
MPU-1

INTRODUCTION

The Motorola M6800 Microcomputer System of standard LSI (Large Scale

Integration) devices permits the systems designer to configure and connect a

total system with a minimum amount of time and effort. The MC6800

Microprocessing Unit (MPU) forms the nucleus of the system. LSI modules

available which may be used to configure a total system in conjunction with

the MC6800 MPU, include: 1) MC6810 Random Access Memory (RAM); 2) MC6830 Read

Only Memory (ROM); 3) MC6820 Peripheral Interface Adapter (PIA), and 4)

MC6850 Asynchronous Communications Interface Adapter (ACIA).

The MPU communicates with the rest of the system via a 16 bit

address bus and an 8 bit data bus. The 16 bit address bus provides the MPU

the capability of addressing up to 64K. The 8 bit data bus is bi-directional

in that data is transferred both into the MPU or out of the MPU over the same

bus. A read/write (R/W) line is provided to allow the MPU to control the

direction of data transfer.. Since the same bus is used for both data into

the MPU or out of the MPU, a separate 8 line bus is saved.

Other features of the M6800 system include a single +5 volt supply,

operation at clock rates from 100 kilohertz to 1 megahertz, plus hardware and

software interrupt capability.

MPU-2

Microprocessing Unit (MC6800)

The nucleus of the M6800 Microcomputer Family is the microprocessing

unit (MPU). The MPU is enclosed in a 40 pin package as shown below:

Features included in the MPU are:

1. Two accumulators (ACCA and ACCB)

2. One index register (X)

3. One program counter register (PC)

4. One stack pointer register (SP)

MPU-3

5. One condition code register (CC)

6. 72 instructions

7. Five addressing modes

8. System clock range of 100 kilohertz to 1 megahertz

9. Program interrupt capability

Accumulators

The MPU contains 2 accumulators designated ACCA and ACCB. Each

accumulator is 8 bits (one byte) long and is used to hold operands and data

from the arithmetic logic unit. Instructions which involve one or both

accumulators are:

ABA - Add accumulator A to accumulator B

ADC - Add with carry

ADD - Add without carry

AND - Logical AND

ASL - Arithmetic shift left

ASR - Arithmetic shift right

BIT - Bit test

CBA - Compare accumulators

CLR - Clear

CMP - Compare

COM - Complement

DAA - Decimal adjust ACCA

DEC - Decrement

EOR - Exclusive OR

MPU-4

INC – Increment

LDA - Load accumulator

LSR - Logical shift right

NEA - Negate

ORA - Inclusive OR

PSH - Push data onto stack

PUL - Pull data from stack

ROL - Rotate left

ROR - Rotate right

RTI - Return from interrupt

SBA - Subtract accumulators

SBC - Subtract with carry

STA - Store accumulator

SUB - Subtract

SWI - Software interrupt

TAB - Transfer from accumulator A to accumulator B

TAP - Transfer from accumulator A to processor condition

 codes register

TBA - Transfer from accumulator B to accumulator A

TPA - Transfer from processor condition codes register to

 accumulator A

TST - Test

WAI - Wait for interrupt

Index Register

The index register (X) is a 16 bit (2 byte) register which is

primarily used to store a memory address in the Indexed mode of memory

addressing. The index register may be decremented, incremented and stored.

Instructions which involve the index register are:

MPU-5

 CPX - Compare index register

 DEX - Decrement index register

 INX - Increment index register

 LDX - Load index register

 RTI - Return from interrupt

 STX - Store index register

 SWI - Software interrupt

 TSX - Transfer stack pointer to index register

 TXS - Transfer index register to stack pointer

 WAI - Wait for interrupt

Program Counter

The program counter (PC) is a 16 bit register that contains the

address of the next byte to be fetched from memory. When the current value of

the program counter is placed on the address buss, the program counter will

be incremented automatically.

Stack Pointer

The Stack Pointer (SP) is a 16 bit (2 byte) register that contains a

beginning address, normally in RAM, where the status of the MPU registers may

be stored when the MPU has other functions to perform, such as during an

interrupt or during a Branch to Subroutine (BTS). The address in the stack

pointer is the starting address of sequential memory locations in RAM where

MPU status registers will be stored. The status of the MPU will be stored in

the RAM as follows:

 Stack Pointer Address : contents of PCL

 Stack Pointer Address-1 : contents of PCH

 Stack Pointer Address-2 : contents of IXL

 Stack Pointer Address-3 : contents of IXH

 Stack Pointer Address-4 : contents of ACCA

MPU-6

Stack Pointer Address-5 : Contents of ACCB

Stack Pointer Address-6 : Contents of CC

After the status of each register is stored on the stack, the Stack

Pointer will be decremented. When the stack is unloaded (status of registers

restored), the status of the last register on the stack will be the first

register that is restored.

Condition Code Register (CC)

The condition code register is an 8 bit register. Each individual

bit may get set or get cleared from execution of an instruction. To see how

each instruction effects the condition code register, refer to the M6800

programming manual. The primary use of this register is execution of the

conditional branch instruction. Bit 6 and 7 are not used and remain at logic

"1."

BIT N0. FUNCTION

0 C (Carry-Borrow Test)
1 V (Overflow Test)
2 Z (Zero Test)
3 N (Negative Test)
4 I (Interrupt Mask Test)
5 H (Half Carry Test)

MPU-7

Carry-Borrow: For addition, the carry-borrow condition code (C) in the

zero bit position, represents a carry. This bit gets set

(C=1) to indicate a carry, and is reset (C=0) if there is

no carry.

For subtraction, the C bit is set (C=1) to indicate a

borrow and is reset (C=0) to indicate there was no borrow.

Overflow: The V bit (bit 1) of the condition code register is set

(V=1) when two's complement overflow results from an

arithmetic operation, and is reset (V=O) if two's

complement overflow does not occur.

Zero: The Z bit (bit 2) of the condition code register is set

(Z=1) if the result of an arithmetic operation is zero, and

is reset (Z=0) if the result is not zero.

Negative: The N bit (bit 3) of the condition code register is set

(N=1) if bit 7 of an arithmetic operation is set (equal to

1). This indicates that the two's complement number,

represented by the bit pattern of the result, is negative.

The N bit is reset (N=0) if bit 7 of the arithmetic result

is equal to 0.

Interrupt Mask: If this I bit (bit 4) is set (I=1), the MPU cannot respond

to an interrupt request from any peripheral device.

Half-Carry: The half carry bit H (bit 5) of the condition code register

is set (H=1) during execution of any of the instructions

ABA,ADC, or ADD, if there is a carry from bit position 3 to

bit position 4. The half carry is reset (H=0) during these

operations, if there is no carry from bit position 4.

MPU-8

MPU Signal Descriptions

1. READ/WRITE (R/W):

This output line is used to signal all devices external to

the MPU that the MPU is in a read state (R/W = High) or a

write state (R/W = Low). The normal standby state of this

line when no external devices are being accessed is a high

state. This line is three-state. When three-state goes

high, this line enters the high impedance mode.

2. VALID MEMORY ADDRESS(VMA):

This output line, (when in the high state) tells all

devices external to the MPU that there is a valid address

in the address bus. For RAM's and ROM's, this line should

be ANDed with 12 clock and used as one of the enables. For

PIA's, this line should be ANDed with one of the PIA

address lines. This signal is not three-state.

3. DATA BUS ENABLE(DBE):

This signal will enable the data bus drives when in the

high state. This input is normally the phase 2 (12) clock.

During the high state, it will permit data to be output

during a write cycle. During an MPU read cycle, the data

bus drives will be disabled internally.

4. INTERRUPT REQUEST(IRQ):

This input from the PIA's requests that an interrupt

sequence be generated within the machine. The processor

will wait until it completes the current instruction that

is being executed before it recognizes the request. At that

time, if the interrupt mask bit in the Condition Code

Register is not set (interrupt masked), the machine will

begin an interrupt sequence. The Index Register, Program

MPU-9

Counter, Accumulators, and Condition Code Register are

stored away on the stack. Next the MPU will respond to the

interrupt request by setting the interrupt mask bit high so

that no further interrupts may occur. At the end of the

cycle, a 16-bit address will be loaded that points to a

vectoring address which is located in memory locations n-6

and n-7 where n is the highest ROM address. An address

loaded at these locations causes the MPU to branch to an

interrupt routine in memory.

5. Phase One (Øl)& Phase (Ø2)Clocks:

These two pins are used or a two phase non-overlapping

clock that runs at the V DD voltage level.

These clocks run at a rate up to 1 megahertz.

6. Restart (RES):

RESTART (RES)--This input is used to start the MPU from a

power down condition, resulting from a power failure or an

initial start-up of the processor. If a positive edge is

detected on the input, this will signal the MPU to begin

the restart sequence. This will restart the MPU and start

execution of a routine to initialize the processor. All the

higher order address lines will be forced high. For the

restart, the last 2 memory locations in the last ROM

(n&n-1) will be accessed, whereby an address is stored

which is the address to be loaded in the program counter

which tells the processor where program execution is to

begin.

7. NON-MASKABLE INTERRUPT(NMI):

This input requests that a nonmask-interrupt sequence be

generated within the processor. As with the Interrupt

MPU-10

Request signal, the processor will complete the current

instruction that is being executed before it recognizes the

NMI signal. The interrupt mask bit in the Condition Code

Register has no effect on NMI. The Index Register, Program

Counter, Accumulators, and Condition Code Register are

stored away on the stack. At the end of the cycle, a 16-bit

address will be loaded that points to a vectoring address

which is located in memory locations n-2 and n-3. An

address loaded at these locations causes the MPU to branch

to an nonmaskable interrupt routine in memory.

8. Go/Halt(G/H):

When this input is in the high state, the machine will

fetch the instruction addressed by the program counter and

start execution. When low all activity in the machine will

be halted. This input is level sensitive. In the halt mode,

the machine will stop at the end of an instruction. Bus

Available will be at a logic "1" level. Valid Memory

Address will be at a logic "0" and all other three-state

lines will be in the three-state mode.

The halt line must go low with the leading edge of phase

one to insure single instruction operation. If the halt

line does not go low with the leading edge of phase one,

one or two instruction operations may result, depending on

when the halt line goes low relative to the phasing of the

clock.

9. BUS AVAILABLE (BA):

The Bus Available signal will normally be in the low state.

When activated, it will go to the high state indicating

that the MPU has stopped and that the address bus is

MPU-11

available. This will occur if the GO/HALT line is in the

Halt (low) mode or the 14PU is in a "Wait" state as the

result of some instruction, such as the WAI instruction.

10. THREE-STATE CONTROL: (TSC)

This input causes all of the address lines and the

Read/Write line to go into the off or high impedance state.

The Valid Memory address and Bus Available signals will be

forced low. The data bus is not affected by TSC and has its

own enable (Data Bus Enable). In DMA applications, the

Three-State Control line should be brought high on the

leading edge of the Phase One Clock. The 11 clock must be

held in the high state for this function to operate

properly. The address bus will then be available for other

devices to directly address memory. Since the MPU is a

dynamic device, it must be refreshed periodically or

destruction of data will occur.

11. ADDRESS BUS (AO/A15):

Sixteen pins are used for the address bus. The outputs are

three-state bus drivers capable of driving one standard TTL

load and 130pf at 1 Megahertz.

When the output is turned off, it is essentially an open

circuit. This permits the MPU to be used in DMA

applications.

12. DATA BUS (DO/D7):

Eight pins are used for the data bus. It is bi-directional,

transferring data to and from the memory and peripheral

devices. It also has three-state output buffers capable of

driving one standard TTL load and 130pf at 1 Megahertz.

MPU-12

Microprocessor Instruction Set -- Alphabetic Sequence

ABA Add Accumulators INS Increment Stack Pointer
ADC Add with Carry INX Increment Index Register
ADD Add
AND Logical And JMP Jump
ASL Arithmetic Shift Left JSR Jump to Subroutine
ASR Arithmetic Shift Right LDA Load Accumulator
 LDS Load Stack Pointer
BCC Branch if Carry Clear LDX Load Index Register
BCS Branch if Carry Set LSR Logical Shift Right
BEQ Branch if Equal to Zero
BGE Branch if Greater or Equal

Zero
NEG Negate

BGT Branch if Greater than Zero NOP No Operation
BHI Branch if Higher
BIT Bit Test ORA Inclusive OR Accumulator
BLE Branch if Less or Equal PSH Push Data
BLS Branch if Lower of Same PUL Pull Data
BLT Branch if Less than Zero ROL Rotate Left
BMI Branch if Minus ROR Rotate Right
BNE Branch if Not Equal to Zero RTI Return from Interrupt
BPL Branch if Plus RTS Return from Subroutine
BRA Branch Always
BSR Branch to Subroutine SBA Subtract Accumulators
BVC Branch if Overflow Clear SBC Subtract with Carry
BVS Branch if Overflow Set SEC Set Carry
 SEI Set Interrupt Mask
CBA Compare Accumulators SEV Set Overflow
CLC Clear Carry STA Store Accumulator
CLI Clear Interrupt Mask STS Store Stack Register
CLR Clear STX Store Index Register
CLV Clear Overflow SUB Subtract
CMP Compare SWI Software Interrupt
COM Complement
CPX Compare Index Register TAB Transfer Accumulators
 TAP Transfer Accumulators to
 Condition Code Reg.
DAA Decimal Adjust TBA Transfer Accumulators
DEC Decrement TPA Transfer Condition Code
 Reg. to Accumulator
DES Decrement Stack Pointer TST Test
DEX Decrement Index Register TSX Transfer Stack Pointer
 to Index Register
FOR Exclusive OR TXS Transfer Index Register
 to Stack Pointer
INC Increment WAI Wait for Interrupt

MPU-13

Hardware Interrupts

What happens when the MPU gets a hardware interrupt? After it has been

determined that the interrupt is not non-maskable, the MPU checks the status
of the mask bit (bit 4 of the condition code register). If the mask bit is
set, the main program continues until a CLI (clears bit 4 of condition code
register) instruction is executed, after which time the MPU will honor an
interrupt by going to the stack pointer (SP) register and fetch an address
which will be the 1st address in RAM where the status of the MPU registers
will be stored during servicing of the interrupt.

SP : contents of program counter low
SP-1 : contents of program counter high
SP-2 : contents of index register low
SP-3 : contents of index register high
SP-4 : contents of accumulator A
SP-5 : contents of accumulator B
SP-6 : contents of condition code register

The address in the stack pointer register is determined by the

programmer.

After the contents of the MPU registers have been stored in the stack,
the mask bit is set thus preventing any further interrupts from interfering
with the MPU until the program executes a CLI instruction. Next the MPU
hardware automatically looks at addresses FFF8(MS) & FFF9 (LS) for the
address of the poling routine to find out where the interrupt came from and
what action to take.

After the interrupt has been serviced and an RTI instruction is
executed, the stack, which contains the status of the registers before the
interrupt, is unloaded in reverse order, i.e. the condition code register is
loaded first, then accumulator B is restored, etc. When the registers have
been restored to their status before the interrupt, the processor continues
as though nothing happened.

The total story of interrupts is shown on the next two pages in the
form of flow charts.

MPU-14

MPU-15

SUMMARY OF MPU OPERATION

The MPU requires a two phase symmetrical, TTL compatible,

nonoverlapping clock. During the first phase of the clock (Øl high) an

address will be placed on the address bus by the MPU. During the second phase

of the clock (Ø2 high), the bidirectional data bus will be active. The first

byte of an instruction enters the MPU and is transferred into an internal

instruction register and decoded by the MPU. The MPU will then contain the

information needed to read in an additional one or two bytes of program is

necessary. Once the entire instruction is read into the MPU (one, two or

three bytes) the instruction is then executed. The MPU then reads in the next

sequential byte in the program and places it again in the instruction

register. The program will sequentially be executed in this manner unless a

branch or jump instruction changes the value of the program counter. If this

occurs, the next instruction to be executed is determined by the new program

counter value.

If an interrupt or reset occurs during this process, the program

counter value will also be changed. The new program counter value is

determined by the highest eight memory locations that are reserved for reset

and interrupt vectors.

In the case of interrupt, the stack pointer is used to store the

contents of the internal registers necessary to return to the program

location prior to the interrupt. This happens when the interrupt program

exits by an RTI (Return from interrupt instruction). Similarly, the stack

pointer is used to store the program counter value when a JSR (Jump to

Subroutine) or BSR (Branch to Subroutine) instruction occurs. The program

counter returns to its original value when an RTS (Return from Subroutine)

instruction occurs. The stack pointer value is set by an LDS (Load Stack

Pointer) instruction.

MPU-16

RESET SEQUENCE

1. While HALT is high, RESET goes low for at least eight cycles of Øl, Ø2

during which all internal registers are cleared and interrupt bit (I) in

CC is set.

2. Data at FFFE loads into PCH.

3. Data at FFFF loads into PCL.

4. PC contents go out on ADRS bus during Øl.

5. Contents of cell addressed enters instruction register during and is

decoded as first instruction.

6. If two or more byte instruction, additional bytes enter MPU for execution.

If not, go to next step.

7. After execution, step 5 is repeated for subsequent instructions.

MPU-17

IRQ SEQUENCE

1. If bit "I" in condition code register is not set (I = 0) and IRQ goes low

for at least one Ø2 cycle, the IRQ sequence will be entered.

2. After completion of the current instruction, internal registers PC, X, A,

B and CC will be stored in RAM at the address indicated by the stack

pointer in descending locations (7 bytes in all).

3. The IRQ mask (bit I = 1) is set.

4. Data at FFF8 gets loaded into PCH.

5. Data at FFF9 gets loaded into PCL.

6. PC contents go out on address bus during

7. Contents of call addressed enters instruction register during Ø2 and is

decoded as first instruction of interrupt routine.

8. If it is a more than 1 byte instruction, additional bytes enter MPU for

execution. If not, go to next step.

9. After execution, step 5 is repeated for subsequent instructions. This loop

is repeated until the instruction "RTI" is executed.

MPU-18

NMI SEQUENCE

1. If NMI goes low for at least one Ø2 cycle, the MPU will wait for

completion of current instruction.

2. The internal registers PC, X, A, B and CC will then be stored in RAM at

the address indicated by the stack pointer in descending locations (7

bytes in all).

3. The IRQ (bit I = 1) mask is set.

4. Data at FFFC is loaded into PCH.

5. Data at FFFD is loaded into PCL.

6. PC contents go out on ADRS bus during Ø1.

7. Contents of cell addressed enters instruction register during Ø2 and is

decoded as first instruction of NMI subroutine.

8. If two or more byte instruction, additional bytes enter MPU for execution.

If not, go to next step.

9. After execution, Step 5 is repeated for subsequent instructions. This loop

is repeated until the instruction "RTI" is executed.

RTI EXECUTION

1. The contents of the stack are loaded back into the MPU. (unwinds)

2. The contents of the PC go out on the address bus to fetch the first byte

of the next instruction.

MPU-19

SWI INSTRUCTION

1. Contents of the MPU registers PC, 1X, ACCA, ACCB and CC are stored in

RAM at the address indicated by the stack pointer in descending location

(7 bytes in all).

2. The IRQ mask (bit I = 1) is set.

3. Data at FFFA gets loaded into PCH.

4. Data at FFFB gets loaded into PCL.

5. PC contents go out on address bus during Ø1.

6. Contents of cell addressed enters instruction register during Ø2 and is

decoded as first instruction of SWI subroutine.

7. If it is a more than one byte instruction, additional bytes enter MPU

for execution. If not, go to next step.

8. After execution, Step 6 is repeated for subsequent instructions. This

loop is repeated until the instruction "RTI" is executed.

MPU-20

Number Systems

Everyone is quite familiar with the base 10 number system i.e. 0, 1,

2, 3, 4, 5, 6, 7, 8, & 9, since this is the system we all use day to day. Let

us review a typical number, say 2743, and see what it really means. The least

significant digit (LSD) is 3 and the most significant digit (MSD) is 2. Since

we are talking about a base 10 number, the number 2743 really is

= 3x100 + 4x101 + 7x102 + 2x103

= 3x1 + 4x10 + 7x100 + 2x1000

= 3 + 40 + 700 + 2000

= 2743.

In digital computers, base 10 numbers are represented in binary

form, i.e. 1's & 0's. Lets take a base 10 number and convert it to a binary

(base 2) number. A method of doing this is known as "repeated division by ?".

The base 10 number of 47 is converted to binary as shown below:

 23
2 47 R=1

 11

2 23 R=1

 5
2 11 R=1

 2

2 5 R=1 1011112

 2
2 2 R=0

 0

2 1 R=1

Converting 1011112 back to our base 10 number is done in the same

manner as above

MPU-21

1011112 = lx20 + 1x21 + lx22 + lx23 + 0x24 + 1x25
 = 1x1 + 1x2 + 1x4 + 1x8 + 0x16 + 1x32
 = 1 + 2 + 4 + 8 + 0 + 32
 = 4710

In general, converting from a number in any base to a number in base

10 is accomplished as follows:

(A0 B0 + A1 B1 + A2 B2 + A3 B3 + A4 B4 -- -- -- -- An Bn)

where B is the base of the number system and A is the particular digit in the

original number corresponding to its position to the left of the decimal

point. On the example just completed, (101111). A0 = 1, A1 = 1, A2 = 1, A3 =

1, A4 = 0, & A5 = 1 and B = 2 (base 2).

Another base which is very convenient in digital computers is base

8, since base 8 is really a convenient way of representing base 2. Lets

illustrate by converting a base 10 number to base 8 & base 2. Let's convert

61 in base 10 to a number in base 8 and a number in base 2. By continuous

division:

 7
8 61 R=5

 0

8 7 R=7 758

 30
2 61 R=1

 15

2 30 R=0

 7
2 15 R=1

 3

2 7 R=1 1111012

 1
2 3 R=1

 0

2 1 R=1

MPU-22

First lets prove that 758 & 1111012 are really equal to 6110.

758 = 5x80+ 7x81
 = 5x1 + 7x8
 = 5 + 56
 = 6110

1111012 = 1x20 + 0x21 + 1x22 + 1x23 + 1x24 + 1x25
 = 1x1 + 0x2 + 1x4 + 1x8 + 1x16 + 1x32
 = 1 + 0 + 4 + 8 + 16 + 32
 = 6110

Notice that if we take the base 8 number of 75 and convert each

digit to base 2, we have the same number as when we converted the base 10

number to base 2. i.e.

Convert 7 to base 2

 3
2 7 R=1

 1

2 3 R=1

 0
2 1 R=1 1112

Convert 5 to base 2

 2
2 5 R=1

 1

2 2 R=0

 0
2 1 R=1 1012

MPU-23

Therefore 758 - 111101 which is the same pattern of 1's & 0's as we

got from converting from base 10 to base 2. What this really says that it is

easier to convert any base 10 number to base 8 by continuous division, and

then convert each digit of the base 8 number to base 2.

Let's look at another example. Convert 18310 to base 8 & to base 2.

 22
8 183 R=7

 2

8 22 R=6 2678

 0
8 2 R=2

 91
2 183 R=1

 45

2 91 R=1

 22
2 45 R=1

 11

2 22 R=0 101101112

 5
2 11 R=1

 2

2 5 R=1

 1
2 2 R=0

 0

2 1 R=1

2678 = 7x80 + 6x81 + 2x82
 = 7x1 + 6x8 + 2x64
 = 7 + 48 + 128
 = 183

 to convert 2678 directly to base 2, we convert each base 8 digit
separately.

MPU-24

2 1
 2 2 R=1

 0
 2 1 R=1 102

6 3
 2 6 R=0

 1
 2 3 R=1 1102

 0
 2 1 R=1

7 3
 2 7 R=1

 1
 2 3 R=1 1112

 0
 2 1 R=1

therefore 28 = 102, 68 = 1102, & 78 = 1112, and
 2678 = 101101112

Digital computers are designed to use binary numbers in their

working registers. The working registers vary in number of bits depending on

the manufacturer. The Motorola M6800 micro-processor utilizes, in general, 8

bit words (or registers). This leads to another number base, not yet

mentioned, of hexadecimal. Hexadecimal is really a base 16 number system and

can be handled in exactly the same manner as base 8 or base 2. In

hexadecimal, four bits (in binary)represents one hexadecimal number. Thus ,

an eight bit register can be represented by a hex number of 2 digits long. To

illustrate, lets assume we have the number of 1478 in an eight bit register.

This in binary form is 01100111 . If this bit pattern is divided into 2-four

bit words of 0110 & 0111, then in hex, 1478 can be represented as 6716. To

prove both are equal, lets convert both back to their base 10 number.

MPU-25

1478 = 7x80 + 4x81 + 1x82
 = 7x1 + 4x8 + 1x64
 = 7 + 32 + 64
 = 10310

6716 = 7x160 + 6x161
 = 7x1 + 6x16
 = 7 + 96
 = 10310

As you probably have wondered by now, how do we represent these hex (base 16)
numbers above 9? Here is the base 16 number compared with its equivalent base
10 number.

Base 10 Base 16

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A

11 B

12 C

13 D

14 E

15 F

MPU-26

To convert any base 10 number to hex (base 16) you may convert it to

base 8 first, then represent the base 8 number with its binary

representation. By taking the binary representation of the number and

grouping the bits from right to left in groups of four which are then

represented in hex per the above table. Or one may convert any base 10 number

to hex by our continuous division rule as before. Lets convert 82510 to hex.

 51
16 825 R=9

 3

16 51 R=3 33916

 0
16 3 R=3

therefore 82510 = 33916

to convert 33916 back to our base 10 number,

33916 = 9x160 + 3x161 + 3x162
 = 9x1 + 3x16 + 3x256
 = 9 + 48 + 768
 = 82510

To show the relationship between hex, binary, and octal, lets convert
82510 to octal & to binary and then back to hex.

MPU-27

82510 to octal

 103
8 825 R=1

 12

8 103 R=7 14718

 1
8 12 R=4

 0

8 1 R=1

82510 to binary

 412
2 825 R=1

 206

2 412 R=0

 103
2 206 R=0

 51

2 103 R=1 11001110012

 255
2 51 R=1

 12

2 25 R=1

 6
2 12 R=0

 3

2 6 R=0

 1
2 3 R=1

 0

2 1 R=1

82510 = 14718

 = 1x80 + 7x81 + 4x82 + 1x83
 = 1x1 + 7x8 + 4x64 + 1x512
 = 1 + 56 + 256 + 512
 = 82510

MPU-28

82510 = 11001110012

 = 1x20 +Ox21 +0x22 +lx23 +1x24 +1x25 +0x26 +0x27 +lx28 +1x29
 = lxl +0x2 +0x4 +lx8 +1x16 +lx32 +0x64 +0x128 +1x256 +1x512
 = 1 + 0 + 0 + 8 + 16 + 32 + 0 + 0 + 256 + 512
 = 82510

Or taking 147l8 and representing each digit by its binary

representation, we get 1=001, 4=100, 7=111 & 1 = 001 which when put together

equal 001100111001. Notice this is the same bit pattern as when we converted

from base 10 to base 2. Now if we group this into three groups of four bits

and then convert each group to its hex counterpart, we will have the number

of 82510 represented in hex. 001100111001 = 0011 0011 1001 = 33916. Notice

this agrees with the result when we converted directly to hex from one base

10 number.

In summary, lets take the situation when an MPU 6800 8 bit register

contains all 1's.

11111111 = 1x20 + lx21 + lx22 + 1x23 + 1x24 + 1x25 + 1x26 + 1x27
 = 1x1 + 1x2 + 1x4 + 1x8 + 1x16 + 1x32 + 1x64 + 1x128
 = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128
 = 25510 or

11111111 = 11 111 111
 = 3 7 7 = 7x80 + 7x81 + 7x82
 = 7x1 + 7x8 + 3x64
 = 7 + 56 + 192
 = 25510 or

11111111 = 1111 1111
 = F F16

 = 15x160 + 15x161
 = 15x1 + 15x16
 = 15 + 240
 = 25510

MPU-29

Conversion Chart

Decimal Octal Hexadecimal Binary
0 0 0 0000 0000
1 1 1 0000 0001
2 2 2 0000 0010
3 3 3 0000 0011
4 4 4 0000 0100
5 5 5 0000 0101
6 6 6 0000 0110
7 7 7 0000 0111
8 10 8 0000 1000
9 11 9 0000 1001
10 12 A 0000 1010
11 13 B 0000 1011
12 14 C 0000 1100
13 15 D 0000 1101
14 16 E 0000 1110
15 17 F 0000 1111
16 20 10 0001 0000
17 21 11 0001 0001
18 22 12 0001 0010
19 23 13 0001 0011
20 24 14 0001 0100
21 25 15 0001 0101
22 26 16 0001 0110
23 27 17 0001 0111
24 30 18 0001 1000
25 31 19 0001 1001
26 32 lA 0001 1010
27 33 1B 0001 1011
28 34 1C 0001 1100
29 35 1D 0001 1101
30 36 lE 0001 1110
31 37 1F 0001 1111
32 40 20 0010 0000
33 41 21 0010 0001
34 42 22 0010 0010
35 43 23 0010 0011
36 44 24 0010 0100
37 45 25 0010 0101
38 46 26 0010 0110
39 47 27 0010 0111
40 50 28 0010 1000

