Assembly Instructions MP-N Calculator Interface Kit

The Southwest Technical Products MP-N Calculator Interface interfaces the SWTPC 6800 Computer System thru a Peripheral Interface Adapter (PIA) to the National Semiconductor MM57109 Number Oriented Processor. This "processor" is a Reverse Polish Notation (RPN) calculator chip without the internal keypad interfacing circuitry which has made interfacing to calculator chips so difficult in the past. This chip allows data and instruction entry in conventional binary form and speeds entry with the elimination of the debounce circuitry built into conventional calculator chips. It is called a processor because it has instructions and control lines which allow it to operate in conjunction with ROM and RAM as a stand alone numerical processor. It may however be operated as a computer peripheral for numerical calculation and this is the configuration in which the chip has been implemented.

All interfacing from the 6800 Computer System to the calculator chip has been done thru a 6820 PIA. Both the PIA and calculator chip reside on a 3 ½" X 5 ¼ double sided, plated thru hole circuit board plugged onto one of tie seven available interface card positions on the mother board of the 6800 Computer. All data and instructions fed to and all results received from the calculator chip are handled by your own assembler or machine language program. The calculator features reverse Polish notation, floating point or scientific notation, up to an eight digit mantissa and two digit exponent, trig functions, base 10 and natural logarithms, and overflow indicator.

PC Board Assembly

NOTE: Since ail of the holes on the PC board have been plated thru, it is only necessary to solder the components from the bottom side of the board. The plating provides the electrical connection from the "BOTTOM" to the "TOP" foil of each hole. Unless otherwise noted it is important that none of the connections be soldered until all of the components of each group have been installed on the board. This makes it much easier to interchange components if a mistake is made during assembly. Be sure to use a low wattage iron (not a gun) with a small tip. Do not use acid core solder or any type of paste flux. We will not guarantee or repair any kit on which either product has been used. Use only the solder supplied with the kit or a 60/40 alloy resin core equivalent. Remember all of the connections are soldered on the bottom side of the board only. The plated-thru holes provide the electrical connection to the top foil.

- () Before installing any parts on the circuit board, check both sides of the board over carefully for incomplete etching and foil "bridges" or "breaks". It is unlikely that you will find any, but should there be one, especially on the "TOP" side of the board, it will be very hard to locate and correct after all of the components have been installed on the board.
- () Starting from one end of the circuit board install each of the three, 10 pin Molex female edge connectors along the lower edge of board. These connectors must be inserted from the "TOP" side of the board and must be pressed down firmly against the circuit board, so that each pin extends completely into the holes on the circuit board. Not being careful here will cause the board to either wobble and/or be crooked when plugging it onto the mother board. It

Scanned and edited by Michael Holley Jan 20, 2001 Revised May 18, 2003 Southwest Technical Products Corporation Document Circa 1977 is suggested that you solder only the two end pins of each of the three connectors until all have been installed at which time if everything looks straight and rigid you should solder the as yet unsoldered pins.

- () Insert the small nylon indexing plug into the lower edge connector pin indicated by the small triangular arrow on the "BOTTOM" side of the circuit board. This prevents the board from being accidentally plugged on incorrectly.
- Attach all of the resistors to the board. As with all other components unless noted, use the parts list and component layout drawing to locate each part and install from the "TOP" side of the board bending the leads along the "BOTTOM" side of the board and trimming so that 1/16" to 1/8" of wire remains. Solder.
- () Install the capacitors on the circuit board. Be sure to orient electrolytic capacitor C4 so its polarity matches with that shown on the component layout drawing. Solder.
- () Install the transistor and diode. These components must be oriented to match the component layout drawing. Solder.
- () Install integrated circuit IC2 on the circuit board. This component must be oriented so its metal face is facing the circuit board and is secured to the circuit board with a #4 - 40 X 1/4" screw, lockwasher and nut. A heatsink is not used. The three leads of the integrated circuit must be bent down into each of their respective holds. Solder.

NOTE: MOS integrated circuits are susceptible to damage by static electricity. Although some degree of protection is provided internally within the integrated circuits, their cost demands the utmost in care. Before opening and/or installing any MOS integrated circuits you should ground your body and all metallic tools coming into contact with the leads, thru a 1 M ohm 1/4 watt resistor (supplied with the kit). The ground must be an "earth" ground such as a water pipe, and not the circuit board ground. As for the connection to your body, attach a clip lead to your watch or metal ID bracelet. Make absolutely sure you have the 1 Meg ohm resistor connected between you and the "earth" ground, otherwise you will be creating a dangerous shock hazard. Avoid touching the leads of the integrated circuits any more than necessary when installing them, even if you are grounded. On those MOS IC's being soldered in place, the tip of the soldering iron should be grounded as well(separately from your body ground) either with or without a 1 Meg ohm resistor. Most soldering irons having a three prong line cord plug already have a grounded tip. Static electricity should be an important consideration in cold, dry environments. It is less of a problem when it is warm and humid.

- Install MOS integrated circuits IC1, IC3, IC4 and IC5 following the precautions given in the preceding section. As they are installed, make sure they are down firmly against the board before soldering all of their leads. Do not bend the leads on the back side of the board. Doing so makes it very difficult to remove the integrated circuit should replacement ever be necessary. The "dot" or "notch" on the end of the package is used for orientation purposes and must match with that shown on the component layout drawing for the IC. Solder.
- () Working from the "TOP" side of the circuit board, fill in all of the feedthru's with molten solder. The feed-thru's are those unused holes on the board whose internal plating connects the "TOP" and "BOTTOM" circuit connections Filling these feed-thru's with molten solder guarantees the integrity of the connections and increases the current handling capability.

- () Now that all of the components have been installed on the board, double check to make sure all have been installed correctly in their proper location.
- () Check very carefully to make sure that all connections have been soldered. It is very easy to miss some connections when soldering which can really cause some hard to find problems later during checkout. Also look for solder "bridges" and "cold" solder joints which are another common problem.

Since the MP-N circuit board now contains MOS devices, it is susceptible to damage from severe static electrical sources. One should avoid handling the board any more than necessary and when you must, avoid touching or allowing anything to come into contact with any of the conductors on the board.

Using the Calculator Interface

Table I gives a complete list and description of the calculator chip's instruction set. Remember that some of the instructions are for stand alone processing systems and are not used on this interface. All numerical entry is in Reverse Polish Notation (RPN) and anyone familiar with Hewlett Packard calculators should have no problem with the data entry sequence. For those not familiar with RPN, the following should be helpful:

To add 7 + 8, enter the following 7 enter 8 + (4 entries) The answer is now stored in the X accumulator within the calculator chip The OUT instruction may be used to output the answer To find the inverse sine of 0.5, enter the following: 0.5 INV SIN (5 entries) The answer is now stored in the X accumulator within the calculator chip. The OUT instruction may be used to output the answer.

In order to simplify the interfacing between your program and the calculator interface, you will probably want to incorporate the following subroutines into your program.

INITAL SUBROUTINE

The INITAL or initialize subroutine configures the PIA interfacing to the calculator chip. This subroutine need only be used once; and is best placed somewhere at the beginning of your program., It is responsible for initializing the data direction registers and control registers of the PIA. The subroutine requires that the index register be loaded with the "lowest" address of the PIA interfacing to the calculator chip prior to execution.

This "lowest" address depends upon which interface port position the MP-N calculator card is plugged. The table below gives the "lowest" address of each interface card position.

PORT0	8000
PORT1	8004
PORT2	8008
PORT3	800C
PORT4	8010
PORT5	8014
PORT6	8018
PORT7	801C

86	7F	INITAL	LDA A	#\$7F	INIT A SIDE OF PIA
A7	00		STA A	0,X	
86	36		LDA A	#\$36	HIGH HOLD-POS READY
Α7	01		STA A	1,X	
86	00		LDA A	#\$00	INIT B SIDE OF PIA
Α7	02		STA A	2,X	
86	34		LDA A	#\$34	NEG R/W
Α7	03		STA A	3,X	
Aб	02		LDA A	2,X	CLEAR R/W FLAG
39			RTS		

OUTINS SUBROUTINE

The OUTINS or out instruction subroutine is used to get program data and instructions into the calculator. To send a digit or instruction to the calculator chip, use Table II to find the OP code of the instruction you wish to send. Load this OP code into the A accumulator and jump or branch to the OUTINS subroutine. If you have a string of data you wish to send, just recycle thru this subroutine as many times as necessary. The subroutine takes care of all of the READY and HOLD signals to the calculator chip so there is no worry of sending data faster than the calculator chip can accept it. The subroutine destroys the contents of the B accumulator during execution while the contents of the A accumulator and index register are not destroyed.

ЕG	01	OUTINS	LDA B	1,X	WAIT FOR READY
2A	FC		BPL	OUTINS	
Α7	00		STA A	0,X	FORWARD INSTRUCTION TO CALC
Еб	00		LDA B	0,X	CLEAR FLAG BIT
Сб	3C		LDA B	#\$3C	LOW HOLD-NEG READY
E7	01		STA B	1,X	BRING HOLD LINE LOW
Еб	01	WAIT10	LDA B	1,X	
2A	FC		BPL	WAIT10	LOOP FOR READY LOW
Еб	00		LDA B	0,X	CLEAR FLAG BIT
C6	36		LDA B	#\$36	HIGH HOLD-POS READY
E7	01		STA B	1,X	RETURN HOLD LINE HIGH
39			RTS		

SETMEM SUBROUTINE

The SETMEM or set memory subroutine initializes the memory locations to which the calculator's output data will be stored. This subroutine must be executed immediately before OUTANS subroutine is used. Although it can be changed, memory locations 0020 thru 002B have been designated the temporary storage locations for the calculator's. output data. The subroutine sets memory location 0020 to a 00 while locations 21 thru 2B are set to 20 (ASCII spaces). This subroutine destroys the contents of the index register and B accumulator. The contents of the A accumulator are nor destroyed.

7F	00	20	SETMEM	CLR	\$20	CLEAR \$0020
CE	00	20		LDX	#\$20	BOTTOM OF BUFFER
Сб	20			LDA B	#\$20	
08			LOOP1	INX		
Ε7	00			STA B	0,X	STORE A SPACE
8C	00	2в		CPX	#\$2B	CHEXC FOR TOP OF BUFFER
26	F8			BNE	LOOP1	
39				RTS		

OUTANS SUBROUTINE

The OUTANS or output answer subroutine outputs the contents of the X register within the calculator chip in BCD to memory locations 0020 thru 002B. Since the mantissa digit count of the calculator is variable, the previous SETMEM subroutine blanks out any digit location not filled by the OUTANS subroutine. It is very important that the SETMEM subroutine be used each time before executing the OUTANS subroutine. The OUTANS subroutine outputs data in two different formats depending upon whether the calculator chip is in the floating point or scientific mode. The calculator initially starts out in the floating point mode where it will remain until changed by the TOGM (22_{16}) instruction. This calculator does not automatically convert to scientific notation if the numbers become too big to handle in floating point as many do. An MCLR $(2F_{16})$ instruction will always reset the calculator chip to the floating point mode regardless of what mode it was in originally. Since the calculator chip does not tell you what mode it is in when it is outputting data, your program must know so you can process the data accordingly. Table IV shows the format in which the data is stored. At the end of the OUTANS subroutine, the N bit of the condition code register is set if an error has transpired since the last execution of the OUTANS subroutine. You may use a BMI instruction to catch and branch to an error routine to note the error. You should then send an ECLR $(2B_{16})$ instruction to the calculator chip to reset the calculator chip's error flag. Disregarding the error flag on the calculator chip will cause no problems. The chip will continue to function regardless of the state of the flag. The subroutine requires that the index register be loaded with the "lowest" address of the PIA interfacing to the calculator chip prior to execution. Since the SETMEM subroutine usually run prior to this destroys the contents of the index register, don't forget to reload the index register before branching to the OUTANS subroutine. The OUTANS subroutine destroys the contents of both the A and B accumulators during execution while the contents of the index register is not changed.

E6	01		OUTANS	LDA	В	1,X	
2A	FC			BPL		OUTANS	
Aб	00			LDA	А	0,X	CLEAR FLAG BIT
86	16			LDA	А	#\$16	SEND AN OUT
Α7	00			STA	А	0,X	
C6	3E			LDA	В	#\$3E	LOW HOLD-POS READY
E7	01			STA	В	1,X	BRING HOLD LINE LOW
Еб	01		WAIT30	LDA	В	1,X	WAIT FOR SECOND READY
2A	FC			BPL		WAIT30	
Еб	00			LDA	В	0,X	CLEAR FLAG BIT
86	OF			LDA	А	#\$0F	
Α7	00			STA	А	0,X	SEND A NOP
Еб	03		WAIT3	LDA	В	3,X	LOOK FOR R/W STROBE
2В	06			BMI		OUTDIG	TRANSFER CALC DATA INTO MEMORY
Еб	01			LDA	В	1,X	LOOK FOR READY STROBE
2В	16			BMI		CONFLG	PRINT MEMORY CONTENTS
20	Fб			BRA		WAIT3	
Aб	02		OUTDIG	LDA	А	2,X	LOAD OUT DATA INTO A
16				TAB			
84	OF			AND	А	#\$0F	ELIMINATE UPPER 4 BITS
8A	30			ORA	А	#\$30	CONVERT TO ASCII DATA
54				LSR	В		
54				LSR	В		
54				LSR	В		
54				LSR	В		
CA	20			ORA	В	#\$20	INCREMENT ADDRESSES BY \$20
F7	01 0	26		STA	В	POINT2+1	STORE OUT DATA SEQUENTIALLY
97	00		POINT2	STA	А	\$0	SELF MODIFING CODE
20	E2			BRA		WAIT3	
86	36		CONFLG	LDA	А	#\$36	HIGH HOLD-POS READY
Α7	01			STA	А	1,X	BRING HOLD LINE HIGH
Aб	00			LDA	А	0,X	CLEAR FLAG BIT
39				RTS			

Number Entry Rules

When a digit, decimal point, or Π is entered with an 0-9, DP, or PI instruction, the stack is first pushed and the X register cleared: Z -> T, Y -> Z, X -> Y, 0 -> X. This process is referred to as "initiation of number entry." Following this, the digit and future digits are entered into the X mantissa. Subsequent entry of digits or DP, EE, or CS instructions do not cause initiation of number entry. Digits following the eighth mantissa digit are ignored. This number entry mode is terminated by any instruction except 0-9, DP, EE, CS, PI, or HALT. Termination of number entry means two things. First, the number is normalized by adjusting the exponent and decimal point position so that the decimal point is to the right of the first mantissa digit. Second, the next digit, decimal point, or Π entered will cause initiation of number entry, as already described. There is one exception to the number entry initiation rule. The stack is <u>not</u> pushed if the instruction prior to the entered digit was an ENTER. However, the X register is still cleared and the entered digit put in X.

The ENTER key itself terminates number entry and pushes the stack. The OUT instruction terminates number entry and prepares the stack for pushing upon the next entry of data. This means that if you use the ENTER and OUT instructions consecutively, the stack gets pushed twice which is not what you want. If you wish to ENTER data and immediately OUT the result, use only the OUT instruction. The OUT performs the entry. If you do not wish to OUT the ENTER'ed data, just use the ENTER instruction by itself.

The AIN and IN instructions should \underline{not} be used for number entry. Provisions have not been made for their use on this interface.

How It Works

Peripheral Interface Adapter (PIA) ICI interfaces the MM57109 calculator chip, IC3, to the SWTPC 6800 buss. The first six bits of the A side of the PIA are used to feed instructions to the calculator chip while the eighth is used as an input to monitor the ERROR output of the calculator. Control line CA1 outputs HOLD signals to, while control line CA2 inputs READY signals from the calculator chip. The first four bits of the B side of the PIA are used to input BCD digit data while the last four bits input digit addresses. The CB1 line inputs READ/WRITE signals while the CB2 control line is not used. Hex inverter/buffer, IN, is used primarily as the 320 to 400 kHz single phase oscillator required by the calculator chip. One section is used to invert the HOLD signal going to the calculator. Shift register IC5 generates the POR signal required for proper startup and initialization. +5 VDC power required by the board is supplied by voltage regulator IC2 while -4 VDC voltage is-supplied by transistor Q1 and its associated components. Figure I shows a block diagram for the internal construction of the calculator chip.

Parts List MP-N Calculator Interface

Resistors

 R1	47K ohm ¼ watt resistor
 R2	1K ohm ¼ watt resistor
 R3	10K ohm ¼ watt resistor
 R4	10K ohm ¼ watt resistor
 R5	10K ohm ¼ watt resistor
 R6	10K ohm ¼ watt resistor
 R7	10K ohm ¼ watt resistor
 R8	22K ohm ¼ watt resistor
 R9	22K ohm ¼ watt resistor
 R10	22K ohm ¼ watt resistor
 R11	22K ohm ¼ watt resistor
 R12	12K ohm ¼ watt resistor
 R13	27 ohm ¼ watt resistor
 R14	3.3K ohm ¼ watt resistor
 R15	10K ohm ¼ watt resistor
 R16	47K ohm ¼ watt resistor
 R17	10K ohm ¼ watt resistor
	Capacitors
C1	0 1 mfd capacitor
 C2	100 pfd capacitor
 C3	0 1 mfd capacitor
 C4*	10 mfd@ 15 VDC electrolytic
 01	it mide is the cicclotycic
	Diodes and Transistors
D1*	4.7 volt 400 mw zener diode 1N5230 or 1N4732
D2*	1N4148 silicon diode
D3*	1N4148 silicon diode
D4*	1N4148 silicon diode
D5*	1N4148 silicon diode
D6*	1N4148 silicon diode
D7*	1N4148 silicon diode
 Ql*	2N5087 transistor
	Integrated Circuits
 IC1*	6820 MOS peripheral interface adapter
 IC2*	7805 voltage regulator
 IC3	MM57109 FAN MOS calculator chip
 IC4*	4009 or 14009 MOS hex inverter
 IC5*	74C165 MOS shift register

CALC-1 Program

In order to see how the calculator chip is used and how to incorporate these subroutines into a program, the CALC-1 program listing is given. CALC-1 allows the operator to use the calculator chip just as you would a standard RPN desk calculator with the same features. All communication to the chip is done thru the terminal's keyboard with all results displayed on the terminal's display. Since the terminal's keyboard just has standard ASCII characters rather than the labeling found on calculator keys; selected ASCII characters have been substituted for normal calculator function keys. It is the job of the CALC-1 program to accept all data and instruction commands from the terminal's keyboard, send them to the calculator chip and display all results on the terminal's display. The program resides from memory locations 0020 thru 02C0 which is approximately 700 bytes of code. Since most of the lower 256 bytes are used for the ASCII character lookup table and some of the upper is used for terminal interfacing, you should be able to incorporate the package into your program using somewhat less memory than was used here.

The program starts at line 5 by storing the ASCII lookup table from memory locations 0080 thru 00FF. This table covers the entire 128 character ASCII set. Whenever an ASCII character is received from the keyboard it is OR'ed with 80, and the resulting address contains the selected command or instruction for the calculator chip. Line 21 ORG's the program at memory location 0100 where the terminal's screen is cleared and titled. Line 25 loads the index register extended with the contents of memory locations A002 and A003 with 800C, the starting address of Port 3. If you wish to plug the calculator board onto an I/O port other than PORT 3. Use the table below to find the address to be loaded into memory locations A002 and A003 prior to executing the program.

PORT0	8000
PORT1	8004(Serial control interface only)
PORT2	8008
PORT3	8000
PORT4	8010
PORT5	8014
PORT6	8018
PORT7	801C

Lines 28 thru 37 contain the INITAL subroutine described in detail earlier. lines 38 thru 41 accept entered keyboard commands, lookup the selected calculator instructions and deposit the data or instruction in the A accumulator. Lines 46 thru 57 contain the OUTINS subroutine described in detail earlier. Lines 57 thru 76 check to see what instruction or data has been entered so the result may be output if appropriate. Line 73 looks for the TOGM instruction so the program knows which display mode to use when outputting data. Lines 79 thru 86 contain the SETMEM subroutine described in detail earlier. Since the SETMEM subroutine destroys the contents of the index register, line 87 reloads it before proceeding to the OUTANS subroutine contained in lines 90 thru 122. Line 123 checks to see of the ERROR flag was set during the last output sequence. If so, program control is transferred to lines 124 thru 137 where an error message is output and the error flag cleared by sending an ECLR instruction to the calculator chip. Line 140 tests to see if the calculator is in the floating point or scientific mode. If floating point, control is transferred to lines 142 thru 169. If scientific, control is transferred to lines 170 thru 201. In both modes the data is output to the display in the selected mode and program control is transferred back to line 38 where new commands or data may be entered

The original listing had line numbers that incremented by 10. Line 28 in this listing was line 280 in the original. The were two lines that did not increment by 10 (412 and 414) in the original. In the listing the lines above 41 are off by 2, line 53 was line 510.

1				Ν	MA	CALC-1				
2			*A	DRIVER	ROUTI	NE FOR	THE	MP-N	BOARD	
3				0	PT	PAG				
4	0080			0	RG	\$0080				
5	0080 OF			न म	'CB	\$0F.\$01	F.\$0F	'.\$0F	.\$0F.\$0	F.\$0F.\$0F
0	0081 OF	በ፹		-	02	+ 0 - <i>)</i> + 0 -	- / + 0-	/ + 0 -	/ + 0 - / + 0	- , + , +
	0083 0F	0F								
	0005 01	01° 01°								
	0085 OF	OF								
6	0087 OF			5	OD.	ሰም	r ¢Or	י מטעי	ጵሰ፹ ጵጋ	1 ୯୦፱ ୯୦፱
0	0088 UF	٥æ		Г	СБ	ŞUF,ŞUI	r,şur	,şur	,şur ,şz	T'ÒOL'ÒOL
	0089 UF									
	008B 0F	0F								
	008D 21	0F.								
_	008F, 0F,			_	~~	* - * - * - *	- +		* ~ * ~	- + +
1	0090 OF	<u> </u>		F.	CB	Ş0F,Ş01	F,\$0F	',ŞOF	,ŞOF,ŞO	F',ŞOF',ŞOF'
	0091 OF	0F								
	0093 OF	OF								
	0095 OF	0F								
	0097 OF									
8	0098 2F			F	CB	\$2F,\$01	F,\$0F	',\$0F	,\$0F,\$O	F,\$0F,\$0F
	0099 OF	OF								
	009B OF	OF								
	009D OF	OF								
	009F 0F									
9	00A0 21			F	'CB	\$21,\$0	F,\$0F	',\$0F	,\$0F,\$0	F,\$0F,\$0F
	00A1 OF	OF								
	00A3 OF	OF								
	00A5 OF	OF								
	00A7 OF									
10	00A8 OF			F	'CB	\$0F,\$01	F,\$3E	3,\$39	,\$0F,\$3	A,\$0A,\$3C
	00A9 OF	3B								
	00AB 39	OF								
	00AD 3A	0A								
	00AF 3C									
11	00B0 00			F	'CB	\$00.\$0	1.\$02	.\$03	.\$04.\$0	5,\$06,\$07
	00B1 01	02			-	1 / 1 -	, , -	, ,	, , , , , , , , , , , , , , , , , , , ,	- , , , , -
	00B3 03	04								
	00B5 05	06								
	00B7 07									
12	00B8 08			ਸ	'CB	\$08.\$0	9.\$0F	'.\$0F	.\$0F.\$0	F.\$22.\$0F
	00B9 09	0F		-	02	400,40.	- / + 0-	/ + 0 -	/ + 0 = / + 0	- , + = = , + 0 =
	00BB 0F	10 70								
	00BD OF	22								
	00BE OF	22								
13	00DF OF			F	'C'B	ረበ፹ ረ1ነ	B 436	: ¢25	¢20 ¢0	B \$20 \$10
10	00C0 0F	36		T.	CD	φ υ Γ, φτι	D, 950	, 925	, ç20, ç0	D, 920, 910
	0002 25	טכ ח2								
	00C5 25	20								
	0000 08	20								
11	00C7 IC			5	OD	¢15 ¢2	0 ¢0¤	י לועד	ጵሰፑ ጵ1	0 005 000
14	00C8 ID	0.57		Г	СБ	οτ υ , οζι	υ, ουΓ	,şur	, 90F , 91	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	00C9 20									
	UUCB UF									
		20								
1 Г				-		405 42	0 dor		40C 40	0 404 401
12		2.7		F.	CB	şυ μ ,ş3.	3,\$37	,\$24	, \$20, \$3	∠,\$34,\$31
	UUDI 33	31								
	UUD3 24	26								

	00D5 32	34					
16	000 9000				FOD	420 42D 4	
10		00			гсв	, , , , , , , , , , , , , , , , , , ,	0C, 30F, 30F, 30F, 338, 30F
		0C 0F					
	00DB OF	20					
	OODD OF	20					
1 🗖	OODF OF				EGE		
1/	UUEU UF	26			FCB	ŞUF,ŞUF,Ş	36,\$25,\$2D,\$0B,\$2C,\$1C
	UUEL OF	36					
	00E3 25	2D					
	00E5 0B	2C					
	00E7 1C						
18	00E8 1D				FCB	\$1D,\$20,\$	OF,\$OF,\$OF,\$18,\$35,\$23
	00E9 20	0F					
	00EB OF	0F					
	00ED 18	35					
	00EF 23						
19	00F0 0D				FCB	\$0D,\$33,\$	37,\$24,\$26,\$32,\$34,\$31
	00F1 33	37					
	00F3 24	26					
	00F5 32	34					
	00F7 31						
20	00F8 30				FCB	\$30.\$2B.\$	00.\$0F.\$0F.\$0F.\$0F.\$0F
20	00F9 2B	ററ			100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	00FB 0F	90 ਸ					
	00FD 0F	01° 017					
	00FD OF	01					
21	0100				ODC	¢0100	
21 22	0100	70	4 77		URG	ŞUIUU #da047	
22	0100 8E	AU	4/	SIARI	LDS	#\$AU47	DECREMENT STACK
23	UIU3 CE	02	8/		LDX	#CLRSCN	<u></u>
24	0106 BD	E0	7E		JSR	PDATAL	CLEAR AND TITLE TERM
25	0109 FE	A0	02		LDX	PARADR	
26	010C 8D	02			BSR	INITAL	
27	010E 20	13			BRA	COMAND	
28	0110 86	7F		INITAL	LDA A	#\$7F	INIT A SIDE OF PIA
29	0112 A7	00			STA A	0,X	
30	0114 86	36			LDA A	#\$36	HIGH HOLD-POS READY
31	0116 A7	01			STA A	1,X	
32	0118 86	00			LDA A	#\$00	INIT B SIDE OF PIA
33	011A A7	02			STA A	2,X	
34	011C 86	34			LDA A	#\$34	NEG R/W
35	011E A7	03			STA A	3,X	
36	0120 A6	02			LDA A	2.X	CLEAR R/W FLAG
37	0122 39				RTS	,	
38	0123 BD	Е 1	AC	COMAND	JSR	TNEEE	GET OPERATOR DATA
30	0126 84	80	110	COLUMD	ORA A	#\$80	DOSTITION TO TOD OF TABLE
40	0128 87	01	20			$\Pi \phi 0 0$ DOTNT+1	
<u>т</u> 0 //1	0120 07	01	20	DOTNT		\$00 \$00	SELE MODIEINC CODE
40	012B 90	21		POINI		မှင်) မင်)	SELF MODIFING CODE
⊐⊿ // ⊃		⊿⊥ ⁄\?			DEO	╈┙┙┰ ┲┍┉┲┉	
43 44	UIZF Z/	43			ъсу		
44	UI31 8D	102			RPN	OUTINS	
45	UI33 20	1.1 0 1		or	BRA -	CHRCHK	
46	U135 E6	01		OUTINS	LDA B	⊥,X	WALT FOR READY
47	0137 2A	FC			BPL	OUTINS	

CALC-1

48	0139	77	00			CLUV	л	ΟV	FORWARD INSTRUCTION TO CALC
40	0120	А/ Еб	00			JIA J	A D	0,X	CLEAD FIAC DIT
49		E0	20					U,A #620	LILLAR FLAG DII
50		00	30			LDA	B	#\$3C	LOW HOLD-NEG READY
51	OT 3E	上/	U L		1 0	STA .	В	1,X	BRING HOLD LINE LOW
52	0141	E6	01		WAIT10	LDA 1	В	1,X	
53	0143	2A	FC			BPL		WAIT10	LOOP FOR READY LOW
54	0145	Еб	00			LDA 1	В	0,X	CLEAR FLAG BIT
55	0147	Сб	36			LDA 1	В	#\$36	HIGH HOLD-POS READY
56	0149	E7	01			STA 1	В	1,X	RETURN HOLD LINE HIGH
57	014B	39				RTS			
58	014C	81	2F		CHRCHK	CMP 2	A	#\$2F	
59	014E	26	03			BNE		SKIP75	
60	0150	7F	02	AE		CLR		FORMAT	
61	0153	7D	02	AF	SKIP75	TST		SMDC	CHECK FOR PREVIOUS SMDC INSTR
62	0156	26	1C		-	BNE		ZERMEM	
63	0158	81	ਹ ਦ ਸ ()		CONT 50	CMP	Δ	#\$0F	
64	015A	27	C7		0011150	BEO		COMAND	GET MOR DATA IF NOP
65	0150	21 Q 1	10				7	#¢19	GET MOR DATA IF NOT
66		26				DNE	A	#910 977795	
67		20 72	05	יד ג		DIVE		SKIPZS	
67	0160	20		AF				SMDC	
68	0165	∠U 01	BF		av TD 0 F	BRA	7	COMAND	GEI MORE DAIA IF SMDC
69	0165	81	20		SKIP25	CMP	A	#\$ZU	
70	0167	27	BA			BEQ	_	COMAND	GET MORE DATA IF INV
71	0169	81	08			CMP .	A	#\$0B	
72	016B	23	B6			BLS		COMAND	GET MORE DATA IF NUMBERS
73	016D	81	22			CMP 1	A	#\$22	LOOK FOR TOGM
74	016F	26	03			BNE		ZERMEM	
75	0171	73	02	AE		COM		FORMAT	
76	0174	7F	02	AF	ZERMEM	CLR		SMDC	ZERO SMDC
77	0177	8D	02			BSR		SETMEM	
78	0179	20	11			BRA		LODADR	
79	017B	7F	00	20	SETMEM	CLR		\$20	CLEAR \$0020
80	017E	CE	00	20		LDX		#\$20	BOTTOM OF BUFFER
81	0181	C6	20			LDA 1	В	#\$20	
82	0183	08			LOOP1	INX			
83	0184	E7	00			STA 1	В	0,X	STORE A SPACE
84	0186	8C	00	2B		CPX		#\$2B	CHEXC FOR TOP OF BUFFER
85	0189	26	F8			BNE		LOOP1	
86	018B	39				RTS			
87	018C	FΕ	A0	02	LODADR	LDX		PARADR	
88	018F	8D	02			BSR		OUTANS	
89	0191	20	3D			BRA		OUTCHR	
90	0193	ЕG	01		OUTANS		B	1.X	
91	0195	2A	FC			BPI,	_	OUTANS	
92	0197	A6	0.0				Δ	0 X	CLEAR FLAG BIT
93	0199	86	16				Δ	#\$16	SEND AN OUT
94	019B	۵0 ۵7	00			STD 1	Δ	πφ±0 Ο Χ	
95	019D	C6	२ म २ म				R	#¢3₽	LOW HOLD-DOS READY
95	0100	טט דיד	01			י גידט	B	πγ <u>υ</u> 1 γ	BRING HOLD LINE LOW
20		።/ ፑራ			ᡁᢧᠴ᠇ᠬ᠌᠌ᠵᠬ	T'D'A I	ы Б	1 V	MYLL EUD GEGUND RANA Reveal the tom
<i>ו כ</i>		<u>то</u> Ол	UT EC		WALISU	אסם איז	ם		WAII FOR BECOND READI
98 00	ULA3	ZA EC	гC			T D M Y	П	WAL13U	
99 100	ULA5	E 6	00			LDA	ъ В	U,X #007	CLEAR FLAG BIT
101 101	ULA7	86	UF'			LDA A	A		CENT A NOT
T01	UIA9	A'7	00			STA 1	A	υ,Χ	SEND A NOP

CALC-1

102	01AB	Еб	03		WAIT3	LDA	В	3,X	LOOK FOR R/W STROBE
103	01AD	2в	06			BMI		OUTDIG	TRANSFER CALC DATA INTO MEMORY
104	01AF	Еб	01			LDA	В	1,X	LOOK FOR READY STROBE
105	01B1	2B	16			BMT		CONFLG	PRINT MEMORY CONTENTS
106	0183	20	포6			BRA		WATT3	
107	0185	76	02				л	$2 \mathbf{x}$	ג ∩ידואד גידאס ידוו∩ סגר
100		1 C	02		OUIDIG		A	Δ,Λ	LOAD OUT DATA INTO A
100		10	<u>~</u>			IAB	-	1405	
109	0188	84	OF.			AND	A	#\$UF	ELIMINATE UPPER 4 BITS
110	01BA	8A	30			ORA	А	#\$30	CONVERT TO ASCII DATA
111	01BC	54				LSR	В		
112	01BD	54				LSR	В		
113	01BE	54				LSR	В		
114	01BF	54				LSR	В		
115	01C0	CA	20			ORA	В	#\$20	INCREMENT ADDRESSES BY \$20
116	01C2	F7	01	CG		STA	В	POINT2+1	STORE OUT DATA SEQUENTIALLY
117	01C5	97	00		POINT2	STA	А	\$O	SELF MODIFING CODE
118	0107	2.0	E2			BRA		WATT3	
110	0109	86	36		CONFLC		л	#\$36	HICH HOLD-DOG READY
120		00 77	01		CONLIG		7	που 1 v	DEING HOLD I INF HICH
101		A/	01			SIA	A	1,A	GLEND FING DIF
121			00				А	υ,Δ	CLEAR FLAG BII
122	OICF	39	1		0	RTS		a	
123	01D0	2A	ΙE		OUTCHR	BPL		CONTI	SKIP IF NO ERROR
124	01D2	E6	01		WAIT70	LDA	В	1,X	WAIT FOR READY
125	01D4	2A	FC			BPL		WAIT70	
126	01D6	86	2B			LDA	А	#\$2B	ERROR CLEAR INSTRUCTION
127	01D8	Α7	00			STA	А	0,X	
128	01DA	Еб	00			LDA	В	0,X	CLEAR FLAG BIT
129	01DC	CG	3C			LDA	В	#\$3C	LOW HOLD-NEG READY
130	01DE	E7	01			STA	В	1.X	BRING HOLD LOW
131	01E0	Eб	01		WATT71	T.DA	в	, 1.X	
132	01E2	2A	FC			BPI.	_	WATT71	
122	0154	<u>т</u> б	00				B	0 X	CLEAR FLAG BIT
12/	0156	20 26	36				D D	4¢26	UTCH HOLD-DOG DENDY
125			01				D D	#\$30 1 v	DETUDN HOLD HIGH
120	OIE0	E/	01	50		SIA	в		RETORN HOLD HIGH
130	OIEA	CE		BU				#ERRMSG	
137	OIED	BD	ΕU	/比		JSR		PDATAL	
138	01F0	CE	02	A8	CONT1	LDX		#CRLF	
139	01F3	BD	Ε0	7E		JSR		PDATA1	
140	01F6	7D	02	AE		TST		FORMAT	
141	01F9	2В	3F			BMI		SCINOT	
142	01FB	CE	00	22	FLOPNT	LDX		#\$22	FLOTING POINT NOTATION
143	01FE	Aб	00			LDA	А	0,X	INPUT MANTISSA SIGN DATA
144	0200	84	08			AND	А	#\$08	MASK BIT 4
145	0202	26	04			BNE		MINPNT	
146	0204	86	2.0			T'DA	А	#\$20	LOAD A SPACE
147	0206	20	02			BRA			
148	0200	86	בס ח2		MINDNT		л	#¢2D	TOND MINING
1/0	0200	00 70	2D 51	1		עסד	А	᠊ᡣᡪ᠌ᢩᡔ᠘᠘ ᡣ᠋ᡗᡎ᠋ᡎᢑᢑᢑ	
150	020A	00	ъ⊥	υт	ENTINIT	JOJK		OUTEER	FILMI CHARACIER
150		50	0.0		DLTND	TNX T D J	F	0. 17	
151	UZUE	上6	00			ЬΟΑ	в	U,X	
152	0210	C4	UF			AND	В	#ŞUF	
153	0212	E7	00			STA	В	0,X	
154	0214	C6	2F			LDA	В	#\$2F	
155	0216	ΕO	00			SUB	В	Ο,Χ	

CALC-1

156 157	0218 021A	D7 08	21		DIGLOP	STA INX	В	\$21	STORE DEC PT POSITION IND
158	021B	Aб	00			LDA	А	0,X	
159	021D	BD	E1	D1		JSR		OUTEEE	OUTPUT ASCII NUMBER
160	0220	9C	20			СРХ		\$20	TIME FOR DEC PT
161	0222	26	05			BNE		ENDCH1	
162	0224	86	2E			LDA	А	#\$2E	
163	0226	BD	E1	D1		JSR		OUTEEE	
164	0229	8C	00	2в	ENDCH1	СРХ		#\$2B	CHECK FOR LAST DIGIT
165	022C	26	EC			BNE		DIGLOP	GET NEXT DIGIT
166	022E	CE	02	A8		LDX		#CRLF	
167	0231	BD	ΕO	7E		JSR		PDATA1	PRINT CR/LF
168	0234	FE	A0	02		LDX		PARADR	
169	0237	7E	01	23		JMP		COMAND	
170	023A	96	22		SCINOT	LDA	А	\$22	SCIENTIFIC NOTATION
171	023C	84	08			AND	А	#\$08	LOOK FOR NEGATIVE MANTISSA
172	023E	26	04			BNE		NEGPNT	
173	0240	86	20			LDA	А	#\$20	SPACE IF NOT
174	0242	20	02			BRA		PRINT2	
175	0244	86	2D		NEGPNT	LDA	А	#\$2D	
176	0246	BD	E1	D1	PRINT2	JSR		OUTEEE	PRINT SIGN
177	0249	CE	00	23		LDX		#\$23	
178	024C	08			NUMLOP	INX			
179	024D	Aб	00			LDA	А	0,X	
180	024F	BD	E1	D1		JSR		OUTEEE	
181	0252	8C	00	24		СРХ		#\$24	LOOK FOR DEC PT DIGIT
182	0255	26	05			BNE		SKIPDP	
183	0257	86	2E			LDA	А	#\$2E	
184	0259	BD	E1	D1		JSR		OUTEEE	PRINT DEC PT
185	025C	8C	00	2B	SKIPDP	СРХ		#\$2B	CHECK FOR LAST DIGIT
186	025F	26	EΒ			BNE		NUMLOP	
187	0261	86	45			LDA	А	#\$45	
188	0263	BD	E1	D1		JSR		OUTEEE	PRINT AN E
189	0266	96	22			LDA	А	\$22	LOAD SIGN BYTE
190	0268	84	01			AND	А	#\$01	
191	026A	27	05			BEQ		SKPSGN	
192	026C	86	2D			LDA	А	#\$2D	
193	026E	BD	E1	D1		JSR		OUTEEE	PRINT A -
194	0271	96	20		SKPSGN	LDA	А	\$20	
195	0273	BD	E1	D1		JSR		OUTEEE	PRINT EXPONENT MSD
196	0276	96	21			LDA	А	\$21	
197	0278	BD	E1	D1		JSR		OUTEEE	PRINT EXPONENT LSD
198	027B	CE	02	A8		LDX		#CRLF	
199	027E	BD	ΕO	7E		JSR		PDATA1	PRINT CR/LF
200	0281	FΕ	A0	02		LDX		PARADR	
201	0284	7E	01	23		JMP		COMAND	
202	0287	0D			CLRSCN	FCB		\$0D,\$0A,\$	10,\$16,\$00
	0288	0A	10						
	028A	16	00						
203	028C	53				FCC		/SWTPC 680	00 CALC-1 CALCULATOR/
	028D	57	54						
	028F	50	43						
	0291	20	36						
	0293	38	30						

	0295	30	20			
	0297	43	41			
	0299	4C	43			
	029B	2D	31			
	029D	20	43			
	029F	41	4C			
	02A1	43	55			
	02A3	4C	41			
	02A5	54	4F			
	02A7	52				
204	02A8	0D		CRLF	FCB	\$0D,\$0A,\$00,\$00,\$00,\$04
	02A9	0A	00			
	02AB	00	00			
	02AD	04				
205	02AE	00		FORMAT	FCB	\$00
206	02AF	00		SMDC	FCB	\$00
207	02B0	0D		ERRMSG	FCB	\$0D,\$0A,\$00,\$00
	02B1	0A	00			
	02B3	00				
208	02B4	45			FCC	/ERROR/
	02B5	52	52			
	02B7	4F	52			
209	02B9	04			FCB	\$04
210	E07E			PDATA1	EQU	\$E07E
211	A002			PARADR	EQU	\$A002
212	E1AC			INEEE	EQU	\$E1AC
213	E1D1			OUTEEE	EQU	\$E1D1
214	A002				ORG	\$A002
215	A002	80	0C		FDB	\$800C
216					END	START

NO ERROR(S) DETECTED

CALC-1

TSC ASSEMBLER PAGE 7

SYMBOL TABLE:

CHRCHK	014C	CLRSCN	0287	COMAND	0123	CONFLG	01C9	CONT1	01F0
CONT50	0158	CRLF	02A8	DIGLOP	021A	DPIND	020D	ENDCH1	0229
ERRMSG	02B0	FLOPNT	01FB	FORMAT	02AE	INEEE	E1AC	INITAL	0110
LODADR	018C	LOOP1	0183	MINPNT	0208	NEGPNT	0244	NUMLOP	024C
OUTANS	0193	OUTCHR	01D0	OUTDIG	01B5	OUTEEE	E1D1	OUTINS	0135
PARADR	A002	PDATA1	E07E	POINT	012B	POINT2	01C5	PRINT1	020A
PRINT2	0246	SCINOT	023A	SETMEM	017B	SKIP25	0165	SKIP75	0153
SKIPDP	025C	SKPSGN	0271	SMDC	02AF	START	0100	WAIT10	0141
WAIT3	01AB	WAIT30	01A1	WAIT70	01D2	WAIT71	01E0	ZERMEM	0174

			Table	I			
MM57109	Instruction	Description	Table	(*	Indicates	2-word	instruction)

CLASS	SUBCLASS	MNEMONIC	OCTAL OP CODE	FULL NAME	DESCRIPTION
Digit Entry		0	00	0	Mantissa or exponent digits. On first digit (d) the following
					occurs:
		1	01	1	$Z \rightarrow T$
		2	02	2	$Y \rightarrow Z$
		3	03	3	$X \rightarrow Y$
		4	04	4	$d \rightarrow X$
		5	05	5	See description of number entry on page 11
		6	06	6	
		7	07	7	
		8	10	8	
		9	11	9	
			12	Decimal Point	Digits that follow will be mantissa fraction.
		EE	13	Enter Exponent	Digits that follow will be exponent.
		CS .	14	Change Sign	Change sign of exponent or mantissa.
					$X_{\text{III}} = X_{\text{exponent}}$
					CS causes $-Xm \rightarrow Xm$ or $-Xe \rightarrow Xe$
					depending on whether or not an EE instruction was
					executed after last number entry initiation.
		PI	15	Constant 🗍	3.1415927 \rightarrow X, stack not pushed.
		EN	41	Enter	Terminates digit entry and pushes the stack. The argument entered will be in X and Y.
					$Z \rightarrow T$
					$Y \rightarrow Z$
					$X \rightarrow Y$
		NOP	//	No Uperation	Do nothing instruction that will terminate digit entry.
		HALI	17	Hait	External hardware detects HALT op code and generates $HOLD = 0$ before
					continuing. HALT acts as a NOP and may be inserted
					between digit entry instructions since it does not terminate
					digit entry.
Move		ROLL	43	Roll	Roll Stack,
			56	Pop	Pan Stack
		FOF	50	Fop	$Y \rightarrow X$
					$Z \rightarrow Y$
					$T \rightarrow Z$
					$O \rightarrow T$
		XEY	60	X exchange Y	Exchange X and Y. X ↔ Y
		XEM	33	X exchange M	Exchange X with memory. X ↔ M
		MS	34	Memory Store	Store X in Memory. $X \rightarrow M$
		MR	35	Memory Recall	Recall Memory into X. $M \rightarrow X$
		LSH	36	Left Shift Xm	X mantissa is left shifted while leaving decimal point in same position. Former most significant digit is saved in link digit is saved in link digit.
		RSH	37	Right Shift Xm	X mantissa is right shifted while leaving decimal point in
					after a left shift, is shifted into the most significant digit. Least significant digit is lost.

Table I

MM57109 Instruction Description Table (Continued)(* Indicates 2-word instruction)

CLASS	SUBCLASS	MNEMONIC	OCTAL OP CODE	FULL NAME	DESCRIPTION
Branch	Count	IBNZ	31	Increment memory and	$M + 1 \rightarrow M$. If $M = 0$, skip second instruction word. Otherwise, branch to address specified by second
		DBNZ	32	branch if $M \neq 0$ Decrement memory and branch if $M \neq 0$	Instruction word. $M - 1 \rightarrow M$. If $M = 0$, skip second instruction word. Otherwise, branch to address specified by second instruction word.
1/0	Multi-digit	IN*	27	Multidigit input to X	The processor supplies a 4-bit digit address (DA4-DA1) accompanied by a digit address strobe (DAS) for each digit to be input. The high order address for the number to be input would typically come from the second instruction word. The digit is input on D4-D1, using ISEL = 0 to select digit data instead of instructions. The number of digits to be input notation or floating point) and the mantissa digit count (See Data Formats and Instruction Timing). Data to be input s stored in X and the stack is pushed $(X \rightarrow Y \rightarrow Z \rightarrow T)$. At the conclusion of the input, DA4-DA1 = 0.
		OUT*	26	Multidigit output from X	Addressing and number of digits is identical to IN instruction. Each time a new digit address is supplied, the processor places the digit to the output on D04-D01 and pulses the R/W line active low. At the conclusion of output, D04-D01=0 and DA4-DA1=0.
1/0	Single- digit	AIN	16	Asynchronous Input	A single digit is read into the processor on D4-D1. ISEL = 0 is used by external hardware to select the digit instead of instruction. It will not read the digit until ADR = 0 (ISEL = 0 selects ADR instead of I_5), indicating data
					valid F2 is pulsed active low to acknowledge data just read.
1/0	Flags	SF1 PF1	47 50	Set Flag 1 Pulse Flag 1	Set F1 high, i.e. F1 = 1. F1 is pulsed active high. If F1 is already high, this results in it being set low
		SF2	51	Set Flag 2	Set F2 high, i.e. $F2 = 1$.
		PF2	52	Pulse Flag 2	F2 is pulsed active high. If F2 is ahead y high, this results in it being set low.
		PRW1	75	Pulse R/W 1	Generates R/W active low pulse which may be used as a strobe or to clock extra instruction bits into a flip-flop or register.
		PRW2	76	Pulse R/W 2	Identical to PRW1 instruction. Advantage may be taken of the fact that the last 2 hits of the PRW1 op code are 10 and the last 2 bits of the PRW2 op code are 01. Either of these bits can be clocked into a flip-flop using the R/W pulse.
Mode Control		TOGM	42	Toggle Mode	Change mode from floating point to scientific notation or vice-versa, depending on present mode. The mode affects only the IN and OUT instructions. Internal calculations are always in 8-digit scientific notation.
		SMDC*	30	Set Mantissa Digit Count	Mantissa digit count is set to the contents of the second instruction word (=1 to 8).
		INV	40	Inverse Mode	Set inverse mode for trig or memory function instruction that will immediately follow, Inverse mode is for next instruction only.

			1	Table I				
MM57109	Instruction	Description	Table	(Continued)	(*	Indicates	2-word	instruction)

CLASS	SUBCLASS	MNEMONIC		FULL NAME	DESCRIPTION
Math	F(X,Y)	+	71	Plus	Add X to Y. X + Y \rightarrow X On +, -, x, /, and YX instructions
					stack is popped as follows
					$Z \rightarrow Y$
					$ \rightarrow Z$
					$O \rightarrow I$ Former X. V are lost
		_	72	Minus	Subtract X from Y Y - X \rightarrow X I
		x	73	Times	Multiply X times Y, Y x X \rightarrow X
		/	74	Divide	Divide X into Y. Y / $X \rightarrow X$
		YX	70	Y to X	Raise V to X nower $YX \rightarrow X$
	F(X M)	INV+*	40 71	Memory Plus	Add X to memory $M + X \rightarrow M$
	. (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		10, 11	moniory r lao	On INV +, -, x, and / instructions, X, Y, Z and T are
					unchanged.
		INV-*	40, 72	Memory Minus	Subtract X from memory. M - $X \rightarrow M$
		INVx*	40, 73	Memory Times	Multiply X times memory. M x X \rightarrow M
		INV/*	40, 74	Memory Divide	Divide X into memory. M / $X \rightarrow M$
	F(X) Math	1/X	67	One Divided by X	1 / X \rightarrow X. On all F(X) math Instructions Y, Z, T and M
					are unchanged and previous X is lost.
		SORT	64	Square Root	$\bigvee X \to X$
		SQ	63	Square	$X^2 \rightarrow X$
		10X	62	Ten to X	$10^{\text{X}} \rightarrow \text{X}$
		EX	61	E to X	$e^X \rightarrow X$
		LN	65	Natural log of X	In $X \rightarrow X$
		LOG	66	Base 10 log of X	$\log X \to X$
	F(X) Trig	SIN	44	Sine X	$SIN(X) \rightarrow X$ On all $F(X)$ trig functions Y, Z, T and M are
					unchanged and the previous X is lost
		COS	45	Cosine X	$COS(X) \rightarrow X$
			46	Tangent X	$IAN(X) \rightarrow X$
			40, 44	Inverse sine X	$SIN^{-1}(X) \rightarrow X$
		INV COS*	40,4 5	Inverse cosine X	$COS^{-1}(X) \rightarrow X$
		INV TAN*	40,46	Inverse tan X	$TAN^{-1}(X) \rightarrow X$
		DTR	55	Degrees to radians	Convert X from degrees to radians.
		RTD	54	Radians to	Convert X from radians to degrees.
				degrees	
Clear		MCLR	57	Master Clear	Clear all internal registers and memory, initialize I/O
					control signals, MDC = 8, MODE floating point. (See
		FCLR	53	Error flag clear	$0 \rightarrow \text{Error flag}$
Branch	Test	JMP*	25	Jump	Unconditional branch to address specified by second
Branon	1001	0	20	oump	instruction word. On all branch instructions, second word
					contains branch address to be loaded into external PC
		TJC*	20	Test jump	Branch to address specified by second instruction word if
				condition	JC (16) Is true(=1). Otherwise, skip over second word
		TERR*	24	Test error	Branch to address specified by second instruction word if
					An error flag is true (=1) Otherwise, skip over second word
					using the automatic error recovery scheme dealt with in
					the section on Error Control
		TX=0*	21	Test X = 0	Branch to address specified by second instruction word if
					X = 0. Otherwise, skip over second word.
		TXF*	23	Test X < 1	Branch to address specified by second instruction word if
					X < 1. Otherwise, skip over second word. (i.e. branch if X is a traction)
			22	Test X < 0	Right to address specified by second instruction word if
			~~	1001750	X < 0. Otherwise, skip over second word.

Table II

I ₄ -I ₁	I ₆ I ₅							
	0	1	2	3				
0	0	TJC*	IN V	XEY				
1	1	TX=O*	EN	EX				
2	2	TXLTO*	TOG M	10X				
3	3	TXF*	ROLL	SQ				
4	4	TERR*	SIN(SIN-1)	SORT				
S	5	JMP	COS(COS-1)	LN				
6	6	OUT*	TAN(TAN-1)	LOG				
7	7	IN*	SF1	1,X				
8	8	SMDC*	PF1	YX				
9	9	IBNZ*	SF2	+ (M+)				
A	DP	DBNZ*	PF2	- (M-)				
В	EE	XEM	ECLR	x(Mx)				
С	CS	MS	RTD	/(M/)				
D	PI	MR	DTR	PRW1				
Е	AIN	LSH	POP	PRW2				
F	HALT	RSH	MCLR	NOP				

MM57109 Instruction Summary Table (* = 2-word instruction)

Table III - CALC-1 Instruction to ASCII Character Lookup Table

FULL NAME	HEX OP CODE	MNEMONIC	ASCII CHARACTER
0	00	00	0
1	01	01	1
2	02	02	2
3	03	03	3
4	04	04	4
5	05	05	5
6	06	06	6
7	07	07	7
8	08	08	8
9	09	09	9
Decimal Point	OA	DP	
Enter Exponent	OB	EE	Е
Change Sign	OC	CS	Z
Constant PI	OD	PI	Ρ
Asynchronous Input	OE	AIN	
Halt	OF	HALT	
Test Jump	10	TJC	
Test X=0	11	TX=0	
Test X<0	12	TXLTO	
Test 1 X 1<1	13	TXF	
Test Error	14	TERR	
Jump	15	JMP	
Multidigit Out	16	OUT	
Multidigit In	17	IN	
Set Mantissa Digit Count	18	SMDC	М
Inc & Branch if M≠0	19	IBNZ	
Dec & Branch if M=0	la	DBNZ	
X Exchange M	1B	XEM	А
Memory Store	1C	MS	G
Memory Recall	1D	MR	Н
Left shift Xm	lE	LSH	
Right shift Xm	1F	RSH	
Inverse Mode	20	INV	I
Enter	21	EN	
Toggle Mode	22	TOGM	
Roll Stack	23	ROLL	0
Sine X	24	SIN	S
Cosine X	25	COS	C
Tangent X	26	TAN	Т
Set Flag 1	27	SF1	
Pulse Flag 1	28	PF1	
Set Flag 2	29	SF2	
Pulse Flag 2	2A	PF2	
Error Clear	2в	ECLR	Y
Radians to Degrees	2C	RTD	F
Degrees to Radians	2D	DTR	D
Рор	2E	POP	
Master Clear	2F	MCLR	Cntrl X

HEX OP CODE	MNEMONIC	ASCII CHARACTER
30	XEY	Х
31	EX	W
32	1QX	U
33	SQ	Q
34	SQRT	V
35	IN	Ν
36	LOG	В
37	1/X	R
38	YX	n
39	+	+
3A	-	-
3B	k	
3C	/	/
3D	PRW1	
3E	PRW2	
3F	NOP	
	HEX OP CODE 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3F	HEX OP CODEMNEMONIC30XEY31EX321QX33SQ34SQRT35IN36LOG371/X38YX39+3A-3Bk3C/3DPRW13EPRW23FNOP

Table III - CALC-1 Instruction to ASCII Character Lookup Table

			2					2		
Memory	Location	DP POS	D7	D6	D5	D4	D3	D2	D1	D0
20			0	0	0	0	0	0	0	0
21			0	0	1	0	0	0	0	0
22			0	0	1	1	Sm	0	0	0
23			0	0	1	1	Dp	POS		
24		OB	0	0	1	1	BCD	digit(left ı	most)
25		OA	0	0	1	1	BCD	digit		
26		09	0	0	1	1	BCD	digit		
27		08	0	0	1	1	BCD	digit		
28		07	0	0	1	1	BCD	digit		
29		06	0	0	1	1	BCD	digit		
2A		05	0	0	1	1	BCD	digit		
2B		04	0	0	1	1	BCD	digit(right	most)

Table IV - Floating Point Mode OUT data storage

Table IQ - Scientific Mode OUT data storage

Memory Location	D7	DG	D5	D4	D3 D2 D1 D0
20	0	0	1	1	Most significant exp. digit
21	0	0	1	1	Least significant exp. digit
22	0	0	1	1	Sm 0 0 Se
23	NOT	USED			
24	0	0	1	1	BCD digit (left most)
25	0	0	1	1	BCD digit
26	0	0	1	1	BCD digit
27	0	0	1	1	BCD digit
28	0	0	1	1	BCD digit
29	0	0	1	1	BCD digit
2A	0	0	1	1	BCD digit
2B	0	00	1	1	BCD digit (left most)

Notes:

- If the Mantissa significant Digit Count (set by SMDC instruction, initially
 8) is less than 8, the unused digit memory locations will be filled with
 ASCII spaces (20₁₆)
- 2) Sm is the sign of the mantissa. 0 = positive 1 = negative
- 3) Se is the sign of the exponent 0 = positive 1 = negative
- 4) DP POS is the decimal point position. The decimal point should follow the, digit whose address is stored in memory location 24 when in the Scientific mode. In the Floating Point mode AND the data in memory location 23 with OF and subtract the result from 2F and OR this with 20. The decimal point should follow the digit whose address is given by the result.

	Tab.	le \	7 –	ASCII	to	CALCULAT	OR	INSTRUCTIC	N	LOOKUP	TABLE
L	SB	MSE	3	0	1	2	3	4	5	6	7
0				OF	0F	21	00	0F	0D	OF	0D
1				OF	0F	OF	01	1B	33	OF	33
2				OF	0F	OF	02	36	37	36	37
3				OF	0F	OF	03	25	24	25	24
4				OF	0F	OF	04	2D	26	2D	26
5				OF	0F	OF	05	0B	32	0B	32
б				OF	0F	OF	06	2C	34	2C	34
7				OF	0F	OF	07	1C	31	1C	31
8				OF	0F	OF	08	1D	30	1D	30
9				OF	0F	OF	09	20	2в	20	2B
А				OF	0F	3B	0 F	0F	0C	OF	0C
В				OF	0F	39	0 F	0F	0F	OF	0F
С				OF	0F	OF	0 F	' 0F	0F	OF	0F
D				2F	0F	3A	0 F	18	0F	18	0F
Е				OF	0F	OF	22	35	38	35	0F
F				OF	0F	3C	0F	23	0F	23	OF

Example: An ASCII P is a hex 50 which points in the table to a OD which is the constant PI instruction for the calculator chip

TABLE VI- ERROR CONDITIONS

The ERROR flag on the calculator chip is set when:

- 1) LN X when X < 0 LOG X when X < 0
- 2) Any result < 10^{-99} Any result > 10^{99}
- 3) TAN 90° , 270° , 450° , etc.
- 4) SIN X, COS X, TAN X when $|X| \ge 9000^{\circ}$
- 5) $SIN^{-1} X$, $COS^{-1} X$ when $|X| > 1 |X| < 10^{-50}$
- 6) SQRT X when X < 0
- 7) dividing by 0
- 8) Outputting a number in floating point mode if the number of mantissa digits to the left of the decimal point is greater than the mantissa digit count.

