
INTRODUCTION

S8000 MMU CONFIGURATION ,
•

Inder M. Singh

This note describes the revised MMU confi­
guration for the S8000. The MMU setup in the
current S8000 prototype hardware is quite
appropriate for the phase one non-segmented
software strategy. This revised MMU configuratlon
maintains the support for the non-segmented
software of phase one while providing a cleaner
structure for segmented programs in phase two. It
also provides better support for a segmented ver­
sion of the operating system, in case we decide to
follow this route. This also makes the hardware
more attract'i ve as an OEM product.

The only significant change between this ver­
sion and the first draft is in the area of system
access to user space. Changed sections a~e indi­
cated by bars in the margin.

OVERVIEW

The CPU board contains three MMUs, referred
to as Ml through M3.

A non-segmented operating system (OS) runs in
segment O, using slot O of Ml, M2 and M3 for code,
data and stack areas, respectively. Ml is used
for translating program memory references, M2 or
M3 are used for translating all other memory
references. The selection between M2 or M3 is
based on a comparison between the address and the
contents of the System Break Register, a program
accessible hardware register. Addresses lower than
the SBR are treated as data addresses and are
directed to M2. Addresses greater than or equal to
the SBR are treated as stack addresses and are
directed to M3.

A non-segmented user program runs in segment

···-·--.a.. "'" .. -ft-

(

L

- 2 -

63 (in fact, the hardware will allow any segment
between 1 and 63 to be used). As in the case of
the non-segmented OS, slot 63 in Ml, M2 and M3 is
used to provide separate code, data and stack
areas respectively. The only diffe~ence is that
the Normal Break Regist~r (NBR) is~sed to dis­
tinguish between data and stack references instead
of the SBR.

A segmented OS uses Ml to provide an address
space consisting of up to 63 segments (segments 0
through 62). Segment 63 would be used to run non­
segmented programs. No separation between code,
data or stack segments is provided, or needed.
The attribute flags in the segment descriptors of
M3 can be used to configure different segments for
this purpose.

A segmented user program uses M2 and M3 to
provide an address space consisting of 126 or 12ti
segments, again without separating code, data and
stack spaces. If the OS is non-segmented, segmenc
numbers 0 and 64 are reserved for the OS, since it
requi~es segment 0 slot of M2 and M3. With a seg­
mented OS, all 128 segments are useable.

Figures 1 through 4 illustrate the OS and
user address spaces in the various configurations,
and the MMU slots (SDRs) which are used to map the
different segments within the address spaces.

CONFIGURATION CONTROL

The MMU configuration is controlled by the OS
software via two bits in an I/O port: Segmented
System (SS) and Segmented User (SU). The opera­
tion in the different configurations, controlled
by the SS and SU bits and the system/normal CPU
state, is described bel~w:

a) SS=0, SU=0. This configuration is intended
for a non-segmented OS running non-segmented
programs. The OS runs in segment 0, a user
process runs in any of the segments 1 through
63, with 63 as the recommended segment.

MMU Ml is enabled for program references,
indicated by a CPU status code of llxx. For
other memory references, the operation is as
follows: the address offset generated by the
CPU is compared with the SBR if the segment
numbe~ is 0, or with the ~BR if the segment
number is non-zero. If the result of the
comparison is less than zero, MMU M2 is

-----~-• --

(
'---

- 3 -

enabled; otherwise, MMU M3 is enabled.

If a memory reference to segment 0 is made in
normal mode, a segment trap is generated, and
all three MMUs are disabled. J_he suppress
signal is also asierted to pr ect memory.

If the OS (or parts of it) executes in seg­
mented mode, the separation of code, data and
stack spaces described above still applies.
Note that the separation between data and
stack spaces is based on the SBR for segment
0 and on the NBR for references to any other
segment.

It is possible to run a segmented user pro­
cess in this configuration, although the con­
figuration with SU=l is intended for this
purpose. Such a process has a potential
address space of 63 code and 63 data seg- •
ments.

b) SS=0, SU=l. This configuration is used for a
non-segmented OS running a segmented user
program. ·

In system mode, if the segment number is
zero, the operation is the same as in (a)
above. Code, data and stack references are
directed to Ml, M2 and M3 respectively. The
SBR contents are used tp select between data
and stack references.

In normal mode, MMU M2 is enabled for segment
numbers 1 through 63, MMU M3 is enabled for
segment numbers 65 through 127.

If a memory reference is made to segment 0 or
64 in normal mode; a segment trap is gen­
erated, and all three MMUs are disabled. The
suppress signal is also asserted to protect
memory. This protects the system data and
stack areas from being accessed by the user
program.

In system mode, if the segment number of a
user segment is generated (1-63 or 65-127),
the translation is the same as in normal
mode. Separation of code, data and stack
spaces is deactivated; MMU M2 is enabled for
segments 1 through 63, MMU M3 is enabled for
segments 65 through 127. This allows the OS
to access any user location directly.

(-

- 4 -

c) SS=l, SU=0. This configuration is used by a
segmented OS running a non-segmented user
process.

MMU Ml is enabled for all memo,:y references
in system mode. •

In normal mode, separation between code, data
and stack references is activated. As
described above in (a), Ml is enabled for
program references. Other memory references
are directed to M2 or M3 based on a com­
parison between the address offset, and the
contents of the NBR for any non-zero segment
number.

d) SS=l, SU=l. This configuration is used fol a
segmented OS running a segmented user pro- ,
cess.

MMU Ml is enabled in system mode. In normal
mode, MMU M2 is enabled fo~ segment numbers 0
through 63; MMU M3 is enabled for segment
numbers 64 through 127. A user process can
access all 128 segments in this configura­
tion.

BREAK REGISTERS

There are two 4-bit registers accesible as
I/O ports: the System Break Register (SBR) and the
Normal Break Register (NBR). During any memory
reference, the 16-bit address offset is compared
to the break value given by the contents of either
the SBR or the NBR extended with 12 low-order
zeroes. The SBR is used for the break value if
the segment number is zero, the NBR if it is non­
zero. If the MMU configuration calls for separa­
tion of program, data and stack spaces, and the
CPU status code indicates a non-program reference
(status code l0xx) then the result of this com­
parison selects between data and stack references.
If the address offset ~s less than the break
value, the current reference is for data, and MMU
M2 is enabled. Otherwise it is a stack reference,
and MMU M3 is enabled.,

SYSTEM ACCESS m llS.E.R SPACE

To access a user segment, the OS can use a
free segment slot, and set up its Segment

Jl1•-·--.&.. ""'ft

i

- 5 -

Descriptor Register (SOR) to point to the same
memory area as the target user segment's SOR.

A non-segmented OS running a non-segmented
user process can directly access the user data and
stack areas by going into system m~e and using
the user segment number. To access the user's code
segment, one of the unused segment slots, such as
62, is set up to point to the code segment. The
SDR's for this slot in M2 and M3 are both set up
to point to the code segment, so that the contents
of the NBR don't matter.

A non-segmented OS running a segmented user
process can directly access any part of the user
space by going into segmented mode.

A segmented OS has to map one or more of the
64 segments in its space to the user segments it
needs to access by setting the corresponding soas
in MMU Ml •

.smne. Nitty-Gritty Details

The high-order segment line (SN6) into the
MMUs is hard-wired to a logical zero, so that the
MMUs only see segment numbers 0 through 63. When
US is set to one, and the CPU is in normal mode,
either M2 or M3 is enabled depending on whether
SN6 (out of the CPU) is 0 or 1. Thus even though
M3 is used for translating u~er segments above 63,
the Upper Range Select (URS) bit in the MMUs
should always be zero.

The hardware uses the N/S- input of the MMUs
to select the appropriate MMU. The MST bit in the
MMUs should be set to 1 to ebable this mode. The
NMS bit should be set to 0. Since the MMUs donot
see the CPU's system/normal state, system segments
cannot be protected from user access by using the
System-only (SYS) bit in the SDRs. The protection
is obtained by separating the address spaces when
both the OS and the user program are running seg­
mented (SS=l, US=l). A Non-segmentmented user
program cannot access outside its segment, so this
problem doesn't exist. When a segmented program
is run under a non-segmented OS (SS=0, US=l),
external hardware is used to prohibit accesses to
system segments in normal mode. In this confi­
guration, access to segments O or 64 in normal
mode generate segment traps.

-----~-----------.....i.---------------1~--------------~

L

3 ..___ __ ___.

t'\ I M,

,
',

-

-

""'~ .

.

t .
• 0 •

S'-1/Te,.,

cob~

jft=fff

f~tl? (o---· o(-

lµt1.,z. Io -· ·· o 1--

...
C

tJrfrf<

t:::ooC-

+

s,ne'f'f.

1)-4- Tl\:

.....
C',!. 7 FM

~TAC. ,-:

•
,.

' ~

IJS(:-/1.

,plc'f"/t'

4-

I
I -

♦ -.
t

0 ~

s,,

Sl.flT~ 'D""

U>I>~ ,..

1f(-Ff _
== .,._,..!

•
'

- --
l-'tr Io ol-

«o">> c, - ~'- O>> "icfffF
<-'-I>> 0

3,__ __ _.

'" ,., 2.. "'$
..-..

- «t 'l">">J/.ffFF .
<<-,-.>, 0

«tr>> 0

-....

f,/o"" - S~"'4CN\..JcJ.. 0 ,S 'Y&A>\lo\••~

.r~~~ Le.JC.-

(. SS = e., 5 U = I '°'.)

-ft· ••m
~rtf":

........ !

·••i

l

61 t::==::r----7

,
"

u.o'>> o ..

..:<.~:Z'>> Q ..._ ________ ,,_&

0 -.

-,.,~

•
'

...

~'f.IT,i- 1-\
M>/l.~g cpAC:t:

.

s~~CN"-t-cJ-. o.s -y"""""":"":'J ~s~~ "'-le..-

{s.s s I SU:d) ,

I

---"~--------'-______ ..,L_ ______ _J__

_
-••: ~'

~:i

. -

______ i

~ ...

j ~ -

'"

.

r--------------------i~►<J:>'>> u

-

M 2.

- jµi,e. To•• •·o l-

... -:l

.

1'
I>

. "~~
t::.ob~

L.+

1 rrfF

.s~ ""'~~ o.s ')'~"';~
/c;c~L ~u.::O)

$YfT~M A-»'DR.e;D"
C fN;tf<

•

l, '
lJStHl

'P-"~*

rill

