| NTRCDUCT1 ON

The Motorola M6800 M croconputer System of standard LSI (Large Scal e
Integration) devices permits the systens designer to configure and connect a
total systemwi th a mninumanount of tinme and effort. The MZ6800
M croprocessing Unit (MPU) forns the nucleus of the system LSI nodul es
avai | abl e which may be used to configure a total systemin conjunction with
t he MC6800 MPU, include: 1) MZ6810 Random Access Menory (RAM; 2) MC6830 Read
Only Menory (ROM; 3) MC6820 Peripheral Interface Adapter (PIA), and 4)

MZ6850 Asynchronous Comuni cations Interface Adapter (ACA).

The MPU communicates with the rest of the systemvia a 16 bit
address bus and an 8 bit data bus. The 16 bit address bus provides the MPU
the capability of addressing up to 64K. The 8 bit data bus is bi-directiona
in that data is transferred both into the MPU or out of the MPU over the sane
bus. Aread/wite (RFRW line is provided to allow the MPU to control the
direction of data transfer.. Since the sane bus is used for both data into

the MPU or out of the MPU, a separate 8 line bus is saved.

O her features of the Me800 systeminclude a single +5 volt supply,
operation at clock rates from 100 kil ohertz to 1 negahertz, plus hardware and

software interrupt capability.

MPU ADDRESS BUS
(16 LINES)
]
I_ DATA BUS
| — I— — o— | (8 LINES)

RAM ROM PIA ACIA

D1526

MPU- 2
M croprocessi ng Unit (MC6800)

The nucl eus of the M6800 M crocomputer Fam ly is the mcroprocessing

unit (MPU). The MPU is enclosed in a 40 pin package as shown bel ow

GROUND — 7 0 - RESET
GO/HALT — ACCA — THREE-STATE CONTROL
PHASE 1 CLOCK = — NOT USED
INTERRUPT REQUEST ~—— ACCB — PHASE TWO CLOCK
VALID MEMORY ADDRESS — 5 — DATA BUS ENABLE
NON-MASKABLE INTERRUPT — X — NOT USED
BUS AVAILABLE = 15 0 — READ/WRITE LINE
+5 VOLT POWER —f PC — DO)
A0 — 15 0 — D1
Al = sp — D2 g DATA
A2 = 7 0 b D3 LINES
A3 — cC — D4
A4 — — D5
A5 = — D6
ADDRESS < A6 = — D7
LINES A7 = — A } ADDRESS
A8 = L A4 LINES
A9 — — A13
A0 —f — A12
u\n — — GROUND

Features included in the MPU are:

1. Two accumul at ors (ACCA and ACCB)
2. One index register (X
3. One program counter register (PC

4. One stack pointer register (SP)

Accumul ators

One condition code register

72 instructions

Fi ve addressi ng nodes

MPU- 3

(CO)

System cl ock range of 100 kilohertz to 1 negahertz

Programinterrupt capability

The MPU contains 2 accunul ators desi gnated ACCA and ACCB. Each

accunul ator is 8 bits (one byte)

fromthe arithmetic logic unit.

accunmul ators are:

ABA

ADC

ADD

AND

ASL

ASR

BIT

CBA

DAA

DEC

ECR

Add accumul ator A to accunul at or

Add with carry

Add without carry
Logi cal AND
Arithmetic shift left
Arithnmetic shift right
Bit test

Conpare accunul ators
Cl ear

Conpar e

Conpl enment

Deci mal adj ust ACCA
Decr ement

Excl usi ve OR

long and is used to hold operands and data

I nstructions which involve one or both

B

I NC —
LDA -
LSR -

NEA -

PSH -

PUL -

SBA -
SBC -
STA -

SUB -

TAB -

TAP -

TBA -

TPA -

TST -

| ndex Regi ster

The index register (X) is a 16 bit

| ncr ement

Load accumul at or

Logi cal shift right
Negat e

I ncl usi ve OR

Push data onto stack
Pul | data from stack
Rotate | eft

Rotate ri ght

Return from i nterrupt
Subtract accumul ators
Subtract with carry
St ore accunul at or
Subt r act

Sof tware interrupt

Transfer from accunmul ator A to accumnul at or

B

Transfer from accunulator A to processor condition

codes register

Transfer from accumnul at or

B to accunul ator A

Transfer from processor condition codes register to

accumul ator A
Test

Wait for interrupt

regi ster which is

primarily used to store a nenory address in the |Indexed node of nenory

addressing. The index register

I nstructions which involve the index register are:

may be decrenent ed

MPU- 4

incremented and stored.

MPU- 5

CPX - Conpare index register

DEX - Decrenent index register

I NX - Increment index register

LDX - Load index register

RTI - Return frominterrupt

STX - Store index register

SW - Software interrupt

TSX - Transfer stack pointer to index register
TXS - Transfer index register to stack pointer

WAI - Wit for interrupt

Pr ogr am Count er

The program counter (PC) is a 16 bit register that contains the
address of the next byte to be fetched from nmenory. Wen the current val ue of
t he program counter is placed on the address buss, the programcounter wll

be incremented automatically.

St ack Poi nter

The Stack Pointer (SP) is a 16 bit (2 byte) register that contains a
begi nning address, normally in RAM where the status of the MPU registers may
be stored when the MPU has other functions to perform such as during an
interrupt or during a Branch to Subroutine (BTS). The address in the stack
pointer is the starting address of sequential nenory |ocations in RAM where
MPU status registers will be stored. The status of the MPUwi |l be stored in

the RAM as foll ows:

St ack Pointer Address . contents of PCL
Stack Pointer Address-1 : contents of PCH
Stack Pointer Address-2 : contents of |XL
Stack Pointer Address-3 : contents of |XH

St ack Pointer Address-4 : contents of ACCA

MPU- 6
St ack Pointer Address-5 : Contents of ACCB

Stack Poi nter Address-6 . Contents of CC
After the status of each register is stored on the stack, the Stack
Pointer will be decremented. Wien the stack is unloaded (status of registers
restored), the status of the last register on the stack will be the first

register that is restored.

Condi ti on Code Register (CQ)

The condition code register is an 8 bit register. Each individua
bit may get set or get cleared fromexecution of an instruction. To see how
each instruction effects the condition code register, refer to the M800
programmi ng rmanual . The primary use of this register is execution of the
conditional branch instruction. Bit 6 and 7 are not used and remain at |ogic

wyow

CONDITION CODE REGISTER
7 6 5 4 3 2 1 0

I {1 [H|T IN|Z|V|C

BI T NO. FUNCTI ON

C (Carry-Borrow Test)
V (Overfl ow Test)

Z (Zero Test)

N (Negative Test)

I (Interrupt Mask Test)
H (Half Carry Test)

a b~ wdNDEFL O

Car ry- Borr ow.

Over fl ow

Zero:

Negat i ve:

Interrupt Mask:

Hal f-Carry:

MPU- 7

For addition, the carry-borrow condition code (C) in the
zero bit position, represents a carry. This bit gets set
(C=1) to indicate a carry, and is reset (C=0) if there is

no carry.

For subtraction, the Cbit is set (C=1) to indicate a

borrow and is reset (C=0) to indicate there was no borrow.

The V bit (bit 1) of the condition code register is set
(V=1) when two's conplenment overflow results from an
arithmetic operation, and is reset (V=0 if two's

compl enent overfl ow does not occur.

The Z bit (bit 2) of the condition code register is set
(Z=1) if the result of an arithnetic operation is zero, and

is reset (Z=0) if the result is not zero.

The N bit (bit 3) of the condition code register is set
(N=1) if bit 7 of an arithmetic operation is set (equal to
1). This indicates that the two's conpl enent nunber,
represented by the bit pattern of the result, is negative.
The N bit is reset (N=0) if bit 7 of the arithnetic result

is equal to O.

If this I bit (bit 4) is set (1=1), the MPU cannot respond

to an interrupt request from any peripheral device.

The half carry bit H (bit 5) of the condition code register
is set (H=1) during execution of any of the instructions

ABA, ADC, or ADD, if there is a carry frombit position 3 to
bit position 4. The half carry is reset (H=0) during these

operations, if there is no carry frombit position 4.

MPU- 8
MPU Si gnal Descriptions

1. READWRI TE (R'W:

This output line is used to signal all devices external to
the MPU that the MPUis in a read state (RRW= High) or a
wite state (RRW= Low). The normal standby state of this
i ne when no external devices are being accessed is a high
state. This line is three-state. Wen three-state goes

high, this line enters the high inpedance node.

2. VALI D MEMORY ADDRESS(VMA):

This output line, (when in the high state) tells al
devices external to the MPU that there is a valid address
in the address bus. For RAMs and ROM's, this |line should
be ANDed with 12 cl ock and used as one of the enables. For
PIA's, this line should be ANDed with one of the PIA

address lines. This signal is not three-state.

3. DATA BUS ENABLE(DBE) :

This signal will enable the data bus drives when in the
high state. This input is normally the phase 2 (12) cl ock
During the high state, it will permt data to be output
during a wite cycle. During an MPU read cycle, the data

bus drives will be disabled internally.

4. | NTERRUPT REQUEST(IRQ:

This input fromthe PIA' s requests that an interrupt
sequence be generated within the nmachine. The processor
will wait until it conpletes the current instruction that

i s being executed before it recogni zes the request. At that
time, if the interrupt mask bit in the Condition Code

Regi ster is not set (interrupt masked), the machine wll

begin an interrupt sequence. The Index Regi ster, Program

MPU- 9

Counter, Accumul ators, and Condition Code Register are
stored away on the stack. Next the MPUw |l respond to the
i nterrupt request by setting the interrupt mask bit high so
that no further interrupts may occur. At the end of the
cycle, a 16-bit address will be | oaded that points to a
vectoring address which is located in nmenory | ocations n-6
and n-7 where n is the highest ROM address. An address

| oaded at these |ocations causes the MPU to branch to an

interrupt routine in nmenory.

5. Phase One (d)& Phase (&2)d ocks:

6. Restart

(RES):

These two pins are used or a two phase non-overl appi ng

clock that runs at the V DD voltage |evel.

These clocks run at a rate up to 1 nmegahertz.

RESTART (RES)--This input is used to start the MPU from a
power down condition, resulting froma power failure or an
initial start-up of the processor. If a positive edge is
detected on the input, this will signal the MPU to begin
the restart sequence. This will restart the MPU and start
execution of a routine to initialize the processor. Al the
hi gher order address lines will be forced high. For the
restart, the last 2 nenory |ocations in the |last ROM
(n&n-1) will be accessed, whereby an address is stored
which is the address to be | oaded in the program counter
which tells the processor where program execution is to

begi n.

7. NON MASKABLE | NTERRUPT(NM):

This input requests that a nonmask-interrupt sequence be

generated within the processor. As with the Interrupt

8. Co/Halt(GH):

MPU- 10

Request signal, the processor will conplete the current
instruction that is being executed before it recogni zes the
NM signal. The interrupt mask bit in the Condition Code
Regi ster has no effect on NM. The Index Register, Program
Counter, Accumul ators, and Condition Code Register are
stored away on the stack. At the end of the cycle, a 16-bit
address will be |l oaded that points to a vectoring address
which is located in menory locations n-2 and n-3. An
address | oaded at these |ocations causes the MPU to branch

to an nonmaskabl e interrupt routine in nenory.

VWhen this input is in the high state, the machine wll
fetch the instruction addressed by the program counter and
start execution. Wien low all activity in the nmachine wll
be halted. This input is level sensitive. In the halt node,
the machine will stop at the end of an instruction. Bus
Available will be at a logic "1" level. Valid Menory
Address will be at a logic "0" and all other three-state

lines will be in the three-state node.

The halt Iine nust go low with the | eadi ng edge of phase
one to insure single instruction operation. If the halt
line does not go low with the | eading edge of phase one,
one or two instruction operations may result, depending on
when the halt line goes lowrelative to the phasing of the

cl ock.

9. BUS AVAI LABLE (BA):

The Bus Avail able signal will normally be in the | ow state.
VWhen activated, it will go to the high state indicating

that the MPU has stopped and that the address bus is

10.

11.

12.

THREE- STATE

MPU- 11
available. This will occur if the GOHALT line is in the

Halt (low) node or the 14PUis in a "Wiit" state as the

result of sonme instruction, such as the WAl instruction

CONTROL: (TSC)

ADDRESS BUS

This input causes all of the address lines and the

Read/ Wite line to go into the off or high inpedance state.
The Valid Menory address and Bus Available signals will be
forced low. The data bus is not affected by TSC and has its
own enable (Data Bus Enable). In DVA applications, the
Three-State Control |ine should be brought high on the

| eadi ng edge of the Phase One O ock. The 11 cl ock nust be
held in the high state for this function to operate
properly. The address bus will then be avail able for other
devices to directly address menory. Since the MPU is a
dynami c device, it nust be refreshed periodically or

destruction of data will occur.

(AQ AL5) :

Si xteen pins are used for the address bus. The outputs are
three-state bus drivers capable of driving one standard TTL

| oad and 130pf at 1 Megahertz.

VWhen the output is turned off, it is essentially an open
circuit. This permts the MPU to be used in DVA

appl i cations.

DATA BUS (DO D7) :

Ei ght pins are used for the data bus. It is bi-directional
transferring data to and fromthe nmenory and peri phera
devices. It also has three-state output buffers capabl e of

driving one standard TTL | oad and 130pf at 1 Megahertz.

MPU- 12

M croprocessor Instruction Set -- Al phabetic Sequence

ABA Add Accunul at ors

ADC Add with Carry

ADD Add

AND Logi cal And

ASL Arithmetic Shift Left
ASR Arithmetic Shift Right

BCC Br anch
BCS Br anch
BEQ Branch
BGE Br anch
Zero

Carry O ear
Carry Set
Equal to Zero

i f
i f
i f
if Greater or Equal

BGT Branch if G eater than Zero

BHI Branch i f Hi gher
BIT Bit Test
BLE Branch if Less or Equal

BLS Branch if Lower of Sane
BLT Branch if Less than Zero
BM Branch i f M nus

BNE Branch if Not Equal to Zero

BPL Branch if Plus

BRA Branch Al ways

BSR Branch to Subroutine
BVC Branch if Overfl ow C ear
BVS Branch if Overfl ow Set

CBA Conpar e Accunul at ors
CLC Clear Carry

CLI Cl ear Interrupt Msk
CLR C ear

CLV Cl ear Overflow

CMP Conpar e

coMm Conpl enent

CPX Conpare | ndex Register

DAA Deci mal Adj ust
DEC Decr enent

DES Decrenment Stack Pointer
DEX Decrenent | ndex Register

FOR Excl usi ve OR

I NC I ncrenent

I NS
I NX

JMP
JSR
LDA
LDS
LDX
LSR

NEG

NOP

ORA
PSH
PUL
ROL
ROR
RTI

RTS

SBA
SBC
SEC
SEI

SEV
STA
STS
STX
SuUB
SW

TAB
TAP

TBA
TPA

TST
TSX

TXS

I ncrenent Stack Pointer
I ncrement | ndex Register

Junp

Junmp to Subroutine
Load Accumul at or
Load Stack Pointer
Load I ndex Regi ster
Logi cal Shift Right

Negat e
No Operation

I ncl usi ve OR Accunul at or
Push Dat a

Pul | Dat a

Rot ate Left

Rot ate Ri ght

Return from I nterrupt
Return from Subroutine

Subtract Accumnul ators
Subtract with Carry
Set Carry

Set Interrupt Mask
Set Overfl ow

Store Accunul at or
Store Stack Register
Store Index Register
Subt r act

Software I nterrupt

Transfer Accunul ators
Transfer Accumul ators to
Condi ti on Code Reg.
Transfer Accunul ators
Transfer Condition Code
Reg. to Accumul at or
Test

Transfer Stack Pointer
to I ndex Register
Transfer | ndex Register
to Stack Pointer

Wait for Interrupt

MPU- 13

Hardware Interrupts

VWhat happens when the MPU gets a hardware interrupt? After it has been
determ ned that the interrupt is not non-maskabl e, the MPU checks the status
of the mask bit (bit 4 of the condition code register). If the mask bit is
set, the main programcontinues until a CLI (clears bit 4 of condition code
register) instruction is executed, after which time the MPU will honor an
interrupt by going to the stack pointer (SP) register and fetch an address
which will be the 1st address in RAM where the status of the MPU registers
wi |l be stored during servicing of the interrupt.

SP : contents of program counter | ow
SP-1 : contents of program counter high
SP-2 : contents of index register |ow
SP-3 : contents of index register high
SP-4 . contents of accunulator A

SP-5 . contents of accunul ator B

SP-6 : contents of condition code register

The address in the stack pointer register is determ ned by the
pr ogr anmer .

After the contents of the MPU registers have been stored in the stack
the mask bit is set thus preventing any further interrupts frominterfering
with the MPU until the program executes a CLI instruction. Next the MPU
hardware automatically | ooks at addresses FFF8(M5) & FFF9 (LS) for the
address of the poling routine to find out where the interrupt cane from and
what action to take.

After the interrupt has been serviced and an RTI instruction is
executed, the stack, which contains the status of the registers before the
interrupt, is unloaded in reverse order, i.e. the condition code register is
| oaded first, then accumulator B is restored, etc. Wien the regi sters have
been restored to their status before the interrupt, the processor continues
as though not hi ng happened.

The total story of interrupts is shown on the next two pages in the
formof flow charts

MPU- 14

INTERRUPT FLOW CHART

SOFTWARE WAIT FOR
INTERRUPT INTERRUPT ,“NATF;%";SE,‘E
(swi) (WAI)
YES NON:-
MASKABLE
CONTINUE
MAIN PROGRAM
v v v
"sp-6 | CONDITION CODE
STACK MPU | SP5 | ACCUMULATOR B
REGISTER -
CONTENTS SP-4 ACCUMULATOR A
sP-3 | INDEX REGISTER (MS)
sP-2 | INDEX REGISTER (LS)
sP-1 | PROGRAM COUNTER (MS)
P
SET MASK sp ROGRAM COUNTER (LS)
(CCR4)
HARDWARE (MS) FFF8
HARDWARE (LS) FFF9
SOFTWARE (MS) . FFFA , _ -
SOFTHARE {LS) FFFB LOAD INTERRUPT
NON-MASKABLE (MS) FFFC VECTOR INTO
PROGRAM
NON-MASKABLE (LS) FFFD COUNTER
RESTART (MS) FFFE
RESTART (LS) FFFF *
INTERRUPT

PROGRAM

MPU- 15
SUMVARY COF MPU OPERATI ON

The MPU requires a two phase symmetrical, TTL conpati bl e,

nonover | appi ng clock. During the first phase of the clock (4 high) an

address will be placed on the address bus by the MPU. During the second phase

of the clock (@& high), the bidirectional data bus will be active. The first

byte of an instruction enters the MPU and is transferred into an internal
instruction register and decoded by the MPU. The MPU will then contain the

i nformati on needed to read in an additional one or two bytes of programis
necessary. Once the entire instruction is read into the MPU (one, two or
three bytes) the instruction is then executed. The MPU then reads in the next
sequential byte in the programand places it again in the instruction

regi ster. The programw || sequentially be executed in this manner unless a
branch or junp instruction changes the value of the programcounter. If this
occurs, the next instruction to be executed is determ ned by the new program

count er val ue.

If an interrupt or reset occurs during this process, the program
counter value will also be changed. The new program counter value is
determ ned by the highest eight nenory locations that are reserved for reset

and interrupt vectors.

In the case of interrupt, the stack pointer is used to store the
contents of the internal registers necessary to return to the program
location prior to the interrupt. This happens when the interrupt program
exits by an RTI (Return frominterrupt instruction). Simlarly, the stack
pointer is used to store the program counter value when a JSR (Junp to
Subroutine) or BSR (Branch to Subroutine) instruction occurs. The program
counter returns to its original value when an RTS (Return from Subroutine)
instruction occurs. The stack pointer value is set by an LDS (Load Stack

Poi nter) instruction.

MPU- 16

RESET SEQUENCE

1. Wile HALT is high, RESET goes |low for at |east eight cycles of 4, &

during which all internal registers are cleared and interrupt bit (I) in

CC is set.

2. Data at FFFE | oads into PCH

3. Data at FFFF | oads into PCL.

4. PC contents go out on ADRS bus during ¢ .

5. Contents of cell addressed enters instruction register during and is
decoded as first instruction.

6. If two or nore byte instruction, additional bytes enter MPU for execution

If not, go to next step.

7. After execution, step 5 is repeated for subsequent instructions.

MPU- 17

| RQ SEQUENCE

1. If bit "I" in condition code register is not set (I = 0) and | RQ goes | ow
for at |east one @ cycle, the I RQ sequence will be entered.

2. After conpletion of the current instruction, internal registers PC X A
B and CCwill be stored in RAM at the address indicated by the stack
poi nter in descending |locations (7 bytes in all).

3. The IRQ mask (bit I =1) is set.

4. Data at FFF8 gets | oaded into PCH

5. Data at FFF9 gets | oaded into PCL.

6. PC contents go out on address bus during

7. Contents of call addressed enters instruction register during @& and is
decoded as first instruction of interrupt routine.

8. If it is a nore than 1 byte instruction, additional bytes enter MPU for
execution. If not, go to next step.

9. After execution, step 5 is repeated for subsequent instructions. This | oop

is repeated until the instruction "RTI" is executed.

MPU- 18

NM SEQUENCE

1. If NM goes |low for at |east one @ cycle, the MPUW Il wait for
conpl etion of current instruction.

2. The internal registers PC, X, A, Band CCwill then be stored in RAM at
t he address indicated by the stack pointer in descending |ocations (7

bytes in all).
3. The IRQ (bit I =1) mask is set.
4. Data at FFFC is |oaded into PCH
5. Data at FFFD is | oaded into PCL.

6. PC contents go out on ADRS bus during @.

7. Contents of cell addressed enters instruction register during & and is
decoded as first instruction of NM subroutine.

8. If two or nore byte instruction, additional bytes enter MPU for execution.

If not, go to next step.

9. After execution, Step 5 is repeated for subsequent instructions. This | oop

is repeated until the instruction "RTI" is executed.

RTI EXECUTI ON

1. The contents of the stack are | oaded back into the MPU. (unw nds)

2. The contents of the PC go out on the address bus to fetch the first byte

of the next instruction.

MPU- 19

SW | NSTRUCTI ON

1. Contents of the MPU registers PC, 1X, ACCA, ACCB and CC are stored in
RAM at the address indicated by the stack pointer in descending |ocation

(7 bytes in all).
2. The 1RQ mask (bit I = 1) is set.
3. Data at FFFA gets | oaded into PCH
4. Data at FFFB gets | oaded into PCL

5. PC contents go out on address bus during 9.

6. Contents of cell addressed enters instruction register during @& and is
decoded as first instruction of SW subroutine.

7. If it is a nore than one byte instruction, additional bytes enter MPU

for execution. If not, go to next step.

8. After execution, Step 6 is repeated for subsequent instructions. This

|l oop is repeated until the instruction "RTI" is executed.

MPU- 20

Nunber Systens

Everyone is quite famliar with the base 10 nunmber systemi.e. 0, 1
2, 3, 4, 5 6, 7, 8, &9, since this is the systemwe all use day to day. Let
us review a typical nunber, say 2743, and see what it really nmeans. The | east
significant digit (LSD) is 3 and the nost significant digit (MSD) is 2. Since

we are tal king about a base 10 nunber, the nunmber 2743 really is

3x100 + 4x101 + 7x102 + 2x103

3x1 + 4x10 + 7x100 + 2x1000

3 + 40 + 700 + 2000

2743.

In digital conputers, base 10 numbers are represented in binary
form i.e. 1's & 0's. Lets take a base 10 nunmber and convert it to a binary
(base 2) number. A method of doing this is known as "repeated division by ?2".

The base 10 nunber of 47 is converted to binary as shown bel ow

23
2|47 R=1
11
2|23 R=1
5
2|11 R=1
2
2|5 R=1 101111,
2
212 R=0

0
211 R=1

Converting 101111, back to our base 10 nunber is done in the sane

manner as above

MPU- 21

Ix20 + 1x21 + 1x22 + | x23 + 0x24 + 1x2°
1x1 + 1x2 + 1x4 + 1x8 + 0x16 + 1x32
1 + 2 + 4 + 8 + 0 + 32
4710

1011115

In general, converting froma nunber in any base to a nunber in base

10 i s acconplished as foll ows:
(Ag BO + Ay BL + A, B2 + Ag B3 + Ay B -- -- -- - A, BY)
where B is the base of the nunber systemand Ais the particular digit in the

original nunber corresponding to its position to the left of the deci mal
point. On the exanple just conpleted, (101111). Ag =1, A =1, Ao =1, A3 =
1, A, =0, &Ag =1 and B = 2 (base 2).

Anot her base which is very convenient in digital conputers is base
8, since base 8 is really a convenient way of representing base 2. Lets
illustrate by converting a base 10 nunber to base 8 & base 2. Let's convert

61 in base 10 to a nunber in base 8 and a nunber in base 2. By continuous

di vi si on:

7
8|61 R=5

217 =1 111101,

First lets prove that 75g & 1111015 are really equal

1111015

75g

Noti ce that

5x80+ 7x8l
5x1 + 7x8
5 + 56
6110

1x20 + 0x21 + 1x22 + 1x23 + 1x24 + 1x2°
1x1 + Ox2 + 1x4 + 1x8 + 1x16 + 1x32
1 + 0 + 4 + 8 + 16 + 32
6110

to 6110.

MPU- 22

if we take the base 8 nunber of 75 and convert each

digit to base 2, we have the same nunber as when we converted the base 10

nunber

to base 2.

. €.

Convert 7 to base 2

217 R=1

2[3 R=1
21 =1 1115

Convert 5 to base 2

2
2|5 R=1

1
212 R=0

21 =1 1015

MPU- 23
Therefore 75g - 111101 which is the sane pattern of 1's & 0's as we

got fromconverting frombase 10 to base 2. Wiat this really says that it is
easier to convert any base 10 number to base 8 by continuous division, and

then convert each digit of the base 8 nunber to base 2.

Let's [ook at another exanple. Convert 1831g to base 8 & to base 2.

22
8| 183 R=7
2

8| 22 =6 267g

91
2183 R=1
45
2191 R=1
22
2|45 R=1
11
2|22 R=0 101101115
5
2|11 R=1
2
2|5 R=1
1
212 R=0
0
2|1 R=1

7x80 + 6x81 + 2x82
7X1 + 6x8 + 2x64
7 + 48 + 128
183

267g

to convert 267g directly to base 2, we convert each base 8 digit
separately.

MPU- 24

2 1
22 R=1
0
21 =1 10,
6 3
26 R=0
1
23 =1 110,
0
21 R=1
7 3
2[7 =1
1
23 =1 1115
0
21 R=1

therefore 2g = 105, 6g = 1105, & 7g = 1115, and
267g = 101101115

Digital conputers are designed to use binary nunbers in their
wor ki ng regi sters. The working registers vary in nunber of bits depending on
t he manufacturer. The Modtorola M6800 m cro-processor utilizes, in general, 8
bit words (or registers). This |eads to anot her nunber base, not yet
menti oned, of hexadeci mal. Hexadecimal is really a base 16 nunber system and
can be handled in exactly the same manner as base 8 or base 2. In
hexadeci mal, four bits (in binary)represents one hexadeci mal nunber. Thus
an eight bit register can be represented by a hex nunber of 2 digits long. To

illustrate, lets assume we have the nunber of 147g in an eight bit register.

This in binary formis 01100111 . If this bit pattern is divided into 2-four

bit words of 0110 & 0111, then in hex, 147g can be represented as 671g. TO

prove both are equal, lets convert both back to their base 10 nunber.

147g

6716

As you

nunbers above 9? Here is the base 16 nunber conpared with its equival ent

7x80 + 4x8l + 1x82
7X1 + 4x8 + 1x64
7 +32 + 64
10310

7x160 + 6x161
7x1 + 6Xx16
7 + 96
10310

MPU- 25

probably have wondered by now, how do we represent these hex (base 16)

10 nunber.

Base 10

0

10

11

12

13

14

15

Base 16

0

o O W

m

base

MPU- 26

To convert any base 10 nunber to hex (base 16) you may convert it to
base 8 first, then represent the base 8 nunber with its binary
representation. By taking the binary representation of the nunber and
grouping the bits fromright to left in groups of four which are then
represented in hex per the above table. O one may convert any base 10 nunber

to hex by our continuous division rule as before. Lets convert 8251p to hex.

51
16 | 825 R=9
3

16 [51 R=3 3391¢
0
16 [3 R=3

therefore 82519 = 3391¢

to convert 3391 back to our base 10 nunber,
33916 = 9x160 + 3x161 + 3x162

= 9x1 + 3x16 + 3x256
=9 + 48 + 768
= 82510
To show the rel ati onship between hex, binary, and octal, lets convert

8251p to octal & to binary and then back to hex.

MPU- 27

82510 to octa

103
8 | 825 R=1
12
8| 103 R=7 1471g
1
8|12 R=4
0
8 FI____ R=1
82510 to binary
412
2| 825 R=1
206
21412 R=0
103
2| 206 R=0
51
21103 R=1 11001110015
255
2151 =1
12
21|25 =1
6
2112 =0
3
216 R=0
1
213 R=1
0
211 R=1

82510 = 1471g

1x80 + 7x81 + 4x82 + 1x83
1x1 + 7x8 + 4x64 + 1x512
1 + 56 + 256 + 512
82510

MPU- 28

82510 = 1100111001,

1x20 +x21 +0x22 + x23 +1x24 +1x29 +0x26 +0x27 +I1x28 +1x29
| xI +0x2 +0x4 +Ix8 +1x16 +l x32 +0x64 +0x128 +1x256 +1x512
1 +0 +0 +8 +16 +32 +0 +0 + 256 + 512
82510

O taking 1471 g and representing each digit by its binary

representati on, we get 1=001, 4=100, 7=111 & 1 = 001 whi ch when put together
equal 001100111001. Notice this is the same bit pattern as when we converted
frombase 10 to base 2. Now if we group this into three groups of four bits

and then convert each group to its hex counterpart, we wll have the nunber

of 8251 represented in hex. 001100111001 = 0011 0011 1001 = 3391g. Notice

this agrees with the result when we converted directly to hex from one base

10 nunber.

In summary, lets take the situation when an MPU 6800 8 bit register

contains all 1's.

1x24 + 1x25 + 1x26 + 1x27
1x16 + 1x32 + 1x64 + 1x128
16 + 32 + 64 + 128

1x20 + I x21 + Ix22 + 1x23
1x1 + 1x2 + 1x4 + 1x8
1 + 2 + 4 + 8
25510 or

11111111

+
+
+

+ +

11111111

11 111 111
3 7 7 =7x80 + 7x81 + 7x82

7X1 + 7x8 + 3x64

7 + 56 + 192

25510 or

11111111 1111 1111

F Fie

15x160 + 15x161
15x1 + 15x16
15 + 240
25510

Deci nal

O©CoO~NOUIT_WNEFEO

Cct al

= O

Conver si on Chart

Hexadeci mal
0

MTMUOW>OO~NOUAWN PR

Bi nary

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0010
0010
0010
0010
0010
0010
0010
0010
0010

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111
1000

MPU- 29

