
Read Me First
A major change has been made to the supplement that will affect the way you link your
programs, and you should be aware of it. We are now distributing the new MacPasLib.
Briefly, this now allows you to use such routines as Writeln, Reset, Rewrite, as well as
others. We have also added new heap management routines. For more information on
the MacPasLib V.0.7 libraries, please see the Macintosh PasLib Release V.0.7
document, included in this supplement.

How To Use

The object files you now need to link with are the following:
obj/RTLib.obj
obj/Paslnit.obj
obj/PasLibAsm.obj
obj/PasLib.obj

To use any of the Heap management routines included in this release you need to use
the PasLiblntf unit in your program:

USES {$U obj/PasLibIntf} PasLiblntf;

For more information, please see the Macintosh PasLib Release V.0.7 document

c

o

o

About the Software Supplement
2/15/85

The Macintosh Software Supplement is a package of tools, libraries, and
examples to help you develop Macintosh software. This update to the
Supplement consists of 12 disks: MacStuff 1 through 5 and Mac Build Disk,
which are Macintosh-formatted disks and MacSuppfement 1 through 6,
which are Lisa Workshop 2.0-formatted disks. If you have not previously
received the Software Supplement this package also contains MacWorks,
the Macintosh environment for Lisa, for a total of 13 disks. This package
contains new versions of all the MacSupplement and Mac Stuff disks,
including new Pascal and Assembly interfaces version 1.1; we therefore
recommend putting aside any older versions of the Supplement and using
these disks exclusively.

This is the next-to-last update of the Software Supplement. For the last
year we have periodically been distributing updates to the Supplement to
all buyers. Inside Macintosh and the software interfaces and tools were
frequently changing and we wanted everyone to have the most up-to-date
versions. This spring we will be distributing the final version of the
Supplement corresponding to the final version of the software and Inside
Macintosh. As promised, Supplement purchasers will receive a copy of
the final bookstore version of Inside Macintosh when it is available.

Once the Supplement has been completed we will periodically offer new
development tools and utilities as separately orderable products. When
new products are available, we will let Supplement buyers know how to
obtain them. In addition, we will load many of these new tools and
utilities onto remote on-line services such as CompuServe and Delphi.
Anyone with a modem and communications software may download copies
for their own use. More information on these on-line services will be
included with the final Supplement Update.

About the MacStuff disks:

The 5 Macintosh-formatted MacStuff disks contain various examples and
tools that you can use on a Macintosh. Many of the files on the MacStuff
disks have notes in their "Get Info" boxes which you can display by
choosing Get Info from the Finder's File menu.

In this update to the Supplement we have provided a number of Lisa text
files (example programs and interfaces) on Macintosh formatted disks for
the convenience of developers who do not have the Lisa Pascal Workshop.
These files are useful to study but the Lisa Workshop is needed to compile
them. They are files of file type TEXT so they can be read by any editor;
all but the largest can be read using the File editor example provided on
MacStuff 2.

MacStuff 1 contains a number of tools and utilities for Macintosh
development in the Tools folder. Many of these tools are quite old; you
may find it easier to use the resource editors on MacStuff 3 instead of
some of these tools (e.g. Resource Mover, Icon Editor). The MacXL Tools
folder contains utilities that can be run under MacWorks XL. These
utilities are described in the MacWorks XL User Manual which has been
included in this package.

Directory of Mac disk MacStuff 1 2/85:

Empty Folder

System Folder

Tools

MacXL Tools

System
Finder
Imagewriter

Resource Mover
Examine File
Disk Utility
Boot Configure
Set File
Alert/Dialog Editor
Hex Dump
Printer
Icon Editor
Screen Maker

Hard Disk Install
Parallel Printer Install

MacStuff 2 contains a Font Stuff folder with tools for manipulating
fonts (this can also be done with the Resource Editor) and an Executable
Examples folder containing executable versions of the sample programs
included in this supplement. File, the largest of these examples, is a
simple text editor that can read multiple text files of up to 32K
characters. Instructions and More Info are two File-readable text files
which describe File.

2/15/85 About the Software Supplement 2

Directory of Mac disk MacStuff 2 2/85:

Empty Folder

System Folder System
Finder
Imagewriter

Font Stuff Font Mover
Font Editor
Fonts

Executable Examples Samp
Scroll
Grow
Modal
QDSample
File
Instructions
More Info
ShowPaint
MacPic
SoundLab
PicScrap
Boxes
SineGrid
Life

The MacStuff 3 disk Resource Editors folder contains pre-released
versions of two different resource editors, Resource Editor and REdit.
With these programs you can create and modify all kinds of resources
including window templates, menus, dialogs, alerts, fonts, icons, bundles,
and many more. Resource Editor was written for programmers and
provides many ways to modify resources. REdit was written primarily for
translators so not all modifications are allowed; however, it is very easy
to use for certain modifications (e.g. changing the contents and size of a
dialog box). Remember that both of these program are pre-release, which
means that you should use them with caution; back up a disk before
attempting to modify it.

MacStuff 3 also contains debugging tools. The Macsbug Debuggers
folder and the files in it are documented briefly in their Get Info boxes and
extensively in the Macsbug document; the files in the Mac DB & Debug
Nubs folder are used by the two-Macintosh debugger; they're documented
extensively in the MacDB document, which also describes how to build the
Macintosh-to-Macintosh cable needed to use the debugger. These
documents were distributed with an earlier Supplement; see the "Enclosed
Documentation" section of this document.

2/15/85 About the Software Supplement

The Serial Driver Stuff folder is described later under "RAM-Based
Serial Drivers".

Directory of Mac disk MacStuff 3 2/85:

Empty Folder

System Folder

Resource Editors

Macsbug Debuggers

Mac DB & Nubs

Serial Driver Stuff

System
Finder

(with minimal fonts)

Resource Editor
REdit

xMacsbug
Maxbug
TermbugA
TermbugB
LisaBug

MacDB
MacNub A
MacNub B
WorksNub

SDOpen.Rel
SERD

The Lisa Pascal Interfaces on MacStuff 4 are the same as the
intrfc/ files from MacSupplement 1. The MDS Trap Files are the same
equates that are being shipped with the Macintosh 68000 Development
System (MDS); they are equivalent to the corresponding TLAsm files on the
MacSupplement 2 disk. The MDS Trap Files folder also contains
PrLink.rel, the high level implementation of the .PRINT driver; this file can
be used with the MDS linker.

Directory of Mac disk MacStuff 4 2/85:

Empty Folder

System Folder System (with minimal fonts)
Finder

Lisa Pascal Interfaces MACPRINT.TEXT
MEMTYPES.TEXT
OSINTF.TEXT
PACKINTF.TEXT
QUICKDRAW.TEXT
QUICKDRAW2.TEXT
TOOLINTF.TEXT
PASLIBINTF.TEXT
2.0 ONLY/SANE.TEXT
2.OONLY/ELEMS.TEXT

2/15/85 About the Software Supplement 4

3.OONLY/SANELIB.TEXT

MDS EQU Files SysEqu.Txt
ToolEqu.Txt
QuickEqu.Txt
FSEqu.Txt
PrEqu.Txt
SANEMacs.Txt
PackMacs.Txt
QuickEqu.Asm
SysEqu.Asm
ToolEqu.Asm
FSEqu.Asm
PrEqu.Asm
SysErr.Txt
MacDefs.Txt
PrLink.Rel

The MacStuff 5 disk has no System Folder (so that we could include a
large number of examples). Therefore it is not a bootable disk; to
use it you must boot another disk first. The MDS Trap Files are the
same macros that are being shipped with the Macintosh 68000
Development System (MDS); they are equivalent to the corresponding
TLAsm files on the MacSupplement 2 disk. Desk Accessory Example and
DefProcs Assembly Sources contain assembly language example
programs also distributed on the MacSupplement disks; these versions will
assemble using the MDS Assembler. The ADeskAcc resource file contains
the "Uriah Heap" desk accessory illustrated in the example; to use it, move
it into the System file (with RMoverorthe Resource Editor). The Lisa
Example Sources folder contains text files for Lisa Pascal and resource
definition file sources. These files are the same as the examples on
MacSupplement 3. In addition, that folder contains the file Scroll.C.text,
which is the Pascal Scroll.text program rewritten in a vanilla version of
the language C (it may need modification before it can be compiled with a
particular C compiler).

Directory of Mac disk MacStuff 5 2/85:

Empty Folder

MDS Trap Files ToolTraps.Txt
QuickTraps.Txt
SysTraps.Txt
MacTraps.Asm

Desk Accessory Example ADESKACC.TEXT
ADESKACC.R
ADESKACC

DefProcs Assembly Sources BUTCDEF.TEXT
MDEF.TEXT

2/15/85 About the Software Supplement 5

Lisa Example Sources

SBARCDEF.TEXT
SBARCDEF.TEXT
RDOCWDEF.TEXT

GROW.TEXT
GROWR.TEXT
SAMP.TEXT
SAMPR.TEXT
QDSAMPLE.TEXT
QDSAMPLER.TEXT
MODAL.TEXT
MODALR.TEXT
SCROLL.TEXT
SCROLLR.TEXT
PICSCRAP.TEXT
PICSCRAPR.TEXT
BOXES.TEXT
BOXESR.TEXT
SOUNDLAB.TEXT
SOUNDLABR.TEXT
SHOWPAINT.TEXT
SHOWPAINTR.TEXT
FILE.TEXT
FILEASM.TEXT
FILER.TEXT
FRAGMENT/ZOOMRECT.TEXT
SCROLL.C.TEXT

About the Mac Build Disk:

The Macintosh-formatted Mac Build Disk contains the System Folder that
you should ship with your application. That folder contains the System
file, the Finder and the Imagewriter driver. These contain proprietary
information and may not be distributed without specific written
permission of Apple Computer, Inc. Licenses are available for $50
annually. Contact Apple's Software Licensing Department at
(408) 973-4667 for more information.

Please note that the files on this disk are all dated May 2,1984. You may
have previously received an Imagewriter driver with a later date. Any
such file is a pre-release, distributed only for your information. No
license to distribute a later Imagewriter driver is available at this time;
therefore, you may not ship such a driver. We expect to make a final
version of the new Imagewriter driver available on the Mac Build Disk of
the next Supplement Update.

2/15/85 About the Software Supplement 6

Directory of Mac disk Mac Build Disk 2/85:

Empty Folder

System Folder System
Finder
Imagewriter

About the MacWorks disk:

The MacWorks disk allows you start up any Lisa 2 system so it will run
Macintosh software. Apple now has a product called the Macintosh XL. It
consists of the MacWorks software and exactly the same hardware that
was previously sold as the Lisa 2/10.

In our last mailing we included a pre-release of a new version of
MacWorks. If this is your first mailing we have included it now. This
version of MacWorks will ship this spring under the name MacWorks XL.
MacWorks XL allows direct startup from the hard disk and fixes numerous
bugs that occurred with the old MacWorks. If you run Hard Disk Install and
copy System and Finder to the hard disk, MacWorks will look there
automatically after starting up from the MacWorks disk. If you format your
hard disk entirely for Macintosh files ("Don't Share") you can boot
MacWorks without using any diskettes. Hard Disk Install and Parallel
Printer Install can be found in the MacXL Tools folder on the MacStuff
1 disk. For more information see the enclosed MacWorks XL User
Manual.

Installing the MacSupplement disks:

In order to use the software on the 6 MacSupplement disks, you need a Lisa
2/5 or 2/10 (also known as Macintosh XL) with a full megabyte of RAM and
the Lisa Pascal Workshop, version 2.0 or 3.0. You must install the Pascal
Workshop on a hard disk before attempting to install the Supplement.

If you want to have both the Lisa Office System and the Workshop with
Supplement, you'll find that a ProFile isn't enough. You'll need a Lisa 2/10
or separate ProFiles. Of course, you don't need the Lisa Office System to
do Macintosh development.

To install the MacSupplement disks onto your hard disk, start the

2/15/85 About the Software Supplement 7

Workshop, then insert each of the disks and use the B)ackup command to
copy all of the files from each disk to the hard disk. If your hard disk is
the default volume, the command will look like this:

B-lower-=,$

Note that this will automatically replace all files with the same names as
Supplement files, so you may want to list the files on the Supplement
disks before copying them with B)ackup. Also note that the Workshop will
not accept write-protected disks.

If you have installed a previous Supplement on your disk you should delete
the old files which have been removed or had their names changed to save
space. The old files to delete are example/Edit= (renamed "Samp" to
match the example in A Road Map in Inside Macintosh),
obj/MacPasLib (replaced with an all new PasLib), proto/= (updated with
new names), and TIAsm/= (new TLAsm files provided in this Supplement,
many with new names).

This Supplement supports both Workshop versions 2.0 and 3.0. The disks
are provided in 2.0 format, which is readable by both Workshop versions.
Most of the files provided with the Supplement are usable by both
Workshop versions; specifically, only executable code files, floating point
libraries, and exec files are different. The files which are specific to one
of the two versions are prefixed by "2.0only/", "3.0only/", or "3.1Lisa7/7/".
After you've copied all the Supplement files to your hard disk, you should
use the R)ename command to strip the prefix from these files. The
command would look like this:

R2.0only/=,= (if you have Workshop version 2.0), or
R3.0only/=,= (if you have Workshop version 3.0) and
R3.1 Lisa7/7/=,= (if you have Workshop 3.0 and Lisa 7/7 version

3.1 on the same hard disk)

Note that some of these files are replacements for files you already have,
so the R)ename command will ask if you want to delete the old ones before
renaming. You should answer yes to this question.

If you do not have the Lisa 7/7 Office System on your hard disk you can
delete the file 3.1Lisa7/7/lntrinsic.Lib.

If you have Workshop 2.0: you may want to leave the 3.0only/ files for
use when you upgrade to 3.0, but you probably should delete them now and

2/15/85 About the Software Supplement 8

re-install them when you upgrade. You don't need to copy any files from
MacSupplement 5; they're only needed by 3.0 users. Also, when you try to
rename 2.0oniy/System.OS , you may get an error; if this happens, you'll
have to rename the existing System.OS to something else, then rename the
new one System.OS, and reboot the system.

If you have Workshop 3.0: You should delete all the 2.0only/ files,
since you won't need them. Immediately after you rename
3.0only/lntrinsic.Lib to Intrinsic.Lib, reboot the system. Also, very
few 3.0 users will need any of the files on MacSupplement 4; don't bother
copying that disk unless you specifically need something on it.

If you have Workshop 3.0 and Lisa 7/7 version 3.1 (the 7 disk
update to the original Lisa 7/7 version 3.0) on the same hard disk:
delete the file 3.0only/lntrinsic.Lib and rename
3.1Lisa7/7/lntrinsic.Lib to Intrinsic.Lib; then reboot the system.

If you need more room on your hard disk, you can delete some files.
Specifically, the QD/ files are Lisa QuickDraw examples and libraries
which can be deleted if you're only doing Macintosh development. Appendix
I of the Pascal 3.0 Reference Manual lists the files that come with the
Workshop and indicates the purpose of each. Disks 7, 8 and 9 of Pascal 3.0
are completely optional for Macintosh development. In addition, if you're
not doing any assembly language development, you can delete
Assembler.Obj and all files which begin with TLAsm/ (however, these are
needed to build the assembly portion of some sample applications).

Using the MacSupplement disks:

MacSupplement 1 contains many intrfc/ files, which are Pascal
interface texts for the Macintosh Toolbox, OS, Packages, and QuickDraw
units; many obj/ files, which are the compiled and assembled code for the
Pascal interfaces; and fix/Notes.text, information about fixed point
routines used in the new version of Graf3D (the 3-dimensional graphics
routines). For more information on these files see the sections below
titled "New Pascal Interfaces" and "Using Graf3D".

The intrfc/ and obj/ files (except for the WritelnWindow files) are part of
the Pascal Interface version 1.1. PasLib and WritelnWindow are discussed
in separate documents. The source for the WritelnWindow unit unit is
provided in the file intrfc/WritelnWindow2.text; it makes use of the new
version of PasLib which is provided here.

2/15/85 About the Software Supplement

Files on disk MacSupplement 1 (Feb 85):

fix/Notes.text
intrfc/FixMath.text
intrfc/Graf3D.text
intrfc/MacPrint.text
intrfc/MemTypes.text
intrfc/OsIntf.text
intrfc/Packlntf.text
intrfc/PasLiblntf.text
intrfc/QuickDraw.text
intrfc/QuickDraw2.text
intrfc/ToolIntf.text
intrfc/WritelnWindow.text
intrfc/WritelnWindow2.text
obj/FixAsm.obj
obj/FixMath.obj
obj/Graf3D.obj
obj/MacPrint.obj
obj/MemTypes.obj
obj/OSIntf.obj
obj/OSTraps.obj
obj/Packlntf.obj
obj/PackTraps.obj
obj/PasInit.obj
obj/PasLib.obj
obj/PasLibAsm.obj
obj/PasLiblntf.obj
obj/PrLink.obj
obj/PrScreen.obj
obj/QuickDraw.obj
obj/RTLib.obj
obj/ToolIntf.obj
obj/ToolTraps.obj
obj/WritelnWindow.obj

MacSupplement 2 contains many TLAsm/ files, which define macros and
symbols for assembly language programs and several defProcs/ files,
which are the assembly language definition functions for the standard
buttons, menus, scroll bars, windows and round-cornered windows used in
the ToolBox, included here to study in case you need to write your own
custom definitions. It also contains serial/ files needed to include the
latest RAM-based serial driver in a resource definition file (see "About
RAM-Based Serial Drivers" in this document and the file serial/AsyncR for
more details). It also contains 3.0only/ interface and object files for
the new Pascal 3.0 SANE floating point library (see enclosed documents on
Pascal and SANE).

Files on disk MacSupplement 2 (Feb 85):

3.0only/intrfc/SaneLib.text

2/15/85 About the Software Supplement 10

3.Oonly/obj/SaneLib.obj
3.Oonly/obj/SaneLibAsm.obj
defProcs/ButCDef.text
defProcs/MDef.text
defProcs/RDocWDef.text
defProcs/SBarCDef.text
defProcs/WDef.text
serial/Async/Mac.obj
serial/Async/MacXL.obj
serial/AsyncR.text
TLAsm/FSEqu.text
TLAsm/PackMacs.text
TLAsm/PrEqu.text
TLAsm/QuickEqu.text
TLAsm/QuickTraps.text
TLAsm/SaneMacs.text
TLAsm/SysEqu.text
TLAsm/SysErr.text
TLAsm/SysTraps.text
TLAsm/ToolEqu.text
TLAsm/ToolTraps.text

MacSupplement 3 contains many Pascal example programs
(example/SoundLab uses SANE so a version for each of the two SANE
libraries is provided); a sample desk accessory written in Assembly
language; and a code fragment which draws the "zooming" rectangles which
the Finder uses when opening and closing windows. For users of the 3.0
Workshop it also contains the latest RMaker (see "About RMaker" later in
this document) and updates to three optional Pascal utilities to be used in
conjunction with the new Pascal compiler (see enclosed documents on
Pascal and SANE).

Files on disk MacSupplement 3 (Feb 85):

2.Oonly/example/SoundLab.text
3.Oonly/example/SoundLab.text
3.Oonly/ProcNames.obj
3.Oonly/RMaker.obj
3.0only/Showlnterface.obj
3.Oonly/Xref.obj
example/ADeskAcc.text
example/ADeskAccR.text
example/Boxes.text
example/BoxesR.text
example/File.text
example/FileAsm.text
example/FileR.text
example/Grow.text
example/GrowR.text
example/Modal.text
example/ModalR.text
example/PicScrap.text

2/15/85 About the Software Supplement

example/PicScrapR.text
example/QDSample.text
example/QDSampleR.text
example/Samp.text
example/SampR.text
example/Scroll.text
example/ScrollR.text
example/ShowPaint.text
example/ShowPaintR.text
example/SineGrid.text
example/SineGrid R.text
example/SoundLabR.text
fragment/ZoomRect.text

MacSupplement 4 contains several 2.0only/ files which replace files
distributed with the Pascal 2.0 Workshop. These files should not be
installed if you have a 3.0 system. The disk contains a sample exec file
for 2.0 users which builds the sample Macintosh programs. It also
contains three 3.0only/Lisa/= files which are only required if you are
executing programs involving floating point numbers under the Lisa
Operating System (not just executing them on the Macintosh). The file
3.1Lisa7/7/lntrinsic.Lib is only needed if you have installed the Lisa
7/7 Office System version 3.1 on the same hard disk as your Workshop.

Files on disk MacSupplement 4 (Feb 85):

2.Oonly/code.obj
2.Oonly/example/exec.text
2.Oonly/intrfc/Elems.text
2.Oonly/intrfc/Sane.text
2.0only/linker.obj
2.Oonly/obj/Elems.obj
2.Oonly/obj/ElemsAsm.obj
2.Oonly/obj/Sane.obj
2.Oonly/obj/SaneAsm.obj
2.Oonly/pascal.obj
2.Oonly/PasErrs.err
2.Oonly/RMaker.obj
3.Oonly/Lisa/SaneLib.obj
3.Oonly/Lisa/SaneLib.text
3.Oonly/Lisa/SaneLibAsm.obj
3.1Lisa7/7/Intrinsic.Lib

MacSupplement 5 contains several 3.0only/ files which replace files
distributed with the Pascal 3.0 Workshop. These files should not be
installed if you have a 2.0 system. For more information see the note on
the new assember (in this document) and the enclosed documents on the
new Pascal compiler and the SANE floating point libraries. The disk also
contains a sample exec file for 3.0 users.

2/15/85 About the Software Supplement

Files on disk MacSupplement 5 (Feb 85):

3.Oonly/assembler.obj
3.Oonly/code.obj
3.Oonly/example/exec.text
3.Oonly/intrinsic.Lib
3.Oonly/IOSPasLib.obj
3.Oonly/paseal.obj
3.Oonly/PasErrs.Err

MacSupplement 6 contains 2.0 and 3.0 versions of MacCom, the
"Macintosh Communication" utility through which Macintosh disks can be
read and written from the Lisa Workshop (3.0 users, see the note on
MacCom later in this document) along with the SYSTEM.OS file (only for
Workshop 2.0) and the file MAC.BOOT (containing the Macintosh boot
blocks) needed by MacCom; 2.0 and 3.0 versions of Redit.obj, and a handy
resource editor that's documented in the file Redit/Userguide.text
(additional resource editors that run on the Macintosh can be found on the
MacStuff 3 disk).

Files on disk MacSupplement 6 (Feb 85):

2.Oonly/MacCom.obj
2.Oonly/REdit.obj
2.Oonly/SYSTEM.OS
3.Oonly/MacCom.obj
3.Oonly/REdit.obj
MAC.BOOT
Redit/Userguide.text

For more information on using the Supplement, see Putting Together a
Macintosh Application in Inside Macintosh. Note that this Software
Supplement is more current than the 7/10/84 draft of Putting
Together...; in case of discrepancies, these Supplement notes are correct.

New Pascal Interfaces:

A new release (version 1.1) of the interface files needed for Lisa Pascal
development for the Macintosh is included in this supplement. Not too
many changes have been made since the last release. These files should be
the basis for all future Macintosh development in Pascal.

2/15/85 About the Software Supplement 13

Text Files

These files are for human consumption. They are the interface portions of
the various libraries and include the relevant constants, types, and routine
definitions.

intrfc/MemTypes.Text Common types

intrfc/Qui'ckDraw. Text Graphics routines

intrfc/QuickDraw2.Text Implementation stub for QuickDraw

intrfc/OSIntf.Text Operating system routines (Memory Mgr,
File Mgr, Sound Driver, ...)

intrfc/ToolIntf.Text ToolBox routines (Menu Mgr, Dialog Mgr,
Window Mgr, ...)

intrfc/Packlntf.Text Packages (Standard File, International,
Binary-Decimal conversion, ...)

intrfc/SaneLib.Text

intrfc/Sane.Text

intrfc/Elems.Text

Standard Apple Numerics Environment (IEEE
floating point) ("The New World")

Standard Apple Numerics Environment (IEEE
floating point) ("The Old World")

Elementary functions (Trigs, logs,
exponentials, financial fns, random) ("The
Old World")

intrfc/MacPrint.Text Device independent printing

intrfc/Graf3D.Text Three-dimensional graphics routines layered
on top of QuickDraw. Use with FixMath.

intrfc/FixMath.Text Fixed point math

intrfc/PasLiblntf.Text PasLib (non built-in) functions dealing with
the heap and Writeln redirection

Object Files

These files are either for compiler consumption (indicated by $USE), in
which case they include the interface definition inside the object file, or
for linker consumption (indicated by LINK), in which case they include the
actual code to implement the interface, or for both.

obj/MemTypes.obj MemTypes definition. $USE only,

obj/QuickDraw.obj Quickdraw. $USE and LINK.

2/15/85 About the Software Supplement 14

obj/OSIntf.obj

obj/OSTraps.obj

obj/Toolintf.obj

obj/ToolTraps.obj

obj/Packlntf.obj

obj/PackTraps.obj

obj/PasLiblntf.obj

obj/PasInit.obj

obj/PasLib.obj

obj/PasLibAsm.obj

obj/RTLib.obj

obj/MacPrint.obj

obj/Prlink.obj

obj/PrScreen.obj

obj/Graf3D.obj

obj/FixMath.obj

obj/FixAsm.obj

OSIntf definition. $USE only.

OSIntf implementation. LINK with this.

Toollntf definition. $USE only.

Toollntf implementation. LINK with this.

Packlntf definition. $USE only.

Packlntf implementation. LINK with this.

PasLib definition. $USE only (if directly
calling PasLib routines).

PasLib initialization implementation of
%_BEGIN, %_END & %_TERM. LINK with this.

PasLib implementation portion in Pascal.
LINK with this.

PasLib implementation portion in assembler.
LINK with this.

PasLib Run Time support—implementation of
console I/O. LINK with this.

MacPrint definition. $USE only.

MacPrint high-level implementation,
with this or PrScreen, not both.

LINK

MacPrint low-level implementation. LINK
with this or PrLink, not both.

Fixed point implementation of Graf3D
(requires FixMath, does not require SANE).
$USE and LINK.

Fixed point Math definition
Graf3D. $USE only.

Required for

Fixed point Math implementation (in
assembly). LINK with this.

For the following files, use either the set for "The New World" or the set
for "The Old World", but not both (see Workshop Pascal: Floating Point
for Macintosh, enclosed).

obj/SaneLib.obj

obj/SaneAsm.obj

obj/Sane.obj

SANE and Elems definition ("The New World")
$USE and LINK.

SANE and Elems implementation (in assembler
("The NewWorld"). LINK with this.

SANE implementation portion in Pascal ("The

2/15/85 About the Software Supplement 15

obj/SaneAsm.obj

obj/Elems.obj

obj/ElemsAsm.obj

Old World"). $USE and LINK.

SANE implementation portion in assembler
("The Old World"). LINK with this.

Elems implementation portion in Pascal ("Th
Old World"). $USE and LINK.

Elems implementation portion in assembler
("The Old World"). LINK with this.

Changes to Pascal Interfaces

The following changes were made since the October Supplement.

Toollntf
changed:

TYPE KeyMap

TYPE ControlRecord

FontRec record
fRectMax field
chHeight field

changed to Packed Array of BOOLEAN
for more convenient access
changed to PACKED, changed types of
cntrlVis & cntrlHilite to Byte.
Replace TRUE with 255, FALSE with 0.

changed to fRectWidth
changed to fRectHeight

added:
CONST Cairo
CONST LosAngeles
CONST NoScrapErr

FUNCTION AsmWordBreak

PROCEDURE AsmClikLoop

FUNCTION TEFromScrap
FUNCTION TEToScrap

font number 11
font number 12
scrap manager error: desk scrap
isn't initialized
allows definition of custom word
break routine in Pascal
allows definition of custom click
loop routine in Pascal
copies desk scrap to text edit scrap
copies text edit scrap to desk scrap

OSIntf
changed:

TYPE ParamBlockRec

FUNCTION OpenDriver

PROCEDURE CloseDriver
FUNCTION PBOffline
FUNCTION PBEject
PROCEDURE RamSDOpen

PROCEDURE InitQueue

FUNCTION PtrToXHand

changed "filler3" field of
CntrlParam variant to "ioCRefNum"
fn result is now OSErr, refNum is
returned in var parameter
changed to a function of type OSErr
removed "async" parameter
removed "async" parameter
removed "rsrcType" and "rsrcID"
parameters
changed to FInitQueue with no
parameters
fixed bug in implementation

2/15/85 About the Software Supplement 16

TYPE SysParmType — changed "valid" to a byte and added
3 new byte fields

CONST noParity -- constant changed from 8192 to 0

added (see intrfc/OSIntf for Pascal interface):
PROCEDURE SetUpA5

PROCEDURE RestoreA5
FUNCTION MoveHHi

FUNCTION GetVRefNum

— to ensure that reg A5 is correct in
I/O completion routines & VBL tasks

-- companion to above
-- moves a relocatable to the top of

its heap zone
-- returns volume refNum given file

refNum
FUNCTION GetApplLimit — returns current application heap

limit
PROCEDURE Environs — get machine type and rom version
PROCEDURE Restart — reset the machine
CONST macMachine — for Envrions routine
CONST macXLMachine — for Envrions routine

removed:
CONST changeFlag

PROCEDURE Drvrlnstall
PROCEDURE DrvrRemove
PROCEDURE SetFType

FUNCTION FlushFile

bit in event modifiers which didn't
work as advertised
not needed
not needed
not needed, use PBSetFVers if
necessary
not needed, use
FlushVol(GetVRefNum(fileRefNum))

Packlntf
changed:

CONST verFrCanada
CONST verFinland

— switched code from 17 to 11
— switched code from 11 to 17

New Assembler Equates:

This supplement contains a new release (version 1.1) of the equate and
macro files needed for assembly language development for the Macintosh.
The files are provided in both Lisa format (TLAsm) and Macintosh (MDS,
Macintosh 68000 Development System) format. The two sets of files are
now completely consistent, the TLAsm files being mechanically produced
from the MDS counterparts. These files should be the basis for all "future
Macintosh assembly language development.

The equates and macros are commented somewhat within the files
themselves. More detailed documentation can be found in the appropriate

2/15/85 About the Software Supplement 17

sections of Inside Macintosh.

Files

There are some changes to the names and number of TLAsm files. These
changes were made so that the TLAsm files would be consistent with the
MDS files. You should delete any old TLAsm files on your hard disk. You
will probably have to change the INCLUDE statements in your assembly
language programs on the Lisa. The new files are listed below.

FSEqu
PackMacs
PrEqu
QuickEqu *
QuickTraps
SANEMacs
SysEqu *
SysErr
SysTraps
ToolEqu *
ToolTraps

-- combined PackEqu and PackMacs

-- formerly GrafTypes
-- formerly QuickMacs

-- combined SysEqu, ResEqu, GrafEqu, HeapDefs

— formerly SysMacs

-- formerly ToolMacs

* Note: Files marked with a start with an equate such as
"wholeSystem" which is used for conditional assembly. If you do
not need the less common equates after ".IF wholeSystem" you can
change wholeSystem to 0 and reduce the time and space required
for your assembly.

These new TLAsm files contain some changes from the last set of equates
that were distributed. Some equates were added, some removed, and
others were renamed or had their values changed. The following lists
identify changes that may effect your assembly language sources:

Renamed Equates

TLAsm file Old Equate name New Equate Name

quickequ LGlobals GrafGlobals

sysequ resource resourc
sysequ CurlOTrap MemError

toolequ fFormat fFontType
toolequ fMinChar fFirstChar
toolequ fMaxChar fLastChar
toolequ fMaxWd fWidMax
toolequ fBBox fKernMax
toolequ fBBoy fNDescent

2/15/85 About the Software Supplement 18

toolequ fBBdx fFRectWidth
toolequ fBBdy fFRectHeight
toolequ fLength fOWTLoc
toolequ fRaster fRowWords

Equates Removed from TLASM Files

TLAsm file Eauate name

graftypes nil
graftypes slop

heapdefs appzonesize
heapdefs fgzalways
heapdefs fngzresrv
heapdefs syszonesize

prequ iprdeapshit

resequ alerttype
resequ arrowcursor
resequ blackpat
resequ cdefrtype
resequ codertype
resequ creamlO
resequ ctnicon
resequ ctrlrtype
resequ cursrtype
resequ dilogtype
resequ dkgraypat
resequ drvrrtype
resequ fontrtype
resequ fwidrtype
resequ graypat
resequ hourcursor
resequ iconrtype
resequ itmlsttype
resequ keyctype
resequ ltgraypat
resequ mbarrtype
resequ mdefrtype
resequ menurtype
resequ patlrtype
resequ patmenuproc
resequ patrtype
resequ picrtype
resequ stdfont
resequ stdkbd
resequ stringrtype
resequ textrtype
resequ wdefrtype
resequ whitepat
resequ windrtype

sanemacs foannuityx

2/15/85 About the Software Supplement 19

sanemacs focompoundx
sanemacs focpysgnx
sanemacs forandomx
sanemacs fpbytrap

sysequ abortevt
sysequ asyntrpbit
sysequ filler3
sysequ loadfiller
sysequ reserveevt
sysequ resuser
sysequ spodometer
sysequ tagBufPtr
sysequ timertype
sysequ twiggyvars
sysequ heapStart

syserr noevtavail

toolequ jrefnum
toolequ menuheigth
toolequ testyle
toolequ wspare

Note that the resource type equates of the form xxxxRType
(e.g. IconRType .EQU 'ICON') which used to appear in resequ have been
removed. References to these types should be replaced by the
corresponding ASCII strings.

Some other equates, used when assembling the ROM, were removed as
well. Anyone relying on any of the removed equates should contact
Macintosh Technical Support so that the equate files can be corrected.

Equates Which Had Their Values Corrected

TLAsm file Equate name

sysequ accUndo
sysequ accCut
sysequ accCopy
sysequ accPaste
sysequ accClear

toolequ dWindProc
toolequ dVisible
toolequ appleMark

prequ IGParaml
prequ IGParam2
prequ IGParam3
prequ IGParam4
prequ fOurPtr
prequ fOurBits

(these acc... equates are rarely used)

2/15/85 About the Software Supplement 20

prequ iPrPortSize

Application writers may find it useful to note that ApplScratch in
TLAsm/toolequ is a 12 byte application scratch area in low memory.

Pascal Compiler & Linker Notes:

If you are using an exec file other than the new example/exec file provided
with this Supplement, please note the following: If you have Workshop 2.0
you should give the $M+ option to the code generator. If you have Workshop
3.0, you should give the $M+ option to the Pascal compiler and/or include it
in your source code. If you are using Workshop 2.0 or an old verion of the
Workshop 3.0 Pascal compiler, make sure you also give the $X- option to the
compiler (this is optional when using $M+ in the new 3.0 compiler included
in this Supplement).

If you have Workshop 3.0, please also note that your exec files should
always give the +X option to the Linker. This option is required for
generating Macintosh code, but it wasn't recognized by some Linkers we've
distributed in the past, so you may have removed it from your exec files.

The Linker that you should be using with Pascal Workshop 3.0 is the file
Linker.obj from Pascal 3.0 disk 6, dated 7/20/84. When run it displays its
version as "{3.0} June 1,1984". If you have any other linker you should
replace it with this one.

About the Assembler:

The new 3.0 only assembler included in this Supplement includes a
mechanism for creating a compressed symbol file which will greatly speed
up your assembly. In order to use compressed symbol files, first set up a
separate assembly containing the definitions you want to include, then the
.DUMP statement. The format of the .DUMP statement is

.DUMP filename

where filename is the name of a compressed symbol file which will be
generated with a .SYM suffix. For example, you might use

2/15/85 About the Software Supplement 21

.INCLUDE TLASM/SYSEQU

.INCLUDE TLASM/SYSERR

.INCLUDE TLASM/SYSTRAPS

.INCLUDE TLASM/TOOLEQU

.INCLUDE TLASM/TOOLTRAPS

.DUMP TLASM/EQUATES

This creates the file TLASM/EQUATES.SYM, which is a compressed symbol
file containing all the symbols defined in the listed files. Local labels
will not be included in the source files, and forward references will not be
resolved.

To use the .SYM file, just use it in a .INCLUDE statement, such as

.INCLUDE TLASM/EQUATES.SYM

Note that the format is the same as the .INCLUDE for text files, so the .SYM
suffix must be included in the name.

About Maccom:

The 3.0only/MacCom.obj file on this Supplement is MacCom version 3.11.
That version includes support for Macintosh/Lisa shared hard disks. This
is provided through the command A)ltDevice. The A command can be used
to tell Maccom to look on an alternate device (lower, paraport, upper) for
the Macintosh directory. You can then move files to or from the specified
Macintosh directory.

Maccom also now supports conversion between Lisa and Macintosh text file
formats. A new command, S)ettings displays a second command line:

Finderlnfo, RemoveSlashes, Tabs, ConvertText, MatchTypes, Settings, Help, Quit

Finderlnfo and RemoveSlashes have the same effect as on the main
command line (they were left in the main command line for exec file
compatibility). Finderlnfo here also allows you to change the defaults for
the Finder type, creator, and bundle bit settings (its prompts have been
reordered since MacCom 3.9; this could effect complex exec files).

The ConvertText command allows for Lisa .TEXT file conversion. It asks
you whether to convert to or from Lisa .TEXT files and what pathname
extension (it need not be .TEXT) to use. This extension will be used to

2/15/85 About the Software Supplement

qualify filename searches when converting in either direction.

The Tabs command allows you to remove tabs (Macintosh to Lisa) or
compress runs of blanks into tabs (Lisa to Macintosh) when processing
text files with the ConvertText option.

The MatchTypes command allows you to qualify searches on Macintosh
filenames by specifying a list of Finder types.

The Settings command displays the current settings, Help displays help,
and Quit returns to the main command line.

About Rmaker:

Rmaker is the resource compiler which is described fully in the Inside
Macintosh section called Putting Together a Macintosh Application.
The 3.0only/RMaker.obj file on this Supplement is RMaker version 7.9.
That version has several bug fixes, plus an enhancement: you can now
specify a meta-character as part of a menu item's text. Do this by
repeating the meta-character twice; i.e., to put a left-parenthesis in a
menu item, you should put ((in your resource definition file. The
processing of CODE resources has been also been optimized.

Using Graf3D :

The Graf3D unit simulates three-dimensional graphics by making calls to
QuickDraw. It is can only be used through the Lisa Workshop. The
version provided in this supplement uses fixed point arithmetic which is
smaller and faster than the floating point arithmetic used in previous
versions of Graf3D. For a discussion of fixed point arithmetic, see the file
fix/Notes.text on MacSupplement 1. Programs using Graf3D must USE
obj/FixMath and obj/Graf3D; they must link with obj/FixAsm and
obj/Graf3D (therefore example/exec must be modified to build such
programs). Two example programs which use Graf3D are provided on
MacSupplement 3: Boxes and SineGrid. Executable versions of these
programs appear on MacStuff 2.

2/15/85 About the Software Supplement

RAM-Based Serial Drivers:

For those who need the extra functionality of the RAM Serial Driver, the
following two routines are supplied in intrfc/OSIntf (corresponding to
obj/OSIntf and obj/OSTraps):

Function RAMSDOpen(whichport: SPortSel):OSErr;
Procedure RAMSDClose(whichport: SPortSel);

where SPortSel= (SPortA, SPortB)

The RAM Serial Driver can now be used from Lisa Pascal or Assembler or
the Macintosh 68000 Development System (MDS) Assember. When
developing using the Lisa Workshop, copy the serial/ files from the
MacSupplement 2 disk and move the text of serial/AsyncR.text into your
resource definition file. When developing on a Macintosh using the MDS
linker, link with SDOpen.Rel and move the SERD resources from the SERD
file into your resource file (using RMaker or the Resource Editor).
SDOpen.Rel and SERD appear on the MacStuff 3 disk in the Serial Driver
Stuff folder.

Assembly language programmers should use the following code to bring in
the RAM Serial Driver:

SPORTA EQU $0000 ;".EQU" for Lisa Assembler
SPORTB EQU $0100

XREF RAMSDOpen

CLR.W "(SP)
MOVE.W SPORTB,-(SP)

JSR RAMSDOpen
MOVE.W (SP)+, DO

Use the following code to close the driver:

XREF RAMSDClose

MOVE•W SPORTB,-(SP)
JSR RAMSDClose

".REF" for Lisa Assembler

reserve space for function result
to select port B
(use SPORTA for port A)

get the function result

".REF" for Lisa Assembler

RAMSDOpen loads and installs the Mac or MacXL RAM serial driver
(resource type SERD, ID=1 for Mac, ID=2 for MacXL) if the system driver is
version 0. The driver is then opened for both input and output.
RAMSDClose must be called before the program ends to remove the RAM
driver.

2/15/85 About the Software Supplement 24

Copy the two SERD resources from the file SERD into your resource file
using the resource editor to make this all work.

Possible errors from RAMSDOpen include:
-21... -23 - device manager error
-97 PortlnUse - some other driver is currently using

this port
-98 PortNotCf - parameter ram is set for some other

type use
-192 ResNotFound- appropriate SERD resource not found
-108 MemFullErr - not enough memory to load driver

Changes from the previous version:
- no longer supply a resource type and ID
- resource type is always SERD
- resource ID=1 for Mac driver, 2 for MacXL driver
- loads appropriate driver for Mac/MacXL
- uses current driver if it is version 1 or greater

Ordering the Pascal Workshop 3.0:

Pascal Workshop 3.0 is available now. This new version of the Workshop is
compatible with the Lisa 7/7 Office System and allows the hard disk to be
shared with MacWorks volumes. Other improvements include:

improved Editor
compiler enhancements
many new Workshop utilities
better performance
hierarchical file system (subdirectories)
improved Maccom and Rmaker (provided with this Supplement)
improved access to SANE floating point (provided with this

Supplement)

Existing Lisa Pascal users can receive a new copy of Pascal Workshop 3.0
by sending their Pascal Workshop 2.0 master disk (Pascal 1) and a check
for $150 (California residents add local sales tax) to:

Apple Computer, Inc.
3.0 Upgrade
467 Saratoga Ave. Suite 621
San Jose, CA 95129
(408) 988-6009

2/15/85 About the Software Supplement 25

You should make a copy of your Pascal 1 disk before sending in the original.
Please allow 4 to 6 weeks for delivery.

AppleTalk:
Included in this Supplement is a new Using AppieTaik chapter for Inside
Macintosh, which covers communications between Macintoshes over
AppleTalk. If you are working on a peripheral which connects directly to
AppleTalk without a Macintosh (such as a standalone file server), you will
also need Inside AppleTalk, formerly known as the AppleBus
Developer's Handbook. It covers the finer points of implementing the
AppleTalk protocols yourself. It is available for $75 (California residents
please add local sales tax) from:

Apple Computer Mailing Facility
467 Saratoga Avenue, Suite 621
San Jose, California 95129.

If you're working on Macintosh software which uses AppleTalk, you'll need
to license the AppleTalk drivers from Apple. For licensing information, as
well as information on AppleTalk cables and connector kits, contact:

Kin Seto
Apple Computer
Mail Stop 4-T
20525 Mariani Avenue
Cupertino, CA 95014
(408) 973-4278.

Enclosed Documentation:

The Commented Call List document can be used as a quick reference to
the Pascal Interfaces for the Macintosh. It lists the Procedure and
Function calls for most of the Toolbox and OS managers (notable
exclusions include Quickdraw and the Print Manager) grouped by manager.
Within each manager the calls are ordered from the most frequently used
calls to dangerous or obscure calls. The calls are accompanied by brief
usage notes.

The Trap List document is a list of traps including: the trap or routine

2/15/85 About the Software Supplement

name as it is described from Pascal, the trap word, the section in Inside
Macintosh where it is discussed, how the routine effects the heap, and a
list of what other traps are called by the routine.

The Workshop Pascal: Floating Point for Macintosh document
describes several ways to access SANE (Standard Apple Numeric
Environment) floating point libraries from Lisa Pascal. The recommended
environment requires Lisa Pascal 3.0 and additional software included in
this Supplement.

The February 8, 1985 memo entitled Latest "Post-3.0" Lisa Pascal
Compiler Enhancements describes the Pascal compiler for Workshop 3.0
which we have included in this Supplement. It includes more details on
the use of SANE from Pascal.

About the Resource Editor and REdit describe the two pre-release
resource editors which are included on the MacStuff 3 disk.

Macintosh PasLib Release V.0.7 describes the latest PasLib library for
use from Lisa Pascal. The Writeln Window describes the unit
WritelnWindow which was built using the new PasLib. The software
described in these documents can be found on the MacSupplement 1 disk.

Macintosh Technical Note #0 describes our new Technical Notes
service and how to subscribe.

The Supplement also includes a copy of the forthcoming MacWorks XL
User Manual.

We have previously distributed two chapters of the Macintosh 68000
Development System User's Manual: The MacDB Debugger (chapter
6) and The MacsBug Debuggers (chapter 7). If this is the first time you
have received the Supplement, copies of these chapters should be enclosed.

Miscellaneous:

Several tools of limited interest were previously distributed separately
from the Supplement. "Pascal SANE tools" and the "RAM Serial Driver"
were offered this way in the past, but so many developers requested them
that we have included them in this Supplement Update.

If you have an old edition of the Software Supplement, you may have
MacWorks-LisaBug, which is a special version of the old MacWorks (not

2/15/85 About the Software Supplement

MacWorks XL) with the LisaBug debugger built in. This new Supplement
contains a version of MacsBug specifically intended for use under all
versions of MacWorks. See the separate MacsBug document (distributed
earlier) for more details.

If you have technical comments regarding the Supplement, please write to
us at:

Macintosh Technical Support
Apple Computer
Mail Stop 4-T
20525 Mariani Avenue
Cupertino, CA 95014

If you have questions about missing or damaged materials (disks or
documentation), please contact our mailing facility at:

Apple Computer Mailing Facility/Milestone Group
467 Saratoga Avenue, Suite 621
San Jose, CA 95129

Customer Service:
(408) 988-6009
9:00 A.M -1:30 P.M., Pacific Time

Macintosh Technical Support
2/15/85

2/15/85 About the Software Supplement

Macintosh™ Technical Notes

#0: About Macintosh Technical Notes

Written by: Scott Knaster 2/10/85

0

The Macintosh Developers Group is proud to announce a new service to help provide
information to anyone developing Macintosh software: Macintosh Technical Notes.
Technical Notes contain information that's designed to supplement or annotate what
you read in Inside Macintosh and other manuals. You'll see hints and tips,
descriptions of obscure features and bugs, and examples in Technical Notes.

We want Technical Notes to be distributed as widely as possible. The surest way to
get them is to subscribe, directly from Apple, for $20 per year. However, we're also
going to distribute Technical Notes to user's groups and upload them to various
electronic bulletin board systems, and we're placing no restrictions on copying them
(except that they may not be resold). Also, registered developers will receive
Technical Notes as part of their registration fee.

To receive Macintosh Technical Notes for one year (12 packages, each package
containing approximately 10 notes), send $20 to

Macintosh Technical Notes
Apple Computer, Inc.
20525 Mariani Ave MS 4-T
Cupertino, CA 95014

Remember that we're distributing our Technical Notes widely and we're encouraging
that they be copied, so you'll be able to obtain them from other sources as well;
subscribing ensures that you'll get them directly from Apple when they're published.

We hope that Macintosh Technical Notes will provide you with lots of valuable
information while you're developing Macintosh software.

Macintosh is a trademark licensed to Apple Computer, Inc.

Technical Note #0 page 1 of 1 About Macintosh Technical Notes

o

o

o

o

c

c

o

c

Commented Call List
The various Pascal routines used to access the Macintosh Toolbox and OS routines are listed here.
The calls are organized first by the manager (Window Manager, Memory Manger, et cetera)
involved. Within each manager, the first calls listed are those normally used, followed by calls of
more special use, with dangerous or unnecessary calls listed last.

Event Manager

These calls, used for managing the event queue, are found in the Toolbox or the OS. The Toolbox
routines are listed first; they are used more commonly. Generally, a program only needs to call
GetNextEvent from one place—its Main Event Loop (MEL). If you are tempted to use it in other
places, you are probably creating a MODE (bad). If GetNextEvent returns FALSE, then you don't
need to process the event further, with the exception of null events when you have a modeless
dialog (with EditText items) active. Null events are also a good time to make sure the correct
cursor is being displayed.

FUNCTION GetNextEvent (mask:INTEGER;
VARtheEvent: EventRecord) : BOOLEAN;

Call EventAvail if you want to examine an event without removing it from the queue. Since Update
and Activate events are not in the queue, using the event record returned to act on one of these will
eliminate the event.

FUNCTION EventAvail (mask:INTEGER;
VAR theEvent: EventRecord): BOOLEAN;

StillDown returns TRUE if there are no mouse events in the event queue. This ensures that the
mouse button has not been released and pressed again. WaitMouseUp does the same thing, but if it
returns FALSE, it removes the corresponding mouse up event from the queue.

FUNCTION StillDown:BOOLEAN;
FUNCTION WaitMouseUp:BOOLEAN;

Button returns TRUE if the mouse button is being pressed. Do not infer that the button has not
been released and pressed again—use StillDown for that.

FUNCTION Button: BOOLEAN;

GetMouse returns the current location of the mouse in local coordinates. You can use it to
implement your own cursor tracking routines.

PROCEDURE GetMouse (VAR pt: Point);

TickCount returns the number of Ticks (a tick is 1/60 of a second) since the system was started.
Because Vertical Retrace tasks can be skipped occasionally, it is not guaranteed accurate.

FUNCTION TickCount:Longlnt;

GetKeys can be used to examine the state of all keys at a given instant. Its uses are limited.
PROCEDURE GetKeys(VAR k: keyMap);

GetDblTime returns the maximum time two mouse downs can be separated and still be considered a
single action—a double click. GetCaretTime returns the number of ticks between states of the
blinking caret.

FUNCTION GetDblTime: Longlnt;
FUNCTION GetCaretTime: Longlnt;

FlushEvents is the only OS event manager routine most programs need to call. It clears the event
queue. It is a good idea to call this routine when your application begins, to clear unprocessed
events intended for the Finder.

PROCEDURE FlushEvents(whichMask,stopMask: INTEGER);

Commented Call List 1 February 15, 1985 Russ Daniels

Call PostEvent to post events. This is something most programs do not need to do, although it can
be used to communicate between different pieces of your program.

FUNCTION PostEvent (eventNum: INTEGER;
eventMsg: Longlnt): OsErr;

You'll probably never need to call these routines. SetEventMask sets the system event mask.
OSEventAvail gets an event from the event queue without removing it; GetOSEvent get an enent
and removes it from the queue.

PROCEDURE SetEventMask(theMask: INTEGER);
FUNCTION OSEventAvail (mask: INTEGER;

VAR theEvent: EventRecord): BOOLEAN;
FUNCTION GetOSEvent (mask: INTEGER;

VAR theEvent: EventRecord): BOOLEAN;

Commented Call List 2 February 15, 1985 Russ Daniels

Font Manager
If you are going to use fonts, or any manager that uses fonts, call InitFonts, after calling InitGraf,
before calling InitWindows. No system error alerts will be displayed unless InitFonts is called.

PROCEDURE InitFonts;

If you have the font ID and want the name, call GetFontName. If you have the name and want the
font ID, call GetFNum.

PROCEDURE GetFontName(familylD: INTEGER; VAR theName: Str255);
PROCEDURE GetFNum(theName: Str255; VAR familylD: INTEGER);

You can ensure a font will remain in memory by calling SetFontLock.
PROCEDURE SetFontLock(lockFlag: BOOLEAN);

RealFont returns TRUE if the font is available in the requested size. You can use this information
to allow only font sizes that don't require scaling.

FUNCTION RealFont(famID: INTEGER; size: INTEGER): BOOLEAN;

FMSwapFont is normally called by QuickDraw. If you want to bypass the QuickDraw text
routines, call it yourself.

FUNCTION FMSwapFont(inRec: FMInput): FMOutPtr;

Commented Call List 3 February 15, 1985 Russ Daniels

Window Manager

After calling InitGraf and InitFonts, call InitWindows if you want to use Window Manager
routines.

PROCEDURE InitWindows;

To create a new window, call GetNewWindow if there is a resource that describes the resource, or
NewWindow if you want to create the description during execution. If you don't provide storage,
the Window Manager does a NewPtr call—another nonrelocatable object on your heap.

FUNCTION GetNewWindow (windowID: INTEGER;
wStorage: Ptr;
behind: WindowPtr): WindowPtr;

FUNCTION NewWindow(wStorage: Ptr;
boundsRect: Rect;
title: Str255;
visible: BOOLEAN;
theProc: INTEGER;
behind: WindowPtr;
goAwayFlag: BOOLEAN;
refCon: Longlnt): WindowPtr;

If you provided the storage for the window, call CloseWindow when you are done with it; call
DisposeWindow if the Window Manager allocated the storage.

PROCEDURE DisposeWindow (theWindow: WindowPtr);
PROCEDURE CloseWindow (theWindow: WindowPtr);

FrontWindow returns the WindowPtr for the frontmost visible window.
FUNCTION FrontWindow: WindowPtr;

For each mouse-down event, call FindWindow to find where the mouse was pressed in the
window. If it was in the content region of an inactive window, call SelectWindow.

FUNCTION FindWindow (thePoint: Point;
VAR theWindow: WindowPtr): INTEGER;

PROCEDURE SelectWindow (theWindow: WindowPtr);

If the mouse-down event was in the grow region of an active window, call GrowWindow first, and
then SizeWindow. DrawGrowIcon draws the grow 'icon' in the grow box. Invalidate the
rectangle enclosing the 'old' grow box to ensure the box will be erased.

FUNCTION GrowWindow (theWindow: windowPtr; startPt: Point;
bBox: Rect): Longlnt;

PROCEDURE SizeWindow (theWindow: WindowPtr;
width,height: INTEGER;

PROCEDURE DrawGrowIcon (theWindow: WindowPtr);
fUpdate: BOOLEAN);

If it was in the drag region of any window, call DragWindow.
PROCEDURE DragWindow (theWindow: WindowPtr; startPt: Point;

boundsRect: Rect);

If it was in the go-away region of the active window, call TrackGoAway.
FUNCTION TrackGoAway (theWindow: WindowPtr;

thePt: Point): BOOLEAN;

In response to an update event, call BeginUpdate, redraw the content region, or at least the visRgn,
and call EndUpdate.

PROCEDURE BeginUpdate (theWindow: WindowPtr);
PROCEDURE EndUpdate (theWindow: WindowPtr);

Commented Call List 4 February 15, 1985 Russ Daniels

Call InvalRect or InvalRgn to mark an area of the window to add to an update region. Call
ValidRect or ValidRgn to remove an area of the window from the update region.

PROCEDURE InvalRgn (badRgn: RgnHandle);
PROCEDURE InvalRect (badRect: Rect);
PROCEDURE ValidRgn (goodRgn: RgnHandle);
PROCEDURE ValidRect (goodRect: Rect);

If you want to move a window directly, call MoveWindow. Be thoughtful in using this call—you
don't want to surprise your user.

PROCEDURE MoveWindow (theWindow: WindowPtr; h,v: INTEGER);

You might want to hide the window, rather than closing or disposing of it, by calling
HideWindow. Call ShowWindow to redisplay a hidden window. Again, don't surprise your
user.

PROCEDURE HideWindow (theWindow: WindowPtr);
PROCEDURE ShowWindow (theWindow: WindowPtr);

BringToFront:BOOLEAN);

Use these routines to get and set the window title. It is a bad idea to use the window title as a
frequently changing status display, because setting the title causes a slight flicker which becomes
distracting.

PROCEDURE SetWTitle (theWindow: WindowPtr; title: Str255);
PROCEDURE GetWTitle (theWindow: WindowPtr;

VAR title: Str255);

These calls get and set the RefCon associated with the window. You can use this for anything you
want; as a pointer to the window's data, for example.

PROCEDURE SetWRefCon (theWindow: WindowPtr; data: Longlnt)
FUNCTION GetWRefCon (theWindow: WindowPtr): Longlnt;

Use these routines to get or store a picture handle in the window record. This picture will be drawn
rather than creating an update event.

PROCEDURE SetWindowPic (theWindow: WindowPtr;
thePic: PicHandle);

FUNCTION GetWindowPic (theWindow: WindowPtr): PicHandle;

DragGrayRgn allows you to drag a grayed region around the screen.
FUNCTION DragGrayRgn(theRgn: RgnHandle;

startPt: Point;
boundsRect, slopRect: Rect;
axis: INTEGER;
actionProc: ProcPtr): Longlnt;

These calls can be used to reorder the window list. Normally, you would use SelectWindow.
Refer to the manual if you are uncertain how to use these.

PROCEDURE BringToFront (theWindow: WindowPtr);
PROCEDURE SendBehind (theWindow,behind: WindowPtr);

PinRect returns the coordinates of a point, limited to a specified rectangle.
FUNCTION PinRect(theRect: Rect; thePt: Point): Longlnt;

Commented Call List 5 February 15,1985 Russ Daniels

If you are looking here, you don't need these routines.
PROCEDURE HiliteWindow (theWindow: WindowPtr; fHiLite: BOOLEAN)
PROCEDURE ShowHide(window: WindowPtr; showFlag: BOOLEAN);
PROCEDURE ClipAbove(window: WindowPeek);
PROCEDURE PaintOne(window: WindowPeek; clobbered: RgnHandle);
PROCEDURE PaintBehind(startWindow: WindowPeek;

clobbered: RgnHandle);
PROCEDURE SaveOld(window: WindowPeek);
PROCEDURE DrawNew(window: WindowPeek; fUpdate: BOOLEAN);
PROCEDURE CalcVis(window: WindowPeek);
PROCEDURE CalcVisBehind(startWindow: WindowPeek;

clobbered: RgnHandle);
FUNCTION CheckUpdate(VAR theEvent: EventRecord): BOOLEAN;
PROCEDURE GetWMgrPort(VAR wPort: GrafPtr) ;
{this one is useful for drawing outside windows.}

Commented Call List 6 February 15, 1985 Russ Daniels

Menu Manager
Call InitMenus after you call InitGraf, InitFonts, and InitWindows.

PROCEDURE InitMenus;

You can read menus from a resource file using GetMenu, or create a menu in memory using
NewMenu, filling it with AppendMenu. You then add the menu to the menu bar using InsertMenu.
Do NOT call GetMenu more than once unless you call ReleaseResource each time. To get the
handle to an existing menu, call GetMHandle rather than GetMenu (see below).

FUNCTION GetMenu(rsrcID: INTEGER): MenuHandle;
FUNCTION NewMenu(menuID: INTEGER;

menuTitle: Str255): menuHandle;
PROCEDURE AppendMenu(menu: menuHandle; data: str255);
PROCEDURE InsertMenu (menu: MenuHandle; beforeld: INTEGER);

Even more simply, read an entire menu bar from a resource file with GetNewMBar, and place it in
the menu bar with SetMenuBar (The current resource compilers will not create a menu bar resource
for you).

FUNCTION GetNewMBar(menuBarID: INTEGER): Handle;
PROCEDURE SetMenuBar(menuBar: Handle);

You can also use AddResMenu to get the name of resources of a given type to add to a menu, and
place it in the menu bar using InsertMenu.

PROCEDURE AddResMenu(menu: menuHandle; theType:ResType);

Use DeleteMenu to delete a menu from the menu bar. DisposeMenu removes the menu and
disposes of the associated memory block; call it if you created the menu with NewMenu. If you
created the menu using GetMenu, call DeleteMenu and ReleaseResource instead.

PROCEDURE DeleteMenu (menuld: INTEGER);
PROCEDURE DisposeMenu(menu: menuHandle);

You can operate on the menu bar as a whole using ClearMenuBar, as well as GetMenuBar and
SetMenuBar.

PROCEDURE ClearMenuBar;
FUNCTION GetMenuBar:Handle;

Now that you have worked through many different ways to create a menu bar, there is only one
way to draw it.

PROCEDURE DrawMenuBar;

When FindWindow returns inMenuBar for a mouse-down event, call MenuSelect with the point
where the mouse was pressed. MenuSelect returns a long integer, with the high-order word
containing the menu ID of the chosen menu, and the menu item number in the low word. After
your program responds to the menu item selected, call HiLiteMenu(O) to remove the highlighting
from the menu bar.

FUNCTION MenuSelect (startPt: Point): Longlnt;
PROCEDURE HiLiteMenu (menuld: INTEGER);

For key-down events with the Command key held down, call MenuKey, which returns the same
information as MenuSelect. By the way, rather than use HiWord and LoWord, you can just assign
the result of these routines to a record of two integers using type coercion:

TYPE MenuResType = Record WhichMenu, Whichltem: Integer; end;
VAR MenuRes : MenuResType;
{BEGIN} MenuRes : = MenuResType (MenuKey (inchar));

This eliminates any runtime calculations.
FUNCTION MenuKey (ch: CHAR): Longlnt;

Commented Call List 7 February 15, 1985 Russ Daniels

Call Disableltem to dim a menu item (0 disables the whole menu); MenuSelect returns 0 in the
high-order word if the user tries to select a disabled item.

PROCEDURE Enableltem (menu: menuHandle; item: INTEGER);
PROCEDURE Disableltem(menu: menuHandle; item: INTEGER);

Checkltem places or removes a check mark at the left of the menu item.
PROCEDURE Checkltem (menu: menuHandle; item: INTEGER;

checked: BOOLEAN);

InsertResMenu is like AddResMenu, but it inserts the item after the item indicated. Use
AddResMenu.

PROCEDURE InsertResMenu(menu: menuHandle; theType:ResType;
afterItem: INTEGER) ;

Use these routines to customize items in a menu.
PROCEDURE Setltemlcon(menu: menuHandle; item: INTEGER;

iconNum: INTEGER);
PROCEDURE Getltemlcon(menu: menuHandle; item: INTEGER;

VAR iconNum: INTEGER) ;
PROCEDURE SetItemStyle(menu: menuHandle; item: INTEGER;

styleVal: Style);
PROCEDURE GetItemStyle(menu: menuHandle; item: INTEGER;

VAR styleVal: Style);
PROCEDURE SetltemMark(menu: menuHandle; item: INTEGER;

markChar: CHAR);
PROCEDURE GetItemMark(menu: menuHandle; item: INTEGER;

VAR markChar: CHAR);

FlashMenuBar inverts the title of the menu, or the whole menu bar if the menuID isn't valid.
PROCEDURE FlashMenuBar(menuID: INTEGER);

CountMItems returns the number of items in a menu. CalcMenuSize calculates the horizontal and
vertical size of a menu, and stores them in the menu record. It is normally called for you.

FUNCTION CountMItems(menu: menuHandle): INTEGER;
PROCEDURE CalcMenuSize(menu:menuHandle);

Use Setltem to flip between two alternative menu items (Show/Hide Clipboard). Use Getltem to
get the name of a menu item that you installed by AddResMenu (the selected desk accessory in the
Apple menu, for example).

PROCEDURE Setltem (menu: menuHandle; item: INTEGER;
itemString: Str255);

PROCEDURE Getltem (menu: menuHandle; item: INTEGER; VAR
itemString: Str255);

Don't use SetMenuFlash to set the number of times an item flashes when selected, unless you are
writing a Control Panel-like accessory.

PROCEDURE SetMenuFlash(menu: menuHandle; flashCount: INTEGER);

Commented Call List 8 February 15, 1985 Russ Daniels

Control Manager
Note that when controls are associated with dialogs, the Dialog Manager makes many of these calls
for you~refer to the Dialog Manager Manual.

Use GetNewControl to create a control if the description of the control is in a resource; use
NewControl if you want to create the description at runtime. Call DisposeControl to remove a
control from a window's control list and release all memory associated with the control.
KillControls disposes of all of the window's controls (closing or disposing of the window does
this automatically).

FUNCTION GetNewControl(controlID: INTEGER;
owner: WindowPtr) : ControlHandle;

FUNCTION NewControl

PROCEDURE
PROCEDURE

(curWindow:
boundsRect:
title:
visible:
value:
min:
max:
contrlProc:
refCon:

DisposeControl (theControl
KillControls (theWindow:

windowPtr;
Rect;
Str255;
BOOLEAN;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
Longlnt): ControlHandle;

ControlHandle);
WindowPtr);

For a mouse-down event in the content region of the window, call FindControl to find if it was in
an active control. The function returns the part code. Then, depending on the part code, call
TrackControl, or take some other appropriate action.

FUNCTION FindControl (thePoint: Point;
theWindow: WindowPtr;
VAR theControl: ControlHandle): INTEGER;

Call TrackControl to track the mouse position with the control returned by FindControl. It calls
GetNextEvent until it gets a mouse-up event, calling your actionProc periodically.

FUNCTION TrackControl (theControl:ControlHandle;
thePt: Point;

actionProc:ProcPtr): INTEGER;

In response to an update event, call DrawControls. Call HideControl, MoveControl, SizeControl,
and ShowControl whenever you change the size of a window. If you are scrolling, remember to
set the windows origin to 0,0 before you draw the controls, or to offset each control's enclosing
rectangle by the same amount the window's origin is offset.

PROCEDURE DrawControls(theWindow: WindowPtr);
PROCEDURE MoveControl (theControl: ControlHandle;

h, v: INTEGER);
PROCEDURE SizeControl (theControl: ControlHandle;

w,h: INTEGER);
PROCEDURE ShowControl (theControl: ControlHandle);
PROCEDURE HideControl (theControl: ControlHandle);

Commented Call List 9 February 15, 1985 Russ Daniels

GetCtlValue returns the current value of a control. Call SetCtlValue to change the control's
value-the control will be redrawn accordingly. Buttons have values 0 or 1; a typical use of scroll
bars is to map the control's value and line numbers.

PROCEDURE SetCtlValue (theControl: ControlHandle;
theValue: INTEGER);

FUNCTION GetCtlValue (theControl: ControlHandle): INTEGER;

Call these routines to get and set the minimum and maximum values of a control. You do this to
map the range of possible control values to the range of lines in the text, for example.

FUNCTION GetCtlMin (theControl: ControlHandle): INTEGER;
FUNCTION GetCtlMax (theControl: ControlHandle): INTEGER;
PROCEDURE SetCtlMin (theControl: ControlHandle;

theValue: INTEGER);
PROCEDURE SetCtlMax (theControl: ControlHandle;

theValue: INTEGER) ;

Call DragControl to drag an outline of a control within its window; it calls MoveControl to move
the control to the new location. This is rarely necessary.

PROCEDURE DragControl (theControl: ControlHandle;
startPt: Point;
bounds: Rect;
s1opRe ct: Rect;
axis:INTEGER);

To change the way a control is highlighted, call HiliteControl. 0 is no highlighting, 1..253 is part
code to be highlighted, and 255 make the control inactive and highlights accordingly. Do not call
HiliteControl with 254~the current control definition procedures will not work properly if you do.

PROCEDURE HiliteControl (theControl: ControlHandle;
hiliteState: INTEGER);

Use these calls to get and set the control's title, refCon, and Action procedure pointer.
PROCEDURE SetCTitle (theControl: ControlHandle;

title: Str255);
PROCEDURE GetCTitle (theControl: ControlHandle;

VAR title: Str255);
PROCEDURE SetCRefCon (theControl: ControlHandle;

data: Longlnt);
FUNCTION GetCRefCon (theControl: ControlHandle): Longlnt;
FUNCTION GetCtlAction (theControl: ControlHandle): ProcPtr;

TestControl returns the part code containing the specified point. It is not usually not necessary to
call this routine.

FUNCTION TestControl (theControl: ControlHandle;
thePt: Point): INTEGER;

Commented Call List 1 0 February 15, 1985 Russ Daniels

TextEdit

After calling InitGraf, InitFonts, and InitWindows, call TEInit if you want to use TextEdit. It must
be initialized if you want to support desk accessories.

PROCEDURE TEInit;

To ensure a constantly blinking caret, call TEIdle as often as possible, certainly from your Main
Event Loop (MEL).

PROCEDURE TEIdle(h: TEHandle);

To allocate an edit record, call TENew. Call TEDispose when you are completely done with the
edit record—it disposes of the text, so make sure you are really done.

FUNCTION TENew(dest, view: Rect): TEHandle;
PROCEDURE TEDispose (h: TEHandle);

From your MEL, if a mouse-down event occurs in the view rect of an edit record, call TEClick. Be
sure to call GlobalToLocal to convert the mouse location. If the Shift key was down, set extend to
TRUE.

PROCEDURE TEClick(pt: Point; extend: BOOLEAN; h: TEHandle);

If you want TextEdit to handle a key-down event, call TEKey. Make sure the character is actually
text, and not a Command character.

PROCEDURE TEKey (key: CHAR; h: TEHandle);

Call TEDeactivate and TEActivate in response to activate events so TextEdit can change the
highlighting appropriately.

PROCEDURE TEActivate(h: TEHandle);
PROCEDURE TEDeactivate(h: TEHandle);

In response to an update event, call BeginUpdate, EraseRect, TEUpdate, and EndUpdate.
PROCEDURE TEUpdate(rUpdate: Rect; h: TEHandle);

In response to editing commands from a menu selection or command key press, call one of these
routines. The scrap will be modified by TECut and TECopy.

PROCEDURE TECut(h: TEHandle);
PROCEDURE TECopy (h: TEHandle);
PROCEDURE TEPaste (h: TEHandle);

To insert or delete text, call these routines. They do not affect the scrap. These calls are useful to
support Undo.

PROCEDURE TEInsert (inText: Ptr; textLength:
LONGINT; h: TEHandle);

PROCEDURE TEDelete(h: TEHandle);

To change the selection range, call TESetSelect. Call TESetJust to change the justification, and
TEUpdate to redisplay the text with the new justification.

PROCEDURE TESetSelect (selStart, selEnd: LONGINT;
h: TEHandle);

PROCEDURE TESetJust(just: INTEGER; h: TEHandle);

TEGetText returns a handle to the text of a specified edit record. TESetText moves characters into
the text record. To display the new text, call TEUpdate.

FUNCTION TEGetText(h: TEHandle): CharsHandle;
PROCEDURE TESetText (inText: Ptr; textLength: LONGINT;

h: TEHandle);

Commented Call List 11 February 15, 1985 Russ Daniels

TEScroll scrolls the text in the view rectangle by the number of pixels specified.
PROCEDURE TEScroll (dh, dv: INTEGER; h: TEHandle);

TECalText recalculates the linestarts for the text specified. Call this anytime the edit record is
modified in a way that changes the number of characters per line.

PROCEDURE TECalText(h: TEHandle);

Use TextBox to display text that will not be edited.
PROCEDURE TextBox(inText: Ptr; textLength: LONGINT;

r: Rect; style: INTEGER);

These routines are used to manipulate the TextEdit scrap directly. They are needed to keep the desk
scrap up to date.

FUNCTION TEScrapHandle: Handle;
FUNCTION TEGetScrapLen: Longlnt;
PROCEDURE TESetScrapLen (length: Longlnt);

TEFromScrap copies the desk scrap to the TextEdit scrap. TEToScrap copies the TextEdit scrap to
the desk scrap. Call ZeroScrap before calling TEToScrap. See the Scrap Manager documentation
for when to copy what if you are uncertain.

FUNCTION TEFromScrap: OsErr;
FUNCTION TEToScrap: OsErr;

These routines allow you to write word break or click loop routines in Pascal. This is definitely an
advanced topic.

PROCEDURE AsmWordBreak;
PROCEDURE AsmClikLoop;

Commented Call List 12 February 15, 1985 Russ Daniels

Dialog Manager

To use dialogs, you must make these init calls:
InitGraf;
I n i t F o n t s ;
InitWindows;
InitMenus;
T E I n i t ; and then
PROCEDURE InitDialogs(resumeProc: ProcPtr);

GetNewDialog creates a dialog from a dialog template resource. NewDialog creates a dialog using
the parameters passed. Generally, you'll use GetNewDialog. If you don't supply a pointer to
memory you've already allocated, either on the stack or the heap, the Dialog Manager will allocate it
from the heap—remember, a nonrelocatable object

FUNCTION GetNewDialog (dialoglD: Integer; wStorage: Ptr;
behind: WindowPtr): DialogPtr;

FUNCTION NewDialog (wStorage: Ptr;
boundsRect: Rect;
title: Str255;
visible: BOOLEAN;
theProc: INTEGER;
behind: WindowPtr;
goAwayFlag: BOOLEAN;
refCon: Longlnt;
itmLstHndl: Handle): DialogPtr;

If the dialog is modal, call ModalDialog, normally in a loop.
PROCEDURE ModalDialog (filterProc: ProcPtr;

VAR itemHit: INTEGER);

If you have any modeless dialogs, call IsDialogEvent to see if the event should be handled by a
dialog. If it returns TRUE, call DialogSelect. If the dialog has any editText items, call
IsDialogEvent for every event-even if GetNextEvent returns FALSE.

FUNCTION IsDialogEvent(event: EventRecord): BOOLEAN;
FUNCTION DialogSelect(event: EventRecord;

VAR theDialog: DialogPtr;
VAR itemHit: INTEGER): BOOLEAN;

Call these routines to perform text editing in a modeless dialog.
PROCEDURE DlgCut(dialog: DialogPtr);
PROCEDURE DlgPaste(dialog: DialogPtr);
PROCEDURE DlgCopy(dialog: DialogPtr);
PROCEDURE DlgDelete(dialog: DialogPtr);

When you are done with a dialog, call CloseDialog if you provided the storage, or if you created
the dialog with NewDialog and want to keep the item list around. Otherwise, call DisposDialog. If
you called GetNewDialog, you must release the DITL resource
yourself—the Dialog Manager makes a copy of it, without releasing the original.

PROCEDURE CloseDialog(dialog: DialogPtr);
PROCEDURE DisposDialog(dialog: DialogPtr);

Call CouldDialog if a dialog might be used and the disk with the resource file(s) might be removed.
The dialog template, the dialog window's definition function, the dialog's item list resource, and
any resource items are loaded and made unpurgeable until you call FreeDialog.

PROCEDURE CouldDialog (DlglD: Integer);
PROCEDURE FreeDialog(DlglD: Integer);

Commented Call List 13 February 15, 1985 Russ Daniels

If you need to modify items other thean editText items during execution, call GetDItem and
SetDItem.

PROCEDURE GetDItem (dialog: DialogPtr;
itemNo: Integer;
VAR kind: Integer;
VAR item: Handle;
VAR box: Rect);

PROCEDURE SetDItem (dialog: DialogPtr;
itemNo: Integer;
kind: Integer;
item: Handle;
box: Rect);

Use GetlText and SetlText to modify editText items.
PROCEDURE SetlText (item: Handle;

text: Str255);
PROCEDURE GetlText(item: Handle; VAR text: Str255);

Call SellText to move the caret to a particular editText item or select text within that item.
PROCEDURE SellText (dialog: DialogPtr;

itemNo: Integer;
startSel, endSel: INTEGER);

If you want to modify statText items to include execution-time information, call ParamText. The
parameters replace strings ,A0' through ,A3', respectively.

PROCEDURE ParamText (citeO, citel, cite2, cite3: Str255);

To change the font used in dialogs and alerts, call SetDAFont.
PROCEDURE SetDAFont(fontNum: INTEGER);

To change the sounds made when the user makes bad responses to a dialogevent (like a mouse
down outside of a modal dialog window), call ErrorSound. Your sound routine should make a
simple beep when it is called with a parameter of 1 to adhere to the Macintosh User Interface
Guidelines.

PROCEDURE ErrorSound(sound: ProcPtr);

These routines are used to display alerts. Use Alert if you want to display your own icon (or none)
in the upper left corner.

(alertID:Integer;
filterProc: ProcPtr): Integer;
(alertID: Integer;
filterProc: ProcPtr): Integer;
(alertID: Integer;
filterProc: ProcPtr): Integer;

CautionAlert(alertID: Integer;

FUNCTION Alert

FUNCTION StopAlert

FUNCTION NoteAlert

FUNCTION

ProcPtr) : Integer;
filterProc:

Commented Call List 14 February 15,1985 Russ Daniels

There is a global variable bumped each time an alert is called consecutively. This is used to allow
different actions for each of the first four times an alert is called. To find out the current level, call
GetAlrtStage; to start over at the first level, call ResetAlrtStage. The stage is reset each time a
different alert is called.

FUNCTION GetAlrtStage: INTEGER;
PROCEDURE ResetAlrtStage;

If you think you might need to display an alert, and you want to make sure the alert resources are in
memory, call CouldAlert. An example is if the user is going to eject the disk with your resource
file. When you no longer need the resource, call FreeAlert.

PROCEDURE CouldAlert(alertID: Integer);
PROCEDURE FreeAlert(alertID: Integer);

In unusual circumstances, you may need to force a dialog to be redrawn. One case is a "Wait"
dialog.

PROCEDURE DrawDialog (dialog: DialogPtr);

Commented Call List 15 February 15, 1985 Russ Daniels

Desk Manager

Call SystemTask from your main event loop, and periodically from any code that takes much time.
In other words, ensure this is called frequently. Its function is to give desk accessories processing
time.

PROCEDURE SystemTask;

Call OpenDeskAcc to open a desk accessory, normally in response to a selection from the Apple
menu. You can check the size of the resource to make sure you have room to load i t Throw away
the refnum returned-because of a bug, a valid reference number does not mean the accessory
actually opened. Also, note that a refNum of 0 means an error was encountered; there is no way to
know what the error was.

FUNCTION OpenDeskAcc(theAcc: Str255): INTEGER;

Desk accessories are normally closed by the user clicking in their close box. If the user chooses
Close from the File menu, check the windowkind of the frontmost window—if it is less than zero,
use it as the refnum and call CloseDeskAcc. When your application quits, you should again check
windowkind for each window in turn, and call CloseDeskAcc if it's less than zero.

PROCEDURE CloseDeskAcc(refNum: INTEGER);

If FindWindow returns inSysWindow for a mouse-down event, call SystemClick.
PROCEDURE SystemClick(theEvent: EventRecord;

theWindow: windowPtr);

Call SystemEdit when the user selects an edit command from a menu ONLY (not by command
key)! If it returns true, then the edit command was intended for the desk accessory.

FUNCTION SystemEdit(editCode: INTEGER): BOOLEAN;

You do not need to call these routines.
FUNCTION SystemEvent(myEvent: EventRecord): BOOLEAN;
PROCEDURE SystemMenu(menuResult: Longlnt);

Commented Call List 16 February 15, 1985 Russ Daniels

Scrap Manager
These calls are used to manipulate the desk scrap. The documentation suggests using a private
scrap—usually, it makes more sense to use the desk scrap all the time. It is important to remember
that TextEdit does use a private scrap, so call PutScrap after any call to TECut or TECopy.

The first call your program should make is to InfoScrap. Among other things, it tells you how big
the scrap is, so you know whether to write it to disk before continuing to load your program. You
also use this call to see if anyone (like a desk accessory) modified the scrap.

FUNCTION InfoScrap: pScrapStuff;

If you need to write the scrap to disk, call UnloadScrap.
FUNCTION UnloadScrap: LONGINT;

Call this to reload the scrap. Normally, the only time you need to do this is when your program
terminates, to ensure the scrap is in memory.

FUNCTION LoadScrap: LONGINT;

GetScrap reads scrap data into memory. Do NOT pass an empty handle (hDestA = NIL); just be
certain you don't have any data in the handle's memory block you want to save. A special use is to
pass NIL for hDest (hDest = NIL), which returns the size and offset without reading the data. This
is useful if you are looking for the primary type of the creator, which will have the lowest offset
(because it was written first).

FUNCTION GetScrap (hDest: Handle; what: ResType;
VAR offset: LONGINT): LONGINT;

For each cut or copy, first call ZeroScrap. Then call PutScrap, first for your preferred type,then
once for each additional type of scrap data you support.

FUNCTION ZeroScrap: LONGINT;
FUNCTION PutScrap (length: LONGINT; what: ResType;

source: Ptr): LONGINT;

Commented Call List 17 February 15, 1985 Russ Daniels

Resource Manager

These calls are used to access and modify resources stored in the resource fork of files (called
"resource files" for short), and to manipulate resource files themselves. The Resource Manager is
used extensively by other system routines. As a general rule, if you get a resource through a
particular manager, you should allow that manager to dispose of the resource as well.

Call ResError to check for errors after calling Resource Manager routines that report errors.
FUNCTION ResError: INTEGER;

Normally, you call GetResource (or GetNamedResource) to load a resource and ReleaseResource
to release it. Note that ReleaseResource in turn calls DisposeHandle, so any copies of the handle to
the released resource need to be marked as invalid. To access a resource that has been released, do
another GetResource call.

FUNCTION GetResource(theType: ResType; ID: INTEGER): Handle;
FUNCTION GetNamedResource(theType: ResType;

name: Str255): Handle;
PROCEDURE ReleaseResource(theResource: Handle);

Call SizeResource if you want to find the size of a resource; you might want to do this to be sure
you have room to load it.

FUNCTION SizeResource(theResource: Handle): Longlnt;

Call SetResLoad to tell the Resource Manager whether or not to load a resource when GetResource
is called. If called with autoLoad FALSE, you must call LoadResource to get the resource data into
memory. This allows you to get the resource to check its size, for instance, without actually
loading the resource.

PROCEDURE SetResLoad(autoLoad: Boolean);
PROCEDURE LoadResource(theResource: Handle);

These calls return information about the resource specified by the handle. Infrequently used, they
are normally paired with the matching Set., calls, to ensure you change only those things you
intend.

FUNCTION GetResAttrs(theResource: Handle): INTEGER;
PROCEDURE GetResInfo(theResource: Handle;

VAR thelD: INTEGER;
VAR theType: ResType;
VAR name: Str255);

The next group of calls are used to modify resources. All updating depends on the resProtected
attribute-if protected,the resource in the file will not change. You must be certain that if you are
writing a resource that is purgeable that you make it unpurgeable while the changed handle is
waiting to be updated in the file.

PROCEDURE SetResAttrs(theResource: Handle; attrs: INTEGER);
{Don't change the resChanged attribute with this call!}

PROCEDURE SetResInfo(theResource: Handle; thelD: INTEGER;
name: Str255);

Call ChangedResource to set the resChanged attribute of a resource. Call this if you want the
changed version of the resource to be saved when the file is closed or the application terminates.
Be sure to check ResError after calling this! If there isn't room on the disk, or the disk is
write-protected, ChangedResource will return an error, and a subsequent WriteResource will not
(because the resource is not marked as changed).
Commented Call List 18 February 15, 1985 Russ Daniels

PROCEDURE ChangedResource(theResource: Handle);

Call UniquelD to get an ID number to assign to a resource you are adding to a resource file. Make
certain the returned ID is greater than 127.

FUNCTION UniquelD(theType: ResType): INTEGER;

Call AddResource to add a new, rather than update an existing, resource to a file. It also sets the
resChanged attribute for the resource. Be sure to check ResError!

PROCEDURE AddResource(theResource: Handle;
theType: ResType;
thelD: INTEGER;
name: Str255) ;

Call RmveResource to remove the resource from the resource map. It sets the resChanged
attribute, which means the resource will be deleted from the file when the file is updated or closed.
It does not release the memory block containing the resource data. Call DisposeHandle to do that.

PROCEDURE RmveResource(theResource: Handle);

Call WriteResource to write a modified resource to the file now, rather than later. The resource will
be written only if the resChanged attribute is set.

PROCEDURE WriteResource(theResource: Handle);

The following calls manipulate resource files. Usually, they are needed only if you have or want to
have resources in files other than your application resource file or the system resource file.

CurResFile returns the refnum of the file whose resource map will be searched first. UseResFile
makes refNum's resource map the first searched; only resource files opened before refNum will be
searched. HomeResFile returns the refnum of the file owning the resource.

PROCEDURE UseResFile(refNum: INTEGER);
FUNCTION CurResFile: INTEGER;
FUNCTION HomeResFile(theResource: Handle): INTEGER;

OpenResFile opens an existing resource file, making it the first searched. CreateResFile creates a
new resource file that must then be opened to be used. UpdateResFile writes all changed resources
associated with the file to disk. The file remains open. CloseResFile releases resources, updates
changed resources, closes the file, and releases the resource map.

FUNCTION OpenResFile(fileName: Str255): INTEGER;
PROCEDURE CreateResFile(fileName: Str255);
PROCEDURE UpdateResFile(refNum: INTEGER);
PROCEDURE CloseResFile(refNum: INTEGER);

These calls also operate on resource files, but are of limited use and are very dangerous if misused.
If you think you need them, refer to the Resource Manager Manual.

FUNCTION GetResFileAttrs(refNum: INTEGER): INTEGER;
PROCEDURE SetResFileAttrs(refNum: INTEGER; attrs: INTEGER);

These calls are used to process all resources in all open files, or all resources of a particular type,
and so on.

Commented Call List 19 February 15, 1985 Russ Daniels

CountTypes returns the number of different types in all open resource files. CountResources
returns the number of resources of a specified type in all open resource files. GetlndResource and
GetlndType return the indexth type, or resource of a type, in all open resource files. To process all
resources of all types, you could do this:

FOR Typelndex := 1 to CountTypes DO
BEGIN
GetlndType (myType, Typelndex);
For Reslndex := 1 to CountResources (myType) DO

BEGIN
ResHandle := GetlndResource (myType, Reslndex);

{Process}
END;

END;
FUNCTION CountTypes: INTEGER;
FUNCTION CountResources(theType: ResType): INTEGER;
FUNCTION GetIndResource(theType: ResType;

index: INTEGER): Handle;
PROCEDURE GetlndType(VAR theType: ResType; index: INTEGER);

You probably won't need these calls. Read the discussion about them in the manual before you try
to use them.

PROCEDURE SetResPurge(install: Boolean);
PROCEDURE DetachResource(theResource: Handle);

These calls are not useful, since the Finder does not extract individual resources from a resource
file to move when moving an application.

PROCEDURE AddReference(theResource: Handle;
thelD: INTEGER;
name: Str255);

PROCEDURE RmveReference(theResource: Handle);

These routines are called by the system at startup; you don't need to call them from your program.

FUNCTION InitResources: INTEGER;
PROCEDURE RsrcZonelnit;

Commented Call List 20 February 15, 1985 Russ Daniels

Memory Manager
These calls are used to manage data structures in the application and system heaps.

The following call is used to explicitly allocate master pointer blocks. Since master pointer blocks
are nonrelocatable objects, it will simplify debugging, and increase program reliability, if you
estimate, or empirically establish, the number of master pointer blocks required by your program,
and use this call to allocate them before any other memory allocation is done. There are 64 master
pointers per master pointer block.

PROCEDURE MoreMasters;

These are the normal calls used to manipulate handles. NewHandle allocates a relocatable memory
block. If it returns NIL, check MemError. DisposHandle releases the memory block and the
master pointer.

FUNCTION NewHandle(byteCount: Size): Handle;
PROCEDURE DisposHandle(h: Handle);

Use these calls to find or change the logical size of the memory block associated with the handle.
FUNCTION GetHandleSize(h: Handle): Size;
PROCEDURE SetHandleSize(h: Handle; newSize: Size);

To reallocate space for a purged block, call ReallocHandle. If the handle is not empty, the call
releases the current block before allocating a new one.

PROCEDURE ReallocHandle (h: Handle; byteCount: Size);

These calls are used to change the status of the block associated with the handle. Handles are
created unlocked and unpurgeable.

PROCEDURE HLock(h: Handle);
PROCEDURE HUnLock(h: Handle);
PROCEDURE HPurge(h: Handle);
PROCEDURE HNoPurge(h: Handle);

This routine returns the original handle from the dereferenced pointer. If you don't understand,
you don't need it.
FUNCTION RecoverHandle (p: Ptr): Handle;

To release the memory block associated with a handle, without invalidating all copies of the handle,
call EmptyHandle. This frees the block and sets the master pointer to NIL, rather than releasing the
master pointer, as DisposHandle does.

PROCEDURE EmptyHandle(h: Handle);

These are the normal calls used to manipulate pointers.
FUNCTION NewPtr(byteCount: Size): Ptr;
PROCEDURE DisposPtr(p: Ptr);
FUNCTION GetPtrSize(p: Ptr): Size;
PROCEDURE SetPtrSize(p: Ptr; newSize: Size);

These calls can be used to check free memory in the heap. FreeMem reports the total free
space-not very useful. MaxMem returns the size of the largest contiguous free block-but it purges
everything it can.

Commented Call List 21 February 15, 1985 Russ Daniels

FUNCTION FreeMem: Longlnt/
FUNCTION MaxMem(Var grow: Size): Size;

BlockMove is a very good memory move routine. It takes into account overlapping source and
destination blocks and byte-aligned blocks.

PROCEDURE BlockMove(srcPtr, destPtr: Ptr; byteCount: Size);

MemError returns the error for the latest Memory Manager call.
FUNCTION MemError: OsErr;

CompactMem moves relocatable blocks to create a free block of the requested size. PurgeMem
purges to free the requested size block. ResrvMem reserves the requested size block.

FUNCTION CompactMem(cbNeeded: Size): Size;
PROCEDURE PurgeMem(cbNeeded: Size);
PROCEDURE ResrvMem(cbNeeded: Size);

TopMem returns a pointer to the current top of the application heap. SetApplLimit sets the point to
which the application heap can grow.

FUNCTION TopMem: Ptr;
PROCEDURE SetApplLimit(zoneLimit: Ptr);

PtrZone and HandleZone return a pointer to the zone containing the pointer or handle specified,
respectively.

FUNCTION PtrZone(p: Ptr): THz;
FUNCTION HandleZone (h: Handle): THz;

Call SetGrowZone to install your grow zone procedure.
PROCEDURE SetGrowZone(growZone: ProcPtr);

Normally, your grow zone procedure will not be called unless GZCritical is true. You have to
configure the Memory Manager explicitly to change this-not a topic for a quick reference. Your
grow zone procedure should call GZSaveHnd, and not purge or release the returned handle.

FUNCTION GZCritical: Boolean;
FUNCTION GZSaveHnd: Handle;

These calls return pointers to the respective heap zones. They are not usually needed.
FUNCTION ApplicZone: THz;
FUNCTION SystemZone: THz;

These calls are of limited use. Refer to Inside Macintosh before using them to make sure you need
to use them, and beware—they are tricky.

PROCEDURE SetApplBase(startPtr: Ptr);
PROCEDURE InitApplZone;
PROCEDURE InitZone(growProc: ProcPtr; moreMasters: Integer;

limitPtr,startPtr : Ptr);
FUNCTION GetZone: THz;
PROCEDURE SetZone(hz: THz);

Commented Call List 22 February 15, 1985 Russ Daniels

File Manager and Device Manager
The standard OS interface presents file operations at two levels. Those starting with PB (for
parameter block) are a lower-level presentation of the calls; the others are a higher-level view.
To create, open, close, read, and write to a file, the easiest calls to use are:

FUNCTION Create (fileName: Str255; vRefNum: INTEGER;
creator: OSType;fileType: OSType):OsErr;

FUNCTION FSOpen (fileName: Str255; vRefNum: INTEGER;
VAR refNum: INTEGER) : OsErr;

FUNCTION FSClose(refNum: INTEGER): OsErr;
FUNCTION FSRead (refNum: INTEGER; VAR count: Longlnt;

buffPtr: Ptr): OsErr;
FUNCTION FSWrite (refNum: INTEGER; VAR count: Longlnt;

buffPtr: Ptr): OsErr;

To get and set the current file mark, use these calls. The mark is the position in the file where the
next read/write will begin.

FUNCTION GetFPos(refNum: INTEGER; VAR filePos:Longlnt) :OsErr;
FUNCTION SetFPos(refNum: INTEGER; posMode: INTEGER;

posOff: Longlnt):OsErr;

These calls are used to get and set the logical end of file.
FUNCTION GetEOF(refNum: INTEGER; VARLogEOF: Longlnt):OsErr;

FUNCTION SetEOF(refNum: INTEGER; LogEOF: Longlnt):OsErr;

Rarely, you may want to preallocate disk space for a file by calling
FUNCTION Allocate(refNum: INTEGER; VAR count: Longlnt):OsErr;

Sometimes, you may want to ensure that data written to a file is actually on disk, and not in a
buffer. Additionally, you may need to be certain that the file information on disk reflects the
changes made by your program to this point. The call to use is:

FUNCTION FlushFile(refNum: INTEGER):OsErr;

Use OpenRF if you want to open the resource fork of a file. Usually, you'll access the contents of
the resource fork through the Resource Manager. One reason to use this call is if you are copying
the file from one place to another.

FUNCTION OpenRF (fileName: Str255; vRefNum: INTEGER;
VAR refNum: INTEGER): OsErr;

The higher-level calls create the parameter block for you, using the parameters for the appropriate
fields. You'll need to use lower-level calls if you want to provide an I/O completion routine for
asynchronous I/O, or provide a dedicated access buffer, rather than sharing the volume buffer, for
example. If you need finer control over your file I/O, you should use these lower level calls:

FUNCTION PBCreate(paramBlock:ParmBlkPtr; aSync: BOOLEAN): OsErr;
FUNCTION PBOpen(paramBlock: ParmBlkPtr; aSync: BOOLEAN):OsErr;
FUNCTION PBOpenRF(paramBlock:ParmBlkPtr; aSync: BOOLEAN): OsErr;
FUNCTION PBClose(paramBlock: ParmBlkPtr; aSync: BOOLEAN): OsErr;
FUNCTION PBRead(paramBlock: ParmBlkPtr; aSync: BOOLEAN): OsErr;

Commented Call List 23 February 15, 1985 Russ Daniels

FUNCTION PBWrite(paramBlock: ParmBlkPtr; aSync: BOOLEAN): OsErr;
FUNCTION PBGetEOF(paramBlock:ParmBlkPtr; aSync: BOOLEAN): OsErr;
FUNCTION PBSetEOF(paramBlock:ParmBlkPtr; aSync: BOOLEAN): OsErr;
FUNCTION PBGetFPos(paramBlock:ParmBlkPtr;aSync: BOOLEAN): OsErr;
FUNCTION PBSetFPos(paramBlock:ParmBlkPtr;aSync: BOOLEAN): OsErr;
FUNCTION PBAllocate(paramBlock:ParmBlkPtr;aSync:BOOLEAN): OsErr;
FUNCTION PBFlushFile(paramBlock:ParmBlkPtr;aSync:BOOLEAN): OsErr;

While it is additional work to set up the parameter block, you can modify fields as required for each
call, while the higher-level calls have to create the parameter block from scratch for each call. And,
as mentioned above, using these calls allow you to do things that can ' t be done using the
higher-level calls.

Operations on unopen files, such as delete and rename, are also provided in two forms,
higher-level calls are:

The

FUNCTION
FUNCTION

FUNCTION

FUNCTION

FUNCTION
FUNCTION
FUNCTION

FSDelete(fileName: Str255; vRefNum: INTEGER):OsErr;
Rename(oldName: Str255; vRefNum: INTEGER;

newName: Str255):OsErr;
GetFInfo(fileName: Str255; vRefNum: INTEGER;

VAR Fndrlnfo: FInfo) :OsErr;
SetFInfo(fileName: Str255; vRefNum: INTEGER;

Fndrlnfo: FInfo):OsErr;
SetFLock(fileName: Str255; vRefNum: INTEGER):OsErr;
RstFLock(fileName: Str255; vRefNum: INTEGER):OsErr;
SetFType(fileName: Str255; oldVers: SignedByte;

vRefNum: INTEGER;
newVers:SignedByte):OsErr;

The lower-level equivalents are:
FUNCTION PBDelete(paramBlock: ParmBlkPtr; aSync: BOOLEAN): OsErr;
FUNCTION PBRename(paramBlock: ParmBlkPtr; aSync: BOOLEAN): OsErr;
FUNCTION PBGetFInfo(paramBlock:ParmBlkPtr;aSync: BOOLEAN): OsErr;
FUNCTION PBSetFInfo(paramBlock:ParmBlkPtr;aSync: BOOLEAN): OsErr;
FUNCTION PBSetFLock(paramBlock:ParmBlkPtr;aSync: BOOLEAN): OsErr;
FUNCTION PBRstFLock(paramBlock:ParmBlkPtr;aSync: BOOLEAN): OsErr;
FUNCTION PBSetFType(paramBlock:ParmBlkPtr;aSync : BOOLEAN): OsErr;

The higher-level functions to manipulate volumes are:
FUNCTION GetVInfo(drvNum: INTEGER; volName: StringPtr;

VAR vRefNum: INTEGER;
VAR FreeBytes: Longlnt): OsErr;

{gets information about specified volume. Note that a version of the File Manager manual
documents this as GetVolInfo. Wrong!}

FUNCTION GetVol(volName: StringPtr; VAR vRefNum: INTEGER):OsErr;
{gets information about default volume}

FUNCTION SetVol(volName: StringPtr; vRefNum: INTEGER): OsErr;
{sets default volume}

FUNCTION UnMountVol(volName: StringPtr; vRefNum: INTEGER):OsErr;
FUNCTION Eject(volName: StringPtr; vRefNum: INTEGER): OsErr;
FUNCTION FlushVol(volName: StringPtr; vRefNum: INTEGER):OsErr;

{updates volume information on disk}

Lower-level functions for volume manipulations:
FUNCTION PBGetVInfo(paramBlock:ParmBlkPtr;aSync: BOOLEAN): OsErr;
FUNCTION PBGetVol(paramBlock: ParmBlkPtr; aSync: BOOLEAN): OsErr;
FUNCTION PBSetVol(paramBlock: ParmBlkPtr; aSync: BOOLEAN): OsErr;

Commented Call List 24 February 15, 1985 Russ Daniels

FUNCTION PBEject(paramBlock: ParmBlkPtr; aSync: BOOLEAN): OsErr,
FUNCTION PBOffLine(paramBlock:ParmBlkPtr; aSync: BOOLEAN): OsErr
FUNCTION PBFlushVol(paramBlock:ParmBlkPtr;aSync: BOOLEAN): OsErr
FUNCTION PBMountVol(paramBlock: ParmBlkPtr): OsErr;
FUNCTION PBUnMountVol(paramBlock: ParmBlkPtr): OsErr;

High level driver calls, used for accessing drivers (including desk accessories) are:
FUNCTION Control(refNum: INTEGER; csCode: INTEGER;

csParam: Ptr): OsErr;
FUNCTION Status(refNum: INTEGER; csCode: INTEGER;

csParam: Ptr): OsErr;
FUNCTION KilllO(refNum: INTEGER): OsErr;

Lower-level equivalents are:
FUNCTION PBControl(paramBlock:ParmBlkPtr; aSync: BOOLEAN): OsErr

FUNCTION PBStatus(paramBlock: ParmBlkPtr; aSync: BOOLEAN): OsErr
FUNCTION PBKilllO(paramBlock: ParmBlkPtr; aSync: BOOLEAN): OsErr

This call is not needed unless you are writing block drivers.
PROCEDURE AddDrive(drvrRefNum: INTEGER; drvNum: INTEGER;

QE1: drvQElPtr);

Commented Call List 25 February 15, 1985 Russ Daniels

Package Manager
If you are looking for the init calls, look at the end—the packages are initialized for you. The
Package Manager also takes care of loading packs.

S tandard File Package calls

Call SFPutFile to find out where to save a file. Call SFGetFile to find out what file to open. The
calls with the P in the name allow you to specify a nonstandard dialog box and filterproc. For
compatibility with future file systems, use the standard dialog boxes without modification.

PROCEDURE SFPutFile(where: Point; prompt: Str255;
origName: Str255; dlgHook: ProcPtr;
VAR reply: SFReply);

PROCEDURE SFPPutFile(where: Point; prompt: Str255;
origName: Str255; dlgHook: ProcPtr;
VAR reply: SFReply; dlglD: INTEGER;
filterProc: ProcPtr);

PROCEDURE SFGetFile(where: Point; prompt: Str255;
fileFilter: ProcPtr; numTypes: INTEGER;
typeList: SFTypeList; dlgHook: ProcPtr;
VAR reply: SFReply);

PROCEDURE SFPGetFile(where: Point; prompt: Str255;
fileFilter: ProcPtr; numTypes: INTEGER;
typeList: SFTypeList; dlgHook: ProcPtr;
reply: SFReply; dlglD: INTEGER;
filterProc: ProcPtr);

Disk Initialization Package

These routines are used to initialize disks. You should call DIBadMount if you get an disk-inserted
event with the high-order word of the event message not equal to noErr.

FUNCTION DIBadMount(where: Point; evtMessage: Longlnt): INTEGER;

If you think you are going to need the disk initialization routines, and you are going to eject the
system disk, call DILoad to read the package into memory and make it unpurgeable, and DIUnLoad
when you no longer need it.

PROCEDURE DILoad;
PROCEDURE DIUnLoad;

There may be some bizarre reason you want to call one or all of the individual routines called by
DIBadMount, but we can't think of one.

FUNCTION DIFormat(drvNum: INTEGER): OsErr;
FUNCTION DIVerify(drvNum: INTEGER): OsErr;
FUNCTION DIZero(drvNum: INTEGER; volName: Str255): OsErr;

Commented Call List 26 February 15, 1985 Russ Daniels

International Utilities Package

For now, guess you'll just have to read the manual. Sorry.
FUNCTION IUGetlntl(thelD: INTEGER): Handle;
PROCEDURE IUSetlntl(refNum: INTEGER; thelD: INTEGER;

intlParam: Handle);
PROCEDURE IUDateString(dateTime: Longlnt; longFlag: DateForm;

VAR result: Str255);
PROCEDURE IUDatePString(dateTime: Longlnt; longFlag: DateForm;

VAR result: Str255; intlParam: Handle);
PROCEDURE IUTimeString(dateTime: Longlnt; wantSeconds: BOOLEAN;

VAR result: Str255);
PROCEDURE IUTimePString(dateTime: Longlnt; wantSeconds: BOOLEAN;

VAR result: Str255; intlParam: Handle);
FUNCTION IUMetric: BOOLEAN;
FUNCTION IUCompString(aStr,bStr: Str255): INTEGER;
FUNCTION IUEqualString(aStr,bStr: Str255): INTEGER;
FUNCTION IUMagString(aPtr,bPtr: Ptr;

aLen,bLen: INTEGER) : INTEGER;
FUNCTION IUMaglDString(aPtr,bPtr: Ptr;

aLen,bLen: INTEGER):INTEGER;

Binary-Decimal Conversion Package

Use these routines to convert long integers to strings and back.
PROCEDURE StringToNum(theString: Str255; VAR theNum: Longlnt);
PROCEDURE NumToString(theNum: Longlnt; VAR theString: Str255);

For completeness, here are the init calls. Odds are you will never have to call these-they are called
by Launch.

PROCEDURE InitAllPacks;
PROCEDURE InitPack(packID: INTEGER);

Commented Call List 27 February 15, 1985 Russ Daniels

Miscellaneous Calls
These routines are divided into two parts: generally useful routines not listed elsewhere, and
routines used to manipulate low level system structures, like the vertical retrace queue. The more
useful routines are listed first. This section does follow the chapter organization of Inside
Macintosh, and includes both OS and ToolBox calls.

Munger Munges!!! Read the documentation!!!
FUNCTION Munger(h: Handle; offset: Longlnt;

ptrl: Ptr; lenl: Longlnt;
ptr2: Ptr; len2: Longlnt): Longlnt;

NewString allocates a StringHandle. SetString sets the handle's string to strNew. GetString
returns a StringHandle to the string with resource Id StringlD. GetlndString gets the string at index
in the string list resource with ID strListlD.

FUNCTION NewString(theString:Str255): StringHandle;
PROCEDURE SetString(theString:StringHandle; strNew: Str255);
FUNCTION GetString(stringID: INTEGER): StringHandle;
PROCEDURE GetlndString (VAR theString: str255; strListlD: INTEGER;

index: INTEGER);

Getlcon returns a handle to the specified icon. Plotlcon draws the icon in the specified rectangle.
FUNCTION Getlcon (iconID: INTEGER): Handle;
PROCEDURE Plotlcon(theRect: Rect; thelcon: Handle);

GetCursor returns a handle to the specified cursor. GetPattern returns a handle to the specified
Pattern. Guess what GetPicture does?

FUNCTION GetCursor (cursorlD: INTEGER): CursHandle;
FUNCTION GetPattern(patID: INTEGER): PatHandle;
FUNCTION GetPicture(picID: INTEGER): PicHandle;

ShieldCursor removes the cursor from the screen if its position intersects with the rectangle.
PROCEDURE ShieldCursor(shieldRect: Rect; offsetPt: Point);

HandToHand copies the data to which theHndl is a handle and returns a new handle to the copy in
theHndl. You now can modify the new copy, leaving the orginal unchanged.

FUNCTION HandToHand(VAR theHndl: Handle): OsErr;

PtrToHand copies size bytes from location srcPtr into a new handle. PtrToXHand copies the bytes
using an existing handle. In other words, the first does a NewHandle, the second does a
SizeHandle.

FUNCTION PtrToHand(srcPtr: Ptr; VAR dstHndl: Handle;
size: Longlnt): OsErr;

FUNCTION PtrToXHand(srcPtr: Ptr; dstHndl: Handle;
size: Longlnt): OsErr;

HandAndHand concatenates the first handle's data onto the second handle's data. PtrAndHand
does the same thing from a pointer. Be sure to lock the source handle when calling
Commented Call List 28 February 15, 1985 Russ Daniels

HandAndHand!
FUNCTION HandAndHand(handl,hand2: Handle): OsErr;
FUNCTION PtrAndHand(ptr1: Ptr; hand2: Handle;

size: Longlnt): OsErr;

Use GetTrapAddress if you want to use a Toolbox or OS routine without going through the trap
dispatcher. Don't worry; the ROM won't change during execution. Call SetTrapAddress to patch a
system routine.

FUNCTION GetTrapAddress(trapNum: INTEGER): Longlnt;
PROCEDURE SetTrapAddress(trapAddr: Longlnt; trapNum: INTEGER);

The date/time routines read and set the clock, with the time in the form of the number of seconds
since midnight Jan 1,1904. GetTime and SetTime use a record structure for the time, calling the
date/time routines to do the real work. The Date2Secs and Secs2Date routines convert between the
two types. Use GetDateTime rather than ReadDateTime.

FUNCTION SetDateTime(time: Longlnt):OsErr;
PROCEDURE SetTime(d: DateTimeRec);
PROCEDURE GetTime(VAR d: DateTimeRec);
FUNCTION GetDateTime(VAR time: Longlnt):OsErr;
PROCEDURE Date2Secs(d: DateTimeRec; VAR s: Longlnt);
PROCEDURE Secs2Date(s: Longlnt; VAR d: DateTimeRec);
FUNCTION ReadDateTime(VAR time: Longlnt):OsErr;

EqualString returns TRUE if the strings are equal. UprString converts any lowercase letters in the
string to uppercase. EqualString optionally ignores case; both will optionally ignore diacriticals.

FUNCTION EqualString(strl,str2 : Str255;
caseSens,diacSens: BOOLEAN):BOOLEAN;

PROCEDURE UprString(VAR theString: Str255; diacSens: BOOLEAN);

UnLoadSeg unloads the segment containing the specified routine. RoutineAddr must be an entry in
the jump table, which means you can't call UnLoadSeg from the segment you want to unload.

PROCEDURE UnLoadSeg(routineAddr: Ptr);

ExitToShell leaves your application and launches the file specified in the boot blocks (usually
Finder).

PROCEDURE ExitToShell;

These routines help process the parameters set by the Finder before it launches your program. You
don't need to call GetAppParms except to get the application's filename.

PROCEDURE CountAppFiles (VAR message: INTEGER;
VAR count: INTEGER);

PROCEDURE GetAppFiles(index: INTEGER; VAR theFile: AppFile);

PROCEDURE ClrAppFiles(index: INTEGER);
PROCEDURE GetAppParms(VAR apName: str255;

VAR apRefNum: INTEGER;
VAR apParam: Handle);

This writes the low memory copy of parameter RAM. Use GetSysPPtr to read these values.
FUNCTION WriteParam:OsErr;

Call Delay to wait a minimum period of time.
PROCEDURE Delay(numTicks: Longlnt; VAR finalTicks: Longlnt);

These routines manipulate queues. You can use them for your own queues, if you wish.
PROCEDURE Enqueue(qElement: QElemPtr; qHeader: QHdrPtr);
FUNCTION Dequeue(qElement: QElemPtr; qHeader: QHdrPtr): OsErr;

These return pointers to the various system queues. It is sometimes useful to walk through the

Commented Call List 29 February 15, 1985 Russ Daniels

drive queue, for example.
FUNCTION GetFSQHdr: QHdrPtr;
FUNCTION GetDrvQHdr: QHdrPtr;
FUNCTION GetVCBQHdr: QHdrPtr;
FUNCTION GetEvQHdr: QHdrPtr;

This call returns the device control entry for the driver specified by refNum.
FUNCTION GetDCtlEntry(refNum: INTEGER): DCtlHandle;

This generates a system error. You should never need to call it.
PROCEDURE SysError(errorCode: INTEGER);

These routines do bit manipulations.
FUNCTION BitAnd (longl,long2: Longlnt): Longlnt;
FUNCTION BitOr (longl,long2: Longlnt): Longlnt;
FUNCTION BitXor (longl,long2: Longlnt): Longlnt;
FUNCTION BitNot (long: Longlnt): Longlnt;
FUNCTION BitShift (long: Longlnt; count: INTEGER): Longlnt;
FUNCTION BitTst (bytePtr: Ptr; bitNum: Longlnt): BOOLEAN;
PROCEDURE BitSet (bytePtr: Ptr; bitNum: Longlnt);
PROCEDURE BitClr (bytePtr: Ptr; bitNum: Longlnt);

Some useful math routines. Fixed point math is especially well suited for display coordinate
manipulation.

PROCEDURE LongMul (a,b: Longlnt; VAR dst: Int64Bit);
FUNCTION FixMul (a,b: Fixed): Fixed;
FUNCTION FixRatio (numer,denom: INTEGER): Fixed;
FUNCTION FixRound (x: Fixed): INTEGER;

If you don't like variant records, use these to extract the high or low word from a long integer. A
variant record or type coercion does this without any runtime processing,though.

FUNCTION HiWord (x: Longlnt): INTEGER;
FUNCTION LoWord (x: Longlnt): INTEGER;

These routines are used to create and read MacPaint documents. You can also use them for general
purpose data compaction. Check with Macintosh Technical Support for the format.

PROCEDURE PackBits (VAR srcPtr,dstPtr: Ptr; srcBytes: INTEGER);
PROCEDURE UnpackBits(VAR srcPtr,dstPtr: Ptr; dstBytes: INTEGER);

These are mystery routines, to be documented at a future date.
FUNCTION SlopeFromAngle(angle: INTEGER): Fixed;
FUNCTION AngleFromSlope(slope: Fixed): INTEGER;
FUNCTION DeltaPoint(ptA,ptB: Point): Longlnt;

Use these routines to install and remove a vertical retrace task. Call GetVBLQHdr and walk
through the queue to find the record for your task.

FUNCTION VInstall(VBLTaskPtr: QElemPtr): OsErr;
FUNCTION VRemove(VBLTaskPtr: QElemPtr): OsErr;
FUNCTION GetVBLQHdr: QHdrPtr;

Generally useless routines.
FUNCTION InitUtil: OsErr;
PROCEDURE InitQueue;

Commented Call List 30 February 15, 1985 Russ Daniels

Serial Driver
There are two serial drivers—one in ROM and one in RAM. If you are uncertain which one to use,
refer to the Serial Driver Manual. 'Vanilla' use of the serial ports require none of these calls—use
OpenDriver, Read, and Write calls. Do NOT close the ROM Serial Driver—the mouse will be
disabled!

To change the configuration of the port, call this routine.
FUNCTION SerReset(refNum: INTEGER; serConfig: INTEGER): OSErr;

If you want to provide a larger (or smaller) buffer for the Serial Driver, call this routine.
FUNCTION SerSetBuf(refNum: INTEGER; serBPtr: Ptr;

serBLen: INTEGER): OSErr;

This routine returns the number of bytes available in the buffer. You can wait for count to be
nonzero before making a read call to the driver to be sort of asynchronous.

FUNCTION SerGetBuf(refNum: INTEGER; VAR count: Longlnt): OSErr;

These calls do what they look like they do—change (or report) various attributes of the Serial
Driver.

FUNCTION SerHShake(refNum: INTEGER; flags: SerShk): OSErr;
FUNCTION SerSetBrk(refNum: INTEGER): OSErr;
FUNCTION SerClrBrk(refNum: INTEGER): OSErr;
FUNCTION SerStatus(refNum: INTEGER;

VAR serSta: SerStaRec): OSErr;

These calls open and close the RAM Serial Driver. Open close the ROM driver, Close opens it.
FUNCTION RamSDOpen(whichPort: SPortSel; rsrcType: OsType;

rsrcID: INTEGER): OSErr;
PROCEDURE RamSDClose(whichPort: SPortSel);

Commented Call List 31 February 15, 1985 Russ Daniels

Sound Driver

To make a simple beep, use this routine. If you are using a sound mode other than square wave,
call StopSound before calling SysBeep.

PROCEDURE SysBeep(duration: INTEGER);

To find out the current sound volume, call this routine.
PROCEDURE GetSoundVol(VAR level: INTEGER);

Call this routine to start the sound.
PROCEDURE StartSound(synthRec: Ptr; numBytes: Longlnt;

CompletionRtn: ProcPtr);

Call this to find out if an asynchronous call has completed.
PROCEDURE StopSound;

Guess what this one does?
PROCEDURE StopSound;

If you are making sound asynchronously, with no completion routine, you can check to see if the
call has completed by using this.

FUNCTION SoundDone: BOOLEAN;

To set the sound volume, call this routine. Remember, you are overruling the volume set by the
user from the Control Panel. The level should be between 0 and 7.

PROCEDURE SetSoundVol(level: INTEGER);

Commented Call List 32 February 15, 1985 Russ Daniels

c

c

c

o

c

Trap List
The attached document, Trap List, is a list of traps including the following:

*The trap or routine name as it is described from Pascal, (the exception is the low level File
Manager calls which are shown in pascal form, with the actual trap name.)

*The trap word where it applies.

•The section in Inside Macintosh where it is discussed.

•The "x" shows whether the routine allocates, deallocates or moves objects on the heap. This
means it eventually invokes one of the following traps: MoreMasters, NewHandle,
DisposeHandle, SetHandleSize, RecoverHandle, ReallocHandle, NewPtr, DisposePtr,
SetPtrSize. What this means is the following:

> If a handle has been dereferenced, as in a WITH statement, anytime you call one of these
routines, the handle may become invalid. THE HANDLE SHOULD BE LOCKED
before dereferencing it.

> If you are using a dereferenced variable for the result of a Function, like
MyRecHndlAA.width := TextWidth(textbuf,firstbyte,count).

The expression on the left is evaluated (dereferenced) first, then the function is called.
Since TextWidth can allocate memory, the handle can become invalid. THE HANDLE
SHOULD BE LOCKED before dereferencing it.

>If you pass a dereferenced variable to a procedure in the same segment (like
Foo(MyRecHndlAA. width,stuff)), and the procedure calls one of these routines, the handle
can become invalid. THE HANDLE SHOULD BE LOCKED before
dereferencing it. (By the way, if you pass a dereferenced variable to a procedure in a
different segment, and the segment loader has to load that segment, the handle can become
invalid. Lock it before dereferencing.)

> Finally, if you pass a dereferenced variable to one of these routines, it can become invalid.
THE HANDLE SHOULD BE LOCKED before dereferencing it.

This column does not indicate whether the routine allocates things on the stack (like DrawString
for example).

•Finally, it includes a list of what other traps are called by the routine, and what circumstances
under which they are called.

This list corresponds to version 1.1 of the interfaces, as distributed in the February 1985 Software
Supplement.

If there are any comments regarding the accuracy please write to us at

Macintosh Technical Support
Apple Computer
MS4-T
20525 Mariani Ave.
Cupertino, CA 95014

o

o

o

Trap List

Name Trap Doc 2L Trans Called
AddDrive ACME Enqueue
AddPt A87E QD none
AddReference A9AC RM x GetHandleSize,SetHandleSize,GetHandleSize,GetEOF,SetEOF
AddResMenu A94D MN X SetResLoad,CountResources,GetlndResource J^ewHandle,

EmptyHandle,GetResInfo,NewHandle,EmptyHandle,
GetResInfo,AppendMenu,GetHandleSize,SetHandleSize,
CalcMenuSize

AddResource A9AB RM none
Alert A985 DL x GetResource,FlushEvents,NewDialog,GetPort,SetPort,GetIcon,

PlotIcon,GetDItemJPenSize,InsetRectJ:rameRoundRect,InsetRect,
ModalDialog,SetPortJDisposeDialog

Allocate FL Allocate
AngleFromSlope A8C4 TU none
AppendMenu A933 MN X GetHandleSize,SetHandleSize,CalcMenuSize
ApplicZone MM none
AsmClikLoop TE none
AsmWcrdBreak TE none
BackColor A863 QD none
BackPat A87C QD none
BeginUpdate A922 WM X OffsetRgn,CopyRgn,SectRgn,OffsetRgn,SetEmptyRgn
BitAnd A8S8 TU none
BitClr A85F TU none
BitNot A85A TU none
BitOr A8SB TU none
BitSet A85E TU none
BitShift A85C TU none
BitTst A85D TU none
BitXOr A859 TU none
BlockMove A02E MM none
BringToFront A920 WM X NewRgn,OffsetRgn,DiffRgn,UnionRgn,CalcVis,DisposeRgn.SetPort, if

window is already in front then only SetPort
Button A974 EM X none, Control if journaling
CalcMenuSize A948 MN X LoadResource, then calls menu def. proc. for ea. menu item

(GetPort,SetPort,TextFace,StringWidth,TextFace,SetPort)
CalcVis A909 WM X SectRgn,OffsetRgn,SetEmptyRgn (if window invisible)
CalcVisBehind A90A WM X CalcVis, SectRect if more than 1 window in list
CautionAlert A988 DL X GetResource,FlushEvents,NewDialog,GetPort,SetPort,GetIcon,

PlotIcon,GetDItemJ)enSize,InsetRectJ:rameRoundRect,InsetRect,
ModalDialog,SetPort£)isposeDialog

Chain A9F3 SL X BlockMove,if current app then CloseResFile,BlockMove,InitApplZone,
NewHandle,BlockMove,RDrvrInstall(then OpenResFile,SysError if bad
open,GetResource,BlockMove,ReleaseResource

ChangedResource A9AA RM X GetHandleSize,SetHandleSize,GetEOF,SetEOF
CharWidth A88D QD X TextWidth
Checkltem A945 MN X SetltemMark
CheckUpdate A911 WM X GetPort, if more than 1 port then EmptyRgn,SetPort,NewRgn,

GetClipJlectRgn, if picture assoc. w/window needs update
BeginUpdate JDrawPicture,EndUpdate, then SetClip,DisposeRgn,

ClearMenuBar
ClipAbove
ClipRect
CloseDeskAcc

A934 MN
A90B WM x
A87B QD x
A9B7 DS

none
SectRgn
RectRgn
Close

Trap List Page 1 February 13,1985

QoseDialog A982 DL X

CloseDriver DM
ClosePicture A8F4 QD X
ClosePoly A8CC QD X

ClosePort A87D QD x

CloseResFile A99A RM X

CloseRgn A8DB QD X

CloseWindow A92D WM X

ClrAppFiles SL
ColorBit A864 QD
CompactMem A04C MM X

Control DM X

CopyBits A8EC QD X

CopyRgn A8DC QD X

CouldAlert A989 DL X

CouldDialog A979 DL X

CountAppFiles SL
CountMItems A950 MN
CountResources A99C RM
CountTypes A99E RM
Create FL
CreateResFile A9B1 RM X

CurResFile A994 RM
Date2Secs A9C7 OS
Delay A03B OS
DeleteMenu A936 MN
DeltaPoint A94F TU
Dequeue A96E OS
DetachResource A992 RM
DialogSelect A980 DL X

DIBadMount PK X

DiffRgn A8E6 QD X

DIFormat PK X

DILoad PK X

Disableltem A93A MN
DiskEject DD X

DisposDialog A983 DL X

DisposeControl A955 CM X

DisposeMenu A932 MN X

DisposeRgn A8D9 QD X

DisposeWindow A914 WM X

SetEmptyRga.GetPort.SetPorvLoadResource.DisposeHandle.CloseWindov
Close
StdPutPic,SetHandleSize,DisposeRgn,DisposeHandle,ShowPen
SetHandleSize,ShowPen
DisposeRgn (2 for clip & vis rgns)
UpdateResFileJReleaseResource,Close,D isposeHandle,SetGrowZone,
LodeScrap.SetVol
ShowPen.SetHandleSize,DisposeHandle
FrontWindow.KillControls .LoadResource,ShowHide.DiposeHandle,
DisposeRgn(3),ClosePort,KillPicture,SetPort,FrontWindow,
HiliteWindow,SetPort
GetHandkSize
none
BlockMove
BlockMove,Control
ShieldCursor,StdBits.ShowCursor
SetHandleSize
GetResource(dialog),GetResource(item list)JLoadResource(for each
item in the list),GetResource(defjprocs)
GetResource(dialog),GetResource(item list),LoadResource,
GetResource
GetHandleSize
none
none
none
Create,GetFileInfo,SetFileInfo
OpenRF to see if the file exists,Create,OpenRF,GetEOF,Write,Close
if errors
none
none
none
none
none
none
none
GetResource,FrontWindow,(BegininWind),BlockMove,if mouse event
then GlobalToLocal,For each item LoadResource JtInRect,if control
FindControl,TrackControl,if not TEClick, If it was an update then
BeginUpdate,DrawDialog,EndUpdate,if activate event then SetPort,
TE Activate if edit field & active,TEDeactivate if not, if KeyDown
event then TEKey, if it was a TAB then TEDeactivate,TECalText,
TEActivate,If event really didn't do anything then TEIdle, then
finally SetPort
Pack 2
EqualRgn,CopyRgn,SetEmptyRgn,RectRgn,NewHandle, SetHandleSize,
DisposeHandle
Pack 2
Pack 2
none
Eject,Control
CloseDialog JDisposeHandle,DisposePtr
GetPort,SetPorti^ewRgn, LoadResource, SetPort,EraseRgn, InvalRgn,
DisposeRgn,GetPort,SetPortJLoadResource,SetPort
DisposeHandle
DisposeHandle
CloseWindowJDisposePtr

Trap List Page 2 February 13 ,1985

DisposHandle A023 MM X
DisposPtr A01F MM X
DIUnLoad PK X
DIVerify PK X

DIZero PK X
DlgCopy DL X

DlgCut DL X

DlgDelete DL X
DlgPaste DL X
DragControl A967 CM X

DragGrayRgn A926 WM X

DragWindow A925 WM X

DrawChar A883 QD X
DrawControls A969 CM

DrawDialog A981 DL X

DrawGiowIcon A904 WM X
DrawMenuBar A937 MN X

DrawNew A90F WM X

DrawPicture A8F6 QD X
DrawString A884 QD X
DrawText A885 QD X
DriveS tatus DD X
Drvrlnstall A03D X
DrvrRemove A03E X
Eject FL X
EmptyHandle A02B MM X
EmptyRect A8EA QD
EmptyRgn A8E2 QD
Enableltem A939 MN
EndUpdate A923 WM X
Enqueue A96F OS
Environs
EqualPt A881 QD
EqualRect A8A6 QD
EqualRgn A8E3 QD
EqualString A03C OS
EraseArc A8C0 QD X
EraseOval A8B9 QD X
ErasePoly A8C8 QD X
EraseRect A8A3 QD X
EraseRgn A8D4 QD X
EraseRoundRect A8B2 QD X
ErrorSound A98C DL

Syserror if failed, none otherwise
Syserror if failed, none otherwise
Pack 2
Pack 2
Pack 2
TECopy
TECut
TEDelete
TEPaste
GetPort,SetPort,GetPort,SetPort,LoadResource,SetPort,NewRgn,
DragTheRgnJDisposeRgn,MoveControl, SetPort
GetPenState,PenPat,PenMode,NewRgn,CopyRgn,InsetRgn,DiffRgn,
DisposeRgn,PaintRgn,GetMouse,PtInRect,PaintRgn,WaitMouse,
PaintRgn,SetPenState,PtInRect>IoveWindow,DisposeRgn,SetPort
WaitMouse,SetClip,GetKeys,NewRgn,CopyRgn,DragGreyRgn,
MoveWindowJDisplayRgn,SetPort
StdText
GetPort,SetPort,GetPenState,PenNormal,GetPort,SetPort, then calls
appropriate Control def. proc for each control in the list,and
finally SetPort,SetPenState,SetPort
GetPort,SetPort,locks item list,LoadResource,TECalText,
DrawControls,LoadResource JDisposeHandle,DisposeControl,HandToHand,
HLockMunger,GetHandleSize,TextBoxJ>isposeHandle,PenSize,
InsetRect,FrameRoundRect,SetPort
SetPort,CopyBits^MoveTo,LineTo,MoveTo,LineTo,LineTo
SetRecRgn,EraseRountRect,MoveTo,LineTo,ClipRect,then MoveTo &
DrawString for each menu,SetPort, if a menu item is disabled it
calls PenModeJPenPat,PaintRect,PenNormal, and if it is hilited
InvertRect
UnionRgnJPaintOne,PaintBehind,CalcVBehind,DisposeRgn, XOrRgn if
invisible
See separate doc for complete list
StdText
StdText
Status,BlockMove
NewHandle
ReleaseResource,DisposeHandle
Eject
none
none
EmptyRect
none
OffsetRgn,CopyRgn,SetEmptyRgn
none
none
none
none
none
CmpString
StdArc
StdOval
StdPoly
StdRect
StdRgn
StdRRect
none

Trap List Page 3 February 13 ,1985

EventAvail A971 EM X If Event in queue then OSEventAvail (if window activated or
deactivated),GetOSEvent,SystemE vent, If no Event then GetOSEvent,
CheckUpdate.GetMouse

ExitToShell A9F4 SL X Launch on Finder
FillArc A8C2 QD X StdArc
FillOval A8BB QD X StdOval
FillPoly A8CA QD X StdPoly
FillRect A8A5 QD X StdRect
FillRgn A8D6 QD X StdRgn
FillRoundRect A8B4 QD X StdRRect
FindControl A96C CM X GetPort,SetPort,then PtlnRect & TestControl for each control in

the list, then SetPort
FindWindow A92C WM PtlnRgn
FixMul A868 TU LongMul
FixRatio A869 TU none
FixRound A86C TU none
FlashMenuBar A94C MN X HandToHand,SetClip,SetRectRgn,InvertRoundRect,InvertRect (if menu

item inverted),SetPort,CopyRgnJDisposeRgn
FlushEvents A032 OSEM none
Flush Vol FL X FlushVol
FMSwapFont A901 FM X FixRatio,FixMul,FixRound,GetResource,FixRatio,FixMul,BlockMove,

Status(if device changed)
ForeColor A862 QD none
Frame Arc A8BE QD X StdArc
FrameOval A8B7 QD X StdOval
FramePoly A8C6 QD X StdPoly
FrameRect A8A1 QD X StdRect
FrameRgn A8D2 QD X StdRgn
FrameRoundRect A8B0 QD X StdRRect
FreeAlert A98A DL X for item list & alert GetResource,unlocks it,GetResAttrs(to make

purgeable),LoadResource,DisposeHandle,DisposeControl,HandToHand,
HLock,Munger,GetHandleSize,TextBox,DisposeHandle,PenSize,
InsetRectJrameRoundRect

FreeDialog A97A DL X GetResource(the dialog),GetRes Attrs(make purgeable),GetResource
(the item list),GetResAttrs(make purgeable)

FreeMem A01C MM X none
FrontWindow A924 WM none
FSClose FL Close
FSDelete FL Delete
FSOpen FL Open
FSRead FL Read
FSWrite FL Read,Write
GetAlrtStage DL none
GetAppFiles SL GetHandleSize31ockMove
GetApplLimit none
GetAppParms A9F5 SL BlockMove
GetCaretTime EM none
GetClip A87A QD X CopyRgn
GetCRefCon A95A CM none
GetCTitle A95E CM BlockMove
GetCtl Action A96A CM none
GetCtlMax A962 CM none
GetCtlMin A961 CM none
GetCtlValue A960 CM none
GetCursor A9B9 TU X GetResource
GetDateTime OS none

Trap List Page 4 February 13 ,1985

GetDblTime EM
GetDCtlEntry X

GetDItem A98D DL X
GetDrvQHdr FL
GetEOF FL
GetEvQHdr OS
GetFInfo FL
GetFNum A900 FM X

GetFontlnfo A88B FM X

GetFontName A8FF FM X

GetFPos FL
GetFSQHdr FL
GetHandleSize A025 MM
Getlcon A9BB TU X

GetlndPattern TU X

GetlndResource A99D RM X

GetlndString TU X
GetlndType A99F RM
Getltem A946 MN
Getltemlcon A93F MN
GetltemMark A943 MN
GetltemStyle A941 MN
GetlText A990 DL
GetKeys A976 EM X
GetMenu A9BF MN X
GetMenuBar A93B MN X

GetMHandle A949 MN
GetMouse A972 EM X
GetN amedResource A9A1 RM X
GetNewControl A9BE CM X
GetNewDialog A97C DL X
GetNewMBar A9C0 MN X

GetNewWindow A9BD WM X
GetNextEvent A970 EM X

GetOSEvent A031 OSEM
GetPattern A9B8 TU X
GetPen A89A QD
GetPenState A898 QD
GetPicture A9BC TU X

GetPixel A865 QD
GetPort A874 QD
GetPtrSize A021 MM
GetResAttrs A9A6 RM
GetResFileAttrs A9F6 RM
GetResInfo A9A8 RM
GetResource A9A0 RM X

GetScrap A9FD SM X
GetSoundVol SD
GetString A9BA TU X
GetSysPPtr OS
GetTime OS
GetTrapAddress A046 OS

none
Status
GetPort,SetPort,LoadResource,SetPort
none
GetEOF
none
GetFileInfo,BlockMove
GetN amedResource,GetRes Info
StdTxMeas
GetResource,GetResInfo
GetFPos
none
none
GetResource
GetResource,BlockMove
ReadJ^ewHandleReacLRead
GetResource,BlockMove
none
BlockMove
none
none
none
GetHandleSize,B lockMove
none, Control if journaling
GetResource,CalcMenuSize
NewHandle,BlockMove
none
GlobalToLocal,Control if journaling
CmdString,
GetResource,N ewControl,ReleaseResource
GetResource,NewDialog
GetMenuBar.ClearMenuB ar,GetResource,InsertMenu,GetMenuBar,
ReleaseMenu.SetMenuBarJDisposeHandle
GetResource J^ewWindow,ReleaseResource
If Event in queue then OSEventAvail (if window activated or
deactivated),GetOSEvent,SystemEvent, If no Event then GetOSEvent,
CheckUpdate,GetMouse
OSEventAvail,Dequeue
GetResource
none
none
GetResource
HideCursor,ShowCursor
none
none
none
none
none
Read,NewHandle,RsrvMem,AllocHandle, if no hand & no load
NewHandle,EmptyHandle
Read,BlockMove, SetHandleSize
none
GetResource
none
ReadDateTime,Secs2Date
none

Trap List Page 5 February 13 ,1985

GetVBLQHdr VR none
GetVCBQHdr FL none
GetVInfo FL GetVolInfo
GetVol FL GetVol
GetVRefNum none
GetWindowPic A92F WM none
GetWMgrPort A910 WM none
GetWRefCon A917 WM none
GetWTitle A919 WM none
GetZone A01A MM none
GlobalToLocal A871 QD none
GrafDevice A872 QD none
GrowWindow A92B WM X SetClip,ClipAbove,GetPenState,PenNormal,PenMode,PenPat,OffsetRect,

LoadResource, DeltaPoint.GetMouse.PInRect.WaitMouseUp.SetPenState,
SetPort

GZCritical MM none
GZSaveHnd MM none
HandAndHand A9E4 OS X GetHandleSize,SetHandleSize, BlockMove
HandleZone A026 MM none
HandToHand A8E1 OS X GetHandleSize,NewHandle, BlockMove, SetHandleSize.BlockMove,

NewHandle,BlockMove
HideControl A958 CM X GetPort,SetPort,NewRgn,GetPort,SetPort,LoadResource,SetPort,

EraseRgn,InvalRgn,DisposeRgn, SetPort
HideCursor A852 QD none
HidePen A896 QD none
HideWindow A916 WM X FrontWindow,ShowHide,FrontWindow, SelectWindow on the front w i n d o v

if there is one.
HiliteControl A95D CM X GetPort,SetPortJ-oadResource if control def proc needs loading,

calls def proc for each control,SetPort
HiliteMenu A938 MN X ClipRect,InvertRect,InvertRect,SetPort
HiliteWindow A91C WM X SetPort,SetClip,ClipAbove,SetPort
HiWord A86A TU none
HLock A029 MM none
HNoPurge A04A MM none
HomeResFile A9A4 RM none
HPurge A049 MM none
HUnlock A02A MM none
InfoScrap A9F9 SM none
InitAllPacks(InitMath) A9E6 PK X InitPack
InitApplZone A02C MM X FlushVol,RsrcZoneInit,InitZone,InitMath
InitCursor A850 QD none, falls into ShowCursor
InitDialogs A97B DL none
InitFonts A8FE FM X BlockMove,GetResource
InitGraf A86E QD none
InitMenus A930 MN X NewHandle,ClearMenu,DrawMenuBar,SetRecRgn,EraseRoundRect,

MoveTo,LineTo,ClipRect,SetPort
InitPack A9E5 PK X SetResLoad,GetResource, SetResLoad
InitPort A86D QD X RectRgn,CopyRgn
InitQueue A016 FL none
InitResources A995 RM X NewHandle,OpenRF,GetEOF,SetHandleSize,Close & DisposeHandle if

failed,Read
InitUtil A03F OS none
InitWindows A912 WM X GetPattern(NewPtr,OpenPort,PaintRect,FillRoundRect,DrawMBar,

NewRgn,HidePen,OpenRgn,FrameRoundRect,CloseRgn,ShowPen,
DiffRgn.SetClip,ShowCursor,NewRgn

InitZone A019 MM X MoreMasters

Trap List Page 6 February 13 ,1985

InsertMenu A935 MN X TextFont,TextFace,StringWidth,SetPort
InsertResMenu A951 MN X SetResLoad,CountResources,GetIndResource,GetResInfo,

CalcMenuSize,AppendMenu,M unger
InsetRect A8A9 QD none
InsetRgn A8E1 QD X InsetRect if rectangular, else NewHandle,DisposeHandle,

SetHandleSize
InvalRect A928 WM X NewRgn,RectRgnJDisposeRgn
InvalRgn A927 WM X OffsetRgn,UnionRgn,DiffRgn,OffsetRgn
InvertArc A8C1 QD X StdArc
InvertOval A8BA QD X StdOval
InvertPoly A8C9 QD X StdPoly
InvertRect A8A4 QD X StdRect
InvertRgn A8D5 QD X StdRgn
InvertRoundRect A8B3 QD X StdRRect
IsDialogEvent A97F DL FrontWindow,FindWindow
IUCompString PK X Pack 6
IUDatePString PK X Pack 6
IUDateString PK X Pack 6
IUEqualString PK X Pack 6
IUGetlntl PK X Pack 6
IUMaglDString PK X Pack 6
IUMagString PK X Pack 6
IUMetric PK X Pack 6
IUSetlntl PK X Pack 6
IUTimePString PK X Pack 6
IUTimeString PK X Pack 6
KillControls A956 CM X DisposeControl for each control in the list
KilUO DM KilllO
KillPictuxe A8F5 QD X DisposeHandle
KillPoly A8CD QD X DisposeHandle
Launch A9F2 SL X BlockMove,if current app then CloseResFile,BlockMove,InitApplZone,

NewHandle,BlockMove,RDrvrlnstall, then OpenResFile,
SysError if bad open,GetResource,BlockMove,ReleaseResource,

Line A892 QD X LineTo
LineTo A891 QD X StdLine
LoadResource A9A2 RM X GetNamedResource(if the resource name is given),GetResource(if you

only have ID),if loading Read,RsrvMem,ReallocHandle,NewHandle(if
there isn't already one),Read, if no hand & no load NewHandle,
EmptyHandle

LoadScrap A9FB SM X NewHandleRead
LoadSeg A9F0 SL X GetResource, SysError if error (locks segment as loaded, launches

if necessary)
LocalToGlobal A870 QD none
LongMul A867 TU none
LoWoid A86B TU none
MapPoly A8FC QD MapRect,MapPt
MapPt A8F9 QD none
MapRect A8FA QD MapPt
MapRgn A8FB QD X MapRect,NewHandle,MapPt,SetHandleSize, DisposeHandle
MaxApplZone MM none
MaxMem A01D MM none
MemError MM none
MenuKey A93E MN X HiliteMenu,SystemMenu(if desk Acc.).BlockMove
MenuSelect A93D MN X HiliteMenu,WaitMouseUp,GetPort,SetPort,ClipRect,GetMouse,ClipRi
ModalDialog A991 DL X SystemTask,GetNextEvent,FrontWindow, calls filter proc,

IsDialogEvent,DialogSelect

Trap List Page 7 February 13 ,1985

MoreMasters A036 MM X

Move A894 QD
MoveControl A959 CM X

MoveHHi MM X

MovePortTo A877 QD
MoveTo A893 QD
MoveWindow A91B WM X

Munger A9E0 TU X

NewControl A954 CM X

NewDialog A97D DL X

NewHandle A022 MM X

NewMenu A931 MN X

NewPtr A01E MM X

NewRgn A8D8 QD X

NewString A906 TU X

New Window A913 WM X

NoteAlert A987 DL X

NumToString PK X

ObscureCursor A856 QD
OffsetPoly A8CE QD
OffsetRect A8A8 QD
OffsetRgn A8E0 QD
OpenDeskAcc A9B6 DS X

OpenDriver DM
OpenPicture A8F3 QD X

OpenPoly A8CB QD X

OpenPort A86F QD X

OpenResFile A997 RM X

OpenRgn A8DA QD X

OSEventAvail A030 OSEM
PackO (not used) A9E7 PK X

Packl (not used) A9E8 PK X

Pack2 A9E9 PK X

Pack3 (std File) A9EA PK X

Pack4 (floating pt) A9EB PK X

Pack5 (transcendentals) A9EC PK X

Pack6(Int'l) A9ED PK X

Pack7 (conversions) A9EE PK X

PackBits A8CF TU
PaintArc A8BF QD X

BlockMove if needed
none
HideControl, OffsetRect, ShowControl
CompactMem,B lockMove.EmptyH andle
none
none
SetClip,ClipAbove,NewRgn,SectRgn,HandToHand,DeltaPoint,OfsetRgn,
OfsetRect,SetClip if bringing to front,CopyBits,DiffRgn,
PaintBehind,FrontWirtdow,HiliteWindow,PaintOne,UnionRgn,
CalcVBehindJDisposeRgn,SetPort
GetHandleSize, for insert SetHandleSize,BlockMove, For delete &
finding substrings BlockMove,SetHandleSize
NewHandle, SetCTitle, GetResource, GetPort,LoadResource,locks handle
to proc,SetPort,calls def proc to draw control,unlocks handle,
then SetPort
NewPtr if no wstorage given, BlockMove,NewWindow,GetPort,SetPort,
TENew,DisposeHandle,SetPort,GetPort,SetPort,LoadResource,
TECalText,PtrToHand(if text),GetResource(if pic or icon),
GetNewControl,MoveControl,(if control),ValidRect(if control),
RsrvMem(to alloc as low as possible),SysError if failed, BlockMove
if needed
NewHandle,GetResource
SysError if failed, BlockMove if needed, none otherwise
NewHandle
PtrToHand
OpenPort,MovePort,PortSize,SetPort,NewRgn,GetResource,
NewString,StringWidth, windowdefproc called twice,
FrontWindow,PaintOne,CalcVBehind,SetPort.
GetResource, FlushEvents,NewDialog,GetPort,SetPort,GetIcon,
PlotIcon,GetDItem,PenSize,InsetRect,FrameRoundRect,InsetRect,
ModalDialog,SetPort,DisposeDialog
Pack 7
none, falls into HideCursor
none
none
none
Open,SelectWindow,ShowWindow
none
HidePen,NewHandle,NewRgn,StdPutPic
HidePen ,NewHandle
NewHandle (2 for the clip & vis rgns)
NewHandle,OpenRF.GetEOF,Close & DisposHandle if failed, Read,
SetHandleSize,Read,SetHandleSize,load preload resources,
GetResource,GetNamedResource,NewHandle,Re All ocHandle.RsrvMem,
NewHandle,HidePen
PostEvent
LoadResource, SysError if no pack
LoadResource, SysError if no pack
LoadResource, SysError if no pack
LoadResource, SysError if no pack
LoadResource, SysError if no pack
LoadResource, SysError if no pack
LoadResource, SysError if no pack
LoadResource, SysError if no pack
none
StdArc

Trap List Page 8 February 13 ,1985

PaintBehind A90D WM X

PaintOne A90C WM X
PaintOval A8B8 QD X
PaintPoly A8C7 QD X
PaintRect A8A2 QD X
PaintRgn A8D3 QD X
PaintRoundRect A8B1 QD X
ParamText A98B DL X
PB Allocate (_Allocate) AOlO FL
PBClose (_ciose) AOOl FL
PBControl (_Control) A004 FL X
PB Create (_Create) A008 FL
PBDelete (_Delete) A009 FL
PBEject(Eject) A017 FL X
PBFlshFile (FlushFUe) A045 FL
PBFlshVol (FlushVol) A013 FL X
PBGetEOF (GetEOF) AOll FL
PBGetFInfo (_GetFileInfo) AOOC FL
PBGetFPos (GetFPos) A018 FL
PBGetVInfo (jGetVolInfo) A007 FL
PBGetVol (GetVol) A014 FL
PBKiUIO (_KillIO) A006 DM
PBMountVol(_MountVol) AOOF FL X

PBOffLine (_Offline) A035 FL X
PBOpen (Open) AOOO FL X

PBOpenRF (_OpenRF) AOOA FL X

PBRead(Read) A002 FL
PBRename (_Rename) AOOB FL
PBRstFLock(RstFilLock) A042 FL
PBSetEOF (SetEOF) A012 FL
PBSetFInfo (SetFillnfo) AOOD FL
PBSetFLock(_SetFilLock) A041 FL
PBSetFPos (SetFilPos) A044 FL
PBSetFVers (_SetFilType) A043 FL
PBSetVol (_SetVol) A015 FL
PBStatus (_Status) A005 DM X
PBUnmountVol (UnmountVol)

AOOE FL
PB Write (_Write) A003 FL
PenMode A89C QD
PenNormal A89E QD
PenPat A89D QD
PenSize A89B QD
PicComment A8F2 QD X
PinRect A94E WM
Plotlcon A94B TU X
PortSize A876 QD
PostEvent A02F OSEM
PiCfgDialog PR X
PrClose PR X
PiCloseDoc PR X
PrClosePage PR X

Trap List

CopyRgn,NewRgn,ClipAbove,CopyRgn,DiffRgn,ClipRect,EraseRgn,
DisposeRgn
SectRgn,EmptyRgn,NewRgn,DisposeRgn, and if updating UnionRgn.
StdOval
StdPoly
StdRect
StdRgn
StdRRect
NewStringJDisposeHandle
Enqueue
Enqueue,Read,Write
LoadResource if driver was purged, SysError if error
Enqueue,CmpString,Write,Read
Enqueue
FlushVol,DisposePtr,Control
Enqueue,Read, Write
Enqueue, Write,DisposePtrJJequeue
SysError if error, none otherwise
Enqueue,CmpString,Write Jlead
falls through SetFPos
Enqueue,CmpString
Enqueue
SysError if error, none otherwise
Enqueue,NewPtr,Write^ead^ewPtr,StatusJ)isposePtr,SysError if
error, Offline if not enough room & a vol has to go
Flush Vol,EnqueueJDisposePtr,Dequeue,Enqueue,Control
Enqueue,GetNamedResource,CmpString(if in ROM),GetResInfo,
Drvrlnstall(if not installed),LoadResource,CompactMem
Enqueue, GetNamedResource,CmpString(if in ROM),GetResInfo,
Drvrlnstall(if not installed),LoadResource,CompactMem
Enqueue,Write,Read,SysError if error
Enqueue,CmpString,WriteJRead
Enqueue,CmpString,Write Jlead
Enqueue
Enqueue, CmpString,Write,Read
Enqueue,CmpString,Write,Read
Falls through Read
Enqueue, CmpString,Write,Read
Enqueue,CmpString
LoadResource if driver was purged, SysError if error

Enqueue,falls through FlushVol
Enqueue, Write,BlockMove,SysError if error
none
none
none
none
StdComment
none
CopyBits
none
none
GetResource
GetResource,OpenResFile(to get refhum),CloseResFile
GetResource
GetResource

Page 9 February 13,1985

PrCtlCall PR X Control
PrDlgMain PR X GetResource
PrDrvrClose PR Close
PrDrviDCE PR X Status
PrDrvrOpen PR X Open
PrDrvrVers PR X PrDrvrDCE
PrError PR none
PrHack PR X GetResource
PrintDefault PR X GetResource
PrJobDialog PR X GetResource
PrJoblnit PR X GetResource
PrJobMerge PR X GetResource
PrNoPurge PR X GetResource
PrOpen PR X PrDrvrOpen,GetResource,OpenResFile
PrOpenDoc PR X GetResource
PrOpenPage PR X GetResource
PrPicFile PR X GetResource
PrPurge PR X GetResource
PrSetError PR none
PrStlDialog PR X GetResource
PrStllnit PR X GetResource
PrValidate PR X GetResource
Pt2Rect A8AC QD none
PtlnRect A8AD QD none
PtlnRgn A8E8 QD none
PtrAndHand A9EF OS X GetHandleSize,SetHandleSize,BlockMove
PtrToHand A9E3 OS X NewHandle,BlockMove
PtfToXHand A9E2 OS X SetHandleSize,NewHandle,BlockMove,NewHandle
PtrZone A048 MM none
PtToAngle A8C3 QD FixRatio,FixMul,AngleFromSlope
PurgeMem A04D MM X none
PutScrap A9FE SM X PtrAndHand, Write
RamSDClose SER X BlockMove,DisposeHandle,Close
RamSDOpen SER X GetResource,locks handle,BlockMove,Open
Random A861 QD none
RDrvrlnstall A04F none
ReadDateTime A039 OS none
ReadParam OS none
RealFont A902 FM X GetResource
ReallocHandle A027 MM X none
RecoverHandle A028 MM X none
RectlnRgn A8E9 QD none
RectRgn A8DF QD X SetRectRgn
ReleaseResource A9A3 RM X DisposeHandle
Rename FL Rename
ResError A9AF RM none
ResetAlrtStage DL none
ResrvMem A040 MM X BlockMove if needed, none otherwise
Restart X none
RestoreA5 none
RmveReference A9AE RM X BlockMove,SetHandleSize,SetEOF (repeated)
RmveResource A9AD RM X BlockMove,SetHandleSize,SetEOF (repeated)
RsrcZonelnit A996 RM X CloseResFile
RstFLock FL RstFilLock
SaveOld A90E WM X NewRgn(2),CopyRgn(2)
ScalePt A8F8 QD none

Trap List Page 10 February 13,1985

ScrollRect A8EF QD X If pnloc<0 or updatergn is empty then SetEmptyRgn, else NewRgn,
RectRgn,SectRgn,CopyRgn,OfsetRgnJDiffRgn,ShieldCursor,ShowCursor.
DisposeRgn, SetEmptyRgn

Secs2Date A9C6 OS none
SectRect A8AA QD none
SectRgn A8E4 QD X EqualRgn,CopyRgn, SetEmptyRgn ,RectRgn,NewHandle, SetHandleSize, SectRgn

DisposeHandle
SelectWindow A91F WM X FrontWindow.SetPort^iliteWindow
SellText A97E DL X GetPort,SetPortJ^oadResource,TECalText(iftext),LoadResource,

TEDeactivate,TECalText,TEActivate, SetPort
SendBehind A921 WM X FrontWindow,SelectWindow,CalcVBehind,PaintBehind,SetPort
SeiClrBik SER X Control
SeiGetBrk SER X Status
SerHShake SER X Control
SerReset SER X Control
SerSetBrk SER X Control
SerSetBuf SER X Control
SerStatus SER X Status
SetApplBase A857 MM X InitApplZone,SysError if failed
SetApplLimit A02D MM none
SetClip A879 QD X CopyRgn
SetCRefCon A95B CM none
SetCTitle A95F CM X HideControl,SetHandleSize, BlockMove, ShowControl(if visible)
SetCtlAction A96B CM none
SetCtlMax A965 CM X GetPort,SetPortXoadResource if control def proc needs loading,

calls def proc for each control,SetPort
SetCtlMin A964 CM X GetPort,SetPortLx>adResource if control def proc needs loading,

calls def proc for each control,SetPort
SetCtlValue A963 CM X GetPort,SetPorUx>adResource if control def proc needs loading,

calls def proc for each control,SetPort
SetCursor A851 QD HideCursor & ShowCursor if changed, none otherwise
SetDAFont DL none
SetDateTime A03A OS none
SetDItem A98E DL X GetPort,SetPort,LoadResource,TECalText(if text),SetPort
SetEmptyRgn A8DD QD X SetRectRgn
SetEventMask EM none
SetFInfo FL GetFilelnfo,BlockMove,SetFilelnfo
SetFLock FL SetFilLock
SetFontLock A903 FM X LoadResource if locking JReleaseResource if not
SetFType FL SetFilType
SetGrowZone A04B MM none
SetHandleSize A024 MM X SysError if failed, BlockMove if needed, none otherwise
Setltem A947 MN X Munger,CalcMenuSize
Setltemlcon A940 MN X CalcMenuSize
SetltemMark A944 MN X CalcMenuSize
SetltemStyle A942 MN X CalcMenuSize
SetlText A98F DL X PtrToHand,GetPort,SetPort,LoadResource,TECalText(if text),SetPort,

TECalText£raseRect,ValidRect,SetPort
SetMenuBar A93C MN BlockMove
SetMenuFlash A94A MN none
SetOrigin A878 QD OffsetRgn
SetPenState A899 QD none
SetPort A873 QD none
SetPortBits A875 QD none
SetPt A880 QD none
SetPtrSize A020 MM X SysError if failed, BlockMove if needed, none otherwise

Trap List Page 11 February 13,1985

SetRect A8A7 QD none
SetRectRgn A8DE QD X SetHandleSize
SetResAttrs A9A7 RM none
SetResFileAttrs A9F7 RM none
SetResInfo A9A9 RM X GetHandleSize,SetHandleSize,GetEOF,SetEOF,BlockMove
SetResLoad A99B RM none
SetResPurge A993 RM none
SetSoundVol SD none
SetStdProcs A8EA QD none
SetString A907 TU X PtrToXHand
SetTagBuffer DD X Control
SetTime OS Date2Secs,SetDateTime
SetTrapAddress A047 OS none
SetupA5 none
SetVol FL SetVol
SetWindowPic A92E WM none
SetWRefCon A918 WM none
SetWTide A91A WM X HandToHand,SetString,Stringwidth, window def proc (2), UnionRgn,

DiffRgn,PaintBehind,CalcVBehindJ)isposeRgn,SetPort
SetZone A01B MM none
SFGetFile PK X Pack 3
SFPGetFile PK X Pack 3
SFPPutFile PK X Pack 3
SFPutFile PK X Pack 3
ShieldCursor A855 TU HideCursor if cursor intersects shield rect, none otherwise
ShowControl A957 CM X GetPort,SetPort,LoadResource,SetPort
ShowCursor A8S3 QD none
ShowHide A908 WM X SaveOld, if making visible it calls the window def proc, DrawNew,

SetPort
ShowPen A897 QD none
ShowWindow A915 WM X SelectWindow,ShowHide
SizeControl A95C CM X HideControl,ShowControl
SizeResource A9A5 RM GetHandleSize,Read
SizeWindow A91D WM X Save01d,SetClip,ClipAbove,DrawNew, SetPort
SlopeFromAngle A8BC TU none
SoundDone SD none
SpaceExtra A88E QD none
StartSound SD X NewHandle,GetHandleSize,SetHandleSize31ockMove, Write
Status DM X Status, BlockMove
StdArc A8BD QD X If recording a picture or region it does StdPutPic
StdBits A8EB QD X If recording a picture or region it does StdPutPic
StdComment A8F1 QD X StdPutPic(HLock,StdPutPic,HUnlock
StdGetPic A8EE QD none
StdLine A890 QD X If recording a picture, region, or polygon it does StdPutPic
StdOval A8B6 QD X If recording a picture or region it does StdPutPic
StdPoly A8C5 QD X If recording a picture or region it does StdPutPic
StdPutPic A8F0 QD X SetHandleSize
StdRect A8A0 QD X If recording a picture or region it does StdPutPic
StdRgn A8D1 QD X If recording a picture or region it does StdPutPic
StdRRect A8AF QD X If recording a picture or region it does StdPutPic
StdText A882 QD X If recording a picture or region it does StdPutPic
StdTxMeas A8ED QD X FMSwapFont,FixRatio,FixMul
StillDown A973 EM X Button^EventAvail
Stop Alert A986 DL X GetResource, FlushEvents,NewDialog,GetPort,SetPort,GetIcon,

PlotIcon,GetDItemJ)enSize,InsetRect>FrameRoundRect,InsetRect,
ModalDialog,SetPortJ)isposeDialog

Trap List Page 12 February 13,1985

StopSound SD X
StringToNum PK X
StringWidth A88C QD X
StuffHex A866 QD
SubPt A87F QD
SysBeep A9C8 OS X
SysError A9C9 OS X

SystemClick A9B3 DS X

SystemEdit A9C2 DS X
SystemEvent A9B2 DS
SystemMenu A9B5 DS X
SystemTask A9B4 DS
SystemZone MM
TEActivate A9D8 TE X

TECalText A9D0 TE X

TEClick A9D4 TE X

TECopy A9D5 TE X

TECut A9D6 TE X

TEDeactivate A9D9 TE X

TEDelete A9D7 TE X

TEDispose A9CD TE X
TEFromScrap X
TEGetScrapLen TE
TEGetText A9CB TE X

TEIdle A9DA TE X

TEInit A9CC TE X
TEInsert A9DE TE X

TEKey A9DC TE X

TENew A9D2 TE X
TEPaste A9DB TE X

KillIO,DisposeHandle
Pack 7
TextWidth
none
none
FlashMenuBar,Delay ,FlashMenuBar
InitGraf,InitPortvEraseRectJ;rameRect,PenSize,MoveTo,LineTo,
LineTo J5enNormal,DrawT ext,PlotIcon
LoadResource(wind defproc),GetPort,if no windows in list
SetPort,SetClip,ClipAbove,otherwise LoadResource and lock,
if in drag DragWindow,if goaway then TrackGoAway,CloseDeskAcc(if
actually closing), else it calls FrontWindow,SelectWindow(if not
in front),send the event, then call Control
GetPort,SetPort,Control,SetPort
GetPort,SetPort
sends message to driver and calls Control
GetPort,FrontWindow,SetPort
none
GetPort,SetPort,NewRgn,GetClip,ClipRect,SectRgn,HLock,
GetHandleSize,TextWidth, SetClip,DisposeRgn, SetPort
GetPort,SetPort,NewRgn,GetClip,ClipRect,SectRgn,HLock,
GetHandleSize,TextWidth,GetHandleSize,SetHandleSize,HLock,
GetHandleSize,SetClip,DisposeRgn, SetPort
GetPort,SetPortJ^ewRgn,GetClip,ClipRect,SectRgn, HLock,
GetHandleSize,...,TickCount,
GetPort,SetPorUsfewRgn,GetClip,ClipRect,SectRgn, HLock,
GetHandleSize,PtrToXHand,SetClip,DisposeRgn,SetPort
GetPort,SetPortJ*ewRgn,GetClip,ClipRect,SectRgn,HLock,
GetHandleSize,TECopy,TEDelete,SetClip,DisposeRgn,SetPort
GetPort,SetPort,NewRgn,GetClip,ClipRect,SectRgn,HLock,
GetHandleSize,TextWidth,InvertRect,TextWidth,SetClip,
DisposeRgn,SetPort
GetPort,SetPort^IewRgn,GetClip,ClipRect,SectRgn,HLock,
GetHandleSize,HUnlock^lunger,TextWidth,GetHandleSize,
EraseRect,TextWidthJDrawText,TextWidth,InvertRect,
SetClip,DisposeRgn,SetPort
DisposeHandle
GetScrap
none
GetPort,SetPortJsJewRgn,GetClip,ClipRect,SectRgn, HLock,
GetHandleSize,SetClip,DisposeRgn,SetPort
GetPort,SetPort,NewRgn,GetClip,ClipRect,SectRgn,HLock,
GetHandleSize,TickCount,TextWidth,InvertRect,SetClip,
DisposeRgn,SetPort
NewHandle
GetPort,SetPortJJewRgn,GetClip,ClipRect,SectRgn,HLock,
GetHandleSize,InsetRect,TextWidth,EraseRect,DrawText,PinRect,
GetPort,SetPort,NewRgn,GetClip,ClipRect,SectRgn, HLock,
GetHandleSize,ObscureCursor,TextWidth,HUnlock,Munger,HLock,
GetHandleSize,EraseRect,TextWidth,EraseRect,DrawText,TextWidth,
InverRect,SetClip,DisposeRgn,SetPort
NewHandle(2),GetFontInfo
GetPort,SetPort,NewRgn,GetClip,ClipRect,SectRgn,HLock,
GetHandleSize,TextWidth,Hunlock,Munger3Lock,TextWidth,
GetHandleSize,EraseRect,DrawText,TextWidth,InvertRect,
SetClip,DisposeRgn,SetPort

Trap List Page 13 February 13,1985

TEScrapHandle TE
TEScroll A9DD TE X

TESetJust A9DF TE X

TESetScrapLen TE
TESetSelect A9D1 TE X

TESetText A9CF TE X

TEToScrap X
TestControl A966 CM X
TEUpdate A9D3 TE X

TextBox A9CE TE X

TextFace A888 QD
TextFont A887 QD
TextMode A889 QD
TextSize A88A QD
TextWidth A886 QD X
TickCount A975 EM X
TopMem MM
TrackControl A968 CM X
TrackGoAway A91E WM X
UnionRect A8AB QD
UnionRgn A8E5 QD X

UniquelD A9C1 RM
UnloadScrap A9FA SM X
UnloadSeg A9F1 SL X
UnmountVol FL
UnpackBits A8D0 TU
UpdateResFile A999 RM
UprString A854 OS
UseResFile A998 RM
ValidRect A92A WM X
ValidRgn A929 WM X
VInstall A033 VR
VRemove A034 VR
WaitMouseUp A977 EM X

WriteParam A038 OS
WriteResource A9B0 RM
XOrRgn A8E7 QD X

ZeroScrap A9FC SM X

none
GetPort,SetPort,NewRgn,GetClip,ClipRect,SectRgn,HLock,
GetHandleSize,OffsetRectJ^ewRgn,ScrolIRect,SetQip,TextWidth,
EraseRectJJrawTexwDisposeRgn.SetClip.DisposeRgn,SetPort
GetPort,SetPoruNewRgn,GetClip,ClipRect,SectRgnJiLock,
GetHandleSize,SetClip,DisposeRgn, SetPort
none
GetPort,SetPort,NewRgn,GetClip,EraseRect,SectRgn,HLock,
GetHandleSize,EraseRect,DrawText,PtInRect
GetPort,SetPort^JewRgn,GetClip,ClipRect,SectRgn,HLock,
GetHandleSize,PtrToXHand,TECalText,SetClip,DisposeRgn,SetPort
HLock,PutScrap,HUnlock
GetPort,SetPort,LoadResource,SetPort
GetPort,SetPort,NewRgn,GetClip,ClipRect,SectRgn,HLock,
GetHandleSize,TextWidth,InvertRect,SetClip,DisposeRgn, SetPort
EraseRect,TENew,TEDispose,then TESetText,TEUpdate if there is
something in it
none
none
none
none
StdTxMeas
none, Control if joumaling
none
GetPort,SetPortJHiliteControl,GetMouse,WaitMouseUp,SetPort
SetClip.ClipAbove,LoadResource,GetMouse,WaitMouse,SetPort
none
EqualRgn,CopyRgn,SetEmptyRgn,RectRgn,NewHandle, SetHandleSize,
DisposeHandle
Random
Open,Create,Write,DisposeHandle
GetResource
UnMountVol
none
SetEOF,Write,BlockMove,Write,BlockMove,SetEOF
none
none
NewRgn,RectRgn,DisposeRgn
OffsetRgn,UnionRgn,DiffRgn,OffsetRgn
Enqueue
Dequeue
StillDown.GetNextEvent
none
GetHandleSize,Write,BlockMove,Write,BlockMove
EqualRgn,CopyRgn,SetEmptyRgn,RectRgn,NewHandle, SetHandleSize,
DisposeHandle
SetEOF, SetHandleSize .NewHandle

Trap List Page 14 February 13,1985

c

o

o

c

c

c

About the Resource Editor
In the February 1985 Software Supplement we have included a pre-release of the
Resource Editor with an icon that looks like a Jack-in-the-box. Because it is
pre-release and may blow up, before editing any resource files on a disk we
recommend backing up the disk.

Basic functionality - The resource editor allows you to create and edit resources and
resource files. It comes up displaying a disk window for each mounted volume. The
applicable commands and what they do at this level are:

DISK WINDOW - displays all resource files on the disk
File
New - creates a new resource file, prompting you for its name and opens a file window
for that file.
Open (double-click) - opens a file window for the file selected.
Close (clicking close box) - ejects the disk represented by the window. (Don't close the
window for a hard disk if you do not want it to be unmounted).

When a file window is on top:
FILE WINDOW - displays all the types of resources in the file

File
New - allows you to create a new resource of a new type (i.e. of a type that does not
already exist in the file. To create a new resource of an existing type, open the window
for that type and choose new from there). A dialog prompts you for the name of the
new type. The types the resource editor knows how to edit (i.e. knows the format for)
are listed in a scrollable standard-file-like window. If you wish to create a resource of a
type that is not in this list, just type in the four letter resource type name. The resource
editor will allow you to edit that resource in hex (or you may define a template for the
resource specifying its format (much like the GNRLtype in Rmaker), in which case you
edit the resource by filling out a dialog box). See extensibility section below.
Open (double-click) - opens the type window for the type selected. If you hold down
the option key while double-clicking you will get the generic type window (which just
lists the IDs of all the resources of that type in the file) rather than the type specific
window (which for graphic types actually displays the resources).
Close - closes the file window. If you have made any changes to the file (added, edited
or removed resources from it) you will be asked if you wish to save the changes. This
is the point at which your editing changes are either committed to the file or ignored.
Revert - Undoes all the changes that were made to this file. This is equivalent to
replying NO to save changes on a close except that the file and file window are not
closed.

Edit
Cut - removes all the resources of the selected types from the file (and puts them in the
scrapFile)
Copy - copies all the resources of the selected types into the scrapFile. If you hold
down the option key and select copy from the menu, then the resources selected are
added to the scrapFile rather than replacing the previous resources cut or copied.
(This is an APPEND TO CLIPBOARD function).
Paste - pastes the resources in the scrapFile into the file.
Clear - removes the resources in the selected type (but does not add them to the
scrapFile)
Duplicate - makes a second copy of all the resources in the selected types. The new
resources are assigned new unique IDs.

When a type window is topmost:
TYPE WINDOW - displays all the resources of the given type

File
New - creates a new resource of the given type and opens the editing window for that
type so you may start editing the new resource.
Open - brings up the editing window for resources of the given type. If you hold down
the option key, you can edit the resource in hex (rather than in the nice graphic or
template way). If you hold down the option and shift keys, you can choose to edit the
resource using a different type's template. This is useful when you have have an alias
for a well known type. (In Rmaker you did this by saying TYPE MINE = DLOG, for
example, or more commonly, TYPE MAPP = STR for your signature string in a bundle).
To edit a MAPP resource, select STR from the list of types.
Close - just closes the type window.
Revert - undoes all the changes made to any of the resources of the given type.
Get Info - gives information about the selected resource(s). This is where you can
change the ID, name, and attributes of a resource.

Edit
Cut - Removes the selected resources from the resource file and adds them to the
scrapFile.
Copy - Copies the selected resources into the scrap file. Holding the option key down
while making a copy adds the resource to the scrapFile without removing previous
resources in the file.
Paste - Pastes the resources from the scrapFile into the file that this type window
belongs to.
Clear - Removes the selected resources from the file without affecting the scrapFile.
Duplicate - Makes a duplicate copy of the selected resource.

About The Resource Editor Page 2

EDIT WINDOW - the editor for a particular type
There are two basic kinds of editors: custom editors for a particular type and generic
editors. The custom editors in the current release are for icons, cursors, fonts, icn#'s,
pats and pat#'s. The generic editor displays a dialog box based on the template for the
type which can be filled in. The affect of commands differs depending on which editor
is up. For generic editors with repeated items, either a list separator is selected (ex. the
***** in DITL's) or an edit text item is selected. To create a new list item (for example a
new string in a STR#, or a new item in a DITL) select the list separator before which the
new item should appear and choose NEW from the file menu. Copying, cutting and
pasting items is also done by selecting a list separator and choosing the appropriate
item from the Edit menu.

The Resource Editor editor handles multiple disks! - You can eject a disk by clicking
on the close box of the disk window. The resource editor will recognize a new disk
when it is inserted and also handles more than one drive. Be careful not to click on the
close box for a disk window which represents a hard disk since it will mistakenly
unmount the hard disk. It is recommended that if you wish to edit the resources in the
system file, to not edit those in the currently open system but to use the system on a
non-boot volume.

Typing the first character of a fileName/tvpeName selects the file/type: Double-clicking
means the same as open - In a window displaying a list of file Names or a list of types
the fastest way to select and open one of the files or types is to type the first character
of the fileName/typeName (this locates the fileName/typeName in the window -
scrolling it into view if it is not visible) and then double clicking on the selection.

Never reboot before closing- rebooting before closing all file windows can leave the
resource files in an inconsistent state if you have made any changes.

To change the name of a font- The name of the font is stored as the name of the
resource of that font family with size 0. This resource does not show up in the normal
display of all fonts in a file (in the FONT window). To get it to be displayed, hold down
the option key when you open FONT from the file window. This will bring up the
generic list of fonts. Select the font with the name you wish to change and choose
Getlnfo. Changing the name for this one resource will change the name for all the
fonts in this family.

To install a new icon for vour application when vou already have an old one in the
Finder's desktop - Open the file called DeskTop. Open type BNDL and find the bundle
that is your application's. (This is the one that has your owner name in it.) Look
through the bundle and mark down the type and rsrcID of all resources bundled
together by the bundle (ie the ICN#'s and FREF's). Go back to the deskTop window
and remove these resources along with your BNDL and signature resource (the
resource with type name = your creator type). Now close the desktop window, save
changes and quit the resource editor. Your new icon will be installed.

About The Resource Editor Page 3

EXTENSIBILITY

We knew that we could never anticipate the format of all the different types of resources
that application writers would use so we designed the Resource Editor so that it could be
taught to recognize and parse new resource types. There are two ways in which the
Resource Editor can be extended to know about new types. One way involves
programming and the other does not.

1) Programming vour own special purpose picker and/or editor. The picker is the code
that displays all the resources of one type in the Type Window. The editor is the code
that displays and allows you to edit a particular resource. These pieces of code are
separate from the main code of the Resource Editor. Information on writing custom
pickers and editors will be provided in the future.

2) Creating a template for vour resource type - The generic way of editing a resource is
to fill in the fields of a dialog box. This is the way you currently edit MENUs, DLOGs,
DITLs, STR#s, STR s, INTLs, FREFs, BNDLs, etc. using the Resource Editor. The layout
of these dialog boxes is determined from a template in the Resource Editor's resource
file. You can find these templates by opening the Resource Editor file and then opening
the type window for TMPLs. The template specifies the format of the resource and also
specifies what labels should be put beside the editText items in the dialog box that is
used for editing the resource. For example, if you open the template for WIND resources
(this is the TMPL with name "WIND"), you see that they consist of:
-4 words (a RECT) specifying the boundary of the window; followed by
-a word which is the procID for the window (DWRD tells the resource editor to display

the word in decimal as opposed to hex); followed by
-a boolean (BOOL is 2 bytes in the resource but is displayed as a radio button in the
dialog window used for editing); followed by
-another boolean indicating whether or not the window has a go away box; followed by
-a long that is the refCon for the window (DLNG indicates that it should be displayed in
the editor as a decimal number); followed by
-a pascal string; the title of the window (PSTR).

About The Resource Editor Page 4

You can look through the other templates and compare them with the structure of those
resources to get a feeling for how you might define your own resource template. The
template mechanism is flexible enough to describe a repeating sequence of items within
a resource as in STR#'s, DITLs and MENUs. You can also have repeating sequences
within repeating sequences as in BNDLs. A repeating sequence is terminated either by
a 0 byte (as in MENUs), or by a zero-based count that heads the sequence (as in DITLs),
or by a one-based count that starts off the sequence (as in STR#s), or it ends at the end
of the resource (no example exists in the given templates). Different codes are put in the
template to distinguish these different sequence types (LSTZ-LSTE (trailing 0 byte),
ONCT/LSTC-LSTE (one-based count), ZCNT/LSTC-LSTE (zero-based count),
LSTB-LSTE (ends at end of resource). The types you have to choose from for your
editable data fields are:

DBYT,DWRD,DLNG - decimal byte, word, long.
HBYT.HWRD.HLNG - hex byte, word, long.
HEXD - hex dump of remaining bytes in resource.
PSTR - a pascal string (length byte followed by the characters)
LSTR - long string (length long followed by the characters)
ESTR.OSTR - pascal string padded to even or odd length (needed for DITLs)
CSTR - a C string
BOOL - boolean.
BBIT - binary bit.
TNAM - type name (like OsType and ResType. ie 4 characters)
CHAR - a single character

The Resource Editor will do the appropriate type checking for you when you put the
editing dialog window away.

To create your own template,
Open the Resource Editor file window.
Open the TMPL type window.
Choose NEW from the file menu.
Select the ***** list separator.
Choose NEW from the file menu. You may now begin entering the label,type pairs

which define the template. Before closing the template editing window,
Choose GET INFO from the file menu and set the name of the template to the name of

your resource type.
Close the Resource Editor file window and save changes.

The next time you try to edit or create a resource of this new type, you should get the
dialog box in the format you have specified.

About The Resource Editor Page 5

c

o

o

c

°

c

c

c

c

REdit
Preliminary Draft
February 13, 1985

About REdit

Every Macintosh application uses resources such as menus, icons, dialog and alert
boxes and the text they contain, and others. REdit lets you edit these resources easily.
(To change the size or position of a dialog box, for example, you just drag its title bar or
"size box.") You can use REdit to customize applications for your own language or
just to satisfy your own whims.

How to Use REdit

• Insert a disk that contains REdit.

If you have a two-drive system, REdit can be on a separate disk from the one you
want to edit. If you have a one-drive system, you have to copy REdit to the disk you
want to edit. You can't edit a file you're currently using; if you want to edit a disk's
System File, for example, start up the Macintosh using a different startup disk.

• Open REdit by selecting its icon and then choosing Open from the File menu, or by
double-clicking the icon.

• Choose Open from the File menu.

• Click the name of the file you want to edit, and then click Open.

Use the Drive button to see the files on a disk in a second drive, or use the Eject
button to eject the current disk so you can insert another.

A window appears, with icons representing each resource type that exists in the file
you selected.

• Open the icon that represents the resource type you want to edit. (For now, you need
to open the icons by double-clicking them.)

A window appears, with an icon representing each resource. Each resource's ID is
shown below its icon.

• Double click each icon, in turn, to open it and make changes to the resource it
represents.

You'll have different options, depending on the kind of resource you're editing:

1

- If it's a picture, you can use the Clipboard to replace the current picture with one
you paste in.

- If it's text, you can edit it by typing or using any of the commands in the Edit
menu.

- If it's a dialog or an alert box, you can change the size of the box by dragging
the small square in the bottom right corner of the box.

- If it's an item list, you can change the placement and size of items within dialog
and alert boxes, or double-click the item to edit its text. After you've changed
items, open the corresponding alert or dialog box and make sure the box is the
right size. (The box resource usually has the same ID number as the item.)

When you click the OK (or Cancel) button, you return to the window displaying the
individual resources. If you're editing an alert or a dialog box, there's an additional
menu— Alert— in the menu bar to confirm or cancel your changes. [This gives you
nearly the entire screen to make your changes to the box.]

When you return to the window that displays the resources, the ID number of each
resource you changed is highlighted, so you can easily check back to make sure the
resources you edited are the way you want them. If they're not, you can change them
again before you save any of the changes.

• Choose Save from the File menu to save the changes you made to the resources.

• Close the window to return to the overview of the resource types.

2

c

o ;

c

WORKSHOP PASCAL
FLOATING POINT FOR MACINTOSH:

OLD WORLD (2.0,3.0) VS. NEW WORLD (POST- 3.0)

2.0 and 3.0 Pascal- The Old World

In the Lisa Pascal 2.0 and 3.0 Workshops, Macintosh floating point arithmetic
is available through types and procedures defined in two units - SANE and
Elems. For example, to compute y := a + b * Tan(x) where all variables
are double, one might write:

{$M+} {$X-}
uses

{$U obj/Sane} SANE,
{$U obj/Elems} Elems;

var
x, y, a, b : Double;
t : Extended;

begin
D2X(x, t) ;
TanX(t);
MulD(b, t) ;
AddD(a, t) ;
X2D(t, y);

end.

The SANE and Elems units access FP68K (Package 4) and Elems68K (Package
5) to provide primitive support of the Standard Apple Numeric Environment
(SANE), which is extended- precision IEEE Standard 754 arithmetic together
with elementary functions.

To use the 2.0-3.0 SANE and Elems units :

include in your program "uses" declarations as illustrated in the
example above

link with obj/Sane, obj/SaneAsm, obj/Elems, obj/ElemsAsm,
obj/Paslnit, obj/PasLib, obj/PasLibAsm, and obj/RTLib

Using the units FPUnit and MathUnit for Mac development (as described in the
3.0 Workshop documentation) is no longer recommended.

Apple Numerics 1 February 12, 1985

When using 2.0-3.0 Pascal for Macintosh development you should not use
floating point constants or variables of type "real".

The files intrfc/Sane.text and intrfc/Elems.text contains the Pascal
interface to this version of SANE in human-readable form. Use of the units is
virtually identical with that of the Apple II units of the same names,
documented in Apple Pascal Numerics: Standard Apple Numeric Environment
(SANE) (Part #A2W0012). The two units SANE and Elems are essentially
equivalent to the single Lisa unit FPLib described in the 3.0 Pascal
documentation.

The 2.0-3.0 SANE and Elems units are provided for those developers for whom
upgrading to Post- 3.0 Pascal is not feasible. All developers requiring
floating point arithmetic are strongly urged to upgrade to Post- 3.0 Pascal.

Post- 3.0 Pascal- The New World

The Post-3.0 (or "Post-Spring") Pascal compiler ("3.0 only/pascal.obj" in the
February software supplement) has built-in support for the Standard Apple
Numeric Environment: it recognizes the SANE data types (including the
Pascal real type) and its infix arithmetic operators use SANE arithmetic.
Thus the previous example can be coded in the familiar style:

{$M+}
uses

{$U Obj/SaneLib} SANE;
var

x, y, a, b : double;
begin

y := a + b * Tan(x);
end.

The Post- 3.0 compiler incorporates those portions of SANE which support
standard Pascal or extend it in a natural way. Other functionality
(e.g. tangent and annuity) is contained in the library unit SANE. The example
demonstrates the new world's obvious advantages in ease of programming
and clarity of code.

Apple Numerics 2 February 12, 1985

To use the Post- 3.0 SANE arithmetic:

configure your system - beginning with a 3.0 Workshop, upgrade to
Post-3.0 Pascal

include in your program a "uses" declaration as illustrated in the
example above if you explicitly reference routines or types in
Intrfc/SaneLib (e.g. FUNCTION Tan or TYPE Decimal)

link with obj/SaneLibAsm, obj/Paslnit, obj/PasLibAsm, obj/PasLib,
and obj/RTLib

Obj/SaneLibAsm is an auxiliary file for the Post- 3.0 Pascal compiler. It
accesses FP68K (Package 4) and Elems68K (Package 5) to provide
compile- time and run- time floating point arithmetic. Obj/SaneLibAsm
includes the regular unit SANE and floating point I/O.

The old world SANE and Elems units should not be used with the Post- 3.0
compiler, so upgrading requires recoding.

The file intrfc/SaneLib.text contains the Pascal interface to Post-3.0 SANE
in human-readable form. SANE data types and functionality are well
documented in Part I of the Apple Numerics Manual included in Apple
Assembly-Language SANE (part #A2W0015-order by part number). (The
Apple Numerics Manual also contains detailed documentation of assembly
language access to FP68K and Elems68K.) The manuals for Macintosh Pascal
(part # M0523) could be helpful because the integrations of SANE into
Post-3.0 Workshop Pascal and Macintosh Pascal are very nearly the same.

Users of SANE with the Post-3.0 Pascal compiler should see no further
changes requiring significant recoding. The integration of Pascal and
extended precision IEEE floating point is state-of-the-art and promises to be
a stable numeric environment.

Apple Numerics 3 February 12, 1985

Floating Point for Lisa

The above docuementation describes the use of floating point aritmetic in
programs written in Lisa Pascal for execution on the Macintosh
operating system. If you are writing programs for execution on the Lisa
operating system and you have upgraded to the new Post-3.0 Pascal compiler,
your programs need to be built using new libraries, as follows:

include uses {$U Lisa/SaneLib} SANE in your program
link with Lisa/SaneLibAsm instead of lOSFPlib

The file Lisa/SaneLib.text contains the Pascal interface to Post-3.0 SANE in
human-readable form.

Floating Point and the Software Supplement

The February 1985 software supplement includes files prefixed with
"2.0onlyr which when copied onto a Pascal 2.0 system form the environment
described in "The Old World". The supplement also includes files prefixed
with "3.0onlyr which when copied onto a Pascal 3.0 system form the
environment described in "The New World". The files prefixed with
"3.0only/Lisa/" are only needed when writing programs for execution on the
Lisa operating system.

If for some reason you need to use "The Old World" from a 3.0 system use the
following files: from the supplement, 2.0only/... obj/Sane.obj,
obj/SaneAsm.obj, obj/Elems.obj, obj/ElemsAsm.obj, intrfc/Sane.text and
intrfc/Elems.text; from the Pascal 3.0 release disks (not the supplement),
pascal.obj, PasErrs.err, code.obj, lOSPasLib.obj, Intrinsic.Lib, and, if desired,
ProcNames.obj, Showlnterface.obj, and Xref.obj. In the link list illustrated in
3.0only/example/exec.text you will have to replace obj/SaneLibAsm with
obj/Sane, obj/SaneAsm, obj/Elems, and obj/ElemsAsm. If you are writing
programs for the Lisa operating system you should link with lOSFPIib.obj.

Apple Numerics 4 February 12, 1985

c

c

c

c

c

c

To: Macintosh Developers
Subject: Latest "Post-3.0" Lisa Pascal Compiler Enhancements
From: Pascal Compiler Team
Date: February 8, 1985

This memo describes a new batch of Pascal compiler enhancements added to the
compiler but not made available on the 3.0 release of the compiler, including the
so-called "Post-3.0" compiler enhancements and bug f ixes and extensions made from
July 1984 to February 1985.

The inspiration for most of the new enhancements is Macintosh software development.
Some of the enhancements are for compatibility with other Macintosh products while
others are to make Macintosh development easier. The following is a summary of the
new enhancements:

(1). Logical b i t functions and procedures. A l l the b i t manipulation functions and
procedures provided for as stack pushes and traps through the Macintosh
Toolbox U t i l i t i e s are supported direct ly by the Compiler by mapping them onto
the corresponding MC68000 instructions (e.g., BCLR, BTST, AND, OR, etc.).

(2). CYCLE statement. This is a new statement type that allows you to "goto" to
the loop-continuation portion of the smallest enclosing WHILE, REPEAT, or
FOR statement (for you C users, i t ' s the C continue statement).

(3). LEAVE statement. This is a new statement that causes termination of the
smallest enclosing VHILE, REPEAT, or FOR statement (for you C users, i t ' s the
C break statement); control passes to the statement following the terminated
loop statement.

(4). Short-circuit boolean expression evaluation. Two new binary operators have
been introduced (& for and, I for or) which cause minimum evaluation of
boolean expressions; for A & B, 8 i s not evaluated i f A is false; for A I 8, 8
is not evaluated i f A is true. A new Compiler directive is also supported
{$SC±> to cause the standard Pascal operators AM) and OR to be treated as
short-circuit operators. (See caveat below on use of short c i rcui t operators
in conjunction with non-short c i rcu i t operators.)

(5). Arbitrary typed functions. The restr ic t ion on functions being allowed to
only return a scalar value or pointer has been l i f ted . You can now have
string functions, set functions, array functions and record functions (thus,
you could have a Point or Rect functions).

(6). Exponentiation operator «*. Pascal now allows you do integer or f loat ing
point exponentiation using the new * * operator.

(7), CCWDATE and COMPTIME predefined str ing constants. These constants allow you
to use in the current compilation date and time as string constants in your
programs.

(8). SANE (Standard Apple Numeric Environment). The Compiler now supports SAf€.
This is for compatibility with MacPascal and MacBasic. A l l four SANE types
(real or single, double, extended, and comp or computational) are
supported. A l l f loat ing point arithmetic is done in extended precision.

1

(9). $H+ for cross-compilation to Macintosh now works in the source text as i t does
in the command script. SM+ implies $U- and $X-.

(10). C language interface: External procedures can now be declared to interface
with C functions, using the C directive. This w i l l be compatible with the
future release of the Workshop C compiler.

(11). Bugs in SOV+ (overflow checking), the Ex i t procedure, and usage of the Elems
SANE unit have been corrected.

(12). Miscellaneous changes: (. and .) are the same as [and] (for compatibility
with MacPascal); PVROFTEN is no longer supported since we have the —
operator.

This compiler i s included in the February 1985 Software supplemnt with the
following f i les :

3.Oonly/Pascal, obj
3.Oonly/Code, obj
3.Oonly/PasErrs.Err
3.Oonly/Intrfc/Sone.obj
3.Oonly/Lisa/SaneLib. obj
3.Oonly/Lisa/SaneLibAsa. obj
3.Oonly/Obj/SaneLib.obj
3.Oonly/Obj/SaneLibAsa. obj
3.Oonly/IOSPasLib.obj
3.Oonly/INTRINSIC.LIB
3.Oonly/Xref. obj
3.Oonly/ProcNanes.obj
3.Oonly/Showlnterface. obj

Enhanced Compiler.
Code generator.
Error message f i l e .
New interface to SANE.
SANE unit for compiling Lisa programs.
SANE unit for l inking Lisa programs.
SANE unit for compiling Mac programs.
Sane unit for l inking hac programs.
Updated to support SANELIB.
Contains reinstalled IOSPASLIB.
Updated Xref u t i l i t y .
Updated Procnemes u t i l i t y .
Updated Showlnterface u t i l i t y .

SaneLib and SaneLibAsm contain the SANE unit. For Lisa development, they replace
IOSFPLIB which is not used with th is nee compiler. You thus l ink to SaneLibAsm
instead of IOSFPLIB whenever you use any f loat ing point. SaneLibAsm is a regular,
not int r ins ic, unit, and therefore occupies space in your own object f i l e , but does
not depend on INTRINSIC. LIB.

SANELIB required a few changes to IOSPasLib and, since IOSPasLib i s in t r ins ic , a
correspondingly updated INTRINSIC. LIB with IOSPasLib reinstalled. Note, however,
that even though there is a ne IOSPasLih, the changes made to i t are
"reusable". Thus, you do not have to reconcile any of your Pascal programs unless
you eant to use the new features described in th is memo.

The easiest way to update your system i s to just copy a l l the f i l es on to your boot
Prof i le and then to reboot (because you w i l l be replacing INTRINSIC.LIB).
Everything not related to the Compiler w i l l s t i l l work OK even though you have a ne
INTRINSIC. LIB. A l l the f i l e s except for INTRINSIC. LIB and IOSPASLIB. obj may be
copied anywhere you deem convenient. You do not have to reboot unless you are
copying these two f i les .

2

1. Logioal Bit Functions and Prooedures

The MC68000 instruction set supports a number of instructions for b i t
manipulations. The Compiler now has a set of predefined funotions and prooedures
whioh essentially map on to these instructions. In general there i s a one-to-one
correspondence between the routines provided by the Compiler and the corresponding
MC68000 instructions. Many of the routines provided have the same functionality as
those provided in the Macintosh Toolbox u t i l i t i e s . The Compiler thus supports two
sets of names for the various routines; the Macintosh Toolbox name and an
alias. The reason for the aliases is that i f you are using the Toolbox interfaces
and you use the Toolbox name, you w i l l get the corresponding trap oall. I f you use
the aliases you w i l l always get the more ef f ic ient Compiler-generated code (I
recommend you always use the aliases).

A l l the b i t manipulation routines are described individually below. The alias name
w i l l be shown as a comment following the procedure or function name. I f an argument
type is specified as a Scalar then the argument can be an integer value of any size
(1 to 32 bits, i . e., one b i t to a long integer). I f the scalar argument is less than
32 bits, code w i l l be w i l l be generated to extend the argument to 32 bits, but
without sign extension (zeros are added on the l e f t to make up a 32-bit value).

FUNCTION BitAND {BAND} (argl , arg2: Soalar): Longlnt;

BitAND (BAND) returns the logical AND of i t s two arguments (i t generates an MC68000
AND.L instruction).

FUNCTION BitOR {B0R> (arg1, arg2: Scalar): Longlnt;

BitOR (BOR) returns the logical OR of i t s two arguments (i t generates an MC68000
OR.L instruction).

FUNCTION BitXOR {BXOR} (arg l , arg2: Scalar): Longlnt;

BitXOR (BXOR) returns the logical exclusive OR of i t s two arguments (i t generates an
MC68000 EOR instruction).

FUNCTION BitNOT {BNOT} (arg: Scalar): Longlnt;

BitNOT (BNOT) returns the ones complement of i t s argument (i t generates an MC68000
NOT.L instruction).

FUNCTION BitSL {BSL} (arg: Scalar; oount: Integer): Longlnt;

BitSL (BSL) l e f t - sh i f t s the bi ts of the f i r s t argument by the number of bi ts
specified in the second argument (i t generates an MC68000 LSL.L instruction, so the
oount is taken mod 64). Zeros are shifted into the low-order b i t .

FUNCTION BitSR {BSR> (arg: Scalar; count: Integer): Longlnt;

BitSR (BSR) r ight-shi f ts the bi ts of the f i r s t argument by the number of bi ts
specified in the second argument (i t generates an MC68000 LSR. L instruction, so the
count i s taken mod 64). Zeros are shifted into the high-order b i t .

3

FUNCTION BitRotL {BRotL} (arg: Scalar; count: Integer): Longlnt;

BitRotL (BRotL) lef t-rotates the bi ts of the f i r s t argument by the number of b i ts
specified in the second argument (i t generates an MC68000 ROL. L instruction, so the
count i s taken mod 64). Bits shifted out of the high-order b i t go back into the
low-order b i t .

FUNCTION BitRotR {BRotR} (arg: Scalar; oount: Integer): Longlnt;

BitRotR (BrotR) right-rotates the bi ts of the f i r s t argument by the number of b i ts
specified in the second argument (i t generates an MC68000 ROR. L instruction, so the
count i s taken mod 64). Bits shifted out of the low-order b i t go baok into the
high-order b i t .

FUNCTION BitTest {BTst} (arg: Scalar; bitNbr: Integer): Boolean;

BitTest (BTst) returns true i f the specified b i t i s set (1) and returns false i f i t
i s not set (i t generates a MC68000 BTST.L instruction so the b i t numbering is mod
32). Since th is function maps directly on to the MC68000 instruction, bi ts are
numbered in the conventional MC68000 way, i . e . , b i ts 0 to 32, low-order b i t to high.

FUNCTION HiVord {HiVrd} (arg: Scalar): Integer;

HiVord (HiVrd) returns the high-order word of i t s argument. I f the argument was
not or iginal ly a long integer, i t w i l l return zero. Note, that when the argument is
a simple variable or array access, no code w i l l be generated by the use of th is
function since the argument w i l l simply be addressed and used as a 16-bit integer.

FUNCTION LoVord {LoVrd} (arg: Scalar): Integer;

LoVord (LoVrd) returns the low-order word of i t s argument. Note, that when the
argument is a simple variable or array access, no code w i l l be generated by the use
of th is function since the argument w i l l simply be addressed and used as a 16-bit
integer.

PROCEDURE ClearBit {BClr} (VAR arg: Longlnt; bitNbr: Integer);

ClearBit (BClr) clears a b i t i n the f i r s t argument. The b i t cleared is specified by
the second argument (a MC68000 BCLR. L instruction is generated so the b i t numbering
is mod 32). Note, ClearBit i s a prooedure, not a funotion. The f i r s t argument
must be a Longlnt variable.

PROCEDURE SetBit {BSet} (VAR arg: Longlnt; bi tNbr: Integer);

SetBit (BSet) sets a b i t in the f i r s t argument. The b i t set i s specified by the
second argument (a MC68000 BSET. L instruction is generated so the b i t numbering is
mod 32). Note, SetBit i s a procedure, not a function. The f i r s t argument must be a
Longlnt variable.

4

The following table summarizes the b i t manipulation functions and prooedures that
are predefined by the Compiler.

Name Al ias Argument 1 Argument 2 Result Kind

BitAND BAND Scalar Soalar Longlnt Function
BitOR BOR Scalar Scalar Longlnt Function
BitXOR BXOR Scalar Soalar Longlnt Function
BitNOT BNOT Scalar Longlnt Function
BitSL BSL Scalar Integer Longint Function
BitSR BSR Scalar Integer Longlnt Function
BitRotL BRotL Scalar Integer Longlnt Function
BitTest BTst Scalar Integer Boolean Function
HIVord HiVrd Scalar Integer Function
LOWord LoVrd Scalar Integer Function
ClearBit BCLR Longlnt (VAR) Integer Procedure
SetBit
3SSSSSSS3

BSET Longint (VAR)
:S3SS8SSSS3SS3

Integer
!3333833Sa8S 33S33SSSS

Procedure
isssassss

Note that BitTest, ClearBit, and SetBit, while functionally similar to the
Macintosh Toolbox routines, have dif ferent arguments from those routines. Thus I
have used sl ight ly different names for those routines (aliases were given to these
only for completeness).

2. CYCLE Statement

This is a new statement type which causes control to pass to the loop-continuation
portion of the smallest enclosing WHILE, REPEAT, or FOR statement, that is, to the
end of the loop (for users who know C, CYCLE i s the C continue statement). For
example:

{ca l l f for positive values of a [i]>
FOR i :» 1 TO n DO

BEGIN
IF a [i] <= 0 THEN CYCLE;
f (a [i]) ;
END;

Note, CYCLE is not a reserved word. I t i s only predefined as a statement type.
This was done for upward-oompatibility reasons to avoid name oonfliots with
existing programs. Because i t i s predefined your def ini t ion of the word CYCLE
w i l l supersede the Compiler's. I f you want to use CYCLE statement as desoribed
here, make sure you don't have the ident i f ier CYCLE declared in an enclosing block.

3. LEAVE Statement

This i s a new statement type which causes termination of the smallest enclosing
WILE, REPEAT, or FOR statement; control passes to the statement following the
terminated statement (for users who know C, LEAVE i s the C break statement). For
example:

5

{as soon as x is found the while terminates)
WHILE i < 63 00

BEGIN
IF a [i] - x THEN LEAVE;
i : • i • 1;
END;

Note, LEAVE is not a reserved word. I t i s only predefined as a statement type.
This vas done Tor upward-compatibility reasons to avoid name confl icts with
existing programs. Because i t i s predefined, your def ini t ion of the word LEAVE
w i l l supersede the Compiler's. I f you want to use LEAVE statement as described
here, make sure you don't have the ident i f ier LEAVE declared in an enclosing block.

4. Shor t -c i rcu i t Boolean Expression Evaluation

The boolean operators AND and OR, as implemented in the Lisa Pascal Compiler,
evaluates a l l i t s operands, even i f i t i s not necessary. Knowing this, of course,
you could depend on side-effects (blah!!). However, most sensible programmers
don't program this way and expl ic i t ly t r y to write, at least for AND's, nested IF 's
to simulate short c i rcu i t evaluation. Thus we see constructs l i ke the following,

IF p1 <> NIL THEN
IF p2 <> NIL THEN

IF p1*. f i e l d » p2\ f i e l d THEN . . .

This is a l l f ine and good, but i t only programs around the more natural boolean
expression and i t becomes a drag i f there i s some common ELSE condition to a l l the
IF's. There i s also no similar technique to handle OR's.

As a result of these problems, two new binary operators have been introduced, & for
short-circuit AND, and | for short-circuit OR. These cause minimum evaluation of
boolean expressions; for A & B, B i s not evaluated i f A i s false; for A | B. B i s not
evaluated i f A i s true.

Given the & operator, the above set of nested IF 's can now be rewritten as,

IF (p1 <> NIL) & (p2 <> NIL) & (p1\ f i e l d = p2*. f ie ld) THEN . . .

Even though more code i s generated for the boolean expression (i .e . , one extra
branch instruction i s generated for each operator to skip on condition around the
rest of the expression or to an alternative), in general, i t won't be more code that
what you would program to simulate the short-circuit evaluation. For example, the
nested IF 's example above doesn't generate any more code than the short-circuit
counterpart since each IF has a branch associated with i t .

These new operators exp l ic i t ly indicate what your intent is. However, a provision
has been made to allow you to also treat AND and OR as short-circuit
operators. The new Compiler directive {$SCi> may be specified to do this. When
{$SC+} is scanned, a l l AND's and OR's w i l l be treated exactly l i ke &'s and | ' s
respectively. When {$SC-> is scanned, AND's and OR's are processed in their
or iginal way. The & and | operators are always available and not controlled by the
{$SC±> directive. {$SC-> is, of course, the preset value.

6

Caveat: due to the way the code generator works, do not mix short-circuit AM)'s and
OR's (either the operators & and | or AND and OR under $SC+) with non-short c i rcu i t
AND's and OR's.

5. Arbi t rary Typed Functions

Up to now the maximum byte size for a value returned by a function has been limited
to four bytes. Thus only scalar values and pointers could be returned by a
function. The reason for th is l imi tat ion was the linkage conventions for functions
(and the fact that Standard Pascal only allows for such results, but l e t ' s ignore
that point here). When a function is called, two or four bytes are reserved on the
stack for the result. That i s what l imi ts the size of the result. That restr ict ion
has now been l i f t e d by introducing a new, upward-compatible, linkage
convention! I f a function result is larger than four bytes, a pointer to a area of
the appropriate size is pushed on to the stack. The variable representing the
result area is declared by the Compiler as a local variable in the cal ler 's stack
frame (this allows for recursion to work).

This new linkage convention "opens the door" to arbitrary typed functions. So now
the Conpiler supports string, array, set and record function results. When a value
is assigned to the function name, the Compiler w i l l generate code to indirect
through the function result pointer on the stack rather than storing directly on the
stack (assuming the result size is larger than four bytes, otherwise i t i s s t i l l
stored directly on the stack even i f i t is one of these new types ~ i t s t i l l works).

Given these new possibi l i t ies, you may f ind the syntax somewhat strange when trying
specify a function result and using that result. However, the syntax really does
extend in a natural way over what you have always done. For using (call ing) a
function with these new types, think of the function and a l l of i t s arguments as a
single variable of the same type as the function result. Thus i f you have the
following functions defined as follows.

FUNCTION IntToStr(n: Longlnt): Str;
FUNCTION MatSum(a, b: Matrix): Matrix;
FUNCTION Rainbow(colors: ColorSet): ColorSet;
FUNCTION DefRect(top, l e f t , lower, r ight: Integer): Rect;

where,

TYPE Str = String[20];
Matrix » ARRAY [1.. 10, 1.. 10] OF Integer;
Colors = (red, yellow, green, blue, v io let) ;
ColorSet = SET OF Colors;
Rect = RECORD

top, le f t , bottom, r ight: Integer;
END;

VAR si, s2:
ml, m2:
k1, k2:
c1, c2:
r1, r2:
b1, b2:

Str;
Matrix;
Colors;
ColorSet;
Rect;
Boolean;
Integer;

7

Then the following uses are a l l legal:

s1 : • Concat('There answer is IntToStr(k). s2);
j : • Length(IntToStr(k));
s1[i] :» IntToStr(n)[j] ;

ml : * MatSum(m1. m2);
m1[i, j] :-HatSum(m1, m2)[i, j] + MatSum(m2, m1)[i, j] ;

c1 : • Rainbow([red, green]) + [yellow, green, blue];
b1 : * red IN Rainbow(cl);

r1 : - DefRect(10, 10, 200, 200);
i : • DefRectCL j , k, 1). bottom - DefRect(1, 1, 200, 200). top;

•hen you define a function's value you do i t as usual by assigning to the function
name within the body of the function. The function name is treated syntatically as
a variable of the function's type. A l l other uses of the function name within the
function are considered as recursive calls. This i s important, because in addition
to being able to assign a complete value to the function name, you can, in the case
of arrays and records, assign to i t s components. For arrays there is really no
problem. But for records there is the temptation to set up a i lTH statement and
just reference the components. No! Use of the function name in the fITH would be
considered as a cal l . Only when the name i s on the left-hand side of an assignment
within the function (ignoring any nesting of inner blocks) i s i t considered as an
assignment to the function's name.

Using the above definit ions we have the following examples of setting function
results:

FUNCTION IntToStr(n: Longlnt): Str;
BEGIN {$r- turn of range checking)

IntToStr[0] : = Chr(2);
IntToStr[1] : - Chr(n DIV 100 • Ord('O'));
IntToStr[2] : - Chr(n MOO 100 + Ord('O'));

END; {$r+ turn on range chacking)

FUNCTION MatSum(a, b: Matrix): Matrix;
BEGIN

FOR i : - 1 TO 10 DO
FOR j := 1 TO 10 DO

MatSum[i, j] : - a [i , j] + b [i , j] ;
END;

FUNCTION Rainbow(colors: ColorSet): ColorSet;
BEGIN

Rainbow : = [red. green]*colors - [yellow];
END;

FUNCTION DefRect(top, l e f t , lower, r ight: Integer): Rect;
VAR tRect: Rect;
BEGIN

SetRect(tRect, top. l e f t , lower, r ight) ; {QuickDraw ca l l)
Def Rect: = tRect;

{or}

8

DefRect. top : * tRect. top; {you cannot use a WITH here)
DefRect. l e f t :» tRect. l e f t ;
DefRect. bottom : » tRect. bottom;
DefRect. r ight : » tRect. r ight;

Note: Arbitrary typed functions can be useful. There are situations where such a
feature seems l ike the natural thing to do. But, do not get carried away with th is
new ab i l i t y ! Remember that th is feature i s implemented by allocating a local
temporary in the cal ler 's stack frame. Such a temporary can only be accessed by
actually cal l ing i t s associated function. I f you need to use the result of a
function more than once then you w i l l have to do an assignment to a variable you
have expl ic i t ly declared. In that case, what's the point? What I am saying is
that in such situations i t i s better to use VAR parameters or pointer functions than
th is new feature.

6. Exponentiation Operator * *

The * * operator has been introduced to allow for exponentiation. A l l four
combinations of integer (or long integer) and f loat ing point types are allowed.
However, i f either operand i s a f loat ing point type you need the new f loat ing point
l ibrary (discussed later in section 8). Only integer (or long integer)
exponentiation is supported direct ly as a run-time routine in the Lisa Vorshops's
IOSPASLIB. Overflows are not detected in integer exponentiation and result in a
zero value. Exponentiation is r ight associative. Thus a**b**c is equivalent to
a**(b«*c).

7. COMPDATE and COWTINE Predefined Str ing Constants

COMPDATE and COMPTIME are predefined by the Compiler as str ing constants as i f you
specified them in your program as follows:

CONST
COMPDATE = 'dd Hon yy';
COMPTIME = 'hh: mm: ss';

where, "dd Mon yy" i s the current compilation date and "hh:mm:ss" is the current
compilation time. These were defined so that you could compile in the date and time
as part of your program (presumably for some version control).

8. SANE (Standard Apple Numeric Environment)

The Compiler now fu l l y supports SANE. There are four f loat ing point types
recognized by the Compiler; real or single, double, comp(utational), and
extended. A l l these words are predefined according to their SANE definitions. A l l
f loat ing point expressions are computed in extended precision. A l l f loat ing point
value parameters are passed in extended precision.

Note, SAfE requires a different f loat ing point l ibrary called SANELIB. The
standard IOSFPLIB cannot be used. I f you use any f loat ing point you must l ink with
SANELIB. SANELIB contains a regular unit named SANE (shown in Appendix A) which
provides for special SANE features not direct ly supported by the Compiler (e.g.,

9

controll ing exceptions). To use any of these features you must expl ic i t ly do a USE
of SANE in your program. More information on the Standard Apple Numeric
Environment and the SANE unit i s included in a separate document.

This enhancement was added mainly for two reasons: (1) for compatibility ®ith
MacPascal, and (2) standardization of f loat ing point in a l l the languages.
MacPascal Pascal has SANE. So v i l l MacBasic and the future Workshop C. I t may be
put into Apple I I Pascal. According to the Numerics group, there are users out
there aho really need the accuracy offered by SANE.

9. $H+ Extension.

The $M+ switch may also be used as a compiler directive in the source text of your
program ie. {$M+> or (»$M+*). I t should generally be placed at the top of your
program. Note that any $t1+ implies $U- and $X-, so these additional directives are
not needed in your program. Note that $M+ i s required to generate Macintosh code,
either as in the source or as a compiler or code generator directive.

10. C Language Interfaoe

For compatibility with the future Workshop C, procedure and function headers may be
declared with the new C directive, which informs the compiler that the parameters
and function result should be arranged according to C standards. For now. only
EXTERNAL procedures/functions that are not in the interface of a unit may use the C
directive (that is, you declare each C procedure as an EXTERNAL in the compilation
in which you wish to use i t) . C-declared procedures have no body; they are expeoted
to be linked to output from the C compiler.

The declaration of a C procedure i s similar to that of an external procedure:

Procedure Foo(parameters: paraaretertypes); C; EXTERNAL;

Note that the ident i f ier EXTERNAL must immediately follow the C directive. (In the
future, the C directive may also be allowed to be followed by a Pascal procedure
body.) The C directive causes the compiler to have the following behavior at each
cal l :

1. reverse order of pushing of parameters.
2. push a l l scalars as longints and a l l reals as extendeds.
4. expect function result in register DO (D0,D1,A0 for extendeds). For

non-real results greater than 4 bytes long, the address of the result is
in register DO; compiler issues code to copy the result into the cal ler 's
space before continuing.

Complete details of interfacing with the C language w i l l be provided in a subsequent
document.

11. Bug f ixes

The important bug fixes include:

1. $0V+ corrected, previously caused compiler to f a i l .
2. Exit from a procedure, or GOTO out of a procedure, now

work as advertised for Macintosh code. Previous

10

compilers generated code for Macintosh that improperly
handled the stack or did not save registers correctly.

3. On Macintosh, the ELEMS unit of the SANE l ibrary no
longer w i l l be locked down in memory when colled by the
compiler for sin, cos. arctan. exp. In. or
exponentiation calls.

12. Miscellaneous Changes

A few other minor changes worth mentioning are as follows:

(a). The new symbols (. and .) have been added and are defined to have the same
meaning as [and] (for compatibility with MacPascal).

(b). PVROFTEN is no longer supported since we have the * * operator.

11

Appendix A: SANE Unit Interface

INTERFACE

const
DecStrLen
SigDigLen

255;
20; { Maximum length of SigOig. NOTE: 28 in 6502 engine >

type
RoundDir
RoundPre
RelOp
Exoeption
NumClass

DecStr

Decimal

DecForm

(ToNearest, Upward, Downward, To irdZero);
(ExtPrecision, DblPrecision, RealPrecision) ;
(GreaterThan, LessThan, EqualTo, Unordered);
(Invalid, Underflow, Overflow, DivByZero, Inexaot) ;
(SNaN, QNaN, In f in i te , ZeroNum, NormalNum, DenormalNum);

String[DecStrLen];

record
Sgn

end;

« record
Style
Digits

end;

Environment » Integer;

0..1;
Exp : Integer;
Sig : String[SigOigLen]

(FloatDecimal, FixedDecimal);
Integer;

EnvironRec = record
RndDir : RoundDir;
RndPre : RouncJPre;
Flags,
Halts : set of Exception

end;

*Sai88B8S8SS3S3SS8B333S:SSSSSSSSSSS&S3SSaSSS8S333S:

The functions and procedures the SANE l ibrary
* a B : i » 3 : : z x s s 3 i : : i 3 s s s 3 s s s s 3 : : s : : s s : a z a s

{ Transfer Routines >
function Num2Integer
function NunCLongint
procedure Num2Dec (F
function Dec2Num (D
procedure Num2Str (F
function Str2Num (S
procedure Dec2Str (f :
procedure Str2Dec (s:

(X : Extended) : Integer;
(X : Extended) : Longint;
: DecForm; X : Extended; var D : Decimal);
: Decimal) : Extended;
: DecForm; X : Extended; var S : DecStr) ;
: DecStr) : Extended;
DecForm; d: Decimal; var s: DecStr);
DecStr; var index: integer;

var d: Decimal; var ValidPrefix:boolean);

12

{ Conversions from extended to SANE types >

function Num2Real (X : Extended) : Real;
function Num2Double (X : Extended) : Double;
function NunCExtended (X : Extended) : Extended;
function Num2Comp (X : Extended) : Comp;

{ Comparison Routine }
function Relation (X. Y : Extended) : Relop;

{ Arithmetic, Auxiliary, and Elementary Function Routines >
function Remainder (X, Y : Extended; var I : Integer) : Extended;

{ returns X rem Y, I <— low order seven bi ts of integer
quotient X t Y so that -127 < I < 127 >

function Rint (X : Extended) : Extended;
{ round to integral value >

function Scalb (N : Integer; X : Extended) : Extended;
function Logb (X : Extended) : Extended;
function CopySign (X. Y : Extended) : Extended;

{ returns Y with sign of X >

function NextReal (X, Y : Real) : Real;
function NextDouble (X, Y : Double) : Double;
function NextExtended (X, Y : Extended) : Extended;

{ returns next representable value after X in direction of Y >

function Log2 (X : Extended) : Extended;
function Ln1 (X : Extended) : Extended;
function Exp2 (X : Extended) : Extended;
function Exp1 (X : Extended) : Extended;
function Xpwrl (X : Extended; I : Integer) : Extended;
function Xp«rY (X, Y : Extended) : Extended;
function Compound (R, N : Extended) : Extended;
function Annuity (R. N : Extended) : Extended;
function Tan (X : Extended) : Extended;
function RandomX (var X : Extended) : Extended;

{ X updated to value returned }

{ Inquiry Routines >
function ClassReal (X : Real) : NumClass;
function ClassDouble (X : Double) : NumClass;
function ClassComp (X : Comp) : NumClass;
function ClassExtended (X : Extended) : NumClass;
function SignNum (X : Extended) : Integer;

{ 0 for positive. 1 for negative }

{ Environment Access Routines }
procedure SetException (E : Exception; 6 : Boolean);

{ B » True to set. False to clear }

function TestException (E : Exception) : Boolean;

procedure SetHalt (E : Exception; B : Boolean);
{ B - True to set. False to clear }

13

function TestHalt (E : Exception) : Boolean;
procedure SetRound (R : RoundDir);
function GetRound : RoundDir;
procedure SetPrecision (P : RoundPre);
function GetPrecision : RoundPre;
procedure SetEnvironment (E : Environment);
procedure GetEnvironment (var E : Environment);
procedure SetEnvRec (E : EnvironRec) ;
procedure GetEnvRec (var E : EnvironRec);
procedure ProcEntry (var E : Environment) ;
procedure ProcExit (E : Environment) ;

{ Procedures for Lisa and Macintosh only.)

procedure SetHltAddress (HltAddress : longint) ;

{ >

function GetHltAddress : longint ;
procedure InitFPLib ;
function SAf£_Environ : longint ;

{ Sets halt address. >
{ Returns halt address. }
{ In i t ia l izes FPLib. }
{ Internal use only. }

{ >

14

c

c

G

Macintosh PasLib
Release V.0.7
February 14,1985

Introduction
This version of Macintosh PasLib supports all the Pascal built-in
routines (with known bugs fixed and some new features). The
functionality of these routines is very much the same as the routines
described in the Lisa Pascal Reference Manual. This note only
describes the special features implemented for the Pascal programs
for the Macintosh.

File I/O
The RESET and REWRITE routines can be used to open and create any
disk files or any devices, such as '.AOUT', '.BOUT', etc. If REWRITE is
used to open a device, it will be treated as RESET. There will be two
types of files created by the REWRITE routine. The text file will have
the standard 'TEXT' file type and the data file will have the standard
'BINA' type. The RESET routine can be used to open any type of files.
The text file processing assumes the straight ASCII format. If a file
is opened as a text file (i.e. the file variable is of type TEXT), the only
control character processed is the Carriage Return; when a READ of a
single character encounters a Carriage Return it returns the Space
character and sets EOLN to true. There is no support of the UCSD
style of text files. Utilities can be provided to convert to or from this
format.

For the BLOCKREAD routine, upon reading the last block, if it is a
partial block (logical EOF is not at the block boundary), the part in the
buffer that is beyond the logical EOF will be filled with zeros so that
the caller may detect the logical end of file.

Console I/O
All the console outputs (standard OUTPUT) are directed to the screen
for now (unless you direct to a window as described below). For
vanilla pascal programs, at the first write to OUTPUT, a grafPort (for
the entire screen) is opened for all the writes to OUTPUT. When the
output reaches the bottom of the screen, the lines will be scrolled up
one line at a time. The area on the screen that will be written to will
be cleared before writing. A fixed pitch font (Monaco 9) is chosen for
simplicity. Read from INPUT will be echoed onto this grafPort. PasLib

can be enhanced to provide more console I/O support as the
requirement of the run time support is better defined.

If you want to WRITELN to a window, you need to create a window
first and call PLSetwrPort (defined in the PasLiblntf unit) with the
window pointer before any WRITELN. This means that any existing
programs that do WRITELNs or READLNs and used to be linked with
obj/MacPasLib (the old PasLib) will need this call to work correctly.
Example/File has been changed accordinly in the February Software
Supplement.

You can set your own font and pen location for WRITELN, but you have
to manage the window yourself.

You can also handle WRITELNs your way by installing a capture
procedure for all WRITELNs via a PLSetwProc call with your procedure
pointer. Your capture procedure must be defined as
PROCEDURE yourproc (buf : Ptr; count : integer).

To switch back to use the standard one in PasLib you can call
PLSetwProc with a nil pointer.

IQRESULT
The error values returned to IORESULT are the ones from the OS plus
the following :

-1025 if there is no integer read before a non-numeric character is
encountered in READ INTEGER routine.

Pascal Heap Management
Paslib supports New, Mark, Release, and Dispose. All blocks requested
via New have to be non-relocatable. The Macintosh OS imposes a space
overhead of 8 to 12 bytes per allocated block. Pascal programs tend to
call New with a small smount of space. To avoid this overhead, we
need to get a large non-relocatable block for Pascal heap and manage
the memory requests from this heap. A routine PLinitHeap is provided
to specify the initial size of the Pascal heap. We then allocate a
non-relocatable block of this size. Each subsequent New will get
space from this block. When the space runs out in this block, we will
try to resize this block. If we can not resize this block, because there
is another non-relocatable or locked relocatable block above it, there
is an option to either return error to the caller or allocate another
non-relocatable block somewhere else. This option is specified by a
parameter to PLinitHeap and can be changed after PLinitHeap via the

Macintosh PasLib Release 0.7 Page 2 February 14, 1985

PLSetNonCont call. Some programs may want to return an error rather
than to allocate another block since they may be able to relocate the
blocks above the Pascal heap block. Then programs can call New to
expand the Pascal heap block again. If there are multiple
non-contiguous Pascal heaps, these heaps will be linked together. So
that when you Release, we can go through the link and return the
space to the OS if a Pascal heap is completely free. Note that there is
no space overhead for- News that will be returned via Mark and
Release.

If Dispose is desired, there will be 2 bytes overhead for each New for
size correction. There is no limit to the size of allocated block. When
a block is disposed, it is linked with other free blocks in the free list
in each non-contiguous Pascal heap. The first fit algorithm is used to
find a free block to satisfy a New request. When Dispose, if a Pascal
heap is completely free, the whole non-relocatable block is returned
to the OS. If programs need to use both Mark/Release and Dispose,
PLInitHeap can be called again to allocate another Pascal heap for
blocks that will be returned by Dispose. Subsequent NEWs will get
space from this pascal heap. To switch between Mark/Release and
Dispose, programs can call PLSetHeapType before calling NEWs.
PLInitHeap call is optional. If it is not called, a default size of 5K is
used at the first NEW. If it is to be called, it should be after any
toolbox initialization calls. Note that the size of initial Pascal heap
should be carefully chosen. If too big, space may be wasted such that
other memory requests of the application heap can not be satisfied. If
too small, the pascal heap may not be able to grow. The MEMAVAIL
returns the size of the largest free block in the application heap (not
the Pascal heap) after compacting the application heap. If your Pascal
heap only allows contiguous block, then the MEMAVAIL result may not
indicate all the space you can get since there may be a
non-relocatable block preventing your Pascal heap from growing.

Programs can also set up a memory error procedure for the Paslib to
call in case of error. This eliminates the need to check HeapResult
after every Pascal Heap routine call. This can be done via PLInitHeap
or PLSetMErrProc.

Macintosh PasLib Release 0.7 Page 3 February 14, 1985

The new PasLib heap routines are:

PROCEDURE PLinitHeap (sizepheap : LONGINT;
memerrProc : ProcPtr;
allowNonCont,
forDispose : BOOLEAN);

PROCEDURE PLSetNonCont (allowNonCont : BOOLEAN);
PROCEDURE PLSetMErrProc (memerrProc : ProcPtr);
PROCEDURE PLSetHeapType (forDispose : BOOLEAN);

The memerrProc parameter to the above routines should be defined as
a procedure without any parameters.

These routines are defined in the PasLiblntf unit. You can use this unit
with

USES {$U obj/PasLiblntf} PasLiblntf;

Other PasLiblntf routines are:

PROCEDURE PLSetWrPort (portptr : GrafPtr);
PROCEDURE PLSetWProc (wrproc : ProcPtr);

HEAPRESULT
The error values returned to HEAPRESULT are the ones from the OS
memory management plus the following :

-1051 if the size requested in New is larger than the initial
Pascal heap size.

-1052 if the pointer of the block to be Released or Disposed is
invalid.

-1053 if the pascal heap does not have enough space and it can
not be expanded either.

Miscellaneous
The HALT routine now returns to the Finder just like dropping to the
end of program.

The String Range Check is now implemented to cause a line 1111 trap
(system error 10) if the string range is violated. If the debugger is
installed, the program will drop to the debugger with the PC in the
String Range Check Routine in PasLib (StrRgChk+$14 if symbol is on).
You can do a stack crawl to find out the violating procedure. Because
of the limit of 32K in array size, the value range check routine in
PasLib will never be invoked now. Instead, the compiler will generate
a CHK instruction.

Macintosh PasLib Release 0.7 Page 4 February 14, 1985

Installation
The object files to link are now obj/RTLib.obj, obj/Paslnit.obj,
obj/PasLibAsm.obj, and obj/PasLib.obj. To directly call any of the
calls described here (routine names begining with PL), $USE
obj/PasLiblntf.obj.

Changes since release 0.5
(Paslib 0.5 was shipped as Proto/Paslib in a previous supplement.)

A bug in the string range check routine has been fixed. A bug in
opening untyped files has been fixed. PLInitHeap call is now optional.
A new feature allowing capture procedure for WRITELNs has been
added. File names and the unit name have been changed to the names
described in this document.

Macintosh PasLib Release 0.7 Page 5 February 14, 1985

o

o

o

o

G

o

c

o

c

The Writeln Window

February 14,1985

PasLib Version 0.6 (and later) allows programmers to capture all Writeln
output and handle it in any convenient way. Using this capability, we have
written a Pascal unit that captures writelns and displays them in a regular
window.

Features
• Automatically saves the last N lines of output. N can be any

number subject to memory limitations.
• The unit handles all events directed to the output window,

including updates, activates, and mouse downs. The unit also
handles resizing the window and scrolling back through the output.
Requires .5K of initialization code and 2K of resident code.

• Can be used with any standard Macintosh program.

Release Information

The MacSupplement 1 disk contains the source to the unit in the files
intrfcA/VritelnWindow.text and intrfc/WritelnWindow2.text. The object file
is obj/WritelnWindow.obj.

To use this unit, you must hook it into your application in a number of places.
NOTE: You must use V.0.6 of Paslib or later. (PasLib V.0.7 is included on
MacSupplement 1). You should include a line such as
{$U WritelnWindow} WritelnWindow

in your USES statements.

At the start of your application, call ww in i t .

After you have initialized the Toolbox, call wwNew. Pass this procedure the
bounds for the window, its title, whether it should have a goAway box and be
visible, the number of lines to save, and the font to use for output. wwNew
will allocate a window (in global storage) and setup PasLib to send Writeln
output to the window.

There are 3 other procedures that you must call from your event loop. In each
case, you must determine if the event is directed to the output window. The
global variable wwwindowPtr contains the WindowPtr for the output window.
Test the contents of this variable against the window receiving the event.

Writeln Window 1 February 14, 1985

The 3 kinds of events are:

1. Activate Events: call wwActivate and pass in the modifiers
field of the event record.

2. Update Events: call wwupdateEvent.

3. Mouse Down Events: call wwMouseDown and pass in the value
returned by FindWindow, the mouse point (from the event record)
and the modifiers (also from the event record).

The above is the minimum amount of code you need to use this unit in your
program. You might want to do other things; for example, if your window has
a goAway box, the unit will automatically hide the window if the user clicks
in it. Your program would then need to provide a way for the user to make the
window visible again. (Call Showwindow, passing it the global variable
WWWindowPtr.)

Writeln Window 2 February 14, 1985

<

c

o

c

MacWorks XL

Contents 3 What's Included With MacWorks XL

4 Introducing MacWorks XL
4 Where to Find What You Need
4 Differences Between Macintosh XL and Other Macintoshes

6 Installing MacWorks on a Macintosh XL

11 Upgrading a Lisa to a Macintosh XL
11 Creating and Using a MacWorks-Only Hard Disk
16 Creating and Using a Shared Hard Disk

22 Using MacWorks With Your Current Setup
22 If You've Previously Installed a Hard Disk

23 Using MacWorks With a Parallel Printer

1 MacWorks XI.

What's Included
With MacWorKS XL

In addition to this manual, this package includes:

• Two MacWorks™ XL disks (one's a backup copy; MacWorks XL cannot be
copied)

• MacWorks System Disk, which contains:

Hard Disk Install application

Parallel Printer Install application

Font Mover application and Fonts file

• MacWrite disk and manual

• MacPaint disk and manual

• Macintosh, the owner's guide

Wlu iN i i u l i k i u l With M.u\\i i ik> \ l .

Introducing
MacWorks XL

Where to Find
What You Need

Differences
Between
Macintosh XL and
Other Macintoshes

MacWorks XL lets you have the variety of Macintosh software on the biggest
Macintosh of all—the Macintosh XL (nee Lisa 2/10). The Macintosh XL has a
full megabyte of memory, a larger screen, and a 10-megabyte hard disk to store
your documents and provide faster access to them. Once you've installed
MacWorks XL on the hard disk, your Macintosh XL wil l go straight to the
Macintosh desktop automatically whenever you press the power button on.

If you already own a Lisa, MacWorks XL lets you upgrade it to have the
capabilities of the Macintosh XL. Or if you don't want your entire hard disk to
be devoted to MacWorks, you can have it shared with Lisa 7/7 applications and
documents.

• To install MacWorks on the internal hard disk of your Macintosh XL or the
internal or external hard disk of any other Lisa, use the book you're reading
now.

• To find out what you generally need to know to use any Macintosh
application and to manage your work on the Macintosh electronic desktop
use Macintosh, the owner's guide. It tells you how to use the mouse to get
your Macintosh XL to do what you want it to do, and it explains Macintosh
terms that might be new to you. To understand a specific application, use the
application's manual.

• To find out how to set up and care for your Macintosh XL, and to
troubleshoot hardware problems, use the Lisa 2 Owner's Guide.

Keep the following difference in mind while you're using MacWorks on your
Macintosh XL:

• Your Macintosh XL has more memory than other Macintoshes have, so you
can generally work with larger documents and use applications that require
more memory than the Macintosh 128K system. Keep in mind, however,
that if your documents get too large, you may not be able to work with them
on other Macintoshes.

• Your Macintosh XL has a larger screen than other Macintoshes. With most
applications this means you can view more of a document at one time;
sometimes (with MacPaint, for example), it just means that more of the
desktop is displayed.

4 MacWorks XI

• Macintosh text and pictures appear a little taller on a Macintosh XL screen
than they do on other Macintoshes. Don't worry; your printed documents wi l l
be fine. Your authorized Apple dealer or service representative can adjust
your Macintosh XL so Macintosh text and pictures appear correctly.

• The On/Off button is on the front of the Macintosh XL, rather than on the back
as it is on other Macintoshes. The button is lit when the Macintosh XL is on.

• The Macintosh XL keyboard is slightly different from other Macintosh
keyboards: You don't need a separate keypad accessory because the keypad
is built in; and the Command key on the Macintosh XL is labeled with an
Apple rather than the symbol that looks like a freeway interchange.

• The Macintosh XL has no battery, so you may need to set the clock if it's
without power for longer than a few hours. You can use the Macintosh
Control Panel (which you choose from the Apple menu) to set the clock and
other preferences such as speaker volume. The clock setting is remembered
from session to session; the other settings aren't.

• The Macintosh XL doesn't have the same sound circuitry as other Macintoshes
have, so applications tnat generate sound wi l l sound a little different from
the way they sound on other Macintoshes.

• Current versions of Macintosh Guided Tour disks don't work on the
Macintosh XL.

• Macintosh XL cables and connections are different from those for other
Macintoshes. To use accessories such as modems or printers, you must
connect them using Macintosh XL cables. The Imagewriter should be
connected to the serial B (rightmost) connector on the back of the
Macintosh XL. (See "Setting Up the Apple Imagewriter Printer" in the Lisa 2
Owner's Guide.)

• Most Macintosh applications wi l l work with MacWorks XL; check with your
authorized Apple dealer before purchasing a Macintosh application.

Introducing MacWorks XL

Installing
MacWorks on a
Macintosh XL

Once you install MacWorks on your Macintosh XL hard disk, MacWorks wi l l
start automatically every time you start the Macintosh XL. You'll be able to
open documents quickly and have loads of room to store them.

Use the Lisa 2 Owner's Guide to set up your Macintosh XL.

Whenever you need to know something about the Macintosh XL hardware
(generally anything about the computer you can put your hands on), refer to
the Lisa 2 Owner's Guide.

If selecting icons and choosing commands from menus are new to you,
read Macintosh, the owner's guide, to find out how Macintosh generally
works.

i If the Macintosh XL On/Off button is lit, press it once, and then wait for
the light to go off.

i Insert the MacWorks disk.

I Press the On/Off button once to switch the Macintosh XL on. When you
hear a click, immediately press and hold down the Apple key and type
the number 2. Be sure you press the 2 on the main keyboard, not the 2 on
the numeric keypad.

This tells your Macintosh XL to start up using the 3'/2-inch disk inserted in
the disk drive. The Macintosh XL goes through a short self-test. After that,
the disk is ejected, the screen darkens for a while, and then an icon
representing a disk appears, with a blinking "X." The "X " quickly changes
to a question mark, which means your Macintosh XL is ready for you to
insert a Macintosh disk.

6 MacWorks XL

I f the question mark doesn't appear, press the On/Off button off and try
again. Both the Apple and the number 2 keys must be in the down position
sometime during the memory test. (The icon and the letters "MEM" are
highlighted during the memory test.)

• Remove the ejected MacWorks disk, and then insert the MacWorks
System Disk.

A few seconds later, the MacWorks System Disk icon appears on the desktop.

Installing MacWorks on u M.icmio>li XI.

Open the MacWorks System Disk window by clicking the icon to select it
and then choosing Open from the File menu, or by double-clicking the
icon.

A good rule of thumb for using Macintosh is first to select something and
then to choose a command from a menu to act on what you selected.

6 F i l e E d i t U i e u i S p e c i a l

M a c U l o r k s S y s t e m D i s k

6 i tems 31SK in disk 8 7 K ava i lab le

• •
Empty Folder System Folder Fonts Font Mover

Parallel Printer Install

E E 3SE

• Open the Hard Disk Install application by selecting it and then choosing
Open from the File menu, or by double-clicking the icon.

A dialog box appears, telling you the hard disk hasn't been initialized for
Macintosh.

• Click the Initialize button.

Clicking Initialize starts the process of installing MacWorks on the hard disk.

• Follow the series of dialog boxes that guide you through the process.

You'll need to install MacWorks just this one time; from now on, MacWorks
wi l l start automatically whenever you start your Macintosh XL.

• Name the disk by typing.

You can keep the preset name "Hard Disk" or type any name you want.

8 MacWorks XL

• Click the OK button or press the Return key.

Another dialog box appears, asking you to copy the System Folder to the
hard disk.

• Click OK.

An icon representing the hard disk now appears on the Macintosh desktop.
(The next time you start MacWorks it wi l l look like a hard disk rather than a
3Vi-inch disk.)

• Copy the Macintosh System Folder to the hard disk by dragging its icon
to the hard disk icon or window.

j a
•Hi

This is an important step that gives MacWorks the information it needs to run
Macintosh software properly from the hard disk.

• Close the System Disk window and then eject the System Disk by
selecting it and choosing Eject Irom the File menu.

The next time you start up the Macintosh XL, the Macintosh desktop and an
icon representing the hard disk wi l l appear automatically, available to store
Macintosh applications and documents.

» i
1 U 9 • MacWorks System Disk I M H ^ B K
7 items 321K in d isk 78K avai lable

• • $
Empty Folder F F R F o n t s Font Mover

I

0

F F

m m
Hard Disk Install Paraltal Pr intw Install

I

0
0 1 1 0

Installing MacWorks on a Macinti^h XL y

Insert the Macintosh application disk you want to use.

You can copy most applications to the hard disk (by dragging their icons to
the hard disk icon or window). The next time you start your Macintosh XL
with MacWorks, the icon representing the hard disk wil l appear
automatically on the Macintosh desktop. You can open it and start
applications from that disk. Some copy-protected applications require
inserting the original application disk each time you want to use that
application. You can, however, save all documents to the hard disk.

You can quickly restart MacWorks while you're using it, without going
through the entire startup process. To restart from the hard disk, hold down
the Apple key while you press the On/Off button. To restart from a 3 Vi-inch
disk, hold down the Option key while you press the On/Off button. Be sure
to hold the key down until the system restarts.

If you should ever want to have your Macintosh XL start up from a 3^-inch
disk instead of the hard disk, press the Option key immediately after the
screen becomes very light gray (while you're starting up) and hold the key
down until the disk with the blinking question mark appears. Then you can
insert any Macintosh startup disk.

m Fi le I d i t IMPUI Sppr . i i I

H a r d D i s k

7 i tems 651K in disk 4 2 4 7 K avai lable

• •
Empty Folder System Folder Mae Write MacPaint

MacProject

m

£—;—j
[I

MacWorks XL

Upgrading a Lisa
to a Macintosh XL

MacWorks XL lets you upgrade the Lisa you already own to have the
capabilities of the Macintosh XL.

You can decide among several possible choices:

• If you don't want to disturb your present setup at all, you can use
MacWorks entirely with 3 Vi-inch disks, without making any changes to
your current system. (See "Using MacWorks With Your Current Setup.")

• I f you want to use both Lisa 7/7 and Macworks, you can designate that a
hard disk be shared between the two. (I f you do this, you do need to back
up any existing documents first.)

• If you want to start MacWorks directly from a hard disk without using the
3'/2-inch disk, you can create a MacWorks-only disk. Do this if you want to
abandon Lisa 7/7 altogether. You can use the migration path Apple is
providing to convert Lisa documents you want to keep; ask your
authorized Apple dealer about the migration package. You might also
create a MacWorks-only disk if you have a separate hard disk for Lisa 7/7
or the Workshop.

How you divide up space on your hard disks depends on what software you
use the most (or plan to use in the future) and how much hard disk space you
have. MacWorks can use only the built-in hard disk on Lisa 2/10s or the disk
attached to the built-in parallel connector if you're upgrading a Lisa 2/5.

Of course, you can always change your setup later, but first you wi l l have to
copy any documents and applications you want to keep onto 3 '/i -inch disks,
because reinitializing a hard disk (which you do when you set up a disk)
erases any documents on it.

Once you install the hard disk, the Macintosh desktop and an icon
representing the hard disk appear automatically whenever you start your
"Macintosh XL" using MacWorks.

Creating and
Using a
MacWorks-Only
Hard Disk

Creating a MacWorks-only hard disk lets you start MacWorks automatically
whenever you start your Lisa. Once you do this, you can think of your Lisa as
a Macintosh XL.

Before you start, make sure you have either a built-in hard disk (Lisa 2/10
systems) or an external disk connected to the built-in parallel connector on
other Lisas. (See the Lisa 2 Owner's Guide for how to attach the external
hard disk.)

Upgrading a Lisa to a Macintosh XL 11

• If the hard disk has existing documents you want to keep, copy them to
Vh--inch disks.

See "Backing Up Documents and Disks" in Chapter 4 of the Lisa Office
System manual.

• If the On/Off button is lit, press it once, and then wait for the light to go
off.

• Insert the MacWorks disk.

• Press the On/Off button once to switch the Lisa on. When you hear a
click, immediately press and hold down the Apple key and type the
number 2. Be sure you press the 2 on the main keyboard, not the 2 on the
numeric keypad.

This tells your Lisa to start up using the 3'/2-inch disk inserted in the disk
drive, rather than any hard disk you may have set as the startup disk. The Lisa
goes through a short self-test. After that, the disk is ejected, the screen
darkens for a while, and then an icon representing a disk appears, with a
blinking "X." The "X " quickly changes to a question mark, which means
your "Macintosh XL" is ready for you to insert a Macintosh disk.

• Remove the ejected MacWorks disk, and then insert the MacWorks
System Disk.

A few seconds later, the MacWorks System Disk icon appears on the desktop.

12 MacWorks XL

• Open the MacWorks System Disk window by clicking the icon to select it
and then choosing Open from the File menu, or by double-clicking the
icon.

Tile Edit tlje ii* S pet la I
Mac Works System Pisk

6 i tems 3 1 3 K in disk 87K avai lable

s

• Q
Empty Folder System Folder Fonts

<8
Font Mover

fei
Parallel Printer Install

a: m

'V-j

I
m •

• Open the Hard Disk Install application by selecting it and then choosing
Open from the File menu, or by double-clicking the icon.

A dialog box appears. If this is a new disk, it tells you the hard disk (either
built-in or external connected to the built-in parallel connector) hasn't
been initialized for Macintosh. If this disk has Lisa 7/7 or the Lisa Workshop
installed, the dialog box tells you that, and gives you a chance to change your
mind by clicking the Cancel button, to share the disk between Lisa 7/7 or
Workshop and MacWorks, or to initialize the disk for MacWorks only. I f it's
already a MacWorks disk, it gives you a chance to initialize the disk or cancel.
(Initializing is one way to erase an entire MacWorks disk.)

• Click the Initialize button.

Clicking this button wi l l erase any existing documents on the disk, so first
make sure you've copied any documents you want to keep onto 3'^-inch
disks.

Clicking Initialize starts the process of installing MacWorks on the hard disk
and creating a MacWorks-only disk. A series of dialog boxes guides you
through the process. When you're finished, your Lisa wi l l start up directly
from this MacWorks-only disk whenever you start it.

I pgrading a Lisa to a Macintosh XL 1

• Name the disk by typing.

You can keep the preset name "Hard Disk" or type any name you want.

• Click the OK button or press the Return key.

Another dialog box appears, asking you to copy the System Folder to the
hard disk.

• Click OK.

An icon representing the hard disk now appears on the Macintosh desktop.
(The next time you start MacWorks it wi l l look like a hard disk rather than a
3'/2-inch disk.)

• Copy the Macintosh System Folder to the hard disk by dragging its icon
to the hard disk icon or window.

| e File Eilil HIP in S| I
MacWorks System Disk

7 «• 3 2 1 K te disk 7 8 * availafel*

— E S •
Empty Folder

s c

ft 4?.
Fonts F o n f M t f W -

Hard Disk Install Pjr»H»l Prtn»»r

3 2 a

This is an important step that gives MacWorks the information it needs to run
Macintosh software properly from the hard disk.

MacWorks XI.

• Close the System Disk window and then eject the System Disk by
selecting it and choosing Eject from the File menu.

The next time you start the Lisa, the Macintosh desktop and an icon
representing the hard disk wi l l appear automatically, available to store
Macintosh applications and documents.

• Insert the Macintosh application disk you want to use.

You can copy most applications to the hard disk (by dragging their icons to
the hard disk icon or window). The next time you start your Macintosh XL
with MacWorks, the icon representing the hard disk wi l l appear
automatically on the Macintosh desktop. You can open it and start
applications from that disk. Some copy-protected applications require
inserting the original application disk each time you want to use that
application. You can, however, save all documents to the hard disk.

You can quickly restart MacWorks while you're using it, without going
through the entire startup process. To restart from the hard disk, hold down
the Apple key while you press the On/Off button. To restart from a 3'^-inch
disk, hold down the Option key while you press the On/Off button. Be sure
to hold the key down until the system restarts.

If you should ever want to have your Macintosh XL start up from a 3'/2-inch
disk instead of the hard disk, press the Option key immediately after the
screen becomes very light gray (while you're starting up) and hold the key
down until the disk with the blinking question mark appears. Then you can
insert any Macintosh startup disk.

e f i l ; I c i i ' M i fMi ' M i i ' i i a l

I pgrading a Lisa to a Macintosh XL IS

Creating and
Using a Shared
Hard Disk

Before you start, make sure you have either a built-in hard disk or an external
disk connected to the built-in parallel connector. See the Lisa 2 Owner's
Guide for how to attach the hard disk.

In order to share a hard disk between Lisa 7/7 and MacWorks, you need to
designate that the disk be shared. You do this when you install the Lisa
Office System. Even if you've already installed the Lisa Office System, you
need to reinstall it if you want to share the disk it's on with MacWorks.

MacWorks can also share a hard disk with the Lisa Workshop. Reinstall the
Workshop and designate that the disk be shared.

If the hard disk has existing documents you want to keep, copy them to
3%-inch disks.

See "Backing Up Documents and Disks" in Chapter 4 of the Lisa Office
System manual. Creating a shared disk wi l l erase any existing documents.

Follow the steps outlined in Chapter 6 of the Lisa Office System manual
to install the Lisa Office System and any Lisa applications you want on
the hard disk. When you're asked if you want to share the disk with
MacWorks, click the Share button.

When you've finished installing the Office System and any applications
you want, click the Off button or press the On/Off button.

Whenever you want to use MacWorks, you need to start with the Lisa
switched off.

Insert the MacWorks disk.

I ft MacWorks VI.

• Press the On/Off button once to switch the Lisa on. When you hear a
click, immediately press and hold down the Apple key and type the
number 2. Be sure you press the 2 on the main keyboard, not the 2 on the
numeric keypad.

This tells your Lisa to start up using the 3'/2-inch disk inserted in the disk
drive, rather than any hard disk you may have set as the startup disk. The Lisa
goes through a short self-test. After that, the disk is ejected, the screen
darkens for a while, and then an icon representing a disk appears, with a
blinking "X." The " X " quickly changes to a question mark, which means
your Lisa is ready for you to insert a Macintosh disk.

• Remove the ejected MacWorks disk, and then insert the MacWorks
System Disk.

A few seconds later, the MacWorks System Disk icon appears on the desktop.

Upgrading a Lisa to a Macintosh \ i . l "

• Open the MacWorks System Disk window by clicking the icon to select it
and then choosing Open from the File menu, or by double-clicking the
icon.

MacWorks System Disk
6 i « « n i 3 1 3 K *n disk 87K avai lable

• Q #
Empty Folder System Foldtr Fonts Font Mover

JE8

o

*1 19 e

• Open the Hard Disk Install application by selecting it and then choosing
Open from the File menu, or by double-clicking the icon.

A dialog box appears, telling you the hard disk (the internal disk or the disk
connected to the built-in parallel connector) has the Lisa Office System or
Workshop on it. You're given the options of sharing, initializing, or leaving
the disk as is.

• Click the Share button.

Clicking Share claims the space you earlier reserved for MacWorks. Clicking
the Initialize button erases everything on the internal hard disk or the disk
connected to the built-in parallel connector (no other attached hard disks
are affected); clicking the Cancel button cancels the Hard Disk Install
application.

After you click the Share button, you'll be asked if you want to initialize the
MacWorks portion of the disk.

MacWorks XL

• Click the Initialize button.

It may take several minutes to initialize the disk.

• Name the disk by typing.

You can keep the preset name "Hard Disk" or type any name you want.

• Click the OK button or press the Return key.

An icon representing the hard disk now appears on the Macintosh desktop.
(The next time you start MacWorks it wi l l look like a hard disk rather than a
3'/i-inch disk.) The MacWorks System disk is modified to show that the hard
disk is installed.

• Copy the Macintosh System Folder to the hard disk by dragging its icon
to the hard disk icon or window.

« F i l e E d i t LHe iv S p e c i a l

U M a c W o r k s S y s t e m D i s k

3 2 1 K to disk

Fonts FonfWBYw-

P*ra1W1 Printer Install

This is an important step that gives MacWorks the information it needs to run
Macintosh software properly from the hard disk.

Upgrading a Lisa to a Macintosh XL 19

• Close the System Disk window and then eject the System Disk by
selecting it and choosing Eject from the File menu.

The next time you start up using the MacWorks disk (by pressing and
holding the Apple key and then pressing the 2 key), the Macintosh desktop
and an icon representing the hard disk wi l l appear automatically, available
to store Macintosh applications and documents.

• Insert the Macintosh application disk you want to use.

You can copy most applications to the hard disk (by dragging their icons to
the hard disk icon or window). You can open it and start applications from
that disk. Some copy-protected applications require inserting the original
application disk each time you want to use that application. You can,
however, save all documents to the hard disk.

I ii f' ' f »i \ t » * »* J i i 'i (t f*» ; ,j I
Hard Disk

7 i tems 651K in disk 4 2 4 7 K ava i lab le

• •
Empty Folder System Folder MacWrite MacPaint

MacTerminal MacDraw MacProjtct

EE n a a

r£7

J l y

M.icWurlo \ !

You can quickly restart MacWorks while you're using it, without going
through the entire startup process. To restart from the hard disk, hold down
the Apple key while you press the On/Off button. To restart from a 3'/$-inch
disk, hold down the Option key while you press the On/Off button. Be sure
to hold the key down until the system restarts.

Inserting a Lisa 7/7 or Workshop disk when the Macintosh desktop is
present causes a dialog box to appear, telling you this is not a Macintosh disk
and asking whether you want to initialize it. Do not do this unless you really
want to erase everything on the disk.

Lisa 7/7 Preferences are ignored while you're using MacWorks.

Upgrading a Lisa to a M.kintosli \ ! 21

Using MacWorks
W;th You? Cur ren t
Set ; ;p

You can use MacWorks without making any changes at all to your Lisa 7/7 or
Workshop setup. For example, you might do this if you have both a Lisa and
a Macintosh, and you want to use the Lisa periodically to work on your
Macintosh documents.

If the On/Off button is lit, press it once, and then wait for the light to go
off.

Whenever you want to use MacWorks, you need to start with the light off.

I Insert the MacWorks disk, label side up, metal end first.

i Press the On/Off button once to switch the Lisa on. When you hear a
click, immediately press and hold down the Apple key and type the
number 2. Be sure you press the 2 on the main keyboard, not the 2 on the
numeric keypad.

This tells your Lisa to start up using the 3^-inch disk inserted in the disk
drive, rather than any hard disk you may have set as the startup disk. The Lisa
goes through a short self-test. After that, the disk is ejected, the screen
darkens for a while, and then an icon representing a disk appears, with a
blinking "X." The "X " quickly changes to a question mark, which means
your "Macintosh" is ready for you to insert a disk.

I Remove the ejected MacWorks disk, and then insert the Macintosh
application disk you want to use.

You can open applications and documents, work on them, and save them on
the disk you inserted, just as you would with a single-drive Macintosh
system.

Because you use the MacWorks disk only to start MacWorks and you never
save any work on it, it's a good idea to lock the disk by sliding the red tab
toward the edge of the disk. That way, nothing on the disk can be altered.

If You've
Previously
Installed a Hard
Disk

If you've previously installed a hard disk using an earlier version of
MacWorks Hard Disk Install, and you want to use MacWorks XL, you need to
reinstall the hard disk using the Hard Disk Install application included with
MacWorks XL. See "Upgrading a Lisa to a Macintosh XL."

Because MacWorks XL lets you start up using one disk instead of two, it's
probably worth the small amount of effort to reinstall the hard disk. Of
course, if you create a MacWorks-only disk, you can start up directly into
MacWorks.

y f MacWorks XL

Using MacWorks
With a Parallel
Printer

The Parallel Printer Install application lets you install a parallel printer
driver in your System Folder to use with MacWorks. While the parallel
printer is installed, you won't be able to use the serial B connector, so you
won't be able to use your Imagewriter during this time. You can use the
Install application again later if you want to remove the driver from the
System Folder and regain the use of the serial B connector.

Here's how to use the Parallel Printer Install program:

! If necessary, firs! start up with the MacWorks disk, and then remove the
ejected MacWorks disk.

Insert the MacWorks System Disk.

A few seconds later, the MacWorks System Disk icon appears on the desktop.

Open the MacWorks System Disk window by clicking the icon to select it
and then choosing Open from the File menu, or by double-clicking the
icon.

I Open the Parallel Printer Install application by selecting it and choosing
Open from the File menu, or by double-clicking the icon.

Click Install/Update Parallel Printer.

I Click OK

The parallel printer driver is now installed. (Any existing parallel printer
driver is replaced with the new version.)

To use a serial printer again, use this application to remove the parallel
printer driver.

e
Using MacWorks With a Parallel Printer 23

c

o

c

Chapter 6

The MacDB Debugger

o

o

o

About This Chapter 61

About This Chapter

Thia chapter describes MacDB, an application that helps you debug
Macintosh applications. MacDB provides sophisticated debugging
capabilities at the machine-language level. Its features include

- Multiple memory display windows. Memory can be displayed in
multiple windows as characters, words, long words or strings, or
it can be disassembled symbolically. System traps are displayed
symbolically too.

- Versatile memory address display. Addresses can be displayed in
hexadecimal or as symbols, and you can use these symbols in
expressions (for example, you can set the PC to START).

- One or more register display windows. All registers and memory
locations can be changed easily.

- Miltlple breakpoints can be set and cleared.

- Instructions can be executed one at a time.

- Memory search for patterns.

- Special trace and break capability for system trap Instructions.

- Display and checking of the heap.

- Display of linked lists.

Setting Pp MacDB

The use of MacDB requires two Macintoshes (or a Lisa running MacWorks
and a Macintosh) that are connected together: The target machine runs
the program to be debugged, and the debug machine runs MacDB.

If you are using two Macintoshes, connect the two machines together
using the cable supplied with the Development System. The debug
machine must be connected at port B, the printer port. The target
Macintosh can be connected at either port.

If you are connecting a Macintosh to a Lisa, use a Macintosh
ImageWriter cable. The debug machine must be connected at port B, the
printer port. If the target machine is the Lisa, it too must be
connected at port B. The cable connections required by the Macintosh
and the Lisa are shown in an appendix.

Next, run one of the Nub applications on the target machine. Use
MacNub A if the target Macintosh is connected by port A, and MacNub B
if it is connected by port B. Use UorksNub if the program to be
debugged is running on a Lisa under MacWorks.

62 Macintosh 68000 Development System

Running a Nub installs and initializes a small program in the system
heap of the target machine• Now run the application to be debugged.

On the debug machine, run the MacDB application.

It is helpful to actually run MacDB while you read the following
sections. If you have two machines, you can try out MacDB by running
the Window sample program application on the target machine.

One useful technique is to make the Nub the target machine's startup
application using the Set Startup command in the Finder's Special menu.
This guarantees that the Nub is already there just in case your
application bombs.

Theory of Operation

MacNub is a small program that runs in the system heap of the target
machine. When run, it places Itself in the system heap, puts pointers
to itself in most of the hardware exception vectors in $9999 through
$00FF, then returns control to the Finder. It then remains dormant
until one of "its" exceptions occurs. Here is the list of exceptions
to which MacNub responds:

Exception number Assignment

66999 exception processing is described in the 68999 Reference Manual.

The simplest way to generate an exception on the target machine is to
press the interrupt button (the rear button on the programmer's
switch). Another good technique is to place the line

2
3
4
5
6
7
8
9
10
11
24
28
29
30
31
46

Bus Error
Address Error
Illegal Instruction
Zero Divide
CHK Instruction
TRAPV Instruction
Privilege Violation
Trace
Line 1010 Emulator
Line 1111 Emulator
Spurious Interrupts
Level 4 Interrupts
Level 5 Interrupts
Level 6 Interrupts
Level 7 Interrupts
Trap $E (breakpoints)

DC.W $FF01 ;generate a line $F exception

at the beginning of your program, or wherever you want MacDB to first
get control. (Actually any value $F000 through $FFFF can be used.)

Theory of Operation 63

When one of these exception events occurs in the target machine, the
Nub gets control and sends an interrupt to the debug machine. The
debug machine (if running MacDB) displays a box that lets you select
whether to Debug or Proceed.

If you select Proceed, the target aachine continues execution at the
current value of the PC. If the PC points to an Instruction that
caused an exception (such as the $FF01 used above), the exception will
happen again. You must manually advance the PC before selecting
Proceed.

If you choose Debug, MacDB requests from the target machine all the
Information necessary to update its windows. Normal operation of the
target machine is suspended until you choose Proceed from the Run menu.

The MacDB Windows

Here is a typical MacDB display, and a brief description of the default
contents of each of the windows.

{ < OeOuq Bun Bkpti lUlndou) Forma) Sumbols)

- The PC window displays memory starting at the current value of the
program counter (PC). The value of the PC Is indicated by the
"at" symbol (@) to the left of the first address displayed.
Addresses at which breaks have been set are marked by asterisks
(*). By default, memory in the PC window is displayed as
disassembled instructions. In this example, a .Map file has been
loaded to provide symbolic display of addresses. The program
counter is set to START, and a break is set at START+2A.

- The Registers window displays the values of the registers.
Although not visible in this example, the previous value of a
changed register is displayed In brackets ([]) to the right of the

PC W jjMjrttn M Emwlm

64 Macintosh 68000 Development System

current value. In the example, the D0 "cell" Is selected to be
changed. Cells are described below.

- The upper Examine window displays the contents of the stack In
long word format. The display of this window Is "anchored" to A7.
This Is Indicated by the anchor symbol and the seven In the upper
right of the window. The *7> * to the left of the first address In
this window shows that address register 7 points to this address.

- The lower Examine window Is not anchored to a specific register.
The window happens to contain the addresses contained in A0 and

- The Breakpoints window displays the addresses at which breakpoints
are set. In the example, there Is a breakpoint set at address
START+2A.

Features of MacDB Windows

MacDB windows behave much like most Macintosh windows; however, they
have a few unique features.

A5

Close Box
Start Box
Anchor Box

i Tit le Bar
— Align Box

Scroll Arrow ? > 1 8 7 6 0 : FFFF FFFF
19764: 0000 OOflC
19766 : 0000 0000 H i l l
1976C: 0000 FFFF
19770: 0000 0000 ^
19774 : 0000 4060 lilli
19778: 0000 5F3C

Scroll Bar

Scroll Box
1977C: 0000 4080 !$
19780: 0040 97SC S?
19784: 0001 977E Scroll Arrow
19788: 0000 0000 2J Size Box

The active window in a Macintosh application is the window with the
highlighted title bar. As with other applications, there is only one
active window at a time; however, unlike most others, it is not

The MacDB Windows 65

necessary Co select a window before selecting something within the
window: A single click activates the window and performs an action.
For example, if you click on a scroll arrow in an inactive window, the
window becomes active and scrolls.

The Close Box

The close box is used to remove a window from the screen. The original
PC, Registers, and Breakpoints windows cannot be closed. Duplicates of
windows, made with the Duplicate command in the Window menu, can all be
closed.

The Title Bar

The title bar is used to drag the window around on the screen. To
change a window's title, use the Title command in the Window menu.

The Start Box

The start box, the grey region below the title, Is used to set the
address of the first location displayed in the window. For example, if
you click on the value shown for the PC in the Registers window and
then click on the start box of an Examine window, the window is updated
to display memory starting at the current value of the PC. The
selecting of values within windows is discussed below in the section on
cells.

The Anchor Box

The anchor box, to the right of the start box, displays the number of
the register, if any, to which that window is anchored. For example,
the upper Examine window is by default anchored to A7, indicated by the
anchor and the 7 in the anchor box. Whenever this window is updated,
the address contained in A7 is the first address displayed. Note that
the 7 could mean A7 or D7.

Anchors are set and cleared using the Anchor and No Anchor commands in
the Window menu. They cannot be set for Register or Breakpoints
windows.

The Align Box

It is not always possible for MacDB to determine whether memory data,
such as disassembled instructions, should be aligned on word or long
word boundaries. When you click the align box, just above the upper
scroll arrow, the starting address of the window decreases by one word.

66 Macintosh 68000 Development System

The Scroll Arrows

The scroll arrows work In the usual manner. Clicking a scroll arrow
causes the window to scroll one line in the indicated direction.
Scrolling continues until the mouse button is released.

The Scroll Bar

Clicking the scroll bar, either above or below the scroll box, causes
the next wlndowful of memory addresses to be displayed. Clicking
repeatedly on the scroll bar is considerably faster than scrolling line
by line, and you still see every address in the displayed range.

The Scroll Box

The scroll box works in the usual manner. Because there are many
memory addresses, it is a very good tool for moving quickly through
memory, but a fairly poor one for finding a specific address.

The Site Box

The size box works in the usual manner. It Is used for increasing or
decreasing the size of the window either horizontally or vertically.

Values in Cells

Most of the things that appear within windows are addresses or values.
As such they are useful as input to various MacDB calls described
below. All addresses and values can be selected by clicking on them.
When a cell is selected, it is inverted on the screen. Only one cell
can be selected at a time.

Changing the Value in a Cell

To change the value in a register or memory cell In the target machine,
just select the value to be changed and then enter a new value or
expression. A box appears to let you cancel or accept the new value.

Expressions can contain hexadecimal values, the operators + - * /, and
symbols that are currently defined (as explained below). Hexadecimal
values must be preceded by $ if they might be confused with symbols.
The operators * and / are of equal and higher precedence than the
operators + and -, which are also of equal precedence.

Most address cells can be selected, but not changed. The first address
cell in a window can be changed.

Handy Hints 67

Handy Hints

You'll find while debugging that the disk drive does not stop spinning.
If you execute an Infinite loop, the system will realize that the disk
isn't in use, and it will c u m the drive off. Try entering and running
che instruction S6(9FE (BRA *-2). Return control to MacDB by pressing
che interrupt button on the programmer's switch.

Another useful cechnique is to no-op out undesirable instructions. The
opcode for a no-op Is $4E71.

MacDB Menus

Debug Menu

128K/512K Mac

This message tells you the amount of RAM in the target (the other)
machine.

Heap Check On/Off

Select this command if you wish the validity of the heap to be checked
after each command executed by MacDB. If the command is selected, and
errors are found in the heap, the range of addresses containing the
fault is displayed in a box.

Wait

Wait instructs MacDB to wait for an interrupt from the target
Macintosh. Execution of the target program does not resume if it was
previously halted (see che Proceed command, below).

Quit

Quit leaves MacDB and rescarcs the Finder.

68 Macintosh 68000 Development System

Run Menu

Trace

Trace causes MacDB to execute the instruction that is currently
Indicated by the PC. Once the instruction has completed, control
returns to MacDB and all the windows are updated.

System traps are treated as a single instruction. If you wish to trace
the execution of a system trap, use the Trace Into ROM instruction,
described below.

Proceed

Proceed causes execution of the program to resume where it was
interrupted. This normally allows the program to continue as though it
had not been interrupted. If the PC still points to the instruction
that caused the exception, you must manually advance the PC.

Normal execution cannot be resumed If the interrupt was caused by a Bus
Error or an Address Error.

Go Till

Go Till places a temporary breakpoint at the Indicated address.
Execution continues until this breakpoint is encountered or some other
exception occurs. At this point the temporary breakpoint Is removed.
You cannot place temporary breakpoints in ROM.

Go To

Go To causes execution to begin at the specified address. Control
returns to MacDB when a breakpoint or some other exception occurs.

Trace Into ROM

The Trace Into ROM command is usually dimmed. When the PC indicates a
system trap, Trace Into ROM is enabled. If you choose Trace Into ROM,
MacDB dispatches the call and returns with the PC pointing to the first
instruction in the ROM routine. You can then use the Trace command to
execute the instructions in the ROM routine.

MacDB Menus 69

Bkpts Menu

When you sec a breakpoint, MacDB aavea Che Instruction at the
breakpoint address and replaces It with a TRAP #$E Instruction. When
this address Is executed, the exception caused by che TRAP Instruction
gives control to the Nub, which then calls MacDB. The Instruction that
was originally at that address is noC executed.

Because breakpoints are Implemented by altering memory locations, they
cannot be sec In ROM. Mo warning Is given if you try to set a
breakpoint in ROM.

The presence of a breakpoint Is indicated in two ways: Its address Is
displayed in the Breakpoints window, and any occurrence of an address
that contains a breakpoint, in any window, is marked by an asterisk.
If che PC is ac an address ChaC contains a breakpoint, Che PC symbol
(@) is displayed insCead.

This command sets a breakpoint at the indicated address. The address
is added to the Breakpoints window, and all references to thac address
in other windows are marked with an asterisk.

Clear

This command removes the breakpoinc at the Indicated address, if there
is one. The address is removed from the Breakpoints window, and all
references to that address in other windows are unmarked.

Clear All

This command clears all currently defined breakpoints.

Window Menu

New

New creates a new Examine window and places it on the screen. It is
useful If you want to look at several parts of memory at the same time.

Duplicate

This command makes a copy of the active window. All settings of the
original window are duplicated. A duplicate window always has a close
box.

70 Macintosh 68000 Development System

This feature is particularly useful if you want to freeze a copy of a
window for comparison with another (see Frozen/Thawed, below).

Symbolic/Hex Address

These two commands determine the format of the addresses displayed in
the active window. Symbolic addresses can only be displayed if one or
more .Map files have been opened (see the Open command in the Symbols
menu). In this node, addresses are displayed as offsets from the
nearest defined label.

When Hex Address is selected, all addresses are displayed in
Hexadecimal.

This command does not affect the symbolic display of system traps.

Frozen/Thawed

This command allows the active window to be "frozen" for future
reference and comparison with unfrozen windows. A frozen window has a
thick black line as its left border.

Although a frozen window may be moved about on the screen, and the data
in the target machine may change, the contents of its window will not
change until it is thawed (or closed).

Anchor/No Anchor

The Anchor command lets you "anchor" the addresses displayed in a
window to one of the registers. The first address displayed in an
anchored window is the contents of the register to which it is
anchored. The register to which a window Is anchored is denoted by an
anchor symbol followed by a register number in the window's anchor box
(see preceding figure).

A window may be anchored to any register displayed in the Registers
window with the exception of SR.

Title

This command allows you to change a window's title.

MacDB Menus 71

Format Menu

The Format menu allows you to select the format of the Information
displayed in the active window. You can select the format of each
window except the Registers window.

Inst

This command causes the data in the active window to be displayed as
machine-language instructions. Useful effective addresses are
displayed to the right of the instructions. If a .Map file has been
loaded, effective addresses are displayed symbolically.

MacDB cannot always tell if instructions should be disassembled
starting on a word or long word boundary. If you click on the align
box, just above the upper scroll arrow, the starting address of the
window Is decreased by two.

Char

This command causes the data in the active window to be displayed as
hexadecimal bytes. The ASCII character corresponding to each byte is
displayed in brackets to the right of the value. If the value's ASCII
character is not printable, a period is displayed. .

Word

This command causes the data in the active window to be displayed as a
sequence of hexadecimal words. To the right of each word is its ASCII
representation. If a byte is not a printable ASCII character, a period
is displayed.

Long

This command causes the data in the active window to be displayed as a
sequence of long words. To the right of each long word is its ASCII
representation. If a byte Is not a printable ASCII character, a period
is displayed. If the long word is the address of a defined symbol, the
symbol is displayed to the right of the ASCII representation.

Pascal String

This command causes the data in the active window to be displayed as a
sequence of Pascal strings (a length byte followed by a string). The
first byte in the window Is assumed to be a length byte. Subsequent
characters are displayed until that many characters have been
displayed, or until an Invalid character is found. The next byte is
then assumed to be a length byte.

72 Macintosh 68000 Development System

List

This command attempts to display the active window as a linked list.
The first line in the window reads

Offset " nnnn nnnn

nnnn nnnn is the offset into the record where the link to the next
record is found. To change the offset, just select the current offset
value and type in a new value.

The starting address of the window is the first byte of the first
record. As many consecutive bytes of the record as will fit across the
window are displayed. The offset Is then added to the address of that
line, and the contents of the calculated address is the starting
address of the second record, which is displayed on the next line in
the window. Records are displayed until the window Is full, or until
an Invalid pointer is found.

If all the records do not fit in the window, you can scroll downward to
see subsequent records. You cannot scroll upward in the window. To
move upward, you can reselect the starting address for the window.

Search

Search allows you to search memory for occurrences of a specified
pattern within a specified range of memory addresses. When you choose
the command, you are allowed to set the start address of the search,
the end address of the search, a mask value, and a value.

Each address in the memory range is logically ANDed with the mask and
then compared with the specified value. If they match, then that
address and its contents are displayed.

If all the matching patterns do not fit within the window, you can
scroll downward to see subsequent occurrences of the pattern. You
cannot scroll upward in a Search window. To move upwards, you can
enter a new start address, or you can select an address elsewhere on
the screen, and then click in the start box, just below the window's
title.

You can use the mask to set the size of the pattern you are looking
for. To search for a specific byte, set the mask to $FF. To search
for a specific word, set the mask to $FFFF. To search for a long word,
set the mask to $FFFFFFFF.

A-Traps

This command lets you monitor the execution of system traps in the
target application. Four lines appear at the top of the window. These
let you set the range of traps to be monitored, whether a break should

MacDB Menus 73

occur when a Crap In Che range Is encountered, and wheCher Che trap
monicor feature is currently active.

Trap numbers are in Che range $A000 through $AFFF. Set first to
indicate the lowest Crap number Co be monitored. Sec lasc Co indicace
Che highesc Crap number Co be monicored. If firsC is equal Co lasc,
jusc ChaC 8ingle Crap is monicored. If you wish a break to occur when
a trap in the specified range is encountered, set the Break option to
True (by clicking on False). The setting of the auto-pop bit in the
monitored traps is ignored.

If you wish to temporarily disable the monitoring of traps, set Enable
to False by clicking on True.

Once all your settings are correct, choose Proceed in the Run menu.
This allows Che Carget program to execute, but all traps in the desired
range are displayed within the window. If the Break option is sec Co
true, then control returns to MacDB when each trap in the range is
encountered (before it Is executed).

Note that you can have multiple windows each monitoring a different
range of trap Instructions.

Clicking Debug interrupts the target machine at the next trap.

MemBlock

This display format allows you to examine memory blocks within a heap
zone. When you choose this command, the starting address of the window
is automatically set to the first memory block in the current heap zone
(Immediately following the zone header).

Each line in the window displays an eight-byte memory block header,
enclosed in square brackets, followed by as much of the memory block as
will fit across the window. In the case of nonrelocatable blocks, the
memory block immediately follows the header In memory. In the case of
relocatable blocks, Che second long word in Che header is a pointer to
the block's master pointer. Such pointers are preceded by asterisks.

Subsequent lines in the window display the headers for subsequent
memory blocks. You can scroll up and down through heap zones.

Symbols Menu

This menu Is used to assign symbols Co memory addresses and to clear
such assignments. Symbols are stored in .Map files.

74 Macintosh 68000 Development System

Value

Value lets you discover a symbol's value or a value's symbol* Either
select an address in memory or a symbol before choosing the command, or
be prepared to enter an address or symbol after choosing this command.
It will display the symbol and its value.

If there is no .Map file loaded, or the specified address is outside of
the program space, the value is displayed in hexadecimal.

Open and Purge

These commands let you control the display of symbols in MacDB.

Each window (except Registers) can have a set of symbols assigned to
it. When you first Open a .Map file, the symbols in the .Map file are
assigned to all windows. These windows are treated as a group; opening
a .Map file for any of them assigns new symbols to all of them.

Purge clears the symbols assigned to the selected window and removes
that window from the group. If you Open a .Map file with a purged
window selected, the symbols are assigned to that window; it does not
affect the symbols in other windows.

MacDB is able to keep track of the symbols used by multiple segments,
but they are bound to the segments that are in memory when the .Map
file was opened. You must open the .Map file again if the loaded
segments change.

About Symbols

When you start up MacDB, only trap symbols are displayed.

When you open a .Map file, the symbols in the .Map file are read into
memory. Only symbols that were referenced using the XDEF directive are
placed into a .Map file.

If you want to use equates that are not addresses, you must use a trick
to get them into a form that MacDB recognizes. Each entry in a .Sym
file looks like this:

LABEL $08 $xxxxxxxx

and each entry in a .Map file looks like this:

LABEL- :xxxxxxxx

in which s is the segment number, and xxxxxxxx is the value. Thus if
you change all instances of the string ' $08 $' in a .Sym file to
'» 0:', and save it as a .Map file, the file can be opened and used by
MacDB.

146 Macintosh 68000 Devalopment System

Serial Cable Connections

These two diagrans illustrate th« connections necessary to use MacDB
with two Macintoshes or with a Macintosh snd a Lisa. These allow you
to build your own cables for use with the Debugger.

Macintosh to Macintosh Serial Cable

Mac Serial Port Mac Serial Port
DB-9 DB-9

No connect 1 i No connect
No connect 2 2 No connect

Ground 3 3 Ground
TXD+ 4 1. • 4 TXD+
TXD- 5 5 TXD-

No Connect 6 6 No Connect
Handshake 7 7 Handshake

RXD+ 8 8 RXD+
RXD- 9 mr 9 RXD-

L—J —J

Macintosh to Lisa Serial Cable

Mac Serial Port Lisa Serial Port
DB-9 DB-25

Ground 1 - i Ground
No connect 2 2 TXD

Ground 3 / * 3 RXD
TXD+ 4
TXD- 3

No Connect 6
Clock 7 / ^ " i 7 Ground
RXD+ 8
RXD- 9

©

o

o

c

D

c

c

o

c

Chapter 7

Tha Mac*Bug Dabuggers

c

o

o

About This Chapter 77

About This Chapter

This chapter describes the MacsBug family of debuggers.

The first part of the chapter describes the various versions of MscsBug
and how they work. The next part of the chapter describes the syntax
of commands accepted by Mac*Bug• The end of the chapter describes the
commands themselves.

About MacaBug

MacsBug is a line-oriented single-Macintosh debugger. It shares memory
with the application being debugged, thus MacsBug may not fit in memory
with very large applications.

The features of MacsBug Include

- The ability to display and set memory and registers.

- The ability to disassemble memory.

- Stepping and tracing through both RAM and ROM.

- Monitoring of system traps.

- Display and checking of the system and application heaps.

MacsBug gets control when certain 68000 exceptions occur. Tou can then
examine memory, trace through the application, or set up bresk
conditions and execute the application until those conditions occur.

Setting Dp MacsBug

MacsBug is not selected like a normal application. If there Is a file
named MacsBug on the startup disk when the system is turned on or
restarted, MacsBug is Installed into the system, and the message
"MacsBug Installed" is displayed right below "Welcome to Macintosh".
The startup application is then launched as usual. To use a particular
version of MacsBug, place It on a startup disk and name it MacsBug.

MacsBug is placed In memory just below the main screen buffer. The
amount of memory required by MacsBug depends on the version In use.

Five versions of MacsBug are included in the Macintosh 68000
Development System. They are described below.

78 Macintosh 68000 Development System

MacsBug

This version of MacsBug runs on a 128K Macintosh. When invoked, it
saves part of the screen and provides ten lineB of debugging display.
When exited, it restores the screen.

MacsBug uses about 18K of memory. It will not run under MacWorks.

MaxBug

This version of MacsBug should be used on 512K Macintoshes. When
invoked, it saves almost the entire screen and provides a 40-line
display. When exited, it restores the screen. This version of MacsBug
displays trap names instead of trap numbers.

MaxBug uses about 40K of memory. It will not run under MacWorks.

TermBugA and TermBugB

These versions of MacsBug send display information to an external
terminal rather than to the Macintosh screen. TermBugA should be used
If the terminal is connected to the modem port, and TermBugB should be
used if the terminal is connected to the printer port.

Communication over the serial ports is at 9600 baud, 8 data bits, 2
stop bits, no parity bits, using the XOn/XOff protocol.

TermBugA and TermBugB use about 12K of memory. They will not run under
MacWorks.

LisaBug

LisaBug is functionally equivalent to MaxBug. You should use It when
you are using a Lisa running MacWorks. LisaBug will not run on a
Macintosh.

Theory of Operation

When Installed, MacsBug puts pointers to itself in many of the hardware
exception vectors in addresses $0000 through $00FF. It then remains
dormant until one of "Its" exceptions occurs. Here'is the list of
exceptions to which MacsBug responds:

Exception number Assignment

2 Bus Error
3 Address Error
4 Illegal Instruction
5 Zero Divide

Theory of Operation 79

6
7
9

10
11
28
29
30
31
47

CHK Instruction
TKAPV Instruction
Trace
line 1010 Emulator
Line 1111 Emulator
Level 4 Interrupts (not with LisaBug)
Level 5 Interrupts (not with LisaBug)
Level 6 Interrupts (not with LisaBug)
Level 7 Interrupts
Trap $F Instruction

68000 exception processing is described in the 68000 Reference Manual.

Invoking MacsBug

The simplest way to generate an exception is to press the interrupt
button (the rear button on the programmer's switch). When you are
using LisaBug, press ' on the numeric keypad.

Another way to generate an exception is to add a line such as

at the point in your program where you want MacsBug to first get
control. (Actually any value $F000 through $FFFF can be used.)

Another good technique is to place the system trap

into your prograa at the point where you want MacsBug to get control.
This trap is defined in the file ToolTraps.Txt (and MacTraps.D).

In addition, you can invoke system trap $ABFF. This trap is designed
for use with the Lisa Workshop development system; it's explained at
the end of the chapter.

When MacsBug gets control, it disassembles the instruction indicated by
the PC and displays the contents of the registers. If the exception
was caused by an $Fxxx, $A9FF, or $ABFF instruction, MacsBug displays
the message 'USERBRK', advances the PC to the next instruction, and
then disassembles the instruction and displays the registers.

It then displays the greater-than symbol (>) as a prompt, indicating
that it is ready to accept a command.

MacsBug, MaxBug, and LisaBug replace part of the screen with the
debugging display. To see the application screen while the debugger is
active, press the tilde/opening quote key in the upper left of the
keyboard. To restore the debugger's display, press any character key.

DC.W $FF01 ; generate a line 1111 exception

Debugger ; invoke system trap $A9FF

80 Macintosh 68000 Development System

Syntax of MacsBug Commands

Con ands consist of one or two command characters followed by a list of
zero or more parameters (depending on the command). Parameters can be
numbers, text literals, symbols, or simple expressions.

Numbers

Numbers can be entered in decimal or hexadecimal notation. Decimal
numbers are preceded by an ampersand (&) and hexadecimal numbers are
optionally preceded by a dollar sign ($). Numbers may be signed (+ or
-); if they are, the sign should precede the notation symbol. Here are
some numbers in several different formats. The formats shown are the
same as those displayed by the Convert command (described below).

Number Unsigned Hex Signed Hex Decimal

$FF $000000FF $000000FF &2S5
-$FF $FFFFFF01 -$000000FF -4255
&100 $00000064 $00000064 &100
+10 $00000010 $00000010 &16

Text Literals

A text literal is a one- to four-character ASCII string bracketed by
single quotes ('). If a string is longer than four characters, only
the first four characters are used. When used by MacsBug, text
literals are right justified in a long word. Here are some examples:

String Stored as

'A' $00000041
'Fred' $46726564
'1234' $31323334

Symbols

Symbols are generally used to represent the registers. The symbols are

RA0 through RA7 Address registers A0 through A7
RD0 through RD7 Data registers D0 through D7
PC Program counter
. Last address referenced ("Dot")
TP Current QuickDraw port (thePort)

Syntax of MacsBug Commands 81

Expressions

Expressions are formed by operators acting on numbers, text literals,
and symbols. The operators are

+ addition (Infix), assertion (prefix)
subtraction (infix), negation (prefix)

@ Indirection (prefix)

The Indirection operator uses the long Integer at the location pointed
to by the operand. Here are some valid expressions:

RA7+4
1A700-010C
TP+&24
-RA0+RA1 - ' FRED' +@@4C5(8

MacsBug Commands

MacsBug commands can be divided Into six groups: memory, register,
control, A-Trap, heap zone, disassembly, and other miscellaneous
commands.

A Return character repeats the last command, unless specified otherwise
in the descriptions below.

Parameters are represented by descriptive words and abbreviations such
as 'ADDRESS', 'NUMBER', and 'EXPR'. All parameters can be entered as
expressions.

Memory Commands

DM ADDRESS NUMBER (Display Memory)

Displays NUMBER bytes of memory starting at ADDRESS.

NUMBER is rounded up to the nearest 16 bytes. If NUMBER is omitted, 16
bytes are displayed. If ADDRESS and NUMBER are omitted, the next 16
bytes are displayed.

Subsequent presses of the Return key display the next NUMBER bytes.

The dot symbol is set to ADDRESS.

If NUMBER is set to certain four character strings, memory is instead
symbolically displayed as a data structure that begins at ADDRESS. The
strings and the data structures they represent are

'IOPB' Input/Output Parameter Block for File I/O
'WIND' Window Record

82 Macintosh 68000 Development System

'TERC* TextEdit Record

Refer to Inside Macintoah for a description of these data structures.

You can prematurely terminate a DM command by pressing the Backspace
key.

SM ADDRESS EXPR1 .. EXPRN (Set Memory)

Places the specified values, EXPR1 through EXPRN, into memory starting
at ADDRESS. The size of each value depends on the "width" of each
expression.

The width of a decimal or hexadecimal value Is the smallest number of
bytes that holds the specified value (four-byte maximum). Text
literals are from one to four bytes long; extra characters are ignored.
Indirect values are always four bytes long. The width of an expression
is equal to the width of the widest of its operands.

The dot symbol is set to ADDRESS.

Register Commands

Dn EXPR (Data Register)

Displays or sets data register n. If EXPR is omitted, the register is
displayed. Otherwise, the register is set to EXPR.

An EXPR (Address Register)

Displays or sets ADDRESS register n. If EXPR is omitted, the register
is displayed. Otherwise, the register is set to EXPR.

PC EXPR (Program Counter)

Displays or sets the program counter. If EXPR is omitted, the program
counter Is displayed. Otherwise, the PC Is set to EXPR.

SR EXPR (Status Register)

Displays or sets the status register. If EXPR is omitted, the status
register is displayed. Otherwise the status register is set.

TD

Displays all registers.

(Total Display)

MacsBug Commands 83

Control Commands

BR ADDRESS COUNT (Break)

Sees a breakpoint at ADDRESS. COUNT Is the number of times that the
breakpoint should be executed before breaking. If COUNT Is omitted,
the program Is stopped the first time the breakpoint is hit. If
ADDRESS is omitted, all breakpoints and current counts are displayed.

A maximum of 8 different breakpoints can be set.

CL ADDRESS (Clear)

Clears the breakpoint at ADDRESS. If ADDRESS is omitted, all
breakpoints are cleared.

G ADDRESS (Go)

Executes instructions starting at ADDRESS. If ADDRESS is omitted,
execution begins at the address Indicated by the program counter.
Control does not return to MacsBug until an exception occurs.

GT ADDRESS (Go Till)

Sets a one-time breakpoint at ADDRESS, then executes instructions
starting at ADDRESS. This breakpoint is automatically cleared after it
is hit.

Traces through one Instruction,
instructions.

(Trace)

Traps are treated as single

S NUMBER (Step)

Steps through NUMBER instructions. If NUMBER is omitted, just one
instruction is executed. Traps are not considered to be single
instructions.

SS ADDRESS1 ADDRESS2 (Step Spy)

Calculates a checksum for the specified memory range, then does a Go.
It then checks the checksum before each instruction is executed, and
breaks into MacsBug if the checksum doesn't match. If ADDRESS1 and
ADDRESS2 are omitted, this feature is turned off.

84 Macintosh 68000 Development System

ST ADDRESS (Step Till)

Steps through instructions until ADDRESS is encountered. Unlike Go
Till, this command does not set a breakpoint. Thus it can be used to
step through, and, stop in, ROM.

MR NUMBER (Magic Return)

When debugging, you generally trace through a program one Instruction
at a time. MR lets you trace through to the end of a routine Instead.

When you use MR, it replaces the return address that is NUMBER bytes
down in the stack with an address within MacsBug; then it does a Go
(described above). The RTS that would have used that address returns
to MacsBug Instead of the caller. MacsBug restores the original return
address, and then executes the RTS as if called by the Trace command.
The prompt is then displayed, ready to trace the instruction after RTS.

The usual way to use this routine is to trace until just after a JSR
(return address 0 bytes down in the stack), and then do an MR (0 is the
default NUMBER). The rest of the routine is executed, and control
returns to MacsBug.

This command isn't repeated when you press Return; a Trace command is
executed instead.

RB (Reboot)

Reboots the system.

ES (Exit to Shell)

Invokes the trap ExitToShell, which causes the startup application to
be launched.

A-Trap Commands

The A-Trap commands are used to monitor "1010 emulator" traps. These
commands use up to six parameters (TRAF1, TRAP2, ADDRESS1, ADDRESS2,
D1, and D2) that specify which traps and other conditions should be
monitored. If no parameters are given, all traps- are monitored.

TRAP1 and TRAP2 specify the range of the traps. Operating System traps
are in the range 0 through 255; Toolbox traps are between 255 and 511.
If only TRAP1 is specified, the command is invoked for trap TRAP1. If
TRAP1 and TRAP2 are specified, the command is invoked for all traps in
the range TRAP1 through TRAP2. ADDRESS1 and ADDRESS2 specify the range
of calling addresses within which traps should be monitored. Finally,

MacsBug Commands 85

D1 and D2 specify Che values of data register 0 within which traps
should be monitored.

These commands set up conditions for the monitoring of traps. You
generally use the Go command immediately after a trap command to await
the use of a specified trap. When a trap in the indicated range la
encountered appropriate information is displayed. Displayed trap
numbers are given in full word format (Axxx).

Unlike break commands, only one A-Trap command is active at a time.

AB TRAP1 TRAP2 ADDRESS 1 ADDRESS2 D1 D2 (A-Trap Break)

Causes a break when the condition specified by the parameters is
satisfied.

AT TRAP1 TRAP2 ADDRESS 1 ADDRESS2 D1 D2 (A-Trap Trace)

Traces and displays each A-Trap, but doesn't break, when the condition
specified by the parameters is satisfied.

This command continues to display A-Traps until you press the interrupt
button.

AH TRAP1 TRAP2 ADDRESS 1 ADDRESS2 D1 D2 (A-Trap Heap zone check)

TRAP1 must be greater than $2E. This command does an HC command just
before executing each trap in the specified range. It displays the
first two memory blocks that might contain errors.

HS TRAP1 TRAP2 (Heap Scramble)

Scrambles the heap zone, by moving relocatable blocks, when certain
traps In the specified range are encountered. It always scrambles the
heap zone as a result of NewPtr, NewHandle, and ReallocHandle calls.
It scrambles the heap zone as a result of SetHandleSize and SetPtrSize
if the new length is greater than the current length.

This command is fastest if you set trapl to $18 and trap2 to $2D.

The heap zone is not scrambled as a result of traps other than those
named above.

AS ADDRESS1 ADDRESS2 (A-Trap Spy)

Calculates a checksum for the specified memory range, and then checks
it before each trap. Breaks into MacsBug if the checksum doesn't
match.

86 Macintosh 68000 Development System

AX (A-Trap Clear)

Clears all A-Trap commands.

Heap Zone Commands

The heap zone commands act upon the current heap zone. When MacsBug Is
started up, the current heap zone is the application heap zone. You
can toggle the current heap zone between the application heap zone and
the system heap zone using the HX command.

Several commands cause MacsBug to scramble the heap zone. When MacsBug
scrambles the heap zone, it rearranges all the relocatable blocks.
This is useful for finding illegally used pointers to relocatable data
structures.

HX (Heap Exchange)

Toggles the current heap zone between the system heap zone and the
application heap zone.

HC (Heap Check)

Checks the consistency of the current heap zone. If an Inconsistency
is found, two blocks are displayed. The first appears correct, but
might have a bad length; the second is definitely garbled.

HD MASK (Heap Dump)

MASK is optional. Whether or not MASK is used, it displays each block
in the current heap zone in the following form:

BlockAddr Type Size [Flags MP_location] [*1 [RefNum ID Type]

The blockAddr points to the start of the memory block. The type Is F
for a free block, P for a pointer, and H for a handle to a relocatable
block. The size is the physical size of the block, including the
contents, the header, and any unused bytes at the end of the block.

For handles (type H), Flags (the high nibble of the master pointer) and
the master pointer location are given. Flags are: locked (bit 3),
purgeable (bit 2), resource (bit 1), and unused (bit 0). The asterisk
marks any immobile object (nonrelocatable blocks and locked relocatable
blocks).

For resource file blocks, three additional fields are displayed: the
resource's reference number, ID number, and type.

If MASK is omitted, the dump is followed by a summary of the heap
zone's blocks. It begins with the six characters 'HLP PF', which

MacsBug Commands 87

represent the six values that follow then. These values are

H - number of relocatable blocks in the heap zone (handles)

L - number of relocatable blocks that are Locked

P - number of Purgeable blocks in the heap zone

- SPACE, in bytes, occupied by purgeable blocks

P - number of nonrelocatable blocks in the heap zone (pointers)

F - total amount of Free space in the heap zone

Here is a sample sumnary:

HLP PF 0084 0004 0002 0000079E 0017 000003B4

Note that block counts are single words, and values representing space
in bytes are long word quantities.

If MASK is used, the summary line displays the block counts of specific
types of blocks. Possible values for MASK are:

If MASK is used, the heap summary takes this form:

CNT ### <# of blocks of MASK type> <# bytes in those blocks>

You can prematurely terminate an HD command by pressing the Backspace
key.

If you are using TermBugA or TermBugB, this command can be used to dump
the heap zone to the other serial port. Communication is done at 9600
baud, 8 data bits, 2 stop bits, and no parity bits, using the XOn/XOff
protocol.

•H'
.p.
,F<

'R'

Relocatable blocks (handles)
Nonrelocatable blocks (pointers)
Free blocks
Resource blocks
Resource blocks of type 'xxxx' 'xxxx'

HP MASK (Heap Print)

HT MASK (Heap Total)

Displays just the summary line from a heap zone dump. MASK works just
as it does with the HD command.

88 Macintosh 68000 Development System

Disassembler Commands

ID ADDRESS (Instruction Disassemble)

Disassembles one line at ADDRESS. If ADDRESS is omitted, the next
logical location is disassembled. This sets the dot symbol to the
ADDRESS.

If it is Pascal code that was compiled with the {$D+} option on, and
symbols have been turned on with the PX command, each address is
automatically displayed as a routine name plus an offset.

IL ADDRESS NUMBER (Instruction List)

Disassembles NUMBER lines starting at ADDRESS. If NUMBER Is omitted, a
screenful of lines is disassembled. If both NUMBER and ADDRESS are
omitted, a screenful of lines is disassembled starting at the next
logical location. This command sets the dot symbol to the ADDRESS.

If it is Pascal code that was compiled with the {$D+} option on, and
symbols have been turned on with the PX command, each address is
automatically displayed as a routine name plus an offset.

You can prematurely terminate an IL command by pressing the Backspace
key.

PX (Symbol Toggle)

Toggles whether or not symbols are displayed. By default, symbols are
off. This affects the IL, ID, and WH commands.

Miscellaneous Commands

F ADDRESS COUNT DATA MASK (Find)

Searches COUNT bytes from ADDRESS, looking for DATA after masking the
target with MASK. As soon as a match is found, the ADDRESS and value
are displayed, and the dot symbol is set to that ADDRESS. To search
the next COUNT bytes, simply press Return.

The size of the target (and default MASK) is determined by the width of
DATA, and can only be 1, 2, or A bytes. Default MASK has all bits on.

WH EXPR (Where)

Displays the number, address, and with MaxBug, the name, of the trap
specified by EXPR.

MacsBug Commands 89

If EXPR is a name or Is less than 512, It displays Information for that
trap* If EXPR Is greater than or equal to 512, the trap whose code is
closest to address EXPR is displayed. This is useful for finding out
what trap was executing when an error occurred.

CS ADDRESS1 ADDRESS2 (Checksum)

Checksums the bytes in the range ADDRESS1 through ADDRESS2 and saves
that value. If ADDRESS2 is omitted, it checksums 16 bytes, starting at
ADDRESS1. If ADDRESS1 and ADDRESS2 are both omitted, it calculates the
checksum for the last range specified, saves that value, and compares
it to the previous checksum for that range. If the checksum hasn't
changed, it prints 'CHKSUM T'; otherwise It prints 'CHKSUM F'.

CV EXPR (Convert)

Displays EXPR as unsigned hexadecimal, signed hexadecimal, signed
decimal, and text.

RX (Register Exchange)

Toggles the display mode so that the registers are or are not dumped
during a trace command. The disassembly of the PC instruction is not
affected.

Handy Hints

Stopping the Disk Drive

When you are using th6'debugger, the disk drives don't stop spinning as
they usually do. You can get a disk drive to stop by doing the
following:

1. Enter DM PC and remember the first word that is displayed.

2. Enter SM PC 60FE, the instruction BRA *-2, which is an infinite
loop.

3. Enter G and wait for the drive to stop spinning.

4. When the drive stops spinning, press the interrupt button.

5. Put the old word back into memory.

90 Macintosh 68000 Development System

Using No-ops

If you want to no-op out an instruction, replace the Instruction with
the number $4E71, the no-op opcode.

Using MacsBug with the Lisa Workshop

If you are using the Lisa Workshop development system, you can invoke
MacsBug by declaring and calling the following procedure:

PROCEDURE MacsBug; INLINE $A9FF;

This procedure drops into MacsBug and displays the message 'USERBRK'.
It then does a normal exception entry Into MacsBug.

If you want to display debugging Information, declare and call this
procedure:

PROCEDURE MacsBugPrint (str: str255); INLINE $ABFF;

When the $ABFF trap is encountered, MacsBug assumes that the top of the
user's stack has a pointer to a Pascal string. It prints out the
string, displays the message 'USERBRK', and does a normal exception
entry into MacsBug.

The Lisa Workshop Pascal compiler has an option that lets you
symbolically display the names of routines and functions in MacsBug.
If you compile your program using the {$Dt} option, procedure names are
automatically placed in the code at the end of each procedure or
function. If you want to use the symbols, you should use PX to turn on
symbolic display.

MacsBug Quick Reference 147

MacsBug Quick Reference

Numbers: $ means hex; & means decimal. Maximum size is long word
Text: One to four characters enclosed in single quotes.
Symbols: Ri ..RA7 ,RD0..RD7,PC,SP,TP,'.' (dot-current address)
Operators: + (addition), - (subtraction, negation), 6 (indirection)

Memory Commands
DM A N Display N bytes of memory starting at address A

If N - 'IOPB','WIND','TERC', displays data structure
SM A El..En Set memory values El through En starting at address A

Register Commands
Dn E Set data register n to E. If E is omitted, display n
An E Set address register n to E. If E is omitted, display n
PC E Set the PC to value E. If E is omitted, display the PC
SR E Set the SR to value E. If E is omitted, display the SR
TD Display all the registers

Control Commands
BR A C Set breakpoint at address A. Do C times before breaking.

C is optional
CL A Clear breakpoint at address A. If A omitted, clear all
G A Execute application starting at A. If no A, at current PC
GT A Set one-time breakpoint at address A, start at current PC
T Trace one instr. Traps treated as single instructions
S N Step through N instructions. If N is omitted, one

Instruction is executed. Traps not single instructions
SS A1 A2 Remember checksum for address range; step through

instructions, validating checksum before each one; break
Into MacsBug if checksum changes

ST A Step through instructions to address A. A can be in ROM
MR N Execute instructions until return address N bytes down in

stack is used. If N is omitted, return address on top of
stack is used

RB Reboot Macintosh
ES Exit to the shell; launch startup application

A-Trap Commands
Take effect if a trap in the range T1 through T2 is called from address
range A1 through A2, and D0 has a value between D1 and D2. For omitted
parameters, full range (all traps, all addresses, all D0 values) used.
These commands set up conditions that are monitored when Go is used.

AB T1 T2 A1 A2 D1 D2 Break on specified A-traps
AT T1 T2 A1 A2 D1 D2 Trace program and display specified A-traps
AH T1 T2 A1 A2 D1 D2 Check the heap on specified traps
HS T1 T2 Scramble heap and check it on specified traps

Usually Tl-$18 and T2-$2D for optimal speed
AS A1 A2 Remember checksum for address range; validate it

before traps
AX Clear all A-Trap commands

148 Macintosh 68000 Development Systen

Heap Commands
HX Toggle between system heap and application heap
HC Check the consistency of current heap
HD MASK Dump each heap block, followed by heap lumury line

Block - BlockAddr Type Size [Flags MP_locatlon] [*] [RefNum ID Type]

Type (of block): F • free, P • pointer, H » handle
Size: physical size ~ header+contents+span bytes
Flags nibble: Bit 3 • locked; Bit 2 " Purgeable;

Bit 1 " Resource; Bit 0 • unused
MP_Location: the location of the Master Pointer
*: indicates non-relocatable or locked blocks
RefNum ID Type: given for resource blocks only

If no MASK:
Susaary • HLP PF #Reloc blocks, #Locked reloc blocks, #Purgeable blocks,

Purgeable space, Non-reloc blocks, Free Space

If MASK • 'H' (handle), (pointer), 'F' (free blocks),
'R1 (relocatable), or 'xxxx' (resource type 'xxxx') then

Summary • CUT ### <# of blocks of MASK type> <# bytes in those blocks>

HP MASK Dump heap to other port (TermBugA or TermBugB only)
HT MASK Display heap dump susaary line (See HD)

Disassembler Commands
ID A Disassemble one line at address A
IL A N Disassemble N lines starting at address A

PX Toggles symbolic display (Pascal option only)

Miscellaneous Commands
F A C D M Search C bytes from address A, looking for data D after

masking the target with M. Display first occurrence
WH X X<512: display address of trap X

X>511: display trap nearest address X
CS A1 A2 Checksum specified range. If no A2, 16 bytes. If no A1

or A2, checksum and compare with last. Print result.
CV X Display X as unsigned hex, signed hex, signed decimal

and text
RX Toggle register display during trace

Handy Hints
SM PC 60FE Enter instruction BRA *-2 to stop disk spinning
SM PC 4E71 Enter no-op at current PC location

