SWTPC 6800 Short Memory Address Convergence MEMCON-1

This Memory Convergence diagnostic is one designed to check for and locate address convergence problems in the SWTPC 6800 Computer System memory boards, MP-M/MP-MX. The program itself uses 56 words and is meant to be loaded within the 128 word RAM used by the MIKBUG operating system on the MP-A Microprocessor/System board; making the program independent of the MP-M RAM memory. The diagnostic may be loaded from either tape of from the terminal instruction by instruction using MIKBUG starting from address A014₁₆ thru $A034_{16}$ and then from address $A048_{16}$ thru MEW The program must be loaded in two parts to avoid interfering with the system's push-down stack. The section of memory to be tested is set by loading the most significant byte of the lower memory address into $A002_{16}$, the least significant byte of the lower memory address into A003₁₆, the most significant byte of the upper memory address into $A004_{16}$, and the least significant byte of the per memory address into A005₁₆ using MIKBUG just as is done for MIKBUG punch routine. The lower and upper addresses are inclusive and may be any addresses between 0000_{16} and $FFFF_{16}$ with the only requirement that the lower address be less than or equal to the upper address. Since addresses $A05F_{16}$ thru $A07F_{16}$ of the MIKBUG RAM are still available for program use, the diagnostic may run on these locations just to make sure the diagnostic itself is functioning correctly. Since the program counter is set when the program is initially loaded, the routine is initiated after loading according to the "Go To User's Program" section of the Engineering Note 100 in the Operating System section of this notebook. Once initiated, the program can be stopped only by depressing the "RESET" button. The program may then be re-started after setting the program counter to A015₁₆ at A048 and A049 as described in the Display Contents of MPU Registers Function" section of the Engineering Note 100.

The test sequence starts by loading a continuous stream of 256 sequential binary numbers from the low memory address to the high memory address, inclusive. It then goes back and sequentially reads the data in each of the locations and compares it to what actually should be there. If it finds any discrepancies within the memory cycle, one X is printed and the cycle is re-started, otherwise a # is printed to indicate successful cycle completion. Since the actual location of any detected errors does not point to the source of the problem, no provision is made for indicating the addresses of detected errors. It must also be noted that the program is not 1001 effective. It would be possible to set bits in multiple locations that coincidentally would have been set anyway. However, each cycle puts different data in each memory location, so the changes of a missed problem are reduced. The program loops forever and may b exited when desired by depressing the "RESET" switch which loads the MIKBUG h control program.

If you wish to eliminate the cyclic printout of the "#" sign you can do so by changing the data in address locations A059, A05A and A05B to NOP instructions (01_{16}) using MIKBUG. This way you only get a printout of the error cycles, if any.

Mikbug ® is a registered trademark of Motorola Inc.

	SWTPC	Short N	Memory	Address	Conv	ergence	e Diag	nostic N	1EMC	'ON-1
A002 A003	2 3		LOME	Μ	Start Start	ing Ad ing Ad	dress dress	MSB LSB		
A004 A005	1 5		HIME	М	Ending Address MSB Ending Address LSB					
					Start	Loadi	ng Pro	ogram at	A01	14
A014	1	00	BSTO	RE						
A015	5	F7	STAR	Т	STA B	BSTOR	E			
A016	5	A0								
A017	7	14								
A018	3	FE			LDX L	OMEM				
A019		A0								
A017	7	02								
A018	3	E7	LOOP	1	STAB	0,X				
A010	2	00								
A01I		BC			СРХ Н	IMEM				
A018	2 2	A0								
A018	7	04								
A020) .	27			BEQ C	HECK				
A021	L	04								
A022	2	08			INX					
A023	3	5C			INC B	5				
A024	1	20			BRA L	00P1				
A025	5	F5								
A026	5	Fб	CHEC	K	LDA B	BSTOR	E			
A027	7	A0								
A028	3	14								
A029)	FE			LDX L	OMEM				
A027	A	A0								
A028	3	02								
A020	2	E1	LOOP	2	CMP B	0,X				
A02I)	00								
A028	C .	26			BNE E	RROR				
A028	7	20								
A030) :	BC			СРХ Н	IMEM				
A031	L	A0								
A032	2	04								
A033	3	20			BRA J	UMP				
A034	1.	15								
					Conti	nue Lo	ading	Program	at	A048
A048	3	A0								
A049)	15								
A047	A .	27	JUMP		BEQ C	YCLE				
A041	3	0B								
A040	2	08			INX					

A04D	5C		INC B
A04E	20		BRA LOQP2
A04F	DC		
A050	86	ERROR	LDA A #'X
A051	58		
A052	BD		JSR OUTEEE
A053	El		
A054	Dl		
A055	20		BRA START
A056	BE		
A057	86	CYCLE	LDA A #'#
A058	23		
A059	BD		JSR OUTEEE
A05A	E1		
A05B	D1		
A05C	5A		DEC B
A05D	20		BRA START
A05E	Bб		
			END

Board #	Memory Quadrant (K of memory)	Starting Addr.	Ending Addr.
	1	0000	03FF
	2	0400	07FF
	3	0800	OBFF
	4	0C00	OFFF
	1	1000	13FF
1	2	1400	17FF
	3	1800	1BFF
	4	1C00	1FFF
	1	2000	23FF
2	2	2400	27FF
	3	2800	2BFF
	4	2C00	2FFF
	1	3000	33FF
3	2	3400	37FF
	3	3800	3BFF
	4	3C00	3FFF
	1	4000	43FF
4	2	4400	47FF
	3	4800	4BFF
	4	4C00	4FFF
	1	5000	53FF
5	2	5400	57FF
	3	5800	5BFF
	4	5C00	5FFF
	1	6000	63FF
б	2	6400	67FF
	3	6800	6BFF
	4	6000	6FFF
	1	7000	73FF
7	2	7400	77FF
	3	7800	7bff
	4	7000	7fff

Memory Address Assignment Table (Hex)

MP-M/MP-MX Memory IC Assignment Map

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	B Bit	2 Bit 1	Bit O
Quadrant 1 (1K)	IC15	IC13	IC11	IC9	IC7	IC5	IC3	IC1
Quadrant 2 (2K)	IC16	IC14	IC12	ICIO	IC8	IC6	IC4	IC2
Quadrant 3 (3K)	IC40	IC38	IC36	IC34	IC32	IC30	IC28	IC26
Quadrant 4 (4K)	IC39	IC37	IC35	IC33	IC31	IC29	IC27	IC25
00 hex = 0000	0000	binary			08 hex	= 0000	1000 k	binary
01 hex = 0000	0001	binary			10 hex	= 0001	0000 k	binary
02 hex = 0000	0010	binary			20 hex	= 0010	0000 k	binary
04 hex = 0000	0100	binary			40 hex	= 0100	0000 k	binary
					80 hex	= 1000	0000 k	binary