
1

6800 ROM MONITOR

VERSON 1.0

USERS GUIDE

Southwest Technical Products Corporation
219 W. Rhapsody San Antonio, Texas 78116

Copyright 1977, Southwest Technical Progucts Corporation

Scanned and edited by Michael Holley Sept 17, 2000 holleymj@aol.com

2

SWTPC SWTBUG® (SWATBUG) MONITOR ROM

One of the features of the SWTPC 6800 Computer System is that the conventional
programmer’s console has been replaced with a monitor ROM. The programmer’s console
consists of all the pretty switches and lights often found on similar microcomputers that are used
to bootstrap the system after power up. The programmer’s console not only raises the cost of the
system, but more often than not is confusing and tedious to use for both be-ginning and
experienced programmers. The monitor ROM on the other hand is a permanently stored program
that gives the computer the intelligence required to communicate with the operator thru an
interfaced terminal system immediately after power up without flipping switches for 10 minutes.
This technique makes the computer do the work of simplifying communication between itself and
the operator.

SWTBUG® is the name of the monitor program used in the SWTPC 6800 Computer
System. It might be thought of as kind of a mini-operating system since it gives the operator
command control over the computer system.

Features of the SWTBUG® ROM include:
∗ Memory Examine and Change
∗ Program loading from cassette or paper tape thru the control interface or thru I/O port # 0.
∗ Program saving to cassette or paper tape
∗ Go to user program
∗ Display contents of registers
∗ Erase SWTPC CT-1 024 terminal system screen
∗ SWTPC MF-68 floppy disk boot
∗ Byte search
∗ Breakpoint debugging
∗ Vectored hardware and software interrupts to user defined addresses

SWTBUG® is a permanently stored program and cannot be erased or lost by either a loss of
power or user program error. It is always resident in the computer while power is ON and need
never be loaded into the machine. Subroutines within the ROM are documented and available to
the user to simplify programming and conserve on the use of user RAM memory. Character input
and output, string output and return to monitor are just a few subroutines available to the user.

SWTBUG® is a 1K byte program and is addressed high in memory, far above the amount of
RAM memory required for most user programs. Since SWTBUG® does require a small amount of
RAM memory for operation, a 128 byte scratchpad RAM has been implemented on the processor
board so that no external user RAM memory is required for monitor operation. There is even
enough extra room in this RAM so that short programs such as memory diagnostics can be
loaded into and run from the scratchpad RAM without requiring any external user RAM memory.
Extra care however must be exercised to avoid overstoring any memory locations required for
proper monitor operation. Complete de-tails on this are given later in this writeup. The
SWTBUG® ROM is located from memory addresses EOOO thru E3FF. The scratchpad RAM is
located from memory addresses A000 thru A07F. Both components are physically located on the
processor board and are functional any time the system is powered up. Whenever computer
control is transferred from SWTBUG® to the user program, there are only four ways to get back
into the SWTBUG® command mode. The first is to put a jump to the CONTRL entry point
address within SWTBUG® as the last step of your program. The second is to incorporate a
command or action within your program which transfers program control to the CONTRL entry
point address within SWTBUG’ The third is to depress the front panel RESET button. The fourth
is turn the computer OFF and then back ON again. The fourth method is rather drastic and wipes
out all RAM memory data, it is only mentioned to let you know that the computer always powers
up with the SWTBUG® monitor in the command mode.

3

SWTBUG® INSTALLATION
SWTBUG® is a MOS device and MOS integrated circuits are susceptible to damage by

static electricity. Although some degree of protection is provided internally within the integrated
circuits, their cost demands the utmost in care. Before opening and/or installing SWTBUG® you
should ground your body and all metallic tools coming into contact with the leads, thru a 1M ohm
¼ watt resistor. The ground must be an “earth” ground such as a water pipe, and not the circuit
board ground. As for connection to your body, attach a clip lead to your watch or metal ID
bracelet. Make absolutely sure that you have the resistor connected between you and the “earth”
ground, otherwise you will be creating a dangerous shock hazard. Avoid touching the leads of the
integrated circuits any more than necessary when installing it, even if you are grounded. Static
electricity should be an important consideration in cold, dry environments. It is less of a problem
when it is warm and humid.

When using SWTBUG® with an MP-A processor card, one board change is necessary since
SWTBUG® is a full 1 K ROM and MIKBUG® was a 1/2K device, If this ROM is replacing
MlKBUG, remove MIKBUG® from its socket. On the back side of the MP-A board you will notice
that pin 15 of IC-2 (ROM) is grounded. The land coming from pin 15 should be broken and a wire
added as shown below.

SWTBUG® should now be installed in the socket for IC-2. Be sure to orient the ROM
correctly when re-installing. The semicircle notch or dot should match with the MP-A board’s
component layout drawing. When installing SWTBUG® in the MP-A2 processor board no board
modifications are necessary. Follow the instructions supplied with the MP-A2 instruction set.

SWTBUG® OPERATION
The SWTBUG® firmware enables the computer to communicate with a terminal to perform

various programming and debugging functions. SWTBUG® will communicate with a terminal via
either a MP-C control interface or MP-S ACIA serial interface on I/O port 1. An optional MP-C
interface can be installed on I/O port 0 for punch and load functions. Although SWTBUG® is
essentially compatible with MIKBUG, be sure to read the COMPATIBILITY section before running
any programs written for MIKBUG. Below is a detailed description of each SWTBUG® command.

RESET
Upon receiving a RESET command, as during power up, SWTBUG® will initialize the

system to receive commands from a terminal. When the RESET button is pushed, control will
transfer to location E0D0 of SWTBUG®. The RESET button should be used for exiting loops or
malfunctioning programs. After resetting, the computer should respond with a carriage return, line
feed and a $ sign. At this point, SWTBUG® is waiting for commands. If breakpoints are being
used, the RESET function will not disable breakpoints. The BREAKPOINT function should be
referenced for additional information.

4

MEMORY EXAMINE AND CHANGE M (addr)
 The Memory Examine and Change function can be used to enter machine code programs

and to display and/or change the contents of memory. The Memory Examine and Change
function should be used as follows:

1.) Type M. The computer should echo the M and output a space.
2.) Type in the four digit hexadecimal address that you wish to examine and/or change.

The computer should respond with a carriage return, line feed, $, the address and the
data that is stored at this address.

3.) At this point the user has the option of advancing, either forward or backward, to the
next memory location, or changing the data stored at the displayed address and
advancing to the next location or of exiting the M function.
a.) To display the next sequential address and data, a line feed or any character other

than 0123456789ABCDEF:;^=>? or a space or a carriage return may be entered.
Any leading spaces that are entered will be ignored by the memory change
function.

b.) To display the next sequential address going backward from the present location, a
^ should be entered.

c.) To change the data stored at the displayed location, enter the new data, either with
or without a leading space. If a non-hex value, such as a 3Q is entered the data will
remain unchanged and the memory change function will be exited. If the data is
unable to be changed (write protected memory, etc.) a ? will be output and the
memory change function will be exited.

d.) To exit the Memory Examine and Change function, type a carriage return.

Below is an example. The underlined parts are what was entered by the user.

$M 0100 MEMORY LOCATION 0100 OPENED
$0100 00 . DISPLAY NEXT LOCATION
$0101 BD . DISPLAY NEXT LOCATION – SPACE IGNORED
$0102 5D . DISPLAY NEXT LOCATION
$0103 C1 01 CHANGE CONTENTS TO 01
$0104 C9 23 CHANGE CONTENTS TO 23. SPACES IGNORED
$0105 15 ^ READ PREVIOUS LOCATION
$0104 23 . DISPLAY NEXT LOCATION
$0105 15 3Q ENTER NON-HEX VALUE
$M 0105 SWTBUG CONTROL RESUMED. OPEN NEW LOCATION
$0105 15 EXIT BY HITTING CARRIAGE RETURN
$M E000 OPEN ANOTHER LOCATION
$E000 FE 56? ATTEMPTED TO CHANGE A WRITE PROTECTED MEMORY
$ SWTBUG CONTROL RESUMED

REGISTER DUMP FUNCTION R
The R command will display the current contents of the MPU's pushdown stack. “Current”

means the status of data stored on the stack immediately before SWTBUG® control is resumed.
The following is a typical register dump:

 $R
 $FF 16 23 17EC 0103 A042
 $

CONDITION
CODES

ACC
B

ACC
A

INDEX
REG

PGM.
CTR.

STACK
PTR

5

The condition codes are as defined below:

BIT NO. LABEL CONDITION CODE
0 C Carry-borrow
1 V Overflow
2 Z Zero
3 N Negative
4 I Interrupt mask
5 H Half carry

In the above example the condition code of "3C" can be interpreted as follows:

3C16 = 0 0 1 1 1 1 0 0
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

Below are two examples of how the R command works. Assume that this small program was
entered to change certain registers.

$M 0100
$0100 CE 8E LOADS STACK POINTER TO 100
$0101 12 10
$0102 34 00
$0103 86 CE LOAD INDEX REGISTER WITH 1234
$0104 00 12
$0105 C6 34
$0106 FF 86 LOAD ACCUMULATOR A WITH 00
$0107 FD 00
$0108 08 C6 LOAD ACCUMULATOR B WITH FF
$0109 23 FF
$010A 67 7E JUMP BACK TO SWTBUG CONTROL
$010B F7 E0
$010C 60 E3
$010D DD
AT THIS POINT THE STATUS WILL NOT BE PUSHED ON THE STACK

6

$R
$FF DC FC 6EFD 0100 A042 REGISTER DUMP BEFORE RUNNING PROGRAM
$G
$R
$FF DC FC 6EFD 0100 A042 NOTE R DUMP THE SAME AFTER RUNNING
$J 0100
$R
$FF DC FC 6EFD 0100 A042 THE SAME AFTER A JUMP
$M 010A AT THIS POINT THE JUMP TO SWTBUG CONTROL
$010A 7E 3F IS REPLACED BY A SWI. NOTE THE VALUE
$010B 50 OF THE REGISTERS AFTER THE NEXT DUMP.
$G
$F9 FF 00 1234 010A 0FF9 REGISTER DUMP GIVEN BY SWI
$R
$F9 FF 00 1234 010A 0FF9 DUMP SHOWS PROGRAM CHANGES
$
$FF DC FC 6EFD 0100 A042 R DUMP AFTER RESET

In the above program you will notice that the register dump after running the program is the
same as before even though the program contained statements that changed the processor’s
registers. The register dump did not reflect these changes because the new conditions were not
pushed on the computer’s stack. Note, however, the register dump did reflect the change when
the last instruction was a software interrupt -- a SWI instruction will push the processor’s status
on the stack and then display the contents of the registers.

CT-1024 CLEAR SCREEN COMMAND C
The C command outputs a home-up (1016) and an erase to end of frame (1616) control

characters for the clearing of the screen on a SWTPC CT-1024 or equivalent terminal system.

GO TO USER’S PROGRAM FUNCTION G
Upon entering a G command, SWTBUG® will transfer control to the user’s program by

executing a RTI (return from interrupt) instruction. This effectively causes the computer to jump to
the memory address stored in memory locations A048 and A049 in the SWTBUG® RAM. A048
contains the most significant byte and A049 the least significant byte of the memory address. If,
for example, you wish to execute a program starting at 0100, change A048 to a 01 using the M
function and change A049 to 00. Typing a G will then cause the computer to execute the program
whose starting address is 0100, Upon entering a program using the G function, the stack pointer
will be set at A049. The G function is also used to restart a program after a breakpoint has been
moved. In this case A048 and A049 should not be changed. See the Breakpoint section for
further information.

JUMP TO USER’S PROGRAM J(addr)
The J command will cause the computer to execute the program whose starting address is

given in the entered address. The J command does not look at locations A048 and A049. The
stack pointer will be set at A042 upon entering a program with a jump command. Example: J
0100. If a non-hex character is entered, SWTBUG® control will resume.

ASCII TAPE PUNCH COMMAND P
The P command provides a means for storing the contents of specified memory on either

cassette or paper tape. Normal output from the computer during a punch is thru either an MP-C
or MP-S serial interface on I/O port 1, but a MP-C interface on I/O 0 can be selected. (See the
description of the 0 command.) To use the P command, the upper and lower limits of the range to
be punched must first be stored in locations A002-A005 of the SWTBUG@ RAM. If you wanted to
punch from addresses 0123 to 4567 (inclusive) you would use the memory examine and change
functions to set computer memory as follows.

7

A002 ! 01 MOST SIGNIFICANT BYTE OF LOWER ADDRESS
A003 ! 23 LEAST SIGNIFICANT BYTE OF LOWER ADDRESS
A004 ! 45 MOST SIGNIFICANT BYTE OF UPPER ADDRESS
A005 ! 67 LEAST SIGNIFICANT BYTE OF LOWER ADDRESS

Typing P would turn the punch on and output the specified memory data. A sample punch
output is as follows:

$M A002
$A002 02 01 MSB OF LOW ADDRESS
$A003 72 00 LSB OF LOW ADDRESS
$A004 EF 01 MSB OF HIGH ADDRESS
$A005 00 20 LSB OF HIGH ADDRESS
$A006 5F
$P TAPE PUNCH COMMAND
S11301008E1000CE12348600C6FF3FE0E3DD005DB2
S11301108090E05160F73A8201F500FFC79771D1F2
S104012000DA
$

S1 13 0100 8E1000CE12348600C6FF3FE0E3DD005D B2
START OF
BLOCK

CHARACTER

BYTE
COUNT
(HEX)

BLOCK
STARTING
ADDRESS

DATA CHECK
SUM

The S1 at the start of the block is used to tell the load routine that valid punch data follows.
Each punch block must begin with the S1. The 1316 is the number of bytes that follow in the block.
In this case two bytes are required for the starting address of the block (01 and 00), 1016 bytes
are required for the data (8E 10 00 CE 12 34 86 00 C6 FF 3F E0 E3 DD 00 50) and one byte is
required for the checksum (B2). The checksum is generated by adding the complement of the
start of block address and the data, 8 bits at a time. At load-in time another checksum is
generated by the load routine which must match with the one generated at punch time.

As the punch begins a PUNCH ON (1216) control character will be output to the punch
device. If a MP-C control interface is the selected interface unused lines on the PIA will be
strobed to turn on the punch function of a SWTPC AC-30 or equivalent tape interface. (See the
PIA Strobing section for more information.) When the punch is completed a PUNCH OFF (1416)
control character will be output and another PIA line will be strobed. User control is then returned
to SWTBUG. To complete the tape making procedure you will have to enter the end of tape
command described below.

END OF TAPE COMMAND E

The E command will punch the contents of the program counter (A048-A049) and an S9 to
tape. The S9 is decoded by the load routine as an “end of tape” marker. For example, if you wish
to save a program that resides from 000 to 000F and whose starting address is 005 you would
perform the following sequence:

$M A002
$A002 FC 00
$A003 3E 00
$A004 A0 00
$A005 49 0F
$A006 4C

8

$M A048
$A048 01 00
$A049 03 05
$A04A F4
$P
$S113OOOOOA0501001EF023FF01A01B351B37022443
$E
S105A04800050DS9
$
$

A048 and A049 are automatically transferred to A002-A005 and punched to tape by the E
command. A short delay follows the S9 to allow clean load-ins on cassette tape. Appropriate
punch on/off commands are automatically sent.

TAPE LOADER FUNCTION L
The L function is used to load either a MIKBUG® or SWTBUG® formatted program from

either paper or cassette tape. To use the L function, first set up the tape in the loading device and
type L. As with the punch command, a L function will load from an MP-S or MP-C on I/O port 1 or
if selected a MP-C on I/O port 0. A READER ON (1116) control character is output at the
beginning of the load and terminal echo is disabled. Again the PIA is strobed for use with a tape
interface. When the S9 end of tape marker is read, control will return to SWTBUG®. If a
checksum error is detected, a ? will be printed and control will return to SWTBUG® The load
routine verifies that the data being loaded is actually stored in the correct memory locations. If, for
some reason, a byte is not stored (bad memory, etc.) the computer will respond with a ?. To abort
the load function the RESET switch can be pressed. Before attempting to load a SWTPC binary
formatted tape, be sure to read the COMPATIBILITY section.

OPTIONAL PORT COMMAND 0 (not zero)
The 0 (not zero) command enables the user to load from or punch to a MP-C control

interface plugged on to port 0. To use the 0 command, type 0 followed by the desired option P, E
or L (punch, end of tape or load). The same rules apply for using the P, E and L functions as
described earlier. The 0 command will not support an ACIA type serial interface on port 0.

NOTE: When using a MP-C interface on port 0, a RESET will not, automatically turn off the
reader and punch as is done when installed on port 1. This makes it impossible to create or load
a binary formatted tape from an MP-C interface installed on I/O port 0 using existing binary load
and punch programs.

SOFTWARE BREAKPOINTS B(addr)
The B command enables the user to enter breakpoints (software interrupts) in a program for

debugging purposes. Breakpoints enable a program to be stopped at any point for register
examination, memory changing, etc. To use the breakpoint function, first load in your program
and set up A048 and A049 to the starting address of the program. Type B and then enter the
address where you want to set the first breakpoint. SWTBUG® will store the data that was at this
address and replace it with a 3F (software interrupt). Typing G for Go to User Program will start
program execution. When the program reaches the 3F, execution will stop and the processor’s
registers will be displayed. The B function can be used again to move the breakpoint to a new
location -- SWTBUG® automatically replaces the data at the old breakpoint location with the
original instruction. A G should be used to re-start the program -- do not reset A048 and A049 --
SWTBUG® automatically pulls the restart location from the stack. To remove breakpoints, type B
followed by a carriage return. Breakpoints should always be removed in this way after using the
breakpoint function. If, while using breakpoints, the system is reset, the correct location on the
stack will be lost. After resetting, the program counter addresses (A048, A049) should be
reinitialized to the beginning of the program and execution restarted.

9

A previously set breakpoint will remain and may be changed or removed as described
earlier. If, when using the B command, a non-hex value is entered the previous breakpoint will be
removed and SWTBUG® control will resume.

 There are several things that one must be aware of when using breakpoints to insure proper
operation.

1.) The breakpoint function uses the same locations as do vectored software interrupts;
therefore, vectored software interrupts should not be used with break points.

2.) The SWI jump location, A012, will be set to El24 when breakpoints are not in use, as
after power up, and will be set to El23 when breakpoints are in use. This location serves
as a pointer to tell the computer what to do when a 3F is seen. The RESET button will
not reset this location to the non-breakpoint state. The breakpoint-activated state can
only be exited by typing B followed by a carriage return. If you are using breakpoints in
a program that “bombs out” and you hit the RESET switch, you must clear the present
breakpoint before going on to another program. If this is not done before a new program
is loaded in, the first time the B command is used one byte of the new program will be
replaced by the stored byte from the last program.

3.) Do not set a breakpoint to an address where a breakpoint is already set. Doing so will
cause the computer to lose the original program data.

DO NOT THIS IS OK
B 1377 B 1377
G B 0100
B 1377 B1377

B carriage return

4.) The breakpoint routine uses SWTBUG® RAM locations A014-A016; therefore,
programs which use these three bytes should not be used in conjunction with
breakpoints.

DISK BOOT D
SWTBUG® contains the boot necessary to initialize a SWTPC MF-68 disk system. Typing D

will transfer control to the disk operating system, (if attached). If D is accidentally typed with no
disk attached, the RESET button must be pressed. Since the disk boot contains no error
detection, it may need to be typed more than once to do a boot.

JUMP TO PROM PROGRAM Z
Typing Z will transfer control to a program stored in PROM (if applicable) whose starting

address is at C000. Typing Z is equivalent of typing J C000

BYTE SEARCH F (high address) (low address) (byte)
The F (find] command will search memory from the specified low address to tile high

address, inclusive, and will display all memory locations containing the byte specified. For
example, to find all memory locations between 0100 and 0200 that contain 8E, the following
command should be used: F 020001008E. Note that no spaces may be used between addresses
and that the high address goes first.

$F 020001008E

If a non hex value is entered, SWTBUG® control will resume.

10

VECTORED SOFTWARE INTERRUPTS
Normally when encountering a SWI (3F) instruction, the computer will display the

processor’s registers and SWTBUG® control will be resumed. If desired, the 3F command can be
vectored to anywhere in memory, just like the NMI and IRQ interrupts. To use the vectoring
capability simply store the service routine address at location A012-A013 in the SWTBUG® RAM.
When a 3F is encountered, processor control will be transferred to the memory address stored in
A012-A013. Note: each time the system is RESET, A012 will be reset to the location of the
register dump routine. This means that any program which uses vectored SWl’s should set up
this location each time it is executed. If the location you wish to vector to is 10D0, for example,
the following statements at the beginning of the program will set up the vector correctly:

LDX # $10D0 LOAD VECTOR ADDRESS
STX $A012 STORE VECTOR

Vectored software interrupts should not be used in conjunction with breakpoints since the
breakpoint routine uses locations A012-A013.

VECTORED INPUT/OUTPUT
If desired, input and output can be vectored to a MP-S or MP-C interface on ports other than

#1. Locations A00A-A00B contains the port address that the subroutines INEEE and OUTEEE
use for inputting and outputting characters. To use vectored input/output your program must store
the desired I/O address in A00A–A00B before any I/O is done. Below is a list of I/O address
assignments for each port:

PORT ADDRESS
0 8000
1 8004
2 8008
3 800C
4 8010
5 8014
6 8018
7 801C

The program statements that would set up the correct port would be as follows:
LDX #$8018 I/O on port 6
STX $A00A Store

SWTBUG® will look at the port and will self-configure for either a MP-C or MP-S type
interface.

NOTE: Any time that SWTBUG‘s control sequence is initiated or when the RESET button is
pushed, the I/O address will be reset to port # 1. Therefore complete SWTBUG® monitor control
cannot be moved to another port.

USING NON-MASKABLE INTERRUPTS
Using non-maskable interrupts is very similar to using vectored software interrupts. A non-

maskable interrupt will occur whenever the NMI line on the computer’s bus is grounded either
through hardware or by an ACIA or PIA. When the NMI is seen, processor control will be
transferred to the location stored in A006 and A007. For example if an NMI service routine is
desired at location 1000 the following statements should be used at the beginning of your
program to set up the correct NM1 jump address.

LDX #$1000
STX $A006

USING MASKABLE (IRQ) INTERRUPTS
Using regular maskable interrupts is the same as using non-maskable interrupts except that

when the IRQ line is grounded processor control will jump to the address stored in A000 and
A001. The computer will only respond to the interrupt if the processor’s interrupt mask bit 1 is 0. A
CLI instruction at the beginning of your program will insure this condition.

11

PIA STROBING
Use of the Control Interface for Read/Punch-On/Off Decoding

SWTBUG® software contains subroutines to send out pulses to unused pins of the PIA
integrated circuit on the MP-C serial control interface that can be used for automatic reader /
punch controls. These pulses can be used if you are using a SWTPC AC-30 cassette interface
and a terminal in which access to the control command decoding is denied.

If you intend to use the read/punch control logic output on the MP-C control interface board,
make the following connections from the indicated pins of ICI on the MP-C control interface board
to the specified pins of a twelve pin male connector shell. The connector pinning shown below is
correct for a SWTPC AC-30 cassette interface and will need modifications for other units. Be sure
to make the wires long enough to reach your AC-30 where the connector will be plugged. If you
have access to your terminal’s 16X baud rate clock, the terminal’s clock bus should be broken
and the 16X clock IN and OUT lines brought out to the same connector.

MP-C IC1 pin 7 (read on) 12 pin male shell female pin 1
MP-C IC1 pin 4 (punch on) 12 pin male shell female pin 2
MP-C IC1 pin 6 (read off) 12 pin male shell female pin 3
MP-C IC1 pin 5 (punch off) 12 pin male shell female pin 4
Terminal’s 16X clock OUT 12 pin male shell female pin 5
Terminal’s 16X clock IN 12 pin male shell female pin 6
MP-C ground 12 pin male shell female pin 12

These signals are low going pulses and are about 15 microseconds wide. They are not
buffered and should drive a maximum of only one standard TTL load.

PIA stroking will work only on SWTBUG®‘s L, P and E functions. Strobing is not supported
in BASIC and some other SWTPC software.

OPERATING THE MP-A2 PROCESSOR BOARD
AT BAUD RATES HIGHER THAN 1200 BAUD

The MP-S Serial Interfaces available for the SWTPC 6800 Computer System are capable of
operating at baud rates up to 9600 baud. Although baud rate clocks for 110, 150, 300, 600 and
1200 baud are generated, buffered and fed onto the mother board by IC4 of the MP-A2 board,
clocks for additional baud rates are also available from IC4 as well. The table below gives the
baud rate and respective output pin number of IC4.

BAUD RATE MP-A2 IC4 pin
75 9
200 6
1800 15
2400 3
3600 16
4800 2
7200 17
9600 1

To use the selected clock, run an insulated jumper between the specified pin and pin 13 of
IC10 on the MP-A2 board. Run another insulated jumper between pin 12 of IC10 and either the
UD1 or UD2 bus connections points at the connector edge of the MP-A2 circuit board. IC10 is a
low power TTL buffer which must be inserted between the baud rate clock generator and the
mother board bus. Since user defined lines UD1 and UD2 are carried on just the 50-pin main
board bus and lines UD3 and UD4 are carried on just the 30-pin interface board, it will be
necessary to jumper two of the buses together to provide the selected baud rate clock on the
interface card bus. Each serial interface card to be operated with the selected baud rate clock will
have to be jumpered so its clock is acquired from the selected user defined line rather than one of
the five original baud rate clocks already present.

12

OPERATING THE MP-A PROCESSOR BOARD
AT BAUD RATES HIGHER THAN 1200 BAUD

When using the MP-S serial interface with an MP-A processor board, baud rate clocks for up
to 9600 baud are available from the baud rate generator on the MP-A processor board. The table
below shows the baud rates available and from which pin of IC4 on the MP-A board they are
derived. These 16X baud rate clocks are best feed back to the interface boards via the user
defined lines provided on the mother board. These baud rates of course are in addition to the
110, 150, 300, 600 and 1200 baud rate clocks already provided on the mother board.

BAUD RATE MP-A IC4 pin
75 9
200 6
1800 15
2400 3
3600 16
4800 2
7200 17
9600 1

COMPATIBILITY
Although SWTBUG® has been written to be as compatible as possible with MIKBUG® and

with software supplied by SWTPC, it can never be completely MIKBUG® compatible. All major
subroutines of SWTBUG® are address and function compatible with MIKBUG®, but if you have a
program that enters into the middle of a MIKBUG® routine for some reason, program
modifications will be necessary. The following is a list of the MIKBUG® compatible subroutines
and strings along with their entry point addresses.

E040 LOAD19 E0C8 OUT4HS
E047 BADDR E0CA OUT2HS
E055 BYTE E0D0 START
E075 OUTCH E0E3 CONTRL
E078 INCH E19C MCLOFF
E07B PDATA2 E19D MCL
E07E PDATA1 E1AC INEEE
E0BF OUT2H E1D1 OUTEEE

If any doubt exists as to the compatibility of a particular program, it should be disassembled
and any references to memory locations E000–E1FF be verified. Since SWTBUG® is more
complex than MIKBUG, more RAM area must be used in the 6810 SWTBUG® RAM. If vectored
software interrupts and breakpoints are not being used, the area from A014 to A033 and from
A04A to A07F can be used for small, temporary programs such as memory diagnostics. Note that
some programs written for MIKBUG® use locations A034-A036 - these locations are not available
for use in SWTBUG®

LOADING BINARY TAPES THRU SWTBUG®
SWTBUG® was written to accept the binary formatted tapes supplied by SWTPC. These

tapes include 4K BASIC, 8K BASIC, CORES and DESEMBLER. When loading these tapes the
following rules must be followed:

1.) The tape reading device (AC-30, etc.) must be locked in the read on mode during the
binary load.

2.) Binary tapes must be loaded in thru port # 1, the control port. The optional load from
port 0 command is not supported in binary. You may load in ASCII however.

3.) When using a PIA type interface to load binary tapes, the unused lines used for
reader/punch on/off strobing are not activated.

13

NOTE: This does not mean that SWTBUG® is equipped with a binary loader-only certain
SWTPC binary tapes that contain a special binary loader (in ASCII) will work correctly.

To load the tape simply follow the instructions given for loading an ASCII tape, but keep the
reader locked on.

SPECIAL NOTES ON USING AN ACIA AND PROGRAM MODIFICATIONS
Many available 6800 programs written for MIKBUG® assume that a PIA type MP-C control

interface is being used and may address this port directly. When using an ACIA type interface,
these references need to be changed. For example, some programs, such as BASIC and
CORES, poll the PIA periodically to see if a character has been typed in. This is done in order to
kick out of a loop or a print sequence. (BASIC uses CTL..C. and CO-RES uses CTL..X.) The
source statements that do this usually take the following form:

B6 8004 LDA A PIAD LOAD A FROM DATA REG.
2B 03 BMI PRINT BRANCH IF NOT CHAR. SEEN
7E XX XX JMP READY or RESTART

PRINT REMAINDER OF SEQUENCE

To change to a MP-S serial interface, this code can sometimes be replaced as follows;
LDA A PIAD ! ASR A SEE IF CHAR. LOADED
BMI PRINT ! BCS PRINT BRANCH IF CHAR. INPUT

JMP READY
PRINT REMAINDER OF SEQUENCE

Before modifying any programs on your own, you should have a working knowledge of
SWTBUG'S ACIA input routine, ACIA operation, and your particular program. The following is a
list of patches to some SWTPC supplied programs.

BLKJAK - SWTPC 6800 Black Jack Program
LOCATION DATA
0270 7E 064A
0647 7E 026D
064A B6 E008
064D 27 08
064F B6 8004
0652 2B F3
0654 7E 0275
0657 B6 8004
065A 47
065B 24EA
065D 20 F5

With the above modifications BLKJAK will be compatible with either an ACIA or PIA type
interface.

CO-RES Ver. 1.0 and 1.01 ACIA Modifications
LOCATION DATA
1682 47
1683 24 02
1685 20 A0

BASIC 8K and 4K up to an including Ver. 2.0 cannot be modified for ACIA operation. Later
versions should be purchased.

14

GENERAL RULES FOR PROGRAM WRITING
Although for a user program to be functional it need only work with the exact system it was

written for, following a few simple rules reduces program modifications for 6800 systems using
other monitors. Following these rules will make your programs more professional and versatile.
Some general guidelines are as follows:

1.) Minimize the number of references made to the ROM.
2.) Do not use strange, in-between SWTBUG® addresses. Generally only the routines

BADDR, BYTE, PDATA1, INHEX, OUT4HS, OUT2HS, CONTRL, INEEE and OUTEEE
should be used.

3.) For large programs, vector I/O through a jump instruction for ease of change to match
other I/O packages. Example:

DON’T DO
JSR INEEE JSR INPUT !

JSR INEEE JSR INPUT ! INPUT: JMP INEEE

JSR INEEE JSR INPUT !

4.) Try not to use the SWTBUG® RAM any more than necessary. With the exception of
using it as stack storage and memory diagnostics, there is no real reason to use the
SWTBUG® RAM area.

5.) Define the stack area at the beginning of the program. Example: Start LDS #$ A042.
Relocating the stack location to A042 at the beginning of each of your programs will
prevent you from having to reload the program counter addresses A048 and A049 each
time you RESET and restart your program.

6.) Most programs should have a provision for exiting them without hitting the RESET
button. A jump to CONTRL (7E E0E3) instruction in your program will cause
SWTBUG® control to resume when executed.

MEMORY DIAGNOSTICS
The earlier memory diagnostics ROBIT, MEMCON and CDAT supplied by SWTPC were

compatible only with MIKBUG®. The new versions ROBIT 2, MEMCON 3 and CDAT 2 are
compatible with both MIKBUG® and SWTBUG®.

PROGRAM DESCRIPTION
Although the source listing of SWTBUG® is well commented, the following subroutine by

subroutine description should be of use to those who wish to gain the maximum advantage of its
routines.

TEMPORARY STORAGE LOCATIONS

IRQ (A000) This location is used by the standard IRQ interrupt request feature. When an
interrupt is generated, processor control will jump to the location stored in
IRQ.

BEGA (A002) This location is where the beginning address is stored for the punch and end
of tape routines.

ENDA (A004) This location is where the ending address is stored for the punch and end of
tape routines. It is also used by the byte search routine.

NMI (A006) NMI is used by the non-maskable interrupt (NMI) function. When an NMI is
generated, processor control will jump to the location stored in NMI.

15

SP (A008) Temporary storage location for the stack pointer. SP is used in the register
dump subroutines and by the breakpoint function.

PORADD (A00A) This location contains the port address used for SWTBUG’s I/O routines.

PORECH (A00C) This byte tells SWTBUG® ‘s input routines whether or not to echo.

XHI (A00D) Temporary index register storage used by numerous routines.

XLOW (A00E) Temporary index register storage used by numerous routines.

XTEMP (A010) Temporary index register storage for input and output routines.

SWIJMP (A012) When a SWI instruction is encountered, processor control will transfer to the
location stored in SWIJMP.

BKPT (AQ14) Temporary breakpoint address storage.

BKLST (A016) Temporary data storage for the breakpoint routine.

TW (A044) Temporary storage location for load/punch.

TEMP (A046) Temporary storage location for punch and load.

BYTECT (A047) Temporary storage location for load/punch.

SWTBUG@SUBROUTINE AND TEXT STRING DESCRIPTION

IRQV (E000) This is the entry point for regular IRQ interrupts. Processor control is given of
the service routine whose address is stored in IRQ.

JUMP (E005) This is the service routine for the J command. BADDR is used to input the
address and a jump then occurs to the correct address.

CURSOR (E009) Home-up and erase to end of frame characters for CT 1024.

LOAD (E00C) Load is the ASCII loading routine. Load uses a number of other SWTBUG®
subroutines.

BADDR (E047) BADDR is a subroutine to input a 4-digit hexadecimal number, such as 137D,
from the control terminal. BADDR uses the subroutines BYTE, INCH and
INHEX and uses temporary storage locations XHI, XLOW, CKSM, both
accumulators and the index register. When BADDR is called it will look for
four hex numbers to be entered from the terminal. If a non-hex value, such
as H, is entered, SWTBUG® control will resume. If all characters entered are
valid hex, the results will be stored in XHI, XLOW and the index register.
Accumulator A will contain of XLOW. If 137D is entered the results will be as
follows-

ACC A 7D
ACC B CKSM
IXR 137D
XHI 13
XLOW 7D

- CKSM and ACC B are used internally to generate a check sum for the
PUNCH routine.

BYTE (E055) BYTE is similar to BADDR, but inputs only two hex characters from the
terminal to generate one 8-bit byte equivalent. BYTE uses the subroutines

16

INHEX and INCH, temporary storage locations CKSM and both
accumulators. If a non-hex value is entered, SWTBUG® control will resume.
When BYTE is called as a subroutine, the computer will wait for two hex
characters to be entered thru the control port. If a 3C is entered, the results
will be as follows:

ACC A 3C
ACC B CKSM
IXR UNCHANGED
CKSM Prior CKSM + check sum generated inside

BYTE

OUTHL (E067)
OUTHR (E06B)

These subroutines are used by OUT2HS and OUT4HS to output
hexadecimal numbers

OUTEEE
OUTCH
OUTEE
(E1D1)

This is the character output routine used by PDATA1, OUT4HS, OUT2HS
and most programs written for SWTBUG/MIKBUG® to output one character
from the computer to the control port (I/O # 1). OUTEEE, OUTCH and
OUTEE1 are all functional equivalents- OUTEE1 is the main output routine
with OUT-CH and OUTEEE being jumps to OUTEE1. When using this
routine, OUTEEE (E1D1) should be used to maintain compatibility with
MIKBUG® systems.
To use OUTEEE the character to be output should be placed in the A
accumulator in its ASCII form. To output the letter A on the control terminal,
the following program could be used.

LDA A #$41
JSR OUTEEE

The processor’s registers are affected as follows.
ACC A changed internally
ACC B not affected
IXR not affected

OUTEEE is an 8-bit output routine and does not generate a parity bit.

INEEE,
INCH,
INEEE1
(E1AC)

The locations are all functionally equivalent to SWTBUG® ‘s character input
routine. This routine will look for one character from the control terminal (I/O
1) and store it in the A accumulator. Once called, INEEE will loop within it-
self until a character has been input. Anytime input is desire, the call JSR
INEEE should be used.
INEEE automatically sets the 8th bit to 0 and does not check for parity.
When using INEEE the processor’s registers are affected as follows:

ACC A loaded with the character input from the terminal
ACC B not affected
IXR not affected

INCH8 (E1F6) INCH8 is functionally the same as INEEE except that the 8th bit is not set to
8. This subroutine should be used whenever full 8-bit input is desired, such
as in binary loader programs.

INHEX (E0AA) INHEX is the subroutine used by BYTE and BADDR that will input one
hexadecimal character from the control terminal. If a non-hex character is
entered, SWTBUG® control will resume. If a hex character, such as an E is
entered, the results will be as follows:

ACC A 0E
ACC B not affected
IXR not affected

PDATA1 (E07E) PDATA1 is the subroutine used to output a string of text on the control
terminal. PDATA1 will start outputting data that is pointed to by the index
register and will continue until a 04 is seen. For example, if you wanted to
print HELLO on the terminal the following could be used.

17

ORG $100
START LDX #TEXT

JSR PDATA1
JMP CONTRL

TEXT FCB $0D, $0A
FCC /HELLO/
FCB 4
END

- The accumulator and register status after using PDATA1 is as follows:
ACC A Changed during the operation
ACC B UNCHANGED
IXR Contains the memory location of the 04

CHANGE (E088) CHANGE is SWTBUG‘s memory examine and change function. Change
uses a number of other SWTBUG® subroutines.

OUT4HS (E0C8) OUT4HS is used to output a four-digit (16-bit) hexadecimal number onto the
control terminal. The address of the most significant byte to be output should
be loaded into the index register before calling OUT4HS. For example, to
out-put the 16-bit hex number stored in memory locations 1000 and 1001
whose most significant byte is in 1000 while the least significant byte is in
1001 the following sequence should be used:

LDX # $1000
JSR OUT4HS

- If location 1000 contained a hex 3C and 1001 contained a hex 0B, an ASCII,
3C0B would be displayed on the screen when OUT4HS is called. Remember
memory data is handled in hex but must be output as ASCII characters which
have a different hex value than those stored in the computer’s memory. The
registers are affected as follows:

ACC A Changed during the operation
ACC B UNCHANGED
IXR Incremented by two. (1002 in this example)

OUT2HS (E0CA) OUT2HS is similar to OUT4HS, but outputs only two hex characters (one
byte). For example, to display the byte stored at 2008 the following sequence
would be used:

LDX # $2000
JSR OUT2HS

- An ASCII 6C would be output to the control terminal if location 2001
contained a hex 6C. The registers are affected as follows:

ACC A Changed during the operation
ACC B UNCHANGED
IXR Incremented by one. (1001in this example)

OUTS (E0CC) OUTS is a subroutine that outputs one space to the control terminal.

START (E0D0) START is the beginning of a sequence of steps that initialize the system
during power up or reset. First, the stack pointer is set to be A042 and is
stored in SP. Next, an FF is stored in location A943. This sets the interrupt
mask bit in the stack so that when a G command is given the processor will
not respond to interrupts until told to do so. The type of port being used
(ACIA or PIA) is then determined by initializing it as a PIA and looking to see
if this worked. If not, an ACIA is assumed and the proper ACIA initialization
routine, AL2, is selected. The program then goes to CONTRL sequence.

18

CONTRL (E0E3) This MIKBUG® equivalent sequence again resets the stack to A042.
PORECH is cleared to enable echo and the subroutine SAVGET is selected
to get the correct port number and type. Next, the routines PNCHOF and
RDOFF generate punch and reader off commands. A carriage return, line
feed, erase to end of line (1516) and a $ is then output to the control terminal.
At this point SWTBUG® is ready for command input.

SFEl (E124) SFEl is the entry point for non user-vectored software interrupt instructions. If
vectored software interrupts are selected, a jump is executed to the proper
location. If breakpoints are in use the stack pointer is not changed, the
processor’s registers are displayed and SWTBUG® is instructed to look for
the next command. If neither breakpoints or vectored software interrupts are
selected a register dump occurs and the CONTRL sequence is initiated.

PRINT (E130) PRINT is the routine that actually does the dumping of the processor’s
registers.

LOOK (E173) LOOK is the routine that inputs a character from the terminal and jumps to
the appropriate location in SWTBUG® if it is a valid command.

SFE (E18B) Entry point for software interrupt instructions.

S9 (E190) S and 9 string for the end of tape routine.

MTAPE1 (E193) This is the character string containing a carriage return, line feed, erase to
end of line, four nulls, a S1 for tape control and 04 for PDATA1 control.

MCL (E19D) This string contains a carriage return, line feed, three nulls, a $ and a 04 for
PDATA1 control.

ElA5 (E1A5) ElA5 is a special entry location which is used by the binary load routine on
some SWTPC binary tapes.

NMIV (E1A7) This routine fetches the correct jump location for a NMI.

SEARCH (E1AE) Byte searching routine.

GOT0 (E1D0) GOT0 contains the RTI instruction that is used by the G command to execute
a user program.

SAVGET (E1D3) This routine saves the index register in XTEMP and tests for the appropriate
interface location and type. The index register is then loaded with the
address of this interface.

ISACIA (E1D9) ISACIA is the routine that sees if an ACIA or PIA is present.

BILD (E1F3) BILD is a special sequence of increment stack pointer instructions used only
by the binary loader on some SWTPC binary tapes.

ACIAIN (E1FF) This is the ACIA input routine. PORECH is polled for the desired echo/don’t
condition. The character in the A accumulator is then output, the index
register and B accumulator restored and an RTS instruction executed by the
RES routine.

ACIOUT (E212) This is the ACIA output routine which outputs the character in the A
accumuator, and recovers the B accumulator and index register.

IN1 (E223) IN1 is the PIA input routine which inputs a character from the control terminal
and stores it in the A accumulator. The correct echo/non echo condition is
selected and the B accumulator and index register are restored.

19

IOUT (E240) IOUT is the PIA output routine which outputs the character in the A
accumulator.

OPTL (E269) OPTL is the service routine that sets up PORECH for I/O on port 0. The
appropriate command P, E or L is then selected.

PIAECH (E27D) This routine disables the echo on a PIA type interface.

PIAINI (E284) This routine is used to initialize PIA type interfaces.

DELAY (E202) DELAY is a general purpose delay loop. If desired, the index register can be
pre-loaded with a number other than FFFF for shorter delays. The entry point
in this case is DELAY1 (E2C5).

CLEAR (E2CC) This routine generates a home up, erase to end of frame command for
SWTPC CT 1024 and similar terminal systems.

BREAK (E2D9) BREAK is the routine that is used to enter software breakpoints. First, the ad-
dress is input by BADDR. If breakpoints were previously in use the data is
replaced at the previous breakpoint address and the new breakpoint is
inserted.

PNCHS9 (E31E This routine selects A048 and A049 as the beginning and ending address for
the punch routine and punches their contents. A S9 is then punched to tape
followed by a short delay.

RDON (E334)
RDOFF (E347)
PNCHON (E34D)
PNCHOF(E353)

These subroutines are used to turn a reader/punch on and off. At the
beginning of each routine the A accumulator is loaded with the ASCII value
of the particular function that is normally decoded by a Teletype or other
terminal system. The B accumulator is then loaded with a special bit pattern
that will cause a predetermined line to be toggled on PIA type interfaces.
ACC A is then out-put using OUTEEE and if a PIA type interface is being
used the proper PIA line is strobed by the STROBE routine. The proper line
is determined by the con-tents of ACC B. The subroutine RDON also clears
the location PORECH and re-configures PIA type interfaces to be sure that
the echo function of the character input routine is disabled. Both
accumulators and the index register are used and are not retained.

ACC A ACC B FUNCTION
11 20 Reader ON
13 10 Reader OFF
12 04 Punch ON
14 08 Punch OFF

STROBE (E357) This is the routine that actually generates the pulses on the unused lines of a
PIA type interface for reader/punch control.

PUNCH (E376) PUNCH is the ASCII punching routine of SWTBUG, PUNCH consists of
several parts and uses various SWTBUG’s subroutines.

TABLE (E3D1) This is the command table used by the lookup routine. The table is arranged
in three byte blocks. The first byte is the ASCII value of the command. The
next two bytes are the address of the routine that will service the command.

SVVTBUG is a registered trademark of Southwest Technical Products Carp
MlKBUG is a registered trademark of Motorola Inc.
Teletype is a registered trademark of Teletype Corp.

20

 NAM SWTBUG
 * VERSION 1.00

 OPT PAG
 **
 *REPLACEMENT FOR MIKBUG ROM
 *FOR SWTPC 6800 COMPUTER SYSTEM
 *COPYRIGHT 1977
 *SOUTHWEST TECHNICAL PROD. CORP.
 *AUGUST, 1977
 **

 A000 ORG $A000
 A000 IRQ RMB 2 IRQ POINTER
 A002 BEGA RMB 2 BEGINNING ADDR PNCH
 A004 ENDA RMB 2 ENDING ADDR PNCH
 A006 NMI RMB 2 NMI INTERRUPT VECTOR
 A008 SP RMB 1 S HIGH
 A009 RMB 1 S LOW
 A00A PORADD RMB 2 PORT ADDRESS
 A00C PORECH RMB 1 ECHO ON/OFF FLAG
 A00D XHI RMB 1 XREG HIGH
 A00E XLOW RMB 1 XREG LOW
 A00F CKSM RMB 1 CHECKSUM
 A010 XTEMP RMB 2 X-REG TEMP STGE
 A012 SWIJMP RMB 2 SWI JUMP VECTOR
 A044 TW EQU $A044 TEMPORARY STORAGE
 A046 TEMP EQU $A046 TEMPORARY STORAGE
 A047 BYTECT EQU $A047 BYTECT AND MCONT TEMP.
 8004 CTLPOR EQU $8004 CONTROL PORT ADDRESS
 C000 PROM EQU $C000 JUMP TO PROM ADDRESS
 A014 BKPT RMB 2 BREAKPOINT ADDRESS
 A016 BKLST RMB 1 BREAKPOINT DATA

 A042 ORG $A042
 A042 STACK RMB 1 SWTBUG STACK

 E000 ORG $E000

 *I/O INTERRUPT SEQUENCE
 E000 FE A0 00 IRQV LDX IRQ
 E003 6E 00 JMP 0,X

 *JUMP TO USER PROGRAM
 E005 8D 40 JUMP BSR BADDR
 E007 6E 00 JMP 0,X

 E009 10 CURSOR FCB $10,$16,4 CT-1024 CURSOR CONTROL
 E00A 16 04

 *ASCII LOADING ROUTINE
 E00C BD E3 34 LOAD JSR RDON READER ON, DIS ECHO, GET P#
 E00F 8D 67 LOAD3 BSR INCH
 E011 81 53 CMP A #'S

21

 SWTBUG TSC ASSEMBLER PAGE 1

 E013 26 FA BNE LOAD3 1ST CHAR NOT S
 E015 8D 61 BSR INCH READ CHAR
 E017 81 39 CMP A #'9
 E019 27 29 BEQ LOAD21
 E01B 81 31 CMP A #'1
 E01D 26 F0 BNE LOAD3 2ND CHAR NOT 1
 E01F 7F A0 0F CLR CKSM ZERO CHECKSUM
 E022 8D 31 BSR BYTE READ BYTE
 E024 80 02 SUB A #2
 E026 B7 A0 47 STA A BYTECT BYTE COUNT
 *BUILD ADDRESS
 E029 8D 1C BSR BADDR
 *STORE DATA
 E02B 8D 28 LOAD11 BSR BYTE
 E02D 7A A0 47 DEC BYTECT
 E030 27 09 BEQ LOAD15 ZERO BYTE COUNT
 E032 A7 00 STA A 0,X STORE DATA
 E034 A1 00 CMP A 0,X DATA STORED?
 E036 26 08 BNE LOAD19
 E038 08 INX
 E039 20 F0 BRA LOAD11
 E03B 7C A0 0F LOAD15 INC CKSM
 E03E 27 CF BEQ LOAD3
 E040 86 3F LOAD19 LDA A #'?
 E042 8D 31 BSR OUTCH
 E044 7E E2 D4 LOAD21 JMP RDOFF1

 *BUILD ADDRESS
 E047 8D 0C BADDR BSR BYTE READ 2 FRAMES
 E049 B7 A0 0D STA A XHI
 E04C 8D 07 BSR BYTE
 E04E B7 A0 0E STA A XLOW
 E051 FE A0 0D LDX XHI LOAD IXR WITH NUMBER
 E054 39 RTS

 *INPUT BYTE (TWO FRAMES)
 E055 8D 53 BYTE BSR INHEX GET HEX CHAR
 E057 48 BYTE1 ASL A
 E058 48 ASL A
 E059 48 ASL A
 E05A 48 ASL A
 E05B 16 TAB
 E05C 8D 4C BSR INHEX
 E05E 1B ABA
 E05F 16 TAB
 E060 FB A0 0F ADD B CKSM
 E063 F7 A0 0F STA B CKSM
 E066 39 RTS

 E067 44 OUTHL LSR A OUT HEX LEFT BCD DIGIT
 E068 44 LSR A
 E069 44 LSR A
 E06A 44 LSR A
 E06B 84 0F OUTHR AND A #$F OUT HEX RIGHT BCD DIGIT

22

 SWTBUG TSC ASSEMBLER PAGE 2

 E06D 8B 30 ADD A #$30
 E06F 81 39 CMP A #$39
 E071 23 02 BLS OUTCH
 E073 8B 07 ADD A #$7

 *OUTPUT ONE CHAR
 E075 7E E1 D1 OUTCH JMP OUTEEE
 E078 7E E1 AC INCH JMP INEEE

 *PRINT DATA POINTED TO BY X REG
 E07B 8D F8 PDATA2 BSR OUTCH
 E07D 08 INX
 E07E A6 00 PDATA1 LDA A 0,X
 E080 81 04 CMP A #4
 E082 26 F7 BNE PDATA2
 E084 39 RTS STOP ON HEX 04

 E085 7E E1 4A C1 JMP SWTCTL

 *MEMORY EXAMINE AND CHANGE
 E088 8D BD CHANGE BSR BADDR
 E08A CE E1 9D CHA51 LDX #MCL
 E08D 8D EF BSR PDATA1 C/R L/F
 E08F CE A0 0D LDX #XHI
 E092 8D 34 BSR OUT4HS PRINT ADDRESS
 E094 FE A0 0D LDX XHI
 E097 8D 31 BSR OUT2HS PRINT OLD DATA
 E099 8D 31 BSR OUTS OUTPUT SPACE
 E09B 8D DB ANOTH BSR INCH INPUT CHAR
 E09D 81 20 CMP A #$20
 E09F 27 FA BEQ ANOTH
 E0A1 81 0D CMP A #$D
 E0A3 27 E0 BEQ C1
 E0A5 81 5E CMP A #'^ UP ARROW?
 E0A7 20 2C BRA AL3 BRANCH FOR ADJUSTMENT
 E0A9 01 NOP

 *INPUT HEX CHARACTER
 E0AA 8D CC INHEX BSR INCH
 E0AC 80 30 INHEX1 SUB A #$30
 E0AE 2B 4C BMI C3
 E0B0 81 09 CMP A #$9
 E0B2 2F 0A BLE IN1HG
 E0B4 81 11 CMP A #$11
 E0B6 2B 44 BMI C3 NOT HEX
 E0B8 81 16 CMP A #$16
 E0BA 2E 40 BGT C3 NOT HEX
 E0BC 80 07 SUB A #7
 E0BE 39 IN1HG RTS

 E0BF A6 00 OUT2H LDA A 0,X OUTPUT 2 HEX CHAR
 E0C1 8D A4 OUT2HA BSR OUTHL OUT LEFT HEX CHAR
 E0C3 A6 00 LDA A 0,X
 E0C5 08 INX

23

 SWTBUG TSC ASSEMBLER PAGE 3

 E0C6 20 A3 BRA OUTHR OUTPUT RIGHT HEX CHAR

 E0C8 8D F5 OUT4HS BSR OUT2H OUTPUT 4 HEX CHAR + SPACE
 E0CA 8D F3 OUT2HS BSR OUT2H OUTPUT 2 HEX CHAR + SPACE

 E0CC 86 20 OUTS LDA A #$20 SPACE
 E0CE 20 A5 BRA OUTCH (BSR & TRS)

 *ENTER POWER ON SEQUENCE
 E0D0 8E A0 42 START LDS #STACK
 E0D3 20 2C BRA AL1 BRANCH FOR ADDRESS COMPATIBIL

 **
 *PART OF MEMORY EXAMINE AND CHANGE
 E0D5 26 07 AL3 BNE SK1
 E0D7 09 DEX
 E0D8 09 DEX
 E0D9 FF A0 0D STX XHI
 E0DC 20 AC BRA CHA51
 E0DE FF A0 0D SK1 STX XHI
 E0E1 20 02 BRA AL4

 E0E3 20 6D EOE3 BRA CONTRL BRANCH FOR MIKBUG EQUIV. CONT

 E0E5 81 30 AL4 CMP A #$30
 E0E7 25 A1 BCS CHA51
 E0E9 81 46 CMP A #$46
 E0EB 22 9D BHI CHA51
 E0ED 8D BD BSR INHEX1
 E0EF BD E0 57 JSR BYTE1
 E0F2 09 DEX
 E0F3 A7 00 STA A 0,X CHANGE MEMORY
 E0F5 A1 00 CMP A 0,X
 E0F7 27 91 BEQ CHA51 DID CHANGE
 E0F9 7E E0 40 JMP LOAD19 DIDN'T CHANGE
 E0FC BE A0 08 C3 LDS SP
 E0FF 20 49 BRA SWTCTL
 **

 *CONTINUE POWER UP SEQUENCE
 E101 BF A0 08 AL1 STS SP INIT TARGET STACK PTR.
 E104 86 FF LDA A #$FF
 E106 BD E3 08 JSR SWISET
 *CONFIGURE FOR PIA AND SEE IF OK
 E109 CE 80 04 LDX #CTLPOR
 E10C BD E2 84 JSR PIAINI INIT PIA
 E10F A6 00 LDA A 0,X
 E111 A1 02 CMP A 2,X
 E113 20 02 BRA AL2

 E115 20 19 BRA PRINT BRA FOR BILOAD

 E117 26 39 AL2 BNE CONTRL

24

 SWTBUG TSC ASSEMBLER PAGE 4

 *INITIALIZE AS ACIA
 E119 86 03 LDA A #3 ACIA MASTER RESET
 E11B A7 00 STA A 0,X
 E11D 86 11 LDA A #$11
 E11F A7 00 STA A 0,X
 E121 20 2F BRA CONTRL

 *ENTER FROM SOFTWARE INTERRUPT
 E123 01 SF0 NOP
 E124 BF A0 08 SFE1 STS SP SAVE TARGETS STACK POINTER
 *DECREMENT P COUNTER
 E127 30 TSX
 E128 6D 06 TST 6,X
 E12A 26 02 BNE *+4
 E12C 6A 05 DEC 5,X
 E12E 6A 06 DEC 6,X
 *PRINT CONTENTS OF STACK.
 E130 CE E1 9D PRINT LDX #MCL
 E133 BD E0 7E JSR PDATA1
 E136 FE A0 08 LDX SP
 E139 08 INX
 E13A 8D 8E BSR OUT2HS COND CODES
 E13C 8D 8C BSR OUT2HS ACC B
 E13E 8D 8A BSR OUT2HS ACC A
 E140 8D 86 BSR OUT4HS IXR
 E142 8D 84 BSR OUT4HS PGM COUNTER
 E144 CE A0 08 LDX #SP
 E147 BD E0 C8 JSR OUT4HS STACK POINTER
 E14A FE A0 12 SWTCTL LDX SWIJMP
 E14D 8C E1 23 CPX #SF0
 E150 27 19 BEQ CONTR1

 E152 8E A0 42 CONTRL LDS #STACK SET CONTRL STACK POINTER
 E155 CE 80 04 LDX #CTLPOR RESET TO CONTROL PORT
 E158 FF A0 0A STX PORADD
 E15B 7F A0 0C CLR PORECH TURN ECHO ON
 E15E 8D 73 BSR SAVGET GET PORT # AND TYPE
 E160 27 03 BEQ POF1
 E162 BD E2 7D JSR PIAECH SET PIA ECHO ON IF MP-C INTER
 E165 BD E3 53 POF1 JSR PNCHOF TURN PUNCH OFF
 E168 BD E3 47 JSR RDOFF TURN READER OFF
 E16B CE E1 9C CONTR1 LDX #MCLOFF
 E16E BD E0 7E JSR PDATA1 PRINT DATA STRING
 E171 8D 39 BSR INEEE READ COMMAND CHARACTER

 *COMMAND LOOKUP ROUTINE
 E173 CE E3 D1 LOOK LDX #TABLE
 E176 A1 00 OVER CMP A 0,X
 E178 26 07 BNE SK3
 E17A BD E0 CC JSR OUTS SKIP SPACE
 E17D EE 01 LDX 1,X
 E17F 6E 00 JMP 0,X
 E181 08 SK3 INX
 E182 08 INX

25

 SWTBUG TSC ASSEMBLER PAGE 5

 E183 08 INX
 E184 8C E3 F8 CPX #TABEND+3
 E187 26 ED BNE OVER
 E189 20 BF SWTL1 BRA SWTCTL

 *SOFTWARE INTERRUPT ENTRY POINT
 E18B FE A0 12 SFE LDX SWIJMP JUMP TO VECTORED SOFTWARE INT
 E18E 6E 00 JMP 0,X

 E190 53 S9 FCB 'S,'9,4 END OF TAPE
 E191 39 04

 E193 0D MTAPE1 FCB $D,$A,$15,0,0,0,'S,'1,4 PUNCH FORMAT
 E194 0A 15
 E196 00 00
 E198 00 53
 E19A 31 04

 E19C 13 MCLOFF FCB $13 READER OFF
 E19D 0D MCL FCB $D,$A,$15,0,0,0,'$,4
 E19E 0A 15
 E1A0 00 00
 E1A2 00 24
 E1A4 04

 E1A5 20 4C EIA5 BRA BILD BINARY LOADER INPUT

 *NMI SEQUENCE
 E1A7 FE A0 06 NMIV LDX NMI GET NMI VECTOR
 E1AA 6E 00 JMP 0,X

 E1AC 20 40 INEEE BRA INEEE1

 *BYTE SEARCH ROUTINE
 E1AE BD E0 47 SEARCH JSR BADDR GET TOP ADDRESS
 E1B1 FF A0 04 STX ENDA
 E1B4 BD E0 47 JSR BADDR GET BOTTOM ADDRESS
 E1B7 BD E0 55 JSR BYTE GET BYTE TO SEARCH FOR
 E1BA 16 TAB
 E1BB A6 00 OVE LDA A 0,X
 E1BD FF A0 0D STX XHI
 E1C0 11 CBA
 E1C1 27 02 BEQ PNT
 E1C3 20 21 BRA INCR1
 E1C5 CE E1 9D PNT LDX #MCL
 E1C8 BD E0 7E JSR PDATA1
 E1CB CE A0 0D LDX #XHI
 E1CE 20 10 BRA SKP0

 *GO TO USER PROGRAM ROUTINE

26

 SWTBUG TSC ASSEMBLER PAGE 6

 E1D0 3B GOTO RTI
 E1D1 20 3A OUTEEE BRA OUTEE1

 *SAVE IXR AND LOAD IXR WITH CORRECT
 *PORT NUMBER AND TEST FOR TYPE
 E1D3 FF A0 10 SAVGET STX XTEMP STORE INDEX REGISTER
 E1D6 FE A0 0A GETPT1 LDX PORADD
 E1D9 37 ISACIA PSH B
 E1DA E6 01 LDA B 1,X
 E1DC E1 03 CMP B 3,X
 E1DE 33 PUL B
 E1DF 39 RTS

 *CONTINUATION OF SEARCH ROUTINE
 E1E0 BD E0 C8 SKP0 JSR OUT4HS
 E1E3 FE A0 0D LDX XHI
 E1E6 BC A0 04 INCR1 CPX ENDA
 E1E9 27 9E BEQ SWTL1
 E1EB 08 INX
 E1EC 20 CD BRA OVE

 E1EE 8D 06 INEEE1 BSR INCH8 INPUT 8 BIT CHARACTER
 E1F0 84 7F AND A #%01111111 GET RID OF PARITY BIT
 E1F2 39 RTS

 E1F3 31 BILD INS FIX UP STACK WHEN USING
 E1F4 31 INS BINARY LOADER ON SWTPC TAPES
 E1F5 31 INS

 *INPUT ONE CHAR INTO ACC B
 E1F6 37 INCH8 PSH B SAVE ACC B
 E1F7 8D DA BSR SAVGET SAVE IXR, GET PORT# AND TYPE
 E1F9 26 28 BNE IN1 INPUT FROM PIA IF NOT
 E1FB 86 15 LDA A #$15 RECONFIG FOR 8 BIT, 1 SB
 E1FD A7 00 STA A 0,X
 E1FF A6 00 ACIAIN LDA A 0,X
 E201 47 ASR A
 E202 24 FB BCC ACIAIN NOT READY
 E204 A6 01 LDA A 1,X LOAD CHAR
 E206 F6 A0 0C LDA B PORECH
 E209 27 07 BEQ ACIOUT ECHO
 E20B 20 11 BRA RES DON'T ECHO

 *OUTPUT ONE CHARACTER
 E20D 37 OUTEE1 PSH B SAVE ACC B
 E20E 8D C3 BSR SAVGET
 E210 26 2E BNE IOUT

 E212 C6 11 ACIOUT LDA B #$11
 E214 E7 00 STA B 0,X
 E216 E6 00 ACIOU1 LDA B 0,X

27

 SWTBUG TSC ASSEMBLER PAGE 7

 E218 57 ASR B
 E219 57 ASR B
 E21A 24 FA BCC ACIOU1 ACIA NOT READY
 E21C A7 01 STA A 1,X OUTPUT CHARACTER
 E21E 33 RES PUL B RESTORE ACC B
 E21F FE A0 10 LDX XTEMP
 E222 39 RTS

 *PIA INPUT ROUTINE
 E223 A6 00 IN1 LDA A 0,X LOOK FOR START BIT
 E225 2B FC BMI IN1
 E227 8D 3A BSR DDL DELAY HALF BIT TIME
 E229 C6 04 LDA B #4 SET DEL FOR FULL BIT TIME
 E22B E7 02 STA B 2,X
 E22D 58 ASL B SET UP CNTR WITH 8
 E22E 8D 2A IN3 BSR DEL WAIT ONE CHAR TIME
 E230 0D SEC
 E231 69 00 ROL 0,X
 E233 46 ROR A
 E234 5A DEC B
 E235 26 F7 BNE IN3
 E237 8D 21 BSR DEL WAIT FOR STOP BIT
 E239 F6 A0 0C LDA B PORECH IS ECHO DESIRED?
 E23C 27 13 BEQ IOUT2 ECHO
 E23E 20 DE BRA RES RESTORE IXR,ACCB
 *PIA OUTPUT ROUTINE
 E240 8D 23 IOUT BSR DDL1 DELAY ONE HALF BIT TIME
 E242 C6 0A LDA B #$A SET UP COUNTER
 E244 6A 00 DEC 0,X SET START BIT
 E246 8D 16 BSR DE START TIMER
 E248 8D 10 OUT1 BSR DEL DELAY ONE BIT TIME
 E24A A7 00 STA A 0,X PUT OUT ONE DATA BIT
 E24C 0D SEC
 E24D 46 ROR A SHIFT IN NEXT BIT
 E24E 5A DEC B DECREMENT COUNTER
 E24F 26 F7 BNE OUT1 TEST FOR 0
 E251 E6 02 IOUT2 LDA B 2,X TEST FOR STOP BITS
 E253 58 ASL B SHIFT BIT TO SIGN
 E254 2A C8 BPL RES BRA FOR 1 STOP BIT
 E256 8D 02 BSR DEL DELAY FOR STOP BITS
 E258 20 C4 BRA RES
 E25A 6D 02 DEL TST 2,X IS TIME UP
 E25C 2A FC BPL DEL
 E25E 6C 02 DE INC 2,X RESET TIMER
 E260 6A 02 DEC 2,X
 E262 39 RTS

 E263 6F 02 DDL CLR 2,X HALF BIT DELAY
 E265 8D F7 DDL1 BSR DE
 E267 20 F1 BRA DEL

 *OPTIONAL PORT ROUTINE
 E269 8D 83 OPTL BSR INEEE1

28

 SWTBUG TSC ASSEMBLER PAGE 8

 E26B 16 TAB
 E26C 7F A0 0B CLR PORADD+1 SET I/O ADDRESS FOR $8000
 E26F FE A0 0A LDX PORADD
 E272 8D 10 BSR PIAINI INITIALIZE PIA
 E274 8D 07 BSR PIAECH SET ECHO
 E276 CE E3 EF LDX #TABLE1 P, L OR E
 E279 17 TBA
 E27A 7E E1 76 JMP OVER LOOK AT TABLE FOR E, L OR P

 E27D 86 34 PIAECH LDA A #$34 SET DDR
 E27F A7 03 STA A 3,X
 E281 A7 02 STA A 2,X
 E283 39 NOOPT RTS

 *PIA INITIALIZATION ROUTINE
 E284 6C 00 PIAINI INC 0,X SET DDR
 E286 86 07 LDA A #$7
 E288 A7 01 STA A 1,X
 E28A 6C 00 INC 0,X
 E28C A7 02 STA A 2,X
 E28E 39 RTS

 *MINIFLOPPY DISK BOOT
 E28F 7F 80 14 DISK CLR $8014
 E292 8D 2E BSR DELAY
 E294 C6 0B LDA B #$0B
 E296 8D 25 BSR RETT2
 E298 E6 04 LOOP1 LDA B 4,X
 E29A C5 01 BIT B #1
 E29C 26 FA BNE LOOP1
 E29E 6F 06 CLR 6,X
 E2A0 8D 1D BSR RETURN
 E2A2 C6 9C LDA B #$9C
 E2A4 8D 17 BSR RETT2
 E2A6 CE 24 00 LDX #$2400
 E2A9 C5 02 LOOP2 BIT B #2
 E2AB 27 06 BEQ LOOP3
 E2AD B6 80 1B LDA A $801B
 E2B0 A7 00 STA A 0,X
 E2B2 08 INX
 E2B3 F6 80 18 LOOP3 LDA B $8018
 E2B6 C5 01 BIT B #1
 E2B8 26 EF BNE LOOP2
 E2BA 7E 24 00 JMP $2400
 E2BD E7 04 RETT2 STA B 4,X
 E2BF 8D 00 RETURN BSR RETT1
 E2C1 39 RETT1 RTS

 *GENERAL PURPOSE DELAY LOOP
 E2C2 CE FF FF DELAY LDX #$FFFF
 E2C5 09 DELAY1 DEX
 E2C6 8C 80 14 CPX #$8014 STOP AT 8014
 E2C9 26 FA DUM BNE DELAY1
 E2CB 39 RTS

29

 SWTBUG TSC ASSEMBLER PAGE 9

 *CLRAR SCREEN FOR CT-1024 TYPE TERMINALS
 E2CC CE E0 09 CLEAR LDX #CURSOR
 E2CF BD E0 7E JSR PDATA1
 E2D2 8D F1 BSR DELAY1 DELAY
 E2D4 BD E3 47 RDOFF1 JSR RDOFF
 E2D7 20 58 BRA C4

 *BREAKPOINT ENTERING ROUTINE
 E2D9 CE E1 23 BREAK LDX #SF0
 E2DC BC A0 12 CPX SWIJMP BREAKPOINTS ALREADY IN USE?
 E2DF 27 1A BEQ INUSE
 E2E1 08 INX
 E2E2 8D 32 BREAK0 BSR STO1
 E2E4 BD E0 47 JSR BADDR
 E2E7 FF A0 14 STX BKPT
 E2EA A6 00 LDA A 0,X
 E2EC B7 A0 16 STA A BKLST
 E2EF 86 3F LDA A #$3F
 E2F1 A7 00 STA A 0,X
 E2F3 CE E1 23 LDX #SF0
 E2F6 8D 1E BSR STO1
 E2F8 7E E1 6B JMP CONTR1
 E2FB FE A0 14 INUSE LDX BKPT
 E2FE B6 A0 16 LDA A BKLST
 E301 A7 00 STA A 0,X
 E303 CE E1 24 LDX #SFE1
 E306 20 DA BRA BREAK0

 E308 B7 A0 43 SWISET STA A STACK+1 FIX POWER UP INTERRUPT
 E30B FE A0 12 LDX SWIJMP
 E30E 8C E1 23 CPX #SF0
 E311 27 06 BEQ STORTN
 E313 CE E1 24 STO LDX #SFE1
 E316 FF A0 12 STO1 STX SWIJMP
 E319 39 STORTN RTS

 E31A 8D 5A PUNCH1 BSR PUNCH
 E31C 20 0F BRA POFC4

 *FORMAT END OF TAPE WITH PGM. CTR. AND S9
 E31E CE A0 49 PNCHS9 LDX #$A049
 E321 FF A0 04 STX ENDA
 E324 09 DEX
 E325 8D 52 BSR PUNCH2
 E327 CE E1 90 LDX #S9
 E32A BD E0 7E PDAT JSR PDATA1
 E32D 8D 24 POFC4 BSR PNCHOF
 E32F 8D 91 BSR DELAY
 E331 7E E1 52 C4 JMP CONTRL

 E334 73 A0 0C RDON COM PORECH DISABLE ECHO FOR ACIA
 E337 86 11 LDA A #$11 RON CHAR.

30

 SWTBUG TSC ASSEMBLER PAGE 10

 E339 C6 20 LDA B #$20 STROBE CHAR
 E33B 8D 1A BSR STROBE
 E33D BD E1 D9 JSR ISACIA CHECK TO SEE IF PIA
 E340 27 04 BEQ RTNN
 E342 86 3C LDA A #$3C DISABLE PIA ECHO IF PIA
 E344 A7 03 STA A 3,X
 E346 39 RTNN RTS

 E347 86 13 RDOFF LDA A #$13 TURN READER OFF
 E349 C6 10 LDA B #$10
 E34B 20 0A BRA STROBE

 E34D 86 12 PNCHON LDA A #$12
 E34F C6 04 LDA B #4
 E351 20 04 BRA STROBE

 E353 86 14 PNCHOF LDA A #$14
 E355 C6 08 LDA B #$8

 *PIA STROBING ROUTINE FOR PUNCH/READ ON/OFF
 E357 BD E0 75 STROBE JSR OUTCH
 E35A BD E1 D6 JSR GETPT1
 E35D 27 16 BEQ RTN1
 E35F 86 02 LDA A #2
 E361 CA 01 ORA B #1
 E363 8D 0C BSR STR2
 E365 8D 08 BSR STR1
 E367 86 02 LDA A #2
 E369 C6 01 LDA B #1
 E36B E7 00 STA B 0,X
 E36D 8D 02 BSR STR2
 E36F 86 06 STR1 LDA A #6
 E371 A7 01 STR2 STA A 1,X
 E373 E7 00 STA B 0,X
 E375 39 RTN1 RTS

 *PUNCH FROM BEGINNING ADDRESS (BEGA) THRU
 *ENDING ADDRESS (ENDA)
 E376 FE A0 02 PUNCH LDX BEGA
 E379 FF A0 44 PUNCH2 STX TW
 E37C 8D CF BSR PNCHON
 E37E B6 A0 05 PUN11 LDA A ENDA+1
 E381 B0 A0 45 SUB A TW+1
 E384 F6 A0 04 LDA B ENDA
 E387 F2 A0 44 SBC B TW
 E38A 26 04 BNE PUN22
 E38C 81 10 CMP A #16
 E38E 25 02 BCS PUN23
 E390 86 0F PUN22 LDA A #15
 E392 8B 04 PUN23 ADD A #4
 E394 B7 A0 47 STA A BYTECT
 E397 80 03 SUB A #3
 E399 B7 A0 46 STA A TEMP
 *PUNCH C/R L/F NULLS S1

31

 SWTBUG TSC ASSEMBLER PAGE 11

 E39C CE E1 93 LDX #MTAPE1
 E39F BD E0 7E JSR PDATA1
 E3A2 5F CLR B
 *PUNCH FRAME COUNT
 E3A3 CE A0 47 LDX #BYTECT
 E3A6 8D 24 BSR PUNT2 PUNCH 2 HEX CHARACTERS
 *PUNCH ADDRESS
 E3A8 CE A0 44 LDX #TW
 E3AB 8D 1F BSR PUNT2
 E3AD 8D 1D BSR PUNT2
 *PUNCH DATA
 E3AF FE A0 44 LDX TW
 E3B2 8D 18 PUN32 BSR PUNT2 PUNCH ONE BYTE
 E3B4 7A A0 46 DEC TEMP
 E3B7 26 F9 BNE PUN32
 E3B9 FF A0 44 STX TW
 E3BC 53 COM B
 E3BD 37 PSH B
 E3BE 30 TSX
 E3BF 8D 0B BSR PUNT2 PUNCH CHECKSUM
 E3C1 33 PUL B RESTORE STACK
 E3C2 FE A0 44 LDX TW
 E3C5 09 DEX
 E3C6 BC A0 04 CPX ENDA
 E3C9 26 B3 BNE PUN11
 E3CB 39 RTN5 RTS

 *PUNCH 2 HEX CHAR, UPDATE CHECKSUM
 E3CC EB 00 PUNT2 ADD B 0,X
 E3CE 7E E0 BF JMP OUT2H OUTPUT 2 HEX CHAR AND RTS

 *COMMAND TABLE
 E3D1 47 TABLE FCB 'G GOTO
 E3D2 E1 D0 FDB GOTO
 E3D4 5A FCB 'Z GOTO PROM
 E3D5 C0 00 FDB PROM
 E3D7 4D FCB 'M MEMORY EXAM AND CHANGE
 E3D8 E0 88 FDB CHANGE
 E3DA 46 FCB 'F BYTE SEARCH
 E3DB E1 AE FDB SEARCH
 E3DD 52 FCB 'R REGISTER DUMP
 E3DE E1 30 FDB PRINT
 E3E0 4A FCB 'J JUMP
 E3E1 E0 05 FDB JUMP
 E3E3 43 FCB 'C CLEAR SCREEN
 E3E4 E2 CC FDB CLEAR
 E3E6 44 FCB 'D DISK BOOT
 E3E7 E2 8F FDB DISK
 E3E9 42 FCB 'B BREAKPOINT
 E3EA E2 D9 FDB BREAK
 E3EC 4F FCB 'O OPTIONAL PORT
 E3ED E2 69 FDB OPTL
 E3EF 50 TABLE1 FCB 'P ASCII PUNCH
 E3F0 E3 1A FDB PUNCH1

32

 SWTBUG TSC ASSEMBLER PAGE 12

 E3F2 4C FCB 'L ASCII LOAD
 E3F3 E0 0C FDB LOAD
 E3F5 45 TABEND FCB 'E END OF TAPE
 E3F6 E3 1E FDB PNCHS9

 E3F8 ORG $E3F8
 E3F8 E0 00 FDB IRQV IRQ VECTOR
 E3FA E1 8B FDB SFE SOFTWARE INTERRUPT
 E3FC E1 A7 FDB NMIV NMI VECTOR
 E3FE E0 D0 FDB START RESTART VECTOR

 A048 ORG $A048
 A048 E0 D0 FDB START
 END

 ERROR(S) DETECTED

33

SWTBUG TSC ASSEMBLER PAGE 13

 SYMBOL TABLE:

ACIAIN E1FF ACIOU1 E216 ACIOUT E212 AL1 E101 AL2 E117
AL3 E0D5 AL4 E0E5 ANOTH E09B BADDR E047 BEGA A002
BILD E1F3 BKLST A016 BKPT A014 BREAK E2D9 BREAK0 E2E2
BYTE E055 BYTE1 E057 BYTECT A047 C1 E085 C3 E0FC
C4 E331 CHA51 E08A CHANGE E088 CKSM A00F CLEAR E2CC
CONTR1 E16B CONTRL E152 CTLPOR 8004 CURSOR E009 DDL E263
DDL1 E265 DE E25E DEL E25A DELAY E2C2 DELAY1 E2C5
DISK E28F DUM E2C9 EIA5 E1A5 ENDA A004 EOE3 E0E3
GETPT1 E1D6 GOTO E1D0 IN1 E223 IN1HG E0BE IN3 E22E
INCH E078 INCH8 E1F6 INCR1 E1E6 INEEE E1AC INEEE1 E1EE
INHEX E0AA INHEX1 E0AC INUSE E2FB IOUT E240 IOUT2 E251
IRQ A000 IRQV E000 ISACIA E1D9 JUMP E005 LOAD E00C
LOAD11 E02B LOAD15 E03B LOAD19 E040 LOAD21 E044 LOAD3 E00F
LOOK E173 LOOP1 E298 LOOP2 E2A9 LOOP3 E2B3 MCL E19D
MCLOFF E19C MTAPE1 E193 NMI A006 NMIV E1A7 NOOPT E283
OPTL E269 OUT1 E248 OUT2H E0BF OUT2HA E0C1 OUT2HS E0CA
OUT4HS E0C8 OUTCH E075 OUTEE1 E20D OUTEEE E1D1 OUTHL E067
OUTHR E06B OUTS E0CC OVE E1BB OVER E176 PDAT E32A
PDATA1 E07E PDATA2 E07B PIAECH E27D PIAINI E284 PNCHOF E353
PNCHON E34D PNCHS9 E31E PNT E1C5 POF1 E165 POFC4 E32D
PORADD A00A PORECH A00C PRINT E130 PROM C000 PUN11 E37E
PUN22 E390 PUN23 E392 PUN32 E3B2 PUNCH E376 PUNCH1 E31A
PUNCH2 E379 PUNT2 E3CC RDOFF E347 RDOFF1 E2D4 RDON E334
RES E21E RETT1 E2C1 RETT2 E2BD RETURN E2BF RTN1 E375
RTN5 E3CB RTNN E346 S9 E190 SAVGET E1D3 SEARCH E1AE
SF0 E123 SFE E18B SFE1 E124 SK1 E0DE SK3 E181
SKP0 E1E0 SP A008 STACK A042 START E0D0 STO E313
STO1 E316 STORTN E319 STR1 E36F STR2 E371 STROBE E357
SWIJMP A012 SWISET E308 SWTCTL E14A SWTL1 E189 TABEND E3F5
TABLE E3D1 TABLE1 E3EF TEMP A046 TW A044 XHI A00D
XLOW A00E XTEMP A010

34

SWTPC 6800 Short Memory Address Convergence MEMCON-3
MODIFIED FOR MIKBUG® OR SWTBUG®

This Memory Convergence diagnostic is one designed to check for and locate address
convergence problems in SWTPC 6800 Computer System memory boards. The program itself
uses 5610 words and is meant to be loaded within the 128 word RAM used by the SWTBUG®
operating system on the MPA Microprocessor System board making the program independent of
the MPM RAM memory. The diagnostic may be loaded from either tape or from the terminal
instruction by instruction using SWTBUG® starting from address A01416 thru A03316 and then
from A04816 thru A05116. The program must be loaded in two parts to avoid interfering with the
system’s pushdown stack. The section of memory to be tested is set by loading the most
significant byte of the lower memory address into A00216 the least significant byte of the lower
memory address into A00316 the most significant byte of the upper memory address into A00416
and the least significant byte of the upper memory address into A00516 using SWTBUG® just as
is done for SWTBUG® punch routine. The lower and upper addresses are inclusive and may be
any addresses between 000016 and FFFF16 with the only requirement that the lower address be
less than or equal to the upper address. Since addresses A05F16 thru A07F16 of the SWTBUG®
RAM are still available for program use, the diagnostic may run on these locations just to make
sure the diagnostic itself is functioning correctly, Since the program counter is set when the
program 1s initially loaded, the routine is initiated by typing G for “Go To User Program”. Once
initiated, the program can be stopped only by depressing the “RESET” button. The program may
then be restarted after setting the program counter to A01416 at A048 and A049.

The test sequence starts by loading a continuous stream of 256 sequential binary numbers
from the low memory address to the high memory address, inclusive. It then goes back and
sequentially reads the data in each of the locations and compares it to what actually should be
there. If it finds any discrepancies within the memory cycle, one X is printed and the cycle is
restarted, otherwise a # is printed to indicate successful cycle completion. Since the actual
location of any detected errors does not point to the source of the problem, no provision is made
for indicating the addresses of detected errors. It must also be noted that the program is not
100% effective. It would be possible to set bits in multiple locations that coincidentally would have
been set anyway. However, each cycle puts different data in each memory location, so the
chances of a missed problem are reduced. The program loops forever and may be exited when
desired by depressing the “RESET” switch which loads the SWTBUG® control program.

If you wish to eliminate the cyclic printout of the "# " sign you can do so by changing the data
in address locations A059, A05A and A05B to NOP instructions (0116) using SWTBUG®. This
way you only get a printout of the error cycles, if any.

MIKBUG® is a registered trademark of Motorola Inc.
SWTBUG® is a registered trademark of Southwest Technical Products Corporation.

35

 NAM MEMCON3
 *SHORT MEMORY ADDRESS CONVERGENCE TEST
 *FOR SWTPC 6800 COMPUTER SYSTEMS
 *MIKBUG AND SWTBUG COMPATIBLE

A002 LOMEM EQU $A002 STARTING ADDRESS
A004 HIMEM EQU $A004 ENDING ADDRESS
E1D1 OUTEEE EQU $E1D1 CHARACTER OUTPUT

A014 ORG $A014
A014 F7 A0 5F START STA B BSTORE STORE ACCCB
A017 FE A0 02 LDX LOMEM LOAD LOW MEMORY ADDRESS
A01A E7 00 LOOP1 STA B 0,X
A01C BC A0 04 CPX HIMEM END OF MEMORY?
A01F 27 04 BEQ CHECK CHECK IF FINISHED
A021 08 INX
A022 5C INC B
A023 20 F5 BRA LOOP1
A025 F6 A0 5D CHECK LDA B BSTORE CHECKS ALL LOCATIONS FOR CORR
A028 FE A0 02 LDX LOMEM
A02B E1 00 LOOP2 CMP B 0,X
A02D 26 21 BNE ERROR
A02F BC A0 04 CPX HIMEM
A032 20 16 BRA JUMP

A048 ORG $A048
A048 A0 14 FDB START
A04A 27 0B JUMP BEQ CYCLE
A04C 08 INX
A04D 5C INC B
A04E 20 DB BRA LOOP2
A050 86 58 ERROR LDA A #'X PRINT X IF ERROR FOUND
A052 BD E1 D1 JSR OUTEEE
A055 20 BD BRA START START OVER
A057 86 23 CYCLE LDA A #'# PRINT # FOR CORRECT CYCLE
A059 BD E1 D1 JSR OUTEEE
A05C 5A DEC B
A05D 20 B5 BRA START
A05F 00 BSTORE FCB 0
 END

36

Dual Address Memory Test CDAT
By John Christensen

The CDAT memory diagnostic can be used to help locate memory problems in a SWTPC
6800 computer system that MEMCON and ROBIT may miss. The program itself resides entirely
within the 128 byte SWTBUG® RAM. The program must be loaded in two parts to avoid
interfering with the systems push down stack. The contiguous section of memory to be tested is
set by loading the most significant byte of the lower memory address into A002, the least
significant byte into A003, the most significant byte of the upper memory address in A004 and its
least significant byte in A005. The low address must be less than or equal to the upper address.

The test starts from the low address and writes a 00 into all memory up to the high address.
An FF is then written into the first address and all other locations are checked to be sure they
contain 00. If all are OK the FF is replaced with a 00 and an FF is written in the next memory
location. This pattern continues until all memory is checked or an error is found. If the computer
returns to SWTBUG®, then no errors were found.

If the program displays a register dump then a problem was discovered on the board. The
register dump should look similar to the following:

ADDRESS ERROR MSG.
V V

F3 00 FF 0400 A079 A042.

The important parts of the dump are the ADDRESS and the ERROR MSG. areas, as
denoted above. The error messages are interpreted as follows:

A077 Error on initial test pattern (can't write 0's into mem.)
A078 Error on second test pattern (can't write FF's into mem.)
A079 Dual address error low
A07A Dual address error high

If a dual address error is found then writing into one memory location affects another. For
example, if ADDRESS = 0400 and A016 contains 0410 then writing into 0400 will change the
contents of 0418 or vice-versa. (A014 is a temporary index register storage location within the
program that you can compare with ADDRESS in the register dump to see which two memory
locations caused the error). The IC assignments table included with the memory board
instructions can then be used to help locate the problem by comparing the bit pattern of the
locations in error.

The CDAT program takes some time to run, so run the diagnostic over only one complete
board at a time.

MEM. SIZE APPROX. RUN TIME
1K 29 sec.
2K 1 min. 53 sec.
3K 4 min. 13 sec.
4K 7 min. 29 sec.
8K more than 30 min.

MIKBUG® is a registered trademark of Motorola Inc.
SWTBUG® is a registered trademark of Southwest Technical Products Corporation.

37

 NAM CDAT-2
 *MEM DIAGNOSTIC (JOHN CHRISTENSEN'S)
 *MODIFIED FOR MIKBUG AND SWTBUG OPERATION
 E0E3 CONTRL EQU $E0E3
 A002 ORG $A002
 A002 LOTEMP RMB 2 STARTING ADDRESS
 A004 HITEMP RMB 2 ENDING ADDRESS
 A014 ORG $A014
 A014 IXRTMP RMB 2 IXR TEMPORARY STORAGE
 A016 FE A0 02 START LDX LOTEMP
 A019 B6 A0 7E LDA A INIPAT
 A01C A7 00 LOOP1 STA A 0,X
 A01E A1 00 CMP A 0,X
 A020 26 55 BNE ERPNT1
 A022 BC A0 04 CPX HITEMP
 A025 27 03 BEQ LOAPAT
 A027 08 INX
 A028 20 F2 BRA LOOP1
 A02A FE A0 02 LOAPAT LDX LOTEMP
 A02D F6 A0 7F LDA B TESPAT
 A030 E7 00 LOOP4 STA B 0,X
 A032 20 16 BRA CHECK
 A048 ORG $A048
 A048 A0 16 FDB START
 A04A E1 00 CHECK CMP B 0,X
 A04C 26 2A BNE ERPNT2
 A04E FF A0 14 CHKLOW STX IXRTMP
 A051 BC A0 02 LOOP2 CPX LOTEMP
 A054 27 07 BEQ CHCKHI
 A056 09 DEX
 A057 A1 00 CMP A 0,X
 A059 26 1E BNE ERPNT3
 A05B 20 F4 BRA LOOP2
 A05D FE A0 14 CHCKHI LDX IXRTMP
 A060 BC A0 04 CPX HITEMP
 A063 27 16 BEQ END
 A065 08 LOOP3 INX
 A066 A1 00 CMP A 0,X
 A068 26 10 BNE ERPNT4
 A06A BC A0 04 CPX HITEMP
 A06D 26 F6 BNE LOOP3
 A06F FE A0 14 RESTRE LDX IXRTMP
 A072 A7 00 STA A 0,X
 A074 08 INX
 A075 20 B9 BRA LOOP4
 A077 3F ERPNT1 SWI ERROR ON INITIAL PATTERN
 A078 3F ERPNT2 SWI ERROR ON TEST PATTERN
 A079 3F ERPNT3 SWI DUAL ADDRESS ERROR LOW
 A07A 3F ERPNT4 SWI DUAL ADDRESS ERROR LO
 A07B 7E E0 E3 END JMP CONTRL

 A07E 00 INIPAT FCB 0
 A07F 00 TESPAT FCB 0
 END

38

SWTPC 6800 Rotating Bit RAM Memory Diagnostic ROBIT-2
Modified for MIKBUG® or SWTBUG® use

This rotating bit memory diagnostic is designed to check for and locate memory retaining
problems in SWTPC 6800 Computer System memory boards. The program itself uses 8510
words and is meant to be loaded within the 128 word RAM used by the SWTBUG® operating
system on the MP-A Microprocessor System board. This makes the program independent of
external RAM memory. The diagnostic may be loaded from either tape or from the terminal
instruction by instruction using SWTBUG® starting from address A01416 thru A067E16. The
program must be loaded in two parts to avoid interfering with the system’s pushdown stack. The
contiguous section of memory to be tested is set by loading the most significant byte of the lower
memory address into A00216, the least significant byte of the lower memory address into A00316,
the most significant byte of the upper memory address into A00416, and the least significant byte
of the upper memory address into A00516 using SWTBUG® just as is done for the SWTBUG®
punch routine. The lower and upper addresses are inclusive and may be any addresses between
000016 and FFFF16 with the only requirement being that the lower address be less than or equal
to the upper address. Since the program counter is set when the program is initially loaded, the
routine is initiated after loading by typing G for “Go To User’s Program”. Once initiated, the
program may then be restarted after setting the program counter to A01416 at A048 and A049.

The test sequence starts from the lower address and loads that address with a binary 0000
0001 or 0116 The data in this location is then read and verified. If accurate the “one” bit is shifted
left to form a binary 0000 0010 or 0216 and is then again tested. This shift left sequence continues
until a binary 1000 0000 or 8016 has been loaded and verified, at which time the entire sequence
is repeated at the next sequential memory address. This sequence continues until the selected
upper memory address is reached. The program then prints a "+" on the control terminal to
indicate cycle completion and proceeds to repeat Itself. The program loops forever and may be
exited when desired by depressing the “RESET” switch which loads the SWTBUG® control
program. When an error is detected, the memory address followed by what data should have
been followed by what the memory data was, are printed out on the control terminal in
hexadecimal (base 16) form. Example:

$0110 02 00
When converted to binary this means that when address 0110, which is located in the first

1,024 words of RAM memory, was loaded with a binary 0000 0010 it was read back as containing
a binary 0000 0000 which indicates a possible problem in the 21 bit memory chip in the lower
1,024 words of memory or a possible problem in the 21 bit of the memory board data transceiver
or a variety of other possibilities. The best way to tell for sure is to look for a pattern in the
indicated errors. Take note that once one bit error has been located at a specific memory
address, the one error is printed in the form shown above and the program increments to the next
address without searching for more errors in the already defective address.

If you wish to eliminate the cyclic printout of the "+" sign you can do so by changing the data
in address locations A076, A077 and A078 to NOP instructions (0116) using SWTBUG. This way
you only get a printout of the error locations; that is if there are any. The running time of this
program is very fast. It will cycle thru 2,048 words of memory in less than one second.

MIKBUG® is a registered trademark of Motorola Inc.
SWTBUG® is a registered trademark of Southwest Technical Products Corporation.

39

 NAM ROBIT-2
 *PRTATING BIT MEMORY TEST FOR MIKBUG
 *OR SWTBUG 6800 COMPUTER SYSTEM

A002 LOTEMP EQU $A002
A004 HITEMP EQU $A004
E07E PDATA1 EQU $E07E
E0C8 OUT4HS EQU $E0C8
E0CA OUT2HS EQU $E0CA
E19D MCL EQU $E19D
E1D1 OUTEEE EQU $E1D1

A014 ORG $A014
A014 FE A0 02 START LDX LOTEMP
A017 86 01 LODREG LDA A #1 STORE 1 IN MEMORY
A019 A7 00 STA A 0,X
A01B A1 00 CMP A 0,X WAS 1 WRITTEN
A01D 26 0D BNE ERRPNT
A01F 48 LOOP1 ASL A
A020 68 00 ASL 0,X
A022 A1 00 CMP A 0,X
A024 26 06 BNE ERRPNT
A026 81 80 CMP A #$80 SHIFT UNTIL 80
A028 26 F5 BNE LOOP1
A02A 20 3F BRA INCR1
A02C FF A0 7B ERRPNT STX INXMSB
A02F CE E1 9D LDX #MCL PRINT C/R L/F
A032 20 16 BRA SKIP1

A048 ORG $A048
A048 A0 14 FDB START
A04A B7 A0 7D SKIP1 STA A ACCA
A04D BD E0 7E JSR PDATA1
A050 CE A0 7B LDX #INXMSB LOAD ERROR ADDRESS
A053 BD E0 C8 JSR OUT4HS
A056 CE A0 7D LDX #ACCA
A059 BD E0 CA JSR OUT2HS OUTPUT WHAT SHOULD BE STORED
A05C FE A0 7B LDX INXMSB
A05F BD E0 CA JSR OUT2HS
A062 CE E1 9D LDX #MCL
A065 BD E0 7E JSR PDATA1
A068 FE A0 7B LDX INXMSB
A06B BC A0 04 INCR1 CPX HITEMP COMPARE TO END ADDRESS
A06E 27 03 BEQ FINISH
A070 08 INX
A071 20 A4 BRA LODREG
A073 B6 A0 7E FINISH LDA A FLAG
A076 BD E1 D1 JSR OUTEEE
A079 20 99 BRA START
A07B INXMSB RMB 1
A07C INXLSB RMB 1
A07D ACCA RMB 1
A07E 2B FLAG FCB '+
 END

40

SUMTEST - 2 -- Address Variable Memory Test
By Chris Courtney, RESPCO Inc.

The SUMTEST memory diagnostic can be used to supplement the ROBIT, MEMCON and
CDAT tests. The program itself resides entirely within the 128 byte MIKBUG®/SWTBUG® RAM
and must be loaded in two parts to avoid interfering with the system’s push down stack. The
contiguous section of memory to be tested is set by loading the most significant byte of the lower
memory address into A002, the least significant byte into A003, the most significant byte of the
upper memory address in A004 and its least significant byte in A005. When inputting the upper
address use 1+ (upper location you want to check). TO check the entire lowest 4K board, for
example, you would use an upper memory address of 1000, not OFFF. When loading the
diagnostic the program counter is automatically set to the starting address of the program. Typing
G will initiate the program.

If no errors are found in the memory being checked a + will be displayed on the screen. To
completely test an area of memory the diagnostic must be allowed to run until 256 +’s have been
displayed on the screen. Each time a + is displayed on the screen SUMTEST has successfully
cycled through memory storing and reading a different pattern. If an error is detected the output
wilt be similar to the following:

$G +++++
$06 20 16A0

(PATTERN #) (ERRANT BITS) (ADDRESS)

An error message such as this says that SUMTEST cycled thru memory five times without
error, but on the sixth try a pattern was used that detected an error. The 06 tells what pattern
number SUMTEST was working on when the error was detected. The 20 tells which bits were in
error. 2016 converted to binary is 00100000 - the location of the 1 is the bit that is in error, in this
case bit 5. Bit numbers start from 0 as shown:

2016 = 0 0 1 0 0 0 0 0
7 6 5 4 3 2 1 0 BIT#

The 16A0 is the address where the error was detected. This address may not store a
particular number or possibly writing into another address, such as 16B0, changed the contents
of 16A0.

The IC assignment table supplied with the memory board should be used to help locate the
problem. In the above case on an MP-8M 8K memory board the bit # 5 IC in the upper 4K of
memory should be suspected.

Be sure to re-load the program before testing another area of memory. SUMTEST runs fast
enough that it can be used on an entire 32K system in an acceptable amount of time.

MIKBUG® is a registered trademark of Motorola, Inc.
SWTBUG® a registered trademark of Southwest Technical Products Corp.

41

 NAM SUMTEST2
 *IMPROVED MEMORY TEST FOR SWTPC 6800
 *BYTES STORED IN MEMORY ARE THE SUM OF THE
 *MSB AND LSB OF THE MEMORY POINTER, THEREFORE
 *ADJACENT MEMORY LOCATIONS AND ADJACENT
 *PAGES CONTAIN UNIQUE CONTENTS
 *INITIALIZE LOWEST MEMORY ADDRESS IN LOTEMP
 *AND HIGHEST MEMORY ADDRESS+1 IN HITEMP
 *MODIFIED FOR MIKBUG OR SWTBUG

 A002 ORG $A002
 A002 LOTEMP RMB 2
 A004 HITEMP RMB 2
 E07E PDATA1 EQU $E07E
 E1D1 OUTEEE EQU $E1D1
 E0CA OUT2HS EQU $E0CA
 E0C8 OUT4HS EQU $E0C8
 E19D MCL EQU $E19D

 A014 ORG $A014
 A014 00 CTR FCB 0 PASS COUNTER
 A015 00 STORE FCB 0 BIT MISMATCHED
 A016 00 INXMSB FCB 0
 A017 00 INXLSB FCB 0
 A018 FE A0 02 START LDX LOTEMP
 A01B 8D 39 LOOP1 BSR INCRX INCREMENT INDEX
 A01D A7 00 STA A 0,X
 A01F 08 INX
 A020 BC A0 04 CPX HITEMP END OF MEMORY?
 A023 26 F6 BNE LOOP1
 A025 FE A0 02 LDX LOTEMP
 A028 8D 2C LOOP2 BSR INCRX
 A02A A8 00 EOR A 0,X
 A02C 26 35 BNE ERROR
 A02E 08 RETURN INX
 A02F BC A0 04 CPX HITEMP
 A032 20 16 BRA SKIP1 BRANCH AROUND HOLE

 A048 ORG $A048
 A048 A0 18 FDB START
 A04A 26 DC SKIP1 BNE LOOP2
 A04C 86 2B LDA A #$2B
 A04E BD E1 D1 JSR OUTEEE
 A051 7C A0 14 INC CTR
 A054 20 C2 BRA START
 A056 FF A0 16 INCRX STX INXMSB
 A059 B6 A0 16 LDA A INXMSB
 A05C BB A0 17 ADD A INXLSB ADD IN ADDR LSB
 A05F BB A0 14 ADD A CTR ADD IN COUNTER
 A062 39 RTS
 A063 B7 A0 15 ERROR STA A STORE STORE ERRANT BIT
 A066 CE E1 9D LDX #MCL
 A069 BD E0 7E JSR PDATA1 DO C/R L/F
 A06C CE A0 14 LDX #CTR
 A06F BD E0 CA JSR OUT2HS COUNTER, IN HEX
 A072 BD E0 CA JSR OUT2HS ERRANT BITS, IN HEX
 A075 BD E0 C8 JSR OUT4HS ADDRESS, IN HEX
 A078 FE A0 16 LDX INXMSB
 A07B 20 B1 BRA RETURN

