
 

 

Assembly Instructions MP-N Calculator Interface Kit 

 
The Southwest Technical Products MP-N Calculator Interface interfaces the 

SWTPC 6800 Computer System thru a Peripheral Interface Adapter (PIA) to the 
National Semiconductor MM57109 Number Oriented Processor. This "processor" is a 
Reverse Polish Notation (RPN) calculator chip without the internal keypad 
interfacing circuitry which has made interfacing to calculator chips so difficult 
in the past. This chip allows data and instruction entry in conventional binary 
form and speeds entry with the elimination of the debounce circuitry built into 
conventional calculator chips. It is called a processor because it has instructions 
and control lines which allow it to operate in conjunction with ROM and RAM as a 
stand alone numerical processor. It may however be operated as a computer 
peripheral for numerical calculation and this is the configuration in which the 
chip has been implemented.  

All interfacing from the 6800 Computer System to the calculator chip has been 
done thru a 6820 PIA. Both the PIA and calculator chip reside on a 3 ½" X 5 ¼ 
double sided, plated thru hole circuit board plugged onto one of tie seven 
available interface card positions on the mother board of the 6800 Computer. All 
data and instructions fed to and all results received from the calculator chip are 
handled by your own assembler or machine language program. The calculator features 
reverse Polish notation, floating point or scientific notation, up to an eight 
digit mantissa and two digit exponent, trig functions, base 10 and natural 
logarithms, and overflow indicator. 

PC Board Assembly 

NOTE: Since ail of the holes on the PC board have been plated thru, it is 
only necessary to solder the components from the bottom side of the board. The 
plating provides the electrical connection from the "BOTTOM" to the "TOP" foil of 
each hole. Unless otherwise noted it is important that none of the connections be 
soldered until all of the components of each group have been installed on the 
board. This makes it much easier to interchange components if a mistake is made 
during assembly. Be sure to use a low wattage iron (not a gun) with a small tip. Do 
not use acid core solder or any type of paste flux. We will not guarantee or repair 
any kit on which either product has been used. Use only the solder supplied with 
the kit or a 60/40 alloy resin core equivalent. Remember all of the connections are 
soldered on the bottom side of the board only. The plated-thru holes provide the 
electrical connection to the top foil. 

 ( ) Before installing any parts on the circuit board, check both sides of the 
board over carefully for incomplete etching and foil "bridges" or "breaks". 
It is unlikely that you will find any, but should there be one, especially on 
the "TOP" side of the board, it will be very hard to locate and correct after 
all of the components have been installed on the board. 

 ( ) Starting from one end of the circuit board install each of the three, 10 pin 
Molex female edge connectors along the lower edge of board. These connectors 
must be inserted from the "TOP" side of the board and must be pressed down 
firmly against the circuit board, so that each pin extends completely into 
the holes on the circuit board. Not being careful here will cause the board 
to either wobble and/or be crooked when plugging it onto the mother board. It 
Scanned and edited by Michael Holley   Jan 20, 2001 Revised May 18, 2003 
Southwest Technical Products Corporation Document   Circa 1977 
1



 

 2

is suggested that you solder only the two end pins of each of the three 
connectors until all have been installed at which time if everything looks 
straight and rigid you should solder the as yet unsoldered pins. 

( ) Insert the small nylon indexing plug into the lower edge connector pin 
indicated by the small triangular arrow on the "BOTTOM" side of the circuit 
board. This prevents the board from being accidentally plugged on 
incorrectly. 

 ( ) Attach all of the resistors to the board. As with all other components unless 
noted, use the parts list and component layout drawing to locate each part 
and install from the "TOP" side of the board bending the leads along the 
"BOTTOM" side of the board and trimming so that 1/16" to 1/8" of wire 
remains. Solder. 

( ) Install the capacitors on the circuit board. Be sure to orient electrolytic 
capacitor C4 so its polarity matches with that shown on the component layout 
drawing. Solder. 

( ) Install the transistor and diode. These components must be oriented to match 
the component layout drawing. Solder. 

 ( ) Install integrated circuit IC2 on the circuit board. This component must be 
oriented so its metal face is facing the circuit board and is secured to the 
circuit board with a #4 - 40 X 1/4" screw, lockwasher and nut. A heatsink is 
not used. The three leads of the integrated circuit must be bent down into 
each of their respective holds. Solder. 

NOTE: MOS integrated circuits are susceptible to damage by static electricity. 
Although some degree of protection is provided internally within the integrated 
circuits, their cost demands the utmost in care. Before opening and/or installing 
any MOS integrated circuits you should ground your body and all metallic tools 
coming into contact with the leads, thru a 1 M ohm 1/4 watt resistor (supplied with 
the kit). The ground must be an "earth" ground such as a water pipe, and not the 
circuit board ground. As for the connection to your body, attach a clip lead to 
your watch or metal ID bracelet. Make absolutely sure you have the 1 Meg ohm 
resistor connected between you and the "earth" ground, otherwise you will be 
creating a dangerous shock hazard. Avoid touching the leads of the integrated 
circuits any more than necessary when installing them, even if you are grounded. On 
those MOS IC's being soldered in place, the tip of the soldering iron should be 
grounded as well(separately from your body ground) either with or without a 1 Meg 
ohm resistor. Most soldering irons having a three prong line cord plug already have 
a grounded tip. Static electricity should be an important consideration in cold, 
dry environments. It is less of a problem when it is warm and humid. 

 ( ) Install MOS integrated circuits IC1, IC3, IC4 and IC5 following the 
precautions given in the preceding section. As they are installed, make sure 
they are down firmly against the board before soldering all of their leads. 
Do not bend the leads on the back side of the board. Doing so makes it very 
difficult to remove the integrated circuit should replacement ever be 
necessary. The "dot" or "notch" on the end of the package is used for 
orientation purposes and must match with that shown on the component layout 
drawing for the IC. Solder. 

( ) Working from the "TOP" side of the circuit board, fill in all of the 
feedthru's with molten solder. The feed-thru's are those unused holes on the 
board whose internal plating connects the "TOP" and "BOTTOM" circuit 
connections Filling these feed-thru's with molten solder guarantees the 
integrity of the connections and increases the current handling capability. 



 

 3

 ( ) Now that all of the components have been installed on the board, double check 
to make sure all have been installed correctly in their proper location. 

 ( ) Check very carefully to make sure that all connections have been soldered. It 
is very easy to miss some connections when soldering which can really cause 
some hard to find problems later during checkout. Also look for solder 
"bridges" and "cold" solder joints which are another common problem. 

Since the MP-N circuit board now contains MOS devices, it is susceptible to 
damage from severe static electrical sources. One should avoid handling the board 
any more than necessary and when you must, avoid touching or allowing anything to 
come into contact with any of the conductors on the board. 

Using the Calculator Interface 

Table I gives a complete list and description of the calculator chip's 
instruction set. Remember that some of the instructions are for stand alone 
processing systems and are not used on this interface. All numerical entry is in 
Reverse Polish Notation (RPN) and anyone familiar with Hewlett Packard calculators 
should have no problem with the data entry sequence. For those not familiar with 
RPN, the following should be helpful: 

 

To add 7 + 8, enter the following 
7 enter 8 + (4 entries) 
The answer is now stored in the X accumulator within the calculator chip 
The OUT instruction may be used to output the answer 

 
To find the inverse sine of 0.5, enter the following:  
0.5 INV SIN ( 5 entries)  
The answer is now stored in the X accumulator within the calculator chip.  
The OUT instruction may be used to output the answer. 

 
In order to simplify the interfacing between your program and the calculator 

interface, you will probably want to incorporate the following subroutines into 
your program. 

INITAL SUBROUTINE 

The INITAL or initialize subroutine configures the PIA interfacing to the 
calculator chip. This subroutine need only be used once; and is best placed 
somewhere at the beginning of your program., It is responsible for initializing the 
data direction registers and control registers of the PIA. The subroutine requires 
that the index register be loaded with the "lowest" address of the PIA interfacing 
to the calculator chip prior to execution.  

This "lowest" address depends upon which interface port position the MP-N 
calculator card is plugged. The table below gives the "lowest" address of each 
interface card position. 



 

 4

 

 
PORT0 8000 
PORT1 8004 
PORT2 8008 
PORT3 800C 
PORT4 8010 
PORT5 8014 
PORT6 8018 
PORT7 801C 

 
 
  86 7F     INITAL  LDA A  #$7F      INIT A SIDE OF PIA 
  A7 00             STA A  0,X 
  86 36             LDA A  #$36      HIGH HOLD-POS READY 
  A7 01             STA A  1,X 
  86 00             LDA A  #$00      INIT B SIDE OF PIA 
  A7 02             STA A  2,X 
  86 34             LDA A  #$34      NEG R/W 
  A7 03             STA A  3,X 
  A6 02             LDA A  2,X       CLEAR R/W FLAG 
  39                RTS 
 

OUTINS SUBROUTINE 

The OUTINS or out instruction subroutine is used to get program data and 
instructions into the calculator. To send a digit or instruction to the calculator 
chip, use Table II to find the OP code of the instruction you wish to send. Load 
this OP code into the A accumulator and jump or branch to the OUTINS subroutine. If 
you have a string of data you wish to send, just recycle thru this subroutine as 
many times as necessary. The subroutine takes care of all of the READY and HOLD 
signals to the calculator chip so there is no worry of sending data faster than the 
calculator chip can accept it. The subroutine destroys the contents of the B 
accumulator during execution while the contents of the A accumulator and index 
register are not destroyed. 

 
  E6 01     OUTINS  LDA B  1,X       WAIT FOR READY 
  2A FC             BPL    OUTINS 
  A7 00             STA A  0,X       FORWARD INSTRUCTION TO CALC 
  E6 00             LDA B  0,X       CLEAR FLAG BIT 
  C6 3C             LDA B  #$3C      LOW HOLD-NEG READY 
  E7 01             STA B  1,X       BRING HOLD LINE LOW 
  E6 01     WAIT10  LDA B  1,X 
  2A FC             BPL    WAIT10    LOOP FOR READY LOW 
  E6 00             LDA B  0,X       CLEAR FLAG BIT 
  C6 36             LDA B  #$36      HIGH HOLD-POS READY 
  E7 01             STA B  1,X       RETURN HOLD LINE HIGH 
  39                RTS 



 

 5

SETMEM SUBROUTINE 
 

The SETMEM or set memory subroutine initializes the memory locations to which 
the calculator's output data will be stored. This subroutine must be executed 
immediately before OUTANS subroutine is used. Although it can be changed, memory 
locations 0020 thru 002B have been designated the temporary storage locations for 
the calculator’s. output data. The subroutine sets memory location 0020 to a 00 
while locations 21 thru 2B are set to 20 (ASCII spaces). This subroutine destroys 
the contents of the index register and B accumulator. The contents of the A 
accumulator are nor destroyed. 

  7F 00 20  SETMEM  CLR    $20       CLEAR $0020 
  CE 00 20          LDX    #$20      BOTTOM OF BUFFER 
  C6 20             LDA B  #$20 
  08        LOOP1   INX 
  E7 00             STA B  0,X       STORE A SPACE 
  8C 00 2B          CPX    #$2B      CHEXC FOR TOP OF BUFFER 
  26 F8             BNE    LOOP1 
  39                RTS 
 

OUTANS SUBROUTINE 
 

The OUTANS or output answer subroutine outputs the contents of the X register 
within the calculator chip in BCD to memory locations 0020 thru 002B. Since the 
mantissa digit count of the calculator is variable, the previous SETMEM subroutine 
blanks out any digit location not filled by the OUTANS subroutine. It is very 
important that the SETMEM subroutine be used each time before executing the OUTANS 
subroutine. The OUTANS subroutine outputs data in two different formats depending 
upon whether the calculator chip is in the floating point or scientific mode. The 
calculator initially starts out in the floating point mode where it will remain 
until changed by the TOGM (2216) instruction. This calculator does not automatically 
convert to scientific notation if the numbers become too big to handle in floating 
point as many do. An MCLR (2F16) instruction will always reset the calculator chip 
to the floating point mode regardless of what mode it was in originally. Since the 
calculator chip does not tell you what mode it is in when it is outputting data, 
your program must know so you can process the data accordingly. Table IV shows the 
format in which the data is stored. At the end of the OUTANS subroutine, the N bit 
of the condition code register is set if an error has transpired since the last 
execution of the OUTANS subroutine. You may use a BMI instruction to catch and 
branch to an error routine to note the error. You should then send an ECLR (2B16) 
instruction to the calculator chip to reset the calculator chip's error flag. 
Disregarding the error flag on the calculator chip will cause no problems. The chip 
will continue to function regardless of the state of the flag. The subroutine 
requires that the index register be loaded with the "lowest" address of the PIA 
interfacing to the calculator chip prior to execution. Since the SETMEM subroutine 
usually run prior to this destroys the contents of the index register, don't forget 
to reload the index register before branching to the OUTANS subroutine. The OUTANS 
subroutine destroys the contents of both the A and B accumulators during execution 
while the contents of the index register is not changed. 



 

 6

 
  E6 01     OUTANS  LDA B  1,X 
  2A FC             BPL    OUTANS 
  A6 00             LDA A  0,X       CLEAR FLAG BIT 
  86 16             LDA A  #$16      SEND AN OUT 
  A7 00             STA A  0,X 
  C6 3E             LDA B  #$3E      LOW HOLD-POS READY 
  E7 01             STA B  1,X       BRING HOLD LINE LOW 
  E6 01     WAIT30  LDA B  1,X       WAIT FOR SECOND READY 
  2A FC             BPL    WAIT30 
  E6 00             LDA B  0,X       CLEAR FLAG BIT 
  86 0F             LDA A  #$0F 
  A7 00             STA A  0,X       SEND A NOP 
  E6 03     WAIT3   LDA B  3,X       LOOK FOR R/W STROBE 
  2B 06             BMI    OUTDIG    TRANSFER CALC DATA INTO MEMORY 
  E6 01             LDA B  1,X       LOOK FOR READY STROBE 
  2B 16             BMI    CONFLG    PRINT MEMORY CONTENTS 
  20 F6             BRA    WAIT3 
  A6 02     OUTDIG  LDA A  2,X       LOAD OUT DATA INTO A 
  16                TAB 
  84 0F             AND A  #$0F      ELIMINATE UPPER 4 BITS 
  8A 30             ORA A  #$30      CONVERT TO ASCII DATA 
  54                LSR B 
  54                LSR B 
  54                LSR B 
  54                LSR B 
  CA 20             ORA B  #$20      INCREMENT ADDRESSES BY $20 
  F7 01 C6          STA B  POINT2+1  STORE OUT DATA SEQUENTIALLY 
  97 00     POINT2  STA A  $0        SELF MODIFING CODE 
  20 E2             BRA    WAIT3 
  86 36     CONFLG  LDA A  #$36      HIGH HOLD-POS READY 
  A7 01             STA A  1,X       BRING HOLD LINE HIGH 
  A6 00             LDA A  0,X       CLEAR FLAG BIT 
  39                RTS 



 

 7

Number Entry Rules 

When a digit, decimal point, or ∏ is entered with an 0-9, DP, or PI 
instruction, the stack is first pushed and the X register cleared: Z -> T, Y -> Z, 
X -> Y, 0 -> X. This process is referred to as "initiation of number entry." 
Following this, the digit and future digits are entered into the X mantissa. 
Subsequent entry of digits or DP, EE, or CS instructions do not cause initiation of 
number entry. Digits following the eighth mantissa digit are ignored. This number 
entry mode is terminated by any instruction except 0-9, DP, EE, CS, PI, or HALT. 
Termination of number entry means two things. First, the number is normalized by 
adjusting the exponent and decimal point position so that the decimal point is to 
the right of the first mantissa digit. Second, the next digit, decimal point, or ∏ 
entered will cause initiation of number entry, as already described. There is one 
exception to the number entry initiation rule. The stack is not pushed if the 
instruction prior to the entered digit was an ENTER. However, the X register is 
still cleared and the entered digit put in X. 

The ENTER key itself terminates number entry and pushes the stack. The OUT 
instruction terminates number entry and prepares the stack for pushing upon the 
next entry of data. This means that if you use the ENTER and OUT instructions 
consecutively, the stack gets pushed twice which is not what you want. If you wish 
to ENTER data and immediately OUT the result, use only the OUT instruction. The OUT 
performs the entry. If you do not wish to OUT the ENTER'ed data, just use the ENTER 
instruction by itself. 

The AIN and IN instructions should not be used for number entry. Provisions 
have not been made for their use on this interface. 

How It Works 

Peripheral Interface Adapter (PIA) ICI interfaces the MM57109 calculator 
chip, IC3, to the SWTPC 6800 buss. The first six bits of the A side of the PIA are 
used to feed instructions to the calculator chip while the eighth is used as an 
input to monitor the ERROR output of the calculator. Control line CA1 outputs HOLD 
signals to, while control line CA2 inputs READY signals from the calculator chip. 
The first four bits of the B side of the PIA are used to input BCD digit data while 
the last four bits input digit addresses. The CB1 line inputs READ/WRITE signals 
while the CB2 control line is not used. Hex inverter/buffer, IN, is used primarily 
as the 320 to 400 kHz single phase oscillator required by the calculator chip. One 
section is used to invert the HOLD signal going to the calculator. Shift register 
IC5 generates the POR signal required for proper startup and initialization. +5 VDC 
power required by the board is supplied by voltage regulator IC2 while -4 VDC 
voltage is-supplied by transistor Q1 and its associated components. Figure I shows 
a block diagram for the internal construction of the calculator chip. 



 

 8

Parts List MP-N Calculator Interface 

 

Resistors 

____ R1 47K ohm ¼ watt resistor 
____ R2 1K ohm ¼ watt resistor 
____ R3 10K ohm ¼ watt resistor 
____ R4 10K ohm ¼ watt resistor 
____ R5 10K ohm ¼ watt resistor 
____ R6 10K ohm ¼ watt resistor 
____ R7 10K ohm ¼ watt resistor 
____ R8 22K ohm ¼ watt resistor 
____ R9 22K ohm ¼ watt resistor 
____ R10 22K ohm ¼ watt resistor 
____ R11 22K ohm ¼ watt resistor 
____ R12 12K ohm ¼ watt resistor 
____ R13 27 ohm ¼ watt resistor 
____ R14 3.3K ohm ¼ watt resistor 
____ R15 10K ohm ¼ watt resistor 
____ R16 47K ohm ¼ watt resistor 
____ R17 10K ohm ¼ watt resistor 

Capacitors 

____ C1 0.1 mfd capacitor 
____ C2 100 pfd capacitor 
____ C3 0.1 mfd capacitor 
____ C4* 10 mfd@ 15 VDC electrolytic 

Diodes and Transistors 

____ D1* 4.7 volt 400 mw zener diode 1N5230 or 1N4732 
____ D2* 1N4148 silicon diode 
____ D3* 1N4148 silicon diode 
____ D4* 1N4148 silicon diode 
____ D5* 1N4148 silicon diode 
____ D6* 1N4148 silicon diode 
____ D7* 1N4148 silicon diode 
____ Ql* 2N5087 transistor 

Integrated Circuits 

____ IC1* 6820 MOS peripheral interface adapter 
____ IC2* 7805 voltage regulator 
____ IC3 MM57109 FAN MOS calculator chip 
____ IC4* 4009 or 14009 MOS hex inverter 
____ IC5* 74C165 MOS shift register 

 
 



 

 9



 

 10

 



 

 11

CALC-1 Program 

In order to see how the calculator chip is used and how to incorporate these 
subroutines into a program, the CALC-1 program listing is given. CALC-1 allows the 
operator to use the calculator chip just as you would a standard RPN desk 
calculator with the same features. All communication to the chip is done thru the 
terminal's keyboard with all results displayed on the terminal's display. Since the 
terminal's keyboard just has standard ASCII characters rather than the labeling 
found on calculator keys; selected ASCII characters have been substituted for 
normal calculator function keys. It is the job of the CALC-1 program to accept all 
data and instruction commands from the terminal's keyboard, send them to the 
calculator chip and display all results on the terminal's display. The program 
resides from memory locations 0020 thru 02C0 which is approximately 700 bytes of 
code. Since most of the lower 256 bytes are used for the ASCII character lookup 
table and some of the upper is used for terminal interfacing, you should be able to 
incorporate the package into your program using somewhat less memory than was used 
here. 

The program starts at line 5 by storing the ASCII lookup table from memory 
locations 0080 thru 00FF. This table covers the entire 128 character ASCII set. 
Whenever an ASCII character is received from the keyboard it is OR'ed with 80, and 
the resulting address contains the selected command or instruction for the 
calculator chip. Line 21 ORG's the program at memory location 0100 where the 
terminal's screen is cleared and titled. Line 25 loads the index register extended 
with the contents of memory locations A002 and A003 with 800C, the starting address 
of Port 3. If you wish to plug the calculator board onto an I/0 port other than 
PORT 3. Use the table below to find the address to be loaded into memory locations 
A002 and A003 prior to executing the program. 

PORT0 8000 
PORT1 8004(Serial control interface only) 
PORT2 8008 
PORT3 8000 
PORT4 8010 
PORT5 8014 
PORT6 8018 
PORT7 801C 

Lines 28 thru 37 contain the INITAL subroutine described in detail earlier. 
lines 38 thru 41 accept entered keyboard commands, lookup the selected calculator 
instructions and deposit the data or instruction in the A accumulator. Lines 46 
thru 57 contain the OUTINS subroutine described in detail earlier. Lines 57 thru 76 
check to see what instruction or data has been entered so the result may be output 
if appropriate. Line 73 looks for the TOGM instruction so the program knows which 
display mode to use when outputting data. Lines 79 thru 86 contain the SETMEM 
subroutine described in detail earlier. Since the SETMEM subroutine destroys the 
contents of the index register, line 87 reloads it before proceeding to the OUTANS 
subroutine contained in lines 90 thru 122. Line 123 checks to see of the ERROR flag 
was set during the last output sequence. If so, program control is transferred to 
lines 124 thru 137 where an error message is output and the error flag cleared by 
sending an ECLR instruction to the calculator chip. Line 140 tests to see if the 
calculator is in the floating point or scientific mode. If floating point, control 
is transferred to lines 142 thru 169. If scientific, control is transferred to 
lines 170 thru 201. In both modes the data is output to the display in the selected 
mode and program control is transferred back to line 38 where new commands or data 
may be entered 

The original listing had line numbers that incremented by 10. Line 28 in this listing was line 280 in the original. The were two 
lines that did not increment by 10 (412 and 414) in the original. In the listing the lines above 41 are off by 2, line 53 was line 510.



 

 12

CALC-1                                        TSC ASSEMBLER  PAGE    1 
 
    1                         NAM    CALC-1 
    2                 *A DRIVER ROUTINE FOR THE MP-N BOARD 
    3                         OPT    PAG 
    4  0080                   ORG    $0080 
    5  0080 0F                FCB    $0F,$0F,$0F,$0F,$0F,$0F,$0F,$0F 
       0081 0F 0F      
       0083 0F 0F      
       0085 0F 0F      
       0087 0F         
    6  0088 0F                FCB    $0F,$0F,$0F,$0F,$0F,$21,$0F,$0F 
       0089 0F 0F      
       008B 0F 0F      
       008D 21 0F      
       008F 0F         
    7  0090 0F                FCB    $0F,$0F,$0F,$0F,$0F,$0F,$0F,$0F 
       0091 0F 0F      
       0093 0F 0F      
       0095 0F 0F      
       0097 0F         
    8  0098 2F                FCB    $2F,$0F,$0F,$0F,$0F,$0F,$0F,$0F 
       0099 0F 0F      
       009B 0F 0F      
       009D 0F 0F      
       009F 0F         
    9  00A0 21                FCB    $21,$0F,$0F,$0F,$0F,$0F,$0F,$0F 
       00A1 0F 0F      
       00A3 0F 0F      
       00A5 0F 0F      
       00A7 0F         
   10  00A8 0F                FCB    $0F,$0F,$3B,$39,$0F,$3A,$0A,$3C 
       00A9 0F 3B      
       00AB 39 0F      
       00AD 3A 0A      
       00AF 3C         
   11  00B0 00                FCB    $00,$01,$02,$03,$04,$05,$06,$07 
       00B1 01 02      
       00B3 03 04      
       00B5 05 06      
       00B7 07         
   12  00B8 08                FCB    $08,$09,$0F,$0F,$0F,$0F,$22,$0F 
       00B9 09 0F      
       00BB 0F 0F      
       00BD 0F 22      
       00BF 0F         
   13  00C0 0F                FCB    $0F,$1B,$36,$25,$2D,$0B,$2C,$1C 
       00C1 1B 36      
       00C3 25 2D      
       00C5 0B 2C      
       00C7 1C         
   14  00C8 1D                FCB    $1D,$20,$0F,$0F,$0F,$18,$35,$23 
       00C9 20 0F      
       00CB 0F 0F      
       00CD 18 35      
       00CF 23         
   15  00D0 0D                FCB    $0D,$33,$37,$24,$26,$32,$34,$31 
       00D1 33 37      
       00D3 24 26      
 



 

 13

CALC-1                                        TSC ASSEMBLER  PAGE    2 
 
       00D5 32 34      
       00D7 31         
   16  00D8 30                FCB    $30,$2B,$0C,$0F,$0F,$0F,$38,$0F 
       00D9 2B 0C      
       00DB 0F 0F      
       00DD 0F 38      
       00DF 0F         
   17  00E0 0F                FCB    $0F,$0F,$36,$25,$2D,$0B,$2C,$1C 
       00E1 0F 36      
       00E3 25 2D      
       00E5 0B 2C      
       00E7 1C         
   18  00E8 1D                FCB    $1D,$20,$0F,$0F,$0F,$18,$35,$23 
       00E9 20 0F      
       00EB 0F 0F      
       00ED 18 35      
       00EF 23         
   19  00F0 0D                FCB    $0D,$33,$37,$24,$26,$32,$34,$31 
       00F1 33 37      
       00F3 24 26      
       00F5 32 34      
       00F7 31         
   20  00F8 30                FCB    $30,$2B,$0C,$0F,$0F,$0F,$0F,$0F 
       00F9 2B 0C      
       00FB 0F 0F      
       00FD 0F 0F      
       00FF 0F         
   21  0100                   ORG    $0100 
   22  0100 8E A0 47  START   LDS    #$A047    DECREMENT STACK 
   23  0103 CE 02 87          LDX    #CLRSCN 
   24  0106 BD E0 7E          JSR    PDATA1    CLEAR AND TITLE TERM 
   25  0109 FE A0 02          LDX    PARADR 
   26  010C 8D 02             BSR    INITAL 
   27  010E 20 13             BRA    COMAND 
   28  0110 86 7F     INITAL  LDA A  #$7F      INIT A SIDE OF PIA 
   29  0112 A7 00             STA A  0,X 
   30  0114 86 36             LDA A  #$36      HIGH HOLD-POS READY 
   31  0116 A7 01             STA A  1,X 
   32  0118 86 00             LDA A  #$00      INIT B SIDE OF PIA 
   33  011A A7 02             STA A  2,X 
   34  011C 86 34             LDA A  #$34      NEG R/W 
   35  011E A7 03             STA A  3,X 
   36  0120 A6 02             LDA A  2,X       CLEAR R/W FLAG 
   37  0122 39                RTS 
   38  0123 BD E1 AC  COMAND  JSR    INEEE     GET OPERATOR DATA 
   39  0126 8A 80             ORA A  #$80      POSITION TO TOP OF TABLE 
   40  0128 B7 01 2C          STA A  POINT+1 
   41  012B 96 00     POINT   LDA A  $00       SELF MODIFING CODE 
   42  012D 81 21             CMP A  #$21 
   43  012F 27 43             BEQ    ZERMEM 
   44  0131 8D 02             BSR    OUTINS 
   45  0133 20 17             BRA    CHRCHK 
   46  0135 E6 01     OUTINS  LDA B  1,X       WAIT FOR READY 
   47  0137 2A FC             BPL    OUTINS 
 



 

 14

CALC-1                                        TSC ASSEMBLER  PAGE    3 
 
   48  0139 A7 00             STA A  0,X       FORWARD INSTRUCTION TO CALC 
   49  013B E6 00             LDA B  0,X       CLEAR FLAG BIT 
   50  013D C6 3C             LDA B  #$3C      LOW HOLD-NEG READY 
   51  013F E7 01             STA B  1,X       BRING HOLD LINE LOW 
   52  0141 E6 01     WAIT10  LDA B  1,X 
   53  0143 2A FC             BPL    WAIT10    LOOP FOR READY LOW 
   54  0145 E6 00             LDA B  0,X       CLEAR FLAG BIT 
   55  0147 C6 36             LDA B  #$36      HIGH HOLD-POS READY 
   56  0149 E7 01             STA B  1,X       RETURN HOLD LINE HIGH 
   57  014B 39                RTS 
   58  014C 81 2F     CHRCHK  CMP A  #$2F 
   59  014E 26 03             BNE    SKIP75 
   60  0150 7F 02 AE          CLR    FORMAT 
   61  0153 7D 02 AF  SKIP75  TST    SMDC      CHECK FOR PREVIOUS SMDC INSTR 
   62  0156 26 1C             BNE    ZERMEM 
   63  0158 81 0F     CONT50  CMP A  #$0F 
   64  015A 27 C7             BEQ    COMAND    GET MOR DATA IF NOP 
   65  015C 81 18             CMP A  #$18 
   66  015E 26 05             BNE    SKIP25 
   67  0160 73 02 AF          COM    SMDC 
   68  0163 20 BE             BRA    COMAND    GET MORE DATA IF SMDC 
   69  0165 81 20     SKIP25  CMP A  #$20 
   70  0167 27 BA             BEQ    COMAND    GET MORE DATA IF INV 
   71  0169 81 0B             CMP A  #$0B 
   72  016B 23 B6             BLS    COMAND    GET MORE DATA IF NUMBERS 
   73  016D 81 22             CMP A  #$22      LOOK FOR TOGM 
   74  016F 26 03             BNE    ZERMEM 
   75  0171 73 02 AE          COM    FORMAT 
   76  0174 7F 02 AF  ZERMEM  CLR    SMDC      ZERO SMDC 
   77  0177 8D 02             BSR    SETMEM 
   78  0179 20 11             BRA    LODADR 
   79  017B 7F 00 20  SETMEM  CLR    $20       CLEAR $0020 
   80  017E CE 00 20          LDX    #$20      BOTTOM OF BUFFER 
   81  0181 C6 20             LDA B  #$20 
   82  0183 08        LOOP1   INX 
   83  0184 E7 00             STA B  0,X       STORE A SPACE 
   84  0186 8C 00 2B          CPX    #$2B      CHEXC FOR TOP OF BUFFER 
   85  0189 26 F8             BNE    LOOP1 
   86  018B 39                RTS 
   87  018C FE A0 02  LODADR  LDX    PARADR 
   88  018F 8D 02             BSR    OUTANS 
   89  0191 20 3D             BRA    OUTCHR 
   90  0193 E6 01     OUTANS  LDA B  1,X 
   91  0195 2A FC             BPL    OUTANS 
   92  0197 A6 00             LDA A  0,X       CLEAR FLAG BIT 
   93  0199 86 16             LDA A  #$16      SEND AN OUT 
   94  019B A7 00             STA A  0,X 
   95  019D C6 3E             LDA B  #$3E      LOW HOLD-POS READY 
   96  019F E7 01             STA B  1,X       BRING HOLD LINE LOW 
   97  01A1 E6 01     WAIT30  LDA B  1,X       WAIT FOR SECOND READY 
   98  01A3 2A FC             BPL    WAIT30 
   99  01A5 E6 00             LDA B  0,X       CLEAR FLAG BIT 
  100  01A7 86 0F             LDA A  #$0F 
  101  01A9 A7 00             STA A  0,X       SEND A NOP 
 



 

 15

CALC-1                                        TSC ASSEMBLER  PAGE    4 
 
  102  01AB E6 03     WAIT3   LDA B  3,X       LOOK FOR R/W STROBE 
  103  01AD 2B 06             BMI    OUTDIG    TRANSFER CALC DATA INTO MEMORY 
  104  01AF E6 01             LDA B  1,X       LOOK FOR READY STROBE 
  105  01B1 2B 16             BMI    CONFLG    PRINT MEMORY CONTENTS 
  106  01B3 20 F6             BRA    WAIT3 
  107  01B5 A6 02     OUTDIG  LDA A  2,X       LOAD OUT DATA INTO A 
  108  01B7 16                TAB 
  109  01B8 84 0F             AND A  #$0F      ELIMINATE UPPER 4 BITS 
  110  01BA 8A 30             ORA A  #$30      CONVERT TO ASCII DATA 
  111  01BC 54                LSR B 
  112  01BD 54                LSR B 
  113  01BE 54                LSR B 
  114  01BF 54                LSR B 
  115  01C0 CA 20             ORA B  #$20      INCREMENT ADDRESSES BY $20 
  116  01C2 F7 01 C6          STA B  POINT2+1  STORE OUT DATA SEQUENTIALLY 
  117  01C5 97 00     POINT2  STA A  $0        SELF MODIFING CODE 
  118  01C7 20 E2             BRA    WAIT3 
  119  01C9 86 36     CONFLG  LDA A  #$36      HIGH HOLD-POS READY 
  120  01CB A7 01             STA A  1,X       BRING HOLD LINE HIGH 
  121  01CD A6 00             LDA A  0,X       CLEAR FLAG BIT 
  122  01CF 39                RTS 
  123  01D0 2A 1E     OUTCHR  BPL    CONT1     SKIP IF NO ERROR 
  124  01D2 E6 01     WAIT70  LDA B  1,X       WAIT FOR READY 
  125  01D4 2A FC             BPL    WAIT70 
  126  01D6 86 2B             LDA A  #$2B      ERROR CLEAR INSTRUCTION 
  127  01D8 A7 00             STA A  0,X 
  128  01DA E6 00             LDA B  0,X       CLEAR FLAG BIT 
  129  01DC C6 3C             LDA B  #$3C      LOW HOLD-NEG READY 
  130  01DE E7 01             STA B  1,X       BRING HOLD LOW 
  131  01E0 E6 01     WAIT71  LDA B  1,X 
  132  01E2 2A FC             BPL    WAIT71 
  133  01E4 E6 00             LDA B  0,X       CLEAR FLAG BIT 
  134  01E6 C6 36             LDA B  #$36      HIGH HOLD-POS READY 
  135  01E8 E7 01             STA B  1,X       RETURN HOLD HIGH 
  136  01EA CE 02 B0          LDX    #ERRMSG 
  137  01ED BD E0 7E          JSR    PDATA1 
  138  01F0 CE 02 A8  CONT1   LDX    #CRLF 
  139  01F3 BD E0 7E          JSR    PDATA1 
  140  01F6 7D 02 AE          TST    FORMAT 
  141  01F9 2B 3F             BMI    SCINOT 
  142  01FB CE 00 22  FLOPNT  LDX    #$22      FLOTING POINT NOTATION 
  143  01FE A6 00             LDA A  0,X       INPUT MANTISSA SIGN DATA 
  144  0200 84 08             AND A  #$08      MASK BIT 4 
  145  0202 26 04             BNE    MINPNT 
  146  0204 86 20             LDA A  #$20      LOAD A SPACE 
  147  0206 20 02             BRA    PRINT1 
  148  0208 86 2D     MINPNT  LDA A  #$2D      LOAD MINUS 
  149  020A BD E1 D1  PRINT1  JSR    OUTEEE    PRINT CHARACTER 
  150  020D 08        DPIND   INX 
  151  020E E6 00             LDA B  0,X 
  152  0210 C4 0F             AND B  #$0F 
  153  0212 E7 00             STA B  0,X 
  154  0214 C6 2F             LDA B  #$2F 
  155  0216 E0 00             SUB B  0,X 
 



 

 16

CALC-1                                        TSC ASSEMBLER  PAGE    5 
 
  156  0218 D7 21             STA B  $21       STORE DEC PT POSITION IND 
  157  021A 08        DIGLOP  INX 
  158  021B A6 00             LDA A  0,X 
  159  021D BD E1 D1          JSR    OUTEEE    OUTPUT ASCII NUMBER 
  160  0220 9C 20             CPX    $20       TIME FOR DEC PT 
  161  0222 26 05             BNE    ENDCH1 
  162  0224 86 2E             LDA A  #$2E 
  163  0226 BD E1 D1          JSR    OUTEEE 
  164  0229 8C 00 2B  ENDCH1  CPX    #$2B      CHECK FOR LAST DIGIT 
  165  022C 26 EC             BNE    DIGLOP    GET NEXT DIGIT 
  166  022E CE 02 A8          LDX    #CRLF 
  167  0231 BD E0 7E          JSR    PDATA1    PRINT CR/LF 
  168  0234 FE A0 02          LDX    PARADR 
  169  0237 7E 01 23          JMP    COMAND 
  170  023A 96 22     SCINOT  LDA A  $22       SCIENTIFIC NOTATION 
  171  023C 84 08             AND A  #$08      LOOK FOR NEGATIVE MANTISSA 
  172  023E 26 04             BNE    NEGPNT 
  173  0240 86 20             LDA A  #$20      SPACE IF NOT 
  174  0242 20 02             BRA    PRINT2 
  175  0244 86 2D     NEGPNT  LDA A  #$2D 
  176  0246 BD E1 D1  PRINT2  JSR    OUTEEE    PRINT SIGN 
  177  0249 CE 00 23          LDX    #$23 
  178  024C 08        NUMLOP  INX 
  179  024D A6 00             LDA A  0,X 
  180  024F BD E1 D1          JSR    OUTEEE 
  181  0252 8C 00 24          CPX    #$24      LOOK FOR DEC PT DIGIT 
  182  0255 26 05             BNE    SKIPDP 
  183  0257 86 2E             LDA A  #$2E 
  184  0259 BD E1 D1          JSR    OUTEEE    PRINT DEC PT 
  185  025C 8C 00 2B  SKIPDP  CPX    #$2B      CHECK FOR LAST DIGIT 
  186  025F 26 EB             BNE    NUMLOP 
  187  0261 86 45             LDA A  #$45 
  188  0263 BD E1 D1          JSR    OUTEEE    PRINT AN E 
  189  0266 96 22             LDA A  $22       LOAD SIGN BYTE 
  190  0268 84 01             AND A  #$01 
  191  026A 27 05             BEQ    SKPSGN 
  192  026C 86 2D             LDA A  #$2D 
  193  026E BD E1 D1          JSR    OUTEEE    PRINT A - 
  194  0271 96 20     SKPSGN  LDA A  $20 
  195  0273 BD E1 D1          JSR    OUTEEE    PRINT EXPONENT MSD 
  196  0276 96 21             LDA A  $21 
  197  0278 BD E1 D1          JSR    OUTEEE    PRINT EXPONENT LSD 
  198  027B CE 02 A8          LDX    #CRLF 
  199  027E BD E0 7E          JSR    PDATA1    PRINT CR/LF 
  200  0281 FE A0 02          LDX    PARADR 
  201  0284 7E 01 23          JMP    COMAND 
  202  0287 0D        CLRSCN  FCB    $0D,$0A,$10,$16,$00 
       0288 0A 10      
       028A 16 00      
  203  028C 53                FCC    /SWTPC 6800 CALC-1 CALCULATOR/ 
       028D 57 54      
       028F 50 43      
       0291 20 36      
       0293 38 30      
 



 

 17

CALC-1                                        TSC ASSEMBLER  PAGE    6 
 
       0295 30 20      
       0297 43 41      
       0299 4C 43      
       029B 2D 31      
       029D 20 43      
       029F 41 4C      
       02A1 43 55      
       02A3 4C 41      
       02A5 54 4F      
       02A7 52         
  204  02A8 0D        CRLF    FCB    $0D,$0A,$00,$00,$00,$04 
       02A9 0A 00      
       02AB 00 00      
       02AD 04         
  205  02AE 00        FORMAT  FCB    $00 
  206  02AF 00        SMDC    FCB    $00 
  207  02B0 0D        ERRMSG  FCB    $0D,$0A,$00,$00 
       02B1 0A 00      
       02B3 00         
  208  02B4 45                FCC    /ERROR/ 
       02B5 52 52      
       02B7 4F 52      
  209  02B9 04                FCB    $04 
  210  E07E           PDATA1  EQU    $E07E 
  211  A002           PARADR  EQU    $A002 
  212  E1AC           INEEE   EQU    $E1AC 
  213  E1D1           OUTEEE  EQU    $E1D1 
  214  A002                   ORG    $A002 
  215  A002 80 0C             FDB    $800C 
  216                         END    START 
        
NO ERROR(S) DETECTED 
 
 
CALC-1                                        TSC ASSEMBLER  PAGE    7 
 
 
 
   SYMBOL TABLE: 
 
CHRCHK 014C   CLRSCN 0287   COMAND 0123   CONFLG 01C9   CONT1  01F0    
CONT50 0158   CRLF   02A8   DIGLOP 021A   DPIND  020D   ENDCH1 0229    
ERRMSG 02B0   FLOPNT 01FB   FORMAT 02AE   INEEE  E1AC   INITAL 0110    
LODADR 018C   LOOP1  0183   MINPNT 0208   NEGPNT 0244   NUMLOP 024C    
OUTANS 0193   OUTCHR 01D0   OUTDIG 01B5   OUTEEE E1D1   OUTINS 0135    
PARADR A002   PDATA1 E07E   POINT  012B   POINT2 01C5   PRINT1 020A    
PRINT2 0246   SCINOT 023A   SETMEM 017B   SKIP25 0165   SKIP75 0153    
SKIPDP 025C   SKPSGN 0271   SMDC   02AF   START  0100   WAIT10 0141    
WAIT3  01AB   WAIT30 01A1   WAIT70 01D2   WAIT71 01E0   ZERMEM 0174    



 

 18

Table I 
MM57109 Instruction Description Table (* Indicates 2-word instruction) 

 
CLASS SUBCLASS MNEMONIC OCTAL  

OP CODE 
FULL NAME DESCRIPTION 

Digit Entry  0 00 0 Mantissa or exponent digits. On first digit (d) the following 
occurs: 

  1 01 1 Z → T 
  2 02 2 Y → Z 
  3 03 3 X → Y 
  4 04 4 d → X 
  5 05 5 See description of number entry on page 11 
  6 06 6  
  7 07 7  
  8 10 8  
  9 11 9  
  DP 12 Decimal Point Digits that follow will be mantissa fraction. 
  EE 13 Enter Exponent Digits that follow will be exponent. 
  CS 14 Change Sign Change sign of exponent or mantissa. 

Xm = X mantissa 
Xe = X exponent 
CS causes -Xm → Xm or �Xe → Xe 
depending on whether or not an EE instruction was 
executed after last number entry initiation. 

  PI 15 Constant ∏ 3.1415927 → X, stack not pushed. 
  EN 41 Enter Terminates digit entry and pushes the stack. The 

argument entered will be in X and Y. 
Z → T 
Y → Z 
X → Y 

  NOP 77 No 0peration Do nothing instruction that will terminate digit entry. 
  HALT 17 Halt External hardware detects HALT op code and generates 

HOLD = 1. Processor waits for HOLD = 0 before 
continuing. HALT acts as a NOP and may be inserted 
between digit entry instructions since it does not terminate 
digit entry.  

Move  ROLL 43 Roll Roll Stack, 

 
  POP 56 Pop Pop Stack. 

Y → X 
Z → Y 
T → Z 
O → T 

  XEY 60 X exchange Y Exchange X and Y. 
X ↔ Y 

  XEM 33 X exchange M Exchange X with memory. 
X ↔ M 

  MS 34 Memory Store Store X in Memory. 
X → M 

  MR 35 Memory Recall Recall Memory into X. 
M → X 

  LSH 36 Left Shift Xm X mantissa is left shifted while leaving decimal point in 
same position. Former most significant digit is saved in 
link digit. Least significant digit is zero. 

  RSH 37 Right Shift Xm X mantissa is right shifted while leaving decimal point in 
same position. Link digit, which is normally zero except 
after a left shift, is shifted into the most significant digit. 
Least significant digit is lost. 

 



 

 19

Table I 
MM57109 Instruction Description Table (Continued)(* Indicates 2-word instruction) 

 
CLASS SUBCLASS MNEMONIC OCTAL  

OP CODE 
FULL NAME DESCRIPTION 

Branch Count IBNZ 31 Increment 
memory and 
branch if M ≠ 0 

M + 1 → M. If M = 0, skip second instruction word. 
Otherwise, branch to address specified by second 
instruction word. 

  DBNZ 32 Decrement 
memory and 
branch if M ≠ 0 

M - 1 → M. If M = 0, skip second instruction word. 
Otherwise, branch to address specified by second 
instruction word. 

I/0 Multi-digit IN* 27 Multidigit  
input to X 

The processor supplies a 4-bit digit address (DA4-DA1) 
accompanied by a digit address strobe (DAS) for each 
digit to be input. The high order address for the number 
to be input would typically come from the second 
instruction word. The digit is input on D4-D1, using ISEL 
= 0 to select digit data instead of instructions. The 
number of digits to be input notation or floating point) 
and the mantissa digit count (See Data Formats and 
Instruction Timing). Data to be input s stored in X and 
the stack is pushed (X → Y → Z → T). At the conclusion 
of the input, DA4-DA1 = 0. 

  OUT* 26 Multidigit  
output from X 

Addressing and number of digits is identical to IN 
instruction. Each time a new digit address is supplied, 
the processor places the digit to the output on D04-D01 
and pulses the R/W line active low. At the conclusion of 
output, D04-D01=0  and DA4-DA1=0. 

I/0 Single-
digit 

AIN 16 Asynchronous 
Input 

A single digit is read into the processor on D4-D1. ISEL 
= 0 is used by external hardware to select the digit 
instead of instruction. It will not read the digit until ADR = 
0 (ISEL = 0 selects ADR instead of I5), indicating data 
valid F2 is pulsed active low to acknowledge data just 
read. 

I/0 Flags SF1 47 Set Flag 1 Set F1 high, i.e. F1 = 1. 
  PF1 50 Pulse Flag 1 F1 is pulsed active high. If F1 is already high, this 

results in it being set low. 
  SF2 51 Set Flag 2 Set F2 high, i.e. F2 = 1. 
  PF2 52 Pulse Flag 2 F2 is pulsed active high. If F2 is ahead y high, this 

results in it being set low. 
  PRW1 75 Pulse R/W 1 Generates R/W active low pulse which may be used as 

a strobe or to clock extra instruction bits into a flip-flop or 
register. 

  PRW2 76 Pulse R/W 2 Identical to PRW1 instruction. Advantage may be taken 
of the fact that the last 2 hits of the PRW1 op code are 
10 and the last 2 bits of the PRW2 op code are 01. 
Either of these bits can be clocked into a flip-flop using 
the R/W pulse. 

Mode 
Control 

 TOGM 42 Toggle Mode Change mode from floating point to scientific notation or 
vice-versa, depending on present mode. The mode 
affects only the IN and OUT instructions. Internal 
calculations are always in 8-digit scientific notation. 

  SMDC* 30 Set Mantissa 
Digit Count 

Mantissa digit count is set to the contents of the second 
instruction word (=1 to 8). 

  INV 40 Inverse Mode Set inverse mode for trig or memory function instruction 
that will immediately follow, Inverse mode is for next 
instruction only. 

 



 

 20

Table I 
MM57109 Instruction Description Table (Continued) (* Indicates 2-word instruction) 

CLASS SUBCLASS MNEMONIC OCTAL  
OP CODE 

FULL NAME DESCRIPTION 

Math F(X,Y) + 71 Plus Add X to Y. X + Y → X On +, -, x, /, and YX instructions 
stack is popped as follows 
Z → Y 
T → Z 
O → T 
Former X, Y are lost. 

  - 72 Minus Subtract X from Y. Y - X → X I 
  x 73 Times Multiply X times Y. Y x X → X 
  / 74 Divide Divide X into Y. Y / X → X 
  YX 70 Y to X Raise Y to X power YX → X 
 F(X,M) INV+* 40, 71 Memory Plus Add X to memory M + X → M 

On INV +, -, x, and / instructions, X, Y, Z and T are 
unchanged. 

  INV-* 40, 72 Memory Minus Subtract X from memory. M - X → M 
  INVx* 40, 73 Memory Times Multiply X times memory. M x X → M 
  INV/* 40, 74 Memory Divide Divide X into memory. M / X → M  
 F(X) Math 1/X 67 One Divided by X 1 / X → X. On all F(X) math Instructions Y, Z, T and M 

are unchanged and previous X is lost. 
  SORT 64 Square Root √X → X 
  SQ 63 Square X2 → X 
  10X 62 Ten to X 10X → X 
  EX 61 E to X eX → X 
  LN 65 Natural log of X ln X → X 
  LOG 66 Base 10 log of X log X → X 
 F(X) Trig SIN 44 Sine X SIN(X) → X On all F(X) trig functions Y, Z, T and M are 

unchanged and the previous X is lost 
  COS 45 Cosine X COS(X) → X 
  TAN 46 Tangent X TAN(X) → X 
  INV SIN * 40, 44 Inverse sine X SIN-1(X) → X 
  INV COS* 40,4 5 Inverse cosine X COS-1(X) → X 
  INV TAN* 40,46 Inverse tan X TAN-1(X) → X 
  DTR 55 Degrees to 

radians 
Convert X from degrees to radians. 

  RTD 54 Radians to 
degrees 

Convert X from radians to degrees. 

Clear  MCLR 5 7 Master Clear Clear all internal registers and memory, initialize I/O 
control signals, MDC = 8, MODE floating point. (See 
initialization.) 

  ECLR 53 Error flag clear 0 → Error flag 
Branch Test JMP* 25 Jump Unconditional branch to address specified by second 

instruction word. On all branch instructions, second word 
contains branch address to be loaded into external PC 

  TJC* 20 Test jump 
condition 

Branch to address specified by second instruction word if 
JC (16) Is true(=1). Otherwise, skip over second word 

  TERR* 24 Test error Branch to address specified by second instruction word if 
error flag is true (=1) Otherwise, skip over second word 
May be used for detecting specific errors as opposed to 
using the automatic error recovery scheme dealt with in 
the section on Error Control 

  TX=0* 21 Test X = 0 Branch to address specified by second instruction word if 
X = 0. Otherwise, skip over second word. 

  TXF* 23 Test |X| < 1 Branch to address specified by second instruction word if 
|X| < 1. Otherwise, skip over second word. (i.e. branch if 
X is a traction.) 

  TXLTO* 22 Test X < 0 Branch to address specified by second instruction word if 
X < 0. Otherwise, skip over second word. 



 

 21

Table II 
 

MM57109 Instruction Summary Table (* = 2-word instruction) 

I4 -I1 I6I5 

 0 1 2 3 
0 0 TJC* IN V XEY 
1 1 TX=O* EN EX 
2 2 TXLTO* TOG M 10X 
3 3 TXF* ROLL SQ 
4 4 TERR* SIN(SIN-1) SORT 
S 5 JMP COS(COS-1) LN 
6 6 OUT* TAN(TAN-1) LOG 
7 7 IN* SF1 1,X 
8 8 SMDC* PF1 YX 
9 9 IBNZ* SF2 +(M+) 
A DP DBNZ* PF2 -(M-) 
B EE XEM ECLR x(Mx) 
C CS MS RTD /(M/) 
D PI MR DTR PRW1 
E AIN LSH POP PRW2 
F HALT RSH MCLR NOP 

 



 

 22

 

Table III - CALC-1 Instruction to ASCII Character Lookup Table 

 
FULL NAME HEX OP CODE MNEMONIC ASCII CHARACTER 
    
0 00 00 0 
1 01 01 1 
2 02 02 2 
3 03 03 3 
4 04 04 4 
5 05 05 5 
6 06 06 6 
7 07 07 7 
8 08 08 8 
9 09 09 9 
Decimal Point OA DP  
Enter Exponent OB EE E 
Change Sign OC CS Z 
Constant PI OD PI P 
Asynchronous Input OE AIN  
Halt OF HALT  
    
Test Jump 10 TJC  
Test X=0 11 TX=0  
Test X<0 12 TXLTO  
Test 1 X 1<1 13 TXF  
Test Error 14 TERR  
Jump 15 JMP  
Multidigit Out 16 OUT  
Multidigit In 17 IN  
Set Mantissa Digit Count 18 SMDC M 
Inc & Branch if M≠0 19 IBNZ  
Dec & Branch if M=0 lA DBNZ  
X Exchange M 1B XEM A 
Memory Store 1C MS G 
Memory Recall 1D MR H 
Left shift Xm lE LSH  
Right shift Xm 1F RSH  
    
Inverse Mode 20 INV I 
Enter 21 EN  
Toggle Mode 22 TOGM  
Roll Stack 23 ROLL 0 
Sine X 24 SIN S 
Cosine X 25 COS C 
Tangent X 26 TAN T 
Set Flag 1 27 SF1  
Pulse Flag 1 28 PF1  
Set Flag 2 29 SF2  
Pulse Flag 2 2A PF2  
Error Clear 2B ECLR Y 
Radians to Degrees 2C RTD F 
Degrees to Radians 2D DTR D 
Pop 2E POP  
Master Clear 2F MCLR Cntrl X 

 



 

 23

Table III - CALC-1 Instruction to ASCII Character Lookup Table 

NAME HEX OP CODE MNEMONIC ASCII CHARACTER 
    
X exchange Y 30 XEY X 
E to X 31 EX W 
Ten to X 32 1QX U 
Square 33 SQ Q 
Square Root 34 SQRT V 
Natural Log of X 35 IN N 
Base 10 Log of X 36 LOG B 
One divided by X 37 1/X R 
Y to X 38 YX n 
Plus 39 + + 
Minus 3A - - 
Times 3B k  
Divide 3C / / 
Pulse R/W 1 3D PRW1  
Pulse R/W 2 3E PRW2  
No Operation 3F NOP  
 



 

 24

Table IV - Floating Point Mode OUT data storage 

Memory Location DP POS D7 D6 D5 D4 D3 D2 D1 D0 
20  0 0 0 0 0 0 0 0 
21  0 0 1 0 0 0 0 0 
22  0 0 1 1 Sm 0 0 0 
23  0 0 1 1 Dp  POS 
24 OB 0 0 1 1 BCD digit(left most) 
25 OA 0 0 1 1 BCD digit 
26 09 0 0 1 1 BCD digit 
27 08 0 0 1 1 BCD digit 
28 07 0 0 1 1 BCD digit 
29 06 0 0 1 1 BCD digit 
2A 05 0 0 1 1 BCD digit 
2B 04 0 0 1 1 BCD digit(right most) 

 

Table IQ - Scientific Mode OUT data storage 

Memory Location D7  D6 D5 D4 D3 D2  D1 D0 
20 0 0 1 1 Most significant exp. digit 
21 0 0 1 1 Least significant exp. digit 
22 0 0 1 1 Sm 0 0 Se 
23 NOT USED 
24 0 0 1 1 BCD digit (left most) 
25 0 0 1 1 BCD digit 
26 0 0 1 1 BCD digit 
27 0 0 1 1 BCD digit 
28 0 0 1 1 BCD digit 
29 0 0 1 1 BCD digit 
2A 0 0 1 1 BCD digit 
2B 0 00 1 1 BCD digit (left most) 

 
Notes: 

1) If the Mantissa significant Digit Count (set by SMDC instruction, initially 
8) is less than 8, the unused digit memory locations will be filled with 
ASCII spaces (2016) 

2) Sm is the sign of the mantissa. 0 = positive 1 = negative 

3)  Se is the sign of the exponent 0 = positive 1 = negative 

4) DP POS is the decimal point position. The decimal point should follow the, 
digit whose address is stored in memory location 24 when in the Scientific 
mode. In the Floating Point mode AND the data in memory location 23 with 0F 
and subtract the result from 2F and OR this with 20. The decimal point should 
follow the digit whose address is given by the result. 



 

 25

Table V - ASCII to CALCULATOR INSTRUCTION LOOKUP TABLE 

LSB MSB 0 1 2 3 4 5 6 7 
0  0F 0F 21 00 0F 0D 0F  0D 
1  0F 0F 0F 01 1B 33 0F 33 
2  0F 0F 0F 02 36 37 36 37 
3  0F 0F 0F 03 25 24 25 24 
4  0F 0F 0F 04 2D 26 2D 26 
5  0F 0F 0F 05 0B 32 0B 32 
6  0F 0F 0F 06 2C 34 2C 34 
7  0F 0F 0F 07 1C 31 1C 31 
8  0F 0F 0F 08 1D 30 1D 30 
9  0F 0F 0F 09 20 2B 20 2B 
A  0F 0F 3B 0F 0F 0C 0F 0C 
B  0F 0F 39 0F 0F 0F 0F 0F 
C  0F 0F 0F 0F 0F 0F 0F 0F 
D  2F 0F 3A 0F 18 0F 18 0F 
E  0F 0F 0F 22 35 38 35 0F 
F  0F 0F 3C 0F 23 0F 23  0F 

 

Example: An ASCII P is a hex 50 which points in the table to a OD which is  
   the constant PI instruction for the calculator chip 



 

 26

TABLE VI- ERROR CONDITIONS 

The ERROR flag on the calculator chip is set when: 

1) LN X when X < 0 LOG X when X < 0 

2) Any result < 10-99 Any result > 1099 

3) TAN 900 , 2700, 4500 , etc. 

4) SIN X, COS X, TAN X when |X| > 90000 

5) SIN-1 X, COS-1 X when |X| > 1 |X| < 10-50 

6) SQRT X when X < 0 

7) dividing by 0 

8) Outputting a number in floating point mode if the number of mantissa digits to 
the left of the decimal point is greater than the mantissa digit count. 



 

 27

Figure I 

 
 


