Canon

COMPUTER SYSTEMS

3

PREFACE

This instruction manual was designed to make it easy for people without specialized knowledge of computers to learn to use CANOBRAIN II, which operates under the AS-100 System.

- Volume I

Fundamentals: This volume explains the system and data floppy disks which must be created before using CANOBRAIN II, and also outlines the basic key operations of CANOBRAIN II. Be sure to read this portion carefully.

- Volume II

Books:

- Volume III

Rolls: This volume uses examples to explain the function and manipulation of rolls under CANOBRAIN II.

- Volume IV

Patterns:
This explains how routine processing can be registered as paṭterns and total patterns and automatically executed by CANOBRAIN II. Be sure to do the examples included.

- Volume V

Handbook: The functions described in Volumes II to IV are summarized. For operations, consult Volume I as required. This portion is also useful when error messages are displayed, since it contains a list of these messages and explanations for each.

Appendices 1 and 2 are for readers who are going to develop BASIC programs or use IBM floppy disks.
Appendix 3 describes how to use a secondary printer if one is connected to CANOBRAIN II.

Appendix 4 describes how to use a hard disk system with CANOBRAIN II.

Appendix 5 is the function key list. Cut this sheet out and retain it for future reference.

Examples used for explanations in this manual have been executed using an 8 -inch system.

Read the following manuals along with this manual:
"AS-100 System Instructions"
"CP/M-86 User's Manual"
"Hard Disk System User's Manual"

* $C P / M-86^{\mathrm{TM}}$ is a registered trademark of Digital Research.
* Canobrain ${ }^{T M}$ is a registered trademark of Canon Inc. (In this manual, please change all references to "CANOBRAIN" to "Canobrain".)
* Information contained in this publication is subject to change without prior notice.
Volume I INTRODUCTION TO THE CANOBRAIN SYSTEM
Chapter 1 OUTLINE 1
1.1 What is CANOBRAIN 2
1.2 Before Starting 12
Chapter 2 Starting To Use CANOBRAIN 35
2.1 CANOBRAIN startup 36
2.2 Basic Key Operation 38
Volume II BOOKS
Chapter 1 TABLE DATA CREATION AND MANIPULATION 55
l.l Preparation of a Simple Table 56
1.2 Data Entry 67
1.3 Introduction the Size of Table 90
l. 4 Table calculation 105
1.5 Data Sorting Procedures 131
1.6 Data Retrieval Procedures 137
1.7 Deleting Unnecessary Data 153
1.8 Adding Numbers between Pages 171
1.9 Reading Roll Data Input Tables 177
Chapter 2 INTRODUCTION TO GRAPH CREATION 185
2.1 Converting Table Data to Graphs 186
2.2 Editing Graphs 198
2.3 Making Hard Copies of Graphs 210
2.4 Changing Data 212
2.5 Changing Graph Types 215
Volume III ROLLS
Chapter 1 CREATING A ROLL 223
1.1 Defining Roll Formats 224
1.2 Input Data 231
Chapter 2 MANIPULATING DATA 239
2.1 Calculating Totals 241
2.2 Printing Out Data 248
2.3 Sorting Data 255
2.4 Retrieving Data 259
Chapter 3 PRINT OPTIONS 265
3.1 Calculation and Printout 266
3.2 Retrieval and Printing 272
Chapter 4 REDEFINING A ROLL 277
4.1 Modifying column Attributes and Widths 278
Chapter 5 DATA EXCHANGE WITH OTHER SYSTEMS 283
5.1 Online File Definition 284
5.2 IBM-Format Floppy Disks 295
Volume IV ROUTINE PROCESSING
Chapter 1 COMMON BUSINESS APPLICATIONS 313
1.1 Registration Procedures 314

1. 2 Registering More Complicated Procedures 348
Volume V HANDBOOK
Chapter 1 GENERAL DESCRIPTION 371
1.1 Hardware 371
1.2 Software 372
1.3 Floppy Disk Insertion and Startup 372
1.4 Initialization 374
1.5 Books 376
1.6 Rolls 377
1.7 TOTAL PAT. (Total Patterns) 378
1.8 Pages 379
Chapter 2 BOOKS 381
2.1 Table Functions 381
2.2 Graphic Functions 418
Chapter 3 ROLLS 439
3.1 Defining a Roll 439
3.2 Data Processing 440
3.3 INPUT Function 443
3.4 INPUT PAT. (Input Pattern) Function 444
3.5 DATA GEN. (Data Generation) Function 444
3.6 DUPLICATE Function 444
3.7 FORMATTING Function 445
3.8 RETRIEVAL Function 449
3.9 SORT Function 449
3.10 REPORTING Function 450
3.11 UTILITY Function 451
Chapter 4 ERROR MESSAGES AND CORRECTIVE ACTIONS 453
4.1 Error Messages Displayed during Startup 454
4.2 Error Messages Displayed during Password Registration 455
4.3 Error Messages Displayed during Table Processing 456
4.4 Error Messages Displayed during Graphic Processing 463
4.5 Other Error Messages 464
APPENDIX 1 CD FILES 465
APPENDIX 2 IBM-FORMAT FLOPPY DISKS 473
APPENDIX 3 PRINTER CONNECTION 478
APPENDIX 4 USING HARD DISK SYSTEMS 481
APPENDIX 5 THE FUNCTION KEY LIST 485

345	. 33147 15	
-19	zharo zraojs -Neroz-sda	
ate		1 Klajzerra
284		F Kıavag9.
溉长	Tens vat Mormokh - - +	8-xamavy

Canon AS-100

CHAPTER 1 OUTLINE

This chapter explains what CANOBRAIN is and what procedures must be carried out before using it.

1.1 What is CANOBRAIN?

Everyone is aware that computers are playing a more important role in our daily lives. But what a lot of people don't know is that you don't necessarily have to have specialized skills or programming knowledge to take advantage of computer benefits. Today's informationintensive offices need computer software that is both versatile and easy to use. The problem is that most businesses simply do not have the time and money required to train their personnel as computer experts.

That's why we made CANOBRAIN. There's no programming language to learn, just a few easy-to-understand procedures that will quickly turn your information into results. And CANOBRAIN can be used for a wide range of tasks, from record-keeping and accounting to business projection and analysis.

1.1.1 Devices used by CANOBRAIN

First we will explain the various AS-100 devices which CANOBRAIN uses.
(1) Display unit

The display unit displays messages from CANOBRAIN, characters entered from the keyboard, and the contents of floppy disks. CANOBRAIN displays a wide variety of different images on this CRT; you will become.familiar with these images as you learn to operate CANOBRAIN.

The keyboard conveys data and instructions to the computer. Characters are displayed on the screen as the various keys on the keyboard are pressed. Specific keyboard procedures are explained in Chapter 2.
(3) Pointing device

The pointing device conveys information to CANOBRAIN regarding the display positions of data which will be processed. CANOBRAIN can be used without the pointing device. Specific pointing device procedures are explained on page 50.
(4) Floppy disk units

$\begin{array}{cc}\text { For } 51 / 1 \text {-inch } & \text { For } \begin{array}{l}8-i n c h \\ \text { disks }\end{array} \\ \text { disks }\end{array}$
Two types of floppy disk units are available, one for $51 / 4$ inch mini-floppy disks and one for 8-inch floppy disks. Your system is equipped with one or both types of these units. The function of these units is to write data onto floppy disks and to read data from them.

(5) Hard disk units

(6) Printer

Hard disk units can be used just like floppy disk units.

The printer prints out data prepared by CANOBRAIN. CANOBRAIN can also be used without a printer.

1.1.2 CANOBRAIN Disk Format and Contents

A brief explanation of how the floppy and hard disks are used should help you understand what CANOBRAIN is and what it does.

The types of floppy disks which are used by CANOBRAIN include the system disk, which contains the CANOBRAIN program, and data disks, which are used for data storage.
(1) The system disk contains programs like the operating system, which controls the operation of the computer, and the CANOBRAIN program. Procedures for creating the system floppy disk are explained in detail on page 12.
(2) The data disks used by CANOBRAIN can be compared to filing cabinets. Each filing cabinet provides space in which documents can be stored. Two types of documents can be stored in these filing cabinets: books and rolls. From the data in these books and rolls, various types of graphs can be created.

a. Just as a book is composed of many pages, the books of CANOBRAIN are composed of units called pages. However, with CANOBRAIN, the pages are filled with words and numbers that you write yourself.

One page in each book is like a table of contents. In CANOBRAIN, this page is called an index. This index contains the titles which are assigned by you to other pages containing material you have written.

There is. another special page called the 0 page. This page is used when you want to add new pages for data.

b. Rolls - A roll can be thought of as an uninterrupted table or series of tables. Though books are divided into units called pages, a roll has no such divisions. This means a roll will have no index pages, page 0 , or graph pages. (In order to create a graph using roll data, you must transfer the data to a book table first.) A roll table can contain up to 10,000 rows.

1.1.3 Rolls and Books

The following diagram shows the relative formats of a roll and a book:

You can input data into a roll or a book via the keyboard. Data can be moved from a roll to a book table, but not from a book table to a roll. Graphs are generated by referencing data in a book table. A roll is best suited for processing large amounts of data.

1.l.4 CANOBRAIN Tables

The following illustration should give you some idea of how tables are processed by CANOBRAIN.

Areas separated from one another by horizontal lines are called rows, while those separated by vertical lines are called columns. The rectangular areas formed by the intersection of vertical and horizontal lines are called cells. A cell is the smallest table unit handled by CANOBRAIN, but it is also possible to handle table data in row or column units.

1.1.5 Function Outline

The following diagram illustrates the various functions of CANOBRAIN:

CANOBRAIN allows you to:

- perform numeric calculations,
- retrieve data,
. sort data,
- generate graphs,
. define and execute procedures.

Details about these processes and operating procedures are given in Volume II and the sections following.

CANOBRAIN can calculate totals and grand totals for numeric data included in tables. This is done using expressions (functions) which are predefined in CANOBRAIN. It is also possible to automatically recalculate totals or grand totals when a change is made in any of the numeric data items.
(2) Data retrieval

CANOBRAIN allows you to search a book for data satisfying specified conditions and to display it on the screen. It also allows you to search a roll for data satisfying specified conditions and to move it to another roll. Conditions can be specified for character or numeric data. Conditions such as "equal to", "greater than", and "less than" can also be specified.
(3) Data sorting

Data sorting is the process of rearranging the rows of a table so that items in a specified column are arranged in either descending or ascending order. The contents of the specified column may be either numeric or character data.
When processing a roll, you can move the sorted table to another roll.
(4) Printout

The contents of tables can be printed out on the printer. It is possible to retrieve and print specific columns and/or rows of data.
In addition, subtotals in a roll can be calculated as the contents are being printed out.

CANOBRAIN can automatically prepare a wide variety of graphs based on the data included in tables. Simply specify the table rows and columns containing the applicable data and the type of graph required. Once a graph has been displayed on the screen, the colors used in the graph and the scale of the graph can be changed; then the graph can be printed out on the printer. As stated previously, roll data must be transferred to a book table before a graph can be created.
(6) Procedure definition and execution

CANOBRAIN allows you to define frequently-used processing procedures as patterns. You can also define the sequence of pattern execution as a total pattern.

By now, you should have a general idea of the purpose and applications of CANOBRAIN; later, you will obtain more detailed knowledge by actually using CANOBRAIN. However, first we will explain the preparations required before using CANOBRAIN.
(7) Other processing

For data compatibility with other systems, you can read data from or write data to CD (Common Data) files when processing a book, or IBM-format floppy disks (8-inch) when processing a roll.

l. 2 Before Starting

As was explained earlier, a system floppy disk and data disks are required to operate CANOBRAIN. This section explains procedures for creating these disks. See Appendix 4 for details on using a hard disk system.

1.2.1 System floppy disk

The floppy disk included with this manual contains only the CANOBRAIN program. However, to use CANOBRAIN, a program called the $C P / M-86$ operating system is needed to control the computer's operations. A system floppy disk is created by copying the program of the original floppy disk to another floppy disk.

Creating a system floppy disk differs according to which floppy disk, 8 -inch or $51 / 4$-inch, is used.
(1) 8-inch floppy disks
(1) First, insert the disk containing the $C P / M-86$ operating system into drive A of the floppy disk unit. Then insert the original CANOBRAIN disk into drive B of the floppy disk unit.
(2) Turn the disk unit on; messages from the CP/M-86 system will be displayed sequentially as shown below.

(3) Press the following keys in the order shown.

(Space bar)
The screen should look like this:

If the characters displayed on the screen are not correct, press and re-enter the data.
Press $\left.\begin{array}{l}\text { 長 } \\ \hline \\ \hline\end{array}\right]$ the screen will return to "A>_".
(4) Remove the original CP/M-86 disk from drive A. Remove the original CANOBRAIN disk from drive B and insert it into drive A. Insert a new floppy disk into drive B. After replacing the floppy disks, proceed as follows to inform the computer that disk replacement has been completed.

Press $\left\{\begin{array}{l}\boxed{\sigma} \\ \hline \mathbf{c} \\ \hline\end{array}\right\}$ simultaneously.
$\mathrm{A}>\wedge \mathrm{C}$
A $>$ _-
(5) Press the keys in the order shown below.

(Space bar)
Make sure that the screen is as shown below. If the information on the screen is not correct, press aiDER and start over again from step 3 .

```
A>format b:_
```

(6) Press
 - The screen should look like this:
$\mathrm{A}>$ format b :

FORMAT V $1.03 \leftarrow^{\text {The number displayed on this } 1 \text { in will }}$
Disk B: Will be destroyed, OK?

CANOBRAIN will ask whether it is all right to destroy the contents of the floppy disk inserted in drive B. Make sure again that the floppy disk inserted into drive B is the new one. If the floppy disk is not to be destroyed, press \mathbf{N} and ${ }^{\star}$. The screen will return to "A>_".
(7) Press Y and

The following is displayed on the screen, and processing starts.
$\mathrm{A}>$ format b :

FORMAT V 1.03
Disk B: will be destroyed, OK?y

The screen should look like this when processing is complete.

```
A}>\mathrm{ format b:
FORMAT V1.03
Disk B: will be destroyed,OK?y
COPYING SECONDARY BOOT.
A>_
```

Now the new floppy disk is ready for use. Formatting takes about 90 seconds from start to finish.
(8) Copy the original CANOBRAIN floppy disk to the new floppy disk.
Press the following keys in the order shown.

Make sure that the screen appears as shown below.
$\mathrm{A}>$ format b *

FORMAT V 1.03
Disk B: will be destroyed,OK?y
COPYING SECONDARY BOOT.
A $>$ volcopy_

If the information on the screen is not correct, press [8:7

余 Press $\begin{gathered}\text { 有. The screen appears as shown below. } \\ \frac{1}{1} \text {. }\end{gathered}$
$\mathrm{A}>$ format $\mathrm{b}:$

FORMAT V 1.03
Disk B: will be destroyed,OK?y
COPYING SECONDARY BOOT.
A $>$ volcopy

VOLCOPY V1.01 *The number displayed on this line will
Enter Source Disk Drive (A-D) ? -
(iii) Press \mathbf{A} and . The screen appears as shown below.

A $>$ volcopy

VOLCOPY V1.01
Enter Source Disk Drive (A-D) ? a
Destination Disk Drive (A-D) ? _

Press B and . ${ }^{1}$. The screen shown below will appear.

A $>$ volcopy

VOLCOPY V1.01
Enter Source Disk Drive (A-D) ? a
Destination Disk Drive ($\mathrm{A}-\mathrm{D}$) ? b
Copying disk $\mathrm{A}:$ to disk B :
Is this what you want to do (Y / N) ? _
(12) Press Y and
this particular situation, press \mathbf{Y}, $\operatorname{not} \mathbf{N}$, to abort the copy process. The screen that appears will look like the one shown below.

A $>$ volcoDy

VOLCOPY V1.01
Enter Source Disk Drive (A-D) ? a
Destination Disk Drive (A-D) ?b
Copying disk A: to disk B:
Is this what you want to do (Y / N) ? y
COPY TRACK NUMBER $=0^{-}$

During the copy process, the display will show the current track being copied, from track zero up to track 76. The screen will look like the one shown below.

A $>$ volcopy

VOLCOPY V1.01
Enter Source Disk Drive (A-D) ? a
Destination Disk Drive (A-D) ? b
Copying disk A: to disk B:
Is this what you want to do (Y / N) ? y
COPY TRACK NUMBER $=76$

Copy another disk (Y/N) ?_

Copying is now complete. The process takes about three minutes from start to finish.
(13) Press N] and 晠. The screen will appear as shown below.

A $>$ volcopy

VOLCOPY V1.01
Enter Source Disk Drive (A-D) ? a
Destination Disk Drive ($A-D$) ?b
Copying disk A: to disk B:
Is this what you want to do (Y / N) ? y
COPY TRACK NUMBER $=76$

Copy another disk (Y / N) ? n
A >

114 Press the following keys in the order shown.

The last number will differ according to the type of printer(s) connected to your system.

- When using an A-1200, press [1].
- When using an A-1210, press [2] .
- When using an $A-1250$, press $[\overline{3}]$.
. When using other printers, press [$\overline{4}]$.
- When no printers are connected, press [4].

If an incorrect key is entered, the printer connected may not operate normally.

Make sure that the system floppy disk is re-created if the printer is replaced with a different type of unit.
The following explanations assume that an A-1200 printer is connected to your system.

The screen should look like this.

A $>$ submit setup 21 -

When the information on the screen is incorrect, press DELEIE
 executes the processing and the screen returns to "A>_". The CANOBRAIN system floppy disk has been completed.
(2) $51 / 4$-inch mini-floppy disks

When using mini-floppy disks, you will need two system disks to operate CANOBRAIN. These disks will be called system disk l and system disk 2, respectively. Your first task is to create system disk 1 .
(II) Insert the disk containing the $C P / M-86$ operating system into drive A of the floppy disk unit. Then insert the original CANOBRAIN disk 1 into drive B.
(2) Turn the AS-100 on. Messages from the CP/M-86 system will be displayed sequentially as shown below.

(3) Press the following keys in the order shown.

The screen should look like this.

A $>$ submit $b:$ setup $1 _$

If the characters displayed on the screen are not correct, press DELNEE and start re-enter the data. Press $\left[\begin{array}{c}\frac{E}{N} \\ \mathrm{~N} \\ \overline{1} \\ \hline\end{array}\right.$; the screen will return to "A>_".
(4) Remove the original $C P / M-86$ disk from drive A. Insert the original CANOBRAIN disk from drive B into drive A. Insert a new floppy disk into drive B. After replacing the floppy disks, do the following to inform the computer that disk replacement has been completed.

```
A>^C
```

A $>$
(5) Press the following keys in the order shown below.

Check to see that the screen looks like the one below. If the screen is incorrect, press and re-enter the data.

```
A> format b;
    i_
```

A $>$ format $b:$

FÖMMA' V1.03 \leftarrow The number displayed on this line will
vary according to the versionused.
Disk B: Will be destroyed, OK?

CANOBRAIN asks you whether it is all right to destroy the contents of the disk inserted in drive B. Make sure that the floppy disk inserted in drive B is the new floppy disk. If the contents of the floppy disk are not to be destroyed, press N and The screen will return to "A>_".

(7)

Press Y and . The screen will appear as shown below and processing will begin.

```
A> format b*
    FORMAT V1.03
    Disk B: will be destroyed,OK?y
```

The screen appears as shown below when processing is complete.

A $>$ format b :

FORMAT V1.03
Disk B: will be destroyed,OK?y COPYING SECONDARY BOOT.
$A>-$

Now the new floppy disk is ready for use. Formatting takes about 40 seconds from start to finish.
（8）Copy all the original CANOBRAIN disk contents to the new floppy disk．
Press the following keys in the order shown．
回回回回回

Make sure that the screen appears as shown below．

```
A> format b:
    FORMAT V 1.03
    Disk B: will be destroyed,OK?y
    COPYING SECONDARY BOOT.
    A}>\mathrm{ volcopy
```

If the data on the screen are incorrect，press［ELEEE and re－enter the data．
（9）Press $\begin{aligned} & \text { 需 ．The following screen will appear．} \\ & \frac{1}{h} \text { ．}\end{aligned}$
$\mathrm{A}>$ format $\mathrm{b}:$

FORMAT V1．03
Disk B：will be destroyed，OK？y COPYING SECONDARY BOOT．

A＞volcopy

VOLCOPY V1．01 $\sim_{\text {vary according to the }}^{\text {The }}$ number display line will
Enter Source Disk Drive（A－D）？－
(99) Press A and following:

A $>$ volcopy

VOLCOPY V 1.01
Enter Source Disk Drive (A-D) ? a
Destination Disk Drive (A-D) ? -
(11) Press B and 㕆 . The screen appears as shown below.

A $>$ volcopy

VOLCOPY V1.01
Enter Source Disk Drive (A-D) ? a
Destination Disk Drive ($A-D$) ? b
Copying disk A : to disk B :
Is this what you want to do (Y / N) ?
(12) Press Y and . The copy will begin. To abort the
process, press $[\underline{Y}$ instead of N. The screen that appears will look like the one shown below.

A > volcopy

VOLCOPY V 1.01
Enter Source Disk Drive (A-D) ? a
Destination Disk Drive (A-D) ? b
Copying disk A: to disk B:
Is this what you want to do (Y / N) ? y
COPY TRACK NUMBER $=0^{-}$

During the copying process, the display will show the current track being copied from track zero up to track 79. The screen will appear as shown below.
$\mathrm{A}>$ volcopy

VOLCOPY V1.01
Enter Source Disk Drive (A-D) ? a
Destination Disk Drive (A-D) ? b
Copying disk A : to disk B :
Is this what you want to do (Y/N) ? y
COPY TRACK NUMBER $=79$

Copy another disk (Y / N) ? _

Copying is complete. The process takes about three minutes from start to finish. CANOBRAIN will then ask you whether copy processing is to be continued.

金 Press \mathbf{N} and below.
$\underset{\sim}{\mathbf{F}}$. The screen will appear as shown

A $>$ volcopy

VOLCOPY V 1.01
Enter Source Disk Drive (A-D) ? a
Destination Disk Drive ($A-D$) ? b
Copying disk A : to disk B :
Is this what you want to do (Y / N) ? y
COPY TRACK NUMBER $=79$

Copy another disk (Y/N) ? n
A >

When using a printer other than the $\mathrm{A}-1200$, $\mathrm{A}-1210$ or A-l250, or when using a system to which no printer is connected, operations stated in step 14 are not needed.
(id) Press the following keys in the order shown.

The last number differs according to the type of printer (s) connected to your system.
. When using an $A-1200$, press 1 .

- When using an A-1210, press [2].
. When using an $A-1250$, press [3].
. When using other printers, press [4].
. When no printer is connected, press [4].

If an incorrect number is entered, the printer may not operate normally.
If the printer being used is replaced with a different type of unit, make sure that system floppy disk 1 is re-created.
Explanations given here assume that an A-1200 is connected to your system.

The screen should look like this:
\therefore submit setup 2 1_

If the information on the screen is not correct, press
 processing sequentially and the screen returns to "A>". Now CANOBRAIN system floppy disk 1 has been created.

The next step is to create system floppy disk 2.
(1) Insert the original CANOBRAIN floppy disk 2 into drive A. Insert a new floppy disk into drive B. Do the following to inform the computer that floppy disk replacement has been completed:

Press $\left\{\begin{array}{l}a n \\ C\end{array}\right\}$ simultaneously.
$\mathrm{A}>\wedge \mathrm{C}$
A >
(2) Press the following keys in the order shown.

$$
\mathrm{V}[\bar{\sigma}] \mathrm{L}][\mathrm{C}] \sigma \mathrm{O}]
$$

Check to see that the screen looks like the one below.
\square

If the information on the screen is not correct, press Pant
(3) Press $\frac{t}{1}$. The screen shown below will appear.

A $>$ volcopy

VOLCOPY V1.01 \leftarrow The number displayed on this line will Enter Source Disk Drive (A-D) ? _
(4) Press A and A . The screen appears as shown below.

$$
A>\text { vol copy }
$$

VOLCOPY V1.01
Enter Source Disk Drive (A-D) ? a
Destination Disk Drive (A-D) ? _
(5) Press B and 最 . The following screen will appear. ;
$A>$ volcopy

VOLCOPY V1.01
Enter Source Disk Drive (A-D) ? a
Destination Disk Drive ($\mathrm{A}-\mathrm{D}$) P b
Copying disk A : to disk B :
Is this what you want to do (Y / N) ?
(6) The new floppy disk should be inserted into drive B. Press $[\bar{Y}]$ and $\left[\frac{5}{1}\right.$ to initiate the copy process.

Press N instead of Y to stop copying. The screen appears as shown below.

A $>$ volcody

VOLCOPY V1.01
Enter Source Disk Drive (A-D) ? a
Destination Disk Drive (A-D) ? b
Copying disk A: to disk B:
Is this what you want to do (Y/N) ? y
COPY TRACK NUMBER $=0^{-}$

During the copying process, the display will show the current track being copied from track zero up to track 79. The screen appears as shown below.

```
    \vdots
    A>volcopy
    VOLCOPY V1.01
    Enter Source Disk Drive (A-D) ?a
    Destination Disk Drive (A-D) ?b
    Copying disk A: to disk B:
    Is this what you want to do (Y/N) ? y
    COPY TRACK NUMBER = 79
    Copy another disk (Y/N) ?_
```

Copying is complete. The process takes about three minutes from start to finish. CANOBRAIN will then ask you whether copying is to be continued.
(7) Press \mathbf{N} and . The following screen will appear:

System disk 2 is now completed.

1.2.2 Sample Data Floppy Disk Creation

For beginners, the floppy disk provided with this manual contains sample data. Copy this sample data to a new floppy disk to create a sample data floppy disk. If you do not need the sample data, see Section 1.2.3, "Creating data floppy disks".
(1) Insert the system disk (or system disk l) into drive A with the characters displayed as shown below. Insert a new floppy disk into drive B.

(2) Press $\left\{\begin{array}{l}-\pi \\ \boldsymbol{C}\end{array}\right\}$ simultaneously.

$$
\begin{aligned}
& \mathrm{A}>\wedge \mathrm{C} \\
& \mathrm{~A}>{ }_{-}
\end{aligned}
$$

(3) Press the following keys in the order shown.

The screen should appear as shown below. If the data on the screen are incorrect, press and start over again.

```
;
A> submit setup 3_
```

(4) Press $\underset{\text {. }}{\text { (4) The screen will look like the one shown }}$ below.复
$\mathrm{A}>$ format b :

FORMAT V1.03 $\leftarrow \begin{gathered}\text { The number displayed on this } 1 \text { vine will } \\ \text { vary according to the versioned }\end{gathered}$ Disk B: Will be destroyed, OK?

CANOBRAIN asks you whether it is all right to destroy the contents of the floppy disk inserted in drive B. Make sure that the floppy disk inserted in drive B is the new one.
(5) Press Y and $\begin{aligned} & \text {. } \\ & \text { 而 . Processing starts, messages are }\end{aligned}$
displayed sequentially on the screen, and the screen then returns to "A>_". The data floppy disk containing the sample data has now been created.

1.2.3 Creating data floppy disks

(1) Insert the original CANOBRAIN disk into drive A with the characters displayed as shown below. Use the original system disk 1 for new $51 / 4$-inch disk creation. Insert a new floppy disk into drive B.

```
A>-
```

(2) Press simultaneously.

$$
\mathrm{A}>\wedge \mathrm{C}
$$

$$
A>-
$$

(3) Press the following keys in the order shown.

Make sure that the screen appears as shown below. If the screen is incorrect, press and re-enter the data.

(4) Press
. The screen appears as shown below.
$\mathrm{A}>$ format b :

FORMAT V 1.03 . $-\begin{aligned} & \text { The number displayed on this line will } \\ & \text { vary according to the versionued. }\end{aligned}$
Disk B: Will be destroyed, OK?

CANOBRAIN asks you that whether it is all right to destroy the contents of the floppy disk inserted into drive B. Make sure that the floppy disk inserted into drive B is the new one. If the floppy disk is not to be destroyed, press $[\mathbb{N}]$ and $\left[\begin{array}{l}\text { [} \\ \text {; the screen will }\end{array}\right.$ then return to "A>_".
(5) Press Y and . The screen will look like the one shown below, and processing will begin.

A $>$ format b :

FORMAT V1.03
Disk B: will be destroyed, OK? y

When processing is finished, the screen appears as shown below.

A $>$ format b :

FORMAT V1.03
Disk B: will be destroyed,OK?y
COPYING SECONDARY BOOT.
A > _

Formatting takes about 40 seconds for a $51 / 4$-inch disk and 90 seconds for an 8 -inch disk.

The new data floppy disk is now completed.

1.2.4 Work Floppy Disk

CANOBRAIN displays the following message when it requires additional work area.

This message asks you to insert a work floppy disk into drive A instead of the system floppy disk. You should use a formatted floppy disk as a work floppy disk.

Chapter 2 - Starting To Use CANOBRAIN

This chapter explains CANOBRAIN operations and procedures for using the keyboard. operations

2.1 CANOBRAIN Startup

This section explains the startup procedure used for CANOBRAIN, beginning with the setting of the disks.

2.1.1 Floppy disk insertion

Insert the CANOBRAIN system floppy disk (prepared in Chapter l) into drive A. For $51 / 4$-inch floppy disks, insert system floppy disk l into drive A. Insert a data floppy disk into drive B.

2.1.2 Startup Procedure

When the power is turned on, the CP/M-86 operating system is automatically loaded into the computer. When using 51/4-inch floppy disks, however, CANOBRAIN is not automatically started up; the screen will show "A>". In this case, perform the following procedures:
(1) Remove system disk 1 from drive A.
(2) Set system disk 2 into drive A.
(3) Press [10. At the same time press [c].
(4) After "A>" is displayed again, press keys in the following order.

When CANOBRAIN is operational, the following screen appears:

Canon
 Canobrain

Copyright By CANON INC. $V \times . \times \times$ [F12] $=$ end date $==$ -

Note: "X" indicates one numeric character.

After this, a series of tables and graphs are displayed. This continues until data entry begins.

2.2 Basic Key Operations

This section explains basic key operations, using examples stored in the data floppy disk.

2.2.1 Entering the date

Press once to deactivate the key if its LED is lit.
Enter the current date as a 6-digit number.
For example, you would enter December 1,1983 as follows:

Each time two digits are entered, a period is automatically displayed.
[F12] $==$ end date $==12.01 .83$

If you make a mistake, press and re-enter the date. Then press

If you omit date entry and press only

last entered will be displayed. At this time, when is pressed once again, the displayed date will be entered.
2.2.2 Selecting Examples

PRIHTER $=$ (PRINT) A-1210 (HARD COPY) A-1210 PASSUORD $=$

Note: "Password" will be explained later. Press

Press Fs .

total pattern lisi
no comment
coment meyagard
CREATE
CREATE
12.01.03

Press F2.

Press and

2.2.3 CANOBRAIN-processed data

Below is an example of a book table. In this display you can see the different types of data that can be processed by CANOBRAIN. Contrast the screen below with the roll format in Section 2.2.4. We will exercise key operations using the roll. The screen should look like the one below.

This book table is composed of 20 rows and one column. The column width (number of characters) is 75 characters. That is, the table is as wide as the screen. CANOBRAIN, of course, allows you to create a table that is too large to be displayed on the screen at one time. Note the characters and symbols displayed in the table. These characters and symbols are data that can be processed by CANOBRAIN, and are entered using the keyboard keys. The keyboard layout is as shown in the following figure.

Rows 1 through 4 show that even if the same keys are pressed, characters and symbols entered will register differently on the screen, depending upon the status of the starting from the space bar and moving up sequentially to the top row in a left to right manner.

The following table shows the status of the and $\hat{\Delta}$ keys for rows 1 through 4:

Row	an	U
1	Lamp off	Not held down
2	Lamp off	Held down
3	Lamp on	Not held down
4	Lamp on	Held down

In rows 5 through 7, numbers are entered via the ten-key pad with the off. Row 5 data was entered by pressing the following keys:

|

The numbers on row 6 are entered by pressing keys in the following order under the same conditions as row 5.

In row 7, the same data entered in row 5 is displayed in a different location. This is because the same key operation used for row 5 was performed after entering a double quotation mark ("). This symbol is entered by pressing \hat{j} with the 2 key held down. The symbol itself does not appear on the screen. $\mathbf{2}_{2}$ indicates that numbers to be entered after it should be regarded as characters. Note that numbers entered as characters cannot be used for calculations. In addition, " cannot be entered into a cell.

Press the following key.

2.2.4 Key operation exercise

The screen has changed as follows. This is a roll.

This roll consists of 30 rows and 3 columns.
In order to view the entire roll, do the following: Activate the and then press
This allows you to view rows 14 through 26 . Use this key when you want to view the bottom section of the roll. Conversely, press [$\left[\begin{array}{c}\text { and } \\ 0\end{array}\right]$ when you want to view the top section.
Press [1] . This causes rows 1 through 13 in column 3 to appear. Press this key when you want to view the rightmost portion of the roll. Press \square when you
want to see the leftmost portion of the roll. Press 5. This causes rows 18 through 30 in columns 2 and 3 to appear. Press this key to display the last row in the last column in the roll.
Press $[7$. This causes rows 1 to 13 in columns 2 and 3 to be displayed. Press this key to display the first row in the first column. A roll has a special row, row 0 , where only item names are entered. Row 0 is always displayed. In this example, "Characters left-justified" and "Numbers with commas" have been entered on row 0 as item names.

Now look at row 1 , column l. This cell is highlighted to indicate that it is being processed. This highlighting is called reverse display, and it can be moved by pressing the arrow keys ($\left.\begin{array}{l}1 \\ 2 \\ 2\end{array}, \begin{array}{l}{[} \\ 4\end{array}, \begin{array}{l}7 \\ \hline\end{array}, \begin{array}{l}\dagger \\ -\end{array}\right)$ on the ten-key pad while the is on. This reverse display is called the cell cursor. The position of the cell cursor, RxCy, is displayed on the second line from the bottom of the screen. R stands for row, and C stands for column. RlCl means that the cell cursor is at the first row on the first column. RxCy is called an address since it indicates the position of the cell.
Now press the following keys. If the key is on, deactivate it.

Characters entered from the keyboard appear before "_" on the bottom row of the screen. "_" is called the character cursor.
The character cursor indicates the position into which you can enter characters and numbers. "asd" will also appear at the cell cursor position. Press screen will change as follows:

Next, enter numbers. Deactivate the and then press the following keys:

"l23456789" will appear at the bottom row of the screen. However, unlike characters, nothing appears at the cell cursor position. Numbers are not displayed at the cell cursor's location unless

is pressed. Press

The screen will change as follows:

The right part of column 3, which had not been displayed, has appeared. In addition, commas have been inserted after every third digit in the second column. Character left-justification is specified for column l, and comma insertion is specified for column 2. Enter any characters you wish in column 3.

We have entered data in the three columns on row 1. Press
 - The screen will change as follows:

2.2 .5
 Cell cursor movement

So far, we have explained the screens that are displayed when you select the data input function. You should be familiar now with how the cell cursor moves when data is entered.
Look at the small arrow in the bottom right corner of the screen. This arrow indicates the direction in which the cell cursor automatically moves when you press

while the data input screen is being displayed. When you entered data before, the cell cursor moved from column 1 to column 2, then to column 3, then to row 2 in column 1. That is, the cell cursor moved right (arrow direction) whenever
 was pressed. After the cell
cursor reached the rightmost column, it moved to the beginning of the next row. The movement of the cell cursor is illustrated as follows.

The direction of the arrow in the bottom right corner of the screen changes according to the direction indicated on the key top when $\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}\dot{2} \\ 4\end{array}\right],\left[\begin{array}{l}\overrightarrow{6}\end{array}\right.$ or $\left[\begin{array}{l}1 \\ 8\end{array}\right]$ is pressed while the is on. When you do this, the cell cursor will move one cell position in the indicated direction. Activate the and press the following key.

The cell cursor will move to row 3 in column 1 , with the arrow pointing downward. If \sqrt{E} is pressed, the cell
cursor will move downward one cell, and will continue to move in that direction as long as the arrow points downward and
 is pressed. When the cell cursor
reaches the bottom row under these conditions, the cell cursor will then move to the beginning of the next column as illustrated in the following figure.

If the arrow points left, the cursor will move to the rightmost cell on the previous row after reaching the leftmost cell. If the arrow points upward, the cell cursor will move to the bottom row of the column to the left when it reaches the top of a column.
When the cell cursor is moved with an arrow key instead of \qquad
Now try moving the cell cursor to various desired positions using the arrow keys and

After finishing these exercises, press the following keys:

The optional pointing device has exactly the same function as pointing device can also move the cell cursor and graphic cursor diagonally to save time. In addition, you can increase the speed of cursor movement by pressing the fast button. The other function keys on the pointing device cannot be used with CANOBRAIN.

An attempt to move the cell cursor outside the displayed screen area will cause rows or columns being displayed to be replaced on the screen by other rows or columns. You may want to retain row 1 under certain conditions. The following explains how to do it. For a book table, row 1 and column l are always displayed. The screen will look like the one below.

Press the following keys simultaneously:

The reverse display of row 1 has reverted back to the normal display.

Row 1 is displayed at all times regardless of the cell cursor's position. In this state, the cell cursor moves differently. When the arrow in the bottom right corner points right, the cell cursor moves as follows whenever

is pressed.

That is, the cell cursor moves to the next row only when the rightmost column is displayed. Column 2 is skipped. In this case, change the arrow direction to the left and press
 - This also applies when the arrow in the bottom right corner of the screen points downward. To return to the previous state, press $\hat{\Delta}$ at the same time. Now you can move the cell cursor wherever you want and enter whatever data you want. Note that only normal characters can be entered in columns 1 and 3, and only numeric data in column 2. Now you are ready to do some data input exercises.

If you find a mistake in the data you have entered

to delete one character immediately preceding the cell cursor. 4π is used to delete all data that has been entered. If you find your mistake after pressing

move the cell cursor to the appropriate position and enter the correct data.

After finishing the exercise, press the following key to return to the initial screen.

F12

Press F12 three times. The screen will look like the one below. Be sure to return the screen to this state before turning off the power. Turning off the power during operation may result in the loss of data.

```
A>
```


Canon AS-100

Chapter 1 - TABLE DATA CREATION AND MANIPULATION

This chapter uses simple examples to explain CANOBRAIN's table processing functions.

1.l Preparation of a Simple Table

The table examples used in Volume I were prepared for you, but in this chapter you will handle the entire process yourself from table preparation and data entry to printer output.

1.1.1 Planning a table

Before creating any table, plan it out by making some notes like those shown below.

For instance, the format notes for the main example in this book would look like this:

NO.	Branch code	Branch name	Sales this month
3 digits	4 digits	20 characters	10 digits

First determine how many rows there will be in the table according to the number of branches there are. In this example, we'll use 20 rows. Next, determine which items will be included in the columns of the table. This table contains four column items: No., Branch code, Branch name, and Sales this month. The values you use at this stage can be changed later, so rough estimates can be used.

Date entry was covered previously in Section 2.2.1 on page 38. This section describes the rules governing date input. First, turn the AS-100's power on as described on page 37.

Canon Canobrain

Copyright By CANON INC. $\quad \mathrm{X} \times . \times \times$
$[$ F12] $==$ end date $==$ -
$-10[0][8][3]$

The elements of the date (month, day, and year) can be entered in any order, but each element must be a twodigit number; letters and symbols cannot be used.

Note: In the remaining part of this manual, will mean that you should enter the key following it. The馬 key will be indicated by .
1.1.3 Password input

A password is a private code assigned to prevent people from gaining access to the tables or graphs you have prepared. Unless a password is assigned when a table or graph is prepared, that table or graph can be read from or written to by anyone. When a password is specified, only people who know that password can access the table or graph.
(1) Use the following operation when a password is not assigned.

$$
\square
$$

(2) Use the following operation to assign a password (in this case "CANON").

CR|N:N

If you make a mistake when reentering the password, the message shown below is displayed and you must start the operation over again.

To prevent other people from seeing your password, the entered password itself is not displayed on the screen.

The same password must be specified whenever you want to read, modify, or delete a table or graph which is passwordprotected (has a password assigned). If you forget the password, you will not be able to access tables or graphs which you have created, so it's always a good idea to keep a record of assigned passwords for quick reference.

Passwords can contain up to six letters, numbers, or symbols in any combination.

1.1.4 Creating new books

Make sure the screen looks like this.

The process of making a book is called book creation.

Enter the name of the book. The name. can contain up to 20 letters, numbers, or symbols in any combination.

$[\bar{S}] A D[\bar{S}] \square B[\bar{Y}] B A D B A$

Books are numbered automatically when the name is entered. This completes the procedure for book creation. The screen should now look like the one shown below.

Now enter the number of the book you have just created,
[2]

1.1.5 Creating pages

In this section, you will learn how to create pages in the book.

Specify the 0 page to create a page.

$\rightarrow \longdiv { F 1 }$

Enter the table title.

Enter any comments, like your name or a summary of the page contents.

The screen above asks whether or not the contents of a previously-created page will be copied (saved) to the new page. However, since the book has just been created, there are no pages to copy.

Here, CANOBRAIN asks whether a table or a graph will be written on the new page. Since we are now working on tables, specify a table as indicated below. (A graph cannot be written into a book immediately after it is created).

1.1.6 Specifying table capacity

You will want to refer to the notes you made during the planning stage when specifying table capacity. The screen should look like this.

(1) Specifying the number of rows

Up to 255 rows can be specified. During planning we decided that the table would have 20 rows, so specify 20 as shown below.

20
(2) Specifying the column width

In the notes we made, we decided that the columns of the table would be as follows:

No.:
Branch code:
Branch name:
Sales this month: 10 digits

Specify these column widths as shown on the next page.

Here, CANOBRAIN asks how many characters/digits will be included in the first column (Cl). The column can be up to 75 characters/digits wide and is specified as shown below.
[回

The screen should now show the first column. Specify the width of other columns just as you did for Cl.
(4) 20 10 0

Up to 99 columns can be specified.

After all columns have been specified, the screen should look like the one below.

This completes column specifications for the table. The next step is to input the data itself.

F12

1.2 Data Entry

At this point the screen should look like this.

The cell cursor is positioned at row l, column 1. This is indicated in the bottom right corner of the screen. $\frac{R x C y}{}$ indicates the row number (x) and the column number (y). The RxCy designates the table address, or the cell position. In this case the display shows RlCl for row l, column 1 . Procedures for specifying the table address will be explained in detail later.

1.2.1 Entering the column titles

The titles of each column are entered in the cells of the first row. Enter the titles decided upon earlier using the following format:

No.:
Branch code:
Branch name:
Monthly sales:

No.
CODE

பール, SALES

Note: " \smile " indicates a space.

F1

First, enter "No." in row l, column l. Remember that [-3 must be on when entering uppercase letters and off when entering lowercase letters.
$[\mathrm{N}][0]$

Alphabetical data are displayed on the bottom line of the screen and at the cell cursor position. After each title is entered, the cell cursor automatically moves one cell to the right when \square is pressed.

Next, enter "Code" in row 1, column 2.
CODED

Now enter the titles for the third and fourth columns. Use the space bar to enter spaces.

After data is entered in the last column of the table, the cell cursor automatically moves to column 1 of the next row.

1.2.2 Entering a series of numbers

This section explains the procedures for entering a series of numbers, in ascending or descending order, into a specific row or column of a table.

Here we will enter the series "l, 2, 3 ..." in the "No." column. After all column titles are entered, press F12.

F3

For this table we want the series of numbers entered in all rows (2-20) of column 1 . This is specified as follows.

Row specification	Column specification	Row and column specification	Table position
		One cell (Example: RlCl)	
All columns in a specific row (Example: R2)	All rows of a specific column (Example: C2)	One cell (Example: R2C2)	
Several rows (Example: R1.3)	Several columns (Example: C2.3)	$\begin{array}{\|l} \text { Several cells } \\ \text { (Example: } \\ \mathrm{Rl} .3 \mathrm{C} 2.3) \end{array}$	
All rows from the row specified (Example: R4..)	All columns from the column specified (Example: C3..)	$\begin{aligned} & \text { Several cells } \\ & (\text { Example: } \\ & \text { R4..C3... } \end{aligned}$	

Notes:

1. In the table above, row specifications are indicated by 淄 , column specifications are indicated by ㅉㅉㅇ, and row and column specifications are indicated by䨓 .
2. Some specification formats cannot be used with certain functions. See the explanation of each function for details.

Since the series of numbers that will be entered is "1, $2,3 . . . "$, specify the beginning number of the series (the initial value) as follows.

- 1 a

Next, specify the numbering interval (the increment or decrement) by which the next number will be increased or decreased.

- 1 回

If "2" is specified, the series "l, 3, 5, 7..." would be entered; if "-l" is specified, "l, 0, -l, -2..." would be entered.

The position of the cell cursor does not change during the entry of a series of numbers.

F12

The screen for data processing should be displayed.

1.2.3 Entering character data

Now we will enter the codes and branch names. Data that will be entered under these column titles is shown below.

$N a$	C O D E	B R A N C H
1	0101	NEW YORK
2	0102	TOKYO
3	0103	LONDON
4	0104	MOSCOW
5	0105	SHANGHAI
6	0106	PARIS
7	0107	OSAKA
8	0108	BUENOS AIRES
9	0109	LOS ANGELES
10	0110	CHICAGO
11	0111	CALCUTTA
12	0112	MEXICO CITY
13	0113	DETROIT
14	0114	BOMBAY
15	0115	RIO DE JANEIRO
16	0116	PHILADELPHIA
17	0117	PEKING
18	0118	HONG KONG
19	0119	AMSTERDAM

The codes are entered as character data, so you cannot use the numeric entry procedure described in the previous section. "Use the same procedures that you used to enter the column titles.

$$
\begin{array}{|l|}
\hline F 1 \\
\hline
\end{array}
$$

Move the cell cursor to row 2, column 2,

Enter the first code "0101". Be sure to press Wefore entering the characters for the code.

The last two keys in the sequence above specify the direction in which the cell cursor will move when \square is pressed. Note that the direction of the arrow in the bottom right-hand corner of the screen changes from \rightarrow to \downarrow.

Turn off then enter "0102" as the next code.
$-\square[\overline{0}][\overline{0}][\overline{0}][\square$

Enter all of the other codes through row 20 in the same way. Be sure to press $⿴ 囗$ before entering each code number. After the code is entered in row 20 , the cell cursor automatically moves to row 1 , column 3 .

Next, enter the branch names. Start by moving the cell cursor to row 2 , column 3.

Enter the branch name "New York".

Then enter all of the other branch names through row 20.

Finally, enter the monthly sales figures.

CODE	SALES	BRANCH
0101	163100	NEW YORK
0102	297000	TOKYO
0103	334900	LONDON
0104	259200	MOSCOW
0105	261600	SHANGHAI
0106	296500	PARIS
0107	264600	OSAKA
0108	446400	BUENOS AIRES
0109	143700	LOS ANGELES
0110	297000	CHICAGO
0111	297000	CALCUTTA
0112	90800	MEXICO CITY
0113	243000	DETROIT
0114	112400	BOMBAY
0115	201600	RIO DE JANEIRO
0116	458000	PHILADELPHIA
0117	56000	PEKING
0118	217700	HONG KONG
0119	192300	AMSTERDAM

Move the cell cursor to row 2, column 4.

Enter the sales figures for each branch in sequence as shown below.

16 6 10 0 0

Enter the other branch sales through row 20 in the same way. Note that the cell cursor does not move after data is entered in the last cell of the table (row 20, column 4).

This completes data entry. Next we will learn the procedures for correcting entered data.

1.2.4 Correcting data

You've already learned how to use DEL to correct mistakes in entries found before $\left[\begin{array}{l}\text { is pressed. The following }\end{array}\right.$ procedure is used to correct data after entry is complete. Use this procedure to change the data on line 9 from "0108, Buenos Aires, 446400" to "0120, Frankfurt, 395200."
(1) Moving the cell cursor

First, you must move the cell cursor to the cell that will be corrected. One method of doing this is to press [區 and then use the $\left[\begin{array}{l}1 \\ 2\end{array}\right]\left[\begin{array}{l}-1\end{array}\right]\left[\begin{array}{l}\overrightarrow{6}\end{array}\right]$, and $\left[\begin{array}{l}1 \\ 8\end{array}\right]$ keys. When is on, the cell cursor moves in the direction indicated by the arrow on the keytop each time the key is pressed. At this time, the small arrow in the bottom right-hand corner of the screen also changes direction. You can also move the cursor to row 1 , column 1 (the home position) in one keystroke by pressing $\left[\begin{array}{c}\text { romb } \\ \hline\end{array}\right.$.

You can also move the cursor by pressing \square and then entering the cell address. There are two $\square=\square$ on the typewriter keyboard and one on the ten-key pad; both have exactly the same function. Let's move the cell cursor using this key operation.

Here, CANOBRAIN asks where the cell cursor will be moved. Specify movement to row 9, column 2 by entering the following.

- R 9 C 2 回

When the cell cursor is moved using \square and the cell address, the direction of the arrow in the bottom right corner of the screen does not change. If you press by mistake, simply press .

(2) Correcting data

After moving the cell cursor to the desired cell, enter the correct data. It is possible to re-enter all data; in this example, however, correct the present data using the data correction method outlined below.
$P F 1$

Turn the on and press the following key twice:

- 固固

Turn the off and change "08" to "20".

- $[\overline{2}][\overline{0}] \square \square$

The cell cursor will move to row lo. This is because the arrow in the bottom right corner of the screen points downward. Move the cell cursor to row 9, column 3 using $\xrightarrow{\leftrightarrow}$. Then change "BUENOS AIRES" TO "FRANKFURT".

(3) Correcting data without moving the cell cursor

You have learned how to correct data by moving the cell cursor. Now you will learn to correct data in a specific cell by simply specifying the cell address. Use this procedure to change the data in row 9, column 4 from "446400" to "395200."

The first colon in the key sequence above indicates that the data to the right of the "=" sign will be written in the cell at the specified row and column address.

When this sequence is entered, the data in row 9, column 4 changes to "395200" and the cell cursor moves down one row. This procedure can be used either to enter data or to correct it.

This completes the explanation of data correction.
F12

1.2.5 Printing tables

This section explains how to print tables on the printer. Make sure that the screen looks like the one shown below before you proceed.

$-F$

The first step is to specify the printout dimensions. This includes the following five items:

- Number of lines per page (page length)
- Starting line position (first printing line)
- Ending line position (last printing line)
- Starting character position (left margin)
- Ending character position (right margin)

The number of lines per page is 70 , assuming that A4-size forms ($215 \mathrm{~mm} \times 297 \mathrm{~mm}$) will be used. The number of lines assigned to a function key can be specified by selecting SYSTEM from the screen displayed when entering passwords.

Omit the starting and ending line specifications. CANOBRAIN automatically specifies 3 as the starting line and 68 as the ending line, just as if $[3][6][8]$ was entered.
\rightarrow

Omit the starting and ending character specifications. CANOBRAIN automatically specifies 3 as the starting character and 80 (standard 80 -character printer) as the ending character, just as if 3,80 was entered.

Here CANOBRAIN asks whether will you use cut sheets or not. If you are going to use cut sheets, select $F 2$; otherwise, select F1. If you select F2, CANOBRAIN will display a prompt, "SET PAPER ENTER=OK, CANCEL=RETURN", when you start printing. After you set the paper, press
(. If you want to cancel the printout, press CANCEL. The prompt will be displayed for every page printed.

CANOBRAIN asks you to input the ruled line option. For this example, select "Ruled". If the printer is not an A-1200 or A-1250, you can only select "Not ruled" or "Ruled".
$-\square=1$

- FB

Enter the header that will be printed on the starting line as shown below.
 Together, the date and page number consist of 25 characters, which are right-justified at the ending character position when printed.

Next, specify which data from the table will be printed. First, we'll specify the columns. Specify that all columns will be printed by pressing Fr .

F1
It is also possible to print selected columns by specifying their numbers instead of pressing $\quad \mathrm{Fi}$. In this case, the first column specified is left-justified. Columns are printed in the order specified.

The procedure for retrieving data that will be printed is described later.

Next, specify the rows that will be printed. Since we will be printing all rows of the table, simply press Fi. Printing starts when F is pressed.

F1

You can also print selected rows by specifying their numbers instead of pressing F . When printing specific rows, enter a comma between the first row that will be printed and the last row that will be printed.

This completes the explanation of data printout. Now return to the data processing screen.

F12	F12

1.2.6 Ending CANOBRAIN operation

This completes the exercises for simple table preparation. Now we will explain how to end CANOBRAIN operation. First, make sure that the screen is the same as shown below, then perform the operations indicated.

F12

F12

F12

F12

Canon Canobrain

Copyright By CANON INC. $V \times . \times \times$
[F12] $==$ end date $==-$

At this point, CANOBRAIN's start-up screen should be displayed. To proceed to Section 1.3 , enter the date. To end operations, press $F 12$ again. Control will return to the operating system.

```
A>-
```

Always be sure to return to this screen before turning off the power.

1.3 Increasing the Size of Tables

This section explains procedures for inserting new rows or columns and editing data in tables.
1.3.1 Specifying the table that will be changed

Copy the table created in Section 1.1 to a new page. The screen examples are displayed again after password entry.

F1

Select the "SALES BY BRANCH" book.

2

If more than 19 books are catalogued, pressing book 19 on the screen in place of book l; pressing it again displays book 20 in place of book 2, etc. This allows you to locate books which are not initially displayed on the screen.

Pressing ${ }^{2}$ once redisplays book 2 in place of book 20 ; pressing it again redisplays book 1 in place of book 19 , etc.

This operation is called scrolling. Scrolling can be used with the book, page and roll selection screens and the table display screen.

In addition to the cursor keys (2,3,5,7,8 and 9), the key and the number of the book, page or roll you want to display can be specified.

Create a new page.
(0)

Assign the title "Sales by Branch 1 " to this page.

(W)

Copy the data from page 1 to the page just created. Using the following key operation.

11

This copies all data from page 1 to page 2.

1.3.2 Inserting columns

Add columns to enter sales from January to November between "Branch" and "Sales." Also change the title of the "Sales" column to "DEC". Specify a column width of 10 digits for each new column. Make sure that the screen looks like the one shown below before you start.

MSERT

F2

Insert 11 columns between columns 3 and 4.
(4) [1] 1$]$

When is pressed, a column is inserted immediately to the left of the cell cursor.

Enter 10 to specify the width (in digits) of the new column.

10

Specify the width of the other new columns through column 14 using the same procedure.

```
100回...(10 times)
```


Now make sure that the new columns have actually been inserted. Perform the key operation below after confirming that is on.
[1].... (2 times)

As the screen scrolls to the left, you can see that what was previously column 4 is now column 15 , and that 11 columns, with a width of 10 digits each, were inserted.

This completes the procedure for inserting new columns.

F12

1.3.3 Entering data in the new columns

Now we will enter data in the columns which were just inserted. First, make sure that the screen looks like the one shown below.

(1) First, enter the column titles. Move the cell cursor to row l, column 4.
\leftrightarrows

- (R)[1][4][G]

F1

Enter column titles "JAN" through "NOV" in row l of each new column.

- $\square \square \square \square$

$\rightarrow \square \square \square$ M
$-\square \square \square[\mathrm{A}) \mid \mathrm{P} \overline{\mathrm{R}}) \square$
- $\square \square \square \mathrm{MA} \mathrm{Y} \square$

- $\square \square \square \square \mathrm{J} \square \overline{\mathrm{Y}}]$
$-\square \square \square[\mathrm{A}](\mathrm{U}) \square \square$

$-\square \square \square[0][\mathrm{C}](\bar{T}) \square \square$
$-\square \square \square \mathbb{N}|\bar{O}| / \overline{\mathrm{V}} \mid \square \square$

Now change the title of column 15 from "Sales" to "DEC."

(2) Next, enter sales figures for the months of January through November for each branch. Since this is a lot of data, it has been prerecorded on the data floppy disk for your convenience.

Read the data into the table from the data floppy disk as follows:

CANOBRAIN asks whether the floppy disk data should be oriented horizontally (in row units) or vertically (in column units). Data is oriented vertically in this example.

> F2

A common data (CD) file is a file which has been stored on a floppy disk in a format which allows it to be used either as data for a table prepared with CANOBRAIN or by a program written in BASIC. CANOBRAIN can input (read) CD file data to a table or output (write/store) table data as a $C D$ file. See Volume V and Appendix l for a detailed explanation of $C D$ files.

The data which will be read into the table is contained in the CD file "SALES".

The data to be read in from this CD file for the months of January through November as well as December is shown below and on the following page.

JAH.	FEE,	MAR.	APR,	MAY	IUHE
446400	344500	509800	322800	586000	497300
264600	305000	98000	316200	398000	465300
547200	186400	467200	332900	737200	227600
130200	177900	291500	177700	432300	397500
264600	115000	138500	362900	194200	246700
201600	350900	445500	124300	537700	324300
164200	206500	439900	198700	393400	315100
201600	396500	359000	202200	276700	292300
280800	426000	271500	234500	375100	486200
243000	337500	128000	298000	217600	329400
164700	213500	155600	589000	387600	513600
201600	354000	466200	245000	294600	246800
264600	234500	197800	468600	547300	96420
334900	371000	242100	163400	354100	253700
261600	228400	198000	147800	323900	456100
345600	215800	342100	282200	215900	258300
264600	138900	130800	275800	438200	374400
163100	110100	246700	135800	334200	298900
297000	326500	344400	153000	162400	325500

JUL'	AUG.	SEP.	OCT.	NOU.	DEC.
341200	474600	236500	221100	398200	163100
444300	536100	468300	432500	94700	297000
318200	498200	287700	332400	295500	334300
324300	319200	463700	529300	406300	259200
467100	506400	299800	406200	462500	261600
210200	454600	305200	377300	397200	296500
300300	354200	435300	411900	299000	264600
456600	290000	264400	580800	308900	395200
311500	563200	379600	407500	245100	143700
256600	411200	298300	364800	233100	297000
470600	502300	346200	298900	440900	297000
587100	591200	483400	302700	332900	30800
389500	329000	264600	290800	411600	243000
342900	384400	156200	321900	504600	112400
209800	468200	489200	506000	372800	201600
571000	375100	283500	472800	197600	458000
339300	346200	472600	377500	509200	56000
497200	255300	356500	433100	419300	217700
179000	522300	207000	274800	412600	192300

Now move the cell cursor to row 1 , column 1 using the operation shown below. Make sure that is on.

1.3.4 Inserting rows

Now let's insert some extra rows into the table. Four new rows will be inserted immediately following row 20.

INSERT

F1

Here, the new rows will be inserted immediately following row 20. INSERT inserts new rows or columns between existing rows or columns.
$\rightarrow[2][,[4]$
$-\begin{gathered}2 \times 0 \mathrm{~m} \\ 3\end{gathered}$

This completes the procedure for inserting rows. Now enter the following data into these rows.

F12
$>\square$

NE. CODE 8 R A NE H
200108 BUENGS AIRES
210121 LENINGRAD
220122 CAIRO
230123 SAN FRANCISCO

JAH. FEE. NAR. AFR. MRY JUNE $236000205400 \quad 372100 \quad 258300 \quad 31500411200$ 351100242200335300276100261500367600 178000213200346200239000342500409200 209800331800305300249700307500290400

IULY AUG. SEF. GCT. NOU. DEC. 500300213100411900296600388500274400 429000434100327800365100245200176300 102400375600229100322600425800311100 223900407300356100237700407800260400
1.4 Table calculations

This section explains the procedure for calculating totals using the sample data already entered. The explanation begins with the following screen, which is displayed when data entry is completed.

1.4.1 Inserting rows and columns for totals

The table we have prepared does not include rows and columns for displaying totals. Required rows/columns can be inserted using the procedures described previously. First, add a new row (row 25) for totals.

Make sure that the is on. Then do the following:
$\gg \begin{gathered}\text { Fann } \\ 3\end{gathered}$

F1

(2) [5] [1] [4]

F12

Now insert a new column (column l6) for totals.
Make sure that the is on. Then do the following:
-5

Turn off 哭

This completes the procedures for inserting a row and column for totals. Now enter the heading "Total" in row 1 , column 16 and row 25 , column 3 .

CANOBRAIN provides the following calculation functions. @ AVE (Value): Calculates the average value of data items specified for Value.
@COUNT (address, retrieval condition, value l, value 2): Searches the table for data satisfying the conditions set (limited by value l and value 2) and returns the number of items that fall within those limits. Only numeric data is processed; character data are ignored. The following table contains the retrieval conditions and values used for the conditions:

Retrieval condition	Meaning	Value 1	Value 2
\#GT	Greater than (a)	a	-
\#GE	Greater than or equal to $(\mathrm{a}=)$	a	-
\#LT	Less than (a)	a	-
\#LE	Less than or equal to $(=a)$	a	-
\#EQ	Equal ($=$ a)	a	-
\#NE	Not equal (a)	a	-
\#BT	Between ($\mathrm{a}=$ data $=\mathrm{b}$)	a	b
\#NB	Not between (data a,data b)	a	b
\#DT	Numeric value	-	-

Note: a and b are numeric values.
If both value 1 and value 2 are omitted, the comma (,) must also be omitted.
\#DT cannot be used for a roll.
@LN(Value): Calculates the natural logarithm of a data item specified as a value.
@ LOG (Value): Calculates the base 10 logarithm of the data items specified for Value.
@ MAX (List): Determines the maximum value from the data items specified for List. @ MIN (List): Determines the minimum value from the data items specified for List.

Now that you have finished adding the row and column for totals, it's time to calculate the totals for the total column. The cell cursor should be positioned at row 25 , column 4 as shown below.

Perform the following operation to calculate totals for the total column:

This key sequence instructs CANOBRAIN to calculate the totals of data items in rows $2 \sim 24$ of column 4. Special character strings like @SUM, which are preceded by "@ी", are called functions. Functions are built-in expressions to make calculation easy. Any combination of numbers and addresses with an arithmetic operator, like +, -, etc., is called an expression.

Make sure that the screen looks like the one shown below.

The results of calculations are displayed on the screen, but the function itself is not.

Enter the following expressions to obtain the totals for columns 5 ~ 15 , just as you did before.

Address	Expression
R 25 C 5	@ SUM (R2.24C5)
R 25 C 6	@ SUM (R2.24C6)
R 25 C 7	@ SUM (R2.24C7)
R 25 C 8	@ SUM (R2.24C8)
R 25 C 9	@ S UM (R2.24C9)
R 25 C 10	@ SUM (R2.24C10)
R $25 \mathrm{Cl1}$	@ S UM (R2.24C11)
R 25 C 12	@ SUM (R2.24C12)
R 25 C 13	@ SUM (R2.24013)
R 25 C 14	@ SUM (R2.24C14)
R 25 C 15	@ S UM (R2.24C15)

Although these expressions can be entered through the keyboard one at a time as previously described, it is also possible to use what is called the duplication function to save time.

Return to the data processing screen.
F12

Select the duplication function.

F1

As the calculations were made, the contents of row 25 starting from column 5 changed first to asterisks (*), and then were replaced by numbers, showing how the duplication function is used to copy an expression.

The duplication function can be used to copy data, expressions, etc. from one cell to another. It can also be used to copy data from another table to the table being processed. See Volume V for details. Now, let's take a look at the copied function.

@SUM(R2.24C5), the function copied, is displayed on the bottom line. However, you will notice that it is not quite the same; the original function copied was @SUM (R2.24C4). This is because "RELATIVE" was selected for duplication.

If you specify "RELATIVE", CANOBRAIN automatically adjusts the address so that the function (or expression) is moved to the correct position when it is copied. You usually use "RELATIVE" when you duplicate functions or expressions. If you want to permanently fix an expression address, you must specify "ABSOLUTE." If "ABSOLUTE" is selected, the expression in row 25 , column 5 would be @SUM(R2.24C4).

If "SPECIFY" is selected, you can specify RELATIVE or ABSOLUTE for each expression address.

Look at the columns from row 25, column 6 on. Make sure that is on.
(司… (ll times)
As you can see, the functions for calculating totals are displayed on the bottom line of the screen and the result of the calculation function are displayed in the cell. Now, let's calculate the row totals.
 addresses

When RELATIVE is selected, the addresses in an expression are converted so that the positional relationship between the expression and the addresses does not change when copied. When ABSOLUTE is selected, the addresses in an expression are copied unchanged.

The expression in R2C2 is relatively copied to R4C3.

The expression in R 2 C 2 is absolutely copied to R4C3.


```
1.4.3 Row totals
```

Now let's calculate the row totals. Make sure that the screen looks like the one shown below.

First, move the cell cursor to row 2, column 16. $1=$

Be sure is off.

园 2 困

Now, specify the following to calculate totals just as you did for row 2, columns 4 ~ 15.

You may be wondering what would be required if there were. 50 or 100 rows. Although it would be possible to perform the calculations by entering the expression for each row, an overwhelming amount of work would be entailed.

When the same type of calculation will be performed for all rows, you can use what is called a column expression. Let's try using a column expression.
-F3

The row specification is omitted with column expressions.

Now move the cell cursor to row 1, column 16.

\rightarrow R[1][C] [6]

As you can see, the column expression is displayed on the bottom line of the screen, but "Total" is still displayed at the cell cursor position. If a cell contains character data, column expression results are not displayed.

This completes the procedures for obtaining row totals.

- F12
- F12

1.4.4 General calculations

We have seen that CANOBRAIN's built-in functions make it easy to obtain results for fixed-format calculations, like totals. This section explains procedures for performing more complex calculations that cannot be handled by these functions. Here's an example.
$\frac{\text { Dec. sales }}{\text { Total sales for Jan.-Dec. }} \times 100$

First, insert a new column, column 17, with a width of 6 digits. Our explanation starts with the following screen.

Assign the title "Ratio" to this column.

- Fi

Note: Make sure that is on before pressing $\begin{aligned} & \text { i } \\ & 2\end{aligned}$.

(1) Now let's calculate the "Ratio" for row 2.

Pressing " \pm "at the beginning of this sequence specifies that an expression follows. The slash (/) is the operator for division and the asterisk (*) is the operator for multiplication.

You can combine cell addresses and arithmetic operators in arithmetic expressions. The following symbols can be used as arithmetic operators:

+ : Addition

- : Subtraction
* : Multiplication
/ : Division
= : Substitution
\wedge : Exponentiation
(): Determination of calculation sequence
[]: Results from other cells

Now make sure that you have obtained the following result.

" $4 \mathrm{E}+00$ " should be displayed. This indicates that the result of division performed by the expression is not an even number and that the result cannot be displayed with 6 digits. This is called the E-type display format and indicates a result of $4.0 \times 10^{\circ}$. Internally, the result of the calculation performed by CANOBRAIN is 3.5913244522734.
(2) Since this display format is not suitable for our table, let's try a different approach.
First, delete the data and expression.
[1]

- $\mathrm{F3}$

$-F 1$

This deletes both the data and expression. To prevent data from being deleted accidentally, CANOBRAIN uses different operations for deleting data, expressions, and column expressions. A confirmation message is displayed whenever an attempt is made to delete data.

Now return to the data processing screen.

- F12 F12
(3) Tables, columns, and cells each have certain characteristics called attributes. For example, only numbers can be entered in some columns, while only letter entry is permitted for certain cells. Let's change the attribute of the "Ratio" column so that "Ratio" is displayed as a decimal fraction.

Make sure that the screen looks like the one shown below.

\square

- F3

Make sure the
is off.
[2]

Take a close look at the second row from the bottom; you will see that the display has changed from "06D" to "06FLP02-0". This part of the display indicates the attribute of the cell at the cell cursor position when either input or formatting is selected. A change in this indicator means that the attribute has changed. See Volume V for an explanation of the attribute indicator.

Remember that changing the data type attribute of the cell deletes the current data in that cell.

F12

$>$ F12
 The different types of format definitions which can be specified are shown in the table below.

Table	Column	Cell
Data type - Character - Numeric - Both	Data type - Character - Numeric - Both - Table-dependent	Data type - Character - Numeric - Column-dependent
Character shift - Left-justified - Right-justified	Character shift - Left-justified - Right-justified	Character shift - Left-justified - Right-justified
Numeric type - Real - Integer - Decimal	Numeric type - Real - Integer - Decimal	Numeric type - Real - Integer - Decimal
Numeric punctuation - Commas every 3 digits - Floating insertion character $0, \$,+,-, *,$ space - Rounding	Numeric punctuation - Commas every 3 digits - Floating insertion character 0, \$, +, -, *, space - Rounding	Numeric punctuation - Commas every 3 digits - Floating insertion character $0, \$,+,-, *$, space - Rounding
Calculation - Automatic - Manual	,	
Order of calculation - Vertical - Horizontal		
	Modify column width	
		Protect data

See Volume V for details on the use of these format definitions.
(A) Calculate "Ratio" using a column expression.

You should have obtained the calculation results shown in the previous figure. Since two decimal places were specified for the calculation results, the decimal was automatically rounded off to the nearest hundredth. You can also specify one of three rounding modes (round off, round up, round down).

Now return to the input screen.
F12
(5) When an expression is specified as shown above, the results of that expression are automatically recalculated when the data changes. This is called recalculation. Now let's actually try using the recalculation function. Change the value shown in row 18, column 15 from "56000" to "156000".
$-\left[\begin{array}{c}5 \times m \\ 4\end{array}\right]$
$\rightarrow \square$

- R 1 8 1 [5


```
-1]56[0]0][0]
```


As you can see，the figures in the corresponding row total，column total，and ratio cells changed to reflect the new value．

Now return to the data processing screen．
F12
背

1.5 Data Sorting Procedures

This section explains the procedure for sorting table data in either ascending or descending order.

Using the data processing screen, move the cell cursor to row l, column 17 so that the screen is like the one shown below.

Now let's sort rows 2 to 24 so that the totals in column 16 are arranged in descending order. If there are any branches which have the same total, we will want to sort them in descending order using the figures in the "Ratio" column.

Here CANOBRAIN asks which column the sorting will be based on. Specify column 16 (the "Total" column) as follows.

1] 6

Now CANOBRAIN asks whether the rows will be sorted in ascending order or descending order. Specify descending order as follows:

F2

Now CANOBRAIN asks which column the sorting will be based on if two figures are the same. Specify column 17 (the "Ratio" column) as follows:

170

Specify descending order sorting for this column, too.

- F 2

A total of five sorting columns can be specified.
Here we will specify only two.
\square

Here CANOBRAIN asks for the range of rows that will be sorted. Since rows 1 and 25 will be left as is, specify the following:

$$
-(2 \|, 12][4]
$$

2,							
星	4982001	287700	332400	295500	339900	4565900	7.34
\%	4796001	236500	221100	398200	163100	9591500	3.59
	5023001	346200	298900	490900	297000	9379900	6.78
3	591200	9183400	302700	332900	90800	9196300	2.16
-	563200	379600	907500	295100	193700	0129700	3.48
	536100	466300	432500	94700	297000	9120000	7.21
	- 654600	305200	377800	397200	296500	9025800	7.
	290000	261400	580600	308900	395200	4824000	9.82
1	375100	293509	472800	197600	0.58000.	4017900	11.40
Tim	319200	463700	529300	406300	259200	3909100	6. 63
倞	3962001	972600	377500	509200	156000	3884500	4. 02
	468200	469200	506000	372800	201600	3863900	5.22
	4341001	327800	365100 ,	245200	176300	3811300	9-63
	3290001	264600	290800	911600	243000	3787720	6-4.
	3542001	435300	411900	299000	264600	3783100	6.99
	506400	299800	406200	462500	261600	3725500	7.02
.	213100	411900	296600	388500	274400	3603300	2.62
	407300	356100	237700	007800	260400	3587700	2.26
	384400	156200	321900	504600	112000	[
1				1	21		
\%				H1II	\#ill	Hemerum	
ITPUT SORT SIART, ERO ROU NO.						$\left.\right\|_{\text {SoRI }} ^{800 \mathrm{~K}} \mid$	

This completes sorting. Now return for a moment to the data processing screen.

- F 12

If sorting is not performed when specified, check for one of the following problems:

- Both numeric and character data are included in the same column.
- If a cell expression is in the column, CANOBRAIN informs you of its presence and then asks whether or not the expression may be deleted. If you answer affirmatively, CANOBRAIN deletes the expression and sorts the data.
- If the column has an empty cell (containing neither data nor a column expression), that cell is placed at the end of the table.

Now let's take a look at the first column.

As you can see, the numbers in this column are now in complete disarray. This is because sorting was performed in row units. Renumber the rows using the data generation function.

This completes the procedures for data sorting. Now return to the data processing screen.

This section explains procedures for retrieving and printing selected data items from those in the table. Our explanation begins with the screen shown below.

1.6.1 Retrieving data

First we will explain the procedures for retrieving data items which satisfy specific conditions.

Here CANOBRAIN asks from which column(s) the data will be retrieved. For our example, we will specify those data items for which sales during the months of January and December were less than or equal to 100,000 . So specify columns 4 to 15.

The plus (+) sign in the sequence above means "OR". It tells CANOBRAIN to retrieve the entire row if the data in even one of the specified columns satisfies the retrieval conditions.
Retrieval conditions can also be specified using an asterisk (*) which means "AND". If "*" is specified instead of "+", CANOBRAIN retrieves only those rows in which table data in all columns satisfies the specified conditions. "+" and "*" can be specified in combinations using parentheses.

CANOBRAIN will ask whether or not the data in column 4 is character or numeric data. Since column 4 contains numeric data, specify the following:

Next, specify the condition which will be used to determine which data items will be retrieved. The meanings of the symbols displayed here are as follows:

GT: Greater than (data>a)
GE: Greater than or equal to (data $\geq a$)
LE: Less than or equal to (data $\leq a$)
LT: Less than (data<a)
NE: Not equal (dataキa)
EQ: Equal (data=a)
BT: Between ($b \leq d a t a \leq c$)
NB: Not between (data<b, data>c)
Note: a, b, and c indicate specific numbers or letters.

Enter the following to specify the retrieval of data items for months with sales less than or equal to 100,000.

F3

10 0 [0 0 [0]

Repeat this sequence through column 15.
-52

Here CANOBRAIN asks for the range of rows which will be searched for the data items that will be retrieved. Enter the following to specify all rows except rows 1 and 25.

20 2 4 4

You should find that row 5 is displayed as the top row of the table. After retrieval, CANOBRAIN always displays the item retrieved on the top line of the screen and positions the cell cursor in the far left column of that particular row. Although none of the sales figures visible with the cell cursor in this position are less than or equal to 100,000 , moving the cell cursor right to column 15 will show that the row does include such an item (90800). Now perform the following key operation to see whether there are any other data items which satisfy the specified condition.

This time row 7, whose 14 th item meets the retrieval conditions, is displayed at the top of the table. Try moving the cell cursor to the left; you will see that the data in column 6 also meets the specified condition. Actually, row 7 contains two data values which satisfy the specified condition that at least one data item be less than or equal to 100,000 .

Now row 15 is displayed at the top of the table. The data value satisfying the condition is in column 9.

This time row 18 is retrieved. Here, the data value in column 8 satisfies the condition.

D

The phrase "DATA ERR.", displayed on the second line from the bottom, indicates that there is no more data which satisfies the specified condition.
When there is more than one item which satisfies a specified retrieval condition, CANOBRAIN retrieves the first item found, displays it at the top of the table, and pauses to allow range specification entry. If \square is pressed at this time, CANOBRAIN resumes the search starting on the next line. If a range specification is entered, CANOBRAIN searches between the two lines specified.
In this example, the following five items were found to satisfy the retrieval conditions.

```
Row 5,. column 15: 90800
Row 7, column 6: 98000 Row 7, column 14: 94700
Row 15, column 9: 96420
Row 18, column 8: 31500
    F12 ... (3 times)
```

|||||||One point lesson: When retrieval is not performed $|||||||||||||||||||||||||||\mid$

Check for the following problem if retrieval is not performed when specified:

- Do all cells in the column(s) for which the retrieval condition is specified have the same attribute?

This can be checked by returning to the input screen and moving the cell cursor to each cell in the column. As you move the cell cursor, check the attribute display column on the second line from the bottom of the screen.

1.6.2 Correcting Retrieved Data

The following explains how to input or correct data during retrieval. The explanation begins with the following screen:

Select INPUT.

Select RETRIEVAL.

The same retrieval expression as before is used to retrieve data whose value is not greater than 100000 from columns 4 through 15.

The retrieval range is from 2 to 24. $-2]$ 10 9

The cell cursor has moved to row 5, column 6, indicating that data satisfying the condition exists there. Make sure the is on.

- 1

90800 is in column 15. At this time, you can move the cell cursor to column 15 and enter data.
Press the following key to find another data item satisfying the condition.
-

A data item satisfying the condition is in column 14 on row 7. You can continue this retrieval process by selecting the CON. RETR. function. Unless you have specified a condition for RETRIEVAL, however, you cannot select CONT. RETR.
In the previous retrieval, row 7 had another data item satisfying the condition. Press the following key to retrieve it:

Column 6 also contains data satisfying the condition. Note that, if retrieval is initiated via the data input screen, the cell cursor does not move to the data satisfying the condition. Continue retrieval.

The message "DATA ERR." will be displayed on the second line from the bottom, indicating that there is no more data satisfying the condition. Once DATA ERR. is displayed, retrieval has ended. If you want to perform
retrieval using the same condition, it will be necessary to specify the condition again. Perform the following to return to the data processing screen:
-

- F 12

1.6.3 Printing retrieved data

This section explains procedures for compiling retrieved data into a list and then printing it. Our explanation begins with the screen shown below.

F7

F1

FI

4

Be sure
路 is off when entering 100,000 .

Here CANOBRAIN asks which columns will be printed. Specify the branch name and the columns containing the retrieved data (3, 6, 8, 9, 14, and l5) as follows.

Specification is completed when is pressed twice in succession.

To print only the data meeting the retrieval conditions, perform the following key operations.
$>$ F2

From this point on, operation is the same as when retrieving data.

Specify the same condition for the rest of the columns through column 15.

```
F2 F3 100000,0 ...... (ll times)
```


2[24[4]

LIST OF	SALES URDEE	1100000			DATE 02.01.83	P6at
HAR.	HA'	JUHE	HOU.	DEC.		
466200	294600	246800	332900	90800		
98000	398000	465300	94700	297000		
197800	547300	96420	411600	243000		
372100	31500	411200	388500	274400		

Since each page consists of 70 lines (unless another value is specified), the rest of the page will be blank after the sample above is printed. When more that one table is printed, the first row of each table is printed below the header on each page, regardless of the number of rows printed on the preceding page.

This completes our explanation of the procedures for retrieving and printing data which satisfies specified conditions. Now return to the data processing screen.

- F12 ... (3 times)

To stop the printing out of book or roll table data, press CANCEL. This also applies to graph printout.

This section explains the procedures for deleting data, expressions, column expressions, rows, columns, pages, or books.

1.7.1 Deleting data

When a cell contains only data (letters or numbers), the data in that cell can be deleted using the following procedure. Our explanation of this procedure begins with the screen shown below.

Let's delete the word "TOTAL" from row 25 , column 3.

Here, CANOBRAIN asks for confirmation that the data will be deleted.
\square

Now delete "6016800" from row 25, column 4.
[2, 5 [0 4

F 1

F1

If you were watching the screen, you probably noticed that "6016800" was momentarily replaced by a line of asterisks (" **********"); the original number was then displayed again. The reason for this is that, even though the data was deleted, the expression used to calculate the total for this column still remains, so the total was recalculated after it was deleted. Now let's go on to the procedure for deleting expressions. First, return to the input screen.

1.7.2 Deleting expressions

When a cell contains an expression, that expression can be deleted using the procedure described below. However, this procedure cannot be used to delete column expressions; the procedure for deleting column expressions will be described later.

Our explanation begins with the screen we used last in the preceding section.

Move the cell cursor to row 25, column 4. Be sure that洦 is on.

Note that "@SUM(R2.24C4)" is displayed on the bottom line.

The expression should now be deleted; let's make sure.

As you can see, the expression "@SUM(R2.24C4) has been deleted and "6016800" is displayed in its place. This shows that only the expression, not the data, has been deleted. Now let's delete the data.

$\Rightarrow F 1$

"6016800" should now be deleted, too. But it's a lot of trouble to delete each item of data separately, so there is a procedure for deleting data along with expressions.

Let's try deleting the data and expression in row 25 , column 5 simultaneously.

国

F3

F1

As you can see, both the data and expression have been deleted.

Now let's go on to the procedure for deleting column expressions.

FT2

1.7.3 Deleting column expressions

The following procedure can be used to delete column expressions when all of the cells of a particular column contain such expressions. Our explanation begins with the screen shown below.

Let's delete the column expressions in column 17.

R 1 C 1 [7]

1 F3

Note that the column expression "+Cl5/C16*100" is displayed on the bottom line of the screen.

Here, CANOBRAIN asks for confirmation that the column expression will be deleted.

The column expression is now deleted; however, the data remains. It is not possible to delete column expressions and data simultaneously. Use the following procedure to delete the data.
\rightarrow F12

F2

($\mathrm{R}[1][\mathrm{Cl} \mid \mathrm{C}][7]$

$-\quad \mathrm{F}$

- Fl

Now both the data and column expression are deleted from column 17. Return to the data processing screen.

F F12

$\rightarrow F 9$
1.7.4 Deleting columns

Now let's delete column 17. Our explanation begins with the screen shown below.

Here, CANOBRAIN asks for the range of columns that will be deleted. Press \square without entering any values; this automatically deletes the column where the cell cursor is located.

Has column 17 been deleted?

Now let's learn how to delete rows.

Let's delete row 25. Our explanation of the procedure for doing this starts with the following screen:

Move the cell cursor to row 25. Make sure is on, then perform the following operations:
[5]

F1

Delete the row where the cell cursor is located (row 25).

This screen asks for confirmation that the row will be deleted.
$D+5$

Row 25 is now deleted. Return to the data processing screen.

FFI2

This completes table processing.

Here, CANOBRAIN asks whether the data in the table being processed ("Sales by Branch l") will be updated.

If "No update" is selected, any table modifications made will not be stored on the floppy disk. To store the data and expressions entered, you must specify the update. Let's do this now.

F1

1.7.6 Deleting pages

This section explains the procedures for deleting pages. Since deleting a page at this point would delete the data we have been working with, do not use the procedures shown below until you actually have a page that should be deleted. Our explanation begins with the screen shown below.

Delete page 1.

F2

Here, CANOBRAIN asks for confirmation that the page will to be deleted.
$\Rightarrow F 1$

This deletes page l. Page 1 will remain unused until a new page is created. Now return to the book list screen.

F12

1.7.7 Deleting books

This section explains the procedure for deleting books. As with the preceding section, there are no books which can be deleted; if you delete a book now, you will delete the data we have been working with. So do not use these procedures until you actually want to delete a book.

Delete book 2.

F2

We will use this book as an example later, so specify "NO".

F2

This completes the explanation on how to delete books. If there are several books and an intermediate book is deleted, that book number will remain unused.

1.8 Adding Numbers between Pages

You can insert pages in a book if their format is identical to the existing pages in that book. In this section, we will create a table identical to page 2 and then calculate totals. The explanation begins with the following screen:

2

- 0

F1

The name of the table is TOTAL BY BRANCH.

No comment is needed, but you may add one if you like.

Specify the following to create a page identical to page 2.

F1

Press the following key to calculate the total:

Specify the names of the tables or page numbers as necessary. In this example, only page 2 needs to be specified. 2

CANOBRAIN displays a message prompt asking you to confirm the table name.

If there are many pages to be processed, specify them. In this example, press the following key to end page specification:

PAGE TOTAL and GRAND TOTAL are displayed. If PAGE TOTAL is selected, the total of the numbers in the specified page is written in the table being displayed. If GRAND TOTAL is selected, the number in the table being displayed is added.

PAGE TOTAL

(Specified Page)

(Displayed Page)

(Result)

In this example, specify GRAND TOTAL.

CANOBRAIN asks you whether you are going to calculate the grand total.

- F1

Look at column 1 , column 4 and the following columns. These are the grand total columns. Because column 1 contains numeric data, it is automatically added to the grand total. Note that, when calculating totals or grand totals, the numeric data in the table is processed.
$-F 12$

- F 1

F12

Roll data can be read into a table, with conditions specified if necessary. When generating graphs using roll data, the data must be converted into a book table first. In the example in this section, the roll data "Sample Data" is read into the book "BOOK l".
The process begins with the following screen:

Create a book into which the roll data is to be read.
툐 0 回

Input the number of the book just created.

Create the page of the table into which roll data is to be read.
[0]

F1

The table name is "ROLL DATA".

There is no need for a comment, but you may add one if you like.

There is no page to copy.

F_{1}

Specify 50, because the roll "Sample Data" has 50 rows. If all the rows are not read, the number of rows of the roll need not match that of the book table. Specify the number of rows as follows:
[5] [0]

The column widths of the roll "Sample Data" are shown below. Specify the same widths.

Column No.	Column Width	Column No.	Column width
1	10	8	6
2	12	9	6
3	6	10	6
4	6	11	6
5	6	12	6
6	6	13	6
7	6	14	6

- [1][0] 91$] 2 \square$
-6] (l2 times)
F12

We have created the page into which "Sample Data" is to be read. Press the following key to transfer the roll data:

F9

$>\mathrm{F} 1$

Input the roll name "Sample Data".

CANOBRAIN will ask you to enter the number of the roll column which is to be read into table column l. If you wanted to read all the roll columns into the book table at once, you would press the Fl key. For this example, however, please enter each roll column separately so that you will become familiar with the specified procedure. Read roll column l into table column 1.
[1]

Read roll column 2 into table column 2 . [2]

Roll data is not read into table column 3.

Read roll column 14 into table column 4.
-14 4

Roll data is not read into table column 5 and the subsequent columns.

F12

Select RETRIEVAL when roll data satisfying a specific condition is to be read into the table. In this example, no condition is assumed.
-5

CANOBRAIN asks you to enter the numbers of the roll rows to be read. Note that row 0 of the roll cannot be specified. In this example, all rows are read. You can specified this as "l,50", or simply press the following key:

F1

F1

Roll data has been read into columns 1,2 , and 4 as specified. Note that row 0 of the roll cannot be read. Therefore, you must input the column titles on row 2 and the subsequent rows.

Press the following key to return to the data generation screen:

```
F12
(5 times)
```


[fi]

[4] 4

Chapter 2 - Introduction to Graph Creation

This chapter explains CANOBRAIN's graphic display functions. Procedures for using these functions are explained using the table created in Chapter 1.

2.1 Converting Table Data to Graphs

CANOBRAIN's graph display functions display selected table data on the screen in the form of a graph. A table must be created before a graph can be displayed.

The discussion in this chapter focuses primarily on the types of graphs which can be displayed and the procedures for specifying which table data will be used in graphs.
2.1.1 Creating pages to store graphic data

The first step in creating a graph is to create a new page for storing graphic data. The procedures for creating new pages were already described in Chapter 1. Our explanation begins with the screen shown below.

Go to page 0 to create a page for graphic data storage. -0]

F1

Title the graph＂SALES GRAPH＂．

圂周国因

Enter any comments．

Specify．that data will not be copied from other pages，

Specify the following to indicate that a graph will be written on this page．
$-\mathrm{F} 2$

2.1.2 Types of graphs

This section explains the types of graphs which can be displayed using CANOBRAIN's graphic display functions. Make sure that the screen looks like the one shown below.

As indicated on the screen, CANOBRAIN can display eight types of graphs. Samples of the different types of graphs are shown below and on the following pages.

- Pie chart

- Composition ratio chart

- Stacked bar chart

Note: Although this example shows a comparative bar chart consisting of four-bar groups, it is also possible to prepare comparative bar charts composed of only single bars.

- Line chart

- Line and stacked bar chart

- Line and comparative bar chart

Next we will explain the procedures for displaying graphs, using the comparative bar chart as an example. First, make sure is off.
This means that the F9 key can be used to move the cursor up when correcting entered data.

- 4

This section explains the procedures for specifying which data will be graphed. Our explanation begins with the screen displayed after the comparative bar graph is specified as the type of graph.

The previous screen asks which page contains the table on which the graph will be based. This page must be included in the same book as the page containing the graph. For this example, specify the "SALES BY BRANCH l" table on page 2. After the page number is specified, the title of the table is displayed automatically.

2

CANOBRAIN can display graphs for table data either by row or column. When row data is to be graphed, specify "0" (Horizontal); when column data is to be graphed, specify "l" (Vertical).

Remember that the table on page 2 has the following format:

No. Code Branch name JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Total 1

2
3

Now let's prepare a graph to compare the sales of three branches. Since the data that will be graphed is row data, specify the following:

0
graph definilion

1. pie chart
2. cumpasition ratio chari

InPut type of graph
specify table page no. : thes by branch 1 HGRIZONTAL=Q, VERTICAL×I: INPUT StART DATA
a. camparative bar char
5. lime chart
6. scatier ditagati
7. Line e stacked chrat
o. Line e comparative chart
"NEXT DATA" will appear in the FlO field and "BEFORE DATA" in the Fll field. Data in the first row are displayed on the bottom two lines of the screen. A maximum of ten columns of data can be displayed at one time. If FlO is depressed you will be able to view the next ten columns. Conversely, depress Fll to view data in the preceding ten columns.

If you have designated that the horizontal axis should correspond to the columns of the table, data from the first column will appear.

Next, CANOBRAIN asks which column of row data will be graphed first. Since the graph will begin with January, specify 4 (for column 4, the column which contains the data for January).

4
When the column number is specified, the titles in the first row of that column are displayed automatically. However, nothing is displayed if the cell contains numbers.

F10

This screen asks for the last column that will be graphed. Since the graph will include data through December, specify the column number (15) for that month.
-1] 5

The contents of the bottom two lines of the screen will change. The fields that correspond to numbers 2 through 10 are blank. This is because the first column of the table is filled with numeric data. "NO." appears in the first row of the first column. If you have designated that the horizontal axis should correspond to the columns of the table, data from the first row will appear. FlO and Fll assignments are still effective.
This screen asks which branch data (rows) will be graphed. Here we will graph data for the "London", "New York", and "Calcutta" branches; so specify the row numbers of these branches (2, 3, and 4).

2 3 4 4
4. COMPARAIIVE BHR CHARI
5. LINE CHART
6. SCATtER DIGGRAM
7. LINE \& STACKED CHRR
0. LINE \& COMPARATIVE CHART

SERISES	$: 2$
SERISES	\vdots
SERISES	\vdots
SERISES	$:$
SERISES	$:$

Although up to 10 branches can be specified, indicate here that data for only three branches will be graphed as follows:

F1

Does your result look like the one shown above? As you can see, a complete graph has been prepared by specifying only the graph type and the range of table data. CANOBRAIN automatically determines details like the size of the graph and the type of hatching that differentiates one bar from another. Although not shown in this example, it is also possible to automatically display a title for the horizontal axis and a legend at the right of the graph. This graph could be used as is, but it still leaves something to be desired. Next we will next explain how to edit graphs for a clearer presentation.

ทill|ill|One point lesson: When incorrect graph specifications are made

Use F9 to move the cursor to the cell whose contents are to be corrected, and then make the correct entry. Note that if any one of the designations has been corrected, from the type of graph to the end of data, everything up to the end of data must be re-entered.
Use LINE FEED to move the cursor down.

2.2 Editing Graphs

This section explains procedures for editing graphs displayed automatically by CANOBRAIN.

2.2.1 Changing the vertical axis

CANOBRAIN automatically determines the vertical axis according to the maximum and minimum values of data displayed in the graph. Let's try changing the maximum value to 800,000 to make the graph a little bigger.

This screen asks for the maximum value. Specify the following to change the maximum value to 800,000 .

Now CANOBRAIN asks for the minimum value. Since this will not be changed, simply press .

Here, CANOBRAIN asks for specification of the interval (horizontal axis). This will not be changed either, so press again.
-

This ends the procedure for changing the vertical axis.

There are two vertical axes for line and comparative bar charts and line and stacked bar charts; one on the right and one on the left. For these graphs, the right axis is specified after left axis specification is completed.

The grids of a graph are composed of intersecting vertical and horizontal dotted lines. Although the purpose of grids is to make the graph easier to read, it can have the opposite effect if the graph is complicated. In this case, you can display only the horizontal or vertical lines, or eliminate the grids altogether.

As an example, let's remove the vertical lines from our comparative bar graph. Procedures for doing this are explained starting with the screen shown below.

Now the graph has only horizontal lines.

2.2.3 Adding other information to graphs

It is possible to add other information to the screen when a graph is displayed. Any characters on the keyboard can be entered. However, characters written on the screen will be deleted when the screen is changed or when the graph is redisplayed. You cannot store such characters on a floppy disk with the graph.

As an example, let's add some comments for the branch names. Procedures for doing this are explained starting with the screen shown below.

You will notice that a plus (+) sign is displayed in the upper right-hand corner of the screen. This is called the graphic cursor and it is used to specify the position where information added to the graph will be displayed. When is on, the graphic cursor can be
 [同 , and [$[8)$. However, the cursor only moves about 1.6 mm ($0.064 \mathrm{in)}$. , or eight screen dots, each time one of these keys is pressed. Since this could be quite a lot of work, perform the following key operation to increase the unit movement distance.

```
F3 ... (3 times)
```

Press one of the arrow keys; as you can see, the graphic cursor now moves farther each time the key is pressed. Pressing $F 3$ once doubles the graphic cursor movement distance; pressing F3 again doubles that distance, etc. Pressing $F 4$ produces the opposite result. Move the graphic cursor to the position shown in the figure below with F3 and F4 as just described.

After positioning the graphic cursor, specify whether the characters entered will be written horizontally or
vertically. Perform the following operation to write the branch names horizontally.
$>F 1$
Enter the characters that will be added to the graph. LOMDOD

As you probably noticed, the graphic cursor did not move when the first branch name was entered. The center of the graphic cursor corresponds to the left side of the first character entered.

Move the graphic cursor to the correct positions and enter the branch names "New York" and "Calcutta".

$>\mathrm{FI}$

With pie charts and bar charts, CANOBRAIN automatically determines the type of hatching used for each of part of the graph. This section explains procedures for changing the type of hatching. Our explanation begins with the screen shown below.


```
F4
```

--F1 F2 F. F3 Z
 --) F12 RTRN $<-$
|303K! 21 -

The types of hatching currently used in the graph are displayed on the fourth line from the bottom of the screen.
To specify which one will be changed, press the corresponding function key. Here, lets change the wom hatching to \qquad

F3

You will notice that the arrows positioned on either side of the fourth line from the bottom of the screen
have now moved down one line. This indicates that a new type of hatching can now be selected from those shown on this line. Press $F 2$ to select the corresponding type of hatching.

F2

 $2 \square$
 --ง F!2 RTRH : -Arfl

The arrows have now moved to their previous positions and the سाM hatching on the fourth line from the bottom has been replaced with \square hatching.

F12

This completes the specified change. As you can see, the information that we added to the graph before was deleted when the graph was changed.

The legend explains how a graph will be interpreted. If the legend is deleted, CANOBRAIN automatically increases the width of the graph.

Let's delete the legend. Procedures for doing this are explained beginning with the screen shown below.

FB

Fl

As you can see, the legend has disappeared and the graph has been enlarged to the right.
When $F 8$ is pressed again and "LEGEND" is selected by pressing F2 , the screen returns to its original condition.

2.2.6 Changing colors

The color modification function can only be used with color systems. Although related operations can be performed on monochrome systems, the only result will be to increase or reduce the brightness of parts of the graph.
Assuming that you have a color system, let's change the graph's colors. Procedures for doing this are explained starting with the screen shown below.

The colors currently used in the graph are displayed on the fourth line from the bottom of the screen. When you want to change a color, specify that color by pressing the corresponding function key. Here, let's change the color red.

When $\mathrm{Fa}^{\text {is }}$ pressed, the specified color is displayed on the third line from the bottom to the right of "F2". Now use $F 1$ and $F 3$ to change the color.

- F1 ... (27 times)

As you can see, pressing $F 1$ changes the red areas of the screen one after another. After the key has been pressed 27 times, these areas should return to their original color. CANOBRAIN can display 27 different colors (or no color, as preferred). However, only 8 different colors can be displayed at once, so it is not possible to use all 27 colors on the same screen.

F3 ... (7 times)

F3] changes colors in reverse order.

If you have pressed F3 and F1 the correct number of times, those areas of the screen which were originally red should now be blue. Let's use blue in the place of red.

Now the color change is complete. To change other colors, repeat this operation sequence. When you are finished, press F12.
F12 . . . (2 times)

2.3 Making Hard Copies of Graphs

Now that we have finished editing the graph, let's make a hard copy on the printer. Our explanation of the procedure for doing this begins with the screen shown below.

The words "HARD COPY" are displayed on the second line from the bottom of the screen after fr is pressed, and then printout begins. Only the graph itself is outputted to the printer; CANOBRAIN ignores the four lines at the bottom of the screen. A horizontal line is printed across the paper below the graph when graph printout is complete.

Any supplemental information that was added to the graph is printed out with the graph. After printout is completed, the words "HARD COPY" disappear from the bottom of the screen.

Depressing CANCEL will stop the printout.

An example of a graph hard copy is shown in the figure below.

Note: This sample was produced on the A-12l0 color printer. There will be variations between the colors displayed on the screen and those on the printout due to hardware characteristics.

Now our graph based on table data is complete. But how will the graph be affected if the contents of the table are changed? This is easy to check, so let's try it.

As an example, suppose that the May sales figure for the London branch is changed from "737200" to "600000". Procedures for doing this are explained starting with the screen shown below.

After F3 is pressed, it takes approximately 20 seconds before the table is displayed on the screen.

From this point on, the table can be modified using exactly the same procedures as previously described.

First, move the cell cursor to row 2, column 8 (the May sales figure for the London branch).

- 표

Change the data.

- $F 1$

- $6[0][\overline{0}][0][0][0]$

- F 12

F12

Here CANOBRAIN asks whether the updated table will be written to the floppy disk. For this example, we will leave the table on the disk unchanged.

17 F

As you can see, the graph is automatically updated to reflect the change made in the contents of the table. So it is possible to make temporary changes in graphs for review without changing the data stored on the disk. Of course, it is also possible to produce hard copies of such graphs by pressing F2 .

Let's change the comparative bar chart to a line chart. A special procedure is used for specifying line charts and this method will be explained below. Our explanation begins with the following screen.

2.5.1 Making line charts

Perform the following operations to display a line chart. Since we have not saved the comparative bar chart to the floppy disk, it is deleted after the key operation below.

Now the screen has changed so that you can specify the graph type. Depress Fl2 (CANCEL) if you specify F4 (GRAPH DEF.) by mistake. From this point on, procedures are almost the same as for comparative bar charts.

Data that will be used in the chart is specified just like that for comparative bar charts.

5

2]

GRaph Definition

1. pie chari
thput type of graph
specify table page no. : ¿ sales gy branch 1 HORIZONTAL $=0$, VERTICGL $=1$
2. composition ratio chart
3. Stacked bar chart
input start data
input end deta
[0]

GRAPH DEFINITIUH

1. PIE CHART
2. compasition ratio chart

IAPUT type of graph
SaLES gy branch 1
specify thale phae no. : ?
hortiontal =0, vertical =1:1
input stari data
inPut Eno data

4

- 1 回

$[2][3][\overline{4}]\left[\begin{array}{ll}{[6]}\end{array}\right.$

F1

Now the line chart is displayed. Notice that the change which we made earlier in the table data is not reflected in this chart. The reason for this is that the displayed chart is based on the table data stored on the floppy disk.

2.5.2 Changing line types

Once a line chart is displayed, the type of line used can be changed for a clearer presentation. Let's do this, assuming that the same line chart is displayed.

The line types currently used are displayed on the fourth line from the bottom of the screen. The line type that will be changed is selected by pressing the corresponding function key; here, let's change the line to a -- line.

Notice that the arrows displayed on either side of the fourth line from the bottom of the screen have now moved down one line. This indicates that you can now select a line type to replace the one selected above.

Now the arrows have moved back to their previous position and the line has been replaced with a -. line.

F12

This completes our explanation of the procedures for changing line types.

Once a line chart or scatter diagram is displayed, you can change or delete the symbols (points used to indicate positions) to make the graph easier to read. Let's delete one of the symbols. Our explanation resumes with the last screen shown in the previous explanation.

The symbols currently used in the graph are displayed on the fourth line from the bottom of the screen. The symbol that will be changed is selected by pressing the corresponding function key. Press FI to specify the - symbol.

Now the arrows displayed on either side of the fourth line from the bottom of the screen have moved down one line indicating that you can now specify the symbol which will be used to replace the one just specified. Press 58 .

Now the arrows have moved back to their previous positions and the - symbol has been deleted from the chart and the line where the current symbols are displayed.

The new chart is shown in the figure above. The - symbols have been deleted, leaving only the lines. Although the symbols were deleted in this example, it is also possible to change symbols from one type to another using the same procedure.

2.5.4 Using logarithmic scales

Logarithmic scales can be used to display line charts or scatter diagrams. A logarithmic scale can only be used for the vertical axis in line charts. The scale on the vertical and/or horizontal axis can be changed in scatter diagrams. Logarithmic scales cannot be used with line charts which are displayed together with comparative bar charts.

The following procedures are used to change a linear scale to a logarithmic scale. Our explanation begins from the last screen displayed in the previous explanation.

Since the graph in this example is a line chart, only the scale on the vertical (y) axis can be changed, so F2 is not effective.

And since F4 changes both axes and only the vertical axis can be changed in a line chart, pressing it produces the same result as pressing F3 .

- F3

Now complete the operation as follows:

$F 1$

The graph is stored to the floppy disk when CANOBRAIN returns to this screen. Actually, this means that information like the graph type, line type, and table title are stored to the disk. The table data on which the graph is based is not. So when the table data is changed, the graph is also changed. Since the comparative bar chart we were working with was deleted, there is no record of it anywhere.

In this example, a new page for saving the graph was created before the graph was actually written to the disk, so prompts were not displayed at that time. But the next time a graph is stored to this page, CANOBRAIN will ask for confirmation that the page will be rewritten before anything is stored to the disk. When the page is to be rewritten, press FI (SAVE). When it will not be rewritten, press F2 (NO SAVE).

Canon AS-100

This chapter describes the method of roll creation.

1.1 Defining Roll Formats

Before creating a roll, define its format. In this section, we will create a table with the following format:

BRANCH	PRODUCT	JAN.	FEB.	MAR.	\ldots.	DEC.
NEW YORK	T.V. SET	200	400	300		630
TOKYO	REFRIGERATOR	450	380	230		390
LONDON	T.V. SET	120	230	220		350
MOSCOW	RADIO	720	650	480		950
SHANGHAI	RADIO			250		

This table lists the annual sales of all branches. Let's begin the roll creation process now.

Press the following key to select roll processing:

F2

The following screen will appear:

The list already contains two sample rolls. Press the following key to create a third roll:

F1

Assign a name to the roll. In this example, the name is "SALES BY BRANCH". Press the following keys:

The screen will change as follows:

CANOBRAIN asks you whether the format of an existing roll is to be copied (number of lines, number of columns, column width, etc.)
Press because a format will not be copied for this example.

CANOBRAIN asks you to input the number of rows in the table. Assume that the table has 50 rows. The number of rows can be increased later if necessary.
[5] [0]

CANOBRAIN asks you to input the number of characters for column 1 (Cl is an abbreviation for column l). Input the number of characters, using a number from 1 to 74 .

Column 1 is 10 characters long, because branch names will be entered here.

10 0

CANOBRAIN asks you to input the data type, character or numeric, of the column. Select F1 because the branch name is specified in characters.

CANOBRAIN asks you whether the characters are to be left-justified or right-justified. In this example, the characters are left-justified.

F1

Column 1 has appeared on the screen. Define column 2 similarly. Column 2 is 12 characters long, because item names will be entered.

10 2

As in column l, the characters are left-justified.

Column 3 is six digits long, because the number of units sold in January will be entered.

- 6 6

Press the following key to input numeric values:

- F2

Press the following key because the number of units sold will be entered as an integer:

- F2

CANOBRAIN asks you whether or not commas are to be inserted between digits to increase readability. In this example, commas are inserted.
-

The character editing option is used to specify whether or not such characters as a dollar sign or a plus sign are to be automatically inserted before or after numeric values. Character editing will be described later. In this example, character editing is not selected.

Next, CANOBRAIN asks you to specify a numeric rounding mode (round down, round off or round up). For this example, specify round off.

Define columns 4 to 15 similarly.

- 6 F2 F2 F1 F2 F2 . . (ll times)

After defining columns 1 to 14 , press the following key:

- F12

A new roll has been created. Each column can be redefined later (column width and column attributes).

Now, input data in the roll that has been created. The description begins with the following screen:

Input "3", the number of the roll that has been created.
3 \square

This is the display for data processing used to process rolls. The cell cursor is in column 1 on row 1 , and the number of rows and columns are displayed at the far right on the fifth row from the bottom (RECORD=50 COLUMN=14).

Furthermore, rows and columns that are being processed are displayed on the same line (START=1 END=50).

The rows that can be processed are given on the fifth row from the bottom of the screen under the headings START and END. Up to 200 rows can be processed at one time, and generally the row parameters are set at 1 and 200, respectively (50 or 100 rows can also be set, depending on column widths).

To display rows after row 200, perform the following operation:

- Press and then input any given cell address after row 200.
- Display row 200 and press $[$. Make sure the is on, and then press $\left[\begin{array}{cc}{[806} \\ 3\end{array}\right]$.
- Press and then \square

After is pressed, all rows in the roll on the floppy disk can be accessed.

- $\begin{gathered}\text { HON: } \\ 7\end{gathered}$
- $\left.\begin{array}{c}4 \\ \hline 2\end{array}\right]$
- 5
- 1
- $\left[\begin{array}{c}7 \\ 3 \\ 3\end{array}\right]$
- Input an address.

Input an item name in row 0.

Move the cell cursor to the cell starting column l on row 0 to input "BRANCH". Activate the and then press the following key:

図

Press the following key to input data:
F1.

Input "BRANCH" as follows:
B R A A C H [

＂BRANCH＂has been input in row 0 ，column 1 ，and the cell cursor has moved to row 0，column 2．Look at the arrow at the far right of the bottom row．This arrow indicates the direction in which the cell cursor will move after data has been input in the cell．The direction can be changed by pressing $\left[\begin{array}{l}1 \\ 2\end{array},\left[\begin{array}{l}4 \\ 4\end{array}\right.\right.$, and $\left[\begin{array}{l}1 \\ 6\end{array}\right]$ if the is on．

Input＂PRODUCT＂in row 0 ，column 2 as follows：
區国河为国

Input＂JANUARY＂to＂DECEMBER＂in columns 3 to 14 on row 0 as follows：
$-\square \mathbb{A}] \square$

Input the remaining months，February to December， similarly：

The cell cursor will automatically move to row 1 , column 1. That is, it will move to the next row when it reaches the far right of the table. Depending upon the direction indicated by the arrow in the bottom right corner of the screen, the cell cursor moves as follows:

Note: $\uparrow, \not \downarrow,+$, and \rightarrow indicate arrow directions.

However, if the cell cursor is in the top left corner (row 0, column l) and if the arrow at the bottom right corner of the screen points to the top or to the left, the cell cursor will not move automatically. If the cell cursor is in the last column of the bottom row and the arrow points to the bottom or to the right, the cell cursor will not move automatically.

Input the following data in row 1 :

Branch	Product	January	February	March
New York	TV SET	200	400	300

Input data as follows:
$-N[\mathbb{N} \square \square[\bar{O}][\bar{R}] \square$

$[\mathrm{T}][\mathrm{V}][\underline{S}][\mathrm{T}] \square$

Input data for January, February, and March.

A roll containing sample data is provided to save the time needed to input data. We will use this sample data.

Stop inputting data and press the following key:
-F12

Display the roll list screen again by pressing this key:
-512

Chapter 2 - MANIPULATING DATA

This chapter uses sample data to explain CANOBRAIN's roll processing functions.

This chapter explains how to manipulate data contained in a roll.

The description begins with the following screen:

Select the roll, "sample data", which contains data. - 2 ,

R/L			1		4									
0 ORANCH	Proouct	JAN.	FE日.	MAR.	APR.	May	IUNE	JHLY						
- Mral -	T.Y. SET	200	400	300	250	360	520	400						
- TAKY0	REFRIGERATOR	450	380	230	450	300	930	350						
LIUNDON	I. U. SET	120	230	220	310	200	390	200						
mescuu	RADIU	720	6510	480	590	600	880	710						
SHANGHAI	RADII	200	150	180	160	170	220	250						
PRRIS	REFRIGERATOR	310	180	121	270	250	200	180						
USAKA	H.V. SET	160	230	180	320	120	150	170						
FRANKFURT	1. V. SET	340	220	270	280	230	290	240						
L.A.	RADIO	360	240	270	200	210	180	160						
1. Hifagia	REFRIGERATGR	340	280	310	250	240	300	260						
calcutta	RADIO	260	230	210	250	270	270	230						
MExicot	T.V. SET	450	320	970	300	260	280	230						
DETROIT	RADIU	620	510	550	660	430	480	330						
Bambar	REFRIGERATOR	420	310	390	490	280	300	330						
PEKING	1.U. SET	370	320	350	440	420	360	380						
HONG KONG	REFRIGERATOR	270	310	330	280	250	240	330						
AMSTERDAH	T.U. SET	160	200	180	120	170	160	150						
FRIR9	RRDIC	240	150	130	210	250	100	180						
RECAPD $=5$				CULUMN = 14 START=				END $=50$						
ElINPUT														
E-SORI							E. REIURN		H					
SELECT FUNCTION(FI-F 12, COPY, MIJUE, DELEIE, INSERT)						OAIA	Proc.	\|RIC]						
											ROLL	21		

2.1 Calculating Totals

Add the total column to the table, and calculate the total number of units sold from January to December for each row.

Insert a new column (column 15). Press the following key:

MSERT

CANOBRAIN asks you which is to be inserted, a row or a column. Press the following key to insert a column:

CANOBRAIN asks you where the column should be inserted. The total column is to be added to the far right of the table. Display this part of the table. Then press the following key:

```
#
```


Specify the cell address to which the cell cursor is to be moved. Press the following key to move the cell cursor to row 1 , column 14.

- RTC 1 4

Insert a column to the right of column 14.

- 15

CANOBRAIN asks you to input the column width to be inserted. The column width is 10.

- 100

CANOBRAIN asks you to input the data type, character or numeric. The total number of units is of the numeric type.

The numeric value is an integer.

CANOBRAIN asks you whether commas are to be inserted.
In this example, commas are inserted.
$-F 1$
The following will then appear on the screen:

Characters are not edited.

Specify round off.

Column 15 has appeared on the screen.
Input "TOTAL" as the item name for the column that has been inserted. Press the following key to return to the data processing screen:
$>$ F12

Press the following key to input the item name:

- F1

Move the cell cursor to row 0, column 15. Check that the , is on before pressing the following keys:

- 图圆

Input "TOTAL" as follows:

- $T][T][A][\bar{L}]$

Press the following key:

- 闵

Now we have a totals column. Calculate the total number of units from January to December.

In addition to data, an expression can be entered in a cell which contains numeric data. An expression, which is used to calculate totals or averages, has the following type of format:
$+\mathrm{Cl}+\mathrm{C} 2+\mathrm{C} 3-\mathrm{C} 4$
(Cl+C2)/100
(Cl+C2)/C3*100
"+" and "-" are symbols used for addition and subtraction, and "*" and "/" are used for multiplication and division.
"Cl", "C2", "C3" and "C4" in an expression represent column addresses. Calculation for each row of a roll is performed column by column. An expression to perform this calculation is called a column expression.

CANOBRAIN also provides you with functions that can automatically recall frequently-used column expressions such as those used for calculating totals and averages, making repeated entry of these expressions unnecessary. A function has the following kind of format:

$$
\begin{aligned}
& \text { @SUM (C1 . 3) } \\
& \text { @AVE (C2.6) } \\
& \text { @LOG (C1+C2) }
\end{aligned}
$$

The alphabetic characters following @ constitute a function name. For the types and uses of the functions available, refer to Volume II, BOOKS. In the following example, the function @SUM is used.

Specify "COL.EXP." by pressing F3.

Input the following characters to input the total of columns 3 through 14 into column 15:
(a)SUM[7C3) $14[2] \square$

The function is entered for each cell in column 15, where the cell cursor was positioned, to calculate totals. Results are displayed in each cell. The function that was entered is displayed on the bottom row of the screen.

The item name of the column where an expression or a function is entered ("TOTAL" in this example) is indicated by a reverse display.

Press the following key to terminate input of the column expression:

F12

2.2 Printing Out Data

The next operation is to print out the data that have been entered. Press the following key to return to the data processing screen:

F12

The print function is displayed as "REPORTING". Press the following key:

1 F8

1 Fl

The format of a printed form is described below. The user must specify the following to define the format:
. Number of lines (per page) ... 1
. Start line ... 2

- End line ... 3
. Start column ... 4
. End column ... 5

Note: Parenthesized numbers represent default values.

Specify 70 lines per page for A4-sized paper.
$\rightarrow F 1$

The start and end line specifications are omitted. Line 3 3 is assumed for the start line, and line 68 for the end line.
\rightarrow

Specify the default value for the start and end columns. It is assumed that the start column will be 3 and the end column 80 , because an $80-c o l u m n$ printer is being used. You can also specify 3,80 if desired.

F1

CANOBRAIN asks you whether or not ruled lines are to be printed. For this example, select the "Ruled" option. If the printer is not an $A-1200$ or $A-1250$, you can only select "Not ruled" or "Ruled".

Ruled lines are printed in this example.

CANOBRAIN asks you to input the title to be printed on the start line. This cannot be omitted. In this example, the title is "SALES BY BRANCH".

CANOBRAIN asks you to input the columns to be printed. Since the printer is an 80 -column printer, not all the columns can be printed simultaneously. In this example, columns 1, 2, and 15 will be printed. Press the following key:

- 1 D

CANOBRAIN asks you to input the number of spaces to be indented before the column to be printed. Two spaces are placed before column 1.
$[2]$

Next, enter column 2. Two spaces are placed before column 2, as with column 1.

- [2]
- 2

Finally, enter column 15. Two spaces are also placed before column 15.

- $1[5]$ [a
- 2]

The columns to be printed have been specified. Press the following key:

This is specified to print a report while calculating subtotals. This option will be described later. Press the following key:

This is specified when a report is printed while performing retrieval. This option will also be described later. Press the following key:

CANOBRAIN asks you to input the start and end rows to be printed. In this example, all rows will be printed.

- \mathbf{F}

The printed result is shown on the next page. To end the print function, press the following key:

- F12 ... (three times)

1	BRGHCHI	Prgouct	TiTAL
1	HEW YGRK	T.U. SET I	$4: 4001$
1	T6k ${ }^{\text {a }}$ -	FEFRIGERATGE!	4.3701
1	LGHDOA	T.V. SET \|	2,5201
1	H6Scou	EADTG \|	7.9601
1	Shandghes	Fiblo	2.4401
1	FARIS	FEFRIGERATGR1	2,8601
1	GSBKA	T.U. SET \|	2,3101
I	FRAMEFIRT 1	T.U. SET \|	3.3301
1	L.A.	Facio l	3.0901
1	CHICAGEI	REFRIGERATGE	38701
I	Calcutth l	Fhbita \|	$2 \cdot 7801$
1	MEPICGI	T.U. SET \|	4.3101
1	OETEGIT	Ratig I	58001
1	EGMEA'	FEFPIGERATGE	4:1701
1	PEKING	T.U. SET \|	4.3001
1	Hotag kotig 1	FEFRIGERATGRI	3.9201
1	AMSTERDAH	T.V. SET \|	2,0601
I	CAIFG	Etatg \|	2:4801
I	EOSTGN	REFFIGEFATGE	3.6801
I	M6Scily	T.U. SET ।	12.0401
1	Calcutta	T.U. SET \|	53801
1	MEXICG	REFRIGERATGR1	3,7601
1	PARIS	T.V. SET \|	2:6301
1	LGHDOU3	RADIG I	5.6601
1	AMSTERDAM 1	REFRIGERATGF	$2 \cdot 1501$
1	DETRGIT	T.V. SET \|	5.1401
1	CHICAGG	Fitig I	4.9601
1	Toky	Fibig \|	4.3301
1	HGNG KONG 1	T.U. SET !	8.3601
1	EOSTGi ${ }^{\text {a }}$	Ratig \|	3.1501
1	FRADAKFIRT	EEFRIGERATGR	233401
1	gIEMINAHAM	T.U, SET \|	5,3601
1	©fkLable	T.U. SET	39501
1	56MEAT	RH016 \|	7.6001
1	pokghama	REFRIGERATOF	290401
1	Shandghal	T, U. SET \|	339601
1	SHDHEY	T, U, SET \|	3.3701
1	BIRMINGHAM	CADIG \|	2:8101
1	SYOHEY	PEFEIGERATGE	236501
1	HEG YGPK	FADIG \|	5,5501
1	FEKIHG	Et010 I	3,6801
1	CAIEG	REFRIGERATOR	2.3101
1	L.A.	T.U. SET \|	5,6301
1	GAKLèno	FEFRIGEEATORI	383901
,	Ygighama	T, U, SET \|	3,4401
I	gSAKA	EEFRIGERATOEI	a 000
,	ETETG	T,U. SET \|	3, 9801
1	H0idg koht	Ehalg I	634901
1	EGMEAY	T.U. seT I	5.4301
	YokOHAMA	EADO	$3 \cdot 01401$

2.3 Sorting Data

Input data can be sorted to make it easier to read. Press the following key to sort the data:

$-\sqrt{F 1}$

CANOBRAIN asks you which column the sorting will be based on. Let's sort the data by column 1, "Branch Name". Display column 1 on the screen. Activate the and then press the following key:

- ${ }^{1}$

Specify column 1 as follows. Be sure to deactivate the Num
*

1 10

CANOBRAIN will then ask whether the rows will be sorted in ascending or descending order.

Now CANOBRAIN asks which column the sorting will be based on if two items are the same. Specify column 2 (the "PRODUCT" column) as follows:

- 2

Specify ascending order sorting for this column, too.

A total of five line sorting columns can be specified. Here we will specify only two.

If you want to output the sorted data to another roll, specify the other roll number or its name. In this case, you can also specify a sort range. If you omit this specification, the sorted data will be outputted to the same roll. In this case you cannot specify a sort range, since CANOBRAIN will sort all rows. For this example, omit this specification.

\square

The data has been sorted according to "BRANCH" and "PRODUCT".

This section explains how to retrieve data that satisfies specified conditions. For example, find rows whose item columns contain "TV SET".

Press the following key to retrieve data from the table:

CANOBRAIN asks you to select the column for which a condition is specified. In this example, a condition is specified only for column 2. To specify conditions for two or more columns, combine column numbers with the operators and symbols "+", "*", "(", and ")". "+" means "OR". That is, if one of the conditions is satisfied, the corresponding item is retrieved. "*H means "AND". That is, if and only if all the conditions are satisfied, the corresponding item will be retrieved. Parentheses, "("and")" are used to combine "+" and "*".

Press the following key to specify "TV SET" as "PRODUCT NAME".
$>$ F2

Press the following key to input "TV SET":
$[\mathrm{T}][\mathrm{V}] \square \square[\overline{\mathrm{S}}][\mathrm{E}]$

CANOBRAIN asks you to select the start and end rows to be retrieved. In this example, retrieval is performed for all rows.
-5

CANOBRAIN asks you whether retrieved data is to be displayed on the screen (CRT) or entered into another roll. In this example, specify CRT. The method of outputting retrieved data in another roll will be described later.

F1

Only the entries whose PRODUCT columns contain TV SET will be displayed. Press the following key to display the retrieved data that has not yet been displayed:

All the retrieved data has been displayed.

Now use the following operation to output the retrieved data to another roll. Press the following key:

F12

Press the following key to retrieve data:

Perform the same key operation as in the previous example until you specify an output device. The description of the subsequent operation begins with the following screen.

Press the following key to output the retrieved data to another roll:

In this example, retrieved data will be entered in a new roll titled "TV SETS". Press the following keys:
$\rightarrow[T][V][S[E T S]$
The retrieved result has been entered in the new roll titled "TV SETS". To see the retrieved data, do the following:

- F12

- F12

The new roll has been defined. Press the following key to view its contents.

4

All the rows whose PRODUCT columns contains "TV SET" have been outputted.

In this example the retrieved result was written into a new roll. It can also be written into a roll already defined. When retrieved data is output to a previouslydefined roll, it is possible to specify whether the data is written from row l or from the row following the last row of the defined roll.
Return the screen to the roll list screen.

F12

In this chapter, you will learn calculation and retrieval print options.

3.1 Calculation and Printout

This section explains how to print data while performing calculations on sorted data.
For this operation, select roll 2, "sample data", from
the roll list screen.

- (2)

Press the following key to print data:

Specify 70 as the number of lines per page. (This is assuming that A4-sized forms will be used.)
$>F 1$

Specify the default value for the start and end lines.

- \square

Specify the default value for the starting and ending character specifications.

In this example, the lines will not be ruled.

The title is "TOTAL BY BRANCH". Press the following keys:

$[T][T][D][B] \square[B][A][C][H$

CANOBRAIN asks you to input the columns to be printed. In this example, "Branch Name" and the totals from January to June will be printed. Input the column numbers one at a time.
$1 \square$

CANOBRAIN asks you to input the number of spaces to be placed before column l. In this example, no spaces are required.
ω

The data for January is printed to the right of a branch name. Specify the column number for January.
(3)

Insert two spaces before the data for January. 2

Specify the column numbers and number of spaces for February to June in a similar manner.

- 4 $2 \square$
- $5 \square\left[\begin{array}{l}\text { 2 } \\ \hline\end{array}\right]$
- 国国
$-[\overline{7}] \square[\overline{2}]$
- 8 [
- 1

The \square key is pressed last to indicate that the specification of print column has been entered.

CANOBRAIN asks you to input the key column for which a total is to be calculated. Specify column las the key column.
[1]

CANOBRAIN asks you to input the character position within the BRANCH column which is used to start printing the total if the character in that position on the current row differs from that on the previous row. In this example, a character position need not be specified. That is, all the characters in column l are examined. If a column containing numeric data is specified, this message is not displayed.

CANOBRAIN asks you whether data is to be printed while it performs retrieval. In this example, no retrieval is performed.

CANOBRAIN asks you to input the start and end rows for printing. In this example, all rows are printed.

F1
The following is an example of printed results:

TGTAL BY ERAHEH					DATE 12.01.83		PAGE
BRANCH	Jand.	FEE.	WAR.	APr.	M ${ }^{\prime \prime}$	JUHE	
AMSTERDAM	140	120	280	160	170	150	
AHSTERDAM	160	200	180	120	170	160	
	300	320	460	2801	310	310	
BIRMINGHAM	320	170	250	320	190	170	
EIRMINGHAM	510	420	570	380	420	440	
	830	590	320	700	610	610	
Bumbay	620	580	760	700	640	520	
BOMEAY	420	310	390	440	280	300	
BOABAY	780	650	680	740	760	640	
	1,820	1:540	- 1.830	1.380	1,680	1,460	
BOSTON	260	180	320	270	280	330	
Bostan	320	360	410	230	260	330	
	580	540	730	550	540	660	
CAIRO	240	150	130	630	20]	140	
CAIRO	190	130	170	<	12.1	\# ${ }^{\text {¢ }}$	
CAIRG	380	390	270	- 711	31.1	230	
-=-	810	670	570	53111			
PEKING FEKING	32 C		410	250	2\%0	280	
	370	320	350	140	4	360	
	690	590	760	690	5 SO	640	
SHAMGHAI	200	150	180	160	170	220	
SHANGHAI	350	320	430	390	290	330	
	550	470	610	550	460	550	
SYDHEY	180	150	320	240	190	250	
SYONE ${ }^{\text {W }}$	230	340	210	400	250	230	
	460	490	530	640	440	480	
TaKYo	370	250	380	420	330	310	
TGKYO	450	380	230	450	300	430	
	820	630	610	870	630	740	
YOKGHAMA	270	130	230	240	220	28.	-
YOKGHAIAA	170	210	130	170	180	120	
YOKGHAMA	300	150	260	470	320	280	
	740	570	620	830	720	680	
	19,320	16.760	16.230	19.630	15.740	16.910	

Next, we will learn how to print data while performing retrieval. Press the following key:
-512

3.2 Retrieval and Printing

In the following example, we will print branch names and their totals while retrieving data.

The title is "ANNUAL SALES OF TV SETS BY BRANCH".
Press the following keys:

Print only the columns BRANCH and TOTAL.

- 1 回

Omit the spaces at the beginning of column 1 .

15

Omit the spaces at the beginning of column 15.

Press the following key to end the print column specification:

In this example, the total will not be calculated.

Specify that retrieval is to be performed.

- F 2

Data is retrieved from the PRODUCT column (column 2).

- 2

The key data string is "TV SET", to be recovered from all locations in column 2.
$>F 2$

Input "T.V. SET" as follows:
$-[\bar{T}][\cdot[\overline{\mathrm{V}}][\square[\overline{\mathrm{S}}][\mathrm{E}[\underline{\mathrm{T}}] \square$

Retrieval is performed for all rows with the condition ITEM $=$ T.V. SET.
$D F 1$

ANHUAL SALES 0	TU SETS B' bramch	DATE 12.01.83	PRGE
BRAHCH	TOTAL		
AMSTERDAM	2,060		
BIRMINGHAM	5,380		
BOMBAY	8:430		
CAIRO	3,980		
Calcutta	5.380		
DETROIT	9,140		
FRAHKFURT	3.330		
HONG KONG	8,360		
L. A.	5,630		
LONDOH	2,920		
MEXICO	4,310		
Moscou	12,040		
MEIN YGRK	4,400		
ORKLAND	3,390		
OSAKA	2,310		
PARIS	2,6301		
FEKING	4,300		
SHANGHAI	3.960		
SYDHEY	3,370		
YOKOHANA	3,440		

Data printing and concurrent retrieval have been completed. Press the following key to return the display to the data processing screen:

```
- F12 . . (Three times)
```


mists bMind D.

Chapter 4 - REDEFINING A ROLL

In this chapter, you will learn how to modify attributes and column widths.

4.1 Modifying Column Attributes and Widths

This section explains how to modify the attribute (numeric or character, etc.) and the width of a column that has been previously defined.

To modify the column width, press the following key:

CANOBRAIN asks you to input the number of the column whose width is to be modified. In this example, the width of column l will be modified from 10 characters to 15 characters.

- [1][5][1]

The width of column l has been modified to 15 charac-* ters. The column width indicator on the second line from the bottom has changed from "l0CL" to "15CL", indicating that the column width has changed from 10 characters to 15. This indicator will be explained in Volume V in detail. Remember that the first two characters indicate the width of the column. This indicator is displayed when FORMAT, INPUT, or INPUT PAT. are selected.

Press the following key:

F12

Next, modify the attributes of a column. A column can have the following attributes:

- Data type: Data type of string; i.e., character type or numeric type
+ Character shift: Left-justified or right-justified
- Numeric type:

General (real number including exponent), integer, or decimal format
. Numeric editing: Numeric editing options such as comma, dollar(\$), or plus(+) sign insertion

- Data protection: To protect entered data from being changed by input or recalculation.

These are specified the same way a roll is defined, In this example, the dollar sign is placed before numeric values. Press the following key:
\rightarrow F4

CANOBRAIN asks you to input the number of the column. Input "3".

13

F3

A detailed explanation of editing characters will be given in Volume V. In this example, press the following key to place the dollar sign before numeric values:

The dollar sign has been placed before the values in column 3 to demonstrate the use of editing characters. Therefore, the next step is to remove the dollar signs because they have no meaning in relation to the data in column 3. To do this, press the following key:

$\rightarrow F 4$

The dollar signs have been eliminated. Return the screen to the data processing screen.

```
F12 ... (Twice)
```


Chapter 5 - DATA EXCHANGE WITH OTHER SYSTEMS

In this chapter, we will explain about the process of data exchange with files that can be read from or written to the AS-l00's online software, (RJE-86), or with files on IBMformat floppy disks.

CANOBRAIN can read data from or write data to an online file.
This function is not available when using a mini-floppy disk system (5 $1 / 4$-inch).
You can use layout to define an online file. The format of data storage is called layout. In this example, we will register a layout, then write a roll data to the system floppy disk, delete the roll data, and read online file data into the same roll. We begin our explanation with the screen below.

$P F 9$

Select the online file function.

Select layout registration.
$-\mathrm{F} 1$

You can assign a number from 1 through 15 for the layout number. In this example, specify 1.

- 10

CANOBRAIN asks you to input comments on the layout. Specify "ONLINE FILE".
$-[\bar{O}][\mathrm{N}][\mathrm{D}] \mathrm{N}] \square[\mathrm{F}[\mathrm{I}] \mathrm{E}[\mathrm{G}$

CANOBRAIN asks you to input a name for the online file. The file name must be composed of eight letters or less. These letters will automatically be changed to capital letters.

You can add an identifier consisting of three letters following a period if you want. Specify "ONLINE.DAT" in this example.

CANOBRAIN asks you to define the block length (collection of data) used in the file. One row of roll data corresponds to one block.
You can select 128 bytes or 256 bytes as the block length.
Select 128 bytes in this example.
$-F_{1}$

CANOBRAIN asks you to define the internal code for the online files.

Select ASCII code in this example.

F2

A field is a place where data is entered within a block. One column of a roll corresponds to a field. You are now requested to input the width of the first column. Input the width, 15 , as follows:
[1][5] (ㅍ)

The width, 15, is displayed on the screen. CANOBRAIN asks you to input the data contents. Since column l contains characters, press the following key:

CANOBRAIN asks.you to input the width of the second field. Since the second column of the roll is 12 characters long and contains characters, input the following:

Next, specify the length of the third field. Column 3 of the roll is 6 characters long and contains a numeric value. The field length is 6. Therefore, input:

Two numeric types, packed and zoned, are displayed because the field contains a numeric value. In packed format, a numeric value is packed in a field half as long as the number of the numeric characters. Note that up to 15 digits can be handled. In zoned format, a numeric value is written in a field whose length equals the number of numeric characters. Up to 256 digits can be handled.

In this example, all the numeric values are in packed format.

Specify the lengths similarly for fields 4 to 15 as follows:
-6 (1)... (11 times)

- 10 F

To end the field specification, press the following key:
\square

CANOBRAIN has memorized the layout of the online file.

To write CANOBRAIN roll data to an online file, press the following key:

F3

CANOBRAIN asks you to input the number of the layout used to write data. Input the number for "ONLINE FILE", "l", that was registered in the previous section.

1 日

CANOBRAIN asks you the origin and destination of the data to be transferred. In this example, select "Roll->File" because data will be written from the roll to online files.

F2

5.1.3 Reading Data from an Online File to a Roll

This section explains how to read data from an online file to a roll.
In this example, the layout "ONLINE FILE" and the file "ONLINE.DAT", which data had been written to in the previous section, will be used.
First, delete the roll data so that we can understand how data will be written.

- F12 (Twice)

$>\sqrt{F 1}$

$1 F 2$

R $1 \cdot \square 0 \square \square$

The data on all rows, except row 0 , have been erased. Return the display to the data processing screen.

- F12 (Twice)

Press the following key to read data from the online file to the roll:

1 FB

1]

F1

CANOBRAIN can read data from or write data to IBM-format floppy disks to allow you to use data generated by largescale computers or to produce data for use with large-scale computers.

This function is not available when using mini-floppy disk systems (51/4-inch).

CANOBRAIN can use the following types of IBM-format floppy disks:

- Single-sided, single-density 128 bytes/sector
. Double-sided, double-density 256 bytes/sector

Whether data can be read from or written to these two types of floppy disks depends upon the indicators used internally. For details, refer to Appendix 2.

Assuming that an IBM-format floppy disk with the format given below is used, the subsequent explanation of the data exchange procedure will apply.

5.2.1 Defining IBM-Format Floppy Disks

Press F9 when the data processing screen for "sample data" is displayed:

Select $F 2$ to enable use of IBM-format disks.
$-F 2$

When the above screen is displayed, let's have CANOBRAIN memorize how data is stored on an IBM-format floppy disk.
$1 \quad \mathrm{~F}$

In this example, 1 is assigned to the layout.
1

CANOBRAIN asks you to input comments on the layout.
T: 제[日大

CANOBRAIN asks you to input the volume name of the IBM-format floppy disk. The volume name of the floppy disk will be "YOKO". Make sure that the name is in upper-case letters. Activate the and input the volume name as follows:

YOKOL

The volume name has been displayed on the screen. CANOBRAIN then asks you to input the file name. The file name is "FILEl".
$|\mathrm{F}| \mathrm{T}|\mathrm{D}| \mathrm{E}|\boldsymbol{1}| \underline{\square}$

CANOBRAIN asks you to define the format of a record (collection of data) in the file. One row of the roll corresponds to a record. A field is a place where data is entered within a record. A column of the roll corresponds to a field. You are now requested to input the length of the first field. Since the width of the first column is 15 , input the length as follows:

15

The length, 15 , is displayed on the screen. CANOBRAIN asks you to input the contents of the data. Since column 1 contains characters, press the following key:

F1

CANOBRAIN asks you to input the length of the second field. Since the second column of the roll is 12 characters long and contains characters, input the following:
[1] [2]
$-\mathrm{F} 1$

Next, specify the length of the third field. Column 3 of the roll is 6 characters long and contains a numeric value. The field length is 6.

6

Two numeric types, packed and zoned, are displayed because the field contains a numeric value. In packed format, a numeric value is packed in a field half as long as the number of the numeric characters. Note that up to 15 digits can be handled. In zoned format, a numeric value is written in a field whose length equals the number of numeric characters. Up to 256 digits can be handled.

In this example, all the numeric values are in packed format.

Specify the lengths similarly for fields 4 through 15 as follows:

$$
\text { -66 } 62 \text {.. (ll times) }
$$

- $100 \square$

To end the specification of the fields, press the following key:
\square

CANOBRAIN., has memorized the layout of the IBM-format floppy disk.
5.2.2 Writing Data on IBM-Format Floppy Disks

To write CANOBRAIN's roll data on an IBM-format floppy disk, press the following key:

CANOBRAIN asks you to input the number of the layout that will be used to write data. Input the layout number of "test", "l", that was created previously. 1 d

CANOBRAIN asks you if data is to be written from the floppy disk to the roll or from the roll to the floppy
disk. In this example, select "ROLL \rightarrow FPD" because data is written from the roll to the floppy disk.

The roll name, the item names, and the column widths are displayed on the left half of the screen, and the contents of the layout fields on the right half. Let's make the columns of the roll correspond to the fields on the floppy disk. In this example, field l corresponds to column 1, field 2 to column 2, and so on. Input the correspondence as follows:

The roll column numbers to be written in the fields are displayed at the far right of the screen.

CANOBRAIN now asks you to remove the system floppy disk from drive A and to insert an IBM-format floppy disk. After inserting the floppy disk, press the following key:

After processing, the four lines at the bottom have changed as shown above. The message asks you to remove the IBM-format floppy disk and to re-insert the system floppy disk.

Even if the data have been written correctly, be sure to re-insert the system floppy disk in drive A before pressing any keys. CANOBRAIN will not perform operations correctly unless the system floppy disk is in drive A.

After inserting the system floppy disk, press the following key:

The roll data has been written on the IBM-format floppy disk.

The roll name, the item names, and the column widths are displayed on the left half of the screen, and the contents of the layout fields on the right half. Let's make the columns of the roll correspond to the fields on the online file. In this example, field 1 corresponds to column 1, field 2 to column 2, and so on. Input the correspondence as follows:

The roll column numbers to be written in the fields are displayed at the far right of the screen.

CANOBRAIN now asks you to set the floppy disk in drive A. If you have the online floppy disk, remove the system floppy disk from drive A and insert it.

In this example, we will use the system floppy disk.
Press the following key:

After processing, the four lines at the bottom have changed as shown above. The message asks you to remove the floppy disk and to insert the system floppy disk.

Even if data has been written correctly, be sure to insert the system floppy disk in drive A before pressing any keys. CANOBRAIN will not perform operations correctly will not perform operations correctly

Since we used the system floppy disk in this example, no operation is required here.

F $F 12$

The roll data has been written on the online file.

5.2.3 Reading Data from an IBM-Format Floppy Disk to a Roll

This section explains how to read data from an IBMformat floppy disk to a roll. In this example, the layout "test" and the IBM-format floppy disk on which data has been written in the previous example are used.

First, erase the data written in the roll so that you can understand how data will be written there. Press the following key:

- F12 . . (Twice)

Press the following key:

F2

R $1 \cdot \square \cdot \square] \square \square \square$

F1

The data on all rows, except row 0 , has been deleted. Return the screen to the data processing screen.

- F12 . . (Twice)

Press the following key to read data from the IBMformat floppy disk to the roll.

$>$ F2

- 1

F1

CANOBRAIN asks you to input the roll column into which the field data of the IBM-format floppy disk is to be read. The correspondence between the fields and the columns is the same as that in the previous example. Input the correspondence as follows:

The field numbers that have been entered are displayed in the center of the screen. Insert the IBM-format floppy disk into drive A and press the following key.

After processing, the four lines at the bottom of the screen have changed as shown below.

Insert the system floppy disk into drive A and press the following key:

F F

Check whether or not the data has been read.

- F12 . . (Twice)

In this example, data was deleted from all rows except row 0. Now, the data has been restored. That is, the data has been read from the online file floppy disk to the roll.

CANOBRAIN asks you to input the roll column into which the field data of the online file is to be read. The correspondence between the fields and the columns is the same as that in the previous example.
Input the correspondence as follows:

The field numbers that have been input are displayed in the center of the screen. Insert the floppy disk which contains ONLINE.DAT into drive A and press the following key.
P F1
After processing, the four lines at the bottom of the screen have changed as shown below.

Insert the system floppy disk into drive A and press the following key:

F12

Check whether or not the data has been read.

```
- F12... (Twice)
```


In this example, data was deleted from all rows except row 0 . Now, the data has been restored. That is, the data has been read from the online file to the roll.

Canon AS-100

Chapter l - COMMON BUSINESS APPLICATIONS

This volume explains the various uses of patterns, which are convenient for handling routine processing.

As you have perhaps noticed, routine processing operations can become very tedious as well as time-consuming. If these operations are registered in CANOBRAIN, however, most can be performed automatically by the system itself. Recording these operations in CANOBRAIN as a pattern coherent is called pattern registration. Processing data according to the pattern set is called pattern execution.

The procedures for registering and executing patterns will be explained, using pages of roll data in book 1 generated in Volume II and roll sample data as examples.

1.1.1 Preparation

First, we will modify the roll data a bit. The items to be modified are:

- The fixed display of row 1 and column l,
- Addition of a column for totals,
- Deletion of all data,
- Entry of item names for each column,
- Entry of a expression for the total.

Those modifications are not necessarily required when registering procedures, but are required to explain the examples. Let's begin by selecting book 1.

- 3 回

Select roll data.
$1 \square$

First, specify a fixed display of row l, column 1. To do this, press the following keys:
$\rightarrow\left\{\begin{array}{l}\square \\ \square\end{array}\right\}$ (Press the $\bar{\square}$ key and then the \square key.)

Next, add a column for totals. This column, column 15, should have a width of 10 characters.

INSERT:

F2

The column to be added should be ready to be displayed. Activate the and then press the following key:
-1

Deactivate the and add column 15 .
ㄴㄴㄴㅁㄴ

The column width should be 10 characters.

- 10

- F12

Activate the and then press the following key:

- 10

Deactivate the
Clear the data used in Volume II, since it is unnecessary.

F1

- F2

Clear all data.
R $1 \rightarrow \square \square \square \square \square \square \square \square \square \square$

F3

F1

Data has now been cleared. The next step is to enter the item names of each column according to the sample data. The item names are as follows:

Column	Item	Column	Item
1	Branch name	9	JULY
2	Product name	10	AUG.
3	JAN.	11	SEP.
4	FEB.	12	OCT.
5	MAR.	13	NOV.
6	APR.	14	DEC.
7	MAY	15	TOTAL
8	JUNE		

Be sure to deactivate the , and then press the following keys:

```
            [B[R[A][D][G
- [P]R[D][O[C[T][S][]
- []A[N[]
    !
- DECO[-]
- [T][T] (L)
-㽣成嵓
```


Enter an expression for the table．
－F3

Add a column for the total of the figures for January to December．

Now, we are ready to begin data processing. Return to the data processing screen.

- F12 (Twice)

Next we will explain pattern registration and its execution.

l.l.2 Roll to book data transfer

Let's practive registering the procedures for transferring roll data to a book table. Press the following key when the data processing screen appears:

Register the pattern.

Specify a number for the pattern to be registered. For example, here we will specify 1.

1

Enter a comment indicating the type of pattern you want to register. For this example, enter "Sales of TV Sets". Then press the following keys.

CANOBRAIN asks from which roll data is to be read. For this example, the roll table entitled "sample data" will be used. Press the following keys:

(s, a max

Transfer all columns of the roll to a book by pressing the following key:

F1

Retrieval is used to gather only data on TVs from the roll data.

- F2

- 2

- F 2

Press the following keys:

CANOBRAIN asks which roll rows are to be processed. Since all rows are to be processed, press the following key:
$>F 1$

CANOBRAIN asks from which row of the book table data should be entered. It should be from the second row.
$2 \square$

The pattern has now been registered.

```
512 (Twice)
```


Let's execute the pattern just registered.

Specify the number 1 that was assigned to the newlyregistered pattern.

After a table without data appeared, roll data was entered. Thus, a pattern is registered by performing the procedures to be registered in the same manner as usual. When you want to execute the pattern, you only need to specify the pattern number.

Return to the data processing screen.

F12

1.1.3 Data entry order

When the sequence of data entry to a book table or roll is predetermined, that sequence can be registered as a pattern. Press the following key after gaining access to the data processing screen.

F F2

Register the pattern.

Specify a number for the pattern you have registered. For this example, specify 1.

1]

CANOBRAIN asks you the rows in which data should be entered and the entry order. For this example, the pattern should have an order in which the roll data for columns 3 (Jan.) through 14 (Dec.) are entered serially from January.

The starting and ending row numbers specify to which cells of the column the just-specified data will be entered. Rows 2 through 50 are specified for this example.
$-2][5][0]$

CANOBRAIN asks in which direction (vertical or horizontal) data will be entered. Specify the horizontal direction.

The pattern has now been registered. This pattern execution allows data to be entered in the order shown below.

	1	2	3	4	5	13	14	15
1	Branch Name	Product Name	JAN.	FEB.	MAR.	NOV.	DEC.	TOTAL
2			(1)	(2)	(3)	(11)	(12)	
3			(13)	得	(15)	(23)	29	
:									

Execute the pattern.

- $\mathrm{F3}$

Enter the pattern number.
1 回

The cell cursor is displayed at row 2 , column 3. The arrow indicating the cell cursor's direction of movement (vertical or horizontal) will not be displayed on the screen, since it was determined when the pattern was registered.

Here, perform the following operation. Make sure that the in is on.

The cell cursor has moved to row 3, column 3. Next, press the following key:
\square
As you can see, the cell cursor has returned to its previous position. It means that CANOBRAIN asks for data entry in the order in which the pattern has been registered. When you enter data, or press only and omit data entry, the cell cursor automatically moves according to the pattern. Even if you move the cell cursor using the arrow key or tab key, the cell cursor moves to a cell to which data should be entered next when \square is pressed. Data is now entered.

Sorting conditions, such as the reference column used or the sort order (ascending or descending), can be registered as a pattern. Press the following keys before going to the data processing screen.

F12 F6

$-F \mathbf{F 2}$

Register the pattern.

Enter 1 as the pattern number. Make sure the is on.

1 d

Enter a comment indicating the type of pattern being used. Press the following keys:

From this point on, the operation is the same as described earlier in the explanation of data sorting procedures. Let's register the pattern so that sorting will be in descending order based on the data in the totals column (column 15).

- [1] [5] []

F2

-

The sorting range should be from row 2 through row 50 . $-2][5]$

The screen remains the same, but the pattern has been registered. Sorting cannot be performed during pattern registration, and will not be performed unless pattern execution is specified.

F12

Let's execute the pattern just registered.

$-\mathrm{FA}_{4}$

As stated previously, the number for the pattern is 1 . - 1 D

This completes the sorting. Activate the and then press the following key:

- 1

Data items in the totals column have been sorted in descending order. As you can see, it is convenient to register routine conditions as a pattern.

1.l.5 Retrieval procedures

You can register retrieval conditions as a pattern. In the case of a book table, however, retrieval is completed when data satisfying the conditions set are found during pattern execution. Retrieval from the next row is not performed. Accordingly, you can examine whether or not the data required is in the table. Our explanation begins from the completion of sorting on the previous page.

F1

F2

Assign 1 as the pattern number. Make sure the is off, and then enter the following:

Enter a comment indicating the type of pattern. For this example, figures of 150 or less are to be retrieved, so enter "l50 or less". Then press the following keys:

From this point on, the operation is the same as described earlier. For this example, numbers less than or equal to 150 are retrieved from columns 3 (Jan.)
through 14 (Dec.).
Press the following keys:

FF3

- $1[5][0][\square]$

Similarly, specify up to column 14.

- F2 F3 5 0 0 (ll times)

Rows 2 through 50 are to be retrieved.
$\rightarrow[2[2][5][0]$

Retrieval can not be carried out during pattern registration, and will not be performed unless pattern execution is specified. Now that we have registered the retrieval pattern, let's execute it.
$F F$

F4

Enter the pattern number.

- 1 D

As explained in the section on pattern registration, retrieval only makes it possible to determine whether there are data satisfying specified conditions. When data satisfying the conditions are retrieved, the row is displayed on line 1 of the screen (or on line 2 if a fixed display of row 1 has been set), and the cell cursor is located in the top rightmost corner of the screen. This completes the retrieval. When no data satisfying conditions are retrieved, retrieval ends with the screen unchanged.
Activate the and then press the following key to make sure that retrieval has been performed:

Note that figures for January and August must be 150 or less. Return to the data processing screen.

We can register printout conditions (the number of lines per page or specific columns to be printed) as a pattern. Our explanation begins with the data processing screen.

F7

Register the pattern.

Assign 1 as the pattern number. Deactivate the - 1

Enter a comment indicating the type of pattern being registered.
Enter "Printout of Sales".
Press the following keys:

From this point on, operation is the same as explained earlier. The number of lines per page should be 70.

\square

Specify that ruled lines should not be printed.

The header should be "Sales of TV Sets".
Press the following keys:

Columns 1 through 8 (with the exception of column 2) should be printed.
[1] $4[3] 4[5][6][5][8]$
\square

CANOBRAIN asks whether data is to be retrieved and printed. For this example, no retrieval should be specified. If retrieval is specified, a pattern that also contains retrieval conditions should be registered.

CANOBRAIN asks which rows in the table are to be printed. The pattern should print all rows.

Though the screen remains unchanged, the pattern has already been registered. Printing cannot be performed during pattern registration, and will not be performed unless pattern execution is specified. Press the following key to finish pattern registration:

```
F12 (Twice)
```


Now let's execute the pattern just registered.

F4

Enter the pattern number.
历|
Printout is then performed according to the pattern.

SRANCH	J A (FEE.	MAR.	APR.	M ${ }^{\prime \prime}$	JUNE
Mascuil	1400	1200	950	1250	670	750
OETEOIT	870	660	950	860	730	600
BOMEAY	780	650	680	740	760	640
HOING KGING	740	680	640	910	710	640
L.A.	620	450	470	580	420	390
EIRMINGHAM	510	420	570	380	420	440
C.alcuita	520	470	420	630	420	380
HEW YGRK	200	400	300	2501	360	520
MEXJC6	450	320	470	380	260	280
FEKING	370	320	350	440	420	560
C:ARE	380	390	270	340	310	3801
SHANGHAI	350	320	430	390	290	330
YGKGHANA	300	130	260	470	320	2801
©AKLAND	260	280	240	300	270	210
SUPHEN	280	340	210	400	250	230
FRAHKFIPT	340	220	270	280	230	290
LGMDOH	120	230	220	310	280	390
FARIS	280	150	160	2301	2401	310
GSRKA	160	230	180	320	120	150
AMSTERDAM	160	200	180	120	170	160

This completes the execution of the printout pattern.

This example explains book "printout". Roll "report" can be similarly registered as a pattern. Return to the index screen.

F12

CANOBRAIN asks whether the table stored in the floppy disk is to be updated. Be sure and specify "update" during pattern registration; if you select "no update", the pattern will not be registered on the floppy disk.

- F 1

$>\mathrm{F}$

1.2 Registering More Complicated Procedures

Patterns explained up to now have been for individual processes, but these patterns can also be combined so you can automatically perform more complicated processing. This is called total pattern execution.

1.2.1 Preparation for examples

Examples comprising a total pattern set up the following hierarchy of tasks:

- Entering data to a roll
- Transferring roll data to a book table
- Modifying data if necessary
- Sorting data
- Printing data
. Graph display and printout

Since graphs must be created before being printed, your next task is to generate a graph based on the roll data in book l. Our explanation begins with the index screen showing the contents of book 1 .

Generate a page for the new graph.

Assign the title "Sales of TV Sets" to the new graph. Then press the following keys:

A comment may be inserted here if desired.
回

D

Now you can begin the process of generating a comparison bar graph.

GRAPH DEFINITION
INPUT TYPE OF GRAPH : .

1. PIE CHART
2. COMPESITION RATIO CHART
3. STACKED BAR CHART

SPECIFY table page no. :
HORIZONIAL =O, UERTICAL=1 :
INPUT START DATA
INPUI END DATA

Assign 1 as the table page's number.

1 1

[0]

The graph will be based on data from the months January through June.

3

Let's compare data of MOSCOW, DETROIT and BOMBAY.

Graph generation is complete. Return to the index screen.

Now you can proceed with total pattern registration.

1.2.2 Total pattern registration

We will register the total pattern according to the hierarchy of tasks just set up. The book list screen will appear. when the following key is pressed:

F12

F12

Select the total pattern processing function.
-7

One total pattern has already been registered for examples in Volume I. Register a new total pattern using the following procedure:

Enter a comment indicating the type of total pattern being registered. The total pattern should be "Sales Management". Press the following keys:

圂 [LE

"REG" is displayed in the bottom rightmost corner of the screen. REG stands for Register, which indicates that the total pattern has been registered.

Total pattern registration requires only those operations needed when an ordinary book or roll is processed. As stated before, processing is not performed during registration. Only functions that can be registered in the total pattern are displayed on the third and fourth lines from the bottom of the screen.

The next step is to register roll processing.
$>$ F2

Select "sample data" from roll number 2.
[2]

Select "PAT. INPUT" to enter data to the roll.
$>F 1$

Data input has been registered. Only "TOTAL" or
"RETURN" can be registered to a total pattern. The next step is to select a book.

F12

F11

Select "bookl" with book number 3.

3

Select page 1, "ROLL DATA".

- 1 -

Register the processing to read roll data.

Select execution of the pattern just registered.

The read from the roll has been registered. Next, we register data input processing.

Data input processing has been registered. The next step is to register a sorting pattern.
-

- F2

Select the execution of the sorting pattern.

Now, sorting has been registered. Next, we move to data printout.

F12.

F12

F12

Select printout processing.

Select execution of printout pattern.

[1]

Printout processing has been registered.

- F12

End the table processing procedure.

CANOBRAIN asks whether data should be updated during the execution of the total pattern being registered. For this example, we will register the pattern so that update can be specified during pattern execution.

F3

Now register graph display and printout to the total pattern. Select the graph on Page 2.

- [2]

The index screen is displayed again. With this operation alone, graph display and printout have been registered. For a graph, only a display and printout can be registered.
Press the following key:

- F12 (3 times)

This completes total pattern registration.

In this example, individual process patterns previously registered were selected with the use of the total pattern. However, you can also register individual patterns directly to the total pattern as we did when registering patterns individually.

1.2.3 Total pattern execution

The next step is to execute the total pattern just registered. Our explanation begins with the screen on the previous page showing the total pattern list.

"AUTO" is displayed on the right of the last line. This means that processing will be performed automatically according to the total pattern. Specify the number of the total pattern to be executed.

2

As you can see, the input pattern has been executed automatically. At this point, enter some data.

You may skip if you are in a hurry. Now data input has ended.

As you can see, book processing is performed automatically, then the roll data is read and we are ready for data input. We can modify data and expressions. For this example, we will ignore the modification and move to the next procedure.

F12

When data input processing ends, sorting is performed automatically and the following table is printed.

SALES GF TV	SETS					DATE 12.01.83	PAGE
ERANC:	Jith.	FEE.	HARE.	APR.	HéN	JUNE	
H6Scoul	1400	1200	950	1250	970	750	
dETRGIT	870	660	950	860	770	6010	
EGMEAY	780	650	680	740	760	640	
HGHG KCHIG	740	680	6401	510	710	640	
L. A.	620	450	470	580	420	390	
BIRMINGHAM	510	420	570	380	420	440	
gelciltat	520	470	420	630	420	380	
HEW YOEK	200	400	3010	250	360	520	
HESICA	450	320	475	380	260	280	
PEKIHS	370	320	350	440	420	360	
CAIFG	380	390	270	340	310	380	
SHANGHAI	350	320	430	390	290	330	
YOKGHAMA	300	180	260	470	320	280	
GAKLANE	260	280	240	300	270	210	
SYDNEY	230	340	210	400	250	230	
FEAHKFURT	340	220	270	280	230	290	
LOHDCA	120	230	220	310	280	390	
PAR15	280	150	160	230	240	310	
6SAKA	160	230	160	320	120	150	
AHSTEFDAM	$16 a$	200	180	120	170	160	

Specify "UPDATE".

F1

F1

Table processing is now complete. Next, the following graph is displayed and then printed.

When execution of the total pattern is finished, the following screen will be displayed.

This completes our explanation of the procedures for executing total patterns.

Canon AS-100
Chapter 1 GENERAL DESCRIPTION 371
1.1 Hardware 371
1.2 Software 372
1.3 Floppy Disk Insertion and Startup 372
l.4 Initialization 374
1.5 Books 376
1.6 Rolls 377
1.7 Total Patterns 378
1.8 Pages 379
Chapter 2 BOOKS 381
2.1 Table Functions 381
2.2 Graphic Functions 418
Chapter 3 ROLLS 439
3.1 Defining a Roll 439
3.2 Data Processing 440
3.3 INPUT Function 443
3.4 INPUT PAT. (Input Pattern) Function 444
3.5 DATA GEN. (Data Generation) Function 444
3.6 DUPLICATE Function 444
3.7 FORMATTING Function 445
3.8 RETRIEVAL Function 449
3.9 SORT Function 449
3.10 REPORTING Function 450
3.11 UTILITY Function 451
Chapter 4 ERROR MESSAGES AND CORRECTIVE ACTIONS 453
4.1 Messages during Startup 454
4.2 Error Messages during Password Definition 455
4.3 Error Messages during Table Processing 456
4.4 Error Messages during Graphic Processing 463
4.5 Other Error Messages 464

l.l Hardware

The minimum hardware configuration for CANOBRAIN is as follows:

- CPU and memory (384K bytes or more)

A monochrome or color display can be used. The color functions are not available when using a monochrome display.

- Keyboard
- Floppy disk drives A and B

A mini floppy (5-1/4") or standard floppy (8") disk drive can be used. An IBM-format file can be used only with a standard (8-inch) floppy disk drive.

The following devices are optional:

- Pointing device
- Printer

Two printers can be used with CANOBRAIN, one for printing tables and the other for printing graphs.

The A-1200, A-1210, and A-1250 printers can be used to print tables and graphs.

An electric typewriter (an AP500, for example) can be used to print tables by adding a serial interface (RS232C).

If two printers or an electric typewriter will be used, consult Appendix 3 for instructions.

- Hard disk

If a hard disk unit will be used, consult Appendix 4 for instructions.

1.2 Software

The following software is required for CANOBRAIN:

- System floppy disk

Contains the operating system (CP/M-86) and CANOBRAIN.

Two system disks are required if you are using a mini floppy disk system. One contains the operating system (CP/M-86) and the other contains CANOBRAIN.

- Data floppy disk

Stores data that is created. A new floppy disk must be formatted for this purpose.
1.3 Floppy Disk Insertion and Startup

Insert the floppy disks as follows:

- Drive A: System floppy disk (Use system disk l if you are using a mini-floppy disk system.)
- Drive B: Data floppy disk

Start CANOBRAIN as follows:

- Turn on power.

The following operations must be performed if you are using a mini-floppy disk system:

1. Remove system disk 1 and insert system disk 2.
2. Press the CTRL and C keys simultaneously.
3. Press the following keys in the sequence indicated. cbrain

1.4 Initialization

(1) Date

A date specified during initialization is used as the creation date when books, pages, or patterns are created, and as the update date until books or pages are updated. It is also supplied when data is printed out. Enter the date as six digits. When two digits are entered, the delimiter (normally a period) appears. The year, month and day may be specified in any order.

The default value is the last date entered.
(2) User options

During initialization, you can change the date delimiter, refer to the system alteration history file, set the number of lines per page, and set up printers.
a. Date delimiter

- Input: The date delimiter is changed to the character entered immediately afterward.
- . : Changes the delimiter to a period.
- / : Changes the delimiter to a slash.
- - : Changes the delimiter to a hyphen.
b. System alteration history file

You can refer to the history file or memory that can be used to process tables.
c. Number of lines per page

You can specify three line-count options (number of lines per printer form). The allowable number of lines ranges from 4 to 255. The default values are as follows:

- Line-count option l: 70
- Line-count option 2: 66
- Line-count option 3: 60
d. Printer setup
(3) Password
Passwords are used to prevent unauthorized access to
stored data. A password can consist of one to six charac-ters (letters, numbers or symbols). in any combination.A book or roll created with a password assigned to itwill not be displayed in the book or roll list unlessthe password is given, and the password itself will notbe displayed on the screen. A total of 20 passwords canbe specified for each floppy disk. Consult Volume V,Chapter l, to learn how to assign passwords.

The following functions can be executed when the book list is displayed:

- [6] [$\left.\begin{array}{l}1 \\ 2 \\ 8\end{array}\right]$ Scrolls the book list one line at a time.

- $\left.\quad \begin{array}{c}\text { rome } \\ 7\end{array}\right]$: Displays the first book.
- $\xrightarrow{\square}$: Displays a book specified by the user.
- Number : Specifies the number of the book to be processed.
- CREATE : Creates books.
- DELETE : Deletes books.
- MODIFY : Changes book titles.
- PRINTOUT: Prints out the book list.
- ROLL : Proceeds to roll processing.
- RETURN : Returns to the CANOBRAIN startup screen.

This operating system allows you to store a maximum of 128 books. However, the actual number of books that can be stored depends upon table sizes, number of pages, number of total patterns, etc. When a book is created, the creation date and the update date are displayed. When data is updated, only the update date is changed.

The following functions can be executed when the roll list is displayed:

- [1, $\left.\begin{array}{l}1 \\ \hline \\ 8\end{array}\right]$ Scroll the roll list one line at a time in the indicated direction.
- $\left[\begin{array}{c}\text { mon } \\ 3\end{array}\right],\left[\begin{array}{cc}\text { fom } \\ 9\end{array}\right]:$ Scroll the roll list one screen at a time in the indicated direction.
- $\quad 7$: Displays the first roll.
- $\xrightarrow{\leftrightarrows}$: Displays a roll specified by the user.
- Number : Specifies the number of the book to be processed.
- CREATE : Creates rolls.
- DELETE : Deletes rolls.
- MODIFY : Changes book names.
- PRINTOUT: Prints out the roll list.
- BOOK : Proceeds to book processing.
- RETURN : Returns to the CANOBRAIN startup menu.

The number of rolls that can be stored depends on the capacity of the floppy disk being used.

```
1.7 TOTAL PAT. (Total Pattern)
```


The following functions can be executed when the total pattern list is displayed.

- $\left.\begin{array}{l}1 \\ 2\end{array}, \begin{array}{l}1 \\ 8\end{array}\right]$ Scroll the total pattern list one line at a time in the indicated direction.
 a time in the indicated direction.
- $\sqrt{6 \times 4}$: Displays the first total pattern.
- $\xrightarrow[\rightarrow]{\square}$. Displays a total pattern specified by the user.
- CREATE : Creates total patterns.
- EXECUTE : Executes total patterns.
- DELETE : Deletes total patterns.
- MODIFY : Changes comments on total patterns.
- PRINTOUT: Prints out the total pattern list.

The maximum number of total patterns that can be stored on one disk is 20.

The following functions can be executed when the index is displayed:

- $\left[\begin{array}{l}\frac{1}{2},\left[\begin{array}{l}1 \\ 8\end{array}\right] \text { Scroll the index one line at a time in the }\end{array}\right.$ indicated direction.
- 0 : Creates pages.
- Number : Specifies the number of the page to be processed.
- [an 3 , [Scroll the index one screen at a time in the indicated direction.
- $\left[\begin{array}{l}70 \\ 7\end{array}\right]$ Displays the first page.
- $\xrightarrow{\rightarrow}$ Displays a page specified by the user.
- DELETE : Deletes pages.
- MODIFY : Changes page titles and subtitles.
- PRINTOUT: Prints out the index.

When a page is created, the creation date and update date are displayed. When data is updated, only the update date is changed.

The number of pages that can be stored depends upon the type of floppy disk used, the number of rows and columns in the tables, the number of data items or expressions, the number of processing patterns, and so forth. The following table gives the approximate number of pages that can be stored:

Page type	A	B	
Mini-floppy disk (5.25")	70	20	Less than 128
Standard floppy disk (8")	Less than 128	40	Less than 128

A pages : Tables consisting of 50 rows x l0 columns (8 characters/column)

B pages : Tables consisting of 100 rows $x 20$ columns (8 characters/column)
C pages : Graphs

2.1 Table Functions

2.1.1 Defining a Table

For a table to be defined, the number of rows and columns in the table and the number of characters in each column must be specified, and must fall within the following ranges:

- Number of rows in the table 1 - 255
- Number of columns in the table : 1-99
- Number of characters in each column : 1 - 75

Note that the number of characters of a table row must not be greater than 512. For example, 4 columns, each consisting of 75 characters (75x7=525), cannot be defined.

Max. 75 characters

The size of a table is also limited by memory capacity. The following table gives the approximate number of rows, columns, and characters that can be entered:

Table size Memory	384 KB	512 KB
Number of rows	128	128
Number of columns	32	32
Number of characters per column	8	8

2.1.2 Data Processing

(1) Screen

(1) Cell cursor
(2) Row number
(3) Message row
(4) Input row
(5) Column number
(6) Data area usage ratio (percent)
(7) Calculation and calculation order
A(Auto) : Automatic
H: Horizontal

M(Manual): Manual V: Vertical
(8) Cell cursor address
(9) Processing status, cell attribute, or error message.

If a color display is used, data is displayed in the following colors:

Cell cursor : White
Bottom four rows: White
Negative data : Cyan
Other data : Green
(2) Moving the cell cursor

You can move the cell cursor during data processing in one of the following ways:

0 : Used to display the left side of screen.
1 : Used to display the right side of screen.
2 : Used to move the cell cursor down.
3 : Used to scroll the screen up.
4 : Used to move the cell cursor to the left.
5 : Used to move the cell cursor to the last row of the last column.
6 : Used to move the cell cursor to the right.
7 : Used to move the cell cursor to the first row of the first column.
8 : Used to move the cell cursor up.
9 : Used to scroll the screen down.

- Specify an address and press $\xrightarrow[\rightarrow]{\rightarrow}$.
- Use a pointing device.

If you try to move the cell cursor to a point outside the displayed area, the screen will automatically scroll.

Processing
The following functions can be executed during data processing:

- INPUT : Inputs, corrects, and deletes data or expressions.
- INPUT PAT.: Registers, deletes, and executes patterns.
- DATA GEN. : Inputs arithmetic progressions.
- DUPLICATE : Duplicates specified data, expressions and attributes from one part of a table to another, or from table to table.
- FORMATTING: Alters attributes or column widths, etc.
- RET./SORT : Retrieves and/or sorts data.
- PRINTOUT : Prints tables.
- CD FILE : Inputs/outputs data from/to CD files.
- INPUT ROLL: Inputs roll data.
- TABLE DEF.: Re-creates tables.
- MONITOR : Returns to the index screen.
- copr : Copies individual rows or columns.
- Move : Moves rows or columns.
- DeRIE : Deletes rows or columns.
- msent : Insert rows or columns.
- $\hat{4}$: Start or end the permanent display of row 1, column 1.

The following functions can be executed during data input processing:

Used to move the cell cursor.

- INPUT DATA/EXPRESSION:

Inputs characters, numbers, symbols, and expressions.

- CORRECT : Corrects data or expressions.
- DELETE : Deletes data or expressions.
- COL. EXP. : Inputs, corrects, or deletes column expressions.
- RETRIEVAL and CONT. RET.:

Retrieves data according to specified conditions.

- total \quad Calculates page totals.
- RETURN \ddagger Returns to the data processing screen.

This function allows you to input characters, numbers, or symbols into the cell where the cursor is located. If the first data character is a number, the data is assumed to be a numeric value; if it is not, a number, $+,-, \quad($, or $@$, the data is assumed to be character data. However, if a number or one of the symbols just mentioned is preceded by ", the data is assumed to be character data. Mathematical expressions must begin with a number, ,,$+- \quad$, or @.
[Example]

```
l23 Numeric data
"123 Character data
+R2C2+l Expression
```

To input data into a particular cell, enter a colon (:), the address, $=$, and then your data in that order. An address range can also be specified.
[Example]

$$
\begin{aligned}
& : R 2 C 2=1 \\
& : R 2 \cdot 3 C 2.3=\text { TOKYO } \\
& : R 2 . . C 2 . .=+R 1 C 5
\end{aligned}
$$

Characters entered from the keyboard are displayed on the input line and at the cell cursor position. The number of characters to be entered cannot exceed the number of characters in the cell. Numbers entered from the keyboard are first displayed on the input line. When one of the following keys is pressed to indicate the end of input, the number is displayed in the cell:
: Move the cursor in the direction
indicated by the arrow displayed
in the bottom right corner of the
screen. Cursor direction remains
unchanged.

CANOBRAIN can process numbers with 2 －digit exponents （－64 to +63 ）and 14 －digit mantissas．Up to 80 digits can be entered．When the number of characters exceeds the column width，the number is rounded off and ex－ pressed in E notation．If it is too large to be displayed in the E notation，the column will be filled with question marks．Numbers can be entered in E notation if desired． The following keys are used to correct data on the input line：

DEL ：Deletes the character immediately preceding the cursor．
（n and ：Deletes data that has been entered．

When all data is deleted with the bel key，be sure to press the 楽园 key or reenter data，since further processing is impossible until one or the other is performed．
（2）Inputting expressions
An expression can be entered at the cell cursor position． The entered expression is effective for one cell．If it is to be used for the entire column rather than a single cell，specify a column expression．An expression must begin with a number，+ ，- ，, or $@$ ．

$$
\begin{aligned}
& \text { [Example] } \\
& \quad+\mathrm{R} 2 \mathrm{C}-\mathrm{R} 2 \mathrm{C} 3 \\
& -\mathrm{R} 2 \mathrm{C}+\mathrm{R} 2 \mathrm{C} 3 \\
& (\mathrm{R} 2 \mathrm{C} 2+\mathrm{R} 2 \mathrm{C} 3) * 100 \\
& \text { @SUM (R2C2..) }
\end{aligned}
$$

Enter a colon (:), the address, =, and then the expression to enter the desired expression into a particular cell. An address range can also be specified.
[Example]

$$
\begin{aligned}
& : R 2 C 10=+R 2 C 2-R 2 C 3 \\
& : R 2 \cdot 3 C 10=(R 2 C 2+R 2 C 3) * 100 \\
& : R 2 \ldots C 10=@ \operatorname{SUM}(R 2 C 2 \ldots)
\end{aligned}
$$

The following operators can be used in an expression:

- + : Addition
- - : Subtraction
- * : Multiplication
- / : Division
- \wedge : Exponentiation
- (): Change in calculation sequence
- []: Calculation result of an expression (one cell address or constant only)

A mathematical expression can consist of up to 80 characters, including the address and operators. This limit also applies to a function or column expression. The result of an expression is rounded off to 14 significant digits. The result is displayed according to the attributes of the cell.
Calculation is not performed and asterisks are displayed for all digits when a cell specified in an expression does not contain data, another expression, or a column expression.

When a number is entered in a cell containing an expression, calculation is performed according to one of the following methods:

- When automatic calculation is specified, recalculation is performed immediately. Only the result is displayed; the entered number is ignored.
- When manual calculation is specified, the entered number is displayed in the cell until recalculation is specified.
(3) CORRECT (Correction) Function

The data or expression at the cell cursor position can be corrected, but the result of an expression cannot. Data on the input line can be corrected with the cursor. The following functions can be executed:

- [4] : These keys move the cursor in the direction of their respective arrows.
- Key input : Replaces the character at the cursor position with the input character and moves the cursor one position to the right.
- Deler , Da : These keys delete the character at the cursor position and shift the characters following it one position to the left. The cursor does not move. If the cursor is to the right of the character string, no operation will be performed.
- mserr : Puts CANOBRAIN in the INSERT mode when pressed once; when pressed a second time, CANOBRAIN leaves the INSERT mode. In the INSERT mode, characters entered are inserted at the position immediately to the left of the cursor and the characters following it are shifted one character to the right. The cursor also moves
 one position to the right.

These keys end data correction and display the corrected data in the cell.

- U细 : Cancels a correction and makes the previous data effective. CANOBRAIN then returns to the INPUT mode.

The input line is scrolled to the left or right when the cursor moves off the screen.

DELETE Function
Cell data and expressions can be deleted, but column expressions cannot. Column expressions can be deleted only in the COLUMN EXPRESSION mode.
Procedures for deleting the contents of cells are shown in the table below.

Cell contents Deletion specified	Data	Expression	Both
Data	Data deleted		Automatic calculation: Recalculated Manual : All asterisks calculation displayed
Expression		Expression deleted	Expression deleted
Both	Data deleted	Expression deleted	Both data and expression deleted

A cell from which data or an expression (or both) is to be deleted can be specified by moving the cell cursor to it, or by specifying the address. An address range can also be specified, meaning data from more than one cell can be deleted.

COL. EXP. (Column Expression)
A column expression can be entered in the column where the cell cursor is located, or in a column specified by an address. As stated previously, an expression must begin with a number,,+- , (, or @. An address is specified by the column number alone except when a single cell is being specified, in which case both the row number and the column number must be specified.

```
[Example]
    +Cl+12
    (Cl+C2)*C3
    @MIN(Cl.5,10)
    +Cl+C2+RlCl0+l0
```

Only the stepping total of rows can be obtained when @TSUM is used as a column expression.
To enter a column expression in a particular column, enter a colon (:), the address, =, and then the column expression in that order. The address is specified by a column number alone. Except for those described above, a column expression is similar to an ordinary expression.

[Example]

$$
\begin{aligned}
& : C 4=+C l+C 2-C 3 \\
& : C 5=@ T S U M(C l, C 3,2)
\end{aligned}
$$

Column expressions can be corrected just like data. Only the column expression at the cell cursor position or specified by the address will be deleted when deletion is specified.
(6) RET. (SET) and RET. (CNT)

This retrieval function allows you to locate rows that contain data satisfying set conditions. When there is more than one row containing such data, the first one located will be displayed at the top of the screen and the cell cursor will then be positioned in the left-most column of the row.
The difference between this retrieval function and the retrieval function on the data processing screen is that the former can input or modify data after retrieval. Subsequent rows can be accessed by selecting RET. (CNT). Be sure to set the retrieval conditions before selecting RET. (CNT).
If there is no data satisfying the specified conditions, the screen will remain unchanged and cell cursor will not move. At this time, "DATA ERR." will be displayed in the message column.
The retrieval condition setting procedure is the same as the retrieval function on the data processing screen (see page 404).

You can calculate totals between pages. However, the pages must satisfy the following conditions:

- Each page must have exactly the same number of rows and columns.
- All pages must be contained in the same book.
- The attributes of cells which have the same address in each page must be unified.

There are two ways to calculate totals. One is by using PAGE TOTAL, in which the numbers in the specified page are written in the table being displayed. The other method is to specify GRAND TOTAL, so that the number in the table being displayed is added to the page total result.

Note that all cells in a page which have the numeric attribute will be processed.
2.1.4 INPUT PAT. (Input Pattern) Function

The following functions can be executed with patterns:

- REGISTER: Creates a pattern or changes an existing pattern.
- DELETE : Deletes a pattern.
- EXECUTE : Executes a pattern.
- RETURN : Returns CANOBRAIN to the data processing mode.
(1) REGISTER Function

Specify the numbers of the columns in which data is to be entered, as well as a row range. Also specifies the cell cursor movement direction: horizontal or vertical. The following is displayed when a pattern is defined:

Up to 15 patterns can be defined. If the pattern number entered is already assigned to a pattern, that pattern will be updated.
(2) DELETE Function

An unnecessary or obsolete pattern can be deleted by specifying its number.

A defined pattern can be executed by specifying its number. When pattern execution starts, the cell cursor appears in the cell where data is to be entered first. Whenever -1 is pressed, the cell cursor moves according to the defined pattern. Even if the cell cursor is moved by using $\left[\begin{array}{l}6 \\ 2\end{array},\left[\begin{array}{l}-1 \\ 4\end{array},\left[\begin{array}{l}6 \\ 6\end{array}, \begin{array}{l}\text { Hom } \\ 7\end{array},\left[\begin{array}{l}1 \\ 8\end{array}\right.\right.\right.\right.$, or $\xrightarrow{\leftrightarrow}$, pressing $-\infty$ moves the cell cursor to where data is to be entered next.
After data is entered in the last cell specified in the pattern and \square is pressed, pattern execution ends and CANOBRAIN automatically returns to the DATA PROCESSING mode.

DATA GEN. (Data Generation) Function

Arithmetic progressions can be entered in rows or columns. Specifies the addresses of the cells where numbers are to be entered. These cells must all have the same data attributes and must be either "numeric" or "free". The address used cannot specify multiple rows or columns.
Specify the initial value and the increment to be used for the arithmetic progression. Since this function is used to enter numeric data, expressions or column expressions may be in the cells. However, note that the data values will change when the expression is re-calculated.

2.1.6 DUPLICATE Function

In the DUPLICATE mode, one or more cells can be copied from a table to the table being processed by specifying the source table name or its page number. The contents of the source cell remain unchanged. Data can also be copied from one part to another within the table being processed.

The contents of a cell can also be selectively copied; i.e., only the data, expression, or attribute (format) will be copied if so specified. Note that column expressions cannot be copied.

In the following explanation, the source cell is called the FROM cell, and the destination cell is called the TO cell.

When copying an expression, the addresses can be automatically converted (relative address) or not converted (absolute address).

There are three options: all addresses in an expression are converted to relative addresses, all addresses are not converted (i.e., all addresses are absolute), or address conversion is specified for each address (individual selection). However, if the specified range contains multiple rows or columns, data copied with the individual selection method is not displayed. When data or an expression is copied, the FROM cell and the TO cell must have the same attribute or the TO cell must have the "free" attribute.

Cells are specified by addresses. If a row (or column) range is specified for the FROM cell, the number of rows (or columns) of the $T O$ cell must match that specified for the FROM cell.
[Example]
$\mathrm{R} 1 \mathrm{C} 1 \rightarrow \mathrm{R} 1 \mathrm{C} 2$

R1 C $1.2 \rightarrow$ R 3.4 C 2.3

R1.2 C $1.2 \rightarrow$ R 3.4C 3.4

The following can be specified and executed for tables, columns, and cells during formatting:

- Data type:

The attribute (character, numeric, both) of an entire table, column, or individual cell can be specified.

- Character shift:

The characters in a cell can be right- or leftjustified.

- Numeric format:

Numeric data in a cell can be changed to the real format (E notation if data cannot be displayed in a screen cell), integers, or decimal fractions.

- Numeric editing:

Commas can be inserted after every third digit. The plus sign (+), minus sign (-), or dollar sign (\$) can be attached. Decimal fractions can be rounded down, rounded off, or rounded up.

- Calculation:

The calculation method, automatic or manual, can be specified.

- Calculation order:

The order in which calculation is to be performed (row order or column order) can be specified.

- Column width modification:

Column widths (the number of characters in each column) can be modified.

- Data protection:

Data can be protected so that it is not altered or deleted during data input or recalculation.

Depending upon the attribute specified, character data, numeric data or both can be entered into a table, column or cell. In addition to the character, numeric, and free attributes, table-dependent and column-dependent attributes can be specified. When the table-dependent attribute is assigned, column attributes are converted to match that of the table. Assigning the columndependent attribute changes the attributes of the cell to match that of the column. For example, when a column has the free attribute, the free attribute is assigned to all the cells of the column. If data is already stored, however, any attempt to change the attribute from character to numeric (or vice versa) causes a message to be displayed indicating that the attribute cannot be changed.
Immediately after a table is created, the "both" attribute is assumed for the table and the columns, and the column-dependent attribute is assumed for the cells (i.e., free).

The other options specified during formatting, i.e., those described in paragraphs (2) through (9) following, are closely related to the data type assigned. The table on the next page shows the legality of attribute specifications:

Category	Table			Column			Cell		
Speci- fication type	Char- acter	Nu- meric	Both	Char- acter	Nu- meric	Both	Char- acter	Nu- meric	Both
Character shift	0	x	0	0	x	0	0	x	0
Numeric format	x	0	0	x	0	0	x	0	0
Numeric editing	x	0	0	x	0	0	x	0	0
Calculation	x	0	0	-	-	-	-	-	-
Calculation order	0	0	0	-	-	-	-	-	-
Column width modification	-	-	-	0	0	0	-	-	-
Data protection	-	-	-	-	-	-	0	0	0

o: Can be specified
x: Cannot be specified
-: Not applicable

The data type is displayed in the status column.

Character shift

A character shift can be specified only when the data involved possesses either the "character" or the "both" attribute. If character shifting is specified for a column having the table-dependent attribute, the column attribute is automatically converted to "both." If it is specified for a cell possessing the column-dependent attribute, the cell attribute is automatically converted to "character." If numeric data is stored in the cell, the message "DATA STORED" is displayed and automatic attribute conversion is not performed. Notes: l. Spaces are treated as characters during character shifting.
2. All columns are left-justified when a table is created.

Numeric formats can be specified only when the data involved possesses either the "numeric" or the "both" attribute. If a numeric format is specified for a column having the table-dependent attribute, the column attribute is automatically converted to "both." If a numeric format is specified for a cell possessing the column-dependent attribute, the cell attribute is automatically converted to "numeric." If character data is stored in the cell, the message "DATA STORED" will be displayed and automatic attribute conversion will not be performed.
The following three numeric formats are available:

- Real : Numeric data is displayed exactly as entered. If it does not fit in the cell, it is displayed in E notation. If it is too large to be displayed in E notation, the cell is filled with question marks.
- Integer: The decimal fractions are rounded off to the nearest whole number. If the integer does not fit in the cell, the cell is filled with question marks.
- Decimal: Numeric data is rounded off and displayed to the specified number of decimal places. If the number of digits exceeds the column width, the cell is filled with question marks.
From 0 to 15 decimal places can be specified. The decimal point is displayed even if 0 is specified.

The real format is assumed for a table that has been created.

The following numeric data editing options are available:

- Commas can be inserted after every third digit.
- Editing characters can be specified.
- Numbers can be rounded down, rounded off, or rounded up.

These options can be specified only when data has either the "numeric" or the "both" attribute. Automatic attribute conversion is performed as described previously in (3), Numeric format.
a. Comma insertion:

Commas can be specified for insertion after every third digit, and will be included in the number of positions.
b. Editing characters:

Numeric editing characters such as $0,+,-, *, \$$ or a space can be specified.

When specifying this option, you must consider the numeric format and comma insert option. The table below shows how to specify numeric editing characters and how numeric data is edited. Each column in the table can contain 12 characters. Each cell contains two numbers, 1234.567 at the top and -1234.567 at the bottom. A number is rounded off to the nearest two decimal places.
The character "-" is assumed for a table that has been created.

	Without commas			With commas		
	Real	Integer	Decimal	Real	Integer	Decimal
0	$\begin{array}{r} 00001234.567 \\ -0001234.567 \end{array}$	$\begin{aligned} & 000000001235 \\ & -00000001235 \end{aligned}$	$\begin{array}{r} 000001234.57 \\ -00001234.57 \end{array}$	$\begin{array}{r} 001,234.567 \\ -001,234.567 \end{array}$	$\begin{array}{r} 000,001,235 \\ -000,001,235 \end{array}$	$\begin{array}{r} 0,001,234.57 \\ -001,234.57 \end{array}$
+	$\begin{aligned} & +1234.567 \\ & -1234.567 \end{aligned}$	$\begin{aligned} & +1235 \\ & +1235 \end{aligned}$	$\begin{array}{r} +1234.57 \\ -1234.57 \end{array}$	$\begin{array}{r} +1,234.567 \\ -1,234.567 \end{array}$	$\begin{array}{r} +1,235 \\ -1,235 \end{array}$	$\begin{array}{r} +1,234.57 \\ -1,234.57 \end{array}$
-	$\begin{array}{r} 1234.567 \\ -1234.567 \end{array}$	$\begin{array}{r} 1235 \\ -1235 \end{array}$	$\begin{array}{r} 1234.57 \\ -1234.57 \end{array}$	$\begin{array}{r} 1,234.567 \\ -1,234.567 \end{array}$	$\begin{array}{r} 1,235 \\ -1,235 \end{array}$	$\begin{array}{r} 1,234.57 \\ -1,234.57 \end{array}$
*	$\begin{aligned} & * * * 1234.567 \\ & * * * 1234.567- \end{aligned}$	*********1235	$\begin{aligned} & * * * * 1234.57 \\ & * * * * 1234.57- \end{aligned}$	$\begin{aligned} & * * 1,234.567 \\ & * * 1,234.567- \end{aligned}$	$\begin{aligned} & * * * * * * 1,235 \\ & * * * * * 1,235- \end{aligned}$	$\begin{aligned} & * * * 1,234.57 \\ & * * 1,234.57- \end{aligned}$
(Space)	$\begin{aligned} & 1234.567 \\ & 1234.567- \end{aligned}$	$\begin{aligned} & 1235 \\ & 1235- \end{aligned}$	$\begin{aligned} & 1234.57 \\ & 1234.57- \end{aligned}$	$\begin{aligned} & 1,234.567 \\ & 1,234.567- \\ & \hline \end{aligned}$	$\begin{aligned} & 1,235 \\ & 1,235- \end{aligned}$	$\begin{aligned} & 1,234.57 \\ & 1,234.57- \end{aligned}$
\$	$\begin{aligned} & \$ 1234.567 \\ & \$ 1234.567- \end{aligned}$	$\begin{aligned} & \$ 1235 \\ & \$ 1235- \end{aligned}$	$\begin{aligned} & \$ 1234.57 \\ & \$ 1234.57- \end{aligned}$	$\begin{aligned} & \$ 1,234.567 \\ & \$ 1,234.567- \end{aligned}$	$\begin{aligned} & \$ 1,235 \\ & \$ 1,235- \end{aligned}$	$\begin{aligned} & \$ 1,234.57 \\ & \$ 1,234.57- \end{aligned}$

c. Rounding options:

Numbers can be rounded down, rounded off, or rounded up to the number of decimal places specified by the user.
Although numbers are rounded in the cell as specified, internal values (l4-digit mantissa and 2-digit exponent) are displayed on the input line. Internal values can be converted to the format identical to the display data by inputting "o" via the data processing screen or data input screen.
(5) Calculation

The calculation method can be specified only for an entire table, not for an individual column or cell. When automatic calculation is specified, the results of expressions are automatically recalculated whenever a related data item is modified. When manual calculation is specified, recalculation of expressions is not performed unless explicitly specified. To start recalculation, enter "!" from the data processing screen or data input screen.

The two calculation options, automatic or manual, are displayed with the calculation order at the far right of the third line from the bottom as follows:

A : Automatic
M : Manual

The automatic calculation option is assumed for a newlycreated table.
(6) Calculation order

As with the calculation method, the calculation order can be specified only for an entire table. When horizontal calculation is specified, the expression for the second row is calculated after the first row has been calculated, etc. When vertical calculation is specified, the expression for the second column is calculated after the first column, etc.
The two calculation orders, horizontal or vertical, are displayed with the calculation method at the far right of the third line from the bottom as follows:

H : Horizontal
V : Vertical

The horizontal calculation order is assumed for a newlycreated table.
(7) Column width modification

Column width modification can be specified for an entire column. To modify the width of a column, specify the number of characters within the 1 to 75 range. Note that if the column width is reduced, any data item exceeding the new column width will be lost.

Data protection can be specified for individual cells. If data protection is given to a cell, the cell cursor skips that cell to prevent data, except a column expression, from being entered. If an expression is in the cell, recalculation is not performed and data and expressions cannot be deleted. If data protection is removed from a cell containing an expression, the message "RECALCULATION OK?" is displayed.

Note: Data protection cannot be specified for a cell containing neither data nor expressions.
(9)

Status column
The status column at the bottom of the screen provides information such as assigned data attributes and the number of decimal places being used in the table, individual columns, and individual cells. The status for the entire table is displayed when a table is selected during formatting. The status of a column is displayed when the column is specified during formatting or when a column expression is entered. The status for each cell is displayed when a cell is selected during formatting or when data is entered in a cell. The status symbols are defined as follows:

Table		$\begin{array}{\|l\|} \hline \text { f: } \\ \hline \mathrm{Y} \\ \hline \mathrm{~B} \\ \hline \end{array}$			7	1
Column	m п	C			7	
		N			D	
		D			\checkmark	
Cell	m $\quad \mathrm{m}$	5			7	
		N			53 0 15	
		L		\cdots	\nearrow	

mm: Number of characters in the cell
nn : Number of decimal fractions

Meanings of status indicators

- Data type (character 3)

C : Character
N : Numeric
B : Both
D : Dependent

- Character shift
(character 4)
L : Left-justified
R : Right-justified
- Numeric format
(character 5)
R : Real
I : Integer
D : Decimal fraction
- Numeric editing
(characters 8 and 9)
C : With commas
u: Without commas
Editing : 0, +, -, *, - \$
- Rounding (character lo)

D : Round down
O : Round off
U : Round up

- Data protection
(character ll)
P : Protected
- : Not protected
(1) Retrieval

The retrieval function allows you to locate rows that contain data satisfying set conditions. When there is more than one row containing such data, the first one located is displayed at the top of the screen and the cell cursor is positioned in the leftmost column of the row. Subsequent rows can be accessed by pressing回 .
If there is no data satisfying the specified conditions, the screen remains unchanged and the cell cursor does not move. At this time, "DATA ERR." will be displayed in the message column.

Conditions are specified in two levels. First, specify the columns, i.e., column numbers combined with * (AND) and + (OR), for which conditions are specified. Set conditions, such as "greater than" or "equal to", are then specified for each column. The condition "equal to" can be specified for a substring of a character string. In addition, you can search a character string for a specific character substring. When specifying conditions, the attributes of the other rows must match that of the attribute of the column on the row from which retrieval starts.

For example, if a condition is specified for column 1 and if retrieval starts on row 1 , the retrieval will be performed normally. However, if a condition is specified for column 3, the message "DATA ERR." will be issued.
If a condition is specified for a numeric value entered as a character string (a numeric value preceded by "), the value used as the condition must also be preceded by ".
A conditional expression consists of up to 80 characters. Up to 15 retrieval conditions can be registered as patterns.

(2)
 SORT Function

The SORT function allows you to rearrange rows according to specified conditions. When rows are sorted, data and attributes are moved.
The sort order, ascending or descending, can be specified for up to five columns. It cannot be specified for one or more character positions within a column. If numeric and character data are mixed in the sort row range, the rows will not be sorted.
Rows containing cells in which neither data nor expressions are stored will be added to the end of the table. If a cell of a row in the sort range contains a mathematical expression, the message "EXPRESSION DELETE OK?" will be displayed. If you respond with YES, the expression is deleted and the rows, including that row, are sorted. If you respond with NO, the rows will not be sorted.

For example, in the table given above, the rows will not be sorted if column 1 is selected because column 1 contains both character and numeric data. If column 2 is selected, row 4 is added at the end (e.g., if the sort range is row 1 to row 6 , row 4 is moved to row 6). If column 3 is selected, the message is issued to check that the user intends to delete the cell expression in row 5.
Up to 15 sort conditions can be registered as patterns. They can also be registered in a total pattern.

The PRINTOUT function allows you to print out table data. This function cannot be used if a printer is not connected to the system or is not activated. When an A-1200 or A-1250 printer is used, you can select one of three ruled line options (no ruled lines, vertically-ruled lines, vertically- and horizontally-ruled lines). With other printers, only horizontally-ruled lines can be printed.
The columns to be printed and the order in which they are to be printed out can be specified. The columns are printed in the specified order from left to right. The print range can also be specified to match the size of the paper used. Specify the range as follows:

- Lines per page:

Specify the number of lines desired by entering a number from 4 to 255 , or select one of the three preset options assigned to Fl, F2 and F3, respectively. These options can be assigned when the environment is first set up.

- Start and end lines:

Specify the print start and end lines, each in a number not less than 1 . The default for the start line is 3, and that for the end line is (No. of lines per page - 2).

- Start and end columns:

Specify the print start and end columns (these vary with printers). The minimum print width is 26 columns. The default value for the start column is 3 , and that for the end column is the maximum print width of the printer.

$$
\begin{aligned}
& A-1200: 1-80 \\
& A-1210: 1-80 \\
& A-1250: 1-156
\end{aligned}
$$

For other printers, it will be assumed that the maximum print width is 136 columns. However, a different default value can be specified when the printer is set up.

Cut sheets can be used with these printers. When you use cut sheets you may specify whether printing is to be stopped when the page ends or not. If you specify STOP, the message prompt advising you to set paper in the printer will be displayed.

A header 1 to 80 characters long can be printed on the start line of each page.
The date and page number are also automatically printed on each page. The date is the one entered when CANOBRAIN was started. If the date and the header overlap, the overlapping part of the header will not be printed. To stop printing, press the cancel key.

The first row of the table is automatically printed at the top of each page. To print it on a different line, you must enter a number greater than 1 , because if 1 is specified, the first row of the table will be printed twice at the top of each page. When $F 1$ (ALL) is pressed, it is assumed that rows 2 through the final row are being specified.

Data can be retrieved before being printed. When data that match the specified conditions are found, only the columns containing data satisfying those conditions are printed. When there is no data satisfying the conditions, nothing is printed. For instructions on how to retrieve data, see Section 2.1.8, (l) RETRIEVAL. Print format specifications and retrieval conditions can be defined as patterns. They can also be registered in a total pattern.

The CD (common data) files contain data created by CANOBRAIN. They are stored on a floppy disk in a format allowing them to be used as data by nonprogramming software or programs coded in BASIC.

CANOBRAIN allows you to read (input) table data from CD files and to write (output) table data to CD files. Only data can be read from, to written to, CD files; expressions and attributes cannot.
When data is entered from a CD file, the table attributes are the same as they were when the table was created. The floppy disk drive containing the $C D$ files can be specified by entering the drive name and a colon. The default drive is B. When writing data in a $C D$ file, specify the file name. A file name consists of from one to eight alphabetic and/or numeric characters. The first character must be alphabetic. The file type, consisting of one to three characters immediately following a period, can be specified if required. If the floppy disk in drive B contains a file with the identical name, CANOBRAIN will ask you if the old file may be erased.

CD files have the following advantages:

- Table data can be copied from one book to another.
- Table data created by CANOBRAIN is available for use by programs such as BASIC.

To copy table data, first output the table to be copied to a CD file. Then create a table in the book to which the table data is to be copied, and read the data from the $C D$ file. The number of rows or columns and column widths must be less than or equal to those of the table into which data is copied.
When using created table data with a program written in BASIC or other language, output the table into a CD file.

For instructions on how to output table data into a CD file and the $C D$ file structure, see Appendix 1.

2.1.11 INPUT ROLL Function

Roll data can be read into a book table by specifying the roll name or roll number. If the password of the roll does not match the password specified at initialization, "INPUT PASSWORD" will be displayed. Unless the two passwords match, data cannot be read from the roll. Only data can be read; expressions and attributes cannot. Specify the range of columns and rows from which data is to be read and the range of columns and rows of the book table into which data is to be read. Data can be selectively read by specifying retrieval conditions. See Section 2.1.8, (1) RETRIEVAL, for further information.
2.1.12 TABLE DEF. (Table Definition) Function

The table definition function allows you to redefine a table. When the function key is pressed, a confirmation message is displayed. If you respond with YES, the table being processed is erased and the user is requested to input the number of rows to be used to create another table.

2.1.13 MONITOR Function

When this function is selected, table processing ends. At this time, a message is displayed to ask you if floppy disk data is to be updated. This message is not displayed after a page is created or when an option was specified to prevent data from being written on a floppy disk ("temporary" specified when the page is created). When TABLE EDIT is selected during graphic processing, CANOBRAIN returns to graphic processing after the edit has been checked.

2.1.14 COPY Function

The COPY function allows you to copy rows or columns from one location to another as follows:

1	ROW1	
2	ROW2	
3	ROW3	
4	ROW4	
5	ROW5	

$\sqrt{\square}$ (Rows 2 and 3 are copied to rows 5 and 6.1

1	ROW1	
	ROW2	
3	ROW3	
4	ROW 4	
	ROW2	
	ROW3	
	ROW 5	

All information, including data, expressions, and attributes, is copied. The original rows (columns) are not deleted in this procedure, meaning that the number of rows (columns) will increase.

If a row (column) to be copied has a cell containing an expression, the addresses in that expression will automatically be converted so that they point to the original addresses. However, if an address in that expression points to the address of the expression itself (its own address), it is converted to a relative address.

	1	2	3
1	10	100	@ S UM (R1C1.2)
2	20	200	@ S UM (R2C1. 2)
3	@ S UM (R1. 2C1)	@ S UM (R1.2C2)	@ S UM (R1. 2C3)
4	15	150	(0) S M (R4C1.2)

$$
\sqrt{\square} \text { (Row } 4 \text { is copied to row 2.) }
$$

	1	2	3
1	10	100	@ S UM (R1C1.2)
2	15	150	OIS M (R2C1.2)
3	20	200	OS GMM (R3C1, 2)
4	OSOM(R1.3C1)	© SUM (R1, 3C2)	فSUM (R1.3C3)
5	15	150	-SUM (R5C1. 2)

The MOVE function allows you to move rows or columns from one location to another as follows:

1	ROW 1	
	ROW2	
3	ROW3	
4	ROW 4	
5	ROW5	

(Rows 2 and 3 are inserted between row 4 and row 5.)

1	ROW 1	
2	ROW 4	
3	ROW2	
4	ROW3	
5	ROW5	

All information, including data, expressions, and attributes, is moved. The original rows (columns) are deleted during this procedure, meaning that the number of rows (columns) remains unchanged. The expressions in the rows (columns) are treated in the same manner as they are when the copying procedure is performed.

	1	2	3
1	10	100	(1)S UM (R1C1.2)
2	20	200	@ S UM (R2C1.2)
3	@ S UM (R1.2C1)	@ S UM (R1.2C2)	(0) UM (R1.2C3)
4	15	150	@ S UM (R4C1.2)

	1	2	3
1	10	100	@ S UM (R1C1.2)
2	15	150	(0) S UM (R2C1.2)
3	20	200	-8]M(R3C1, 2)
4	(S EM (R1.3C1)	OSUM(R1.3C2)	OSUM (R1.3C3)

The DELETE function allows you to delete rows or columns as follows:

1	R OW1	
2	Row2	
3	Row3	
4	Row4	
5	Row5	

$$
\{\text { (Rows } 3 \text { and } 4 \text { are deleted.) }
$$

1	ROW1	
2	ROW2	
5	ROW5	

Deleting a row or column erases it from the screen. Any addresses referring to that row or column will be displayed as 0.

	1	2	3
1	10	100	+R1C1+R1C2
2	20	200	+R2C1+R2C2
3	30	300	+R3C1+R3C2
4	+R1C1 +R2C1 +R3C1	+R1C2+R2C2+R3C2	+R1C3+R2C3+R3C3

\sqrt{W} (Row 2 is deleted.)

	1	2	3
1	10	100	+R1C1+R1 C 2
2	30	300	+R2C1+R2C2
3	+R1C1+0+R2C1	+R1C2+0+R2C2	+R1C3+0+R2C3

The INSERT function allows you to insert rows or columns. Rows or columns inserted do not contain data, expressions, or column expressions, and assume the same data type assigned during table creation.

1	ROW 1	
2	ROW2	
3	R OW3	
4	ROW4	
5	R OW5	

$$
\left\{\begin{array}{l}
\text { (Two rows are inserted between } \\
\text { rows } 1 \text { and } 2 . \text {) }
\end{array}\right.
$$

1	ROW1	
2		
3		
	ROW2	
	ROW3	
	ROW4	
7	ROW5	

The width of each column must be specified when inserting columns. Any addresses pointing to the insertion position are converted so that they point to the original address.

	1	2	3
1	10	100	(1)SUM (R1C1.2)
2	20	200	© S UM (R2C1.2)
3	@SUM(R1.2C1)	(1)SUM (R1.2C2)	(6) S UM (R1.2C3)

(One row is inserted between
rows 1 and 3.)

	1	2	3
1	10	100	@SUM R1C1.2)
2			
3	20	200	CSUM (R3C1.2)
4	© S UM (R1.3C1)	© S UM (R1.3C2)	(1) SMM (R1. 3C3)

2.2 Graphic Functions

CANOBRAIN allows you to display or print graphs based on table data. (Roll data, however, must be read into a book and then graphed before it can be displayed and/or printed out in graph form.) A new page must be created for each graph, but may be assigned "temporary" status if desired. To redefine a graph, simply specify the page containing it. Graph display and printing can be defined by specifying just the page number (s) in a total pattern. No other graph-related functions can be defined.

If a cell containing character data or any empty cell is specified, part of the graph will not be displayed.

2.2.1 Defining a Graph

For a graph to be defined, a graph type and the data to be graphed must be specified. Graph definition information must be specified when a graph is created or redefined.

(1) Graph type

A graph type can be selected from those displayed on the left of the screen. Entering a number other than 1 to 8 will cause an error.

After a graph type is specified, "CURSOR \uparrow " is displayed in F9. F9, which is effective during graph definition, is used to backspace the cursor to the previous item. If the entries from INPUT GRAPH TYPE to INPUT END DATA are redefined, input all the entries again. To move the cursor down one line, press 路 or

When the graph page is temporary or if the graph is being redefined, "CANCEL" is displayed in Fl2 to allow you to cancel the definition.
(2)

Page
When specifying a page for graph creation, you must use a page in the same book as the table. Specifying page 0 , a page containing a graph, or a non-existent page will cause an error. When a table number is entered, the title is automatically displayed. When a graph is redefined, the page number may not be displayed.
(3) Row/column data

Specifies whether the lines or bars of the graph will be based on row (horizontal) or column (vertical) data. Specify 0 for row data, and l for column data. One or the other must be selected, since a number other than 1 or 0 will produce an error.

When this option is specified, " $\rightarrow \rightarrow$ " is displayed in Fl0, and " $\leftarrow \leftarrow$ " in Fll. At the same time, table data is displayed on the two lines at the bottom of the screen to allow you to specify a range. When a row-oriented graph is created (i.e., 0 is selected), the first lo data items of row 1 are displayed. To display the next 10 items, press Flo; to display the previous 10 items, press Fll. When a column-oriented graph is created (i.e., 1 is selected), the first 10 data items of column 1 are displayed.
(4) Range

Specifies the start and end data in the rows and columns that will be included in the graph as follows:

Horizontal direction Vertical direction

Note: Data corresponding to the shaded area is displayed on the two lines at the bottom of the screen.

Specify column numbers for a row-oriented graph, and row numbers for a column-oriented graph. The number must be 2 or greater because row 1 and column 1 are assumed to contain titles. Refer to the two lines at the bottom when specifying a range.

The titles are automatically displayed on the graph screen as titles for the horizontal axis or as a legend, except when row l or column l contains numeric data.

Up to 10 characters can be displayed. The start row or column number must be less than the end row or column number.

Specifies the rows or columns of data that will be graphed as follows:

Note: Data corresponding to the shaded area is displayed on the two lines at the bottom of the screen.

Specifies row numbers to graph table data horizontally, and column numbers to graph table data vertically. Specifying a nonexistent row or column number will cause an error. Refer to the data displayed on the two lines at the bottom of the screen when specifying row or column numbers.

The title in the first cell of the row is displayed in the graph when a row is specified. When a column is specified, the title in the first cell of the column is displayed in the graph. However, if the first cell contains numeric data, no title will be displayed. Each series corresponds to one bar in the bar graph, and to one line in line charts. For details about the relationship between series and graphs, see Section 2.2.2, Graph Types and Data.

After specifying the desired series, press FI (END DEF.) to display the graph.
2.2.2 Graph Types and Data
(1) Pie chart

Only one series can be specified for a pie chart. A series can contain up to 10 data items. Only the first 10 items are graphed; excess items are ignored. The diagram below shows table data and the pie chart created from it. Negative data is regarded as having a value of 0 .

(2) Composition ratio chart

Up to 10 series can be specified for a composition ratio chart. This means that each belt of the chart can be divided into 10 sections. Each series can include up to 31 data items, so the chart can include up to 31 belts. Only the first 31 items from each series are graphed; excess data items are ignored. The diagram below shows table data and its composition ratio chart. Negative data is regarded as having a value of 0 .

(3) Stacked bar chart

Up to 10 series can be specified for a stacked bar chart. This means that each bar can be divided into 10 blocks. Each series can include up to 31 data items, so the chart can include up to 31 bars. Only the first 31 data items from each series are graphed; excess data items are ignored.

The diagram below shows table data and its stacked bar chart.

(4) Comparative bar chart

Up to 10 series can be specified for a comparative bar chart. This means that 10 bars can be included in each comparative group. Each series can include up to 31 data items, so 31 groups of bars can be included in one chart. Only the first 31 data items from each series are graphed; excess data items are ignored. The diagram below shows table data and its comparative bar chart.

(5) Line chart

Up to 10 series can be specified for a line chart. This means that one line chart can include up to 10 lines. Each series can include up to 31 data items. Only the first 31 data items from each series are graphed; excess data items are ignored.
The diagram below shows table data and its line chart.

Scatter diagram
Up to 10 series can be specified for a scatter diagram. However, since two numeric values (X axis and Y axis) are required to determine the position of each dot, an even number of series must be specified. This means. that up to five types of symbols can be used to display dots. Each series can include up to 31 data items, so 31 dots can be displayed for each symbol.
Only the first 31 data items from each series are graphed; excess data items are ignored.
The diagram below shows the table data and its scatter diagram.

(8)

(7) Line and stacked bar chart

Up to 10 series can be specified for a line and stacked bar chart. The number of blocks to be included in the graph must be specified immediately after range specification. The number of lines that can be specified is equal to 10 minus the number of bar chart blocks. Up to 31 data items can be included in each series, so up to 31 bars and 31 dots can be displayed. Only the first 31 data items in each series are graphed; excess data items are ignored.
The diagram below shows table data and its line and stacked bar chart (the number of blocks is 2).

The scale for the bar chart is displayed on the left vertical axis; the scale for the line chart is displayed on the right vertical axis.
(8) Line and comparative bar chart

Up to 10 series can be specified for a line and comparative bar chart. The number of bars to be included in each group must be specified immediately after range specification. The number of lines that can be specified is equal to 10 minus the number of bars included in one group.
Up to 31 data items can be included in each series, so up to 31 groups and 31 dots can be displayed. Only the first 31 data items in each series are graphed; excess data items are ignored.
The diagram below shows the table data and its line and comparative bar chart (the number of bars is 2).

The scale for the bar chart is displayed on the left vertical axis; the scale for the line chart is displayed on the right vertical axis.

2.2.3 Graph Editing

Displayed graphs can be edited automatically. The following items can be edited:

- SCALE
- GRID
- COMMENT
- HATCHING
- LINE
- SYMBOL
- AXIS
- LEGEND
- COLOR

The items that can be edited depend on the type of graph being worked on.
The following table shows the items that can be edited for each graph type:

Graph	Pie	Composi- tion ratio	Stacked bar	Compara- tive bar	Line	Scatter	Line and stacked bar	Line and compara- tive bar
Scale	\mathbf{x}	\mathbf{x}	0	0	0	0	0	0
Grid	\mathbf{x}	\mathbf{x}	0	0	0	0	0	0
Comment	0	0	0	0	0	0	0	0
Hatching	0	0	0	0	x	x	0	0
Line	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	0	x	0	0
Symbol	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	0	0	0	0
Axis	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	0	0	x	x
Legend	0	0	0	0	0	0	0	0
Color	0	0	0	0	0	0	0	0

o : Can be specified.
x : Cannot be specified.

The maximum value, minimum value, and the interval of the vertical axis (Y axis) can be modified. The horizontal axis (X axis) of a scatter diagram can also be modified. Both the right and left vertical axes for line and stacked bar charts and line and comparative bar charts can be modified. However, the minimum value of a stacked bar chart cannot be changed.
The following maximum, minimum, and interval values cannot be specified:

- A maximum value that is greater than the largest data value
- A minimum value that is less than the smallest data value
- A negative or zero interval value

When a logarithmic scale is used for an axis, the maximum and minimum values are automatically converted to powers of 10 based on the specified value. In this case, the assigned interval becomes meaningless.
(2) GRID

You can specify whether or not grids are to be displayed If grids are displayed, you can select vertical grids, horizontal grids, or both.

You can write a character string (comment) on the screen on which a graph is displayed. The specified comment is erased when the graph is redisplayed. Comments are not written on the floppy disk.
When writing a comment, specify the position with the cursor (+). The graphic cursor is positioned as follows:

The graphic cursor is controlled with the cursor keys ($\left[\begin{array}{l}\dot{4} \\ 8\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}\overrightarrow{8} \\ 4\end{array}\right]$). Pressing a cursor key once moves the graphic cursor eight dots (a dot is a luminous point on the screen) in the direction indicated on the key. The distance the graphic cursor moves can be changed by pressing F3 (FAST) or F4 (SLOW). The distance the graphic cursor moves doubles each time $F 3$ is pressed; conversely, the distance halves each time F 4 is pressed. The range of movement speeds is as follows:

FAST : 1, 2, 4, 8, 16, 32, and 64 dots
SLOW : 64, 32, 16, 8, 4, 2, 1 dots

When a comment is entered, you must specify whether it is to be displayed horizontally or vertically. Characters entered horizontally are displayed to the right of the graphic cursor. Characters entered vertically are displayed below the graphic cursor. The graphic cursor does not move at this time, nor can it be moved by the cursor keys.

Horizontal
 ${ }^{+}{ }_{\text {ABCD }}$

Vertical
${ }^{+}$A
B
C
D

40 characters can be entered for a horizontal display, and 20 characters for a vertical display. Character input ends when $-\infty$ is pressed or when the maximum number of characters has been entered. If characters entered overlap part of a graph, the overlapping part of the graph is erased and cannot be restored until the graph is redisplayed. Input errors can be corrected during input with DEL or ARE These keys cannot be used after the characters have been entered.
(4) HATCHING

The following patterns are available:

Hatching cannot be specified for line charts and scatter diagrams.
(5) LINE

The following line types are available for line charts:

The no-line option can also be specified.
(6) SYMBOL

The following symbols are available for line charts and scatter diagrams:

The no-symbol option can also be specified.

A logarithmic scale can be used for the axes of line charts or scatter diagrams. For line charts, a logarithmic scale can be used only for the vertical (Y) axis. It cannot be used when line charts and bar charts (stacked or comparative bar charts) are displayed together. It can be used for both the horizontal and vertical axes of a scatter diagram. The scales used for line charts and scatter diagrams are listed in the following table:

Linear	Line chart	Scatter diagram
Logarithmic scale (X-axis) both axes	Linear scales for both axes	Logarithmic scale for both axes horizontal (X) axis only
Logarithmic scale (Y-axis)	Logarithmic scale for vertical (Y) axis only	Logarithmic scale for vertical (Y) axis only
Logarithmic scale for both	Logarithmic scale for vertical (Y) axis only	Logarithmic scale for both axes

Logarithmic scales cannot be used when the table contains negative or zero data or when part of the graph is not displayed.
(B) LEGEND

The legend option allows you to display a legend to the right of the graph. If this option is not desired, the graph is automatically expanded to the right.

This is effective only when the system being used has a color display. A total of 27 colors, (or no color, as preferred), can be used; however, only 8 colors can be displayed at one time. When any of the original colors used in a graph is changed to another color, all areas displayed in that color are also changed. In other words, the color is changed for the entire series of related data.

2.2.4 HARD COPY

The hard copy option allows you to produce a hard copy of a graph. The four lines at the bottom of the screen are not printed out. Instead, a horizontal line is printed below the graph.
If the system has no printer, or has a printer other than the $A-1200, A-1210$, or $A-1250$, no hard copy will be produced.
To stop printing, press CANCEL.

2.2.5 TABLE EDIT

The table editing option allows you to edit the table on the page specified during graph definition. The editing procedure is the same as that for table processing.
After data is updated, graphs are generated based on the updated data. If the scale or axes of the original data cannot be used for the updated data, they are automatically changed for the updated data. The grid, hatching, lines, symbols, legend, and colors do not change.

2.2.6 REDEF(Redefinition)

When the redefinition option is selected, the graph definition screen will be displayed. During the redefinition process, the displayed graph will be erased. Please note that using this option will cause the pertinent data on the floppy disk to be deleted.
2.2.7 RETURN

The return option ends graph processing. At this time, if the graph has been written on the same page on the floppy disk, CANOBRAIN asks you if the graph is to be updated. Specify graph format information, such as graph types or hatching, if it is to be updated. The screen will then change to the index screen.

WMuria C.S.E


```
3.1 Defining a Roll
```

For a roll to be defined, the number of rows and columns in the roll and the number of characters and attributes for each column must be specified. They must be within the following ranges:

- Number of rows in a roll: 1 - 9999
- Number of columns in a roll: 1 - 99
- Number of characters in each column: 1-74

Note that the number of characters of a roll row must not be greater than 5l2. For example, 7 columns, each consisting of 74 characters ($7 \times 74=518$), cannot be defined.

After a roll has been defined, the attributes of each column must be specified. For a list of possible attributes, see Section 3.7, Format Definition.
(1) Screen

(1) Cell cursor
(2) Row number
(3) Message line
(4) Input line
(5) Column number
(6) Function display RECORD: Number of roll rows COLUMN: Number of roll columns START: Processing start row END: Processing end row
(7) Calculation method

A (Auto): Automatic calculation
M (Manual): Manual calculation
(8) Cell cursor address
(9) Processing status, column attribute, or error message

If a color display is used, data is displayed in the following colors:

Cell cursor : White
Five lines at the bottom : White
Negative data : Cyan
Other : Green

You can move the cell cursor during data processing in one of the following ways:

- Press one of the following keys:

0 : Used to display the left side of screen.
1 : Used to display the right side of screen.
2 : Used to move the cell cursor down.
3 : Used to scroll the screen up.
4 : Used to move the cell cursor to the left.
5 : Used to move the cell cursor to the last row of the last column.
6 : Used to move the cell cursor to the right.
7 : Used to move the cell cursor to the first row of the first column.

8 : Used to move the cell cursor up.
9 : Used to scroll the screen down.

- Specify an address and press \rightarrow.
- Use a pointing device.

If a key on the ten-key pad is pressed when is on, only the lines indicated by START and END are processed. If $\xrightarrow{\leftrightarrow}$ is pressed, all the rows in the roll are processed. If you try to move the cell cursor to a location outside the screen, the screen will automatically scroll.

The following functions can be executed during data processing:

- INPUT : Inputs, corrects, and deletes data.
- INPUT PAT. : Defines, deletes, and executes patterns.
- DATA GEN. : Inputs arithmetic progressions.
- DUPLICATE : Duplicates columns and rows.
- FORMATTING : Alters attributes or column widths, etc-
- RETRIEVAL : Retrieves data.
- SORT : Sorts data.
- REPORTING : Prints tables.
- UTILITY : Inputs/outputs data from/to IBM-format floppy disks or RJE-86 files.
- RETURN : Returns to the roll list screen.
- copr : Copies rows or columns.
- Mave : Moves rows or columns.
- Defer : Deletes rows or columns.
- msert : Inserts rows or columns.
- $\int \hat{\pi}$; Start or end the permanent display of column 1 .

The following functions can be executed during data input:
.

 cursor.

- INPUT : Inputs characters, symbols, and numeric values.
- CORRECT : Corrects characters, symbols, and numeric values.
- DELETE : Deletes data.
- COL. EXP. : Inputs, corrects, and deletes column expressions.
- RETRIEVAL : Sets retrieval conditions.
- CONT. RET.: Continues retrieval under the same conditions.
- TOTAL : Calculates the total data of multiple rolls of the same format.
- RETURN : Returns to the data processing screen.

A book and a roll differ in the following area:

- Only column expressions are used for a roll.
3.4 INPUT PAT. (Input Pattern) Function

Patterns can be entered in a roll in the same way they are entered in a book. See Section 2.l.4, INPUT PAT.
3.5 DATA GEN. (Data Generation) Function

Roll data is generated in the same way book data is generated. See Section 2.1.5, DATA GEN.
3.6 DUPLICATE Function

Roll data is copied in the same way book data is copied, with the three following exceptions:

- The attribute of a TO item must agree with that of a FROM item.
- The items on row 0 can be copied only to row 0 of another roll or to a different location in row 0 of the same roll.
- When copying data from one column to another, the item names (row 0) are not copied.

3.7 FORMATTING Function

During formatting, the attributes of each column or the column widths defined at roll creation time can be changed. The items given below can be changed:

- Data type:

Column attributes (character, numeric) can be changed.

- Character shift:

Characters can be right-justified.

- Numeric value format:

The numeric value of a string can be changed to the general format (E notation if the value cannot be contained in a screen cell), integer format, or decimal format.

- Numeric value editing:

Commas can be inserted after every third digit. The plus (+), minus (-), and dollar (\$) signs can also be attached.
The rounding options (round down, round off, round up) can be specified for decimal fractions.

- Column width:

Column widths (number of character in a column) can be changed.

- Calculation method:

Calculations can be performed automatically (automatic) or be delayed until specified (manual).

- Data protection:

Data can be protected so that it is not changed during data input or recalculation.
(1) Data type

There are two kinds of attributes: character and numeric. The following points must be considered when changing data types:

- When the data type is changed, data other than item names (row 0) is lost.
- If the attribute of a numeric value is changed to the character type, the column width is adjusted automatically to 8 characters. Thus, if an item name (row 0) is longer than 8 characters, the excess characters will be truncated.

The following table lists the relationship among the data types, character shift, numeric formats, and numeric value editing:

Data		
Option	Character	Numeric
Character shift	0	x
Numeric format	x	0
Numeric editing	x	0

o : Can be specified.
x : Cannot be specified.
(2) Character shift

Character shift specification is effective only when the column has the character attribute. Characters on row 0, however, can be changed regardless of column attributes. Right-justification is assumed for a roll that has been created.
(3) Numeric value formats

These are identical to formats used for books, except that format specification is effective only when the column has the numeric attribute.
(4) Numeric value editing

This is specified in the same way as for a book table, except that numeric value editing options can be specified only when the column has the numeric attribute.

Column widths are changed in the same way as book column widths.

Calculation method

The specified calculation method is effective for the entire roll. When 'automatic' is specified, calculation of the related expression is performed immediately after data is changed. When 'manual' is specified, calculation is not performed until specified. For a roll, calculation is performed immediately after the end of data input mode. In the manual mode, however, calculation is performed if data is entered by specifying a row, not indicated by START and END, for the address immediately after the colon (:). Calculation can be restarted by entering '!' via the data processing or data input screen.
The calculation method, automatic or manual, is displayed at the far end of row 3 as follows:

A : Automatic
M : Manual

Immediately after a roll is defined, A (Automatic) is assumed.
(7) Data protection

Individual columns of roll data can be protected. If data protection is specified for a column, the cell cursor skips that column to prevent data, except a column expression, from being entered in the cells. If a column expression is in the column, recalculation is not performed and data and expressions cannot be deleted.
If data protection is removed from a column containing a column expression, the message "RECALCULATION OK?" will be displayed.
(8) Status column

In the status column, information such as the width and the attribute of the column where the cell cursor is positioned is displayed. when INPUT, INPUT PAT., or FORMATTING is selected.

The following symbols are displayed:

1	2	3	4	5	6	7	8	9	10	11
m	m	C	L							

Where mm is the column width, nn is the number of fractional places, and ぃindicates a blank.

Meaning of status indicators

- Data type (character 3)

C: Character
N: Numeric

- Character shift (character 4)

L: Left-justified
R: Right-justified

- Numeric value format (character 5)

R: Real
I: Integer
D: Decimal

- Numeric value editing (characters 8, 9)

C: With comma
-: Without comma
Editing: 0, +, -, *, ,, \$

- Rounding (character l0)

D: Round down
O: Round off
U: Round up

- Data protection

P: Protected
\sqcup : Not protected

3.8 RETRIEVAL Function

Data satisfying set conditions can be retrieved and displayed on the screen or outputted in another roll. If data satisfying the condition is not found, 'DATA ERR.' is displayed in the error message column on the second line from the bottom.
A condition is specified in the same way as it is for a book. A conditional expression is from lo 80 characters long. Up to 15 retrieval condition patterns can be registered.
3.9 SORT Function

Rows can be sorted in ascending or descending order, and up to five columns can be specified as sort keys. Note that a particular character within a column cannot be specified as a condition. Sorted results can be outputted in another roll by specifying the roll name or number.
In this case, a sort range can be specified.
Up to 15 sort conditions can be registered as patterns.

Using the printer, all roll data or selected data can be printed out by specifying conditions. Roll data is printed in the same way as book data, with the following exceptions:

- Item names (row 0) are printed below the header of each page.
- A specified number of spaces can be inserted before each column.
- Roll data can be printed while calculations are being performed on it.

When concurrent calculation is specified, a total is printed if the contents of the specified column do not match those of the specified column on the preceding row. The grand total is also printed out at the end. If the column specified has the character attribute, it can be specified that the total be printed when the specified portion of a particular character string does not match the corresponding portion of the corresponding character string on the preceding row.
[Example]

A-1200	If the last two characters are used for
A-1200	comparison in this example, specify the
A-1210	two-character string starting with the
	fifth position. An intervening blank is
	counted as one character.

When the UTILITY function is selected, you can input data from or output data to either an AS-l00 floppy disk for use by online software packages (RJE-86) or an IBM-format floppy disk. This function is available only with systems using 8-inch floppy disk.
Layouts such as record format can be registered for later use. Layouts can also be registered in a total pattern.

3.11.1 FILE Function

Files that can be transmitted via RJE-86 can be used. Like CD files, these files can be used by other programs coded in such languages as BASIC or COBOL. Note that when roll data is outputted in a file, only the integer part is outputted on the floppy disk. If the width of a column differs from the length of the corresponding field when data is transferred, the following truncation or padding is will be performed:

- Length of data sent > Length of receiving area: The data is truncated to the length of the receiving area.
- Length of data sent < Length of receiving area: When data is sent from a file to a roll, trailing null (00) characters or leading zeros are added for character data or numeric data, respectively. When data is sent from a roll to a file, trailing spaces or leading zeros are added for character data or numeric data, respectively.

3.11.2 IBM FORMAT Function

Data can be read from or written to 8-inch IBM format floppy disks. The following two types of floppy disks are available as IBM-format disks:

- Single-sided, single-density, 128 bytes/sector (The exchange indicator in the file label is blank.)
- Double-sided, double-density, 256 bytes/sector (The exchange indicator in the file label is 'H'.)

Floppy disks meeting the above standards may not be usable under certain conditions. For details on IBM-format floppy disks' internal code, see Appendix 2. For data transfer processing and notes on it, see Section 3.ll.1, FILE Function.

This chapter explains the various error messages displayed by CANOBRAIN. It also explains what to do when an error message is displayed.

4.l Error Messages Displayed during Start-up

Error messages are displayed in the top left-hand corner of the screen if an error occurs during CANOBRAIN startup.

> NEED MEMORY

A>_

Error messages displayed during CANOBRAIN start-up and the steps to take to clear the error are shown in the table below.

Error message	Meaning	Remedy
NEED MEMORY	Memory area available is insufficient.	Expand memory.
$\times \times \times \times \times \times \times \times \times \times$ ERR.	File $\times \times \times \times \times \times \times \times \times x$ is not found on the floppy disk or cannot be created.	Replace the floppy disk with another and try again if $x \times x \times x \times \times \times \times x$ is any of the following: - SYSTEM CAT - BOOK CAT - FILE CAT - CALOG CAT. If anything else is displayed for $\times \times \times \times \times \times \times \times \times \times$, make a new system floppy disk and try again.
COMMAND ERR.	Erroneous procedures have been taken to activate CANOBRAIN.	Restart at power-on.

Note: x indicates a letter or number.
4.2 Error Messages Displayed during Password Registration

The error message "FULL" is displayed if you try to register more than 20 passwords.

Remember that only 20 passwords can be registered. No other passwords can be registered when this error message is displayed. Use one of the passwords already registered, omit the password, or prepare a new data floppy disk.

4.3 Error Messages Displayed during Table Processing

The corresponding error message is displayed at the right of the second line from the bottom of the screen if an error occurs during table processing.

Error messages displayed during table processing and procedures for handling them are as described in the table below.

Error message	Meaning	Remedy
VOLUME FULL	The data floppy disk was full, or no file space could be allocated for the work file when an attempt to perform a COPY, MOVE, INSERT or DELETE of rows or columns, or change of column width was made.	Return to the roll list or index screen, and reselect the same roll or book. If data has not been destroyed, delete undesired pages, books, rolls, patterns and the total patterns and retry the operation. If data has been destroyed, replace the disk with the backup one and delete undesired things as described above. Then retry the operation.
PATTERN ERR.	The table was edited after patterns or a total pattern had been registered, making pattern execution impossible.	Delete the pattern or total pattern you attempted to execute, and reregister it.

(Continued)

Error message	Meaning	Remedy
CD FILE ERR.	An attempt was made to read a file other than a CD file.	Check the CD file name, then try again.
INPUT ERR.	An incorrect data item, expression, or address was entered.	The cursor moves to the error; enter the correct data, item, expression, or address.
FORMAT ERR.	Data generation cannot be used to enter numbers to a column with the character attribute.	Change the attribute of the column.
	The range specified for retrieval, sorting, or printout/retrieval included both character and numeric data.	Change the range specification so that only one type of data is included, or change the data type.
LACK MEMORY	Insufficient memory area was available for table processing.	End CANOBRAIN operation, then start over after turning the power off and on again. If the error message is still displayed, expand the memory.
DATA ERR.	No data was found which satisfied the conditions specified for a retrieval or printout/retrieval operation.	Make sure the conditions were correctly specified, then try again, or respecify the range of the operation.
ERR.	An incorrect book or page number was entered.	The cursor moves to the error; enter the correct book or page number.
OVERLAP ERR.	The title specified for a new book, page, or total pattern has already been used. The title specified as the new title has already been used.	Enter a different title and try again.
ROW NO. OVER	The number of rows specified to contain the transferred roll data was insufficient.	Specify a greater number of rows and retry the operation.
COMMAND ERR.	Part of the data floppy disk contents have been destroyed.	Replace the disk with a new one and retry the operation.

(Continued)

Error message	Meaning	Remedy
WIDTH OVER	One of the columns is too wide, and a fixed display of the first column cannot be maintained.	Press and continue the operation.
NO FIXED COL	The first column cannot be fixed because only one column has been defined.	Press and continue the operation.
NO FILE	The specified file could not be found in the disk written in the IBM format.	Confirm that the file name specified was correct. If it was correct, create the specified file on the disk.
OPEN ERR.	The specified file cannot be opened.	Insert the system disk in drive A and press \qquad F12 Check the IBMformat disk.
READ ERR.	Data cannot be read from the specified file.	Same as above.
WRITE ERR.	Data cannot be written to the specified file.	Same as above.
CONVERT ERR.	Numeric data on the IBM-format disk was arranged incorrectly.	Same as above.
OVERFLOW	A numeric value was too large and could not be converted.	Same as above.
DATA ERR.	Layout information was incorrect and data was not transferred.	Insert the system disk in drive A and press F12 , then redefine the layout.
I/O ERR.	An error occurred during I/O operation.	Insert the system disk in drive A and press F12, then check the IBM-format disk.

(Continued)

Error message	Meaning	Remedy
LENGTH ERR.	Numeric roll data could not be outputted to the disk because the length of the field assigned to that numeric data was too short.	Insert the system disk in drive A and press Redefine the
layout to increase the length of the field.		
CLOSE ERR.	The specified file could not be closed.	Insert the system disk in drive A and press form.
format disk.		

(Continued)

Error message	Meaning	Remedy
34 OPEN ERR.	An attempt to select a utility was made with the 5-1/4-inch disk system.	Press F12 to restart at roll selection. If this error occurs with an 8-inch disk system, make
a new backup copy of the		
system disk.		

(Continued)

Error message	Meaning	Remedy
SORT ERR. (F)	$\begin{array}{l}\text { Sufficient work file } \\ \text { space could not be } \\ \text { allocated for sorting. }\end{array}$	$\begin{array}{l}\text { Return to the roll list } \\ \text { or index screen, and re- } \\ \text { select the same roll or } \\ \text { book. If data has not } \\ \text { been destroyed, delete }\end{array}$
undesired pages, books,		
rolls, patterns and		
total patterns and then		
retry the operation. If		
data has been destroyed,		
replace the disk with the		
backup disk and delete		
undesired things as des-		
cribed above. Then retry		

(Continued)

Error message	Meaning	Remedy
pP OPEN ERR.	The data floppy disk contents have been destroyed.	Terminate CANOBRAIN and use another data floppy disk.
pP DEL ERR.	Same as above.	Same as above.
pP REG ERR.	The system floppy disk contents have been destroyed.	Terminate CANOBRAIN and make a new backup copy of the system disk.
02 OPEN ERR.	Same as above.	Same as above.
02 LOAD ERR.	Same as above.	Same as above.
03 OPEN ERR.	Same as above.	Same as above.
03 LOAD ERR.	Same as above.	Same as above.
21 OPEN ERR.	Same as above.	Same as above.
21 LOAD ERR.	Same as. above.	Same as above.
25 OPEN ERR.	Same as above.	Same as above.
25 LOAD ERR.	Same as above.	Same as above.
BK NOT FOUND	An error was found in the total pattern	Redefine the total pattern and then retry the operation. If this message is still dis- played, use a new data disk.
BK UNDEFINE	Same as above.	Same as above.
PG UNDEFINE	Same as above.	Same as above.

4.4 Error Messages Displayed during Graph Processing

The corresponding error message is displayed on the right of the second line from the bottom of the screen if an error occurs while a graph is being processed.

Error messages displayed during graph processing and procedures for handling them are explained in the table below.

Error message	Meaning	Remedy
NO TABLE	The table on which the graph was based has been erased, or its title has been changed.	Recreate the deleted table or restore its original name.
BAD SCALE	An incorrect maximum value, minimum value, or interval was specified when a scale change was attempted.	Enter the correct value.
INVALID LOG.	0 or a negative value was included in table data being graphed when an attempt was made to change to a logarithmic axis scale, or a specified series included an empty cell.	Do not use o or negative values in the correct the data value.
OVERFLOW	An attempt was made to graph data which is outside the specified range.	A meaningless graph is displayed; correct the data.

4.5 Other Error Messages

One other error message issued after CANOBRAIN start-up is displayed in the upper left hand corner of the screen.

BOOK OPEN ERR
A>

This error message indicates that the floppy disk has been destroyed.

Create a new system floppy disk.

Canon AS-100

CANOBRAIN creates $C D$ files in the format shown below.

Header section

TABLE
0,1
${ }^{1}$ "
VECTORS
0 , mm
110
TUPLES
0,nn
""
DATA
0,0
" "

Here, what mm and nn represent varies according to the output operation specified when data is sent to the file.

- When a row output operation in which all items on a row are outputted successively before those on the next row are outputted is specified as follows:
mm represents the number of rows, and
nn the number of columns.
- When a column output operation in which all items in a column are successively outputted before those on the next column are outputted is specified as follows:
mm represents the number of columns, and
nn the number of rows.

$-1,0$
BOT
t, n
Character string
$-1,0$
BOT
t, n
Character string
t, n
Character string
$-1,0$
EOD

t: Indicates data type, in which:
0: Numeric data
l: Character data
n : Represents the value of numeric data. 0 is used for character data.

Character string: The letter V is used for numeric data; characters composing the string are enclosed by quotation marks (") to indicate that they are character data.

When conversion from numeric data to character data is specified during data output to a CD file, CANOBRAIN handles numeric data (including commas and dollar signs) as character strings.

The listing on the following page shows the contents of a $C D$ file (in hexadecimal code and alphanumerics) which is created from the table below with column output specified as the output mode.

BRANCH	AMT BUDGETED	SALES 1ST HALF	SALES 2ND HALF	TOTAL	PCT GAIN
BRANCH A	$1,000,000$	550,000	600,000	$1,150,000$	115.00
BRANCH B	$1,200,000$	520,000	500,000	$1,020,000$	85.00
BRANCH C	$1,500,000$	600,000	720,000	$1,320,000$	88.00
BRANCH D	$1,500,000$	950,000	700,000	$1,650,000$	110.00
BRANCH E	$1,600,000$	820,000	860,000	$1,680,000$	105.00
TOTAL	$6,800,000$	$3,440,000$	$3,380,000$	$6,820,000$	100.29

record no．$=1$
0000： 5441 424C． 4500 OA30 $2 C 31$ 0DOA 2222000 A 0010： 56454354 4F52 5300 0月30 $2 C 37$ ODOA 2222 0020：0DOA 5455504 C 4553000 A 302 C 360D 0A22 0030： 2200004441544100 0A30 2030 ODOA 2222 0040：0DOA 20312030 ODOA $424 F 5400$ 0A31 2030 0050：000A 224252414 E 434822 ODOA 312C 3000 0060：0A22 4252414 E 434820412200 0A31 $20: 30$ 0070：000A 224252414 E 4348204222 000A 3120

TA BL E．． $0: 1 . .{ }^{r: 1 .}$ UE CT 促 $\mathrm{S} .0 .0: 7 \mathrm{~A}$ ．．TU FL ES ．． 0 ：E．．＂ 1．．O AT H．． 0,0 ．．＂＂ ．．－1 ：0．，EOT．． $1: 0$ ．．＂E RḰ NC H＂．，1： 0. \therefore ER AN CH A＂， 1 ： 0 ．．＂E RA HE H E＂．． 1 ．
record no．$=2$
0000： 3000 OA22 4252414 E 434820432200 OA31 $0010: 2030000 \mathrm{~A} 224252414 \mathrm{E} 4348204422000 \mathrm{~A}$ 0020：3120 3000 0A22 4252414 E 434820452200 0030：0431 $2030 \quad 000182220544 \mathrm{~F} 54414022000 \mathrm{~A}$ 0040： 20312030 000A 424 F 5400 0A31 2030000 A 0050：2241 405420425544474554454422000 A 0060： 302 C 3130303030303000 0А56 000 A 302 C 0070： 3132303030303000 0A56 000A 3020 3135
0. ＂ER AN CH C＂．． 1 ：0．．＂ERH NE H［＂．． 1，0．．＂ER AN CH E＂．
 $-1 \cdot 0$ ．． 80 T．． $1: 0 .$. ＂A MT E UO GE TE D＂．． $0 ; 1000000$ ． 10 ．． 0 1200000.0 .0 .15
record no．$=4$
0000： 353030303000 0A56 000A 3020 36323030
0010：3030 000A 5600 0̂30 2033343430303030
0020：000A 5600 0R20 312 C 3000 0142 4554000 A
$0030: 3120$ 3000 0422534140455320 324E 4420
0040： 48414046220004302036303030303000
0050：0A56 000A $302 C$ 3530 30303030000 H 5600
$0060: 04302037323030303000$ 0A56 000 3020
$0070: 37303030303000005600$ aA30 20383630
50000.11 .4 .8200 On ．，U， 0.3440000
 1：0．．＂SA LE E ZH0 HA LF＂： 0 ： 600000.
 .0 .720000 .0 .0 ． $700000 ., 4.0: 860$
record no．$=5$
0000： 303030000456000 A 302 C 333336303030 0010： 3000 OAE 000 A 20312030000 A 424 F 5400 01020：OAB 20.50 ODOA 2220 54EO $4 F 2054204120$ 0030：4C22 0004 3020 31313530303030000456 0040： 100 A 3020 3130323030303000 0456 000 $0050: 30203133323030303000045600013020$ $0060: 31363530303030000456$ 日00A 30203136 0070： 383030303000 OA56 100 A 302 C 36303230

```
00 [1, 4.,.0. 33 80 00
0. .0 .. -1 %0.. g0 T.
.1.0.." T 6 T A
L" ., 0: 11 50100 0. .V
& 0. 10 20 00 口. ,4 ..
0, 13 20 00 0. .4 .. 0.
16 50 00 0.,V .. 0,1E
80 0g 0. .V .. 0. 68 20
```

```
resocd ro.=%
0000: 3030 3000 0AF56 000A 2031 2030 000A 4E4F
0010: 5400 0A31 2C30 000A 2250 4354 2047 4147
0020: 4E22 000H 3020 3131 3500 0A56 000H 3020
```



```
0040: 302C 3131 3000 04F6 000A 3020 3130 3500
0050: 0456 000H 302C 3130 302E 3239 3431 3137
0060: 3634 3730 3500 0A56 0DOA 2031 2030 ODOA
```


A sample BASIC program which reads a CD file into the memory and displays the contents of the file, and another sample BASIC program which outputs data in the memory to a CD file in the CD file format, are provided. These examples assume that column output was specified and conversion was not specified when the $C D$ file was created.

```
CDFILE2E.2731
    10 PEM #########################
    20 REM # COFILE TG CFU #
    30 REM #########################
    40 DIM MOPKSHEET事20(50:10) :REN DEFEHD ON TAELE DATA
    50 DIMSTENG$77:Aま=""""
    60 FORMAT ###############
    70 DIM FILENAME$12:EFK=0
```



```
    90 REM * MAIN :
```



```
    110 GGSUE 160 :REM CD FILE NAME DEF.
    120 GOSUE 230 : IF EER=1 GOTG [END] :REN READ HEADER
    130 GOSUE 340 :REM REAO TABLE DATA
    140 IF (PRT=1) (GR (ERF=1) THEN GOSUQ 500 :FEM PRINTGUT DATA(CFU)
    150 [END] CLUSE #1 : EH[
```



```
    170 REM * CD FILE HAME DEF, *
    180 REN ***:*************:k*********:k
    190 PRINT %HGME:; IMFUT NSG\" FILE HAME = ") FILEHANE%
    200 FRINT : INFUT NSG`"FRINT DATA(CPU) : VES=1 , NG=0 ") FRT
    210 OPEH #1:FILENAMEF
    220 RETURN
```



```
    240 REM * READ HEADER *
```



```
    260 INPUT #1sTITLE$
    270 IHFUT #1;TYFE:HUMEER
    280 INFUT #1:STRNG$
    290 IF TITLE$="TABLE" G0TG 230
    300 IF TITLE$="VECTORS" THEN VECTGRG=HUMEER : GOTG 230
    310 IF TITLE ="TUPLES" THEN TUFLES =NUMEER : GOT0 230
    320 IF TITLEF="DATA" THEN RETURH
    330 GOSUE GOO : RETURH
```



```
    350 REM * FEAD TAELE DATA *
```



```
    370 FOR COL=1 TO TUPLES
    360 INFUT #1.TYFE,NUMEEE
    390 IHFUT #1,STEHG$
    400 IF (TYPE &`-1) GR {STRNG% \` "EGT") THEN GGGUS SGO : RETUFH
    410 FOF ROU=1 TO UECTORS
    420 IHFUT #1, TVFE, HUNEER
    430 IHFUT #1,STFHG%
    440 IF TYFE=0 THEH WORKSHEET*(ROW:COL)=STRF(CHR&(NUMEER):2) : EGTG 480
```



```
NT-2):G0T6 480
    470 GGSUR 690 : RETURH
    480 NENT ROW
    490 HEXT CGL
    4 9 5 ~ R E T U R N ~
```

```
500 REM
```



```
5 1 0 ~ R E M ~ * ~ F R I N T ~ D A T A S C F U ~
```



```
530 FOR RGLIN=1 TG UECTORS
5 4 0 ~ P R I N T ~ \# D : ~ \%
5EG FGR CGL=1 TG TUPLES
560 FFIHT #0: USING EO HGRKSHEET&(ROH:CGL):
5 7 0 ~ H E X T ~ C O L ~
5 8 0 ~ N E X T ~ R 6 W ~
5 9 0 ~ R E T U E H
600 REM ***:************:***********:
610 REM * HEADER ERROR *
620 REM **************:***:************
630 PRINT "K07 HEADER ERRGR"
640 PRIHT TAB(5);"TITLE = "iTITLE$
850 PRIHT TAB(5):"TYFE = ":TYFE
660 FRINT TAE(5):"HUMBER = ";NUMBER
670 FRINT TABSE):"STRHG = "iSTRNG$
680 ERR=1 : RETURH
690 REM **:***:****:*:k;******:**:*:****
700 REM * DATA ERROR
710 REM ******:*:**:k**:k******:**:*;******
720 FRINT "&07 DATA ERRGR"
730 PKINT TAB(5):"TYFE = ":TYFE
740 PRINT TAR(5);"NUMBER = ";NUMEER
750 PRIHT TAB(5);"STRNG = ";STRNG%
760 ERR=1 : RETUFN
```

```
CDFILEGE.125S
```



```
    20 REM # CD FILE DUMF LIST #
    30 EEM #########################
    40 DIM FILENAME末12
    45 DIM STENG%77
```



```
    60 REM * MAIH *
    70 EEM
    80 GGGUE 120 GEEM CD FILE HAME DEF,
```



```
    90 GGSUE 180 SREM READ HEADEE
10G gigSue 29O : EEM READ TABLE DATA
110 [END] CLOSE #1 : EHO
```



```
130 REM * CO FILE NAMNE DEF. *
```



```
150 FRINT #HGME:: IMFUT MSG!" FILE MAME = ") FILEMAME*
160 0FE| #1:FILENAME$
17O RETURH
130 REM *****************:*********
190 REM * REA゙D HEADER *
```



```
210 FOR HED=1 T0 4
220 INFUT #1:TITLE$
230 IHFUT #1:TYFE,NUMBEF
240 INPUT #1,STENGF
250 FRIHT #O,TITLEE
260 PFINT #O.TYFE,NUMEER
270 PRIHT #O,STRNG%
230 NEXT HED
285 RETURH
```



```
300 REM * READ TAELE DATA *
310 REM **********:***:********:*:*****
320 IHPUT #1:TVFE,NUMBER
330 INPUT #1:STRHG$
340 PRINT #0,TYPE: HUMBER
350 PRINT #O:STRNG$
360 IF (TYPE <> -1) GR (STRNG* <> "EOD") G0T0 230
3 7 0 \text { RETURH}
```

```
CDFILEBE.2031
    10 REM
    #########################
    20 REM # CFU TO DISK(CDFILE) #
    30 KEM ########################
    4O UECTGISS=7 ; TUFLES=6 :REN DEFENO OH FOLN & COLUHN HG.
    50 RGW=UECTORS : CGL TUPLES
    SO DIN WORKSHEET$2O(FGW;COL) SEEM DEPEND GN TABLE DATÁ
    70 DIM TYPE\COL) :REM DEPEHD GH TAELE DATA
```



```
    100 TYFE(4)=0: TYFE(5)=0 : TYFE(6)=0
```



```
    120 REM * MAIA *
    130 REM **:4%**********************
    140 GUSUS 190 :REM ED FILE NAME DEF.
    150 GÓSUB 250 {REN READ HEADEE
    160 G0SUE 330 :REM READ TAELE DATA
    170 GGSUE 47O :REM EHO OF DATA REGORD
    180 [EHD] CLGSE #1 : EHO
    190 REM
        ********************:***:**:
    REM ; CO FILE MAME DEF:*
```



```
    PRIHT %HGME::INFUT MEg(" FILE HAME = ") FILEHfME:
    6FEN #1:FILEHAME$
    RETUPN
```



```
    REM * READ HEADER ;
    REM ***********:****************
    PRIHT #1:"TAELE" : FRIMT #1:"@:1" : PRINT #1:HIL妾
    FRINT #1:"VECTGRG" : FRIHT #1:"0," ;STR&(CHRF(RGU):2) ; FRIHT #1:HUL多
    FRINT #1:"TUPLES" : FRIHT #1:"0," ;STR&(CHE$(CGL):2) ; FRINT #1,HUL$
    FRINT #1:"OATA" : FRIHT #1:"O,0" : FFIMT #1:HIL韦
    RETURH
```



```
    EEM * READ TAELE DATA *
```



```
    FG̈R CGL=1 TÓ TUPLES
        PRINT #1:"-1:0"
        FRINT #1:"BGT"
        FEIHT #1,"1:0"
        FRINT #1,A$+WGRKSHEET$(1:CGL)+AF
        FGR RGU=2 TO UECTORS
            IF TYPE(COL)=0 THEN FRINT #1,"O:" \WGRKSHEET本(RGW,COL) : FRINT #1,"\"
            IF TYPE(COL)=1 THEH PRIMT #1,"1:O": PRINT #1:A$+HGPKSHEETS(RGU:COL)+A$
        NEYT FGLW
    440 HEXT FGU
    460 RETUEH
```



```
    480 REM ENO GF DATA RECORD *
```



```
    500 PRINT #1,"-1,0" : FRIHT #1, "EGD"
    S10 RETURH
```

All IBM-format floppy disks used with CANOBRAIN must satisfy the following requirements:

- The record sequence field (bytes 76 and 77) in the volume label must be space or 01.
- The interchangeable type indicator in the file label must be space for 128 bytes/sector, single-sided, single-density disks and H for 256 bytes/sector, double-sided, doubledensity disks.
- Tracks 1 to 73 are used for data and track 74 is not used.
- The alternate tracks are not used.

Either EBCDIC or ASCII code can be used as internal codes. CANOBRAIN automatically reads the kind of code used.
If the length of the data received is not equal to that of the data sent, the following will occur:

- Send data length > receive data length: The data length is set to the receive data length.
- Send data length < receive data length: Zeros (for numeric data) or blanks (for character data) are added to the data sent when CANOBRAIN sends data to the disk.

Zeros (for numeric data) or NULLs (for character data) are added to the received data when CANOBRAIN receives data from the floppy.

The volume label containing volume information is located in sector 07, head 0, cylinder 00.

Volume label

Offset (byte)	Name	Length (bytes)	Contents	Explanation
0	Label ID	3	VOL	Standard volume label ID
3	Label number	1	1	Order of volume labels
4	Volume serial number	6	Volume number Alphanumerics Left-justified, Blanks for remainder, No blanks allowed between characters.	Any volume ID code specified by user
10	Access condition	1	-	No access limitation
11	Reserved	26	Ь... \dagger	-
37	User name	14	User ID Alphanumerics The first character must be a letter. Left-justified, Blanks for remainder	User name or code
51	Reserved	13	ப...	——
64	Label extension indicator	1	\checkmark	File label not extended.
			109	The specified cylinders starting at cylinder 01 are used for file label.
65	Reserved	6	ப... ${ }^{\text {c }}$	
71	Volume medium type	1	\checkmark	Single-sided medium
			M	Double-sided, doubledensity medium
72	Extent arrangement indicator	1	-	No restrictions.
73	Special requirements	1	\pm	No restrictions.
74	Reserved	1	\sqcup	-

Offset (bytes)	Name	Length (bytes)	Contents	Explanation
75	Sector length	1		128 bytes/sector
			1	256 bytes/sector
			3	1024 bytes/sector
76	Record sequence	2	- ப	Same as record sequence '01'.
			$01 \sim 13$	Sector sequence on a track
78	Reserved	1	\checkmark	-
79	Label standard level	1	W	Standard label and data format

(Note) The 48 bytes after offset byte 80 are filled with the padding characters shown below.

Standard density: X'00'

```
Double density: Space
```


File label

The file label containing file information is located on sectors 08 to 26 , track 0 (0 and l for double-sided media), cylinder 00.

File label

Offset (byte)	Name	Length (bytes)	Contents	Explanation
0	Label ID	3	HDR	Standard file label ID
			DDR	Delete/unused file label ID
3	Label number	1	1	Order in file label group
4	Reserved	1	\checkmark	————m
5	File ID	17	File name Alphanumerics The first character must be a letter. Left-justified, with blanks for remainder. No blanks allowed between characters.	User file ID
22	Block length	5	$\begin{aligned} & \omega-\mathrm{nnn} \\ & (001=n n n \leqq 1024) \end{aligned}$	Indicates the length of block
27	Record attribute	1	\checkmark	Unblocked/unspanned
			B	Blocked/unspanned
28	Beginning of extent (BOE)	5	CCHRR (Decimal notation item for display)	Beginning of file extent
33	Sector length	1	\checkmark	128 bytes/sector
			1	256 bytes/sector
			3	1024 bytes/sector
34	End of extent (EOE)	5	CCHRR (Cecimal notation item for display)	End of file extent
39	Record/block type	1	-	Fixed length record in fixed length block
40	Bypass indicator	1	\sqcup	Not to be bypassed

Offset （byte）	Name	Length （bytes）	Contents	Explanation
41	Security file indicator	1	\checkmark	Not a security file
42	Write／protect indicator	1	\square	Not write protected
43	Interchangeable type indicator	1	\square	Basic type
			H	Basic type for double－ sided media
			E	Extended type
44	Multiple volume indicator	1	\sqcup	Single volume file
45	Volume sequence number	2	レ．•・ナ	Not used．
47	Date of creation	6	ப．．．	Not written．
53	Record length	4	■．．．	Block length＝record length
			$0001 \sim 1024$	Record length（Blank in higher byte is equal to zero．）
57	Offset	5	ப．．．	Not used，or 00000.
			00000～32767	Offset value（Blank in higher byte is equal to zero．）
62	Reserved	4	－．．．	——————
66	Expiration date	6	Ь．．．し	Not used．
72	Verify／copy indicator	1	－	Not changed．
73	File organiza－ tion	1	\sqcup	Sequential file
74	End－of－data address （EOD）	5	CCHRR （Decimal notation item for display）	The starting address of unused area in the file area
79	Reserved	1	\checkmark	－

（Note）The 48 bytes after offset byte 80 are filled with the padding charac－ ters shown below．

Standard density：X＇00＇
Double density：Space

Two printers can be connected to the AS-l00 by installing an optional parallel interface. One printer can be used for printing tables and the other for printing graphs. A serial interface printer (such as the AP500) can be connected to the AS-100 by installing an optional serial interface.

However, since only one port (port 2) can be used for optional interfaces, only one parallel or one serial interface can be used at a time.

For details, see Chapters 6 and 7 of the AS-100 CP/M-86 User's Manual.

3.1 Parallel Interfaces

Take the following procedures to use a second printer:

1 Insert the system disk into drive A and a data disk into drive B, then turn on the power of the AS-100. If your system uses a $51 / 4$-inch floppy disk system, skip step 2 .

2 Fripe Fr to termlnate CANOBRAIN after it has been activated.

3 Type the following when the prompt "A>" is displayed. A>Al210 1 ULI:
$\left\lvert\, \begin{array}{ll}\text { Al200 for } A-1200 \\ \text { Al210 for } A-1210\end{array}\right.$
Al250 for A-1250
CNTHND for other printers
The underlined section differs according to the printer connected as shown above.

4 Start CANOBRAIN. With a $5 \frac{1 / 4}{1 / 4}$-inch disk system, start CANOBRAIN after inserting system disk 2 into drive A. A>CBRAIN

```
                -
```

5 Enter the date.
6 Press Fi (SYSTEM).
7 Press $F 4$ (print setting).
8 Press F 2 (hard copy) to use the second printer for printing graphs.

9 Specify the name of the device connected to port 2 using FL .
10 Press F12 (RETURN) twice to return to the password screen.

11 Operate the AS-100 in the normal manner.

3.2 Serial Interface

To print tables using a serial interface, follow the procedure outlined below.

1 Insert the system floppy disk into drive A and a data floppy disk into drive B. If your system uses 51/4inch floppy disks, skip step 2.

2 Press $F 12$ to terminate CANOBRAIN after it has been started.

3 Type the following when the prompt "A>_" is displayed: A $>$ RSHND \square

4 Type the following when the prompt "A>" is displayed after step 3:
A>RSINIT」TTY: $\quad 4800 _8 S S _B U F S I Z(0,512)$ \square
The underlined part must be the same as the settings in the output device. For details, see Chapter 7 of the AS-100 CP/M-86 User's Manual.

5 Start CANOBRAIN. With a $51 / 4$-inch disk system, insert system disk 2 into drive A before starting CANOBRAIN. A>CBRAIN \qquad

6 Enter the date.
7 Press F1 (SYSTEM).
8 Press $\mathrm{F4}$ (print setting).
9 Press Fl to use the printer for printing tables.
10 Specify the name of the device (TTY:) connected to port 2 by using F_{3}.

11 Press $F 12$ twice to return to the password screen.
12 Operate the AS-100 in the normal manner.

To use CANOBRAIN with a hard disk system, you must make copies of the operating system (CP/M-86) and CANOBRAIN on a single hard disk.

1. Preparation

First, initialize the hard disk being formatted for CP/M-86. Be sure to assign 2 M bytes or more to drive G. For details on the initialization process, see the Hard Disk User's Manual. Load the hard disk handler by typing the following: A>hdhnd
2. Copying $\mathrm{CP} / \mathrm{M}-86$

The system floppy disk must be in drive A. Type the following:

A>pip
An asterisk (*) will be displayed. Type the following:
g:=a:.*
An asterisk will be displayed again to indicate the completion of the operation.
3. Copying CANOBRAIN

Remove the system floppy disk from drive A when an asterisk is displayed. Insert the original floppy disk containing CANOBRAIN into drive A. If you used two floppy disks (Originals 1 and 2) for CANOBRAIN, insert Original 1. Enter the following:
g:=a:.*
After execution is completed for Original l, perform the same operation for Original 2. If the following message is displayed during execution, type [N] .

DESTINATION IS R/O, DELETE (Y/N)? [n]
An asterisk is displayed to indicate the completion of the operation.
After all floppy disks have been copied, press the key.

* \square

Copies of the original disks are now registered on the hard disk.
4. Switching the current drive

The current drive is A at this point.
To switch the current drive to G type the following.
$A>g: \square$
The prompt changes to "G>_".
5. Creating a SUBMIT file for CANOBRAIN activation

This section describes how to create a SUBMIT file, which is used to activate CANOBRAIN.
First, type the following:
G>ed start.sub
Type the following when an asterisk is displayed following the editor start message.

* 1 ■

Then, the display prompt changes as follows:
1:-

Type the following.
al200 (*)
cbrain $\square b:$ (*2)
*l: This string varies according to the printer connected.
al200 for A-1200
al210 for A-1210
al250 for $A-1250$
If no printer is connected, entry of this line is not necessary.
*2: Specify the name of the drive in which data is to be stored. The drive names which can be specified differ according to the system configuration.
Generally, the following names can be specified: $\mathrm{a}: \mathrm{b}: \mathrm{c}: \mathrm{g}: \mathrm{h}: \mathrm{i}: \quad \mathrm{j}:$

Press EsC after the above operation has been completed. When an asterisk appears on the display, type the following:

The SUBMIT file for activating CANOBRAIN has been created. If you find that incorrect letters have been typed before
 incorrect letters have been typed and has already been pressed, terminate the editor and start from the beginning by typing the following:

G>eraustart.sub $⿴$

7. Activating CANOBRAIN

1 Insert the floppy disk containing $C P / M-86$ into drive A.
2 Turn the power of the AS-100 on.
3 Load the hard disk handler.
4 Change the current drive from A to G.
5 Type submitwstart •
The SUBMIT file will then be executed and CANOBRAIN will be activated.

$$
\begin{aligned}
& \text { 会焉 } \\
& \text { Tr }
\end{aligned}
$$

F1	REAL
F2	INTEGER
F3	DECIMAL
F1	COMM／3S
F2	NO COMMAS
F3	PUNCT．
F4	NO PUNCT．
F5	ROUND DOWN
F6	ROUND OFF
F7	ROUND UP
F1	RETRIEVAL
F2	REGISTER
F3	DELETE
F4	EXECUTE
F1	SORT
F2	REGISTER
F3	DELETE
F4	EXECUTE
F1	70
F2	$6 E$
F3	U0

	$\begin{aligned} & \text { 资 } \\ & \text { B } \\ & \text { 定 } \end{aligned}$		$\begin{aligned} & \text { Ey } \\ & \text { O} \\ & \text { of } \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { O } \\ & \text { 号 } \\ & \text { H } \end{aligned}$	
m	［14	运宝	N	$\stackrel{-1}{4}$	

H
H
0
H
H
0
0
0

W
F
$\begin{array}{ll}\infty & 0 \\ \text { 江 }\end{array}$
0
$\stackrel{O}{4}$
$\underset{4}{1}$

 \qquad

\qquad
\qquad

Callo11 canoninc.

7-1. Niahl-ahinjuku 2-chome, Sninjuku-ku, Tokyo 180, Japan
P.O. Box 5050. Shinjuku Dal-ichi Selmel Bullding. Takyo 180, Japan
canon u.s., imc.
HEAD OFFICE One Canon Plaza, Lake Success, Longlaland N.Y. 11042. U.S.A
CHICAGO 140 Induatrial Drive, Elmhurat, Illinoia 801 2e, U.S.A.
LOS ANGELES 123 Paularino Avenue East Cata Meas, Callfornla 82e26. U.S.A
ATLANTA e380 Peachtree Induatrial Blvd., Norcrose, Geargla 30071, U.S.A.
DALLAS 2035 Royal Lane. Sulte 290. Dallas, Texas 75229. U.SA
CANON CANADA INC.
HEAD OFFICE 3245 Ambrican Drive, Misslssauga. Ontario, LAV 1N4, Canads
CALGARY 2828, 16th Streat. N.E. Calgary, Alberta, T2E 7K7. Canada
CANON EUROPAN.V.
PO Box 7907,1008 AC Amsierdam, The Natherlande
CANON FRANCE S.A.
93154 La Blanc Meanil, Cedex, France
CANON U.K. LTD.
Waddon House, Stafford Road, Croydon CRE 4DD, England
CANON RECHNER DEUTSCHLAND GmbH
P.O. Box 1 209, 8033 München-Martinarled, Weat Germany

CANON LATIN AMERICA, INC
SALES DEPARTMENT PO. Bax 7022، Panama 5, Rep ol Panama
REPAIR SERVICE CENTER PO. Box 2019. Colon Fres Zone, Rep, of Paname
CANON HONGKONG TRADING CO., LTD.
Goldan Bear Induatrial Cenire, 7ih Floor, 日e-82 Chai Wan Kok Sireal, Tsuen Wan New Territorles, Hong Kong
CANON AUSTRALIA PTY. LTD.
1 Hall Street. Hawthorn East, victoria 3123, Australia

