s and IF’s, each ELSE is matched
with the closest unmatched IF.)

1@4@ INPUT "ENTER TWO NUMBERS"S A, B

105¢ IF A <= B THEN IF A < B THEN PRINT A3
ELSE PRINT "NEITHER"i ELSE PRINT Bj

1060 PRINT "IS SMALLER THAN THE OTHER"

This program prints the relationship between the two numbers
entered.

2-104

SR

TN

INKEY$

INP

Function
INKEYS$S

Returns a keyboard character.

Returns a one-character string from the keyboard without having to
press (ENTER). If no key is pressed, a null string (length zero) is
returned. Characters typed to INKEY$ are not echoed to the display.

INKEYS$ is invariably put inside some sort of loop. Otherwise a
program execution would pass through the line containing INKEY$
before a key could be pressed.

Example

18 A% = INKEY®
20 IF A% = "" THEN 10

This causes the program to wait for a key to be pressed.

Function
INP(port)

Returns the byte read from a port.
INP is the complementary function of the OUT statement.

Port may be any integer from 0@ to 255. For information on assigned
ports, see the Technical Reference Manual.

Example
180 A=INP(42)

2-105

INPUT

Statement
INPUT [prompt string;] variable1, variable2, . ..

Inputs data from the keyboard into one or more variables.

When BASIC encounters this statement, it stops execution and
displays a question mark. This means that the program is waiting for
you to type data.

INPUT may specify a list of string or numeric variables, indicating
string or numeric data items to be input. For instance, INPUT X$, X1,
Z$, Z1 calls for you to input a string literal, a number, another string
literal, and another number, in that order.

The number of data items you supply must be the same as the
number of variables specified. You must separate data items by
commas.

Responding to INPUT with too many items, or with the wrong type of
value (including numeric type), causes BASIC to print the message
“?Redo from start”. No values are assigned until you provide an
acceptable response.

If a prompt string is included, BASIC prints it, followed by a question
mark. This helps the person inputting the data to enter it correctly. If
instead of a semicolon, you type a comma after prompt string, BASIC
suppresses the question mark when printing the prompt. Prompt
string must be enclosed in quotes. It must be typed immediately after
INPUT.

Examples

INPUT Y%
when BASIC reaches this line, you must type any number and press
before the program will continue.

INPUT SENTENCE$

when BASIC reaches this line, you must type in a string. The string
wouldn't have to be enclosed in quotation marks unless it contained a
comma, a colon, or a leading blank.

2-106

P

TN

INPUT#

INPUT "ENTER YOUR NAME AND AGE (NAME. AGE) "}
N& s A

would print a message on the screen which would help the person at
the keyboard to enter the right kind of data.

Sample Program

5S¢ INPUT "HOW MUCH DO YOU WEIGH"3 X
B@ PRINT "ON MARS YOU WOULD WEIGH ABDUT"
CINT(X * ,3B) "PDUNDS."

Statement
INPUT# buffer, variable, . ..

Inputs data from a sequential disk file and stores it in a program
variable.

Buffer is the number used when the file was OPENed for input.

Variable contains the variable name(s) that will be assigned to the
item(s) in the file.

With INPUT#, data is input sequentially. That is, when the file is
OPENed, a pointer is set to the beginning of the file. The pointer
advances each time data is input. To start reading from the beginning
of the file again, you must close the file buffer and re-OPEN it.

INPUT# doesn't care how the data was placed on the disk —
whether a single PRINT# statement put it there, or whether it

required ten different PRINT# statements. What matters to INPUT# is
the position of the terminating characters and the EOF marker.

When inputting data into a variable, BASIC ignores leading blanks.
When the first non-blank character is encountered, BASIC assumes it
has encountered the beginning of the data item.

The data item ends when a terminating character is encountered or
when a terminating condition occurs. The terminating characters vary,
depending on whether BASIC is inputting to a numeric or string
variable.

2-107

INPUTS$

Numeric values: BASIC begins input at the first character which is
neither a space nor a carriage return. It ends input when it encounters
a space, carriage return, or a comma.

String values: BASIC begins input with the first character which is
neither a space nor carriage return. It ends input when it encounters a
carriage return or comma. One exception to this rule: If the first
character is a quotation mark("), the string will consist of all
characters between the first quotation mark and the second. Thus, a
guoted string may not contain a quotation mark as a character.

If the end-of-file is reached when a numeric or string item is being
INPUT, the item is terminated.

Examples
INPUT#1,: A4B

sequentially inputs two numeric data items from disk and places them
in A and B. Buffer #1 is used.

INPUT#4, A%, B%, C%

sequentially inputs three string data items from disk and places them
in A$, B$, and C$. Buffer #4 is used.

Statement
INPUTS(number [,buffer))

Inputs a string of characters from either the keyboard or a sequential
disk file.

Number is the number of characters to be input. It must be a value in
the range 1 to 255. Buffer is a buffer which accesses a sequential
input file.

INPUTS$(number) inputs a string of characters from the keyboard.
When the program reaches this line, it stops until you (or any
operator) type number characters. (You don’t need to press to
signify end-of-line.) The character(s) you type are not displayed on
the screen. Any character, except BREAK), is accepted for input. No
characters are echoed.

2-108

//\

Pl

o ~

INPUT$(number, buffer) inputs a string from a sequential disk file.
Buffer is the buffer associated with that disk file.

Examples
A% = INPUT$(S)

assigns a string of five keyboard characters to A$. Program execution
is halted until the operator types five characters.

A% = INPUT$(11.:3)

assigns a string of 11 characters to A$. The characters are read from
the disk file associated with buffer 3.

Sample Programs

This program shows how you could use INPUTS to have an operator
input a password for accessing a protected file. By using INPUTS, the
operator can type in the password without anyone seeing it on the
video display. (To see the full file specification, run the program, then
type PRINT F$.)

110 LINE INPUT "TYPE IN THE FILESPEC/EXT": F$%

12@ PRINT “TYPE IN THE PASSWORD -- MUST TYPE 8
CHARACTERS: "3

130 P = INPUT®(B)

149 F$ = F$ + "." + P$

In the program below, line 100 OPENs a sequential input file (which
we assume has been previously created). Line 200 retrieves a string
of 70 characters from the file and stores them in T$. Line 300
CLOSEs the file.

189 OPEN "I", 24 “TEST/DAT™
200 T¢ = INPUT$(7@,2)
3¢9 CLOSE

2-109

INSTR

Function
INSTR((integer,] string1, string2)

Searches for the first occurrence of string2 in string1, and returns the
position at which the match is found.

Integer specifies a position in string1. If used it must be a value in the
range 1 to 255.

This function lets you search through a string to see if it contains
another string. If it does, INSTR returns the starting position of the
substring in the target string; otherwise, it returns zero. Note that the
entire substring must be contained in the search string, or zero is
returned.

Optional integer sets the position for starting the search. If omitted,
INSTR starts searching at the first character in string1.

Examples
In these examples, A$ = “LINCOLN":
INSTR(A$, "INC")
returns a value of 2.
INSTR(AS, "12")
returns a zero.
INSTR(A%, "LINCOLNABRAHAM™")
returns a zero. For a slightly different use of INSTR, look at:
INSTR (3, "1232123", "12")
which returns 5.
Sample Program

The program below uses INSTR to search through the addresses
contained in the program’s DATA lines. It counts the number of
addresses with a specified county zip code (761—) and returns that

SN

2-110

TN

P ~

INT

number. The zip code is preceded by an asterisk to distinguish it from
the other numeric data found in the address.

3680 RESTORE

3790 COUNTER = @

399 READ ADDRESGS

395 IF ADDRESS$ = "$END" THEN 4190

4900 IF INSTR(ADDRESSS, "*761") <> ¢ THEN CODUNTER
COUNTER + 1 ELSE 39¢

4¢3 GOTO 39¢

419 PRINT “"NUMBER OF TARRANT COUNTY ., TX
ADDRESSES IS" COUNTER: END

42¢ DATA "585¢ GORHAM DRIVE.: BURLESON, TX

*76148"

43¢ DATA "71 FIRSTFIELD ROAD, GAITHERSBURG, MD
*20760"

449 DATA "1000 TWO TANDY CENTER, FORT WORTH.
X *78102"

459 DATA "1BG33 SOUTH CENTRAL EXPREGSHAY
RICHARDSON, TX *735080"
46¢ DATA "$END"

Function
INT(number)

Converts number to integer value.

This function returns the largest integer which is not greater than the
number. Number may be an expression.

The result has the same precision as the argument except for the
fractional portion. Number is not limited to the range ~32768 to
32767.

Examples

PRINT INT(79.8%)
prints 79.

PRINT INT (-12.,11)
prints —13.

2-111

KILL

LEFT$

Statement
KILL “filespec”

“Kills” (deletes) filespec from disk.

You may KILL any type of disk file. However, if the file is currently
OPEN, a “File already open” error occurs. You must CLOSE the file
before deleting it.

Example
KILL "FILE/BAS"

deletes this file from the first drive which contains it.
KILL "DATA:2"

deletes this file from Drive 2 only.

Function
LEFT$(string,integer)

Returns the leftmost integer characters of string.

If integer is equal to or greater than LEN (string), the entire string is
returned.

Examples:

PRINT LEFT$("BATTLESHIPS", B)
prints BATTLE.

PRINT LEFT$("BIG FIERCE DOG", 2@)

since BIG FIERCE DOG is less than 20 characters long, the whole
phrase is printed. N

2-112

LEN

Sample Program

749 A% = "TIMOTHY®
759 B% = LEFT®{A%,s 3)
760 PRINT B$: "--THAT'S SHORT FOR "3 A%

When this is run, BASIC prints:
TIM--THAT’S SHORT FOR TIMOTHY

Line 750 gets the three leftmost characters of A$ and stores them in
B$. Line 760 prints these three characters, a string, and the original
contents of AS.

Function
LEN(string)

Returns the number of characters in string.
Examples
¥ = LEN(SENTENCE$)
gets the length of SENTENCES$ and stores it in X.
PRINT LEN("CAMBRIDGE") + LEN("BERKELEY")
prints 17.

2-113

LET

Statement
[LET] variable = expression

Assigns the value of expression to variable.

BASIC doesn’t require assignment statements to begin with LET, but
you might want to use LET to be compatible with versions of BASIC
that do require it.

Examples
LET A% = "A ROSE IS A ROSE"
LET Bl = 1,23
LET ¥ = X - Z1

In each case, the variable on the left side of the equals sign is
assigned the value of the constant or expression on the right side.

Sample Program

55¢ P = 1@01: PRINT "P =" P
36@ LET P = 20@1: PRINT "NOW P = "P

2-114

i

s

LINE INPUT

Statement
LINE INPUT[prompt string;] string variable

Inputs an entire line (up to 254 characters) from the keyboard.

LINE INPUT is a convenient way to input string data without having to
worry about accidental entry of delimiters (commas, quotation marks,
etc.).

LINE INPUT (the space is not optional) is similar to INPUT, except:

— The computer does not display a question mark when waiting for
input.

— Each LINE INPUT statement can assign a value to only one
variabie.

— Commas and quotes can be used as part of the string input.
— Leading blanks are not ignored — they become part of variable.

The only way to terminate the string input is to press (ENTER).

Some situations require that you input commas, quotes, and leading
blanks as part of the data. LINE INPUT serves well in such cases.

Examples:
LINE INPUT A%
inputs A$ without displaying any prompt.
LINE INPUT "LAST NAME, FIRST NAME? "i N$%

displays a prompt message and inputs data. Commas do not
terminate the input string, as they would in an INPUT statement.

You may abort a LINE INPUT statement by pressing (BREAK). BASIC
returns to command level and displays Ready. Typing CONT resumes
execution at LINE INPUT.

2-115

LINE INPUT#

Statement
LINE INPUT# buffer, variable

Inputs an entire line of data from a sequential disk file to a string
variable.

Buffer is the number under which the file was OPENed.

This statement is useful when you want to read an ASClI-format
BASIC program file as data, or when you want to read in data without
following the usual restrictions regarding leading characters and
terminators.

LINE INPUT# reads everything from the first character up to:

— the end-of-file
— the 255th data character

Other characters encountered — quotes, commas, leading blanks —
are included in the string.

Example
If the data on disk looks like this:

19 CLEAR 500
20 OPEN "I", 1, "PROG"

then the statement
LINE INPUT#®1, A%

could be used repetitively to read each program line, one at a time.

2-116

LIST

Statement
LIST [startline]-[endline]

Lists a program in memory to the display.

Startline specifies the first line to be listed. If omitted, BASIC starts
with the first line in your program.

Endline specifies the last line to be listed. If omitted, BASIC ends with
the last line in your program.

You can substitute period (.) for either startline or endline to signify
current line number.

Examples
LIST

displays the entire program. To stop the automatic scrolling, press
SHIFT)(@). This freezes the display. Press any key to continue the
listing.

LIST S0

displays line 50.
LIST 50-85

displays lines in the range 50-85.
LIST .-

displays the program line that has just been entered or edited, and all
higher-numbered lines.

LIST -Z2Z27

displays all lines up to and including 227.

2-117

LLIST

Statement
LLIST [startline]-[endline]

Lists program lines in memory to the printer.

The only difference between LLIST and LIST is that LLIST lists the
lines on printer. See LIST.

Examples
LLIST

lists the entire program to the printer. To stop this process, press
SHIFT)(@). This causes a temporary halt in the computer’s output to
the printer. Press any key to continue printing.

LLIST 68-90
prints lines in the range 68-90.

—

2-118

//_\\

LOAD

Statement
LOAD “filespec” [,R]

Loads filespec, a BASIC program, into memory.

The R option tells BASIC to run the program. (LOAD with the R
option is equivalent to the command RUN filespec, R.)

LOAD without the R option wipes out any resident BASIC program,
clears all variables, and CLOSES all OPEN files. LOAD with the R
option leaves all OPEN files open and runs the program
automatically.

You can use either of these commands inside programs to allow
program chaining (one program calling another).

If you attempt to LOAD a non-BASIC file, a “Direct statement in file”
error will occur.

Example
LOAD "PROG1/BAS:Z"

loads PROG1/BAS from Drive 2. BASIC then returns to the command
mode.

L0OAD "PROG1/BAS"

loads PROG1/BAS. Since no drive is specified, BASIC begins
searching for it in Drive 0.

2-119

LOC

Function
LOC(buffer)

Returns the current record number.
Buffer is the buffer under which the file was OPENed.

LOC is used to determine the current record number, that is, the
number of the last record processed since the file was OPENed. It
returns the record number accessed by the last GET or PUT
statement.

LOC is also valid for sequential files. It returns the number of sectors
(256-byte block) read from or written to the file since the file was
OPENed.

Example —
IF LOC(1)>55 THEN END

if the current record number is greater than 55, ends program
execution.

Sample Program

1312 A% = "WILLIAM WILSON"

132¢ GET 1

133@ IF N¢% = A% THEN PRINT "“FOUND IN RECORD"
LoC(1): CLOSE: END

134¢ GOTOD 13Z@

This is a portion of a program. Elsewhere the file has been OPENed
and FIELDed. N$ is a field variable. If N$ matches A$, the record
number in which it was found is printed.

2-120

ST

LOF

Function
LOF(buffer)

Returns the end-of-file record number.
Buffer is the number under which a file was OPENed.

This function tells you the number of the last record in a direct-access
file.

Example

¥ = LOF(S)
assigns the last record number to variable Y.
Sample Programs

During direct access to a pre-existing file, you often need a way to
know when you've read the last valid record. LOF provides a way.

1548 OPEN "R" s 1, "UNKNOWN/TXT": 2585
15530 FIELD 1, 235 AS A%

1360 FOR I7 = 1 TO LOF(1) ‘LOF{1) = HIGHEST
157¢ GET 1. I% 'RECORD NUM., TO BE
1580 PRINT A% "ACCESSED

159¢ NEXT I7%

1609 CLOSE

If you attempt to GET record numbers beyond the end-of-file, BASIC
gives you an error.

When you want to add to the end of a file, LOF tells you where to
start adding:

16ee I% = LOF(1) + 1 "HIGHEST EXISTING RECORD
161@ PUT 1. I% ‘ADD NEXT RECORD

2-121

LOG

Function
LOG(number)

Computes the natural logarithm of number.

This is the inverse of the EXP function. The result is always in single
precision.

Examples
PRINT LOG(3.,14159)
prints the value 1.14473.
Z = 18 % LOG(Ps/P1)
performs the indicated calculation and assigns the value to Z.
Sample Program

This program demonstrates the use of LOG. It utilizes a formula taken
from space communications research.

549 INPUT "DISTANCE SIGNAL MUST TRAVEL

(MILES)"3 D
559 INPUT "SIGNAL FREQUENCY (GIGAHERTZ)";3 F
562 L. = 96,58 + (20 * LOG(F)) + (2@ * LOG(D))

57 PRINT "SIGNAL STRENGTH LOSS IN FREE SPACE
ISs" L. "DECIBELS."

2-122

P

o

/"‘\

LPOS

Function
LPOS(number)

Returns the logical position of the line printer’s print head within the
line printer’s buffer.

Number is a dummy argument.

This function does not necessarily give the physical position of the
print head.

Example
10@ IF LPOS(¥) 60 THEN LPRINT

LPRINT, LPRINT USING

Statement
LPRINT data, . ..
LPRINT USING format; data, . . .

Prints data on the printer.
See PRINT and PRINT USING for more information.
Examples
LPRINT (A * 2)/3
prints the value of expression (A * 2)/3 on the printer.
LPRINT TAB(30) "TABBED 50"

moves the line printer carriage to TAB position 50 and prints
“TABBED 50". (Refer to the TAB function).

LPRINT USING "#ssss,s"j 2,17
sends the formatted value bbbb2.2 to the line printer.

2-123

LSET

Statement
LSET field name = data

Sets data in a direct-access buffer field name.
Before using LSET, you must have used FIELD to set up buffer fields.

See also the chapter on “Disk Files”, OPEN, CLOSE, FIELD, GET,
PUT, and RSET.

Example

Suppose NM$ and AD$ have been defined as field names for a direct
access file buffer. NM$ has a length of 18 characters; AD$ has a
length of 25 characters. The statements

LSET NM%
LSET AD%

“JIM CRICKET s JR."
"2000 EAST PECAN G5T."

set the data in the buffer as follows:
JIMBCRICKET »JR. btk PODPBEASTUPECANKST . HbbHEE

Notice that filler blanks were placed to the right of the data strings in
both cases. If we had used RSET statements instead of LSET, the
filler spaces would have been placed to the left. This is the only
difference between LSET and RSET.

If a string item is too large to fit in the specified buffer field, it is
always truncated on the right. That is, the extra characters on the
right are ignored. This applies to both LSET and RSET.

2-124

T

P

MEM

Function
MEM

Returns the amount of memory.

MEM performs the same function as FRE. It returns the number of
unused and unprotected bytes in memory.

This function may be used in the immediate mode to see how much
space a resident program occupies. It may also be used inside a
program to avert “Out of memory” errors. MEM requires no argument.

Example
PRINT MEM

Enter this command in the immediate mode (no line number is
needed). The number returned indicates the amount of leftover
memory; that is, memory not being used to store programs, variables,
strings, the stack, or not reserved for object files.

Sample Program

161¢ IF MEM < B® THEN 1630
16820 DIM ACLID)
16832 REM PROGRAM CONTINUES HERE

If fewer than 80 bytes of memory are left, control switches to another
part of the program. Otherwise, an array of 16 elements is created.

2-125

MERGE

Statement

MERGE “filespec”

Loads filespec, a BASIC program, and merges it with the program
currently in memory.

Filespec specifies a BASIC file in ASCII format (a program saved with
the A option). If filespec is a constant, it must be enclosed in quotes.

Program lines in the disk program are inserted into the resident
program in sequential order. For example, suppose that three of the
lines from the disk program are numbered 75, 85 and 90, and three of
the lines from the current program are numbered 70, 80, and 90.
When MERGE is used on the two programs, this portion of the new
program will be numbered 70, 75, 80, 85, 90.

If line numbers on the disk program coincide with line numbers in the
resident program, the disk program’s lines replace the resident
program’s lines.

MERGE closes all files and clears all variables. Upon completion,
BASIC returns to the command mode.

Example

Suppose you have a BASIC program on disk, PROG2/TXT (saved in
ASCII), which you want to merge with the program you've been
working on in memory. Then we use:

MERGE "PROGZ/TXT"
merges the two programs.
Sample Programs

MERGE provides a convenient means of putting program modules
together. For example, an often-used set of BASIC subroutines can
be tacked onto a variety of programs with this command.

Suppose the following program is in memory:

2-126

/f"\\

B R

EM

MAIN PROGRAM

99 REM LINE NUMBER RESERVED FOR SUBROUTINE HOOK

10¢
110
120
132

REM
REM
REM
END

PROGRAM LINE
PROGRAM LINE
PROGRAM LINE

And suppose the following subroutine, SUB/TXT, is stored on disk in
ASCII format:

99 GOSUB 1002 SUBROUTINE HOOK

1eaa
1e1@
1020
o309
1040

REM
REM
REM
REM

RETURN

BEGINNING OF SUBROUTINE
SUBROUTINE LINE
SUBROUTINE LINE
SUBROUTINE LINE

You can MERGE the subroutine with the main program with:

MERG

E "SUB/TKT"

and the new program in memory is:

=14
g9
1¢@
11¢
12¢
13¢@
ieo0
1019
i02@
123¢@
104@

REM
GOsuB
REM
REM
REM
END
REM
REM
REM
REM

MAIN PROGRAM

192® SUBROUTINE HOOK

RETURN

PROGRAM LINE
PROGRAM LINE
PROGRAM LINE

BEGINNING OF SUBROUTINE
SUBROUTINE LINE
SUBROUTINE LINE
SUBROUTINE LINE

2-127

MID$

Statement
MID$(oldstring, position [,length]) = replacement string

Replaces a portion of an oldstring with replacement string.
Oldstring is the variable name of the string you want to change.

Position is a number specifying the position of the first character to be
changed.

Length is a number specifying the number of characters to be
replaced.

Replacement string is the string to replace a portion of oldstring.

The length of the resultant string is always the same as the original
string. If replacement string is shorter than length, the entire
replacement string is used.

Examples:

A$ = "LINCOLN"

MID$ (A%, 3, 4) = "12345": PRINT A%
returns L11234N.

MID$ (A%, 5) = "@1": PRINT A%
returns LINCO1N.

MID$ (A%, 1, 3) = "#*%": PRINT A%

returns **x+*COLN.

2-128

Yl

MID$

Function
MIDS(string, integer [,number}])

Returns a substring of string, beginning at position integer.

If integer is greater than the number of characters in string, MID$
returns a null string.

Number is the number of characters in the substring. If omitted,
BASIC returns all right most characters, beginning with the character
at position integer.

Examples
If A3 = “WEATHERFORD" then
PRINT MID$ (A%, 3 2)
prints AT.
F$ = MID$ (A%, 3)
puts ATHERFORD into F$.
Sample Program

200 INPUT "AREA CODE AND NUMBER
(NNN-NNN-NNNN)"3§ PH$

212 EX% = MID$(PH%, 5 3)

220 PRINT "NUMBER IS IN THE " EX$¢ " EXCHANGE."

The first three digits of a local phone number are sometimes called
the exchange of the number. This program looks at a complete phone
number (area code, exchange, last four digits) and picks out the
exchange of that number.

2-129

MKD$, MKI$, MKS$

Function

MKI$(integer expression)
MKSS$(single-precision expression)
MKD$(double-precision expression)

Convert numeric values to string values.

Any numeric value that is placed in a direct file buffer with an LSET or
RSET statement must be converted to a string.

These three functions are the inverse of CVD, CVI, and CVS. The
byte values which make up the number are not changed; only one
byte, the internal data-type specifier, is changed, so that numeric data
can be placed in a string variable.

MKD$ returns an eight-byte string; MKI$ returns a two-byte string;
and MKSS$ returns a four-byte string.

Example
LSET

AUGE = MKS$(2.,123)

Sample Program

1352
1369
i37e
138@
1392
1400
1419

OPEN "D", 1, "TEST/DAT": 14

FIELD 1.
LSET I1%
LSET IZ%
LSET I3%
PUT 14 1
CLOSE 1§

WouoW R

AS T11%, 4 AS 12%, B AG 13%
MKI$(3000)

MKD$(3000.1)

MKD$ (3000 .00021)

For a program that retrieves the data from TEST/DAT, see
CVD/CVI/CVS.

2-130

T

NAME

NEW

Statement
NAME old filespec AS new filespec

Renames old filespec as new filespec.

With this statement, the data in the file is left unchanged. The new
filespec may not contain a password or drive specification.

Example

NAME "FILE" AS "FILE/OLD"
renames FILE as FILE/OLD.

NAME B$ AS A%

renames B$ as AS$.

Statement
NEW

Deletes the program currently in memory and clears all variables.

NEW displays a new (clear) screen and returns you to the command
mode.

Example
NEW

2-131

OCTS$

Function
OCTS$(number)

Computes the octal value of number.

OCTS$ returns a string which represents the octal value of number.
The value returned is like any other string — it cannot be used in a
numeric expression.

Examples

PRINT OCT$(3@), OCT$(50), O0OCT$(92)
prints the following strings:

36 B2 132

¥Y$ = DCT$(X/84)

Y$ is a string representation of the integer quotient X/84 to base 8.

ON ERROR GOTO

Statement
ON ERROR GOTO line

Transfers control to line if an error occurs.

This lets your program “recover” from an error and continue
execution. (Normally, you have a particular type of error in mind when
you use the ON ERROR GOTO statement).

ON ERROR GOTO has no effect unless it is executed before the
error occurs. To disable it, execute an ON ERROR GOTO 0. If you
use ON ERROR GOTO 0 inside an error-trapping routine, BASIC
stops execution and prints an error message.

2-132

P

ST

The error-handling routine must be terminated by a RESUME
statement. See RESUME.

Example
19 ON ERROR GOTO 1500

branches program controi to line 1500 if an error occurs anywhere
after line 10.

For the use of ON ERROR GOTO in a program, see the sample
program for ERROR.

ON... GOSUB

Statement
ON expression GOSUB line, . ..

Calls the subroutine at the line based on the value of expression.

Expression is a numeric expression between 0 and 255, inclusive. For
example, if expression’s value is three, the third line number in the list
is the destination of the branch.

If expression’s value is zero or greater than the number of items in
the list (but less than or equal to 255), BASIC continues with the next
executable statement. If expression is negative or greater than 255,
an “lllegal function call” error occurs.

Example
ON Y GOSUB 1000, 2000, 3000

If Y = 1, the subroutine beginning at 1000 is called. If Y = 2, the
subroutine at 2000 is called. If Y = 3, the subroutine at 3000 is
called.

Sample Program

439 INPUT "CHOOSE 1+ 2+ OR 3" § 1
449 ON I GOSUB 500, GOQ, 700
430 END

5@@ PRINT "SUBROUTINE #1i": RETURN
GP@ PRINT "SUBROUTINE #2": RETURN
7@9® PRINT "SUBROUTINE #3": RETURN

2-133

ON...GOTO

Statement
ON expression GOTO line, . ..

Goes to the line specified by the value of expression.
Expression is a numeric expression between 0 and 255.

This statement is very similar to ON . . . GOSUB. However, instead of
branching to a subroutine, it branches control to another program line.

The value of expression determines to which line the program will
branch. For example, if the value is four, the fourth line number in the
list is the destination of the branch. If there is no fourth line number,
control passes to the next statement in the program.

If the value of expression is negative or greater than 255, an “lilegal
function call” error occurs. Any amount of line numbers may be
included after GOTO.

Example
ON MI GOTO 15@¢, 169 170, 152, 180

tells BASIC to “Evaluate MI;

if the value of Ml equals one then go to line 150;

if it equals two, then go to 160;

if it equals three, then go to 170;

if it equals four, then go to 150,

if it equals five, then go to 180;

if the value of MI doesn’t equal any of the numbers one through five,
advance to the next statement in the program”.

2-134

,'/-‘\

P

2

OPEN

Statement
OPEN mode, buffer, “filespec” [,record length]|

Opens a disk file.

Mode is a string expression whose first character is one of the
following:

O for sequential output mode

I for sequential input mode

E for sequential output and extend mode
D or R for direct input/output mode

Buffer is an integer between 1 and 15. It specifies which area in
memory you will use to access the file.

Filespec specifies a TRSDOS file.

Record length is an integer which sets the record length for
direct-access files. The default is 256 bytes.

Once you have assigned a buffer to a file with the OPEN statement,
that buffer cannot be used in another OPEN statement. You must first
CLOSE the first file.

Examples
OPEN "D",» 2, "DATA/BAS.SPECIAL"

opens the file DATA/BAS in direct-access mode, with the password
SPECIAL. Buffer 2 is used. If DATA/BAS does not exist, it is created
on the first non write-protected drive. The record length is 256 bytes.

OPEN "D" s 5 "TEXT/BAS", G4

opens the file TEXT/BAS for direct access. Buffer 5 is used. The
record length is 64. If this length does not match the record length
assigned to TEXT/BAS when the file was originally OPENed, an error
occurs.

OPEN "0" s 75 "INU/CONT®

opens the sequential file “INV/CONT” for output. If “INV/CONT” does
not exist, it is created. Information is written to the file sequentially,
starting at the first byte. If the file does exist, any new information is
written over the existing information; the file’s previous contents are
lost.

2-135

OPTION BASE

OPEN “"E"s 14 "LIST/EMP"

opens the file LIST/EMP and extends it by appending new data to the
end of the file. If “LIST/EMP” does not exist, OPEN “E” works the
same way as OPEN “O".

OPEN "I", B, "MGT"

opens the sequential file “MGT” for sequential input. This enables you
to retrieve information from the file (using INPUT# or LINE INPUT#).
If “MGT” does not exist, a “File not found” error occurs.

See the chapter on “Disk Files” for programming information.

Statement
OPTION BASE n

Sets n as the minimum value for an array subscript.
N may be 1 or 0. The default is 0.

If you use this statement in a program, it must precede the DIM
statement.

If the statement
OPTION BASE 1

is executed, the lowest value an array subscript may have is one.

2-136

o

AT

OUT

PEEK

Statement
OUT port, data byte

Sends a data byte to a machine output port.

Port is an integer between 0 and 255. Data byte is also an integer
between 0 to 255.

A port is an input/output location in memory. For information on
assigned ports, see the Technical Reference Manual.

Example
QUT 32,100
sends 100 to port 32.

Function
PEEK(memory location)

Returns a byte from memory location.
The memory location must be in the range —32768 to 65535.

The value returned is an integer between 0 and 255. (For the
interpretation of a negative value of memory location, see the
statement VARPTR.)

PEEK is the complementary function of the statement POKE.
Example
A = PEEK (&HSA2Q)

2-137

POKE

Statement
POKE memory location, data byte

Writes data byte into memory location.

Both memory location and data byte must be integers. Memory
location must be in the range — 32768 to 65535.

POKE is the complementary statement of PEEK. The argument 10
PEEK is a memory location from which a byte is to be read.

PEEK and POKE are useful for storing data efficiently, loading
assembly-language subroutines, and passing arguments (or results) to
and from assembly-language subroutines.

For more information, see the Technical Reference Manual.
Example

19 POKE BHSAQQ, &HFF

POS

Function
POS(number)

Returns the position of the cursor.
Number is a dummy argument.

POS returns a number from 1 to 80 indicating the current
cursor-column position on the display.

Example
PRINT TAB(40) POS5(®)

2-138

T

PRINT

prints 40. The PRINT TAB statement moves the cursor to position 40,
therefore, POS(0) returns the value 40. (However, since a blank is
inserted before the 4" to accommodate the sign, the “4" is actually
at position 41).

Sample Program

1539 CLEB

168 A% = INKEY

17¢ IF A% = "" THEN 1G@

189 IF POS(X) » 7¢ THEN IF A% = CHR$(3LD)

THEN A% = CHR$(13)
199 PRINT A%
Z@0 PRINT A%
219 GOTD 160

This program lets you use your printer as a typewriter (except that
you cannot correct mistakes). Your computer keyboard is the
typewriter keyboard. The program will keep watch at the end of a line
so that no word is divided between two lines.

Statement
PRINT data, . ..

Prints numeric or string data on the display.
BASIC prints the values of the data items you list in this statement.

You may separate the data items by commas or semicolons. If you
use commas, the cursor automatically advances to the next tab
position before printing the next item. (BASIC divides each line into
five tab positions, at columns 0, 16, 32, 48, and 64). If you use
semicolons, it prints the items without any spaces between them.

A semicolon or comma at the end of a line causes the next PRINT
statement to begin printing where the last one left off. If no trailing
punctuation is used with PRINT, the cursor drops down to the
beginning of the next line.

Single-precision numbers with six or fewer digits that can be
accurately represented in ordinary (rather than exponential) format,

2-139

are printed in ordinary format. For example, 1E-7 is printed as
.0000001; 1E-8 is printed as 1E-08.

Double-precision numbers with 16 or fewer digits that can be
accurately represented in ordinary format, are printed using the
ordinary format. For example, 1D-15 is printed as .000000000000001;
1D-16 is printed as 1D-16.

BASIC prints positive numbers with a leading blank. It prints all
numbers with a trailing blank.

To insert strings into this statement, surround them with quotation
marks.

Examples
PRINT "DO"3§ "NOT"3§ "LEAVE"j; "“SPACES"}
"BETWEEN"§ "THESE"3 "WORDS"

prints on the display:
DONOTLEAVESPACESBETWEENTHESEWORDS

Sample Program

B® INPUT "ENTER THIS YEAR":i Y

7¢ INPUT "ENTER YOUR AGE"iA

8@ INPUT "ENTER A YEAR IN THE FUTURE"IF

90 N = A + (F - Y)

109 PRINT "IN THE YEAR"F"YOU WILL BE"N"YEARS
oLp*"

RUN

Since F and N are positive numbers, PRINT inserts a space before
and after them, therefore your display should look similar to this
(depending on your input):

IN THE YEAR 2004 YOU WILL BE 46 YEARS OLD
If we had separated each expression in line 100 by a comma,

100 PRINT "IN THE YEAR"F,"YOU WILL
BE" :N,"YEARS OLD"

BASIC would move to the next tab position after printing each data
item.

2-140

PRINT USING

Statement
PRINT USING format; data item, . ..

Prints data items using a format specified by you.

Format consists of one or more field specifiers enclosed in quotes, or
a string variable which contains the field specifier(s).

Data item may be string and/or numeric value(s).

This statement is especially useful for printing. report headings,
accounting reports, checks, or any other documents which require a
specific format.

With PRINT USING, you may use certain characters (field specifiers)
to format the field. These field specifiers are described below. They
are followed by sample program lines and their output to the screen.

Specifiers for String Fields:
! Print the first character in the string only.

PRINT USING “!I”; “PERSONNEL”
P

\ spaces\ Print 24 n characters from the string. If you type the
backslashes without any spaces, BASIC prints two
characters; with one space, BASIC prints three
characters, and so on. If the string is longer than the
field, the extra characters are ignored. If the field is
longer than the string, the string is left-justified and
padded with spaces on the right. To enter a
backslash, press CLEAR(2).

PRINT USING “\bbb\"”; “PERSONNEL"
(three spaces between the backslashes)
PERSO

& Print the string without modifications.

10 A$="TAKE":B$="RACE"
20 PRINT USING “I”;AS;

30 PRINT USING “&”;B$
RUN

TRACE

2-141

Specifiers for Numeric Fields:

#

Kk

Print the same number of digit positions as number
signs (#). If the number to be printed has fewer
digits than positions specified, the number is
right-justified (preceded by spaces). Numbers are
rounded as necessary. You may insert a decimal
point at any position. In that case, the digits
preceding the decimal point are always printed (as
zero, if necessary).

If the number to be printed is larger than the
specified numeric field, a percent sign (%) is printed
in front of the number. If rounding the number
exceeds the field, a percent sign is also printed in
front of the rounded number.

PRINT USING “##.##,111.22
%111.22

If the number of digits specified exceeds 24, an
“Illegal function call” occurs.

PRINT USING “##.##",.75
0.75

PRINT USING “###.##",876.567
876.57

Print the sign of the number. The plus sign may be
typed at the beginning or at the end of the format
string.

PRINT USING “+ ##.## 7,
—98.45,3.50,22.22,— .9
-9845 +350 +2222 —0.90

PRINT USING “##.##+ 7,
—98.45,3.50,22.22,— .9
98.54—~ 350+ 2222+ 0.90-

(Note the use of spaces at the end of a format string
to separate printed values).

Print a negative sign after negative numbers (and a
space after positive numbers).

PRINT USING “###.# —", —768.660
768.7 —

Fill leading spaces with asterisks. The two asterisks
also establish two more positions in the field.

PRINT USING “sx####", 44.0

sk dd —

2-142

L

$$

#x§

A A AN

Print a dollar sign immediately before the number.
This specifies two more digit positions, one of which
is the dollar sign.

PRINT USING “$$##.##", 112.7890
$112.79

Fill leading spaces with asterisks and print a dollar
sign immediately before the number.

PRINT USING “+:$## ##"; 8.333
#:$8.33

Print a comma before every third digit to the left of
the decimal point. The comma establishes another
digit position.

PRINT USING “####,.##", 1234.5

1,234.50

Print in exponential format. The four exponent signs
are placed after the digit position characters. To type

the ~, press (CLEAR/ ;). You may specify any
decimal point position.

PRINT USING “.####~ "~ """, 888888
.8889E + 06

Print next character as a literal character.

PRINT USING “__1##.##__1",12.34
112.34!

Sample Program

42@
439
449
43e
a6
47@
48@
490
SO0

CLS:
INPUT
INPUT
INPUT
INPUT
CLS
PRINT
PRINT
PRINT

A% = "xxdus,ueuuss, s DOLLARS"
"WHAT IS8 YOUR FIRST NAME": F$
“WHAT IS YOUR MIDDLE NAME":; M%$
"WHAT I8 YOUR LAST NAME": L%

“ENTER AMOUNT PAYABLE":S P

PRINT “PAY TO THE ORDER OF "3
USING "ttt "SOFE: Lt MEd LT
L%

:PRINT USING As: P

In line 480, each ! picks up the first character of one of the following
strings (F$, “.", M$, and ".” again). Notice the two spaces in “!tb".
These two spaces insert the appropriate spaces after the initials of
the name (see below). Also notice the use of the variables AS for
format and P for item list in line 500. Any serious use of the PRINT
USING statement would probably require the use of variables at least
for item list rather than constants. (We've used constants in our
examples for the sake of better illustration).

2-143

PRINT @

When the program above is run, the output should look something
like this:

WHAT IS5 YDUR FIRST NAME? JOHN
WHAT 18 YDUR MIDDLE NAME? PAUL
WHAT I8 YOUR LAST NAME? JONES
ENTER AMOUNT PAYABLE? 12345.8
PAY TO THE ORDER OF J. P, JONES

*%%%¥%12,435,60 DOLLARS

Statement
PRINT@ location,
PRINT@ (row, column),

Specifies exactly where printing is to begin.

The location specified must be a number between 0 and 1919. It can
also be a a pair of numbers (r, ¢), where 23=>r=>0 and
79=>c=>0.

Whenever you instruct BASIC to PRINT @ the bottom line of the
display, it generates an automatic line feed; everything on the display
moves up one line. To suppress this automatic line feed, use a trailing
semicolon at the end of the statement.

NOTE: If the string you are printing extends past column 80, BASIC
prints the entire string on the next line.

Examples
PRINT 8 (11,39), "%

prints an asterisk in the middle of the display. The space between
PRINT and @ is optional.

PRINT @ @, "

prints an asterisk at the top left corner of the display.

2-144

Vs

PRINT TAB

Statement
PRINT TAB(n)

Moves the cursor to the n position on the current line.
TAB may be used more than once in a print list.

Since numeric expressions may be used to specify a TAB position,
TAB can be very useful in creating tables, graphs of mathematical
functions, etc.

TAB can't be used to move the cursor to the left. If the cursor is to
the right of the specified position, the TAB statement is simply
ignored.

The first parenthesis must be typed immediately after the word TAB.

If n is greater than 80, BASIC divides n by 80 and uses the remainder
of the division as the tab position. For example, if you enter the line:

PRINT "NAME": TAB(BS)3F "AMOUNT®

BASIC converts TAB(84) into TAB(4). Since the cursor is already at
column five after printing NAME, BASIC moves the string AMOUNT to
the next line. If, instead, you had typed TAB(85), BASIC would print
AMOUNT on the same line.

If the string you are printing is too long to fit on the current line,
BASIC moves the string to the next line.

Example

PRINT TAB(S) “TABBED S"§ TAB(Z5) "TABBED 235"
Notice that no punctuation is needed after the TAB modifiers.
Sample Program

22@ CLS

239 PRINT TAB(Z) "CATALOG NOD."3 TAB(1B)
"DESCRIPTION OF ITEM"S

249 PRINT TAB(39) "QUANTITY"3 TAB(S1) "PRICE
PER ITEM"S3

245 PRINT TAB(GB3) "TOTAL PRICE"

2-145

PRINT#

Statement
PRINT# buffer, item1, item2, ...

Prints data items in a sequential disk file.
Buffer is the buffer number used to OPEN the file for input.

When you first OPEN a file for sequential output, BASIC sets a
pointer to the beginning of the file — that's where PRINT# starts
printing the values of the items. At the end of each PRINT#
operation, the pointer advances, so values are written in sequence.

A PRINT# statement creates a disk image similar to what a PRINT to
the display creates on the screen. For this reason, make sure to
delimit the data so that it will be input correctly from the disk.

PRINT# does not compress the data before writing it to disk. It writes
an ASCll-coded image of the data.

Examples

If A = 123,45
PRINT®# 1A

writes this nine-byte character sequence onto disk:
K123.45F carriage return

The punctuation in the PRINT list is very important. Unquoted
commas and semicolons have the same effect as they do in regular
PRINT statements to the display. For example, if A = 2300 and B =
1.303, then

PRINT# 1, A+B
ENTER

writes the data on disk as
b 2300 kKibbbbbkbeby 1.303F carriagde return

The comma between A and B in the PRINT# list causes 10 extra
spaces in the disk file. Generally you wouldn’'t want to use up disk
space this way, so you should use semicolons instead of commas.

Files can be written in a carefully controlled format using PRINT #
USING. You can also use this option to control how many characters
of a value are written to disk.

2-146

o

PUT

For example, suppose A$ = “LUDWIG”, B$ = “VON", and C$ =
“BEETHOVEN". Then the statement

PRINT# 1+ USING" !, !, \FEN"IASIBSICH
would write the data in nickname form:
L.V.BEET

(In this case, we didn’t want to add any explicit delimiters.) See
PRINT USING for more information on the USING option.

Statement
PUT buffer [,record]

Puts a record in a direct-access disk file.
Buffer is the same buffer used to OPEN the file.

Record is the record number you want to PUT into the file. It is an
integer between 1 and 65535. If omitted, the current record number is
used.

This statement moves data from the buffer of a file into a specified
place in the file.

If record is higher than the end-of-file record number, then record
becomes the new end-of-file record number.

The first time you use PUT after OPENing a file, you must specify the
record. The first time you access a file via a particular buffer, the next
record is set equal to one. (The next record is the record whose
number is one greater than the last record accessed).

See the chapter on “Disk Files” for programming information.
PUT 1

writes the next record from buffer 1 to a direct-access file.
PUT 1, 25

writes record 25 from buffer 1 to a direct-access file.

2-147

RANDOM

RANDOM

Function

Reseeds the random number generator.

If your program uses the RND function, every time you load it, BASIC
generates the same sequence of pseudorandom numbers. Therefore,
you may want to put RANDOM at the beginning of the program. This
will help ensure that you get a different sequence of pseudorandom
numbers each time you run the program.

RANDOM needs to execute just once.

Sample Program

Go@
G1@
620
B3¢
64@

CLS : RANDOM

INPUT "PICK A NUMBER BETWEEN 1 AND 5"3§ A —
B = RND(3)

IF A = B THEN B350

PRINT "YOU LOSE, THE ANSWER IS" B "--TRY

AGAIN,"

GOTO Blo

PRINT "Y¥0OU PICKED THE RIGHT NUMBER -- YOU

WIN!": GOTO G1@

2-148

o

T

READ

Statement
READ variable,

Reads values from a DATA statement and assigns them to variables.

BASIC assigns values from the DATA statement on a one-to-one
basis. The first time READ is executed, the first value in the first
DATA statement is used; the second time, the second value is used,
and so on.

A single READ may access one or more DATA statements (each
DATA statement is accessed in order), or several READs may access
the same DATA statement.

The values read must agree with the variable types specified in list of
variables, otherwise, a "Syntax error”’ occurs. If the number of
variables in the READ statement exceeds the number of elements in
the DATA statement(s), an “Out of data” error message is printed.

If the number of variables specified is lower than the number of
elements in the DATA statement(s), subsequent READ statements
begin reading data at the first unread element.

Example
READ T

reads a numeric value from a DATA statement and assigns it to
variable “T".

Sample Program

This program illustrates a common application for the READ and
DATA statements.

4@ PRINT "NAME", "AGE"

30 READ N%

69 IF N&="END" THEN PRINT "END OF LIST": END
7¢ READ AGE

80 IF AGE<18 THEN PRINT N$, AGE

9@ GOTO So

1@ DATA "SMITH, JOHN", 3@ “"ANDERS, T.M.", 2
119 DATA "JONES, BILL"s 13, "DOE,» SALLY": Z1
120 DATA "COLLINS, W.P."y 17+ "END"

2-149

REM

Statement
REM

Inserts a remark line in a program.

REM instructs the computer to ignore the rest of the program line.
This allows you to insert remarks into your program for
documentation. Then, when you look at a listing of your program, or
someone else does, it will be easier to figure it out.

If REM is used in a multi-statement program line, it must be the last
statement in the line.

You may use an apostrophe (') as an abbreviation for REM.
Sample Program

11¢ DIM V(Z@)

1290 REM CALCULATE AVERAGE VELOCITY
13@¢ FOR I=1 TO 20

149 SuUM=5UM + U(I)

OR
119 DIM Y(2@)

1290 FOR I=1 TO 2@ 'CALCULATE AVERAGE VELOCITY

130 SUM=SUM + U(D)
149 NEXT 1

2-150

//"\

ol

N

RENUM

Statement
RENUM [new line] [,[line] [,increment]]

Renumbers a program, starting at line, using new line as the first new
line and increment for the new sequence.

If you omit new line, BASIC starts numbering at line 10. If you omit
the line, it renumbers the entire program. If you omit increment, it
jumps 10 numbers between lines.

RENUM also changes all line number references appearing after
GOTO, GOSUB, THEN, ELSE, ON...GOTO, ON ... GOSUB, ON
ERROR GOTO, RESUME, and ERL]relational operator].

Examples
RENUM

renumbers the entire resident program, incrementing by 10’s. The
new number of the first line will be 10.

RENUM G@o, 5000, 120

renumbers all lines numbered from 5000 up. The first renumbered line
will become 600, and an increment of 100 will be used between
subsequent lines.

RENUM 10000, 1000

renumbers line 1000 and all higher-numbered lines. The first
renumbered line will become line 10000. An increment of 10 will be
used between subsequent line numbers.

RENUM 100, » 100

renumbers the entire program, starting with a new line number of 100,
and incrementing by 100’s. Notice that the commas must be retained
even though the middle argument is gone.

Error Conditions

1. RENUM cannot be used to change the order of program lines. For
example, if the original program has lines numbered 10, 20 and
30, then the command:

RENUM 15, 30

2-151

RESTORE

is illegal, since the result would be to move the third line of the
program ahead of the second. In this case, an “lllegal function
call” error occurs, and the original program is left unchanged.

2. RENUM will not create new line numbers greater than 65529.
Instead, an “lllegal function call” error occurs, and the original
program is left unchanged.

3. If an undefined line number is used inside your original program,
RENUM prints a warning message, Undefined line XXXX in
YYYY”, where XXXX is the original line number reference and
YYYY is the original number of the line containing XXXX. Note that
RENUM renumbers the program in spite of this warning message.
It does not change the incorrect line number reference, but it does
renumber YYYY, according to the parameters in your RENUM
command.

Statement
RESTORE [line]

Restores a program’s access to previously-read DATA statements.

This lets your program re-use the same DATA lines.
If line is specified, the next READ statement accesses the first item in
the specified DATA statement.

Sample Program

160 READ X

179 RESTORE

180 READ Y4

180 PRINT X%, Y%

209 DATA THIS IS THE FIRST ITEM: AND THIS IS
THE SECOND

When this program is run,
THIS IS THE FIRST ITEM THIS IS THE FIRST ITEM

is printed on the display. Because of the RESTORE statement in line
170, the second READ statement starts over with the first DATA item.

2-152

—

T

P

RESUME

RESUME [line]
RESUME NEXT

Statement

Resumes program execution after an error-handling routine.

RESUME without an argument and RESUME 0 both cause the
computer to return to the statement in which the error occurred.

RESUME line causes the computer to branch to the specified line
number.

RESUME NEXT causes the computer to branch to the statement
following the point at which the error occurred.

A RESUME that is not in an error-handling routine causes a
“RESUME without error” message.

Examples
RESUME

if an error has occurred, this line transfers program control to the
statement in which it occurred.

RESUME 10
if an error has occurred, transfers control to line 10.
Sample Program

19 ON ERROR GOTO 900

+
+

+

9¢¢@ IF (ERR=Z30) AND(ERL=9¢) THEN PRINT "TRY
AGAIN" : RESUME 8@

2-153

RETURN

RIGHT$

Statement
RETURN

Returns control to the line immediately following the most recently
executed GOSUB.

If the program encounters a RETURN statement without execution of
a matching GOSUB, an error occurs.

Sample Program

330 PRINT "THIS PROGRAM FINDS THE AREA OF A
CIRCLE"
340 INPUT "TYPE IN A VALUE FOR THE RADIUS"3F R
35¢ GOSuUB 37¢
360 PRINT "AREA IS" i A: END
37¢ A = 3.14 * R % R —
380 RETURN

Function
RIGHTS(string, number)

Returns the rightmost number characters of string.

RIGHTS$ returns the last number characters of string. If LEN (string) is
less than or equal to number, the entire string is returned.

Examples:
PRINT RIGHT$("WATERMELON", 5)
prints MELON.
PRINT RIGHT$("MILKY WAY", 235)
prints MILKY WAY. i

2-154

Sample Program

B5¢ RESTORE : ON ERROR GOTO 880
B86@ READ COMPANY$
870 PRINT RIGHT$(COMPANY$ 2}, : GOTD BGQ
882 END
899 DATA "BECHMAN LUMBER COMPANY s SEATTLE: WA"
9@ DATA "ED NORTON SEWER SERVICE, BROOKLYN, NY"
919 DATA "HAMMON MANUFACTURING COMPANY
HAMMOND » IN"

This program prints the name of the state in which each company is
located.

RND

Function
RND(number)

Generates a pseudorandom number between 0 and number.
Number must be greater than or equal to 0 and less than 32768.

RND produces a pseudorandom number using the current “seed”
number. BASIC generates the seed internally, therefore, it is not
accessible to the user. RND may be used to produce random
numbers between 0 and 1, or random integers greater than 0,
depending on the argument.

RND(0) returns a single-precision value between 0 and 1,
RND(number) returns an integer between 1 and number. For
example, RND(55) returns a pseudorandom integer between 1 and
55. RND(55.5) returns a pseudorandom number between 1 and 56
(the argument is rounded).

Examples
A = RND(2)

assigns A a value of 1 or 2.
A = RND(45)

assigns A a random integer between 1 and 45.
PRINT RND (2)

prints a decimal fraction between 0 and 1.

2-155

ROW

Function
ROW(number)

Returns the row position of the cursor.
Number is a dummy argument.

ROW finds the row in which the cursor is currently located and
returns that row number. The 24 rows are numbered 0-23.

Examples

o= ROWC(Y)
assigns the cursor’s current row number to X.
Sample Program

When you type a key, the program below prints: the keyboard
character, the cursor's row number and column number, and the
character's ASCII code.

100 CLS

119 R=0: C=0

129 PRINT@(21,32), "ROW", "COLUMN"

130 H$ = INPUT$(1)

149 PRINT B(R,C)y X3

150 C=POS(@): R=ROW(®)

160 PRINT @ (22+32)RC3

183 PRINT @ (23,32), STRING$(Z@+32) 3

165 PRINT @(23,32), "ASCII CODE IS
"HEX$(ABC(X%))i

178 PRINT @ (R+C)Y""5

189 GOTO 130

2-156

RSET

RUN

Statement
RSET field name = data

Sets data in a direct-access buffer field name.

This statement is similar to LSET. The difference is that with RSET,
data is right-justified in the buffer.

See LSET for details.

Statement
RUN [line]
RUN filespec|,R]

Runs a program.

RUN followed by a /ine or nothing at all simply executes the program
in memory, starting at /ine or at the beginning of the program.

RUN followed by a filespec loads a program from disk and then runs
it. Any resident BASIC program is replaced by the new program.

Option R leaves all previously OPEN files open. If omitted, BASIC
closes all open files.

RUN automatically CLEARS all variables. However, it does not re-set
the value of an ERL variable.

2-157

SAVE

Examples
RUN
starts execution at lowest line number.
RUN 100
starts execution at line 100.
RUN "PROGRAM/A®
loads and executes PROGRAM/A.
RUN "EDITDATA"s R
loads and executes EDITDATA, leaving OPEN files open.

Statement
SAVE “filespec” [,A] [,P]

Saves a program in a disk file under filespec.

I filespec already exists, its contents will be lost as the file is
re-created.

SAVE without the A option saves the program in a compressed
format. This takes up less disk space. It also helps in performing
SAVEs and LOADs faster. BASIC programs are stored in RAM using
compressed format.

Using the A option causes the program to be saved in ASCII format.
This takes up more disk space. However, the ASCII format allows you
to MERGE this program later on. Also, data programs which will be
read by other programs must usually be in ASCI!.

For compressed-format programs, a useful convention is to use the
extension BAS. For ASCllI-format programs, use /TXT.

The P option protects the file by saving it in an encoded binary
format. When a protected file is later RUN (or LOADed), any attempt
to list or edit it fails. The only operations that can be performed on a
protected file are: RUN, LOAD, MERGE, and CHAIN.

2-158

A

T

SGN

Examples
SAYE “"FILE1/BAS.,JOHNODOE:3"

saves the resident BASIC program in compressed format. The file
name is FILE1; the extension is /BAS; the password is JOHNQDOE.
The file is placed on Drive 3.

SAVE "MATHPAK/TXKT",» A

saves the resident program in ASCII form, using the name
MATHPAK/TXT, on the first non-write-protected drive.

Function
SGN(number)

Determines number’s sign.

If number is a negative number, SGN returns — 1. If number is a
positive number, SGN returns 1. If number is zero, SGN returns 0.

Examples
Y = SGN(A * B)

determines what the sign of the expression A * B is, and passes the
appropriate number (-1,0,1) to V.

Sample Program

1@ INPUT "ENTER A NUMBER": X

BZ2@ ON SGN(X) + 2 GOTO B3, G40, GISe
832 PRINT "NEGATIVE": END

4@ PRINT "ZERO": END

659 PRINT "POSITIVE": END

2-159

SIN

SOUND

Function
SIN(number)

Computes the sine of number.

Number must be in radians. To obtain the sine of number when
number is in degrees, use SIN(number * .01745329). The result is
always single precision.

Examples

PRINT SIN(7.96)
prints .994385.
Sample Program

G6@ INPUT "ANGLE IN DEGREES": A
678 PRINT "SINE IS"3 SIN A * ,@17453329)

Statement
SOUND tone, duration

Generates a sound with the tone and duration specified.

Tone is a digit between @ and 7. It specifies the sound’s frequency
level. Zero specifies the lowest frequency level; seven specifies the
highest.

Duration is an integer between 0 and 31. It specifies for how long the
sound is to be generated. Zero specifies the shortest duration; 31 the
longest.

This statement can be especially useful in educational applications.
For example, you can have the computer respond with a sound if a

2-160

T

SPACES$

user has answered a program's prompt incorrectly (or vice versa).

Sample Program

1¢ INPUT "IN HONOR OF WHOM WAS THE CONTINENT OF
AMERICA NAMED"3 A%

Z9 IF A$="AMERIGO VESPUCCI" THEN SOUND 7.2 ELSE
GOTO 4¢

3¢ PRINT “THAT’S RIGHT!": END

49 SOUND 1,2 : PRINT "THE CORRECT ANSWER IS

AMERIGO VESPUCCI™

Function
SPACES$(number)
Returns a string of number spaces.
Number must be in the range 0 to 255.
Example
PRINT "DESCRIPTION" SPACE$(4) "TYPE" SPACE$(9)
"QUANTITY™

prints DESCRIPTION, four spaces, TYPE, nine spaces, QUANTITY.
Sample Program

920 PRINT “"Here"

930 PRINT SPACE#(13) "is"

949 PRINT SPACE$(26) "an"

959 PRINT SPACE$(39) "example"
969 PRINT SPACE$(3Z) "of"

970 PRINT SPACE#(653) "SPACES”

2-161

SPC

SQR

Function
SPC{number)

Prints a line of number blanks.

Number is in the range 0 to 255. SPC does not use string space. The
left parenthesis must immediately follow SPC.

SPC may only be used with PRINT, LPRINT, or PRINT#.
Example

PRINT "HELLO" SPC(15) "THERE"
prints HELLO, 15 spaces, THERE

Function
SQR(number)

Calculates the square root of number.
The number must be greater than zero.
The result is always single precision.
Example

PRINT SOR(155.7)
prints 12.478.

2-162

-

Pan

STOP

Sample Program

B8@ INPUT “TOTAL RESISTANCE (OHMS)"3: R
690 INPUT “TOTAL REACTANCE (OHMS)"3 X
700 Z = SQRI(R * R) + {X * X))

71@¢ PRINT "TOTAL IMPEDANCE (0OHMS) I8" Z

This program computes the total impedance for series circuits.

Statement
STOP

Stops program execution.

When a program encounters a STOP statement, it prints the message
BREAK IN, followed by the line number that contains the STOP.
STOP is primarily a debugging tool. During the break in execution,
you can examine variables or change their values.

The CONT command resumes execution at the point it was halted.
But if the program itself is altered during the break, CONT cannot be
used.

Sample Program

2260 X = RND(1@)
227@¢ STOP
2280 GOTO 2269

A random number between 1 and 10 is assigned to X, then program
execution halts at line 2270. You can now examine the value X with
PRINT X. Type CONT to start the cycle again.

2-163

STRS

STRINGS

Function
STRS$(number)

Converts number into a string.
If number is positive, STR$ places a blank before the string.

While arithmetic operations may be performed on number, only string
functions and operations may be performed on the string.

Example

8% = STR$(X
converts the number X into a string and stores it in S$.
Sample Program

10 A = 1.8 ¢ B# = A : C# = VAL(STR$(A))

29 PRINT "REGULAR CONVERSION" TAB(4@) "SPECIAL
CONVERSION"

3¢ PRINT B# TAB(4@) C=

Function
STRINGS$(number,character)

Returns a string of number characters.
Number must be in the range 0 to 255.

Character is a string or an ASCII code. If you use a string constant, it
must be enclosed in quotes. All the characters in the string will have
either the ASCII code specified, or the first letter of the string
specified.

STRINGS$ is useful for creating graphs or tables.

2-164

ST

SWAP

Examples:
B$ = STRING$(25, "X")
puts a string of 25 “X"s into B$.
PRINT STRING$(50, 10)

prints 50 blank lines on the display, since 10 is the ASCII code for a
line feed.

Sample Program

1049 CLEAR 30@

1959 INPUT "TYPE IN THREE NUMBERS BETWEEN 33
AND 139"35 N1, N2 N3

168 CLS: FOR I = 1 TO d: PRINT STRING$(Z@,
N1j): NEXT I

1879 FOR J = 1 TO 2: PRINT STRING%(49, NZ):
NEXT J

1280 PRINT STRINGH(B2,» N3)

This program prints three strings. Each string has the character
corresponding to one of the ASCII codes provided.

Statement
SWAP variable1, variable2

Exchanges the values of two variables.

Variables of any type may be SWAPped (integer, single precision,
double precision, string). However, both must be of the same type,
otherwise, a “Type mismatch” error results.

Either or both of the variables may be elements of arrays. If one or
both of the variables are non-array variables which have not been
assigned values, an “lllegal Function Call” error results.

Example
SWAP Fl#, F2u

swaps the contents of F1# and F2#. The contents of F2# are put
into F1#, and the contents of F1# are put into F2#.

2-165

Sample Program

10 A%$="ONE ":Bé$="ALL ":Cé="FOR "
23 PRINT A% C% Bs

30 SWAP A%, B

49 PRINT A% C% B$

RUN

ONE FOR ALL

ALL FOR ONE

SYSTEM

Statement
SYSTEM [“command”]

Returns you to TRSDOS level.

Command tells the system to execute the specified TRSDOS
command and immediately return to BASIC. Your program and
variables are not affected. If command is a constant, it must be
enclosed in quotes. You can specify only the TRSDOS library
commands, not the utilities.

If you omit command, SYSTEM returns to the TRSDOS Ready mode.
Your resident BASIC program is not retained in memory.

NOTE: You cannot call DEBUG from BASIC.
Examples
SYSTEM
returns you to TRSDOS. Your resident BASIC program is lost.
- SYSTEM "DIR"

runs the TRSDOS command, DIR (print directory), then returns to
BASIC. Your resident BASIC program remains intact.

2-166

B -

Function
TAB(number)

Spaces to position number on the display.
Number must be in the range 1 to 255.

If the current print position is already beyond space number, TAB
goes to that position on the next line. Space one is the leftmost
position; the width minus one is the rightmost position.

TAB may only be used with the PRINT and LPRINT statements.

Sample Program

1@ PRINT "NAME" TAB(Z5) "AMOUNT":PRINT
20 READ A%, B%

3@ PRINT A% TAB(Z5) B%

4¢ DATA "G.T.JONES","$25.0@"

RUN

The display shows:

NAME AMOUNT
G.T.JONES $75,00
Function
TAN(number)

Computes the tangent of number.

Number must be in radians. To obtain the tangent of number when it
is in degrees, use TAN (number * .01745329). The result is always
single precision.

2-167

SR

Examples
PRINT TAN(7.96)
prints —9.39702.

Sample Program

72¢ INPUT "ANGLE IN DEGREES"i ANGLE
738 T = TAN{ANGLE * ,21748329)
74@ PRINT "TAN IS" T
Function
TIMES

Returns the time of the day.
This function lets you use the time in a program.

The operator sets the time initially when TRSDOS is started up. When
you request the time, TIMES supplies it using this format:

14:47:18
which means 14 hours, 47 minutes and 18 seconds (24-hour clock).

To change the time, use the TRSDOS command, TIME. For example,

SYSTEM "TIME 10:15:00"
Example
A% = TIMES$

stores the current time in A$.

Sample Program

1130 SYSTEM "TIME 10:15:00"

11490 IF LEFT$(TIME$, 5) = "1@:15" THEN PRINT
"Time is 10:15 A,M.--time to rpick ur the
mail." END

1150 GOTO 114

2-168

P

TROFF, TRON

Statements
TROFF
TRON

Turn the “trace function” on/off.

The trace function lets you follow program flow. This is helpful for
debugging and analyzing of the execution of a program.

Each time the program advances to a new line, TRON displays that
line number inside a pair of brackets. TROFF turns the tracer off.

Sample Program

2290 TRON
2309 X = ¥ % 3,141589
2318 TROFF

Lines 2290 and 2310 above might be helpful in assuring you that line
2300 is actually being executed, since each time it is executed [2300]
is printed on the display.

After a program is debugged, the TRON and TROFF statements can
be removed.

2-169

USR

Function
USRI[digit|(expression)

Calls a user's assembly-language subroutine identified with digit and
passes expression to that subroutine.

The digit you specify must correspond to the digit supplied with the
DEF USR statement for that routine. If digit is omitted, zero is
assumed.

This function lets you call as many as 10 machine-language
subroutines, then continue execution of your BASIC program.
Subroutines must have been previously defined with DEF USR[digit]
statements.

When BASIC encounters a USR call, it transfers control to the
address defined in the DEF USR[digit] statement. (This address
specifies the entry point to your machine-language subroutine.)

“Machine language” is the low-level language used internally by your
computer. It consists of Z-80 microprocessor instructions.
Machine-language subroutines are useful for special applications
(things you can’t do in BASIC) and for doing things very fast (like to
“white-out” the display).

Writing such routines requires familiarity with assembly-language
programming and with the Z-80 instruction set. There are books
available on this subject; check your local Radio Shack or a book
store.

Example
¥ = USRS(Y)

calls the machine-language routine USR5, previously defined in a
DEF USR5 = address statement.

Passing arguments from BASIC to the subroutine:

Upon entry to a USR subroutine, the following register contents are
set up (for notation, see the TRSDOS reference section in this
manual):

A = Type of argument in USR[digit] reference
A = 8 if argument is double-precision
A = 4 if argument is single-precision

2-170

S

HL

DE

A
A

When the argument is a number, this register
points to the argument storage area(ASA)
described later.

2 if argument is integer
3 if argument is string

When the argument is a string, this register points
to a string description, as follows: The first byte
gives the length of the string. The next two bytes
give the address where the string is stored: least
significant byte (LSB) followed by most significant
byte(MSB).

Description of Argument Storage Area (ASA) — for numeric values

only.

For double-precision numbers:

ASA + 3

ASA + 2

ASA + 1
ASA
ASA - 1
ASA -2
ASA - 3
ASA - 4

Exponent in 128-excess form, e.g., a value of 128
indicates a @ exponent; a value of 66 indicates a

— 62 exponent. A value of 0 always indicates the

number is zero.

Highest seven bits of the mantissa with hidden
(implied) leading one. Bit 7 is the sign of the
number(0 positive, 1 negative), e.g., a value of
X’'84’ indicates the number is negative and the
MSB of the mantissa is X'84’. A value of X'04’
indicates the number is positive and the MSB of
the mantissa is X'84".

Next MSB of the mantissa.

Next MSB.

Next MSB.

Next MSB.

Next MSB.

Lowest eight bits of the mantissa.

For single-precision numbers:

ASA
ASA + 1
through
ASA + 3

For integers:

ASA
ASA + 1

LSB of the mantissa.

Same as for double-precision numbers.

LSB of the number

MSB of the number. Together, the two bytes
represent the number in signed, two’'s complement
form.

2-171

Your routine can call BASIC’'s FRCINT routine to put the argument
into HL in 16-bit, signed two’s complement form. The address of
FRCINT is stored in [X'2603’, X'2604’].

For example, you can put the following code at the beginning of your
subroutine:

FRCINT EQU 2693H CONVERTS USR ARGUMENT

3TO INTEGER IN HL

LD HL sCTHU J(HL)=CONTINUATION
iADDRESS

PUSH HL JBAVE IT FOR RETURN
sFROM FRCINT

LD HLs(FRCINT) 3(HL)=FORCE INTEGER
SROUTINE

JP (HL) DO FRCINT ROUTINE

Returning values from the subroutine to BASIC:

If the USR[digit] expression is a variable, you can modify its value by
changing the ASA or string contents, as pointed to by HL or DE. For
example, the statement:

X=USR1 (AL

transfers control to the USR1 subroutine, with HL pointing to the
two-byte ASA for integer variable A%. Suppose you modify the
contents of its storage area. When you do a RET instruction to return
to BASIC, A% will have a new value, and X will be assigned this new
value.

In general, USR[digit](expression) will return the same type of value
as the expression. However, you can use BASIC’s MAKINT routine to
return an integer value. The address of the MAKINT routine is stored
at [X'2605’,X'2606'].

For example, you might include the following code at the end of your
program to return a value to BASIC:

MAKINT EQU 2B605H

LD HL sVAL VAL IS THE VALUE TO
$BE RETURNED.

PUSH HL $SAVE VALUE IN STACK

LD HL,» (MAKINT) RESTORE VAL INTO HL

X (SP)+ HL FJAND PUT MAKINT
JINTO STACK

RET

2-172

N

P

VAL

Function
VAL(string)

Calculates the numerical value of string.

VAL is the inverse of the STR$ function; it returns the number
represented by the characters in a string argument. This number may
be integer, single precision, or double precision, depending on the
range of values and the rules used for typing all constants.

For example, if A$ = “12” and B$ = “34" then VAL(A$ + “.” + B$)
returns the value 12.34 and VAL(A$ + “E” + B$) returns the value
12E34, that is, 12 * 10" 34.

VAL terminates its evaluation on the first character which has no
meaning in a numeric value.

If the string is non-numeric or null, VAL returns a zero.
Examples
PRINT VAL("100 DOLLARS")
prints 100.
PRINT VAL ("1234ES")
prints 1.234E + 08.
B = UAL("3" + "x" 4+ "2

assigns the value 3 to B (the asterisk has no meaning in a numeric
term).

Sample Program
1¢ READ NAMES$, CITY$, STATE$, ZIP$

20 IF VAL(ZIP$) « 90002 OR VAL(ZIP$) > 56689
THEN PRINT NAME$ TAB(23) "0UT OF STATE"
30 IF VAL(ZIP$) > 90801 AND VAL(ZIP$) <= 80815

THEN PRINT NAME$ TAB(25) "LONG BEACH"

2-173

VARPTR

Function
VARPTR (variable)
or
VARPTR (#buffer)

Returns the absolute memory address.

VARPTR can help you locate a value in memory. When used with
variable, it returns the address of the first byte of data identified with
variable.

When used with buffer, it returns the address of the file’s data buffer.

If the variable you specify has not been assigned a value, an “lllegal
Function Call” occurs. If you specify a buffer that was not allocated
when loading BASIC, a “Bad file number” error occurs. (See Chapter
1 for information on how to load BASIC.)

VARPTR is used primarily to pass a value to a machine-language
subroutine via USR[digit]. Since VARPTR returns an address which
indicates where the value of a variable is stored, this address can be
passed to a machine-language subroutine as the argument of USR;
the subroutine can then extract the contents of the variable with the
help of the address that was supplied to it.

If VARPTR returns a negative address, add it to 65536 to obtain the
actual address.

If VARPTR(integer variable) returns address K:

Address K contains the least significant byte (LSB) of the 2-byte
integer.

Address K + 1 contains the most significant byte (MSB) of the
integer.

If VARPTR(single-precision variable) returns address K:

(K)* = LSB of value

(K + 1) = Next most significant byte(Next MSB)

(K + 2) = MSB with hidden (implied) leading one. Most
significant bit is the sign of the number

(K + 3) = exponent of value excess 128(128 is added to the

exponent).

*(K) signifies “contents of address K”

2-174

el

If VARPTR(double-precision Variable) returns K:

(K) = LSB of value

(K + 1) = Next MSB

(K + ...) = Next MSB

(K + 6) = MSB with hidden (implied) leading one. Most
significant bit is the sign of the number.

K+ 7) = exponent of value excess 128 (128 is added to the

exponent).

For single and double-precision values, the number is stored in
normalized exponential form, so that a decimal is assumed before the
MSB. 128 is added to the exponent. Furthermore, the high bit of MSB
is used as a sign bit. It is set to 0 if the number is positive or to 1 if
the number is negative. See examples below.

If VARPTR(string variable) returns K:

(K) = length of string
(K + 1) = LSB of string value starting address
K+ 2) = MSB of string value starting address

The address will probably be in high RAM where string storage space
has been set aside. But, if your string variable is a constant (a string
literal), then it will point to the area of memory where the program line
with the constant is stored, in the program buffer area. Thus, program
statements like A$="HELLO” do not use string storage space.

For all of the above variables, addresses (K-1) and (K-2) stores the
TRS-80 Character Code for the variable name. Address (K-3)
contains a descriptor code that tells the computer what the variable
type is. Integer is 02; single precision is 04; double precision is 08;
and string is 03.

VARPTR(array variable) returns the address for the first byte of that
element in the array. The element consists of 2 bytes if it is an integer
array; 3 bytes if it is a string array; 4 bytes if it is a single precision
array; and 8 bytes if it is a double precision array.

The first element in the array is preceded by:.

1. A sequence of two bytes per dimension, each two-byte pair
indicating the “depth” of each respective dimension.

2. A single byte indicating the total number of dimensions in the
array.

3. A two-byte pair indicating the total number of elements in the
array.

4. A two-byte pair containing the ASCII-coded array name.

2-175

5. A one-byte type-descriptor(02 = Integer, 03 = String, 04 =
Single = Precision, 08 = Double-Precision).

ltem 1 immediately precedes the first element, ltem 2 precedes ltem
1, and so on.

The elements of the array are stored sequentially with the first
dimension-subscripts varying “fastest”, then the second, etc.

Examples
Al = 2 is stored as follows:

2 = 10 Binary, normalized as .1E2 = .1 x 10 (to the second)

So exponent of A is 128+2 = 130 (called excess 128)

MSB of A is 10000000; however, the high bit is changed to zero since
the value is positive(called hidden or implied leading one).

So Al is stored as

Exponent (K + 3) MSB(K + 2) Next MSB(K + 1) LSB(K)
13¢@ 14 @ ?
Al= — 5 is stored as
Exponent (K + 3) MSB(K + 2) Next MSB(K + 1) LSB(K)
128 128 4 0
: SR
Al=7 is stored as
Exponent(K + 3) MEB(K + 2) Next MSB(K + 1) LSB(K)
131 a6 []
Al=-7:
Expovent (K + 3) MSB(K + 2) Next MSB(K + 1) LSEB(K)
131 2z4 '] [
Zero is stored as a zero-exponent. The other bytes are insignificant.
¥ = USR1I(UVARPTR(number))
If number is an integer value, VARPTR(number) finds the address of
the least significant byte of number. This address is passed to the
subroutine, which in turn passes its result to Y.
N

2-176

P

WAIT

Statement
WAIT port, integer1 [,integer2]

Suspends program execution until a machine input port develops a
specified bit pattern. (A port is an input/output location.)

The data read at the port is exclusive OR’ed with integer2, then
AND’ed with integer1. If the result is zero, BASIC loops back and
reads the data at the port again. If the result is nonzero, execution
continues with the next statement. If integer2 is omitted, it is assumed
to be zero.

It is possible to enter an infinite loop with the WAIT statement. In this
case, you will have to manually restart the machine. To avoid this,
WAIT must have the specified value at port number during some point
in program execution.

For information on assigned ports, refer to the Technical Reference
Manual.

Example
100 WALT 3242

2-177

WHILE WEND

Statement
WHILE expression

{loop statements}

WEND

Execute a series of statements in a loop as long as a given condition
is true.

If expression is not zero (true), BASIC executes loop statements until
it encounters a WEND. BASIC returns to the WHILE statement and
checks expression. If it is still true, BASIC repeats the process. If it is
not true, execution resumes with the statement following the WEND
statement.

WHILE/WEND loops may be nested to any level. Each WEND
matches the most recent WHILE. An unmatched WHILE statement
causes a “WHILE without WEND” error, and an unmatched WEND
causes a “WEND without WHILE"” error.

Sample Program

99 ‘BUBBLE SORT ARRAY A%

100 FLIPS=1 ‘FORCE ONE PASS THRU LOOP

119 WHILE FLIPS

115 FLIPS=0

120 FOR I=1 TO J-1

130 IF A$(I)>A%(I+1)THEN SWAP A$(I), A$(I+1):
FLIPS=1

14@ NEXT 1

150 WEND

This program sorts the elements in array A$. Control falls out of the
WHILE loop when no more SWAPS are performed on line 130.

2-178

P

WRITE

Statement
WRITE [data, . . . |

Writes data on the display.

WRITE prints the values of the data items you type. If data is omitted,
BASIC prints a blank line. The data may be numeric and/or string.
They must be separated by commas.

When the data are printed, each data item is separated from the last
by a comma. Strings are delimited by quotation marks. After printing
the last item on the list, BASIC inserts a carriage return.

Example

1® D=95:B=76:V4$="G0OD BYE"
29 WRITE D B W%
RUN
95, 76, "GOOD BYE"
Ready

2-179

WRITE#

Statement
WRITE# buffer, data, . ..

Writes data to a sequential-access file.
Buffer must be the number used to OPEN the file.
The data you enter may be numeric or string expressions.

WRITE# inserts commas between the data items as they are written
to disk. It delimits strings with quotation marks. Therefore, it is not
necessary to put explicit delimiters between the data.

The items on data must be separated by commas.

WRITE# inserts a carriage return after writing the last data item to
disk.

—
For example, if u
A$="MICROCOMPUTER" and B$="NEWS"
the statement
WRITE#1, A%$,B%
writes the following image to disk:
"MICROCOMPUTER" »"NEWS™"

2-180

