Assenbly Instructions MP-N Cal cul ator Interface Kit

The Sout hwest Techni cal Products MP-N Cal cul ator Interface interfaces the
SWIPC 6800 Conputer Systemthru a Peripheral Interface Adapter (PIA) to the
Nat i onal Sem conductor MV67109 Nunmber Oriented Processor. This "processor" is a
Reverse Polish Notation (RPN) cal culator chip without the internal keypad
interfacing circuitry which has nmade interfacing to calculator chips so difficult
in the past. This chip allows data and instruction entry in conventional binary
formand speeds entry with the elimnation of the debounce circuitry built into
conventional calculator chips. It is called a processor because it has instructions
and control lines which allowit to operate in conjunction with ROM and RAM as a
stand al one nunerical processor. It nmay however be operated as a conputer
peri pheral for nurmerical calculation and this is the configuration in which the
chi p has been inpl enent ed.

Al interfacing fromthe 6800 Conputer Systemto the calculator chip has been
done thru a 6820 PIA. Both the PIA and calculator chip reside on a 3 ¥ X 5 ¥
doubl e sided, plated thru hole circuit board plugged onto one of tie seven
avai l abl e interface card positions on the nother board of the 6800 Conputer. Al
data and instructions fed to and all results received fromthe calculator chip are
handl ed by your own assenbl er or machi ne | anguage program The cal cul ator features
reverse Polish notation, floating point or scientific notation, up to an eight
digit mantissa and two digit exponent, trig functions, base 10 and natura
| ogarithns, and overfl ow i ndicator.

PC Board Assenbly

NOTE: Since ail of the holes on the PC board have been plated thru, it is
only necessary to solder the conponents fromthe bottom side of the board. The
pl ating provides the electrical connection fromthe "BOTTOM to the "TOP" foil of
each hole. Unless otherwise noted it is inportant that none of the connections be
sol dered until all of the conponents of each group have been installed on the
board. This makes it much easier to interchange conponents if a mstake is nade
during assenbly. Be sure to use a |low wattage iron (not a gun) with a small tip. Do
not use acid core solder or any type of paste flux. W will not guarantee or repair
any kit on which either product has been used. Use only the solder supplied with
the kit or a 60/40 alloy resin core equivalent. Renenmber all of the connections are
sol dered on the bottom side of the board only. The plated-thru holes provide the
el ectrical connection to the top foil

() Before installing any parts on the circuit board, check both sides of the

board over carefully for incomplete etching and foil "bridges" or "breaks".
It is unlikely that you will find any, but should there be one, especially on
the "TOP" side of the board, it will be very hard to |ocate and correct after

all of the conponents have been installed on the board.

() Starting fromone end of the circuit board install each of the three, 10 pin
Mol ex femal e edge connectors along the | ower edge of board. These connectors
nust be inserted fromthe "TOP" side of the board and nust be pressed down
firmMy against the circuit board, so that each pin extends conpletely into
the holes on the circuit board. Not being careful here will cause the board
to either wobble and/or be crooked when plugging it onto the nother board. It

Scanned and edited by M chael Holley Jan 20, 2001 Revi sed May 18, 2003
Sout hwest Techni cal Products Corporation Docunent Crca 1977

i s suggested that you solder only the two end pins of each of the three
connectors until all have been installed at which tinme if everything | ooks
straight and rigid you should solder the as yet unsol dered pins.

() Insert the small nylon indexing plug into the | ower edge connector pin
i ndicated by the snmall triangular arrow on the "BOTTOM' side of the circuit
board. This prevents the board from bei ng acci dentally plugged on
i ncorrectly.

() Attach all of the resistors to the board. As with all other conmponents unless
noted, use the parts list and conponent |ayout drawing to | ocate each part
and install fromthe "TOP" side of the board bending the | eads al ong the
"BOTTOM' side of the board and trimmng so that 1/16" to 1/8" of wre
remai ns. Sol der.

() Install the capacitors on the circuit board. Be sure to orient electrolytic
capacitor C4 so its polarity matches with that shown on the conponent | ayout
draw ng. Sol der.

() Install the transistor and di ode. These conponents nust be oriented to match
t he conponent | ayout draw ng. Sol der.

() Install integrated circuit 1C2 on the circuit board. This conponent nust be
oriented so its netal face is facing the circuit board and is secured to the
circuit board with a #4 - 40 X 1/4" screw, |ockwasher and nut. A heatsink is
not used. The three |leads of the integrated circuit nust be bent down into
each of their respective holds. Sol der

NOTE: MOS integrated circuits are susceptible to damage by static electricity.

Al t hough sone degree of protection is provided internally within the integrated
circuits, their cost demands the utnost in care. Before opening and/or installing
any MOS integrated circuits you should ground your body and all netallic tools
conmng into contact with the leads, thru a 1 Mohm1/4 watt resistor (supplied with
the kit). The ground rmust be an "earth" ground such as a water pipe, and not the
circuit board ground. As for the connection to your body, attach a clip lead to
your watch or nmetal |D bracelet. Make absolutely sure you have the 1 Meg ohm

resi stor connected between you and the "earth" ground, otherw se you will be
creating a dangerous shock hazard. Avoid touching the | eads of the integrated
circuits any nore than necessary when installing them even if you are grounded. On
those MOS I C s being soldered in place, the tip of the soldering iron should be
grounded as wel | (separately from your body ground) either with or without a 1 Meg
ohmresistor. Mst soldering irons having a three prong line cord plug al ready have
a grounded tip. Static electricity should be an inportant consideration in cold,
dry environments. It is less of a problemwhen it is warmand hum d

() Install MXS integrated circuits ICL, I1C3, I1C4 and IC5 follow ng the
precautions given in the preceding section. As they are installed, make sure
they are down firmy against the board before soldering all of their |eads.
Do not bend the | eads on the back side of the board. Doing so nakes it very
difficult to renove the integrated circuit should replacenment ever be
necessary. The "dot" or "notch" on the end of the package is used for
orientation purposes and nust match with that shown on the conponent | ayout
drawing for the I C Sol der

() Working fromthe "TOP" side of the circuit board, fill in all of the
feedthru's with nolten solder. The feed-thru's are those unused holes on the
board whose internal plating connects the "TOP" and "BOTTOM' circuit
connections Filling these feed-thru's with nolten sol der guarantees the
integrity of the connections and increases the current handling capability.

() Nowthat all of the conponents have been installed on the board, double check
to make sure all have been installed correctly in their proper |ocation

() Check very carefully to make sure that all connections have been sol dered. It
is very easy to mss sone connections when sol dering which can really cause
sone hard to find problens |ater during checkout. Al so | ook for solder
"bridges" and "cold" solder joints which are another conmon probl em

Since the MP-N circuit board now contains MOS devices, it is susceptible to
damage from severe static electrical sources. One should avoid handling the board
any nore than necessary and when you must, avoid touching or allow ng anything to
cone into contact with any of the conductors on the board.

Using the Cal culator Interface

Table | gives a conplete Iist and description of the calculator chip's
instruction set. Renenmber that some of the instructions are for stand al one
processi ng systens and are not used on this interface. Al nunerical entry is in
Reverse Polish Notation (RPN) and anyone famliar with Hew ett Packard cal cul ators
shoul d have no problemw th the data entry sequence. For those not famliar with
RPN, the follow ng should be hel pful

To add 7 + 8, enter the follow ng

7 enter 8 + (4 entries)

The answer is now stored in the X accunmul ator within the cal culator chip
The QUT instruction may be used to output the answer

To find the inverse sine of 0.5, enter the foll ow ng:

0.5 INV SIN(5 entries)

The answer is now stored in the X accunul ator within the cal cul ator chip.
The QUT instruction may be used to output the answer.

In order to sinmplify the interfaci ng between your program and the cal cul ator
interface, you will probably want to i ncorporate the follow ng subroutines into
your program

I NI TAL SUBROUTI NE

The INITAL or initialize subroutine configures the PIA interfacing to the
cal cul ator chip. This subroutine need only be used once; and is best placed
somewhere at the begi nning of your program, It is responsible for initializing the
data direction registers and control registers of the PIA. The subroutine requires
that the index register be |oaded with the "lowest" address of the PIA interfacing
to the calculator chip prior to execution.

This "l owest" address depends upon which interface port position the MP-N
calcul ator card is plugged. The table bel ow gives the "l owest" address of each
interface card position.

PORTO 8000

PORT1 8004
PORT2 8008
PORT3 800C
PORT4 8010
PORTS 8014
PORT6 8018
PORT7 801C

86 7F NI TAL LDA A #$7F INNT A SIDE OF PIA

A7 00 STAA 0,X

86 36 LDA A #$36 H GH HOLD- POS READY

A7 01 STAA 1,X

86 00 LDA A #$00 INNT B SIDE OF PI A

A7 02 STAA 2,X

86 34 LDA A #$34 NEG R/ W

A7 03 STAA 3, X

A6 02 LDA A 2,X CLEAR R/ W FLAG

39 RTS

QUTI NS SUBROUTI NE

The QUTINS or out instruction subroutine is used to get program data and
instructions into the calculator. To send a digit or instruction to the cal cul ator
chip, use Table Il to find the OP code of the instruction you wish to send. Load
this OP code into the A accumul ator and junp or branch to the QUTINS subroutine. If
you have a string of data you wish to send, just recycle thru this subroutine as
many tinmes as necessary. The subroutine takes care of all of the READY and HOLD
signals to the calculator chip so there is no worry of sending data faster than the
cal cul ator chip can accept it. The subroutine destroys the contents of the B
accunul at or during execution while the contents of the A accumul ator and i ndex
regi ster are not destroyed.

E6 01 QUTINS LDA B 1,X VWAI T FOR READY

2A FC BPL QUTI NS

A7 00 STA A 0,X FORWARD | NSTRUCTI ON TO CALC
E6 00 LDA B 0,X CLEAR FLAG BI'T

C6 3C LDA B #$3C LOW HOLD- NEG READY

E7 01 STAB 1,X BRI NG HOLD LI NE LOW
E6 01 WAITI0 LDAB 1,X

2A FC BPL WAI T10 LOCP FOR READY LOW
E6 00 LDA B 0,X CLEAR FLAG BI'T

C6 36 LDA B #$36 H GH HOLD- POS READY
E7 01 STAB 1,X RETURN HOLD LI NE HI GH
39 RTS

SETMEM SUBROUTI NE

The SETMEM or set nmenory subroutine initializes the menory | ocations to which
the calculator's output data will be stored. This subroutine nust be executed
i medi ately before OUTANS subroutine is used. Although it can be changed, nenory
| ocations 0020 thru 002B have been designated the tenporary storage | ocations for
the calculator’s. output data. The subroutine sets nenory |ocation 0020 to a 00
while locations 21 thru 2B are set to 20 (ASCI| spaces). This subroutine destroys
the contents of the index register and B accunul ator. The contents of the A
accunul ator are nor destroyed.

7F 00 20 SETMEM CLR $20 CLEAR $0020

CE 00 20 LDX #$20 BOTTOM OF BUFFER

C6 20 LDA B #$20

08 LOOP1 I NX

E7 00 STAB 0,X STORE A SPACE

8C 00 2B CPX #$2B CHEXC FOR TOP OF BUFFER
26 F8 BNE LOCP1

39 RTS

OQUTANS SUBROUTI NE

The QUTANS or output answer subroutine outputs the contents of the X register
within the calculator chip in BCD to nenory | ocations 0020 thru 002B. Since the
manti ssa digit count of the calculator is variable, the previous SETMEM subrouti ne
bl anks out any digit location not filled by the OQUTANS subroutine. It is very
i nportant that the SETMEM subrouti ne be used each tine before executing the OUTANS
subrouti ne. The OUTANS subroutine outputs data in two different fornmats dependi ng
upon whether the calculator chipis in the floating point or scientific node. The
calculator initially starts out in the floating point node where it will remain
until changed by the TOGM (224) instruction. This cal cul ator does not automatically
convert to scientific notation if the nunbers becone too big to handle in floating
poi nt as many do. An MCLR (2Fi) instruction will always reset the calculator chip
to the floating point node regardl ess of what node it was in originally. Since the
cal cul ator chip does not tell you what node it is in when it is outputting data,
your program nust know so you can process the data accordingly. Table IV shows the
format in which the data is stored. At the end of the OUTANS subroutine, the N bit
of the condition code register is set if an error has transpired since the |ast
execution of the OUTANS subroutine. You may use a BM instruction to catch and
branch to an error routine to note the error. You should then send an ECLR (2Bys)
instruction to the calculator chip to reset the calculator chip's error flag.
Disregarding the error flag on the calculator chip will cause no problens. The chip
will continue to function regardless of the state of the flag. The subroutine
requires that the index register be |oaded with the "l owest" address of the PIA
interfacing to the calculator chip prior to execution. Since the SETMEM subrouti ne
usual ly run prior to this destroys the contents of the index register, don't forget
to reload the index register before branching to the OUTANS subroutine. The OUTANS
subrouti ne destroys the contents of both the A and B accumul ators during execution
while the contents of the index register is not changed.

E6
2A
A6
86
A7

E7
E6
2A
E6
86
A7
E6
2B
E6
2B
20
A6
16
84
8A
54
54
54
54

F7
97
20
86
A7
A6
39

01
FC
00
16
00
3E
01
01
FC
00
OF
00
03
06
01
16
F6
02

OF
30

20
01
00
E2
36
01
00

QUTANS LDA
BPL
LDA
LDA
STA
LDA
STA
WAl T30 LDA
BPL
LDA
LDA
STA
WAl T3 LDA
BM
LDA
BM
BRA
QUTDI G LDA
TAB
AND

LSR
LSR
LSR
LSR

STA
PO NT2 STA
BRA
CONFLG LDA
STA
LDA
RTS

vy}

WwWww>>r>

W>>w

vy}

>r>» PO >

QuUTDI G
1, X
CONFLG
WAl T3
2, X

#$0F
#$30

#$20

PO NT2+1
$0

WAI T3
#$36

1, X

0, X

CLEAR FLAG BIT
SEND AN OQUT

LOW HOLD- PCS READY

BRI NG HOLD LI NE LOW
WAI T FOR SECOND READY
CLEAR FLAG BI T

SEND A NCP
LOCK FOR R/ W STROBE

TRANSFER CALC DATA | NTO MEMORY

LOCK FOR READY STROBE
PRI NT MEMORY CONTENTS

LOAD OQUT DATA I NTO A

ELI M NATE UPPER 4 BI TS
CONVERT TO ASCI | DATA

| NCREMENT ADDRESSES BY $20
STORE OUT DATA SEQUENTI ALLY
SELF MODI FI NG CODE

H GH HOLD- POS READY
BRI NG HOLD LI NE HI GH
CLEAR FLAG BI'T

Nunber Entry Rul es

When a digit, decimal point, or [Jis entered with an 0-9, DP, or P
instruction, the stack is first pushed and the X register cleared: Z -> T, Y -> Z
X->Y, 0->X This process is referred to as "initiation of nunber entry."
Following this, the digit and future digits are entered into the X manti ssa.
Subsequent entry of digits or DP, EE, or CS instructions do not cause initiation of
nunber entry. Digits following the eighth mantissa digit are ignored. This nunber
entry nmode is termnated by any instruction except 0-9, DP, EE, CS, PlI, or HALT.
Term nation of nunber entry means two things. First, the nunber is normalized by
adj usting the exponent and deci mal point position so that the decimal point is to
the right of the first mantissa digit. Second, the next digit, decimal point, or []
entered will cause initiation of nunber entry, as already described. There is one
exception to the nunber entry initiation rule. The stack is not pushed if the
instruction prior to the entered digit was an ENTER However, the X register is
still cleared and the entered digit put in X

The ENTER key itself term nates nunmber entry and pushes the stack. The OUT
instruction term nates nunber entry and prepares the stack for pushing upon the
next entry of data. This nmeans that if you use the ENTER and OUT instructions
consecutively, the stack gets pushed twi ce which is not what you want. |If you w sh
to ENTER data and imredi ately OQUT the result, use only the QUT instruction. The OQUT
perforns the entry. If you do not wish to OUT the ENTER ed data, just use the ENTER
instruction by itself.

The AIN and IN instructions should not be used for nunber entry. Provisions
have not been nade for their use on this interface.

How It Works

Peri pheral Interface Adapter (PIA) I1Cl interfaces the MVWb7109 cal cul at or
chip, 1C3, to the SWIPC 6800 buss. The first six bits of the A side of the PIA are
used to feed instructions to the calculator chip while the eighth is used as an
input to nonitor the ERROR output of the calculator. Control |ine CAl outputs HOLD
signals to, while control line CA2 inputs READY signals fromthe cal culator chip
The first four bits of the B side of the PIA are used to input BCD digit data while
the last four bits input digit addresses. The CBl line inputs READ WRI TE si gnal s
while the CB2 control line is not used. Hex inverter/buffer, IN, is used primarily
as the 320 to 400 kHz single phase oscillator required by the cal cul ator chip. One
section is used to invert the HOLD signal going to the calculator. Shift register
| C5 generates the POR signal required for proper startup and initialization. +5 VDC
power required by the board is supplied by voltage regulator 1C2 while -4 VDC
voltage is-supplied by transistor QL and its associated conponents. Figure | shows
a bl ock diagramfor the internal construction of the calculator chip

BRBAR

R6
R7
R8

R11
R12
R13
R14
R15
R16
R17

Parts List MP-N Cal cul ator Interface

Resi stors

47K ohm Y watt resistor
1K ohm Y4 watt resistor

10K ohm Y2 watt resistor
10K ohm Y2 watt resistor
10K ohm Yawatt resistor
10K ohm Yawatt resistor
10K ohm Y watt resistor
22K ohm Y4 watt resistor
22K ohm Y4 watt resistor
22K ohm Yawatt resistor
22K ohm Yawatt resistor
12K ohm Y2 watt resistor
27 ohm Yawatt resistor

3. 3K ohm Y2 watt resistor
10K ohm Y4 watt resistor
47K ohm Y watt resistor
10K ohm Y2 watt resistor

Capacitors

0.1 nfd capacitor
100 pfd capacitor
0.1 nfd capacitor
10 nfd@ 15 VDC el ectrol ytic

Di odes and Transistors

4.7 volt 400 mw zener di ode 1N5230 or
1N4148 silicon diode

1N4148 silicon diode

1N4148 silicon diode

1N4148 silicon di ode

1N4148 silicon di ode

1N4148 silicon diode

2N5087 transi stor

Integrated Circuits

6820 MOS peripheral interface adapter
7805 vol tage regul at or

MV67109 FAN MOS cal cul ator chip

4009 or 14009 MOS hex inverter

74C165 MOS shift register

1IN4732

1%

vly ely 1NO DaA ¥- - .
! © 1
sy
L1y 1y -
= ¥, la T
4 1z I—l—
8} =
T T PPA A L€
rva £9d g0l f— - -
eva WN 1 IR Rr1Y iy voul - - - o
[] [] Pt [} v 91 — |Igg
Fio) - ¢vda £z 1 L 58d 353y
1V [z=2— I I 13534 |- 138
3 } ¥od 0Z 1 v o1 v 1gl €8d
7 £00Q 1] 253 f———— #0/
z0a d lad €z
8L 1 P vZ
10a [5] 08 153 o
6 | 5l LL | _ 052 3
: VON 350 ONAS 5 1 1 &1 %80 24 _
8 i vl e | / WA = o] 10 TN o 7y
VoI o1 %2 arl T — I_ |
o) 101 MY f———a MY
1z
¢ —————a /.
¥OW [_ _ 3 %u_ Sl AR
— a a
VNV g 9l CH Ay) 2 ¢
vz 1] 7 821 *
[4%] N e 1 5] V4 ¥q T "a
#1 evd e R
71 [G afoe z
el by 7 31 ovd lafe 7 —*¢
|- b |
w_ Z 0 £ ivd e o2
- -] L
4 v) La 9a sa ¢ | A Tee | a
404 QIOH fade) 15y f——s 153
L AQv 3y § I¥D 05y e 053
sy [sifeifat|uforfo]r]e]s 297 el _ ol _ o son 9
HNED 8 V IS H 4 3 anND —m_ _8
3
1no G+ o8
Qv OT/LdIHS ol
L / 320712 21y aNo aNs
Z R
a oA 1o .._|
vils ot 1 1o & ol INN 8+
za £a va
= et ——f—

JIVAY3INI

d0LYINd1vJ N-dW

10

CALC-1 Program

In order to see how the cal culator chip is used and how to i ncorporate these
subroutines into a program the CALC-1 programlisting is given. CALC-1 allows the
operator to use the calculator chip just as you would a standard RPN desk
calculator with the sane features. Al conmunication to the chip is done thru the
termnal's keyboard with all results displayed on the termnal's display. Since the
term nal's keyboard just has standard ASCI| characters rather than the |abeling
found on cal cul ator keys; selected ASCI|I characters have been substituted for
normal cal culator function keys. It is the job of the CALC-1 programto accept al
data and instruction commands fromthe termnal's keyboard, send themto the
calculator chip and display all results on the termnal's display. The program
resides fromnenory | ocations 0020 thru 02C0 which is approximately 700 bytes of
code. Since nobst of the |lower 256 bytes are used for the ASCI| character | ookup
tabl e and some of the upper is used for termnal interfacing, you should be able to
i ncorporate the package into your program using somewhat |ess nenory than was used
here.

The program starts at line 5 by storing the ASCI| | ookup table from nenory
| ocati ons 0080 thru OOFF. This table covers the entire 128 character ASCI| set.
Whenever an ASCI| character is received fromthe keyboard it is OR ed with 80, and
the resulting address contains the sel ected command or instruction for the
calculator chip. Line 21 ORG s the programat nenory |ocation 0100 where the
termnal's screen is cleared and titled. Line 25 | oads the index regi ster extended
with the contents of nenory |ocations A002 and A00O3 with 800C, the starting address
of Port 3. If you wish to plug the cal culator board onto an |I/0 port other than
PORT 3. Use the table belowto find the address to be | oaded into nmenory | ocations
A002 and AO03 prior to executing the program

PORTO 8000
PORT1 8004(Serial control interface only)
PORT2 8008
PORT3 8000
PORT4 8010
PORT5 8014
PORT6 8018
PORT7 801C

Lines 28 thru 37 contain the I NI TAL subroutine described in detail earlier
lines 38 thru 41 accept entered keyboard comands, | ookup the sel ected cal cul at or
i nstructions and deposit the data or instruction in the A accunulator. Lines 46
thru 57 contain the OUTINS subroutine described in detail earlier. Lines 57 thru 76
check to see what instruction or data has been entered so the result may be out put
if appropriate. Line 73 | ooks for the TOGMinstruction so the program knows which
di spl ay node to use when outputting data. Lines 79 thru 86 contain the SETMEM
subroutine described in detail earlier. Since the SETMEM subroutine destroys the
contents of the index register, line 87 reloads it before proceeding to the OUTANS
subroutine contained in lines 90 thru 122. Line 123 checks to see of the ERROR fl ag
was set during the | ast output sequence. |If so, programcontrol is transferred to
lines 124 thru 137 where an error nessage is output and the error flag cleared by
sending an ECLR instruction to the calculator chip. Line 140 tests to see if the
calculator is in the floating point or scientific nmode. If floating point, contro
is transferred to lines 142 thru 169. |If scientific, control is transferred to
lines 170 thru 201. In both nodes the data is output to the display in the selected
node and program control is transferred back to |line 38 where new comrands or data
may be entered

The original listing had line numbers that incremented by 10. Line 28 in this listing was line 280 in the original. The were two
lines that did not increment by 10 (412 and 414) in the original. In the listing the lines above 41 are off by 2, line 53 was line 510.

11

CALC-1

abhwWwNE

10

11

12

13

14

15

0080
0080
0081
0083
0085
0087
0088
0089
008B
008D
008F
0090
0091
0093
0095
0097
0098
0099
009B
009D
009F
00AO0
00A1
00A3
00A5
00A7
00A8
00A9
00AB
00AD
00AF
00BO
00B1
00B3
00B5
00B7
00B8
00B9
00BB
00BD
00BF
00C0
ooc1
00C3
00C5
00cCr
00C8
00C9
0ocB
00CD
00CF
00DO0
ooD1
00D3

OF
OF
OF
OF
OF
OF
OF
OF
21
OF
OF
OF
OF
OF
OF
2F
OF
OF
OF
OF
21
OF
OF
OF
OF
OF
OF
39
3A
3C
00
01
03
05
07
08
09
OF
OF
OF
OF
1B
25
0B
1C
1D
20
OF
18
23
0D
33
24

OF
OF
OF

OF
OF
OF

OF
OF
OF

OF
OF
OF

OF
OF
OF

3B
OF
0A

02
04
06

OF
OF
22

36
2D
2C

OF
OF
35

37
26

TSC ASSEMBLER PAGE
NAM CALC 1
*A DRI VER ROUTI NE FOR THE MP-N BOARD

oPT PAG

ORG $0080

FCB $0F, $0F, $OF, $OF, $0F, $0F, $0F, $0F
FCB $0F, $0F, $OF, $OF, $0F, $21, $0F, $0F
FCB $0F, $0F, $OF, $OF, $0F, $0F, $0F, $0F
FCB $2F, $0F, $0F, $0F, $0F, $0F, $0F, $0F
FCB $21, $0F, $0F, $0F, $0F, $0F, $0F, $0F
FCB $0F, $OF, $3B, $39, $0F, $3A, $0A, $3C
FCB $00, $01, $02, $03, $04, $05, $06, $07
FCB $08, $09, $0F, $0F, $0F, $0F, $22, $0F
FCB $0F, $1B, $36, $25, $2D, $0B, $2C, $1C
FCB $1D, $20, $0F, $0F, $0F, $18, $35, $23
FCB $0D, $33, $37, $24, $26, $32, $34, $31

12

1

CALC-1

16

17

18

19

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

00D5
00oD7
0oD8
00D9
00oDB
00DD
O0ODF
O0EO
OOE1
OO0E3
00E5
00EY
OOES8
00E9
OOEB
00ED
O0OEF
O00FO0
O00OF1
OO0F3
00F5
00F7
OOF8
00F9
OOFB
O00OFD
OOFF
0100
0100
0103
0106
0109
010C
010E
0110
0112
0114
0116
0118
011A
011C
011E
0120
0122
0123
0126
0128
012B
012D
012F
0131
0133
0135
0137

32
31
30
2B
OF
OF
OF
OF
OF
25
0B
1C
1D
20
OF
18
23
0D
33
24
32
31
30
2B
OF
OF
OF

8E

BD
FE
8D
20
86
A7
86
A7
86
A7
86
A7
A6
39
BD
8A
B7
96
81
27
8D
20
E6
2A

34

0C
OF
38

36
2D
2C

OF
OF
35

37
26
34

0C
OF
OF

A0
02
EO
A0
02
13
7F
00
36
01
00
02
34
03
02

El
80
01
00
21
43
02
17
01
FC

47
87
7E
02

AC COVAND

2C

START

I NI TAL

PO NT

QUTI NS

FCB

FCB

FCB

FCB

FCB

LDS
LDX
JSR
LDX
BSR
BRA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
RTS
JSR

STA
LDA

BEQ
BSR
BRA
LDA
BPL

>>>>>>>>>

>>> >

TSC ASSEMBLER PACE 2

$30, $2B, $0C, $0F, $0F, $0F, $38, $0F

$0F, $OF, $36, $25, $2D, $0B, $2C, $1C

$1D, $20, $0F, $0F, $0F, $18, $35, $23

$0D, $33, $37, $24, $26, $32, $34, $31

$30, $2B, $0C, $0F, $0F, $0F, $0F, $0F

$0100

#$A047 DECREMENT STACK
#CLRSCN

PDATAL CLEAR AND TI TLE TERM
PARADR

I NI TAL

COVAND

#STF INNT A SIDE OF PI A
0, X

#$36 H GH HOLD- POS READY
1, X

#$00 INNT B SIDE OF PI A
2, X

#$34 NEG R/ W

3, X

2, X CLEAR R/ W FLAG

| NEEE GET OPERATOR DATA
#%$80 PCSI TION TO TOP OF TABLE
PO NT+1

$00 SELF MODI FI NG CODE
#$21

ZERVEM

QUTI NS

CHRCHK

1, X WAI T FOR READY
QUTI NS

13

CALC-1

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

0139
013B
013D
013F
0141
0143
0145
0147
0149
014B
014C
014E
0150
0153
0156
0158
015A
015C
015E
0160
0163
0165
0167
0169
016B
016D
016F
0171
0174
0177
0179
017B
017E
0181
0183
0184
0186
0189
018B
018C
018F
0191
0193
0195
0197
0199
019B
019D
019F
01A1
01A3
01A5
01A7
01A9

A7
E6

E7
E6
2A
E6

E7
39
81
26
7F
7D
26
81
27
81
26
73
20
81
27
81
23
81
26
73
7F
8D
20
7F

08
E7
8C
26
39
FE
8D
20
E6
2A
A6
86
A7

E7
E6
2A
E6
86
A7

00
00
3C
01
01
FC
00
36
01

2F
03
02
02
1C
OF
074
18
05
02
BE
20
BA
0B
B6
22
03
02
02
02
11
00
00
20

00
00
F8

A0
02
3D
01
FC
00
16
00
3E
01
01
FC
00
OF
00

AE
AF

AF

AE
AF

20
20

2B

02

WAI T10

CHRCHK

SKI P75

CONTS0

SKI P25

ZERVEM

SETMEM

LOCP1

LODADR

OUTANS

WAI T30

STA
LDA
LDA
STA
LDA
BPL
LDA
LDA
STA
RTS

BNE
CLR
TST
BNE

BEQ
BNE
BRA
BEQ
BLS
BNE

CLR
BSR
BRA
CLR
LDX
LDA
I NX
STA
CPX
BNE
RTS
LDX
BSR
BRA
LDA
BPL
LDA
LDA
STA
LDA
STA
LDA
BPL
LDA
LDA
STA

0wWwww >

[selusev)

vy}

WWww>>>

>>w

0, X
0, X
#$3C
1, X
1, X
WAl T10
0, X
#$36
1, X

#$2F
SKI P75
FORVAT
SMDC
ZERVEM
#$0F
COVAND
#$18
SKI P25
SMDC
COVAND
#$20
COVAND
#$0B
COVAND
#$22
ZERVEM
FORVAT
SMDC
SETVEM
LCDADR
$20
#$20
#$20

0, X
#$2B
LOCP1

PARADR
OUTANS
QUTCHR
1, X
OUTANS
0, X
#$16
0, X
#$3E
1, X
1, X
WAl T30
0, X
#$0F
0, X

14

TSC ASSEMBLER PACE 3
FORWARD | NSTRUCTI ON TO CALC
CLEAR FLAG BIT
LOW HOLD- NEG READY
BRI NG HOLD LI NE LOW
LOOP FOR READY LOW
CLEAR FLAG BIT

H GH HOLD- POS READY
RETURN HOLD LI NE HI GH

CHECK FOR PREVI QUS SMDC | NSTR

GET MOR DATA | F NOP

GET MORE DATA | F SMDC
GET MORE DATA IF I NV

GET MORE DATA | F NUMBERS
LOOK FOR TOGM

ZERO SMDC

CLEAR $0020
BOTTOM OF BUFFER

STORE A SPACE
CHEXC FOR TOP OF BUFFER

CLEAR FLAG BI T
SEND AN OUT

LOW HOLD- PCS READY
BRI NG HOLD LI NE LOW
VWAI T FOR SECOND READY
CLEAR FLAG BI'T

SEND A NOP

CALC-1 TSC ASSEMBLER PACE 4

102 O01AB E6 03 WAl T3 LDA B 3, X LOOK FOR R/ W STROBE
103 O01AD 2B 06 BM auTbhl G TRANSFER CALC DATA | NTO MEMORY
104 O0O1AF E6 01 LDA B 1,X LOCK FOR READY STROBE
105 01B1 2B 16 BM CONFLG PRI NT MEMORY CONTENTS
106 01B3 20 F6 BRA WAI T3

107 01B5 A6 02 QUTDIG LDA A 2, X LOAD OQUT DATA I NTO A
108 01B7 16 TAB

109 01B8 84 OF AND A #$0F ELI M NATE UPPER 4 BI TS
110 O01BA 8A 30 ORA A #$30 CONVERT TO ASCI | DATA
111 01BC 54 LSR B

112 01BD 54 LSR B

113 O01BE 54 LSR B

114 O01BF 54 LSR B

115 01C0 CA 20 ORA B #$20 | NCREMENT ADDRESSES BY $20
116 01C2 F7 01 C6 STA B PO NT2+1 STORE OUT DATA SEQUENTI ALLY
117 01C5 97 00 PO NT2 STA A $0 SELF MODI FI NG CODE

118 01C7 20 E2 BRA WAI T3

119 01C9 86 36 CONFLG LDA A #$36 H GH HOLD- POS READY
120 01CB A7 01 STAA 1,X BRI NG HOLD LI NE HI GH
121 01CD A6 00 LDA A 0, X CLEAR FLAG BI T

122 01CF 39 RTS

123 01D0 2A 1E QUTCHR BPL CONT1 SKIP I F NO ERROR

124 01D2 E6 01 WAIT70 LDAB 1,X VWAI T FOR READY

125 01D4 2A FC BPL WAI T70

126 01D6 86 2B LDA A #$2B ERROR CLEAR | NSTRUCTI ON
127 01D8 A7 00 STAA 0,X

128 01DA E6 00 LDA B 0,X CLEAR FLAG BI'T

129 01DC C6 3C LDA B #$3C LOW HOLD- NEG READY

130 O01DE E7 01 STAB 1,X BRI NG HOLD LOW

131 O01EO0 E6 01 WAIT71 LDA B 1,X

132 01E2 2A FC BPL VWAl T71

133 01E4 E6 00 LDA B 0,X CLEAR FLAG BI'T

134 O01E6 C6 36 LDA B #$36 H GH HOLD- POS READY
135 O01E8 E7 01 STAB 1,X RETURN HOLD HI GH

136 O01EA CE 02 BO LDX #ERRMSG

137 O1ED BD EO 7E JSR PDATAL

138 O01F0 CE 02 A8 CONT1 LDX #CRLF

139 01F3 BD EO 7E JSR PDATAL

140 O01F6 7D 02 AE TST FORVAT

141 01F9 2B 3F BM SCI NOT

142 O01FB CE 00 22 FLOPNT LDX #$22 FLOTI NG PO NT NOTATI ON
143 O01FE A6 00 LDA A 0O, X I NPUT MANTI SSA SI GN DATA
144 0200 84 08 AND A #$08 MASK BI T 4

145 0202 26 04 BNE M NPNT

146 0204 86 20 LDA A #$20 LOAD A SPACE

147 0206 20 02 BRA PRI NT1

148 0208 86 2D M NPNT LDA A #$2D LOAD M NUS

149 020A BD E1 D1 PRINT1 JSR OUTEEE PRI NT CHARACTER

150 020D 08 DPIND I NX

151 020E E6 00 LDA B 0, X

152 0210 C4 OF AND B #$0F

153 0212 E7 00 STAB 0,X

154 0214 C6 2F LDA B #$2F

155 0216 EO 00 SUB B 0,X

15

CALC-1 TSC ASSEMBLER PACE 5

156 0218 D7 21 STAB $21 STORE DEC PT PCSI TI ON | ND
157 021A 08 DI GLOP I NX
158 021B A6 00 LDA A 0O, X
159 021D BD E1 D1 JSR OUTEEE QUTPUT ASCI 1 NUMBER
160 0220 9C 20 CPX $20 TI MVE FOR DEC PT
161 0222 26 05 BNE ENDCH1
162 0224 86 2E LDA A #$2E
163 0226 BD E1 D1 JSR OUTEEE
164 0229 8C 00 2B ENDCH1I CPX #$2B CHECK FOR LAST DIA T
165 022C 26 EC BNE Dl GLOP GET NEXT DIG T
166 022E CE 02 A8 LDX #CRLF
167 0231 BD EO 7E JSR PDATAL PRI NT CR/LF
168 0234 FE A0 02 LDX PARADR
169 0237 7E 01 23 JwP COVAND
170 023A 96 22 SCINOT LDA A $22 SCI ENTI FI C NOTATI ON
171 023C 84 08 AND A #3$08 LOOK FOR NEGATI VE MANTI SSA
172 023E 26 04 BNE NEGPNT
173 0240 86 20 LDA A #$20 SPACE | F NOT
174 0242 20 02 BRA PRI NT2
175 0244 86 2D NEGPNT LDA A #$2D
176 0246 BD E1 D1 PRINT2 JSR OUTEEE PRI NT SI GN
177 0249 CE 00 23 LDX #$23
178 024C 08 NUMLOP | NX
179 024D A6 00 LDA A 0, X
180 024F BD E1 D1 JSR OUTEEE
181 0252 8C 00 24 CPX #$24 LOOK FOR DEC PT DG T
182 0255 26 05 BNE SKI PDP
183 0257 86 2E LDA A #$2E
184 0259 BD E1 D1 JSR OUTEEE PRI NT DEC PT
185 025C 8C 00 2B SKIPDP CPX #$2B CHECK FOR LAST DIA T
186 025F 26 EB BNE NUM.CP
187 0261 86 45 LDA A #$45
188 0263 BD E1 D1 JSR OUTEEE PRI NT AN E
189 0266 96 22 LDA A $22 LOAD SI GN BYTE
190 0268 84 01 AND A #$01
191 026A 27 05 BEQ SKPSGN
192 026C 86 2D LDA A #$2D
193 026E BD E1 D1 JSR OUTEEE PRI NT A -
194 0271 96 20 SKPSGN LDA A $20
195 0273 BD E1 D1 JSR OUTEEE PRI NT EXPONENT MsD
196 0276 96 21 LDA A $21
197 0278 BD E1 D1 JSR OUTEEE PRI NT EXPONENT LSD
198 027B CE 02 A8 LDX #CRLF
199 027E BD EO 7E JSR PDATAL PRI NT CR/LF
200 0281 FE A0 02 LDX PARADR
201 0284 7E 01 23 JwP COVAND
202 0287 0D CLRSCN FCB $0D, $0A, $10, $16, $00
0288 0OA 10
028A 16 00
203 028C 53 FCC / SWIPC 6800 CALC-1 CALCULATOR/
028D 57 54
028F 50 43
0291 20 36
0293 38 30

16

CALC-1

0295
0297
0299
029B
029D
029F
02A1
02A3
02A5
02A7
02A8
02A9
02AB
02AD
02AE
02AF
02B0
02B1
02B3
02B4
02B5
02B7
02B9
EO7E
A002
E1AC
E1D1
A002
A002

204

205
206
207

208

209
210
211
212
213
214
215
216

NO ERROR(S)

CALC-1

30 20
43 41
4C 43
2D 31
20 43
41 4C
43 55
4C 41
54 4F
52
(0]}
0A 00
00 00
04
00
00
(0]}
0A 00
00
45
52 52
4F 52
04

80 0C

DETECTED

SYMBOL TABLE

CHRCHK 014C
CONT50 0158
ERRVSG 02B0
LODADR 018C
QUTANS 0193
PARADR A002
PRI NT2 0246
SKI PDP 025C
WAI T3 01AB

CLRSCN
CRLF

FLOPNT
LOCP1

QUTCHR
PDATAL
SCI NOT
SKPSGN
WAI T30

TSC ASSEMBLER PACE

CRLF FCB $0D, $0A, $00, $00, $00, $04
FORVAT FCB $00
SMDC FCB $00
ERRVEBG FCB $0D, $0A, $00, $00

FCC |/ ERROR/

FCB $04
PDATAL EQU $EO7E
PARADR EQU $A002
INEEE EQU $EIAC
OUTEEE EQU $EID1

ORG $A002

FDB $800C

END START

TSC ASSEMBLER PAGE

0287 COVAND 0123 CONFLG 01C9 CONT1 01F0
02A8 DIGLOP 021A DPIND 020D ENDCHL 0229
01FB FORMAT 02AE |INEEE EIAC |IN TAL 0110
0183 M NPNT 0208 NEGPNT 0244 NUMLOP 024C
01D0 OUTDI G 01B5 OUTEEE EIDL OUTI NS 0135
EO7E PO NT 012B PO NT2 01C5 PRI NT1 020A
023A SETMEM 017B SKI P25 0165 SKI P75 0153
0271 SMDC 02AF START 0100 WAIT10 0141
01A1 WAIT70 01D2 WAIT71 O1E0O ZERMEM 0174

17

Tabl e |

MV67109 Instruction Description Table (* Indicates 2-word instruction)

CLASS |SUBCLASS|MNEMONIC| OCTAL FULL NAME DESCRIPTION
OP CODE
Digit Entry 0 00 0 Mantissa or exponent digits. On first digit (d) the following
occurs:
1 01 1 Z—>T
2 02 2 Y - Z
3 03 3 X —Y
4 04 4 d — X
5 05 5 See description of number entry on page 11
6 06 6
7 07 7
8 10 8
9 11 9
DP 12 Decimal Point Digits that follow will be mantissa fraction.
EE 13 Enter Exponent Digits that follow will be exponent.
CS 14 Change Sign Change sign of exponent or mantissa.
Xm = X mantissa
Xe = X exponent
CS causes -Xm — Xm or —Xe — Xe
depending on whether or not an EE instruction was
executed after last number entry initiation.
Pl 15 Constant [] 3.1415927 — X, stack not pushed.
EN 41 Enter Terminates digit entry and pushes the stack. The
argument entered will be in X and Y.
Z—T
Y —>Z
X—-Y
NOP 77 No Operation Do nothing instruction that will terminate digit entry.
HALT 17 Halt External hardware detects HALT op code and generates
HOLD = 1. Processor waits for HOLD = 0 before
continuing. HALT acts as a NOP and may be inserted
between digit entry instructions since it does not terminate
digit entry.
Move ROLL 43 Roll Roll Stack,
N
T Y
",
POP 56 Pop Pop Stack.
Y - X
Z—Y
T—->Z
O-T
XEY 60 X exchange Y Exchange X and Y.
XY
XEM 33 X exchange M Exchange X with memory.
XM
MS 34 Memory Store Store X in Memory.
X—M
MR 35 Memory Recall Recall Memory into X.
M — X
LSH 36 Left Shift Xm X mantissa is left shifted while leaving decimal point in
same position. Former most significant digit is saved in
link digit. Least significant digit is zero.
RSH 37 Right Shift Xm X mantissa is right shifted while leaving decimal point in

same position. Link digit, which is normally zero except
after a left shift, is shifted into the most significant digit.

Least significant digit is lost.

18

MV67109 I nstruction Description

Tabl e |

Tabl e (Continued)(* Indicates 2-word instruction)

CLASS |SUBCLASS|MNEMONIC| OCTAL FULL NAME DESCRIPTION
OP CODE
Branch Count IBNZ 31 Increment M+ 1 — M. If M =0, skip second instruction word.
memory and Otherwise, branch to address specified by second
branch if M # 0 instruction word.

DBNZ 32 Decrement M-1 — M. If M = 0, skip second instruction word.
memory and Otherwise, branch to address specified by second
branch if M #0 instruction word.

1/0 Multi-digit | IN* 27 Multidigit The processor supplies a 4-bit digit address (DA4-DA1)

input to X accompanied by a digit address strobe (DAS) for each

digit to be input. The high order address for the number
to be input would typically come from the second
instruction word. The digit is input on D4-D1, using ISEL
= 0 to select digit data instead of instructions. The
number of digits to be input notation or floating point)
and the mantissa digit count (See Data Formats and
Instruction Timing). Data to be input s stored in X and
the stack is pushed (X - Y — Z — T). At the conclusion
of the input, DA4-DA1 = 0.

ouT* 26 Multidigit Addressing and number of digits is identical to IN

output from X instruction. Each time a new digit address is supplied,

the processor places the digit to the output on D04-D01
and pulses the R/W line active low. At the conclusion of
output, D04-D01=0 and DA4-DA1=0.

1/0 Single- AIN 16 Asynchronous A single digit is read into the processor on D4-D1. ISEL

digit Input = 0 is used by external hardware to select the digit

instead of instruction. It will not read the digit until ADR =
0 (ISEL = 0 selects ADR instead of Ig), indicating data
valid F2 is pulsed active low to acknowledge data just
read.

1/0 Flags SF1 47 Set Flag 1 Set F1 high, i.e. F1 =1.

PF1 50 Pulse Flag 1 F1 is pulsed active high. If F1 is already high, this

results in it being set low.

SF2 51 Set Flag 2 Set F2 high, i.e. F2=1.

PF2 52 Pulse Flag 2 F2 is pulsed active high. If F2 is ahead y high, this

results in it being set low.

PRWA1 75 Pulse R/W 1 Generates R/W active low pulse which may be used as

a strobe or to clock extra instruction bits into a flip-flop or
register.

PRW2 76 Pulse R/W 2 Identical to PRW1 instruction. Advantage may be taken

of the fact that the last 2 hits of the PRW1 op code are
10 and the last 2 bits of the PRW2 op code are 01.
Either of these bits can be clocked into a flip-flop using
the R/W pulse.

Mode TOGM 42 Toggle Mode Change mode from floating point to scientific notation or

Control vice-versa, depending on present mode. The mode
affects only the IN and OUT instructions. Internal
calculations are always in 8-digit scientific notation.

SMDC* 30 Set Mantissa Mantissa digit count is set to the contents of the second
Digit Count instruction word (=1 to 8).

INV 40 Inverse Mode Set inverse mode for trig or memory function instruction

that will immediately follow, Inverse mode is for next
instruction only.

19

Tabl e |

MV67109 I nstruction Description Table (Continued) (* Indicates 2-word instruction)

CLASS |SUBCLASS|MNEMONIC| OCTAL FULL NAME DESCRIPTION
OP CODE
Math F(X,Y) + 71 Plus Add XtoY.X+Y — XOn +, -, X, /, and YX instructions
stack is popped as follows
Z-Y
T-Z
O-T
Former X, Y are lost.
- 72 Minus Subtract X from Y. Y - X — X
X 73 Times Multiply X times Y. Y x X —» X
/ 74 Divide Divide XintoY. Y/ X — X
YX 70 YtoX Raise Y to X power YX — X
F(X,M) INV+* 40, 71 Memory Plus Add X to memory M+ X - M
On INV +, -, x, and / instructions, X, Y, Zand T are
unchanged.
INV-* 40, 72 Memory Minus Subtract X from memory. M- X - M
INVX* 40,73 Memory Times Multiply X times memory. M x X — M
INV/* 40, 74 Memory Divide Divide X into memory. M/ X —- M
F(X) Math | 1/X 67 One Divided by X |1/ X — X. On all F(X) math Instructions Y, Z, T and M
are unchanged and previous X is lost.
SORT 64 Square Root VX — X
SQ 63 Square X2 5 X
10X 62 Tento X 10X 5 X
EX 61 Eto X eX X
LN 65 Natural log of X InX—X
LOG 66 Base 10 log of X |log X — X
F(X) Trig |SIN 44 Sine X SIN(X) — X On all F(X) trig functions Y, Z, T and M are
unchanged and the previous X is lost
COS 45 Cosine X COS(X) — X
TAN 46 Tangent X TAN(X) — X
INV SIN* |40, 44 Inverse sine X SIN-T(x) - X
INV COS* 40,45 Inverse cosine X | cos-1(x) — X
INV TAN* 40,46 Inverse tan X TAN'1(X) X
DTR 55 Degrees to Convert X from degrees to radians.
radians
RTD 54 Radians to Convert X from radians to degrees.
degrees
Clear MCLR 57 Master Clear Clear all internal registers and memory, initialize 1/0
control signals, MDC = 8, MODE floating point. (See
initialization.)
ECLR 53 Error flag clear 0 — Error flag
Branch Test JMP* 25 Jump Unconditional branch to address specified by second
instruction word. On all branch instructions, second word
contains branch address to be loaded into external PC
TJC* 20 Test jump Branch to address specified by second instruction word if
condition JC (16) Is true(=1). Otherwise, skip over second word
TERR* 24 Test error Branch to address specified by second instruction word if
error flag is true (=1) Otherwise, skip over second word
May be used for detecting specific errors as opposed to
using the automatic error recovery scheme dealt with in
the section on Error Control
TX=0* 21 TestX=0 Branch to address specified by second instruction word if
X = 0. Otherwise, skip over second word.
TXF* 23 Test [X]| <1 Branch to address specified by second instruction word if
[X] < 1. Otherwise, skip over second word. (i.e. branch if
X is a traction.)
TXLTO* 22 TestX<0 Branch to address specified by second instruction word if

X < 0. Otherwise, skip over second word.

20

MV67109 | nstruction Sunmary Table (* = 2-word instruction)

Table 11

g -11 lgls
1 2

0 0 TIC IN V XEY
1 1 TX=0 EN EX

2 2 TXLTO TOG M 10X
3 3 TXF* ROLL SQ

4 4 TERR* SIN(SI N 1) SORT
S 5 JWP COS(Cos- 1) LN

6 6 ouUT* TAN(TAN- 1) LOG
7 7 | N SF1 1, X
8 8 SNDC PF1 YX

9 9 | BNZ* SF2 +(MF)
A DP DBNZ* PF2 (M)
B EE XEM ECLR x(VK)
C cs NG RTD /(M)
D PI MR DTR PRWL
E Al N LSH POP PRW2
F HALT RSH MCLR NOP

21

Table Il - CALC-1 Instruction to ASCII Character

Lookup Tabl e

FULL NAME

O©CoOoO~NOOUIR,WNEO

Deci mal Poi nt
Ent er Exponent
Change Sign

Const ant PI
Asynchr onous | nput
Hal t

Test Junmp

Test X=0

Test X<O0

Test 1 X 1<1

Test Error

Junp

Mul tidigit Qut
Multidigit In

Set Mantissa Digit Count
Inc & Branch if M0
Dec & Branch if MO
X Exchange M
Menmory Store

Menory Recal

Left shift Xm

Ri ght shift Xm

I nver se Mode

Ent er

Toggl e Mode

Rol | Stack

Sine X

Cosi ne X

Tangent X

Set Flag 1

Pul se Flag 1

Set Flag 2

Pul se Flag 2

Error d ear

Radi ans to Degrees
Degrees to Radi ans
Pop

Master C ear

HEX OP CODE MNEMONI C
00 00
01 01
02 02
03 03
04 04
05 05
06 06
07 07
08 08
09 09
A DP
oB EE
oC CS
0D Pl
OE Al'N
OF HALT
10 TJC
11 TX=0
12 TXLTO
13 TXF
14 TERR
15 JwP
16 ot
17 I'N
18 SMDC
19 | BNZ
I A DBNZ
1B XEM
1C V5
1D MR

I E LSH
1F RSH
20 I NV
21 EN
22 TOGM
23 RCLL
24 SIN
25 CGos
26 TAN
27 SF1
28 PF1
29 SF2
2A PF2
2B ECLR
2C RTD
2D DTR
2E PCP
2F MCLR

22

ASCI | CHARACTER

O©CooO~NOOUIR~,WNEO

TNM

- Ie>

0O W0mwo

Cntrl X

Table Il - CALC-1 Instruction to ASCI| Character Lookup Table

NAME HEX OP CODE MNEMONI C ASCl | CHARACTER
X exchange Y 30 XEY X
Eto X 31 EX w
Ten to X 32 1QX U
Squar e 33 SQ Q
Squar e Root 34 SQRT Vv
Natural Log of X 35 I'N N
Base 10 Log of X 36 LOG B
One divided by X 37 1/ X R
Yto X 38 YX n
Pl us 39 + +
M nus 3A - -
Ti mes 3B k

Di vi de 3C / /
Pul se RR'W1 3D PRV

Pul se RFW?2 3E PRV

No Operation 3F NOP

23

Table 1V - Floating Point Mbode OUT data storage

Menory Location DP PCS D7 D6 D5 D4 D3 D2 D1 DO
20 0 0 0 0 0 0 0 0
21 0 0 1 0 0 0 0 0
22 0 0 1 1 Sm O 0 0
23 0 0 1 1 Dp PGS

24 B 0 0 1 1 BCD digit(left nost)
25 QA 0 0 1 1 BCD digit

26 09 0 0 1 1 BCD digit

27 08 0 0 1 1 BCD digit

28 07 0 0 1 1 BCD digit

29 06 0 0 1 1 BCD digit

2A 05 0 0 1 1 BCD digit

2B 04 0 0 1 1 BCD digit(right nost)

Table 1Q - Scientific Mbde OQUT data storage

Menory Location D7 D6 D5 D4 D3 D2 D1 DO
20 0 0 1 1 Most significant exp. digit
21 0 0 1 1 Least significant exp. digit
22 0 0 1 1 Sm 0 0 Se
23 NOT USED
24 0 0 1 1 BCD digit (left nobst)
25 0 0 1 1 BCD digit
26 0 0 1 1 BCD digit
27 0 0 1 1 BCD digit
28 0 0 1 1 BCD digit
29 0 0 1 1 BCD digit
2A 0 0 1 1 BCD digit
2B 0 00 1 1 BCD digit (left nost)
Not es:
1) If the Mantissa significant Digit Count (set by SMDC instruction, initially
8) is less than 8, the unused digit nenory locations will be filled with
ASCl | spaces (201¢g)
2) Smis the sign of the mantissa. 0 = positive 1 = negative
3) Se is the sign of the exponent 0 = positive 1 = negative
4) DP POS is the deci mal point position. The deci mal point should followthe,

digit whose address is stored in nenory |location 24 when in the Scientific
node. In the Floating Point node AND the data in nenory location 23 with OF
and subtract the result from2F and OR this with 20. The deci mal point should
follow the digit whose address is given by the result.

24

Table V - ASCI1 to CALCULATOR | NSTRUCTI ON LOOKUP TABLE

LSB MSB O 1 2 3 4 5 6 7

0 OF OF 21 00 OF 0]D) OF 0D
1 OF OF OF 01 1B 33 OF 33
2 OF OF OF 02 36 37 36 37
3 OF OF OF 03 25 24 25 24
4 OF OF OF 04 2D 26 2D 26
5 OF OF OF 05 0B 32 0B 32
6 OF OF OF 06 2C 34 2C 34
7 OF OF OF 07 1C 31 1C 31
8 OF OF OF 08 1D 30 1D 30
9 OF OF OF 09 20 2B 20 2B
A OF OF 3B OF OF ocC OF ocC
B OF OF 39 OF OF OF OF OF
C OF OF OF OF OF OF OF OF
D 2F OF 3A OF 18 OF 18 OF
E OF OF OF 22 35 38 35 OF
F OF OF 3C OF 23 OF 23 OF

Exanple: An ASCII P is a hex 50 which points in the table to a OD which is
the constant Pl instruction for the calculator chip

25

TABLE VI - ERROR CONDI Tl ONS

The ERROR flag on the calculator chip is set when:

1)
2)
3)
4)
5)
6)
7)
8)

LN X when X < 0 LOG X when X < 0

Any result < 10-99 Any result > 1099
TAN 90° , 270° 450° , etc.

SIN X, COS X, TAN X when |X| > 9000°
sIN1 x cosl X when X >1]|X < 10-50
SQRT X when X < 0

dividing by O

Qut putting a nunber in floating point node if the nunmber of mantissa digits to
the left of the decimal point is greater than the mantissa digit count.

26

Figure |

VS mmdp 5V
l— HOLD
Vpp =P 4V b RDY
L 1) —p] CONTROL — B8R
0sC SIGNALS pedp |SEL
clock P o2 i
CEN 2 f INTERNAL CLOCKS — AW
SYNC €= > o 5AS
o4
— F1
MICROPROGRAM
POR==P1 INITIALIZATION |P= STORAGE ROM FLAGS =¥ F2
j b= ERROR
1 3
- X
Y
' STACK L & 0iGIT MANTISSA
P z ‘ REGISTER FILE
CONTROL !
1g/dC ag LOGIC ’
15/ABR -> M MEMORY J
“/D‘ s o - -
13/03 < - DA1 (LEAST)
17:02 - DIGIT by DA2
2 t -»| ADDRESS
1y/D1 -»> COUNTER [~ DA3
DA4 (MOST)
b D01 (LEAST)
ARITHMETIC 4-BIT DIGIT DATA 16T 502
UNIT DATA —>
our 4 003
— D04 (MOST)

27

