SERVICE MANUAL

PC40-III

MARCH, 1989
PN-314134-01

Cocommodore

SERVICE MANUAL

PC40-III

MARCH, 1989

CBM INTER-COMPANY (NOT FOR RESALE)

Commodore Business Machines, Inc.

Commodore makes no expressed or implied warranties with regard to the information contained herein. The information is made available solely on an as is basis, and the entire risk as to quality and accuracy is with the user. Commodore shall not be liable for any consequential or incidental damages in connection with the use of the information contained herein. The listing of any available replacement part herein does not constitute in any case a recommendation, warranty or guaranty as to quality or suitability of such replacement part. Reproduction or use without expressed permission, of editorial or pictorial content, in any matter is prohibited.

This manual contains copyrighted and proprietary information. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of Commodore Electronics Limited.
TABLE OF CONTENTS
SECTION 1 - SPECIFICATIONS
SECTION 2 - THEORY OF OPERATIONS
SECTION 3 - TROUBLESHOOTING GUIDE
SECTION 4 - PARTS
SECTION 5 - IC PINOUTS, SCHEMATICS
APPENDIX A - POWER SUPPLIES
APPENDIX B - DISK DRIVES
APPENDIX C - KEYBOARD
APPENDIX D - OPTIONS
APPENDIX E - TECHNICAL UPDATES

SECTION 1

DESCRIPTION

This specification describes the Functional Requirements for the PC40-III computer. This system consists of a processor, memory, control unit and keyboard. This system is compatible with the IBM AT series of computers. The monitor for the system is an independent unit and must be VGA compatible.

STANDARD FEATURES

MICROPROCESSOR

 SPEEDS
MEMORY CAPACITY

VIDEO OUTPUT
VIDEO DISPLAY RAM
PARALLEL OUTPUT
SERIAL OUTPUT
MOUSE PORT

AutoConfig BIOS
 BATTERY BACKED UP CLOCK EXPANSION SLOTS

DISK STORAGE

112 WATT POWER SUPPLY

OPTIONAL FEATURES

Math Coprocessor 80287.

Disk and Tape storage

140 MByte hard disk drive inside the case.
$15.25^{\prime \prime} 1.2$ MByte floppy drive accessible from the front of the unit.
1 unused slot that can be used for a second floppy or a streaming tape unit.
Either or both floppy drives may be $3.5^{\prime \prime}$ drives.

Expansion slots

The three full length expansion slots conform to the standard AT bus structure, therefore, all options that are available for the AT on the after sale market are available on this unit.
The one XT expansion slot is for short cards that do not require a full length slot.

VIDEO FEATURES

ALPHANUMERIC MODES

MODE \#	COL X ROW	CHAR MATRIX	RESOLUTION	COLORS	STANDARD
0,1	40×25	8×8	320×200	16	CGA (1)
		9×16	360×400	16 OF 256K	VGA (2)
2,3	80×25	8×8	640×200	16	CGA (1)
		9×16	720×400	16 OF 256K	VGA (2)
7	80×25	9×14	720×350	MONOCHROME	MDA
		9×16	720×400	MONOCHROME	VGA (2)
54	132×43	7×9	924×387	COLOR	ENHANCED
55	132×25	7×16	924×400	COLOR	ENHANCED
56	132×43	7×9	924×387	MONOCHROME	ENHANCED
57	132×25	7×16	924×400	MONOCHROME	ENHANCED

IBM, AT and XT are registered trademarks of International Business Machine.
AutoConfig is a registered trademark of Commodore Business Machine

GRAPHICS MODES:

MODE \#	RESOLUTION	COLORS	STANDARD
4,5	320×200	4	CGA (1)
		4 OF 256 K	VGA (1) \& (2)
6	640×200	2	CGA
		2 OF 256 K	VGA (1) \& (2)
D	320×200	16 OF 256K	VGA (1)
E	640×200	16 OF 256K	VGA (1)
F	640×350	MONOCHROME	VGA
10	640×350	16 OF 256 K	VGA
11	640×480	2 OF 256 K	VGA/MCGA
12	640×480	16 OF 256 K	VGA
13	320×200	256 OF 256 K	VGA/MCGA (1)

NOTES

(1) All 200 line modes are double scanned for 400 line resolution.
(2) The VGA implementation of these modes is the default.

VIDEO SIGNALS

Vertical	Horizontal sync	Vertical sync		
Resolution	Frequency	Polarity	Frequency	Polarity
350 lines	31.5 KHz	+	70.1 Hz	-
400 lines	31.5 KHz	-	70.1 Hz	+
480 lines	31.5 KHz	-	59.9 Hz	-
600 lines*	35.2 KHz	-	56.2 Hz	-

*Requires an Analog MultiSync compatible monitor.

BLOCK MEMORY MAP

Standard Memory
640 KBytes range 0 to 655360 decimal (0 h to 9 FFFFh)
384 KBytes range 1048576 to 1441792 decimal (100000 h to 160000 h)
The top 384 KBytes of memory can be disabled to function with third party add on boards.

KEYBOARD FEATURES

standard

$$
\begin{array}{ll}
\text { United States } & \text { ASCII 101 } \\
\text { International } & 102 \text { key }
\end{array}
$$

optional
Dvorak
Special keyboards and drivers are available to customize the keyboard for the following countries. Germany, Spain, France, Italy and the United Kingdom.
ADDITIONAL FEATURES
Numeric keypad
4 cursor keys in an inverted T formation

OTHER FEATURES

Security lock for keyboard lock out

Built in speaker

External Configuration switches
Battery backed-up real time clock/calendar.
Metal Case (can support monitor)

[^0]
SPEED SELECTION

One of the three operating speeds is selected by either a program or by the operator.
Default speed is 6 MHz . The operator or program can change the speed by issuing the following command strings.
Control Alternate S for standard 6 MHz
Control Alternate T for turbo 8 MHz
Control Alternate D for double 12 MHz

PHYSICAL SPECIFICATIONS

Height	5.75 inches	14.6 cm
Depth	15 inches	38.1 cm
Width	14 inches	35.6 cm
Weight	21 pounds	9.55 Kg
Minimum Clearances		
Right side	4 inches	10.2 cm
Back side	4 inches	10.2 cm

ENVIRONMENT SPECIFICATION

ENVIRONMENTAL -temperature- Operational Storage Gradient -humidity- Relative Gradient Wet Bulb	$\begin{aligned} & 4 \text { to } 40 \mathrm{C} \cdot(+39 \text { to }+122 \mathrm{~F}) \\ & -40 \text { to }+60 \mathrm{C} \cdot(-40 \text { to }+160 \mathrm{~F}) \\ & +10 \mathrm{C} / \text { Hour }(+18 \mathrm{~F} / \text { Hour }) \end{aligned}$ 8% to 80% RH (no condensation) 20% per Hour (no condensation) $26 \mathrm{C}, 78 \mathrm{C}$ (no condensation), maximum
VIBRATION Operational Non-Operate	0.048 in. Dbl. Amplitude (5-17 Hz) $0.73 \mathrm{G}, 17-150 \mathrm{~Hz}$ $0.33 \mathrm{G}, 200$ to 500 Hz use linear interpolation for acceleration levels between 150 Hz and 200 Hz 1.0 G, $5-2000 \mathrm{~Hz}$, sweep of .067 decades/minute
SHOCK Operational Non-Operate	10 G, 11 mS Half Sine Wave; any axis. $50 \mathrm{G}, 25 \mathrm{mS}$ Square Wave; any axis. $25 \mathrm{G}, 25 \mathrm{mS}$ Square Wave; heads over data.
ALTITUDE Operational Non-Operate	$\begin{aligned} & -457 \text { to } 2,972 \text { Meters }(-1,500 \text { to }+9,750 \mathrm{Ft}) \\ & -457 \text { to } 12,192 \text { Meters }(-1,500 \text { to }+40,000 \mathrm{Ft}) \end{aligned}$
ACOUSTIC NOISE	45 dBA at 1 meter

REGULATORY APPROVALS:

STANDARD	DESCRIPTION
USA/Canada:	Electronic Data Processing Units and Systems
UL 478	
FCC	
CSA 22.2	
EUROPE	
VDE	
IEC 435	

SECTION 2

THEORY OF OPERATIONS

- SYSTEM BLOCK DIAGRAM
- SYSTEM OVERVIEW
- NOTES - OPERATIONS GUIDE

SYSTEM OVERVIEW

(To be released)

NOTES FROM OPERATIONS GUIDE

AUTOCONFIG ${ }^{111}$

AUTOCONFIGuration is a unique feature of Commodore PC personal computers like the PC40-III, allowing the computer to automatically sense additional peripheral devices plugged into the expansion bus. Once these additional devices are detected, the resident peripherals on the PC40-III motherboard are adjusted so as not to conflict with expansion peripherals. The AUTOCONFIG ${ }^{\prime \prime}$ feature can prevent hardware damage to peripherals and motherboard, as well as ease the installation of expansion cards.

The AUTOCONFIG ${ }^{\prime \prime \prime}$ process is described in this section.

Video

The PC40-III first examines the expansion bus for any expansion Advanced Video Adapter BIOS in the OC0000h - 0C7FFFh memory range. If an expansion video BIOS is found, then an external VGA or EGA controller is assumed to be on the bus and the onboard VGA controller is disabled to avoid conflict. If an expansion video BIOS is not found, the video output is configured in accordance with the default CONFIG Control video setting, as defined by the CONFIG dip switches 1,2 and 3.

You can add an expansion MDA or CGA compatible controller in conjunction with the onboard VGA controller or provide two video screens. (This makes many CAD packages easier to use.)
NOTE: When using the PC40-III's onboard video controller, a VGA compatible monitor such as Commodore Models 1403 and 1450 (monochrome) or 1950 (color) must be connected to the 15 pin video output connector (no matter what video mode you have selected).
If you want to use two video screens, there are several things you should remember. First, you should use a CGA, MDA or compatible adapter - one that has no BIOS ROM of any kind.

Also, if you were to use an MDA/Herc adapter (monochrome) and you have the CONFIG switches set for VGA color, the PC40-III will boot using your VGA monitor and you will see a blinking cursor on your monochrome monitor, indicating that it has been initialized. If, while using the MDA/Herc adapter in the expansion port, you have the CONFIG switches on the back of the System Unit set to MDA/Herc, your PC40-III will use the monochrome monitor as the boot monitor and the VGA monitor will be initialized with the blinking cursor.
In either case, you can switch between the VGA and the monochrome monitors by using the MS-DOS MODE command. The syntax for the MODE command is as follows:

- MODE MONO - sets the MDA as the default monitor
- MODE co80 - places the onboard VGA adapter into 80 column mode and sets it as the default monitor
- MODE co40 - places the onboard VGA adapter into 40 column mode and sets it as the default monitor

Serial Port (COMn:)

Before the onboard serial port is enabled a scan of the two standard COMn: hardware locations is made. If serial hardware (serial card/modem) is found operational, possible bootup message(s) may be:

EXPANSION COM at 03 F 8 h
 and/or

EXPANSION COM at 02 F 8 h
If both available COM: addresses are occupied by expansion boards, then the onboard serial port will not be enabled. The onboard serial port will be configured and tested at $1 / \mathrm{O}$ address 03 F 8 h if no expansion COM:'s are found and will be configured and tested to the unused COM: address if only one expansion COM: is found.
If the onboard serial port is configured and tested successfully a message will be output during bootup:
ONBOARD COM at 03F8h
or
ONBOARD COM at 02F8h

Parallel Port (LPTn: or PRN:)

Before the onboard parallel port is enabled a scan of the three standard LPTn: hardware locations is made. If parallel hardware (e.g., a printer card) is found operational, possible bootup message(s) may be:
EXPANSION LPT at 0378 h
and/or
EXPANSION LPT at 0278 h
and/or
EXPANSION LPT at 03 BCh

If all available LPT: addresses are occupied by expansion boards, then the onboard parallel port will not be enabled. The onboard parallel port will be configured and tested at I/O address 03BCh if no expansion LPT:'s are found, and will be configured and tested to the unused LPT: address if two expansion LPT:'s are found. If only one expansion LPT: is found, the onboard parallel port will be enabled to the first available I/O address, when searching in the following sequence:

$$
03 \mathrm{BCh}, 0378 \mathrm{~h}, 0278 \mathrm{~h}
$$

If the onboard parallel port is configured and tested successfully, a message will be output during bootup:

$$
\begin{aligned}
& \text { ONBOARD LPT at } 03 \mathrm{BCh} \\
& \text { or } \\
& \text { ONBOARD LPT at } 0378 \mathrm{~h} \\
& \text { or } \\
& \text { ONBOARD LPT at } 0278 \mathrm{~h}
\end{aligned}
$$

Mouse Port

A check is made for a standard Microsoft Bus Mouse. If it is found in the I/O channel then the onboard Microsoft compatible mouse hardware is never enabled. The following message will appear during bootup:

EXPANSION MOUSE at 023 Ch
If no expansion mouse is found the onboard mouse is enabled and tested. If mouse is operational then the following message will appear during bootup:

ONBOARD MOUSE at 023Ch

NOTE: The onboard mouse hardware is enabled/tested independent of the presence of the actual mouse. The bootup messages will appear even if the Commodore PC Mouse Kit is not attached.

80287 Numeric Coprocessor

A test is made for the presence of an 80287 Numeric Coprocessor during bootup. If an 80287 is detected the following message will be output:

80287 Numeric Coprocessor

NOTE: 80287 coprocessors are available in $5,6,8$ and 12 MHz speeds. However, the units are downwardly compatible only - for example, an 8 MHz coprocessor will function if the PC40-III is running at 6 or 8 MHz , but a 6 MHz unit will not function properly if the PC40-III is running at 12 MHz . In order to use the 80287 at all three CPU speeds (6, 8, 12 MHz), an 80287-8 (an 8 MHz part) is necessary.

NOTES FOR THE PROGRAMMER

It is possible to override the configuration done at bootup. We STRONGLY recommend that only advanced programmers with experience with low-level hardware/software interaction attempt this.
NOTE: If software override of the default configuration is performed, the presence of any expansion hardware should be taken into account to prevent hardware conflict resulting in damage of the expansion hardware or the PC40-III motherboard. Configuration is performed via the COMMODORE CONFIGURATION REGISTER at I/O address 0230 h . This register is read/write with only bit7 changing its meaning from read to write. The register values are shown in the following table.

COMMODORE CONFIGuration REGISTER - I/O addr 230h

R/W	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
R	mono	rtc	X	mouse	com1	com0	$1 \mathrm{pt1}$	$1 \mathrm{pt0}$
W	venb	rtc	X	mouse	com1	com0	$1 \mathrm{pt1}$	$1 \mathrm{pt0}$

mono - indicates that the onboard video adapter is setup as a monochrome adapter when high, color when low.
venb’ - when set low the onboard video adapter will be enabled.
rtc - when set high the onboard real-time clock will be enabled.
$\mathbf{X} \quad$ - this bit is reserved for future use.
mouse - when set high the onboard mouse will be enabled.

com1	com0	
low	low	- onboard serial port is disabled.
low	high	- serial port enabled at I/O addr 02 F 8 h
high	low	- serial port enabled at I/O addr 03 F 8 h
high	high	- this configuration is reserved.

1pt1	1pt0	
low	low	- onboard parallel port is disabled.
low	high	- parallel port enabled at I/O addr 03 BCh
high	low	- parallel port enabled at I/O addr 0378 h
high	high	- parallel port enabled at I/O addr 0278 h

THE PC40-III HARDWARE CONFIGURATION

Using the PC40-III Setup Utility

Once MS-DOS has finished booting and the $\mathrm{C}>$ prompt has appeared, you can use the built-in Setup utility to give the system detailed information on your PC40-III configuration. To run the Setup utility, hold down the Control and Alt keys and simultaneously press the Esc key. The main menu of the Setup utility will appear and will look like this:

Commodore Setup Utility								
Date	$\begin{aligned} & 23.08: 88 \\ & 14: 23: 08 \end{aligned}$	Hard Disk Type Information						
Time		Type Cyln Head Sect W-pc L-zone Size						
Diskettel	1.2M	Type	306	4	17	-pc 128	305	10 MB
Diskette 2	NONE	2	615	4	17	300	615	20 MB
Hard Disk 1	28	3	615	6	17	300	615	30 MB
Hard Disk 2	NONE	4	940	8	17	512	940	62 MB
Video	SPECIAL	5	940	6	17	512	940	46 MB
Coprocessor Base Memory	NONE	6	615	4	17	NONE	615	20 MB
Extended Memory	384 KB	7	462	8	17	256	511	30 MB
Base memory found:	640 KB	8	733 900	5	17 17	NONE	733 901	30 MB 112 MB
Extended memory found:	384 KB	10	820	3	17	NONE	820	20 MB
Use \uparrow, \downarrow to select items		11	855	5	17	NONE	855	35 MB
Use \rightarrow, \leftarrow to select p	defined	12	855	7	17	NONE	855	49 MB
values		13	306	8	17	128	319	20 MB
Use <PgDn> to view more	hard disk	14	733	7	17	NONE	733	42 MB
types		15	0	0	0	0	0	0 MB
Press <Esc> to abort SET		16	612	4	17	0	633	20 MB
Press <End> to exit and	date							

As noted on the Setup screen, you can use the cursor keys and the keyboard to define or change the system configuration, as follows:

- Use the up and down cursor keys to move from option to option in the main menu.
- Use the left and right cursor keys to select the predefined entries for each option.
- Use the keyboard to type in any information that is not predefined.
- Use PgDn to tell the pulldown menu (see Figure below) to display additional hard disk types.

Following is specific information about the various Setup menu options.

Setting the Date and Time for the Real Time Clock/Calendar

The PC40-III has a Real Time Clock/Calendar with a battery backup. This means that once set, the clock/calendar will keep the correct date and time even when the computer is turned off. You use the first two lines of the Setup Utility to set the Real Time Clock/Calendar, as follows:
Date: Allows you to set the correct date into the Real Time Clock. This option does not have any predefined entries; simply enter the date from the keyboard, in the format $\mathbf{d d} / \mathbf{m m} / \mathbf{y y}$.
Time: Allows you to set the correct time into the Real Time Clock, without invoking MS-DOS. This option also does not have any predefined entries; simply enter the time from the keyboard, in the format $\boldsymbol{h} \boldsymbol{h}: \mathbf{m m}: s s$, where $\mathrm{hh}=00-23, \mathrm{~mm}=00-59$, and ss $=00-59$.

Setting the Floppy Disk Drive Options

You can have a maximum of two floppy diskettes configured into your PC40-III. The next two Setup menu options, Diskette 1 and Diskette 2, allow you to tell the system how many floppy drives are available and what type they are. Here's how to set these options:
Diskette 1: Predefined entries: None, $\mathbf{3 6 0} \mathbf{~ K b} 5.25,1.2 \mathrm{Mb} 5.25,720 \mathrm{~Kb} 3.5,1.44 \mathrm{Mb} 3.5$. The floppy drive in your PC40-III is always considered Diskette 1 . Since PC40-III is equipped with a high density (1.2 MB) drive, select $\mathbf{1 . 2} \mathbf{~ M b} 5.25$ for Diskette 1 . Diskette 2: Predefined entries: None, 360 Kb 5.25 , 1.2 Mb 5.25 , 720 Kb 3.5 , 1.44 Mb 3.5 . If you have not installed a second floppy drive in your PC40-III, select None for Diskette 2. If you have installed a second floppy drive, select whichever drive type ($\mathbf{3 6 0} \mathbf{K b} 5.25,1.2 \mathbf{M b} 5.25,720 \mathrm{~Kb} 3.5,1.44 \mathrm{Mb} 3.5$) applies to the installed drive.

Setting the Hard Disk Drive Options

Hard Disk 1 and Hard Disk 2, the next two options in the Setup utility, define how many hard disk drives are available and what kind of hard disk drives they are. Hard disk drives are identified by a pre-assigned Drive Type (1, 2, etc.). This number tells the PC40-III the drive manufacturer and capacity.

SETUP UTILITY PULLDOWN MENU FOR HARD DISK DRIVE TYPE

Here's how to define your hard disk configuration:
Hard Disk 1: Your PC40-III comes equipped with a 40 MB hard disk drive. This drive is always considered Hard Disk 1. The Drive Type for this drive is shown on a sticker located on the back of your System Unit. Find this number and type it in after Hard Disk I.
The PC40-III Setup utility includes a menu of hard disk drive types with their individual ID numbers. You can page through the menu by pressing the PgDn key. For example, the opening Setup screen on Page 2-3 lists drive types 1 through 16. If you press PgDn, the Setup screen will be as shown on Page 2-4, with drive types 17 through 32 listed.
Hard Disk 2: This option is not supported by the onboard controller.

Other Setup Options

Video: Tells system what the default video is. Factory-set default is special. To change this setting, see the permissible default modes listed in Appendix H .
Coprocessor: Tells system if an 80287 Numeric Coprocessor (NCP) is installed. Factory-set default is none. Select Yes if you have installed an 80287 Numeric Coprocessor (see Appendix N for information on using an 80287 Numeric Coprocessor).
Base memory: Lets you customize base memory for specific applications.
Extended Memory: Tells system how much extended memory is available. The default 384 Kbytes of extended memory can be enabled or disabled as required by setting the CONFIG Control dip switch 4.

SETTING THE MICROPROCESSOR CLOCK SPEED

The 80286 microprocessor in the PC40-III is capable of running at three different clock (i.e., processor or CPU) speeds:

- Standard speed $=6 \mathrm{Mhz}$
- Turbo speed $=8 \mathrm{MHz}$
- Double speed $=12 \mathbf{M H z}$

The PC40-III is preset to the standard 6 MHz speed. You can switch between the clock speeds by using special key combinations or by using the MS-DOS ATSPEED command.
To set the clock speed from the keyboard, use these key sequences:

- CTRL-ALT-S for standard speed ($6 \mathbf{M H z}$)
- CTRL-ALT-T for turbo speed ($8 \mathbf{M H z}$)
- CTRL-ALT-D for double speed ($\mathbf{1 2} \mathbf{~ M H z}$)

NOTE: Some software may require that you select standard or turbo speeds for normal operation.
To set the clock speed using the ATSPEED command, first make sure the MS-DOS prompt is showing on the screen. Then type the word ATSPEED, followed by a space, a dash (-), and then a letter (S, T, or D) denoting the desired speed. For instance, if you are in standard speed and you want to change to turbo speed (8 MHz), type the following and press Enter:

ATSPEED - T

Extended Memory Dip Switch

Dip switch 4 enables or disables the 384 K of extended memory in the PC40-III.

```
ENABLE EXT. MEM.
DISABLE EXT. MEM.

\section*{THE RESET SWITCH}

The Reset switch protrudes slightly on the right side of the machine, just behind the keyboard connector. The switch provides an alternative to cycling power when an application program may have "crashed" the computer. Pressing this switch will effectively reboot the computer as if the power had been cycled OFF and then ON. All information in the computer's RAM memory will be lost. Be careful not to press this button during disk access, or you may lose information that was being written to mass storage devices (e.g., hard disks or floppy disks) while the switch was depressed.


PC40-III MEMORY MAP

JUMPER SETTINGS ON MOTHERBOARD


Jumper Locations on Motherboard
\begin{tabular}{|l|l|l|l|}
\hline JUMPER & \multicolumn{1}{|c|}{ FUNCTION } & \multicolumn{1}{|c|}{ DEFAULT } & \multicolumn{1}{c|}{ RESULT } \\
\hline JMP 903 & Disable HD & Not Installed & HD Installed \\
\hline JMP 904 & HD Type & \begin{tabular}{l} 
Location A \\
Location B
\end{tabular} & \begin{tabular}{l} 
Conner HD \\
Quantum HD
\end{tabular} \\
\hline PAD 301 & 80287 Clock Mode & \(\div 3\) Mode & 8 MHz Part runs up to 12 MHz \\
\hline PAD 302 & 80287 Clock Speed & CPU Clock \((\div 3)\) & 8 MHz Part runs up to 12 MHz \\
\hline
\end{tabular}

PAD 301 \& PAD 302 may be changed to take full advantage of using a 12 MHz 80287 . This is a dealer installation only.

\section*{IRQ Vectors Used in the PC40-III}

There are two interrupt controllers on the PC40-III:


\section*{SECTION 3}

\section*{TROUBLESHOOTING GUIDE}

\section*{TECHNICAL SERVICE NOTES}

WARNING: PC40-III PRINTED CIRCUIT BOARD CONTAINS CMOS CIRCUITRY, USE STATIC PRECAUTIONS WHEN HANDLING OR SERVICING THIS PRODUCT.

\section*{IMPORTANT:}
- PC40-III PCB'S RETURNED FOR CREDIT MUST BE SHIPPED IN AN ANTI-STATIC BAG, AVAILABLE THROUGH THE COMMODORE PARTS DEPT. ANY PCBS RETURNED FOR CREDIT BY SERVICE CENTERS WHICH ARE NOT PACKAGED CORRECTLY WILL BE SENT BACK TO THE SERVICE CENTER AND NO CREDIT WILL BE ISSUED.
- PC40-III HARD DRIVES RETURNED FOR CREDIT MUST BE INSERTED IN AN ANTI-STATIC BAG AND PACKED IN A COMMODORE SPECIFIED HIGH DENSITY FOAM SHIPPING BOX, BOTH AVAILABLE THROUGH THE PARTS DEPT. FAILURE TO DO SO WILL VOID WARRANTY.

\section*{COMPONENT REPAIR:}

PC40-III MAIN BOARD IS A MULTI-LAYERED PCB ASSEMBLY. COMPONENT REPAIR BEYOND THE SOCKETTED CHIP LEVEL RESULTING IN NON-REPAIRABLE DAMAGE WILL VOID WARRANTY. USE STATIC PRECAUTIONS WHEN SERVICING THIS PCB ASSEMBLY.

\section*{TROUBLESHOOTING ERROR MESSAGES}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Troubleshooting Guide} \\
\hline Error Messages & Customer Response & Service POD Test (H) \\
\hline 1. DMA 1 error & See your dealer & Test 0B \\
\hline 2. DMA 2 error & See your dealer & Test 0C \\
\hline 3. Interrupt controller 1 error & See your dealer & Test 0D \\
\hline 4. Interrupt controller 2 error & See your dealer & Test 0E \\
\hline 5. PIO error & See your dealer & Test 0F \\
\hline 6. Parity error & See your dealer & Test 10 \\
\hline 7. Real time clock is not working & See your dealer & Test 1E \\
\hline 8. Illegal shutdown code in CMOS & See your dealer & Test 02 \\
\hline 9. Virtual Mode CPU error & See your dealer & Test 26 \\
\hline 10. Parity error on main circuit board & See your dealer & Misc \\
\hline 11. Parity error on expansion bus & See your dealer & Misc \\
\hline 12. Non-recoverable error-Processor halted & See your dealer & Misc \\
\hline 13. Press F1 key to continue & Press F1 key & Misc \\
\hline 14. Battery Failure & Run Setup Utility/See your dealer & Test 11 \\
\hline 15. Base memory configuration error & Run Setup Utility & Test 17 \\
\hline 16. Extended memory configuration error & Run Setup Utility & Test 18 \\
\hline 17. Floppy 0 configuration error & Run Setup Utility & Test 1A \\
\hline 18. Floppy 1 configuration error & Run Setup Utility & Test 1A \\
\hline 19. Coprocessor (80287) configuration error & Run Setup Utility & Test 1D \\
\hline 20. The realtime clock has not been initialized & Run Setup Utility & Test 1E \\
\hline 21. Keyboard & Check keyboard & Test 14 \\
\hline 22. Key switch is off. Turn it on to continue & Turn keylock on & \\
\hline 23. Boot failure, check disk and hit any key to try again & Check for non-MS-DOS disk in Drive A:; run Setup Utility & Misc \\
\hline
\end{tabular}

\section*{POWER ON DIAGNOSTICS}

\section*{PC40-III Trouble Shooting - Section 3}

The Commodore 80286 ROM bios contains a "Power on Diagnostic" program which tests the functions of hardware and checks the configuration prior to passing control to the operating system.
The number of the test routine being run is passed to addr \(0378(\mathrm{H})\) prior to the start of each test section.
The 80286 processor is initialized by the "RESET" signal. Refer to RESET description in IC pinout section, note that "VCC" and "CLK" to CPU must be correct and "HOLD" must not be active for 34 ticks from leading edge to trailing edge of initial reset. RESET will terminate all instruction execution and local bus activity until it is negated. Prior to fetching, decoding and executing, the first instruction, located at physical address FF FF F0 (H), the 80286, in real address mode, processes some micro code located in its internal ROM, this takes about 38 ticks.

\section*{Test 01 (H) 00000001 (B)}

The first test performed by the power on diagnostic checks the 8088 flags, the arithmetic logical unit, and the CPU registers. If a failure is detected in Test 01, a "HALT" instruction is executed. This will stop program execution and prevent the CPU from using the local bus. The 80286 can be forced out of the halted state by "RESET", "NMI'" or "INTR" (when 'INTR" is used for RESTART, the interrupt enable bit of flag register must be on (set to 1 ), and the effective address computed from CS:IP will point to the next instruction after the halt instruction).
***Failure in test 01 indicates defective 80286.

\section*{Test 02 (H) 00000010 (B)}

This routine checks to see if a "SHUTDOWN" has occurred. A shutdown can indicate a severe error which would prevent the CPU from further processing.
NOTE: A halt or shutdown condition is signaled externally, by the 80286 as a bus operation. Low states on \(\mathrm{S}^{\prime}, \mathrm{Sl}^{\prime}, \mathrm{COD} / \mathrm{INTA}^{\prime}\), and a high state on \(\mathrm{M} / \mathrm{IO}^{\prime}\) indicate a halt or shutdown. The state of address line 1 will indicate which condition, A1 high is halt, Al low is shutdown.
After the test number is moved to the parallel port a check for keyboard reset is conducted and the program branches to test \(04(\mathrm{H})\) if it has.
The check for shutdown begins by examining the 8242 keyboard controller status port. In all ten shutdown conditions are tested, of these, three unexpected shutdown conditions, numbers 6,7 or 8 , any one of which if true, will generate the console message:
"Illegal Shutdown Code in CMOS"
NOTE: Branch information for shutdown routines are stored in CMOS memory. The shutdown command is sent to the 8242 , the UPI status port, which will halt the CPU. Return depends on the shutdown code in CMOS memory.

An error code, F6, F7 or F8, (HEX) is sent to the parallel port before calling the display routine which generates the above message.
In real address mode a shutdown could occur under the following conditions:
Interrupt number 8 , interrupt number 13 , or a "CALL INT" or "PUSH" instruction which wraps stack segment when SP is ODD.
Routines also perform valid shutdowns to exit protected mode. During these the DMA page register will be initialized and interrupt control words (ICW) 1, 2, 3 and 4 will be reinitialized. Other routines within the test enable "NMI', parity and set the I/O check bit.
***Failures in test 02 could indicate problems on the local bus, or expansion bus. This would include: 80286, FE3000, FE3010, or any third party cards.

\section*{Test 03 (H) 00000011 (B)}

Eprom checksum test verifies contents of eprom by adding bytes and checking for result of zero. A compensation byte is factored into the addition to make the sum zero.

Detection of an error results in a halt condition and would invalidate tests 01 and 02.
***Failure in test 03 indicates defective ROM.

\section*{Test 04 (H) 00000100 (B)}

Test 04 checks the DMA page registers by writing and reading bits starting at address \(80(\mathrm{H})\).
***Failure in test 04 indicates possible defective FE3010, or local bus.

\section*{Test 05 (H) 00000101 (B)}

Timer 1 and timer 2 are checked for correct operation. Interrupts are masked off during the test. ***Failure in test 5 indicates possible defective FE3010.

\section*{Test 06 (H) 00000110 (B)}

Memory refresh test. Timer and DMA are setup to initiate refresh cycles every 15.1 microseconds. Size of virual memory is calculated.
***Failure in test 06 indicates possible FE3010, Refresh logic or memory problem.

\section*{Test 07 (H) 00000111 (B)}

Test 07 checks the 8242 keyboard controller by writing and reading the keyboard buffers.
***Failure in test 07 indicates possible defective 8242 or associated circuitry.

\section*{Test 08 (H) 00001000 (B)}

Test 08 writes and reads the first 128 K of RAM and verifies block size is 128 K . First pass writes addresses into data, the second pass writes the complement of the address into data. Memory is cleared after test. The battery status is also confirmed in test 08.
\({ }^{* * *}\) Failure in test 08 indicates possible defective RAM or RAM logic.

\section*{Test 09 (H) 00001001 (B)}

Test and configure video. A search is made to determine if MDA, CGA or a special video adapter is configured, if not the onboard VGA is enabled and a call to VGA bios is executed. The dip switches are read to determine the default video mode.
NOTE: The mode register setting in the 5720 controls the reset signal to the onboard VGA controller chip. If no special video adapters are found on the expansion bus then "NOVID'" from the 5720 to the PVGA is negated.
On completion of this test the title and copyright message are displayed.

\section*{Test 0 A (H) 00001010 (B)}

Test RAM from 128 K to 640 K . A display message is generated indicating that the base RAM of 128 K , Test 08 , is OK. Blocks of 128 K , starting at 128 K are then tested by writing, reading and verifying RAM. The first pass writes addresses to data, that is, the address which defines the physical location is also used as the bit pattern that is being written. The second pass writes complement of address into data.
The test displays results in blocks of 128 K to the console each time a 128 K boundary is reached.
At completion of the onboard memory test the CPU is placed in virual mode and a test for virtual memory (over 1 MEG) is started.
NOTE: See test 26 (H).
\({ }^{* * *}\) Failure in test 0 A indicates a defective RAM.

\section*{Test 0B (H) 00001011 (B)}

DMA controller \#1 register check.
NOTE: Appendix L of the PC40-III operator guide lists error messages starting with this test, see page 85 of operations guide part number 319983-01.
Four current address registers ( 16 bits wide, each) and four current word count registers ( 16 bits wide, each) for each of the four DMA channels are written to and read from to verify operation.
A failure in test 0B will generate the following display on the console:
"DMA 1 error"
The beeper will sound, and a halt instruction will be executed.
***Failure in test 0B indicates A defective FE3010.

\section*{Test 0C (H) 00001100 (B)}

DMA controller \#2 register check. The second functional 8237 containing four current address registers ( 16 bits wide, each) and four current word count registers ( 16 bits wide, each) within the FE3010 are written to and read from to verify operation. Successful completion of the test 0 C will set the modes for DMA channels 0 through 3 and enable cascading by channels 4 , 5 and 6 (DMA 1).
A failure in test 0C will generate the following display on the console:
"DMA 2 error"
The beeper will sound, and a halt instruction will be executed.
***Failure in test 0C indicates a defective FE3010.

\section*{Test 0D (H) 00001101 (B)}

Interrupt controller \#1 test. Patterns are written to, and read from the interrupt mask register (IMR) which controls the interrupt request register (IRR).
A verification is made that no interrupts can occur if "IMR" is set to FF (H). A vector is initialized to a temporary interrupt service routine in the event of a failure.
A test for correct timer 0 interrupt is also made.
A failure in test 0D will generate the following display on the console:
"Interrupt controller 1 error"
The beeper will sound, and a halt instruction will be executed.
***A failure in test 0D indicates a defective FE3010.

\section*{Test 0E (H) 00001110 (B)}

Interrupt controller \#2 test. The second functional 8259 contained in the FE3010 is tested as in test 0D, without timer test. A failure in test 0 E will generate the following display on the console:
"Interrupt controller 2 error"
The beeper will sound, and a halt instruction will be executed.
\({ }^{* * *} \mathrm{~A}\) failure in test 0 E indicates a defective FE3010.

\section*{Test 0F (H) 00001111 (B)}

Check peripheral in/out register. Write and read from PIO register.
A failure in test 0 F will generate the following display on the console:
"PIO error"
The beeper will sound, and a halt instruction will be executed.
\({ }^{* * *} \mathrm{~A}\) failure in test 0 F indicates a defective FE3010.

\section*{Test 10 (H) 00010000 (B)}

RAM parity test. Blocks of RAM are written to and read from, parity check for odd parity is made. Parity disabled after successful test.
NOTE: PC40-III does not use parity, third parity boards that use parity will enable parity.
"NMI" is enabled and a service routine for a parity error generates the following console message.
"Parity error"'
The beeper will sound, and a halt instruction will be executed.
\({ }^{* * *}\) Failure in test 10 indicates a defective RAM, third party card, NMI, or local bus.

\section*{Test 11 (H) 00010001 (B)}

Test CMOS clock for battery failure and checksum failure.
Beeper will sound if failure is detected. Console will display:
"Battery failure" or "CMOS checksum failure" or both.
\({ }^{* * *}\) Failure of test 11 indicates a defective battery, defective oscillator, or M146818A.

\section*{Test 12 (H) 00010010 (B)}

This test is disabled. It is used only in manufacturing tests.
The beeper will sound for a set length prior to the start of test \(13(\mathrm{H})\). In a system which has passed all tests to this point the beeper sound heard now would be the one heard in the power up routine.

\section*{Test 13 (H) 00010011 (B)}

Setup interrupt controller and move vector tables to RAM. Vector addresses are fetched from top 8 K module.
NOTE: Vectors for video were setup in test 09.
Master and slave interrupts are enabled at this point.
Test 13 does not create any error messages.
Test 14 (H) 00010100 (B)
Keyboard test. Functional test of the 8242 keyboard controller at U203. A test for a stuck key on keyboard is performed. Check is made to see if key lock is locked.
A failure in test 14 will display the following error message on console:
"Keyboard error"
***Error indicates a defective 8242 controller or a defective keyboard.

\section*{Test 15 (H) 00010101 (B)}

Test and configure the parallel port. Parallel port addresses are setup, reads and writes to ports are done. Set time out.
No error messages are generated by this test.
NOTE: PPC1 at U602 controls parallel output.

\section*{Test 16 (H) 00010110 (B)}

Configure serial COM1 and COM2 for 8250 at U604. Read serial interrupt ID, set number of serial channels.
No error messages are generated by this test.

\section*{Test 17 (H) 00010111 (B)}

Configure memory less than 640K. Parity (for EXPANSION RAM) is enabled.
Memory was tested in test 0A, and "CMOS STATUS" set. A check for a warm boot (ALT/CNTRL/DEL) is made and a comparison of the old and new memory configuration is performed. If a memory size mismatch is detected, the beeper will sound and the following non-fatal error message will be displayed on the console:
"Base memory configuration error"
The new configuration is stored.
*** Check the settings for RAM size in the setup utility if you encounter this message.

\section*{Test 18 (H) 00011000 (B)}

Configure memory over 1 megabyte (virtual memory). Check is made on address line 20, a low indicates virtual address mode. CMOS status is checked as in test 17, a memory size mismatch will sound the beeper and generate the following non-fatal error message on the console:
"Extended memory configuration error"
The new configuration is stored.
\({ }^{* * *}\) Check the settings for RAM size in the setup utility if you encounter this message.

\section*{Test 19 (H) 00011001 (B)}

Configure keyboard test. Setup keyboard buffers, enable keyboard interrupt and test if key switch is turned to the on position. If the key switch is off the following message will be displayed on the console:
"Key switch is off. Turn it on to continue."
NOTE: You are in a loop until you turn on the key switch.

Test 1A (H) 00011010 (B)
Configure the floppy disk drive. Calculate number of floppy drives present. Check drive type, compare settings stored in CMOS, if a mismatch the following message will be displayed on console:
"Floppy 0 configuration error"
*** Check settings in setup utility if above message is displayed.
Test checks second floppy configuration, if a mismatch the following message will be displayed on the console:
"Floppy 1 configuration error"
\({ }^{* * *}\) Check settings in setup utility if above message is displayed.
New configuration is stored in CMOS. Floppy interrupt is enabled.
NOTE: Refer to installation instructions when adding a second floppy to the system. It may be necessary to change jumpers on drive for proper operation.

\section*{Test 1B (H) 00011011 (B)}

Configure the hard drive. Check configuration if a mismatch hard drive will not be setup.
No error message is generated.

\section*{Test 1C (H) 00011100 (B)}

Test number is not moved to parallel port for this configuration. This routine only turns on the game card bit in the "EQUIP FLAG'".

No error message is generated.
Test 1D (H) 00011101 (B)
Configure 80287 coprocessor. Check if 80287 is present. Enable 80287 interrupt and set "EQUIP FLAG" if it is.
Compare configuration with CMOS, store new configuration, beep the speaker, and display the following message is setup changed.
"-- Coprocessor (80287) configuration error"
*** Check setup utility for correct settings if this message is displayed.
Test 1E (H) 00011110 (B)
Check CMOS clock to see if it was initialized and is working. Enable timer interrupt. Sound beeper, and initialize if failure detected, then display one of the following messages on the console:
"-- The Real Time Clock has not been initialized"
OR: "'- Real Time Clock error"
\({ }^{* * *}\) Check the RTC chip, M146818A at U201 if second message above is displayed.
Test 1F (H) 00011111 (B)
Generate a new CMS checksum and save it in CMOS RAM. Call made to auto configuration program at this point.
No error message generated.

\section*{Test 20 (H) Not Implemented}

\section*{Test 21 (H) 00100001 (B)}

Initialize ROM drivers, including hard drive. Checksum generated, and all ROMS tested.
System will now begin boot up.
System speed is determined, \(6 \mathrm{MHz}, 8 \mathrm{MHz}\) or 12 MHz .
***Refer to operations manual for opening screen display.
Tests 22, 23 Not Implemented

\section*{Test 24 (H) 00100100 (B)}

Test operation of the RTC chip. Recheck battery, make sure clock is counting, test memory. System will execute a halt instruction on memory failure. No error message is generated.

\section*{Test 25 (H) 00100101 (B)}

Used in manufacturing to loop through diagnostics.

\section*{Test 26 (H) 00100110 (B)}

Virutal memory test (over 1 megabyte). Call made to this routine from test 09 .
Display Message: "Testing Extended RAM"
Display Message: "Total System RAM \(=\) XXXX" at finish.
During this test the exception interrupt vector tables and descriptor tables are built, and moved from ROM to RAM.
A test of address line 20 is made (controls real or virtual CPU mode). If not in virtual mode display following message:
"Test _ 26: Virtual Mode CPU error"
And send F3 (H) (1111 0011 to parallel port. Then execute a halt instruction.
Test address lines 19 through 23 are tested. Shutdown if error. Exception interrupt codes are moved to the parallel port prior to shutdown. The following list defines the code sent to the port and the type of exception interupt ( EXECP INT ).
\begin{tabular}{llll}
81 & (H) & EXECP INT 01 & Single Step \\
82 & (H) & EXECP INT 02 & NMI \\
83 & (H) & EXECP INT 03 & Breakpoint \\
84 & (H) & EXECP INT 04 & Into Detect \\
85 & (H) & EXECP INT 05 & Boundary \\
86 & (H) & EXECP INT 06 & Invalid OP Code \\
87 & (H) & EXECP INT 07 & - \\
88 & (H) & EXECP INT 08 & Double Exception \\
89 & (H) & EXECP INT 09 & Processor Segment Error \\
8 A & (H) & EXECP INT 10 & - \\
\(8 B\) & (H) & EXECP INT 11 & Segment Not Present \\
8C & (H) & EXECP INT 12 & Stack Segment Not Present \\
8D & (H) & EXECP INT 13 & General Protection Error \\
8E & (H) & EXECP INT 14 & - \\
8F & (H) & EXECP INT 15 & - \\
90 & (H) & EXECP INT 16 & Processor Extension Error
\end{tabular}

Power on diagnostic program is finished at the time of boot up (end of test 21 ).
Note that during execution of "POD" calls are made to auto configure and to miscellaneous interrupt routines.
All error messages listed in appendix \(L\) of operations guide are listed in the overview above with the exception of the following which are generated from the miscellaneous interrupt routines.
10 "Parity error on main circuit board"
11 "Parity error on expansion bus"
12 "Non-recoverable error - Processor halted"
13 "Press F1 key to continue"
Messages 10,11 are generated after a parity error has been detected and a memory check has determined that it was on the main board, or the expansion bus. If the check finds the error the CPU is halted and message 12 is displayed. If no error is found after the check, message 13 is displayed and processing will continue.

SECTION 4
PARTS SECTION
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{\multirow[t]{2}{*}{PC40-III MAJOR PARTS LIST Refer to Service Reference Diagram}} \\
\hline & & \\
\hline 1. & Top Cover & 312226-01 \\
\hline 2. & Spacer Plate & 313011-01 Sub:02 \\
\hline 3. & Mounting Bracket & 313066-02 Sub:01 \\
\hline 4. & PBC Guide & 251118.01 \\
\hline 5. & Main Chassis Base & 312225-01 \\
\hline 6. & Foot & 380128-01 \\
\hline 7. & Bezel & 312244-01 \\
\hline 8. & Keyswitch Assy. & 313061-01 \\
\hline 9. & Plate Logo & 380133-05 \\
\hline 10. & Name Plate & 316468-01 \\
\hline 11. & FD Hole Cover & 312679-01 \\
\hline 12. & LED Power On & 380016-01 \\
\hline 13. & LED Hard Drive & 380020-02 \\
\hline 14. & Power Supply Assy & 39026-02 (US) \\
\hline 15. & Floppy Disk Drive & 380825-02 \\
\hline 16. & Hard Disk Drive & 313065-01 \\
\hline 17. & Extension Card Panel & 380120-01 \\
\hline 18. & Keyboard Assy. & 312709-01 (US/Canada) \\
\hline 19. & 1352 Mouse Option & -1352 \\
\hline 20. & Floppy Drive Cable & 380012-08 \\
\hline 21. & Hard Drive Cable & 312695-01 \\
\hline \multirow[t]{5}{*}{22.} & PCB Assy. & 313055-01 \\
\hline & Ground Cable (HD) & 38881-01 (Not shown) \\
\hline & Power Cord & \(903508-15\) (US) (Not shown) \\
\hline & PC40-III Service Manual & 314134-01 \\
\hline & 1403 Monitor Service Manual & 314882-01 \\
\hline
\end{tabular}


\section*{COMPONENT PARTS LIST PCB ASSEMBLY \#313055-01}

Commodore part numbers are provided for reference only and do not indicate the availability of parts from Commodore. Industry standard parts (Resistors, Capacitors, Connectors) should be secured locally. Approved cross-references for TTL chips, Transistors, etc. are available in manual form through the Service Department, order \#314000-01.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{IC COMPONENTS} & \multicolumn{3}{|l|}{CRYSTAL, OSCILLATORS (Continued)} \\
\hline 390300-04 & 8028612 MHZ PROCESSOR & U301 & 900560-01 & CRYSTAL, 32.768 KHZ & Y201 \\
\hline 309316-01 & FE3000A & U801 & 900556-13 & CRYSTAL, 1.8 MHZ & Y601 \\
\hline 390317-02 & FE3010B & U802 & 900558-91 & CRYSTAL, 14.318 MHZ & Y801 \\
\hline 390319-01 & FE3020 & U303 & \multicolumn{3}{|l|}{RESISTOR NETWORKS} \\
\hline 390318-01 & FE3030 & U304 & 902441-11 & 150 OHM 6P, 5EL SIP & RP1001 \\
\hline 390302-01 & PVGA-1A PARADISE VIDEO & U101 & \[
902442-06
\] & 68 OHM, 8PIN, 4 ELEMENT & RP701,702 \\
\hline 318091-01 & PPC1, PRINTER INTERFACE & U602 & 902422-03 & 33 OHM, 8 PIN, 4 ELEMENT, SIL & RP101-106,601,602, \\
\hline 390304-03 & WD37C65, FLOPPY CONTROLLER & U1001 & 902422-03 & 33 OHM, 8 PIN, 4 ELEMENT, SIL & RP703, RP704 \\
\hline 390303-01 & IMS171, INMOS COLOR LOOKUP TABLE & U112 & 902422-02 & 1 K OHM, 8 PIN, 4 ELEMENT, SIL & RP801 \\
\hline 380205-01 & 8250, SERIAL INTERFACE & U604 & 902441-31 & 4.7K 6 PIN, 5 ELEMENT, SIP & RP107,201,304,604, \\
\hline 380259-01 & M14818A RTC/CMOS RAM & U201 & 902442-55 & 4.7K, 8 PIN, 7 ELEMENT, SIP & RP303,603,605 \\
\hline 390341-01 & 8242 KEYBRD CONTROL & U203 & \[
902442-35
\] & 10K, 8 PIN, 7 ELEMENT, SIP & RP108 \\
\hline 318087-01 & MOS 5720, MOUSE-I/O CONTROL & U601 & \[
902410-08
\] & 4.7K, 10 PIN, 9 ELEMENT, SIP & RP301,302 \\
\hline 390307-02 & PAL20L8 VGA DECODER \#0 & U114 & \[
902410-07
\] & 10K, 10 PIN, 9 ELEMENT, SIP & RP502,507 \\
\hline 390335-02 & PAL20L8 VGA DECODER \#1 & U115 & 902441-15 & 330 OHM, 6 PIN, 5 ELEMENT, SIP & RP508 \\
\hline \(390308-01\)
\(390336-02\) & PAL20L10 I/O DECODER & U905 & \multicolumn{3}{|l|}{RESISTORS 5\% @ 1/4 WATT} \\
\hline 390309-02 & PAL16L8 DRAM DECODER & U706 & 901550-39 & CARBON FILM, 3.9K OHM & R1203 \\
\hline 390083-04 & DRAM, 64 X 4 (256K BIT) @ 100NS & U118-U125 & 901550-64 & CARBON FILM, 10 OHM & R503-R506,R210-R212 \\
\hline 318099-02 & DRAM, 256 X 4 (1 MEG BIT DRAM) & U707-U714 & 901550-63 & CARBON FILM, 22 OHM & R102,812 \\
\hline & @ 100NS & & 901550-105 & CARBON FILM, 33 OHM & R402,603,R1206,609, \\
\hline 390337-02 & EPROM1, VGA BIOS - LOW (27128-15) & U108 & & & 701,813,410 \\
\hline 390338-02 & EPROM2, VGA BIOS - HIGH (27128-15) & U109 & 901550-94 & CARBON FILM, 68 OHM & R114,1001,101,409,401, \\
\hline 390339-01 & EPROM3, PC40 III BIOS - LOW (21728-12) & U1101 & 901550-45 & CARBON FILM, 75 OHM & \[
\begin{aligned}
& \text { R209 } \\
& \text { R } 801, \mathrm{R} 411
\end{aligned}
\] \\
\hline 390340-01 & EPROM4, PC40-III BIOS - HIGH (27128-12) & U1102 & \[
\begin{aligned}
& 901550-124 \\
& 901550-52
\end{aligned}
\] & CARBON FILM, 160 OHM CARBON FILM, 220 OHM & \begin{tabular}{l}
R1201 \\
R804,R902,R507,R207
\end{tabular} \\
\hline 901521-02 & 74LS04 & U206 & 901751-70 & CARBON FILM, 210 K OHM, \(1 \%\) & R210 \\
\hline 901521-30 & 74LS14 & U501 & 901550-12 & CARBON FILM, 22K OHM & R1202 \\
\hline 901521-20 & 74LS125A & U205, U414 & 901550-58 & CARBON FILM, 470 OHM & R206,207 \\
\hline 901521-63 & 74LS174 & U113 & 901550-01 & CARBON FILM, 1K OHM & R204,407,702,1204,412, \\
\hline 901521-13 & 74LS244 & \[
\begin{aligned}
& \text { U102,U103,U107,U110, } \\
& \text { U901,U902,U106 }
\end{aligned}
\] & 901550-49 & CARBON FILM, 100 OHM & \[
\begin{aligned}
& 502,508,1003,1004 \\
& \text { R115,R117 }
\end{aligned}
\] \\
\hline 901521-46 & 74LS245 & U104,U105, U502,U603 & 901550-18 & CARBON FILM, 2.2 K OHM & R604,R608 \\
\hline 318066-01 & 74 F 00 & U721,U807 & 901550-19 & CARBON FILM, 4.7K OHM & R105,R404,R606,901, \\
\hline 390110-01 & 74 F 04 & U413, U715, & & & R803,R1002, R904,806, \\
\hline 390203-01 & 74F08 & U718,U719,U1201 & & & R406,R509,R903,811 \\
\hline 390313-01 & 74 F 10 & U717 & 901550-03 & CARBON FILM, 5.1K OHM & R805 \\
\hline 390279-01 & 74F20 & U1204 & 901550-20 & CARBON FILM, 10K OHM & R202,R501,R605,905, \\
\hline 390077-01 & 74F32 & U305 & & & 302,R113,R116 \\
\hline 390080-01 & 74F138 & U803, U1202 & 901550-84 & CARBON FILM, 1M OHM & R203,R601,R602,R807, \\
\hline 390611-01 & 74F153 & U403 & & & 205 \\
\hline 390312-01 & 74F175 & U404 & 901600-28 & CARBON FILM, 2.2 OHM & R208,R610 \\
\hline 390109-01 & 74 F 240 & U704 & 901550-17 & CARBON FILM, 1.2 OHM & R1205 \\
\hline 390314-01 & 74F253 & U701 & 901550-110 & CARBON FILM, 51 OHM & R403 \\
\hline 390315-01 & 74F258 & U702, U703 & 901550-92 & CARBON FILM, 20K OHM & R301 \\
\hline 390578-01 & 74F573 & U705,U1205 & 901550-70 & CARBON FILM, 300 OHM & R809 \\
\hline 390089-01 & 74F245 & U903,U904 & \multicolumn{3}{|l|}{RESISTORS 1\% @ 1/4 WATT} \\
\hline 390310-01 & 74HCT74 & U412,U411, U716
U402 & 901751-44 & CARBON FILM, 150 OHM & R107-R109,1005,1006 \\
\hline 390579-01 & 74ALS24
7406 & U1002 & 901751-61 & CARBON FILM, 365 OHM & R110 \\
\hline \[
390359-01
\] & \[
\begin{aligned}
& 7406 \\
& 74 \mathrm{ACT} 00
\end{aligned}
\] & U720 & 901751-55 & CARBON FILM, 2K OHM & R111,R112 \\
\hline 390081-01 & 74 F 74 & U405-U409, U410 & 901751-38 & CARBON FILM, 4.64K OHM & R104 \\
\hline 390323-01 & 4069 & U204 & 901751-62 & CARBON FILM, 340 OHM & R106 \\
\hline 318827-01 & LM339 & U116 & \multicolumn{3}{|l|}{RADIAL CERAMIC CAPACITORS 5\% @ 50 VOLT} \\
\hline 390322-01 & LM10CN & U202 & 900019-13 & RADIAL LEAD, 22pF & C601,C402 \\
\hline 390324-01 & TL431 & U117 & 900019-25 & RADIAL LEAD, 27pF & C202 \\
\hline 901527-03 & 7905 & VR501 & 900019-17 & RADIAL LEAD, 47pF & C204,C205,C602,C803, \\
\hline 390364-01 & 74LS175 & U1203 & & & C804 \\
\hline 901882-01 & 1488 & U605 & 900020-04 & RADIAL CERAMIC .0047uF & C201 \\
\hline 901883-01 & 1489 & U606 & 900019-15 & RADIAL LEAD, 100pF & C603,C621-626,C514- \\
\hline \multicolumn{3}{|l|}{CRYSTAL, OSCILLATORS} & \multirow{6}{*}{\[
\begin{aligned}
& 900019-20 \\
& 900019-21 \\
& 900022-03
\end{aligned}
\]} & \multirow{6}{*}{RADIAL LEAD, 10pF RADIAL LEAD, 1000pF MONO., RAKIAL LEAD, .luF} & \begin{tabular}{l}
C532 \\
C401
\end{tabular} \\
\hline 390273-01 & OSCILLATOR, 48.00 MHZ & OSC401 & & & \[
\begin{aligned}
& \mathrm{C} 401 \\
& \mathrm{C} 206, \mathrm{C} 627, \mathrm{C} 207
\end{aligned}
\] \\
\hline 325566-20 & OSCILLATOR, 36.00 MHZ & OSC103 & & & C203-CB102,CB115, \\
\hline 325566-18 & OSCILLATOR, 25.175 MHZ & OSC102 & & & CB1011,CB1014, \\
\hline 315566-19 & OSCILLATOR, 28.322 MHZ & OSC101 & & & CB2031-2034,CB205, \\
\hline 325566-17 & OSCILLATOR, 9.6 MHZ & OSC1001 & & & CB206, CB3011,CB3012, \\
\hline
\end{tabular}

\section*{COMPONENT PARTS LIST PCB ASSEMBLY \#313055-01 (Contimued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{RADIAL CERAMIC CAPACITORS- \(5 \%\) @ 50 VOLT (Continued)} & \multicolumn{3}{|l|}{MISCELLANEOUS (Continued)} \\
\hline \multirow[t]{10}{*}{900022-03} & \multirow[t]{9}{*}{MONO., RAKIAL LEAD, .IuF (continued)} & CB302,CB3031-3039, & 380393-01 & BATTERY, NICAD 3.6V & BT201,BT202 \\
\hline & & CB3041-3048,CB401-412 & 390280-01 & FUSE, PICO, 4A & FU601 \\
\hline & & CB501,CB502,CB6011, & 390321-01 & DELAY LINE 10 TAP @ 20 NS & DL701 \\
\hline & & CB6012,CB602-605, & 902658-01 & TRANSISTOR 2N3904 & Q601,Q801,Q1201 \\
\hline & & CB6051,CB6052,CB706, & 312680-01 & PIEZO BEEPER QMB12 & PZ801 \\
\hline & & CB716,CB722,CB8011, & 251260-01 & PUSH BUTTON N.O. SWITCH & PB501 \\
\hline & & CB8012,CB8021, & 904775-01 & PIANO DIP SWITCH, I PIN, 4 POS. & SW101 \\
\hline & & \[
\begin{aligned}
& \text { CB8022,CB902,1001, } \\
& \text { CB901,CB905,116, }
\end{aligned}
\] & 904150-05 & SOCKET, 28 PIN, DIP & U108,U109,U1101, U1102 \\
\hline & & CB1002,1121,CB1101, & 904150-06 & SOCKET, 40 PIN, DIP & U302 \\
\hline & & CB1102 & 390185-02 & SOCKET, 68 PIN, PLCC & U301, U601 \\
\hline 900019-07 & . 047 UF & C301,C101 & 390185-01 & SOCKET, 84 PIN, PLCC & U303,304, 801,802 \\
\hline \multirow[t]{6}{*}{900022-05} & \multirow[t]{6}{*}{MONO., RADIAL LEAD, . 33 uF} & CB118-125,707-714,403- & 390185-04 & SOCKET, 100 PIN, PLCC & U101 \\
\hline & & 407,409-411,CB415, & 390242-01 & D-SUB, 9 PIN, RT. ANGLE MALE & CN601 \\
\hline & & CB416,CB701-705,715, & 390334-01 & D-SUB, 15 PIN, RT. ANGLE FEMALE & CN101 \\
\hline & & 717-721,803,CB903, & 390242-05 & D-SUB, 25 PIN, RT. ANGLE MALE & CN603 \\
\hline & & 904,1201-1205,413, & 390241-05 & D-SUB, 25 PIN, TR. ANGLE FEMALE & CN602 \\
\hline & & CB305 & 903446-25 & EXPANSION CONNECTOR, 62 PIN & \multirow[t]{3}{*}{CN505,CN507,CN502, CN504,CN506,CN507} \\
\hline 900022-01 & MONO., RADIAL LEAD, .22uF & C511,CB126 & \multirow[t]{2}{*}{903446-04} & \multirow[t]{2}{*}{EXPANSION CONNECTOR, 36 PIN} & \\
\hline \multicolumn{3}{|l|}{ELECTROLYTIC CAPACITORS} & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline 390101-08 \\
900402-01
\end{array}
\]} & ELECT., ALUM., RADIAL, luF & C507,C513 & \[
\begin{aligned}
& 252166-03 \\
& 252122-01
\end{aligned}
\] & \multirow[t]{2}{*}{DIN, TK PIN, ROUND, FEMALE JACK, RCA RT. ANGLE, FEMALE HEADER, 3 PIN, SIL} & CN201 \\
\hline & \multirow[t]{2}{*}{CAP ELECT., TAN, 10uF
ELECT., ALUM., RADIAL, 47uF} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { C208 } \\
& \text { C501-C506,C508-C510, }
\end{aligned}
\]} & \multirow[t]{2}{*}{903326-03} & & CB902 JMP904, CN512, \\
\hline \[
\begin{array}{|l|}
900402-01 \\
390101-01
\end{array}
\] & & & & HEADER, 3 PIN, SIL & CN202 \\
\hline 390101-06 & ELECT., ALUM., RADIAL 10uF & & 903326-02 & HEADER, 2 PIN, SIL & JMP 903 (REMOVE \\
\hline \multicolumn{3}{|l|}{MISCELLANEOUS} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
903345-17 \\
903345-20
\end{array}
\]} & \multirow[t]{2}{*}{HEADER, 34 PIN, DIL HEADER, 40 PIN, DIL} & CN1001 \\
\hline 251842-02 & EMI FILTER 100PF & EM1624-1631,1201 & & & CN901 \\
\hline 390257-01 & EMI FILTER 22000PF & EMI1203 & 903345-20 & POWER CONNECTOR, 6 PIN. & CN509 \\
\hline 390297-03 & EMI FILTER 2200PF & \multirow[t]{2}{*}{EMI201,202} & 390043-01 & SHORTING BLOCKS, 2 POS. & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SEE } 8 \text { OF } 8 \\
& \text { R810, R213, R103 }
\end{aligned}
\]} \\
\hline 390297-02 & \multirow[t]{2}{*}{EMI FILTER MURRATA
DSS306-55Y5101M} & & 390186-01 & JUMPER & \\
\hline & & EMI101-105 & \multicolumn{3}{|l|}{SUBSTITUTE PARTS} \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{|l|l}
390275-04 \\
903025-08
\end{array}
\]} & \multirow[t]{2}{*}{EMI FILTER 150 PF FERRITE BEADS (AXIAL)} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\text { EMI607-623 } \\
\text { FB403,404,101,1001, } \\
\text { FB103 }
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{|l|}
\hline 390317-01 \\
390304-01 \\
390304-02
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { IC, FE3010A } \\
& \text { IC, WD37C65 } \\
& \text { IC, WD37C65A }
\end{aligned}
\]} & \multirow[t]{5}{*}{U802 SUB: U1001 SUB: U1001 SUB:} \\
\hline & & & & & \\
\hline 903025-01 & FERRITE BEADS (AXIAL) & \multirow[t]{3}{*}{FB104,601-608,405,102 FB201-204 CR201,CR202,CR501, CR502,CR601-CR603} & & & \\
\hline 390253-02 & FERRITE BEADS THREE TURN & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \\
\hline 900850-01 & DIODE 1N4148 & & & & \\
\hline
\end{tabular}


PCB Assembly \#313055-01, Rev. 5



Monitor ID Bit 2 (not used) ground
Red Return (ground)
Green Return (ground)
Blue Return (ground)
Key (no pin)
Sync Return (ground)
Monitor ID Bit 0 (not used)
Monitor ID Bit 1 (not used)
Horizontal Sync
Vertical Sync
not used

SERIAL PORT
CN603 (5mm)


Computer Side

Peripheral Side


PARALLEL PORT
CN602 (5mm)


Computer Side

Printer Side


PC40-III MAJOR ICS AND CONNECTORS

\section*{SECTION 5}
- IC PINOUTS
- SCHEMATICS

\section*{INFORMATION IN THIS SECTION IS FOR REFERENCE ONLY. COMMODORE WILL NOT SUPPLY COMPONENT PARTS FOR OEM ASSEMBLIES.}
IC PIN OUTS \& SIGNAL DESCRIPTIONS
1) \(\mathbf{8 0 2 8 6}\) CPU ..... 390300-01
2) FE3000A CPU CNTRL ..... 390316-01
3) FE3010B PERP CNTRL ..... 390317-02
4) FE3020 ADDR BUFFER ..... 390319-01
5) FE3030 DATA BUFFER ..... 390318-01
6) PVGA-1A PARADISE VIDEO ..... 390302-01
7) \(\mathbf{P P C 1}\) PRINTER INTERFACE ..... 318091-01
8) WD37C65 FDC ..... 390304-03
9) \(\mathbf{8 2 5 0}\) SERIAL INTERFACE ..... 380205-01
10) 5720 MOUSE CONTROL ..... 318087-01

Component Pad Views-As viewed from underside of component when mounted on the board.


SYMBOL TYPE NAME AND FUNCTION
CLK I SYSTEM CLOCK provides the fundamental timing for \(\mathbf{8 0 2 8 6}\) systems. It is divided by two inside the 80286 to generate the processor clock. The internal divide-by-two circuitry can be synchronized to an external clock generator by a LOW to HIGH transition on the RESET input.
D15-D0 I/O DATA BUS inputs data during memory, I/O, and interrupt acknowledge read cycles; outputs data during memory and I/O write cycles. The data bus is active HIGH and floats to 3-state OFF during bus hold acknowledge.
A23-A0 O ADDRESS BUS outputs physical memory and \(I / O\) port addresses. A0 is LOW when data is to be transferred on pins D7-0. A23-A16 are LOW during I/O transfers. The address bus is active HIGH and floats to 3-state OFF during bus hold acknowledge.
\(\overline{\mathrm{BHE}} \quad 0\)
BUS HIGH ENABLE indicates transfer or data on the upper byte of the data bus. D15-8. Eight-bit oriented devices assigned to the upper byte of the data bus would normally use \(\overline{\mathrm{BHE}}\) to condition chip select functions. BHE is active LOW and floats to 3 -state OFF during bus hold acknowledge.
\begin{tabular}{ccl} 
& \multicolumn{3}{c}{\(\overline{\mathrm{BHE}}\) and A0 Encodings } \\
\(\overline{\text { BHE }}\) Value & A0 Value & \multicolumn{1}{c}{ Function } \\
0 & 0 & Word transfer \\
0 & 1 & \begin{tabular}{l} 
Byte transfer on upper half of data bus (D15-8) \\
1
\end{tabular} \\
1 & 0 & Byte transfer on lower half of data bus (D7-0) \\
1 & 1 & Will never occur
\end{tabular}
\(\overline{S 1}, \overline{\mathbf{S o}} \quad O \quad\) BUS CYCLE STATUS indicates initiation of a bus cycle and, along with \(M / \overline{\mathbf{I O}}\) and COD/ \(\overline{\mathbf{I N T A}}\), defines the type of bus cycle. The bus is in a Ts state whenever one or both are LOW, \(\overline{\text { S1 }}\) and \(\overline{S 0}\) are active LOW and float to 3 -state OFF during bus hold acknowledge.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{80286 Bus Cycle Status Definition} \\
\hline COD/INTA & M/TO & \(\overline{\text { S1 }}\) & \(\overline{\mathbf{S 0}}\) & Bus Cycle Initiated \\
\hline 0 (LOW) & 0 & 0 & 0 & Interrupt acknowledge \\
\hline 0 & 0 & 0 & 1 & Will not occur \\
\hline 0 & 0 & 1 & 0 & Will not occur \\
\hline 0 & 0 & 1 & 1 & None; not a status cycle \\
\hline 0 & 1 & 0 & 0 & IF \(\mathbf{A 1}=1\) then halt; else shutdown \\
\hline 0 & 1 & 0 & 1 & Memory data read \\
\hline 0 & 1 & 1 & 0 & Memory data write \\
\hline 0 & 1 & 1 & 1 & None; not a status cycle \\
\hline 1 (HIGH) & 0 & 0 & 0 & Will not occur \\
\hline 1 & 0 & 0 & 1 & I/O read \\
\hline 1 & 0 & 1 & 0 & I/O write \\
\hline 1 & 0 & 1 & 1 & None; not a status cycle \\
\hline 1 & 1 & 0 & 0 & Will not occur \\
\hline 1 & 1 & 0 & 1 & Memory instruction read \\
\hline 1 & 1 & 1 & 0 & Will not occur \\
\hline 1 & 1 & 1 & 1 & None; not a status cycle \\
\hline
\end{tabular}


NOTE: HLDA is only Low if HOLD is inactive (Low).

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{4}{*}{\[
\begin{gathered}
\text { PIN } \\
50
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\underset{\mathbf{O}}{\text { TYPE }}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
SYMBOL \\
NEDMMR
\end{tabular}} & FUNCTION \\
\hline & & & ENABLE DMA MEMORY READ \\
\hline & & & Active low - Gates a memory read to the bus during a DMA cycle. \\
\hline & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{NINTA} & INTERRUPT ACKNOWLEDGE \\
\hline 51 & & & Active low - Interrupt acknowledge to the interrupt controllers. \\
\hline \multirow[t]{2}{*}{52} & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{NNMI} & NMI OUTPUT TO 80286 \\
\hline & & & Active low - Non-maskable interrupt to 80286. \\
\hline \multirow[t]{2}{*}{53} & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{NBZ286} & 80287 BUSY TO 80286 \\
\hline & & & Active low \\
\hline \multirow[t]{2}{*}{54} & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{LSA0} & LATCHED SYSTEM ADDRESS A0 \\
\hline & & & Active high - System address bit 0 during a CPU bus cycle. \\
\hline \multirow[t]{2}{*}{55} & \multirow[t]{4}{*}{0} & \multirow[t]{2}{*}{IOCHCK} & I/O DEVICE ERROR \\
\hline & & & Active high - Indicates an error from the expansion bus. \\
\hline \multirow[t]{2}{*}{56} & & \multirow[t]{2}{*}{UNUSED} & UNUSED \\
\hline & & & Must be left open \\
\hline \multirow[t]{2}{*}{57} & \multirow[t]{2}{*}{I} & \multirow[t]{2}{*}{NERROR} & 80287 ERROR \\
\hline & & & Active low - Error from the 80287. \\
\hline \multirow[t]{2}{*}{58} & \multirow[t]{2}{*}{I} & NIOCHK & I/O CHECK \\
\hline & & & Active low - Error signal from the expansion bus. \\
\hline 59 & I & NIOS16 & \begin{tabular}{l}
16 BIT I/O TRANSFER \\
Active low - Signal from the expansion bus to indicate that the current bus cycle is a \(16 \mathrm{bit} \mathrm{I} / \mathrm{O}\) transfer.
\end{tabular} \\
\hline \multirow[t]{2}{*}{60} & \multirow[t]{2}{*}{I} & \multirow[t]{2}{*}{NNMICS} & NMI PORT DECODE \\
\hline & & & Active low - Decode of NMI enable port. \\
\hline \multirow[t]{2}{*}{61} & \multirow[t]{2}{*}{I} & \multirow[t]{2}{*}{NRAMSL} & ON BOARD RAM DECODE \\
\hline & & & Active low \\
\hline \multirow[t]{2}{*}{62} & \multirow[t]{2}{*}{I} & \multirow[t]{2}{*}{NRESIN} & RESET IN \\
\hline & & & Active low - External reset in used to generate a system reset. \\
\hline \multirow[t]{2}{*}{63} & \multirow[t]{2}{*}{I} & \multirow[t]{2}{*}{NENFAST} & ENABLE LOOK AHEAD DECODE \\
\hline & & & Active low - Causes early eneration of memory read and write signals with zero wait states. \\
\hline \multirow[t]{2}{*}{64} & \multirow[t]{2}{*}{I} & \multirow[t]{2}{*}{NZROWS} & ZERO WAIT STATES \\
\hline & & & Active low - Indicates the current bus cycle should have no wait states. \\
\hline \multirow[t]{2}{*}{65} & \multirow[t]{2}{*}{I} & \multirow[t]{2}{*}{OUT1} & TERMINAL COUNT OF TIMER CHANNEL 1 Active high - Terminal count from timer channel \\
\hline & & & \\
\hline \multirow[t]{2}{*}{66} & \multirow[t]{2}{*}{I} & \multirow[t]{2}{*}{RC} & RESET TO CPU 80286 \\
\hline & & & Active high - Input to generate RESET to CPU. \\
\hline 67 & I & S0 & BUS CYCLE STATUS S0 FROM 80286 \\
\hline 68 & I & S1 & BUS CYCLE STATUS S1 FROM 80286 \\
\hline \multirow[t]{2}{*}{69} & \multirow[t]{2}{*}{I} & \multirow[t]{2}{*}{XA3} & ADDRESS A3 \\
\hline & & & Active high - System address bit 3 \\
\hline \multirow[t]{2}{*}{70} & \multirow[t]{2}{*}{I} & \multirow[t]{2}{*}{XD7} & SYSTEM DATA BUS BIT 7 \\
\hline & & & Active high \\
\hline \multirow[t]{2}{*}{71} & \multirow[t]{2}{*}{I} & \multirow[t]{2}{*}{NENDCY} & TERMINATE CURRENT CYCLE \\
\hline & & & Active low - Signal from external wait state generator to end the current bus cycle. \\
\hline \multirow[t]{2}{*}{72} & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{HLDA1} & HOLD ACKNOWLEDGE TO DMA \\
\hline & & & Active high - Hold acknowledge to one of DMA controllers. \\
\hline 73 & 0 & F119M & 1.19 MHz CLOCK TO TIMER \\
\hline 74 & 0 & F14M & 14.318 MHz SIGNAL TO EXPANSION BUS \\
\hline \multirow[t]{2}{*}{75} & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{GTE245} & ENABLE BUS SWAP \\
\hline & & & Active low - Gates data during the swap of a byte on a 16 bit transfer on a 8 bit device. \\
\hline \multirow[t]{2}{*}{76} & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{NRESET} & RESET TO SYSTEM LOGIC \\
\hline & & & Active low \\
\hline \multirow[t]{2}{*}{77} & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{NREADY} & SYNCHRONIZED READY TO CPU \\
\hline & & & Active low - Ready to CPU indicating that the current bus cycle may terminate. \\
\hline 78 & I & X18284 & CRYSTAL TO 8284 CLOCK GENERATOR \\
\hline 79 & 0 & X28284 & CRYSTAL TO 8284 CLOCK GENERATOR \\
\hline 80 & I & X1284 & CRYSTAL TO 82284 CLOCK GENERATOR \\
\hline 81 & 0 & X2284 & CRYSTAL TO 82284 CLOCK GENERATOR \\
\hline 82 & 0 & DTNR & DATA DIRECTION CONTROL \\
\hline & & & Active low - A low indicates a bus read cycle. \\
\hline \multirow[t]{2}{*}{83} & \multirow[t]{3}{*}{0} & \multirow[t]{2}{*}{ALE} & ADDRESS LATCH ENABLE \\
\hline & & & Active high - Signal to latch the address from the 80286. \\
\hline 84 & & VDD & +5 VOLTS SUPPLY \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline PIN & TYPE & SYMBOL & FUNCTION \\
\hline 73 & I & DRQ6 & CHANNEL 6 DMA REQUEST \\
\hline & & & Active high \\
\hline 74 & I & DRQ5 & CHANNEL 5 DMA REQUEST \\
\hline & & & Active high \\
\hline 75 & I & DRQ3 & CHANNEL 3 REQUEST \\
\hline & & & Active high \\
\hline 76 & I & DRQ2 & CHANNEL 2 DMA REQUEST \\
\hline & & & Active high \\
\hline 77 & I & DRQ1 & CHANNEL 1 DMA REQUEST \\
\hline & & & Active high \\
\hline 78 & I & DRQ0 & CHANNEL 0 DMA REQUEST \\
\hline & & & Active high \\
\hline 79 & 0 & Sysale & SYSTEM ALE \\
\hline & & & Active high - Signal to latch the address in the address latch. \\
\hline 80 & I/O & NIOR & I/O READ COMMAND \\
\hline & & & Active low \\
\hline 81 & I/O & NIOW & I/O WRITE COMMAND \\
\hline & & & Active low \\
\hline 82 & 0 & NMEMR & MEMORY READ COMMAND \\
\hline & & & Active low \\
\hline 83 & 0 & NMEMW & MEMORY WRITE COMMAND \\
\hline & & & Active low \\
\hline 84 & & VDD & +5 VOLTS SUPPPLY \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline PIN & TYPE & SYMBOL & FUNCTION \\
\hline 65 & I & NMASTER & MASTER \\
\hline & 1 & & \begin{tabular}{l}
Active low - Signal from the AT bus which allows the bus master to control the bus. \\
HOLD ACKNOWLEDGE
\end{tabular} \\
\hline 61 & 1 & HLDA & Active high - Signal from the 80286 to indicate that the bus has been released in response to a \(\mathbf{C P U}\) \\
\hline & & & HRQ signal. \\
\hline 62 & I & ADSTB & ADDRESS STROBE \\
\hline & & & Active high - Signal from the FE3010 that latches the address. \\
\hline 63 & I & NRAMCS & RAM CHIP SELECT \\
\hline & & & Active low - On board RAM chip select. \\
\hline 64 & I/O & NYMEMW & MEMORY WRITE COMMAND \\
\hline & & & Active low - Signal to indicate a write of memory during a CPU, DMA, or Master cycle. \\
\hline 82 & 1/O & NYMEMR & MEMORY READ COMMAND \\
\hline & & & Active low - Signal to indicate a read of memory during a CPU or Master cycle. \\
\hline 64 & I & NGTMEMR & GATE MEMORY READ \\
\hline & & & Active low - Signal to indicate a read memory during a DMA cycle. \\
\hline 76 & I/O & NMEMW & AT BUS MEMORY WRITE COMMAND \\
\hline & & & Active low - Signal to indicate a write of memory during a CPU, DMA, or Master cycle. \\
\hline 57 & I/O & NMEMR & AT BUS MEMORY WRITE COMMAND \\
\hline & & & Active low - Signal to indicate a read of memory during a CPU, DMA, or Master cycle. \\
\hline 78 & 0 & NSMEMW & PC BUS MEMORY WRITE COMMAND \\
\hline & & & Active low - Signal to indicate a write of memory below 1MB during a CPU, DMA, or Master cycle. \\
\hline 77 & 0 & NSMEMR & PC BUS MEMORY READ COMMAND \\
\hline & & & Active low - Signal to indicate a read of memory below 1 MB during a CPU, DMA, or Master cycle. \\
\hline 56 & I/O & NEBHE & AT BUS BYTE HIGH ENABLE \\
\hline & & & Active low - Indicates a transfer of data on the upper byte of the data bus. \\
\hline 63 & I & NBHE & 80386 BUS BYTE HIGH ENABLE \\
\hline & & & Active low - Indicates a transfer of data on the upper byte of the data bus. \\
\hline
\end{tabular}

I/O
NABHE

NPROMSEL

MEM245
DIR
LAS0
ADR(0)
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
LA20
A20GT

A20GT


A21
A22
A23
ADD0
ADD1
ADD2
ADD3
ADD4
ADD5
ADD6
ADD7
ADD8
ADD9
ADD10
ADD10
ADD11
ADD 12
ADD 13
ADD14
ADD15
ADD 16
ADD 17
ADD 18
ADD 18
ADD 19
N \(/ \mathbf{C}\)
VCC1
VCC2
VCC3
VCC4
VCC5
VCC5
VCC6
VCC7
vCC8
VCC8
VCC8
VCC9
GDD1
GDD1
GDD2
GDD3
GROUND
GROUND
GDD7 GROUND
GDD8 GROUND
GDD9 GROUND
GDD 10 GROUND
PROM SELECT

5V \(\pm 5 \%_{0}\)
\(\mathbf{5 V} \pm \mathbf{5} \%_{0}\)
\(5 V \pm 5 \%_{0}\)
\(\mathbf{5 V} \pm 5 \%\)
\(5 \mathrm{~V} \pm 5 \%\)
\(5 V \pm 5 \%\)
\(5 V+5 \%\)
\(5 \mathbf{V}+5 \%\)
\(5 V \pm 5 \%\)
GROUND
GROUND
GROUND GROUND

GROUND

FE3000 BUS BYTE HIGH ENABLE Active low - Indicates a transfer of data on the upper byte of the data bus.

Active low - BIOS PROM select MEMORY BUFFER DIRECTION
Direction control for the on board memory buffers. FE3000 ADDRESS BIT 0 FE3000/FE3010 ADDRESS BIT 0 80286/FE3010 ADDRESS BIT 1 80286/FE3010 ADDRESS BIT 2 80286/FE3010 ADDRESS BIT 3 80286/FE3010 ADDRESS BIT 4 80286/FE3010 ADDRESS BIT 5 80286/FE3010 ADDRESS BIT 6 80286/FE3010 ADDRESS BIT 7 80286/FE3010 ADDRESS BIT 8 80286/FE3010 ADDRESS BIT 9 80286/FE3010 ADDRESS BIT 10 80286/FE3010 ADDRESS BIT 11 80286/FE3010 ADDRESS BIT 12 80286/FE3010 ADDRESS BIT 13 80286/FE3010 ADDRESS BIT 14 80286/FE3010 ADDRESS BIT 15 80286/FE3010 ADDRESS BIT 16 80286/FE3010 ADDRESS BIT 17 80286/FE3010 ADDRESS BIT 18 80286/FE3010 ADDRESS BIT 19 80286 ADDRESS BIT 20 FE3010 ADDRESS BIT 20 8042 GATE ADDRESS
Active high - ENable address bit 20 80286/FE3010 ADDRESS BIT 21 80286/FE3010 ADDRESS BIT 22 80286/FE3010 ADDRESS BIT 23 AT BUS ADDRESS BIT 0 AT BUS ADDRESS BIT 1 AT BUS ADDRESS BIT 2 AT BUS ADDRESS BIT 3 AT BUS ADDRESS BIT 4 AT BUS ADDRESS BIT 5 AT BUS ADDRESS BIT 6 AT BUS ADDRESS BIT 7 AT BUS ADDRESS BIT 8 AT BUS ADDRESS BIT 9 AT BUS ADDRESS BIT 10 AT BUS ADDRESS BIT 11 AT BUS ADDRESS BIT 12 AT BUS ADDRESS BIT 13 AT BUS ADDRESS BIT 14 AT BUS ADDRESS BIT 15 AT BUS ADDRESS BIT 16 AT BUS ADDRESS BIT 17 AT BUS ADDRESS BIT 18 AT BUS ADDRESS BIT 19
5) FE3030 DATA BUFFER 390318-01


PIN TYPE SYMBOL FUNCT
64 \begin{tabular}{llc} 
I & PCK & \\
66 & I & NGTPIO
\end{tabular}

Active high - This signal from the FE3000 indicates an error from the PC/AT bus. PARITY CHECK
Active high - This signal from the FE3000 indicates a parity error from the on board RAM. GATE PIO
Active low - This signal gates the IOCK and PCK signals on to the data bus during a status read.
WRITE PIO
Active low - Write the error enable register.
\(40 \quad\) ENIOCK \(\quad \begin{aligned} & \text { Active low - Write th } \\ & \text { ENABLE IO CHECK }\end{aligned}\)
Active high
\(5 \quad\) O ENRAMCK \(\begin{aligned} & \text { ENABLE PARITY CHECK } \\ & \text { Active high }\end{aligned}\)
71 I NRESET

70 I NSELDATA
RESET
Active low - System reset from the FE3000
69 I NINTA

Active low - This signal gates the \(E\) data bus. INTERRUPT ACKNOWLEDGE
Active low - This signal gates the interrupt vector on the EDATA bus to the CPU.
HOLD ACKNOWLEDGE
Active high - Signal from the 80286 to indicate that the bus has been released in response to a CPU HRQ signal.
ACK ACKNOWLEDGE
Active high - Signal to indicate that the current cycle is a DMA cycle.

\section*{MASTER}

Active low - Signal from the AT bus which allows the bus master to control the bus.
63 I NF245DIR
62 I NF245EN
57 I DTR

60 I ADDRESS(0)
56 I ND646 EN
59 I DGATECTL

58
NYIORNIOW
\(\begin{array}{ll}\mathbf{V C C} & 5 \mathrm{~V} \pm 5 \%\end{array}\)
\(\mathrm{VCC4} \quad 5 \mathrm{~V} \pm 5 \%\)
VCC5 \(5 \mathrm{~V} \pm 5 \%\)
\(\begin{array}{ll}\text { VCC6 } & 5 V \pm 5 \% \\ \text { VCC } & 5 V\end{array}\)
\(\begin{array}{ll}\mathbf{V C C 6} & \mathbf{5 V} \pm \mathbf{5} \% \\ \mathbf{V C C 7} & \mathbf{5 V} \pm 5 \%\end{array}\)
\(\begin{array}{ll}\mathrm{VCC7} & \mathbf{5 V} \pm 5 \% \\ \mathrm{VCC8} & \mathbf{5 V} \pm 5 \%\end{array}\)
GDD1 GROUND
GDD2 GROUND
\(\begin{array}{ll}\text { GDD2 } & \text { GROUND } \\ \text { GDD3 } & \text { GROUND }\end{array}\)
\(\begin{array}{ll}\text { GDD3 } & \text { GROUND } \\ \text { GDD4 } & \text { GROUND }\end{array}\)
GDD5 GROUND
GDD6 GROUND
GDD7 GROUND
GDi)8 GROUND
GDD9 GROUND
GDD10 GROUND bus.

Active low
Active low
Active low
80286 DATA BIT 1
80286 DATA BIT 2
80286 DATA BIT 3
80286 DATA BIT 4
80286 DATA BIT 5
80286 DATA BIT 6
80286 DATA BIT 7
80286 DATA BIT 8
80286 DATA BIT 9

80286 DATA BIT 13

DATA BUS ENABLE D (8:15)
Active low - This signal enables the data bit 8-15
WRITE COMMAND
Active low - Signal to indicate a \(1 / O\) write during a CPU, DMA, or Master cycle. I/O READ COMMAND
Active low - Signal to indicate a \(1 / O\) read during a CPU, DMA, or Master Cycle.
PC BUS I/O WRITE COMMAND
Active low - Signal to indicate a \(I / O\) write during
a CPU, DMA, or Master Cycle.
Active low - Signal to indicate a I/O read during a
CPU, DMA, or Master Cycle.
REAL TIME CLOCK CHIP SELECT
REAL TIME CLOCK READ
REAL TIME CLOCK WRITE
80286 DATA BIT 0

80286 DATA BIT 10
80286 DATA BIT 11
80286 DATA BIT 12

80286 DATA BIT 14
80286 DATA BIT 15
AT DATA BUS BIT 0
AT DATA BUS BIT 1
AT DATA BUS BIT 2
AT DATA BUS BIT 3
AT DATA BUS BIT 4
AT DATA BUS BIT 5
AT DATA BUS BIT 6
AT DATA BUS BIT 7
AT DATA BUS BIT 8
AT DATA BUS BIT 9
AT DATA BUS BIT 10
AT DATA BUS BIT 11
AT DATA BUS BIT 12
AT DATA BUS BIT 13
AT DATA BUS BIT 14
AT DATA BUS BIT 15
ERIPHERAL DATA BUS BIT 0
PERIPHERAL DATA BUS BIT 1
PERIPHERAL DATA BUS BIT 2
PERIPHERAL DATA BUS BIT 3
PERIPHERAL DATA BUS BIT 3
PERIPHERAL DATA BUS BIT 4
PERIPHERAL DATA BUS BIT 5
ERIPHERAL DATA BUS BIT 6

\begin{tabular}{|c|c|c|c|c|}
\hline PIN & PIN & PLCC & PGA & \\
\hline SYMBOL & TYPE & PINS & PINS & DESCRIPTION \\
\hline RSET & IN & 36 & LI & Active high signal from external circuit during power up \\
\hline MCLK & IN & 76 & G12 & Up to 36 MHz for 120 ns DRAMS \\
\hline & & & & Up to 44.5 MHz for 100 ns DRAMS \\
\hline VCLKO & IN & 75 & H13 & 25.175 MHz reference clock input \\
\hline VCLK1 & IN/OUT & 74 & H12 & 28.322 MHz clock input* \\
\hline VCLK2 & IN/OUT & 73 & H11 & User defined external clock input* \\
\hline A19 & IN & 28 & G1 & Address bus bit 19 \\
\hline A18 & IN & 27 & G3 & Address bus bit 18 \\
\hline A17 & IN & 24 & F2 & Address bus bit 17 \\
\hline A16 & IN & 23 & F3 & Address bus bit 16 \\
\hline A 15 & IN & 22 & E1 & Address bus bit 15 \\
\hline DA 15 & IN/OUT & 20 & D1 & Multiplexed data bit 15 with Monitor type input \\
\hline DA14 & IN/OUT & 19 & D2 & Multiplexed data/address bus bit 14 \\
\hline DA13 & IN/OUT & 18 & C1 & Multiplexed data/address bus bit 13 \\
\hline DA12 & IN/OUT & 17 & C2 & Multiplexed data/address bus bit 12 \\
\hline DA 11 & IN/OUT & 16 & B1 & Multiplexed data/address bus bit 11 \\
\hline DA 10 & IN/OUT & 14 & A1 & Multiplexed data/address bus bit 10 \\
\hline DA9 & IN/OUT & 13 & B3 & Multiplexed data/address bus bit 9 \\
\hline DA8 & IN/OUT & 12 & A2 & Multiplexed data/address bus bit 8 \\
\hline DA7 & IN/OUT & 46 & M5 & Multiplexed data/address bus bit 7 \\
\hline DA6 & IN/OUT & 45 & N4 & Multiplexed data/address bus bit 6 \\
\hline DA5 & IN/OUT & 44 & M4 & Multiplexed data/address bus bit 5 \\
\hline DA4 & IN/OUT & 43 & N3 & Multiplexed data/address bus bit 4 \\
\hline DA3 & IN/OUT & 42 & M3 & Multiplexed data/address bus bit 3 \\
\hline DA2 & IN/OUT & 41 & N2 & Multiplexed data/address bus bit 2 \\
\hline DA1 & IN/OUT & 40 & M2 & Multiplexed data/address bus bit 1 \\
\hline DA0 & IN/OUT & 39 & N1 & Multiplexed data/address bus bit 0 \\
\hline EMEM & IN & 21 & E2 & Enable display memory. Active high \\
\hline EION & IN & 33 & J2 & Programmable enable I/O. Active low or high \\
\hline BHEN & IN & 9 & A4 & Bus high byte enable. Active low \\
\hline MRDN & IN & 31 & H3 & Display memory read strobe. Active low \\
\hline MWRN & IN & 32 & J1 & Display memory write strobe. Active low \\
\hline IORN & IN & 29 & H1 & 1/O read strobe. Active low \\
\hline IOWN & IN & 30 & H2 & I/O write strobe. Active low \\
\hline MD 15 & IN/OUT & 89 & A13 & Display memory data bit 15 \\
\hline MD14 & IN/OUT & 90 & B12 & Display memory data bit 14 \\
\hline MD13 & IN/OUT & 91 & A12 & Display memory data bit 13 \\
\hline MD12 & IN/OUT & 92 & B11 & Display memory data bit 12 \\
\hline MD11 & IN/OUT & 93 & A11 & Display memory data bit 11 \\
\hline MD10 & IN/OUT & 94 & B10 & Display memory data bit 10 \\
\hline MD9 & IN/OUT & 95 & A 10 & Display memory data bit 9 \\
\hline MD8 & IN/OUT & 96 & B9 & Display memory data bit 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & PIN & PLCC & PGA & \\
\hline SYMBOL & TYPE & PINS & PINS & DESCRIPTION \\
\hline MD7 & IN/OUT & 97 & A9 & Display memory data or configuration bit 7 upon power up \\
\hline MD6 & IN/OUT & 98 & C8 & Display memory data or configuration bit 6 upon power up \\
\hline MD5 & IN/OUT & 99 & B8 & Display memory data or configuration bit 5 upon power up \\
\hline MD4 & IN/OUT & 2 & C7 & Display memory data or configuration bit 4 upon power up \\
\hline MD3 & IN/OUT & 3 & A7 & Display memory data or configuration bit 3 upon power up \\
\hline MD2 & IN/OUT & 4 & A6 & Display memory data or configuration bit 2 upon power up \\
\hline MD1 & IN/OUT & 5 & B6 & Display memory data or configuration bit 1 upon power up \\
\hline MD0 & IN/OUT & 6 & C6 & Display memory data or configuration bit 0 upon power up \\
\hline RAS10N & OUT & 79 & F13 & Row address strobe bank 0 (Memory Maps 1 \& 0). Active low \\
\hline CAS10N & OUT & 80 & F12 & Column address strobe bank 0. Active low \\
\hline OE10N & OUT & 81 & F11 & Output enable bank 0. Active low \\
\hline WE1N & OUT & 86 & C13 & Write enable bank 0 upper byte (Memory map 1). Active low \\
\hline WE0N & OUT & 85 & D12 & Write enable bank 0 lower byte (Memory map 0). Active low \\
\hline RAS32N & OUT & 82 & E13 & Row address strobe bank 1 (Memory maps 3 and 2). Active low \\
\hline CAS32N & OUT & 83 & E12 & Column address strobe bank 1. Active low \\
\hline OE32N & OUT & 84 & D13 & Output enable bank 1. Active low \\
\hline WE3N & OUT & 88 & C12 & Write enable bank 1 upper byte (Memory map 3). Active low \\
\hline WE2N & OUT & 87 & B13 & Write enable bank 1 lower byte (Memory map 2). Active low \\
\hline MA8 & OUT & 63 & M11 & Display memory multiplexed RAS/CAS address bit 8 \\
\hline MA7 & OUT & 65 & M12 & Display memory multiplexed RAS/CAS address bit 7 \\
\hline MA6 & OUT & 66 & M13 & Display memory multiplexed RAS/CAS address bit 6 \\
\hline MA5 & OUT & 67 & L12 & Display memory multiplexed RAS/CAS address bit 5 \\
\hline MA2 & OUT & 70 & K13 & Display memory multiplexed RAS/CAS address bit 2 \\
\hline MA1 & OUT & 71 & J12 & Display memory multiplexed RAS/CAS address bit 1 \\
\hline MA0 & OUT & 72 & J13 & Display memory multiplexed RAS/CAS address bit 0 \\
\hline MA4 & OUT & 68 & 113 & Display memory multiplexed RAS/CAS address bit 4 \\
\hline MA3 & OUT & 69 & K12 & Display memory multiplexed RAS/CAS address bit 3 \\
\hline VID7 & OUT & 48 & L6 & Video color look up table address bit 7 \\
\hline VID6 & OUT & 49 & M6 & Video color look up table address bit 6 \\
\hline VID5 & OUT & 50 & N6 & Video color look up table address bit 5 \\
\hline VID4 & OUT & 53 & N7 & Video color look up table address bit 4 \\
\hline VID3 & OUT & 54 & N8 & Video color look up table address bit 3 \\
\hline VID2 & OUT & 55 & M8 & Video color look up table address bit 2 \\
\hline VID1 & OUT & 56 & L8 & Video color look up table address bit 1 \\
\hline VID0 & OUT & 57 & N9 & Video color look up table address bit 0 \\
\hline PLCK & OUT & 59 & N10 & Pixel clock \\
\hline BLNKN & OUT & 62 & N12 & Color monitor blank pulse. Active low \\
\hline HSYNC & OUT & 60 & M10 & Color monitor horizontal synchronization pulse. Active high \\
\hline VSYNC & OUT & 61 & N11 & Color monitor vertical synchronization pulse. Active high \\
\hline RPLTN & OUT & 47 & N5 & Read color look up pallet. Active low \\
\hline SKDBKN & OUT & 10 & B4 & Card select feedback during memory or I/O access. Active low \\
\hline WPLTN & OUT & 58 & M9 & Write color look up pallet. Active low \\
\hline REDY & OUT & 34 & K1 & A tristate active high ready output to signal processor that memory access is available \\
\hline IRQ & OUT & 35 & K2 & Programmable processor interrupt request. Active low or high with tristate \\
\hline DS16N & OUT & 8 & B5 & Programmable enable 16 bit word transfer. Active low \\
\hline EBROMN & OUT & 7 & A5 & Enable BIOS ROM. Active low \\
\hline EABUFN & OUT & 11 & A3 & Enable processor address buffer. Active low \\
\hline EDBUFN & OUT & 38 & L2 & Enable processor data buffer. Active low \\
\hline DIR & OUT & 37 & M1 & Directional control for processor data bus. Bits 0 through \(\mathbf{1 5}\) high for read cycles \\
\hline VDD & --- & 25 & F1 & +5 V DC \\
\hline VDD & --- & 52 & L7 & +5V DC \\
\hline VDD & --- & 78 & G13 & +5 V DC \\
\hline VDD & --- & 100 & A8 & +5V DC \\
\hline vSS & --- & 1 & B2 & GND \\
\hline VSS & --- & 15 & G2 & GND \\
\hline vSS & --- & 26 & M7 & GND \\
\hline VSS & --- & 51 & N13 & GND \\
\hline VSS & --- & 64 & G11 & GND \\
\hline vSS & --- & 77 & B7 & GND \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline PIN & CODE & DESCRIPIION \\
\hline 1 & GND & Ground \\
\hline 2 & D7 & Data Bit 7 In \\
\hline 3 & DAT0 & Data Bit 0 Out \\
\hline 4 & A0 & Address Line 0 \\
\hline 5 & GND & Ground \\
\hline 6 & DAT1 & Data Bit 1 Out \\
\hline 7 & A1 & Address Line 1 \\
\hline 8 & DAT2 & Data Bit 2 Out \\
\hline 9 & A2 & Address Line 2 \\
\hline 10 & DAT3 & Data Bit 3 Out \\
\hline 11 & A3 & Address Line 3 \\
\hline 12 & DAT4 & Data Bit 4 Out \\
\hline 13 & A4 & Address Line 4 \\
\hline 14 & DAT5 & Data Bit 5 Out \\
\hline 15 & A5 & Address Line 5 \\
\hline 16 & GND & Ground \\
\hline 17 & DAT6 & Data Bit 6 Out \\
\hline 18 & PAPE & Paper Out \\
\hline 19 & DAT7 & Data Bit 7 Out \\
\hline 20 & BUSY & Printer busy \\
\hline 21 & IRQ & Interrupt \#7 \\
\hline 22 & ACKN & Acknowledge \\
\hline 23 & CEN & Chip Select \\
\hline 24 & SLCT & Printer Select \\
\hline 25 & ERRN & Error \\
\hline 26 & \(\overline{\text { STBN }}\) & Strobe \\
\hline 27 & \(\overline{\text { AFXN }}\) & Autofeed \\
\hline 28 & ININ & Initial Reset \\
\hline 29 & \(\overline{\text { SLCN }}\) & Select From Printer \\
\hline 30 & IOWN & I/O Write \\
\hline 31 & IORN & I/O Read \\
\hline 32 & \(\overline{\text { RSTN }}\) & Reset \\
\hline 33 & DO & Data Bit 0 In \\
\hline 34 & D1 & Data Bit 1 In \\
\hline 35 & VCC & +5V \\
\hline 36 & D2 & Data Bit 2 In \\
\hline 37 & D3 & Data Bit 3 In \\
\hline 38 & D4 & Data Bit 4 In \\
\hline 39 & D5 & Data Bit 5 In \\
\hline 40 & D6 & Data Bit 6 In \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline D/P PIN & & SIGNAL \\
\hline NUMBER & MNEMONIC & NAME \\
\hline 1/1 & \(\overline{\mathrm{RD}}\) & READ \\
\hline 2/2 & \(\overline{\text { WR }}\) & \(\overline{\text { WRITE }}\) \\
\hline 3/3 & \(\overline{\mathrm{CS}}\) & CHIP SELECT \\
\hline 4/4 & A0 & ADDRESS LINE \\
\hline 5/5 & \(\overline{\text { DACK }}\) & \(\overline{\text { DMA }}\) \\
\hline 6/6 & TC & ACKNOWLEDGE
TERMINAL
COUNT \\
\hline 7-14 & DBO thru & DATA BUS 0 thru \\
\hline 7-14 & DB7 & DATA BUS 7 \\
\hline 15/15 & DMA & DIRECT MEMORY ACCESS \\
\hline 16/16 & IRQ & InTERRUPT \\
\hline 17 & & \\
\hline 17/18 & \(\overline{\text { LDOR }}\) & \(\overline{\text { LOAD }}\) \\
\hline & & \(\overline{\text { OPERATIONS }}\) \\
\hline 18/19 & \(\overline{\text { LDCR }}\) & LOAD CONTROL \\
\hline & & REGISTER \\
\hline 19/20 & RST & RESET \\
\hline 20/21 & \(\overline{\text { RDD }}\) & \[
\frac{\overline{\text { READ DISK }}}{\overline{\text { DATA }}}
\] \\
\hline \(21 /\) & CLK2 & CLOCK2 \\
\hline /22 & \(\overline{\mathrm{XT} 2}\) & \(\overline{\text { XTAL2 }}\) \\
\hline /23 & XT2 & XTAL2 \\
\hline 22/24 & DRV & DRIVE TYPE \\
\hline \(23 /\) & CLK1 & Clock 1 \\
\hline 125 & \(\overline{\text { XT1 }}\) & \(\overline{\text { Xtali }}\) \\
\hline /26 & XT1 & XTAL1 \\
\hline 24/27 & PCVAL & PRECOMPENsation value \\
\hline
\end{tabular}

i/o function
Control signal for transfer of data or status onto the data bus by the WD37C65. Control signal for latching data from the bus into the WD37C65 Buffer Register. Selected when 0 (low) allowing \(\overline{\mathbf{R D}}\) or \(\overline{\mathbf{W R}}\) operation from the Host. Address line selecting data ( -1 ) or status ( -0 ) information. (A0-logic 0 during \(\overline{\mathbf{W R}}\) is illegal).
I Used by the DMA controller to transfer data from the WD37C65 onto the bus. Logical equivalent to \(\overline{\mathrm{CS}}\) and \(\mathrm{A} 0-1\). In Special or PC/AT Mode, this signal is qualified by DMAEN from the Operations Register.
I This signal indicates to WD37C65 that data transfer is complete. If DMA operational mode is selected for command execution, TC will be qualified by \(\overline{\text { DACK }}\), but not in the programmed I/O execution. In PC/AT or Special Mode, qualification by \(\overline{\text { DACK }}\) requires the Operations Register signal DMAEN to be logically true. Note also that in PC/AT Mode, TC will be qualified by DACK, whether in DMA or non-DMA Host operation. Programmed I/O in PC/AT Mode will cause an abnormal termination error at the completion of a command.
I/O 8-Bit, bi-directional, tri-state, data bus. D0 is the least significant bit (LSB). D7 is the most significant bit (MSB).
O DMA request for byte transfers of data. In Special or PC/AT mode, this pin is tri-stated, enabled by the DMAEN signal from the Operation Register. This pin is driven in the Base Mode.
\(O\) Interrupt request indicating the completion of command execution or data transfer requests (in non-DMA mode). Normally driven in base mode. In Special or \(\mathrm{PC} / \mathrm{AT}\) Mode, this pin is tri-stated, enabled by the DMAEN signal from the Operations Register.
Not connected in the 44 Pin PLCC.
I Address decode which enables the loading of the Operations Register. Internally gated with \(\overline{\mathbf{W R}}\) creates the strobe which latches the data bus into the Operations Register.

I Address decode which enables loading of the Control Register. Internally gated with \(\overline{\mathbf{W R}}\) creates the strobe which latches the two LSBs from the data bus into the Control Register.
I Resets controller, placing microsequencer in idle. Resets device outputs. Puts device in Base Mode, not PC/AT or Special Mode.
I This is the raw serial bit stream from the disk drive. Each falling edge of the pulses represents a flux transition of the encoded data.
I TTL level clock input used for non-standard data rates; is 9.6 MHz for \(300 \mathrm{~Kb} / \mathrm{s}\), and can only be selected from the Control Register.
O XTAL oscillator drive output for 44 Pin PLCC (See Figure 6). Should be left floating if TTL inputs used at pin 23.
1 XTAL oscillator input used for non-standard data rates. It may be driven with TTL level signal.
I Drive type input indicates to the device that a two-speed spindle motor is used if logic is 0 . In that case, the second clock input will never be selected and must be grounded
I TTL level clock input is used to generate all internal timings for standard data rates. Frequency must be \(16 \mathrm{MHz} \pm 0.1 \%\), and may have \(40 / 60\) or \(60 / 40\) duty cycle.
O XTAL oscillator drive output for 44 Pin PLCC (See Figure 6). Should be left floating if TTL inputs used at pin 26.
I XTAL oscillator input requiring 16 MHz crystal. This oscillator is used for all standard data rates, and may be driven with a TTL level signal.
I PRECOMPENSATION VALUE select input. This pin determines the amount of write precompensation used on the inner tracks of the diskette. Logic \(1-125 \mathrm{~ns}\), Logic \(0-187 \mathrm{~ns}\).
\begin{tabular}{|c|c|c|c|c|}
\hline D/P PIN & & Signal & & \\
\hline NUMBER & MNEMONIC & NAME & & FUNCTION \\
\hline 25/28 & \(\overline{\mathrm{HS}}\) & HEAD SELECT & 0 & High current driver (HCD) output selects the head (side) of the floppy disk that is being read or written. Logic \(\mathbf{1}\) - side \(\mathbf{0}\). Logic 0 - side 1. \\
\hline 26/29 & \(\overline{\mathbf{W E}}\) & WRITE ENABLE & 0 & This HCD output becomes true, active low, just prior to writing on the diskette. This allows current to flow through the write head. \\
\hline 27/30 & \(\overline{\text { WD }}\) & WRITE DATA & 0 & This HCD output is WRITE DATA. Each falling edge of the encoded data pulse stream causes a flux transition on the media. \\
\hline 28/31 & \(\overline{\text { DIRC }}\) & DIRECTION & 0 & This HCD output determines the direction of the head stepper motor. Logic 1-outward motion. Logic 0-inward motion. \\
\hline 29/32 & \(\overline{\text { STEP }}\) & STEP PULSE & 0 & This HCD output issues an active low pulse for each track to track movement of the head. \\
\hline 30/33 & \(\overline{\text { DSI }}\) & \(\overline{\text { DRIVE SELECT } 1}\) & 0 & This HCD output, when active low is DRIVE SELECT 1 in PC/AT Mode, enabling the interface in this disk drive. This signal comes from the Operations Register. In Base, or Special Mode, this output is \#1 of the four decoded Unit Selects, as specified in the device command syntax. \\
\hline 31/34 & VSS & GROUND & & Ground. \\
\hline 32/35 & \(\overline{\text { DS2 }}\) & \(\overline{\text { DRIVE SELECT } 2}\) & 0 & This HCD output when active low is DRIVE SELECT 2, in PC/AT Mode, enabling the interface in this disk drive. This signal comes from the Operations Register. in Base or the Special Mode, this output is \#2 of the four decoded Unit Selects as specified in the device command syntax. \\
\hline 33/36 & \(\overline{\mathbf{M 0 1}} \mathbf{, ~ \overline { \mathbf { D S 3 } }}\) & \[
\frac{\overline{\text { MOTOR ON 1 }},}{\text { DRIVE SELECT } 3}
\] & 0 & This HCD output when active low is MOTOR ON enable for disk drive \#1, in PC/AT Mode. This signal comes from the Operations Register. In the Base or Special Mode, this output is \#3 of the four decoded Unit Selects as specified in the device command syntax. \\
\hline 34/37 & \(\overline{\mathrm{MO2}}, \overline{\mathrm{DS4}}\) & \[
\frac{\overline{\text { MOTOR ON } 2},}{\text { DRIVE SELECT } 4}
\] & 0 & This HCD output when active low is MOTOR ON enable for disk drive \#2, in PC/AT mode. This signal comes from the Operations Register. In the Base or Special Mode, this output is \(\# 4\) of the four decoded Unit Selects as specified in the device command syntax. \\
\hline 35/38 & \(\overline{\text { HDL }}\) & HEAD LOADED & 0 & This HDC output when active low causes the head to be loaded against the media in the selected drive. \\
\hline 36/39 & \(\overline{\text { RWC }}\), \(\overline{\mathbf{R P M}}\) & \(\frac{\overline{\text { REDUCED WRITE }}}{\overline{\text { CURRENT }}}\)
\(\frac{\text { REVOLUTIONS }}{\text { PER MINUTE }}\) & 0 & This HCD output when active low causes a REDUCED WRITE CURRENT when bit density is increased toward the inner tracks, becoming active when tracks greater than 28 are accessed. This condition is valid for Base or Special Mode, and is indicative of when write precompensation is necessary. In the PC/AT mode, (on two-speed disk drives) this signal will be active when 250 MFM or 125 FM data rate is selected. \\
\hline 40 & & & & Not connected in the 44 Pin PLCC. \\
\hline 37/41 & \(\overline{\mathbf{W P}}\) & \[
\frac{\overline{\text { WRITE }}}{\text { PROTECTED }}
\] & 1 & This Schmitt Trigger (ST) input senses status from the disk drive indicating active low, when a diskette is \(\overline{\text { WRITE }}\) \(\overline{\text { PROTECTED. }}\) \\
\hline 38/42 & \(\overline{\text { TR00 }}\) & TRACK 00 & 1 & This ST input senses status from disk drive indicating active low, when the head is positioned over the outermost track, TRACK 00. \\
\hline 39/43 & \(\overline{\text { IDX }}\) & \(\overline{\text { INDEX }}\) & 1 & This ST input senses status from the disk drive indicating active low, when the head is positioned over the beginning of a track marked by an index hole. \\
\hline 40/44 & VCC & + 5VDC & & Input power supply. \\
\hline
\end{tabular}

\section*{PIN} NUMBE
\(1-8\)

9
10

11

12
12
14

EXTERNAL CLOCK IN
EXTERNAL CLOCK OUT DATA OUT STROBE DATA OUT STROBE GROUND DATA IN STROBE DATA IN STROBE DRIVER DISABLE CHIP SELECT OUT ADDRESS STROBE

REGISTER SELECT A2 REGISTER SELECT A1 REGISTER SELECT A1
REGISTER SELECT A0

NO CONNECT INTERRUPT OUTPUT 2 REQUEST TO SEND DATA TERMINAL READY OUTPUT 1 MASTER RESET CLEAR TO SEND DATA SET READY RECEIVED LINE SIGNAL DETECT RING INDICATOR \(+5 \mathrm{~V}\)

\begin{tabular}{c} 
SYMBOL \\
D0-D7 \\
\\
RCLK \\
SIN \\
SOUT \\
\\
CS0 \\
CS1 \\
\hline CS2 \\
\hline BAUDOU
\end{tabular}

\section*{FUNCTION}

3-state input/output lines. Bi-directional communication lines between WD8250 and Data Bus. All assembled data TX and \(R X\), control words, and status information are transferred via the D0-D7 data bus.
This input is the \(16 X\) baud rate clock for the receiver section of the chip (may be tied to BAUDOUT pin 15).
Received Serial Data In from the communications link (Peripheral device, modem or data set).
Transmitted Serial Data Out to the communication link. The SOUT signal is set to a (logic 1) marking condition upon a MASTER RESET.
When CS0 and CS1 are high, and \(\overline{\mathrm{CS} 2}\) is low, chip is selected. Selection is complete when the address strobe \(\overline{\mathrm{ADS}}\) latches the chip select signals.

BAUDOUT
( clock signal for the transmitter section of the WD8250. The clock rate is equal to the oscillator frequency divided by the divisor loaded into the divisor latches. The BAUDOUT signal may be used to clock the receiver by tying to (pin 9) RCLK.

XTAL 1
XTAL 2 DOSTR DOSTR
VSS
\(\overline{\text { DISTR }}\)
DISTR
DDIS
CSOUT
\(\overline{\mathrm{ADS}}\)
\(\overline{\text { OUT2 }}\)
\(\overline{\text { OUT2 }}\)
\(\overline{\text { DTS }}\)
\(\overline{\text { OUT1 }}\)
\(\overline{\text { MR }}\)
\(\overline{\overline{C T S}}\)
\(\overline{\text { RSLD }}\)
\(\overline{\mathbf{R I}}\)
VCC

These pins connect the crystal or signal clock to the WD8250 baud rate divisor circuit. See Fig. 3 and Fig. 4 for circuit connection diagrams.
When the chip has been selected, a low DOSTR or high DOSTR will latch data into the selected WD8250 register (a CPU write). Only one of these lines need be used. Tie unused line to its inactive state. \(\overline{\text { DOSTR }}\) - high or DOSTR - low. System signal ground.
When chip has been selected, a low DISTR or high DISTR will allow a read of the selected WD8250 register (a CPU read). Only one of these lines need be used. Tie unused line to its inactive state. DISTR - high cr DISTR - low.
Output goes low whenever data is being read from the WD8250. Can be used to reverse data direction of external transceiver. Output goes high when chip is selected. No data transfer can be initiated until CSOUT is high.
When low, provides latching for Register Select (A0, A1, A2,) and Chip Select (CS0, CS1, \(\overline{\text { CS2 }}\) )
NOTE: The rising edge ( \(\dagger\) ) of the ADS signal is required when the Register Select (A0, A1, A2) and the Chip Select (CSO, \(\mathrm{CS} 1, \overline{\mathrm{CS} 2}\) ) signals are not stable for the duration of a read or write operation. If not required, the \(\overline{\mathrm{ADS}}\) input can be tied permanently low.
These three inputs are used to select a WD8250 internal register during a data read or write. See Table below.

No Connect
Output goes high whenever an enabled interrupt is pending.
User-designated output that can be programmed by Bit 3 of the modem control register \(=1\), causes \(\overline{\text { OUT2 }}\) to go low. Output when low informs the modem or data set that the WD8250 is ready to transmit data. See Modem Control Register. Output when low informs the modem or data set that the WD8250 is ready to communicate.

User designated output can be programmed by Bit 2 of Modem Control Register \(=1\) causes \(\overline{\text { OUT1 }}\) to go low.
When high clears the registers to states as indicated in Table 1.
Input from DCE indicating remote device is ready to transmit. See Modem Control Register.
Input from DCE used to indicate the status of the local data set. See Modem Control Register.
Input from DCE indicating that it is receiving a signal which meets its signal quality conditions. See Modem Control Register. Input, when low, indicates that a ringing signal is being received by the modem or data set. See Modem Control Register. +5 Volt Supply.
10) 5720 MOUSE CONTROL 318087-01

\begin{tabular}{ccl} 
& & \\
PIN & SIGNAL NAME & PAD \(T Y P E\) \\
1 & VDD & \\
2 & NBDACK0 & INP \\
3 & BA3 & INP \\
4 & BA2 & INP \\
5 & BA1 & INP \\
6 & BA0 & INP \\
7 & PSCLK & INP \\
8 & NRESET & INP Schmitt trigger \\
9 & RS0 & INP \\
10 & PNWAIT & INP with pullup \\
11 & RS1 & INP \\
12 & IOCHRDY & OUT open drain \\
13 & RS2 & INP \\
14 & BD0 & I/O with pullup \\
15 & BD1 & I/O with pullup \\
16 & BD2 & I/O with pullup \\
17 & BD3 & I/O with pullup \\
18 & VSS & \\
19 & VSS & \\
20 & BD4 & I/O with pullup \\
21 & BD5 & I/O with pullup \\
22 & BD6 & I/O with pullup \\
23 & BD7 & I/O with pullup \\
24 & PNBDACK2 & INP \\
25 & NIDIR & OUT \\
26 & NOVID & OUT open drain with pullup \\
27 & NBR & INP Schmitt trigger with pullup \\
28 & PNMONO & INP with pullup \\
29 & NBM & INP Schmitt trigger with pullup \\
30 & NBL & INP Schmitt trigger with pullup \\
31 & HQ & INP Schmitt trigger with pullup \\
31 & HP & INP Schmitt trigger with pullup \\
33 & VQ & INP Schmitt trigger with pullup \\
34 & VP & INP Schmitt trigger with pullup \\
& &
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 35 & VDD & \\
\hline 36 & M16 & INP Schmitt trigger \\
\hline 37 & IRQ2 & OUT tristate \\
\hline 38 & IRQ3 & OUT tristate \\
\hline 39 & IRQ4 & OUT tristate \\
\hline 40 & IRQ6 & OUT tristate \\
\hline 41 & PIRQ6IN & INP \\
\hline 42 & DRQ2 & OUT tristate \\
\hline 43 & PDRQ2IN & INP \\
\hline 44 & DVRSEL2 & OUT \\
\hline 45 & DRVSEL1 & OUT \\
\hline 46 & FDCRESET & OUT \\
\hline 47 & NCSRTC & OUT \\
\hline 48 & NCSHDC & OUT \\
\hline 49 & NCSFDCXTR & OUT \\
\hline 50 & PNCSLDOR & OUT \\
\hline 51 & PNCSFDC & OUT \\
\hline 52 & VSS & \\
\hline 53 & PTEST & INP \\
\hline 54 & PNCSCOM & OUT \\
\hline 55 & PNCSLPT & OUT \\
\hline 56 & NIOWDLY & OUT \\
\hline 57 & NIORDLY & OUT \\
\hline 58 & NCOMOUT & INP Schmitt trigger \\
\hline 59 & PCOMINT & INP Schmitt trigger \\
\hline 60 & PNBIOWC & INP \\
\hline 61 & BAEN & INP \\
\hline 62 & PNBIORC & INP \\
\hline 63 & BA9 & INP \\
\hline 64 & BA8 & INP \\
\hline 65 & BA7 & INP \\
\hline 66 & BA6 & INP \\
\hline 67 & BA5 & INP \\
\hline 68 & BA4 & INP \\
\hline
\end{tabular}

Schematic \#313056, Rev. C
Sheet 1 of 12





1



Schematic \#313056, Rev. C







APPENDIX A POWER SUPPLY SECTION
- PC40-111 POWER SUPPLY SCHEMATIC (VDE, BS1, SEV, 5AA)
- PC40-111 POWER SUPPLY SCHEMATIC (CSA, UL)

INFORMATION IN THIS SECTION IS FOR REFERENCE ONLY. COMMODORE WILL NOT SUPPLY COMPONENT PARTS FOR OEM ASSEMBLIES.

PC40-111 POWER SUPPLY 390269
\begin{tabular}{|l|l|l|}
\multicolumn{1}{c}{ Input Requirements } & \multicolumn{1}{c}{ VDE, BS1 } & \multicolumn{1}{c|}{ CSA, UL } \\
\hline AC INPUT Parameter & \multicolumn{1}{c}{\(\mathbf{3 9 0 2 6 9 - 0 1}\)} & \multicolumn{1}{c|}{\(\mathbf{3 9 0 2 6 9 - 0 2}\)} \\
\hline Voltage & 230 VAC & 110 VAC \\
Voltage Range & \(180-270 \mathrm{VAC}\) & \(90-135 \mathrm{VAC}\) \\
Frequency (Hz) & 50 Hz & \(50-60 \mathrm{~Hz}\) \\
Surge Protection & \(3 \mathrm{KV}, 25 \mathrm{~A}\) for 30 usec & \(3 \mathrm{KV}, 25 \mathrm{~A}\) for 30 usec \\
(maximum) & & 40 A for \\
\hline Inrush Current & & 30 usec \\
\hline (maximum) & & \\
\hline
\end{tabular}


BACK VIEW


Connector CN1 : CPU
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & AWG & COLOR & LENGTH (mm) \\
\hline 1 & PWR GOOD & 18 & BRN & \(150.0 \pm 10 \%\) \\
2 & \(-12 V\) & 18 & RED & \(150.0 \pm 10 \%\) \\
3 & \(+12 V\) & 18 & ORG & \(150.0 \pm 10 \%\) \\
4 & GND & 16 & BLU & \(150.0 \pm 10 \%\) \\
5 & GND & 16 & BLU & \(150.0 \pm 10 \%\) \\
6 & \(+5 V\) & 14 & YEL & \(150.0 \pm 10 \%\) \\
\hline
\end{tabular}

Connector CN1 (Recommended)
\begin{tabular}{|c|c|c|c|}
\hline Vendor & Housing & Pin & Remarks \\
\hline AMP & \(350715-1\) & \(350552-1\) & MATE-n-LOK \\
\hline BURNDY & UPH 600 & UHM2200 & - \\
\hline
\end{tabular}

Connector CN2 : HD 1
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & AWG & COLOR & LENGTH (mm) \\
\hline 1 & +12 V & 18 & ORG & \(330.0 \pm 20 \%\) \\
2 & GND & 18 & BLU & \(330.0 \pm 20 \%\) \\
3 & GND & 18 & BLU & \(330.0 \pm 20 \%\) \\
4 & \(+5 V\) & 18 & YEL & \(330.0 \pm 20 \%\) \\
\hline
\end{tabular}

Connector CN2 (Recommended)
\begin{tabular}{|c|c|c|c|}
\hline Vendor & Housing & Pin & Remarks \\
\hline AMP & \(1-480424-0\) & \(611117-1\) & MATE-n-LOK \\
\hline J.S. TERM & LCP-04 & SLC21T2.0 & - \\
\hline
\end{tabular}

\section*{NOTE: FOR REFERENCE ONLY, - COLOR CODES AND SPECIFICATIONS MAY CHANGE.}

Connector CN3 : FDD 1
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & AWG & COLOR & LENGTH (mm) \\
\hline 1 & +12V & 18 & ORG & \(330.0 \pm 20 \%\) \\
2 & GND & 18 & BLU & \(330.0 \pm 20 \%\) \\
3 & GND & 18 & BLU & \(330.0 \pm 20 \%\) \\
4 & \(+5 V\) & 18 & YEL & \(330.0 \pm 20 \%\) \\
\hline
\end{tabular}

Connector CN3 (Recommended)
\begin{tabular}{|c|c|c|c|}
\hline Vendor & Housing & Pin & Remarks \\
\hline AMP & \(1-480424-0\) & \(611117-1\) & MATE-n-LOK \\
\hline J.S. TERM & LCP-04 & SLC21T2.0 & - \\
\hline
\end{tabular}

Connector CN4 = FDD 2
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & SIGNAL & AWG & COLOR & LENGTH (mm) \\
\hline 1 & +12V & 18 & ORG & \(150.0 \pm 10 \%\) \\
2 & GND & 18 & BLU & \(150.0 \pm 10 \%\) \\
3 & GND & 18 & BLU & \(150.0 \pm 10 \%\) \\
4 & \(+5 V\) & 18 & YEL & \(150.0 \pm 10 \%\) \\
\hline
\end{tabular}

NOTE: Cable CN4 shall be daisy-chained from connector CN3.

\section*{Connector CN4 (Recommended)}
\begin{tabular}{|c|c|c|c|}
\hline Vendor & Housing & Pin & Remarks \\
\hline AMP & \(1-480424-0\) & \(611117-1\) & MATE-n-LOK \\
\hline J.S. TERM & LCP-04 & SLC21T2.0 & - \\
\hline
\end{tabular}

\section*{FOR REFERENCE ONLY}


PC40-III POWER SUPPLY (VDE, BS1, SEV, SAA)

\section*{FOR REFERENCE ONLY}


PC40-III POWER SUPPLY (CSA, UL)

\section*{APPENDIX B}

\section*{DISK DRIVE SECTION}

\section*{- PC40-III 40MB HARD DRIVE}
- PC40-III Hard Drive PN \#313065-01

Vendor : Quantum
Model : Prodrive 40AT
Reprinted with Permission of Quantum Corp. All rights reserved.

\section*{- PC40-III FLOPPY DISK DRIVE}
- PC40-III Floppy Disk Drive PN \#380825-02

Vendor : Chinon
Model : FZ506
Reprinted with Permission of Chinon America Inc. All rights reserved.
- 910, 920 ADD ON NOTES

\section*{INFORMATION IN THIS SECTION IS FOR REFERENCE ONLY. COMMODORE WILL NOT SUPPLY COMPONENT PARTS FOR OEM ASSEMBLIES.}

The information included in this section is for reference only. Vendors are subject to change without notice.
Commodore service will provide alignment procedures and test diagnostics to authorized service centers for field repairs. The drive exchange program will be in effect and Commodore service will not provide discrete components for field replacement.

\section*{PC40-III HARD DRIVE 313065-01}

\section*{GENERAL DESCRIPTION}

The Quantum ProDrive Series \({ }^{\mathrm{TM}}\) is a family of ten \(31 / 2\)-inch form factor hard disk drives using non-removable rigid disk platters as storage media. These drives feature formatted capacities ranging from 42 to 168 megabytes and a variety of interfaces. This manual covers the ProDrive \({ }^{\text {TM }} 40\) AT and ProDrive 80AT, which feature an IBM PC-AT \({ }^{\circledR}\) embedded controller and are available with or without an adapter board. With the adapter board, the ProDrive 40AT/80AT can plug directly into a 16 -bit expansion slot in an IBM PC AT or compatible personal computer. Without the adapter board, the ProDrive 40AT/80AT is compatible with other AT-Bus architectures and can be plugged into an embedded AT adapter or into an existing adapter board in a PC AT compatible.
The ProDrive 40AT features 42 megabytes of formatted capacity on two disks with three movable heads; the ProDrive 80AT provides 84 megabytes of formatted capacity on three disks with six movable heads. Media defects and error recovery are efficiently managed within these products and can be fully transparent to the user. The ProDrive Series drives feature an innovative design using an integrated controller, minimum number of parts, and close control of product quality during manufacture, resulting in low cost, highly reliable products.

NOTE: Throughout this manual, ProDrive 40AT/80AT or ProDrive will refer to either the ProDrive 40AT or the ProDrive 80AT. ProDrive 40AT and ProDrive 80AT will be used to refer specifically to the 42 and 84 megabyte versions, respectively.

\section*{SPECIFICATIONS}

Key features of the ProDrive 40AT/80AT include:
- Formatted storage capacity of 42 or 84 megabytes
- Industry standard \(31 / 2\)-inch form factor
- 19 millisecond average access time
- Data transfer rate up to 4.0 megabytes/second using programmed I/O
- 64K-byte look-ahead DisCache \({ }^{\circledR}\)
- 48-bit computer generated Error Correcting Code (ECC) with 11-bit burst correction capability
- Automatic retry for read disk errors
- Transparent defect mapping
- High-performance in-line defective sector skipping and reassignment of new defective sectors without need to reformat
- Patented AIRLOCK \({ }^{\circledR}\) automatic shipping lock and dedicated landing zone
- Read/Write with \(1: 1\) interleave operation
- Emulation of IBM PC AT task file register and all AT fixed disk commands
- Ability to daisy-chain two drives on the interface

\section*{PHYSICAL SPECIFICATIONS}

\section*{Environmental Limits}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Ambient Temperature -} & & Non-Operating: & \begin{tabular}{l}
\(-40^{\circ} \mathrm{F}\) to \(140^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.\) to \(\left.65^{\circ} \mathrm{C}\right)\) \\
\(42^{\circ} \mathrm{F} / \mathrm{hr}\left(20^{\circ} \mathrm{C} / \mathrm{hr}\right)\) gradient
\end{tabular} \\
\hline & & Operating: & \(39^{\circ} \mathrm{F}\) to \(122^{\circ} \mathrm{F}\left(4^{\circ} \mathrm{C}\right.\) to \(\left.50^{\circ} \mathrm{C}\right)\) \(23^{\circ} \mathrm{F} / \mathrm{hr}\left(10^{\circ} \mathrm{C} / \mathrm{hr}\right)\) gradient \\
\hline \multirow[t]{2}{*}{Ambient Relative Humidity} & - & Non-Operating: & \begin{tabular}{l}
\(5 \%\) to \(95 \%\) without condensation \\
Maximum wet bulb \(=115^{\circ} \mathrm{F}\left(46^{\circ} \mathrm{C}\right)\)
\end{tabular} \\
\hline & & Operating: & \begin{tabular}{l}
\(8 \%\) to \(85 \%\) without condensation \\
Maximum wet bulb \(=79^{\circ} \mathrm{F}\left(26^{\circ} \mathrm{C}\right)\)
\end{tabular} \\
\hline Altitude (relative to sea level) & - & Non-Operating: Operating: & \[
\begin{aligned}
& -200(-60 \mathrm{M}) \text { to } 40,000 \mathrm{ft} .(12 \mathrm{~km}) \\
& -200(-60 \mathrm{M}) \text { to } 10,000 \mathrm{ft} .(3 \mathrm{~km})
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
© Copyright 1988, Quantum Corporation. All rights reserved.
ProDrive \({ }^{\mathrm{CN}}\) and ProDrive Series \({ }^{1 \mathrm{~T} / 1}\) are trademarks of Quantum Corporation AIRLOCK \({ }^{(®)}\) and DisCache \({ }^{(®)}\) are registered trademarks of Quantum Corporation Printed in U.S.A.
}

\section*{Mechanical Dimensions (Exclusive of Faceplate)}
```

Height = 1.625 in. (41.3 mm)
Width = 4.0 in. (101.6 mm)
Depth = 5.75 in. (144.9 mm)
Weight = 1.9 lb. (0.88 kg)

```

\section*{Heat Dissipation}

Average Power Consumption (idle): 8 Watts (27.3 BTU/Hr)
Typical Power Consumption ( \(30 \%\) Seeking):
8 Watts (27.3 BTU/Hr)
9Watts (30.7 BTU/Hr)

\section*{Shock and Vibration}

The table below lists specified levels for shock and vibration applied to any of the three mutually perpendicular axes (the principal drive base axes). The term 'operating'" implies that the drive will be fully functional while being subjected to the shock or vibration level listed during operation. "Non-operating" implies that there will be no change in performance once the drive is powered up after being subjected to the listed shock or vibration in the powered-down (non-operating) condition.

Vibration and Shock Specification
Operating
Non-Operating
\begin{tabular}{lcc}
\hline VIBRATION: & 0.50 G & 2.00 G \\
\begin{tabular}{l} 
5-500 Hz Sine Wave (Peak to Peak) \\
1 Oct/Min Sine Sweep
\end{tabular} & \(10 \mathrm{G}(1\) soft error/shock) & 60 G \\
\hline \begin{tabular}{l} 
SHOCK: \\
\(1 / 2\) Sine Wave of \\
11 msec Duration (10 hits maximum)
\end{tabular} & \((6 \mathrm{G} \mathrm{No}\) soft errors) & \\
\hline
\end{tabular}

In addition, the ProDrive as packaged in the shipping container will withstand drops onto a concrete surface from 48 inches on all surfaces, six edges and three corners. It will withstand vibration applied to the container of \(0.5 \mathrm{G}, 5-100 \mathrm{~Hz}\) ( 0 to Peak) and \(1.5 \mathrm{G}, 100-500 \mathrm{~Hz}\) ( 0 to Peak).

\section*{PERFORMANCE SPECIFICATIONS}

\section*{Capacity}
\begin{tabular}{lcc} 
& ProDrive 40AT & ProDrive 80AT \\
\hline Formatted capacity (MB) & \(42^{*}\) & \(84^{*}\) \\
Number of 512 byte sectors & 82,029 & 164,058
\end{tabular}
*40, and 80 megabytes, respectively when a megabyte is defined as \(2^{20}\) bytes
Data Transfer Rates Buffer to AT-Bus - Up to 4.0 Mbytes/second using programmed I/O
Disk to Buffer - Up to 1.25 Mbytes/second in bursts
Seek Times/Miscellaneous Times

TYPICAL NOMINAL CONDITION

MAXIMUM
NOMINAL
CONDITION

WORST CASE CONDITION
DESCRIPTION
Single Track Seek (msec) 6
\begin{tabular}{|lccc|}
\hline Single Track Seek (msec) & 6 & 7 & 7 \\
\hline Average Seek (msec) & 19 & 21 & 23 \\
\hline \(1 / 3\) Stroke Seek (msec) & 20 & 23 & 25 \\
\hline Full Stoke Seek (msec) & 35 & 40 & 45 \\
\hline Average Rotational Latency (msec) & 8.2 & 8.2 & 8.2 \\
\hline Sequential Head Switch (msec) & 3.0 & 3.0 & 3.0 \\
\hline Power-Up Time (sec) & 13 & 15 & 18 \\
\hline
\end{tabular}

NOTES: Quoted seek times include head settling time but do not include command overhead or latency time. Seek time is the time required for the actuator to seek and settle on track.
Seek times are measured by averaging 1000 seeks of the indicated length. Average seek time is the average of 1000 random seeks. In the rare occurrence of a seek error, any individual seek may take up to 5 seconds for recovery.
Sequential head switch time is the time required for the head to move from the end of the last sector on a track to the beginning of the next sequential sector, located on the next track, same cylinder. This time is fixed by the track skewing feature of the drive. (See Appendix B.)
Power-up time is the time from the supply voltages reach operating range to the time the drive is able to accept all commands.

Nominal conditions are defined as \(25^{\circ} \mathrm{C}\) ambient temperature, nominal supply voltages, and no applied shock or vibration. Worst case conditions are defined as worst case extremes of temperature and supply voltages.

\section*{Media Quality}

The ProDrive features defect management, which eliminates the need to manually indentify defects. Defect management is completely transparent to the user. See Appendix C for a detailed description of the ProDrive's defect handling procedure and ECC capability.

\section*{Error Rates}
Random Data Errors (2):
1 error per \(10^{10}\) bits read (maximum)
Defect Data Errors (3):
1 error per \(10^{12}\) bits read (maximum)
Unrecoverable Data Errors (4):
1 error per \(10^{14}\) bits read (maximum)
Seek Errors (5):
1 error per \(10^{6}\) seeks (maximum)

\section*{Error rates are defined as follows:}
1) A data error is one (1) sector read incorrectly. Data error rates are defined as average rates measured over at least 1000 different sectors under any of the specified conditions except applied shock or vibration.
2) Random errors are those which do not exhibit a repeating error pattern, i.e, the error does not occur twice in a row within a specified number of retry reads; the default is eight. (Retries are terminated once data is read correctly.) The sectors will not be automatically reallocated since the errors are probably not due to media defects.
3) Defect errors are those which exhibit a repeating error pattern, i.e., the error occurs twice in a row within eight retry reads, and cannot be read without error up to that point. Such errors are likely due to media defects.
4) Unrecoverable errors are those whose final retry error pattern is uncorrectable using ECC: retry reads are terminated by either a repeating error pattern, or eight attempts without reading correctly.
5) A seek error is any seek in which the drive does not locate the desired cylinder, or any seek in which the drive must go through a full recalibration routine to locate the desired cylinder. A full recalibration takes approximately five seconds.

FUNCTIONAL SPECIFICATIONS
PHYSICAL FORMAT
\begin{tabular}{|lrr|}
\multicolumn{1}{l}{ ProDrive 40AT } & ProDrive 80AT \\
\hline Nom Rotational Speed (RPM) & \(3,662 \pm 0.3 \%\) & \(3,662 \pm 0.3 \%\) \\
\hline Max Recording Density (bpi) & 22,055 & 22,055 \\
\hline Max Flux Density (fci) & 14,700 & 14,700 \\
\hline Track Density (tpi) & 1,000 & 1,000 \\
\hline Data Cylinders & 834 & 834 \\
\hline Data Tracks & 2,502 & 5,004 \\
\hline R/W Heads & 3 & 6 \\
\hline Disks & 2 & 3 \\
\hline Encoding Scheme & RLL 2,7 & RLL 2,7 \\
\hline
\end{tabular}

\section*{LOGICAL FORMAT}

The logical layout is how the drive appears to an AT-Bus system.
\begin{tabular}{|lrr|}
\multicolumn{1}{c}{} & ProDrive 40AT & ProDrive 80AT \\
\hline Data Cylinders & 965 & 965 \\
\hline Sectors/Track & 17 & 17 \\
\hline R/W Heads & 5 & 10 \\
\hline
\end{tabular}

\section*{RELIABILITY SPECIFICATIONS}

MTBF (Mean Time Between Failure):
PM (Preventative Maintenance):
MTTR (Mean Time To Repair):
Start/Stop:
\(50,000 \mathrm{POH}\) (Power On Hours) typical usage
Not required
30 minutes
10,000 cycles

\section*{ACOUSTICS}

Idle Mode: 45 dBa maximum at 1 foot in any direction


ProDrive Mechanical Dimensions

MOUNTING/DIMENSIONS (DIMENSIONS EXCLUSIVE OF FACEPLATE)
The drive may be mounted in any orientation.
Clearance from the drive to any other surface (except shock mount brackets or faceplate) should be 0.10 inch minimum.
HEIGHT 1.625 in .41 .3 mm
WIDTH \(\quad 4.0 \mathrm{in}\). \(\quad 101.6 \mathrm{~mm}\)
DEPTH 5.75 in. 146.1 mm WEIGHT \(\quad 1.9 \mathrm{lb} . \quad 0.88 \mathrm{~kg}\)


DIMENSIONS ARE IN MILLIMETERS; SCREW SIZE IS 6-32

PC40-III HARD DRIVE

\section*{POWER REQUIREMENTS}

No damage or loss of data occurs if power is applied or removed in any order or manner, except that data may be lost in the sector being written to at the time of the power loss. This includes opening up or shorting out either voltage or return line, and transient voltages \(+10 \%\) to \(-100 \%\) from nominal, while powering up or down.
\begin{tabular}{lll} 
VOLTAGE & \(\mathbf{+ 1 2 V}\) & \(+\mathbf{5 V}\) \\
\(\quad\) NOMINAL & +12 V & +5 V \\
TOLERANCE & \(\pm 10 \%\) & \(\pm 5 \%\) \\
CURRENT & & \\
TYPICAL (IDLE) & 0.5 A & 0.5 A \\
TYPICAL (SEEKING) & 0.8 A & 0.6 A \\
MAXIMUM (POWER-UP) & 1.6 A & 0.65 A \\
RIPPLE AND NOISE (MAXIMUM) & \(100 \mathrm{mVp}-\mathrm{p}\) & \(50 \mathrm{mVp}-\mathrm{p}\) \\
AVERAGE POWER CONSUMPTION & 8 W & \\
TYPICAL POWER CONSUMPTION \((30 \%\) SEEK) & 9 W & \\
MAXIMUM POWER & 11 W &
\end{tabular}

\section*{POWER RESET LIMITS}

When powering up, the drive remains reset (inactive) until both supplies reach the upper threshold value. When powering down, the drive becomes reset when either supply voltage drops below the lower threshold value. Hysteresis is 50 m V minimum.
\begin{tabular}{rl}
5 V & 4.50 V TO 4.20 V \\
12 V & 10.4 V TO 9.70 V
\end{tabular}

PC40-III Power Connector - HD
\begin{tabular}{|c|l|}
\hline PIN & Signal \\
\hline 1 & +12 Volts \\
2 & Ground \\
3 & Ground \\
4 & +5 Volts \\
\hline
\end{tabular}

\section*{DC POWER CONNECTOR}

The DC power connector ( J 1 ) is a 4-pin DuPont Connector (SK 20055-000) mounted on the back edge of the Printed Circuit Board (PCB) near the AT-Bus connector. See Figure 1. The recommended mating connector (P2) (AMP P/N 1-480424-0) utilizes AMP pins [P/N 350078-4 (strip) or P/N 61173-4 (loose piece)]. J1 pins are labeled on the connector.
```

Pin 1 +12 volts DC
Pin 2 +12 volt return (ground)
Pin 3+5 volt return (ground)
Pin 4 +5 volts DC

```

NOTE: Pins 2 and 3 are connected on the drive.


FIGURE 1 - DC POWER CONNECTOR (J1)

\section*{AT-BUS INTERFACE CONNECTOR}

One AT-Bus interface cable connector (J2) is required for the ProDrive. Details of the signals required can be found in AT-Bus Interface and Commands.
Connection to J2 is through a 40-pin Universal Header connector. A connector sketch is shown in Figure 2. A key slot is provided to prevent incorrect installation of the mating connector. The recommended mating connector for J 2 is xxxxx.
NOTE: Unkeyed mating connectors should not be used due to the possibility of plugging the connector in backwards.


\section*{}

FIGURE 2 - AT-BUS INTERFACE CONNECTOR (J2)

\section*{JUMPER OPTIONS}

Configuration of a ProDrive 40AT/80AT disk drive varies depending on the system in which it is to be installed. This section describes the user-selectable hardware options available on the disk drive PCB. These jumpers should be set prior to installation. Figure 3 identifies the location of the shorting plugs and terminators on the drive PCB.

NOTE: Additional jumper options are provided on the adapter board for systems in which the adapter board is used with the drive.


FIGURE 3 - Shorting Plug Locations on the Drive PCB

\section*{SELF SEEK TEST OPTION}

The self seek test continuously exercises the actuator of the drive. When shorting plug option SS is installed, the drive will perform random seek patterns, verifying track IDs after every seek. The pattern will repeat as long as power is applied to the drive, until the shorting plug is removed, or until an error has occurred.
The ProDrive is sent from the factory with shorting plug SS not installed (Self Seek Test disabled).

\section*{DRIVE SELECT}

Two drives can be daisy-chained on the AT-Bus interface. When two drives are attached, one must be configured as the primary drive, and the other as the secondary drive, using the Drive Select (DS) jumper. With the DS shorting plug installed, the drive is configured as the primary drive (Drive 0 ); with no shorting plug on jumper DS, the drive is configured as the secondary drive (Drive 1).
The ProDrive is sent from the factory with the DS shorting plug installed (Drive 0)

\section*{RESERVED JUMPER}

The third jumper is reserved for future use.

\section*{FACEPLATE LED OPERATION}

The green LED located on the faceplate illuminates when the drive is executing a command. It lights at the beginning of a command and does not go off until the command is completed or aborted.

\section*{ADAPTER BOARD}

This section is relevant only for systems which implement the ProDrive AT-Bus drive with the adapter board.

\section*{ADAPTER BOARD JUMPER OPTIONS}

Five jumpers labeled \(\mathbf{J} 2\) through J 6 are provided on the adapter board; the functions of these jumpers are described below. See Figure for the locations of the jumpers on the PCB.
J2 - Allows the drives interrupt logic to control IRQ14. This jumper is provided for compatibility with systems whose BIOS does not read the STATUS register when the drive issues an interrupt.
- for systems that do not read the STATUS register, jumper from the center pin of J2 to E4;
- for systems that do read the STATUS register, jumper from the center pin of J2 to E3.

J3 - Always open. Option for grounding pin \#34 of the drive interface.
J4 - Forwards IO CH RDY to the drive for use with systems running Chips \& Technologies chip set.
J5 - Secondary board enable.
J6 - For manufacturers use only; do not install a jumper.

\section*{INTRODUCTION}

The ProDrive 40AT/80AT uses the standardized IBM PC AT Bus interface and is available with or without an Adapter Board. With the Adapter Board, the ProDrive can plug directly into a 16-bit expansion slot on an AT compatible computer. Without the Adapter Board, the drive is compatible with other AT-Bus architectures and can be plugged into an embedded AT Adapter or existing Adapter Board.

\section*{ADAPTER BOARD}

The Adapter Board is an IBM PC AT I/O bus-compatible interface. The I/O extended bus connector is required for data bus D8-D15, IRQ14 and IO CS16. The Adapter Board buffers data and control signals between the drive and the host system, and performs address decoding of the Host Address Bus. The Task File Registers, which accept commands from the host system BIOS, are located on the drive itself.
NOTE: Some host systems will not read the STATUS register after the drive issues an interrupt. In such cases, the interrupt will not be acknowledged. A jumper option is provided on the Adapter Board to overcome this problem. This jumper allows interrupts to be controlled by the drive's interrupt logic. See jumper option J2.

\section*{AT-BUS INTERFACE CHARACTERISTICS}

The AT-Bus interface supports one or two hard disk drives per adapter board, and will accomodate two adapter boards for a total of four drives. Regardless of the number of drives, there is a master/slave relationship between the host and the drive. The drive always maintains control of the bus; there is no arbitration.

\section*{ELECTRICAL CHARACTERISTICS}

All signals are TTL compatible with a logic one being greater than 2.0 volts but less that 5.25 volts, and a logic zero being greater than 0.0 volts but less than 0.7 volts.

\section*{AT-BUS INTERFACE SIGNALS}

The AT-Bus interface connector is a 40-pin shrouded connector with two rows of 20 male pins on 100 mil centers. The connecting cable is a 40 -conductor flat ribbon with a maximum length of 18 inches. Table 1 describes each signal on the AT-Bus interface. Refer to Table 1 for the AT-Bus interface pinouts and their relationship with the AT system bus.
NOTE: The direction Table 1 is in reference to the drive, i.e., IN means to the drive. PINS are in reference to the 40 -pin AT-Bus connector.
\begin{tabular}{|c|c|c|c|}
\hline SIGNAL NAME & DIR & PIN & DESCRIPTION \\
\hline - HOST RESET & IN & 1 & Reset signal from the host system; active low during system power-up. \\
\hline GROUND & & 2 & Ground between host system and drive. \\
\hline HOST DATA & I/O & 3-18 & 16-bit bi-directional data bus between the host and the drive. \\
\hline D0-D15 & & & D0-D15 are used to transfer 8-bit information for register and ECC READ/WRITE. Data Bit D7 is disabled when the host reads the digital input register. \\
\hline & & & These are tri-state lines with 24 mA drivers. \\
\hline GROUND & & 19 & Ground between host system and drive. \\
\hline KEY & & 20 & Unused pin for keying ribbon cable to the drive. \\
\hline - HOST IO CH RDY & OUT & 21 & Enables host wait state generation to lengthen the I/O read and write cycles. Driven low by the drive immediately upon detecting a valid I/) address select. \\
\hline GROUND & & 22 & Ground between host system and drive. \\
\hline - HOST IOW & IN & 23 & Write strobe. Clocks data from the OF - HOST to the drive over data lines D0-D7 and/or D8-D15 on the rising edge of HOST IOW. \\
\hline GROUND & & 24 & Ground between host system and drive. \\
\hline - HOST IOR & IN & 25 & Read strobe. Clocks data from the drive to host data lines D0-D7 and/or D8-D15 on the rising edge of -HOST IOR. \\
\hline GROUND & & 26 & Ground between host system and drive. \\
\hline RESERVED & & 27 & Reserved for future definition. \\
\hline HOST ALE & IN & 28 & Address Latch Enable from the host. Not currently used, but provided to maintain compatibility. \\
\hline RESERVED & & 29 & Reserved for future definition. \\
\hline GROUND & & 30 & Ground between host system and drive. \\
\hline HOST IRQ14 & OUT & 31 & Interrupt signal to the host. Active only when the drive is selected and the drive interrupt enable bit is high. Goes to a high impedance state when the drive is not selected or the interrupt enable bit is low. The interrupt is cleared upon receiving the next command, when the status register is read or when the drive is reset. \\
\hline - HOST IO CS16 & OUT & 32 & Informs the host that one of the drive registers has been enabled and that the drive is prepared to perform a 16 -bit I/O transer. Open collector output with 24 mA driver. \\
\hline HOST ADDR 1 & IN & 33 & Address line from the host to the drive that is used to select a register on the drive. \\
\hline GROUND & & 34 & Ground between host system and drive. \\
\hline HOST ADDR 0 & IN & 35 & Address line from the host to the drive that is used to select a register on the drive. \\
\hline HOST ADDR 2 & IN & 36 & Address line from the host to the drive that is used to select a register on the drive. \\
\hline - HOST CS0 & IN & 37 & Decoded address select from the host indicating that access to one of the 8 task file registers is desired. \\
\hline - HOST CS1 & IN & 38 & Decoded address select from the host indicating that access to one of the 3 diskette function registers is desired. \\
\hline - HOST SLAVE & OUT & 39 & Indicates the presence of a second drive. When this signal is low, a second drive is present. Open collector output with 24 mA driver. \\
\hline GROUND & & 40 & Ground between host system and drive. \\
\hline
\end{tabular}

\section*{AT SYSTEM BUS SIGNALS}

The table below presents the signals on the AT system bus that are used by the AT-Bus interface. You should refer to Figure for the AT-Bus interface pinouts and their relationship with the AT system bus.
NOTE: The direction in Table 2 is in reference to the host system, i.e., IN means to the host system. PINS are in reference to the 40 -pin AT system bus connector.

TABLE 2 - AT System Bus Pin Assignments
\begin{tabular}{llll} 
SIGNAL NAME & DIR & PIN & DESCRIPTION \\
\hline SA0-SA9 & OUT & A22-A31 & System address bus \\
SD0-SD15 & I/O & \begin{tabular}{l} 
A2-A9 \& \\
C11-C18
\end{tabular} & \begin{tabular}{l} 
System address bus
\end{tabular} \\
AEN & OUT & All & \begin{tabular}{l} 
Signal indicating a DMA address is on the system address bus. Active when \\
high.
\end{tabular} \\
- IOW & OUT & B14 & \begin{tabular}{l} 
Signals that the enabled I/O device should read the data on the data bus. \\
Active when low. \\
Signals that the enabled I/O device should gate data onto the system data \\
bus. Active when low. \\
Indicates a valid system address is available. Active when changing from \\
high to low. \\
SIOR
\end{tabular} \\
BALE & IN & D7 & \begin{tabular}{l} 
System interrupt request indicating an I/O device needs attention. Active \\
when changing low to high.
\end{tabular} \\
IRQ14 & OUT & B2 & \begin{tabular}{l} 
Used to reset or initialize system hardware at power up. Active when high.
\end{tabular} \\
RESET & IN & A10 & \begin{tabular}{l} 
Pulled low during a bus transaction by an enabled I/O device to lengthen \\
the read/write cycles. Open collector onto host bus.
\end{tabular}
\end{tabular}

AT-Bus Interface Pin Assignments

DISK CONNECTOR
\begin{tabular}{|c|c|c|c|c|}
\hline PIN NO & SIGNAL NAME & DIRECTION & PIN NO & SIGNAL NAME \\
\hline 1 & -HOST RESET & \(\longleftarrow \mathrm{INV}\) & B2 & RESET DRV \\
\hline 2 & GROUND & --- & --- & GROUND \\
\hline 3 & HOST DATA 7 & \(\rightarrow\) & A2 & SD7 \\
\hline 4 & HOST DATA 8 & \(\rightarrow\) & C11 & SD8 \\
\hline 5 & HOST DATA 6 & \(\leftrightarrow\) & A3 & SD6 \\
\hline 6 & HOST DATA 9 & \(\leftrightarrow\) & C12 & SD9 \\
\hline 7 & HOST DATA 5 & \(\leftrightarrow\) & A4 & SD5 \\
\hline 8 & HOST DATA 10 & \(\leftrightarrow\) & C13 & SD10 \\
\hline 9 & HOST DATA 4 & \(\leftrightarrow\) & A5 & SD4 \\
\hline 10 & HOST DATA 11 & \(\leftrightarrow\) & C14 & SD11 \\
\hline 11 & HOST DATA 3 & \(\leftrightarrow\) & A6 & SD3 \\
\hline 12 & HOST DATA 12 & \(\leftrightarrow\) & C15 & SD12 \\
\hline 13 & HOST DATA 2 & \(\leftrightarrow\) & A7 & SD2 \\
\hline 14 & HOST DATA 13 & \(\leftrightarrow\) & C16 & SD13 \\
\hline 15 & HOST DATA 1 & \(\rightarrow\) & A8 & SD1 \\
\hline 16 & HOST DATA 14 & \(\leftrightarrow\) & C17 & SD14 \\
\hline 17 & HOST DATA 0 & \(\leftrightarrow\) & A9 & SD0 \\
\hline 18 & HOST DATA 15 & \(\leftrightarrow\) & C18 & SD15 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{DISK CONNECTOR} & & \multicolumn{2}{|c|}{AT BUS CONNECTOR} \\
\hline PIN NO & SIGNAL NAME & DIRECTION & PIN NO & SIGNAL NAME \\
\hline 19 & GROUND & --- & --- & GROUND \\
\hline 20 & KEY & & & NO CONNECTION \\
\hline 21 & -HOST IO CH RDY & \(\longrightarrow\) & A10 & -IO CH RDY \\
\hline 22 & GROUND & --- & --- & GROUND \\
\hline 23 & -HOST IOW & - & B13 & -IOW \\
\hline 24 & GROUND & --- & --- & GROUND \\
\hline 25 & -HOST IOR & - & B14 & -IOR \\
\hline 26 & GROUND & --- & --- & GROUND \\
\hline 27 & RESERVED & & & NO CONNECTION \\
\hline 28 & HOST ALE & - & B28 & BALE \\
\hline 29 & RESERVED & & & NO CONNECTION \\
\hline 30 & GROUND & \(\xrightarrow{--}\) & --- & GROUND \\
\hline 31 & HOST IRQ14 & \(\rightarrow\) & D7 & IRQ14 \\
\hline 32 & -HOST IOCS16 & \(\rightarrow\) & D2 & -IOCS16 \\
\hline 33 & HOST ADDR 1 & \(\longleftarrow\) & A30 & SA1 \\
\hline 34 & GROUND & -- & --- & GROUND \\
\hline 35 & HOST ADDR0 & & A31 & SA0 \\
\hline 36 & HOST ADDR2 & - & A29 & SA2 \\
\hline 37 & -HOST CS0 & & & \\
\hline 38 & -HOST CS1 & & & \\
\hline 39 & -HOST SLV & & & \\
\hline 40 & GROUND & --- & --- & GROUND \\
\hline
\end{tabular}

NOTES: All grounds are connected together on the ground plane of the adapter board.
- HOST CS0, -HOST CS1 and -HOST SLV are generated on the adapter board; there are no directly related AT-Bus signals. \\ \section*{\section*{Recommended [1] \\ \section*{\section*{Recommended [1] \\ \\ Connectors} \\ \\ Connectors}

CABLE CONNECTOR DESCRIPTION

DC POWER PLUG
DC POWER PIN
I/O CONNECTOR

DISK DRIVE [2]
CONNECTOR
AMP 1-4807222-0
AMP 350079-4
BURNDY FRHL40R-2

HOST (CPU) [3]
CONNECTOR
AMP 1-480424-0
AMP 350078-4
BURNDY FRS40BD-8P
[1] THESE NUMBERS ARE FOR SIZE REFERENCE ONLY
[2] PROVIDED BY DRIVE VENDOR
[3] PROVIDED BY COMMODORE

\section*{I/O INTERFACE CIRCUIT}

NOTE: Wiring shall be ribbon cable or twisted pair.
DIMENSIONS ARE IN INCHES


GROUND CIRCUIT
NOTE: Wiring shall be ribbon cable or twisted pair.

\begin{tabular}{|c|c|c|c|}
\hline & CBM PART NUMBER & DESCRIPTION & VENDOR \\
\hline 03 & \(324594-02\) & TERMINAL 4.6 X 0.3 DIN 46247 & WEITKOWITZ 44113 \\
\hline 05 & \(903451-10\) & TERMINAL RING TONGUE \(\phi 4.3\) DIN 4623 & MOLEX AA \\
\hline 06 & \(905451-01\) & TERMINAL RING TONGUE \(\phi 3.2\) DIN 46234 & \\
\hline 07 & \(903733-10\) & LEAD WIRE & STRIPLENGTH 2 X 3 MM \\
\hline 08 & \(903753-10\) & LEAD WIRE AWG 18 BLACK L \(=60 \mathrm{MM}\) & \\
\hline 09 & \(906475-05\) & TUBEHEAT SHRINK & \\
\hline
\end{tabular}

PC40-III FLOPPY DISK DRIVE - 380825-01 (Dark Bezel); 380825-02 (Light Bezel)

\section*{SCOPE}

This specification describes \(5-1 / 4^{\prime \prime}\) double-sided 96-TPI minifloppy disk drive (hereafter abbreviated as FDD) CHINON FZ-506.

\section*{FEATURES}

The features of the FZ-506 are as follows:
(1) Large Capacity Up-to 1.6 M bytes

The FZ-506 is a double-sided, high-density, double-track type and its capacity is 1.6 M bytes, in unformatted mode. The read/write selection of the high density 1.6 M bytes, 96 TPI and double density 1 M bytes, 96 TPI disk can be carried out by changing either the motor speed ( \(360 \mathrm{rpm} / 300 \mathrm{rpm}\) ) or transfer rate ( 500 K BPS/300K BPS). In addition, as the data retrieval from 250 K bytes, 48 TPI disk to 500 K bytes, 96 TPI disk is possible, the former software packages can be read.
(2) Pop-up Mechanism

With the newly employed pop-up mechanism, the disk can be loaded/unloaded with ease, preventing mischucking at disk insertion.
(3) Low Power Consumption

As a newly designed LSI (C-MOS chip) is employed in the read/write and control circuits, high performance and low power consumption are achieved. In stand-by mode, power consumption is only 1.59 W , and in operation mode 3.81 W , making system design easy.
(4) Built-in Disk-in sensor

With the built-in disk-in-sensor, when no disk is loaded, the motor is stopped. This extends the motor service life and reduces power consumption. When chucking the disk, the DD motor is rotated temporarily to assure the centering of the disk. DISK CHANGE signal will be output by the sensor, also.
(5) Various Disk Readings

With the FZ-506, the various disk readings shown below are possible, existing software written in 48 TPI format can be used without any conversion.
\(\left.\)\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Disk Used } & \multicolumn{5}{|c|}{ Normal Density }
\end{tabular} \begin{tabular}{c} 
High \\
Density
\end{tabular} \right\rvert\,

\footnotetext{
* Data can be read by this drive, but data can not be read by a head made solely for 48 TPI use.
}

\section*{SPECIFICATIONS}

Specification (1)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{\multirow{2}{*}{Item}} & \multicolumn{4}{|c|}{CHARACTERISTIC} \\
\hline & & & \multicolumn{2}{|c|}{HIGH DENSITY} & \multicolumn{2}{|l|}{NORMAL DENSITY} \\
\hline \multicolumn{3}{|l|}{Recording mode} & FM & MFM & FM & MFM \\
\hline \multirow{6}{*}{} & \multirow{2}{*}{Unformatted} & Per disk & 833 KB & 1666 KB & 500 KB & 1000 KB \\
\hline & & Per track & 5.208 KB & 10.416 KB & 3.125 KB & 6.25 KB \\
\hline & \multirow{4}{*}{Form} & Per disk & 615 KB & 1229 KB & 368.640 KB & 737.280 KB \\
\hline & & Per track & 3840 B & 7680 B & 2304 B & 4608 B \\
\hline & & Number of sectors & \multicolumn{2}{|c|}{15} & \multicolumn{2}{|c|}{16} \\
\hline & & Per sector & 256 B & 512 B & 128 B & 256 B \\
\hline \multicolumn{3}{|l|}{Recording density} & 4935 BPI & 9870 BPI & 2961 BPI & 5922 BPI \\
\hline \multicolumn{3}{|l|}{Rate of data transfer} & 250K BPS & 500K BPS & 125K/150K BPS & \[
\begin{gathered}
250 K / 300 K \\
\text { BPS }
\end{gathered}
\] \\
\hline \multirow{5}{*}{} & \multicolumn{2}{|l|}{Power-on to ready time} & \multicolumn{4}{|c|}{0.5 sec or less} \\
\hline & \multicolumn{2}{|l|}{Single track seek time} & \multicolumn{4}{|c|}{3 msec} \\
\hline & \multicolumn{2}{|l|}{Average access time} & \multicolumn{4}{|c|}{94 msec} \\
\hline & \multicolumn{2}{|l|}{Settling time} & \multicolumn{4}{|c|}{15 msec} \\
\hline & \multicolumn{2}{|l|}{Average latency time} & \multicolumn{2}{|c|}{83.3 msec} & \multicolumn{2}{|l|}{\(100 \mathrm{msec} / 83.3 \mathrm{msec}\)} \\
\hline \multicolumn{3}{|l|}{Rotation speed} & \multicolumn{2}{|c|}{360 rpm} & \multicolumn{2}{|c|}{300/360 rpm} \\
\hline \multicolumn{3}{|l|}{Number of tracks} & \multicolumn{4}{|c|}{160} \\
\hline \multicolumn{3}{|l|}{Number of cylinders} & \multicolumn{4}{|c|}{80} \\
\hline \multicolumn{3}{|l|}{Track density} & \multicolumn{4}{|c|}{96 TPI} \\
\hline \multicolumn{3}{|l|}{Number of heads} & \multicolumn{4}{|c|}{2} \\
\hline \multicolumn{3}{|l|}{Number of index} & \multicolumn{4}{|c|}{1} \\
\hline \multirow[t]{4}{*}{} & \multirow[t]{2}{*}{Outer track} & Side 0 & \multicolumn{4}{|c|}{57.150 mm} \\
\hline & & Side 1 & \multicolumn{4}{|c|}{55.033 mm} \\
\hline & \multirow[t]{2}{*}{Inner track} & Side 0 & \multicolumn{4}{|c|}{36.248 mm} \\
\hline & & Side 1 & \multicolumn{4}{|c|}{34.131 mm} \\
\hline
\end{tabular}

Specification (2)
\begin{tabular}{|c|c|c|c|c|}
\hline Item & \multicolumn{4}{|c|}{Specification} \\
\hline Physical dimensions & \multicolumn{4}{|l|}{146 (W) \(\times 41\) (H) \(\times 193\) (D) mm} \\
\hline Weight & \multicolumn{4}{|l|}{approx. 1 kg} \\
\hline \multirow[b]{2}{*}{Power supply} & \multicolumn{4}{|l|}{\(D C+12 \mathrm{~V} \pm 5 \%\)} \\
\hline & \multicolumn{4}{|l|}{\(D C+5 \mathrm{~V} \pm 5 \%\)} \\
\hline \multirow{6}{*}{Power consumption} & & +5V & +12 V & POWER \\
\hline & Stand-by & 290 mA TYP. & 14 mA TYP. & 1.62 W TYP. \\
\hline & Read & 330 mA TYP. & 200 mA TYP. & 4.05 W TYP. \\
\hline & Write & 330 mA TYP. & 210 mA TYP. & 4.17 W TYP. \\
\hline & Seek & 260 mA TYP. & 440 mA TYP. & 6.58 W TYP. \\
\hline & Spindle Motor Starting current ( 0.5 sec . max.) & & 900 mA MAX . & \\
\hline \multirow{2}{*}{Ripple voltage allowance} & DC +12 V & \multicolumn{3}{|l|}{Less than \(150 \mathrm{mVp}-\mathrm{p}\) (including spike noise)} \\
\hline & DC + 5 V & \multicolumn{3}{|l|}{Less than \(100 \mathrm{mVp}-\mathrm{p}\) (including spike noise)} \\
\hline Noise & \multicolumn{4}{|l|}{Less than 55 phons (class A) (separated from the drive by 1 m )} \\
\hline \multirow[b]{2}{*}{Cabinet specifications} & Front panel & Material: ABS & \multicolumn{2}{|l|}{Color: Beige} \\
\hline & Front lever & Material: ABS & \multicolumn{2}{|l|}{Color: Beige} \\
\hline
\end{tabular}

\section*{Installation Conditions}
\begin{tabular}{|c|c|c|c|c|}
\hline Item & & & eci & ation \\
\hline Mounting position & \multicolumn{4}{|r|}{} \\
\hline \multirow{7}{*}{Environment conditions} & \multirow{3}{*}{Temperature} & During operation & \multicolumn{2}{|r|}{\(5 \sim 45^{\circ} \mathrm{C}\)} \\
\hline & & During non-operation & \multicolumn{2}{|r|}{\(0 \sim 50^{\circ} \mathrm{C}\)} \\
\hline & & During storage & \multicolumn{2}{|l|}{-20 ~ \(60^{\circ} \mathrm{C}\)} \\
\hline & \multirow{3}{*}{Humidity} & During operation & \multicolumn{2}{|l|}{20~80\% RH Maximum wet bulb temperature \(29^{\circ} \mathrm{C}\)} \\
\hline & & During non-operation & \multicolumn{2}{|l|}{5~90\% RH No dew condensation} \\
\hline & & During storage & \multicolumn{2}{|l|}{8~90\% RH No dew condensation} \\
\hline & \multicolumn{2}{|l|}{Temperature change} & \multicolumn{2}{|l|}{\(15^{\circ} \mathrm{C} / \mathrm{H}\)} \\
\hline \multirow{4}{*}{Vibration} & \multirow[t]{2}{*}{During operation} & \multicolumn{2}{|l|}{Continuous vibration} & \(\begin{aligned} \text { Amplitude Less than } 0.5 \mathrm{~mm} 5 & \sim 25 \mathrm{~Hz} \\ 0.25 \mathrm{G} 25 & \sim 100 \mathrm{~Hz}\end{aligned}\) \\
\hline & & \multicolumn{2}{|l|}{Single vibration} & Less than 10G (10 ms) \\
\hline & \multirow[t]{2}{*}{During non-operation and storage (W/Protect sheet)} & \multicolumn{2}{|l|}{Continuous vibration} & Amplitude Less than \(7 \mathrm{~mm} 5 \sim 9 \mathrm{~Hz}\)
\[
0.5 \mathrm{G} 9 \sim 100 \mathrm{~Hz}
\] \\
\hline & & \multicolumn{2}{|l|}{Single vibration} & Less than 30G (10 ms) \\
\hline Drop shock & \multicolumn{4}{|l|}{Fall height in packing State: 70 cm (corner: one time, sides: three times, flat surfaces: six times)} \\
\hline
\end{tabular}

Reliability
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Item} & Specification \\
\hline \multirow{3}{*}{Drive} & \multicolumn{2}{|l|}{MTBF} & \(10,000 \mathrm{POH}\) \\
\hline & \multicolumn{2}{|l|}{MTTR} & 0.5 H \\
\hline & \multicolumn{2}{|l|}{Drive life} & Five years \\
\hline \multirow{3}{*}{Error rate} & \multicolumn{2}{|l|}{Software errors} & \(10^{-9}\) times/bit \\
\hline & \multicolumn{2}{|l|}{Hardware errors} & 10-12 times/bit \\
\hline & \multicolumn{2}{|l|}{Seek errors} & 10-6 times/seek \\
\hline \multirow{5}{*}{Life} & \multirow{3}{*}{:} & Number of mountings of the media & 30,000 times or more \\
\hline & & Seek & 10,000,000 seeks or more \\
\hline & & Head & \(10,000 \mathrm{H}\) or more \\
\hline & \multirow[t]{2}{*}{-} & Number of identical track passes & \(3,000,000\) passes or more \\
\hline & & Number of mountings & 10,000 times or more \\
\hline
\end{tabular}

\footnotetext{
* Maintenance is not required under normal use conditions.
*1 Reference value
}

\section*{DIMENSIONS}


\section*{INTERFACE SIGNALS}

The interface signal has 12 input signal lines and 5 output signal lines.

\section*{Signal Voltage Levels}

The interface signal interfaces with the controller at the TTL level. For all signals, low is true. The I/O signal level into the drives have the following specifications.
(1) Input level

0 V to +0.40 V
High level +2.40 V to +5.25 V
Input impedance \(150 \Omega\)
(2) Output signal

Low level \(\quad 0 \mathrm{~V}\) to +0.40 V
High level \(\quad+5.25 \mathrm{~V}\) max. (by receiving the end terminator)
Output current (for low level) 48 mA (max.)
Output current (for high level) \(250 \mu \mathrm{~A}\) (max.)

\section*{Input Signals}
(1) DRIVE SELECT 0 to 3 signal lines

When one of these signal lines goes into low level, the drive corresponding to the signal line is selected and the I/O gate is opened. Up to four drives can be controlled using these four signal lines. The drive corresponding to one of the DRIVE SELECT 0 to 3 signal lines is determined by the position of the short plug in the drive.
(2) MOTOR ON signal line

This line controls the ON/OFF of the spindle motor. When this signal line is set to low level, the spindle motor revolves. When it is set to high level, it stops. 0.5 seconds is the required start up time of the spindle motor. The motor start operation is not executed when no disk is loaded.
This signal operates independently of the DRIVE SELECT signals.
(3) DIRECTION SELECT signal line

This signal determines the direction of movement of the head when a pulse is sent via the STEP signal line. When this signal line is set to low level and the STEP signal pulse is sent, the head moves towards the center of the disk. When it is set to high level and the STEP signal pulse is sent, the head moves away from the center.
The logic level of this signal should be held for at least 1 microsecond after the trailing edge of the STEP pulse.
(4) STEP signal line

This signal line moves the head. With the rise of a single low level pulse, this signal line changes from LOW level to HIGH level and the head moves one track in the direction determined by the DIRECTION SELECT signal.
However, this signal is not accepted when the FDD is in WRITE mode. The head is stabilized 20 ms after the trailing edge of the last STEP pulse, and the FDD is ready for data read/write operation.
(5) WRITE GATE signal line

This signal line specifies drive write and read status. When this signal line is set to low level, write enable status occurs and the data is stored on the disk surface by the WRITE DATA signal. When this signal line is set to high level, read status occurs.
After the writing operation, a period of 1.2 ms is necessary before a valid READ DATA signal appears on the interface.
(6) WRITE DATA signal line

Data written on the disk surface is transferred on the signal line. With the decline of the pulse sent to this signal line (when the signal line changes from the high level to the low level), data is written on the disk surface.
(7) SIDE SELECT signal line

This signal line selects the head.
When this signal line is set to high level, the side 0 head is selected; when it is set to low level, the side 1 head is selected.
Side 0 stands for the one-sided medium recording surface.
The selection is completed 100 microseconds after the change of the SIDE SELECT signal line, and read/write becomes possible.
(8) MODE SELECT signal line

This signal status selects either 1.6 M Byte mode or 1 M Byte mode.
The line can be configured in positive or negative logic by position of short plug.

\section*{Output Signals}
(1) INDEX signal line

Whenever the disk rotates once, this signal line outputs a low level pulse indicating the start of the track. A decline of the pulse signal (when this signal line changes from high level to low level) indicates the start of the track. However, the pulse is only output when the disk is inserted.
(2) TRACK 00 signal line

When this signal line is set to low level, the head is located at the track 00 position and the specific phase of the stepping motor is excited.
(3) WRITE PROTECT signal line

When this signal line is set to low level, the inserted disk cannot be written on. This signal line may also be set to low level even when no disk is inserted in the drive. The write function of the drive becomes inoperative when write-inhibited disk is inserted.
(4) READ DATA signal line

This signal line is used for the transfer of the pulse series read from the disk, in which clock pulses and data pulses are mixed. The negative-going edge (the moment of change from high level to low level) of the pulse output at this signal line indicates the readout data (clock and data pulses).
(5) READY signal line

When this output signal line is set to low level, the disk is inserted and the number of disk rotations is fixed.
When the READY signal is ON, read and write operations can be performed on the disk. Immediately after the MOTOR ON signal is turned ON, power is supplied. After the disk is inserted, check that the READY signal is ON before performing write and read operations.
(6) DISK CHANGE signal

This signal line is set to low level by power on or when a disk is ejected, and set to high level by STEP signal input when a disk is loaded.


\section*{Input Signal Line Terminator}

The FZ-506 is operable with either daisy chain or star chain systems. It is possible to use 4 pcs. Drives by daisy chain. When more than one drives are connected, termination resistors of all drives except the drive at the end of interface cable must be disconnected. (The termination resistors can be disconnected by taking away the short-plug at the connector J1-1) Each of the input signal lines has a \(150 \Omega\) terminal resistor.

\section*{Interface Circuit}
(1) Drives-receivers

When recommend the following drivers-receivers.

(2) Wire material

Flat cables or twisted pair wires

CONTROLLER SIDE
DRIVE SIDE


\section*{POWER-ON SEQUENCE}

Recalibration of the head position is performed during the power-sequence of the FDD. The figure below shows the power-on sequence.


\section*{POWER SUPPLY INTERFACE}

\section*{Power Supply Specifications}

The DC power \((+12 \mathrm{~V},+5 \mathrm{~V})\) shown in Specification is required by the power supply. There are four power lines \((+12 \mathrm{~V}\), +5 V , and the two return lines).

\section*{Frame Ground}

The frame ground and signal ground are connected through a capacitor and a resistor. The values are as follows:
\(\mathrm{R}=100 \mathrm{k} \Omega \quad \mathrm{C}=0.01 \mu \mathrm{~F}\)
Connect the frame ground where the AC ground and DC ground are one point connected in the host system.

\section*{Power Supply Sequence}
(1) The power ON sequence is not specified. However, the time in which the supplied power voltage rises up to \(90 \%\) of the specified value, should be set to 100 ms or less.
(2) If the drive is in a status other than write operation, and the DC power is disconnected, the disk and the data stored on the disk are not destroyed. However, its contents will be destroyed if the WRITE GATE is not set to high level.

\section*{INTERFACE CONNECTOR AND PIN ASSIGNMENT \\ Interface Connector}
(1) DC power connector
\begin{tabular}{|l|c|c|}
\hline & Drive Side & Host Side \\
\hline Connector/housing & \begin{tabular}{c} 
AMP 172349-1 \\
or equivalent
\end{tabular} & \begin{tabular}{c} 
AMP 1-480424-0 \\
or equivalent
\end{tabular} \\
\hline Pin & - & \begin{tabular}{c} 
AMP 60619-1 \\
or equivalent
\end{tabular} \\
\hline
\end{tabular}
(2) Interface signal connector
\begin{tabular}{|l|l|}
\hline & Drive Side \\
\hline Connector & \begin{tabular}{l} 
Card Edge \\
Connector
\end{tabular} \\
\hline
\end{tabular}

Pin Assignment
The assignment of each pin is shown.
This diagram shows the back of the drive.


PIN ASSIGNMENT


Thickness \(1.6 \pm 0.2\)
CARD EDGE CONNECTOR
(1) DC Power connector
\begin{tabular}{|c|l|}
\hline Pin number & \multicolumn{1}{|c|}{ Signal } \\
\hline 1 & +12 V DC \\
\hline 2 & +12 V RETURN \\
\hline 3 & +5 V RETURN \\
\hline 4 & +5 V DC \\
\hline
\end{tabular}
(2) Interface signal connector
\begin{tabular}{|c|l|c|c|}
\hline Pin number & \multicolumn{1}{|c|}{ Signal } & Pin number & Signal \\
\hline 2 & MODE SELECT & 1 & GND \\
\hline\({ }^{*} 1\) & 4 & IN USE/HEAD LOAD & 3 \\
\hline 6 & DRIVE SELECT 3 & 5 & GND \\
\hline 8 & INDEX & 7 & GND \\
\hline 10 & DRIVE SELECT 0 & 9 & GND \\
\hline 12 & DRIVE SELECT 1 & 11 & GND \\
\hline 14 & DRIVE SELECT 2 & 13 & GND \\
\hline 16 & MOTOR ON & 15 & GND \\
\hline 18 & DIRECTION SELECT & 17 & GND \\
\hline 20 & STEP & 19 & GND \\
\hline 22 & WRITE DATA & 21 & GND \\
\hline 24 & WRITE GATE & 23 & GND \\
\hline 26 & TRACK 00 & 25 & GND \\
\hline 28 & WRITE PROTECT & 27 & GND \\
\hline 30 & READ DATA & 29 & GND \\
\hline 32 & SIDE SELECT & 31 & GND \\
\hline 24 & READY/DISK CHANGE & 33 & GND \\
\hline
\end{tabular}

GND: SIGNAL GROUND
*1: "HEAD LOAD" is optional.
*2: As for switching over between READY and DISK CHANGE, see paragraph 9; SHORT PLUG.

\section*{SHORT PLUG AND FRONT LED}

\section*{Short Plug}

The assignment of each pin is shown.


This diagram shows the side of the drive.

CHINON FZ-506 high density 1.6 MB to 1 MB switchable floppy disk drive can be configured in several modes of operation using "SHORT-PLUGS"' according to the table below.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Mode descriptions} & \multicolumn{6}{|c|}{Connector 'J1',} \\
\hline & \begin{tabular}{|lllll}
1 & 2 & 3 & 4 & 5
\end{tabular} & \(6 \quad 7\) & \(8 \quad 9\) & \(10 \quad 11\) & 12 & 13 \\
\hline \begin{tabular}{l}
1.6 MB to 1 MB variable speed switchable using \\
Pin \#2 as change-over signal input \\
Pin \#2: High \(=1.6 \mathrm{MB}(360 \mathrm{rpm}) /\) Low \(=1 \mathrm{MB}(300 \mathrm{rpm})\) \\
*1 Pin \#2: High \(=1 \mathrm{MB}(300 \mathrm{rpm}) /\) Low \(=1.6 \mathrm{MB}(360 \mathrm{rpm})\)
\end{tabular} & \[
\begin{array}{llll}
0 & 0 & - \\
0 & 0 & - & -
\end{array}
\] & 0
0 & \begin{tabular}{ll}
0 & - \\
0 & - \\
\hline
\end{tabular} & \[
\begin{array}{ll}
0 & - \\
- & 0
\end{array}
\] & & - \\
\hline \begin{tabular}{l}
1.6 MB to 1 MB switchable at 360 rpm , IBM PC/AT compatible, Pin \#2 as change-over input \\
Pin \#2: High \(=1.6 \mathrm{MB}(360 \mathrm{rpm}) /\) Low \(=1 \mathrm{MB}(360 \mathrm{rpm})\) *2
\end{tabular} & \[
\begin{array}{llll}
0 & - & 0 & - \\
0 & - & - & 0 \\
0 & - & 0 & -
\end{array}
\] &  & --
--
- &  & - & 0
0
0 \\
\hline 1.6 MB 360 rpm non-switchable (Disregards pin \#2 signal & \(00--\) & 0 - & \(\bigcirc\) - & - - & 0 & - \\
\hline
\end{tabular}
\({ }^{*}\) 1. The short-plug is factory set at this position.
*2. PC40-III Close 1, 3, 6, 10, 13

12: READY
13: DISK CHANGE
"' 0 " = Position closed
"_-" = Position open

Note: Position 1 through 5 of the " J 1 "' are designated as follows.
POS. 1: Connect the termination resistors when closed
POS. 2: Configure the drive as "DRIVE 0 ", when closed
POS. 3: Configure the drive as "DRIVE 1" when closed
POS. 4: Configure the drive as "DRIVE 2"' when closed
POS. 5: Configure the drive as "DRIVE 3", when closed
Note: Only one of the positions 2 through 5 of " J 1 " can be closed. Above example demonstrates in the case of "DRIVE 0 " and the termination resistors connected.
PIN \#2: Card-Edge Connector (PJ1)-2

\section*{Front LED}

The front LED lights when the DRIVE SELECT signal selected by the short plug is set to low level.

\section*{Handling of Connectors}
(1) Types of connectors
1. PJ1 : Interface connector (34-pin, card-edge type)
2. PJ2 : Power connector
3. PJ3 : Stepping motor connector
4. PJ4, 5 : Head connectors
5. PJ6 : DD motor connector and track 00 sensor connector
6. PJ7 : Disk-in sensor connector
7. PJ8 : Frond LED connector and index, write protect sensor connector
8. J1 : Short pin connector (13-pair) for drive selection
(2) Removal of connector wire

Be sure that power switch is turned off whenever inserting or removing the connector wire, etc. Pull out the connector wire can be removed from the connector on the PC board.
(3) Insertion of connector wire

Each connector wire should be set in a proper position as shown in Fig.
Also, as each wire has a stripe on one side make sure to insert so that the striped side is the same side as the pin no. 1 of the connector.
(4) Insertion of head FPC

Side 0 and side 1 of the head FPC are shown in Fig. Make sure to properly insert side 0 FPC into connector PJ4 of control PCB and side 1 FPC into connector PJ5.


\section*{Functions of Test Points}

The following eight test points (with GND) are provided on the control board, each of which is used in observing the waveform for FDD adjustment or check.
(1) TP1, TP2 (pre-amp output) and TPC (analog GND)

These are the test points of the read amp output.
Amplified about 200 times by pre-amp, the signal from the head can be observed at TP1 and TP2 through LPF. TP1 and TP2 are \(180^{\circ}\) phase off (inverted phase).
For accurate waveform observation, it is necessary to add the signals of both channels together (the signal of the one channel is inverted in phase) to observe these signals as one waveform using an oscilloscope with two channels. TP3 is used in grounding the oscilloscope.
TP1 and TP2 are used in checking the read/write head for its different characteristics or in checking and adjusting the tracking alignment, and the index burst timing.
(2) TP4 (read data signal)

This is the test point of the read data pulse. The READ DATA signal appears here.
In FM mode, a data signal with 2 F or 1 F period is observed, while MFM mode, a data signal with \(2 \mathrm{~F}, 1.5 \mathrm{~F}\) or 1 F period is observed. (See Table)
ihis test point is used in check of asymmetry.
\begin{tabular}{|c|c|c|}
\hline Mode & \(\mathbf{1 M B}\) & \(\mathbf{1 . 6} \mathbf{~ M B}\) \\
\hline Frequency & \(4 \mu \mathrm{~S}\) & \(2 \mu \mathrm{~S}\) \\
\hline 2 F & \(6 \mu \mathrm{~S}\) & \(3 \mu \mathrm{~S}\) \\
\hline 1.5 F & \(8 \mu \mathrm{~s}\) & \(4 \mu \mathrm{~S}\) \\
\hline 1 F & \\
\hline
\end{tabular}
(3) TP5 (index sensor)

This is the test point of the index sensor photo-transistor output. A waveform with soft leading and trailing edges appears here, since the sensor output signal is taken out before flowing across the Schmitt inverter. Here it is necessary to check that the output voltage of the index sensor is normal (with no waveform split).
(4) TP6 (write protect sensor)

This is the test point of the write protect sensor photo-sensor photo-transistor output. The WRITE PROTECT output signal appears here. With a disk in which a measure for write protection is taken (its notches are masked), it becomes low level.
The voltage at this test point should be more than 3 V in the write enable state (the notches are open) and less than 0.5 V in the write protect state.

This test point is used in check of the write protect sensor.
(5) TP7 (Disk-in sensor)

This is the test point of the disk-in sensor photo-transistor output.
This signal becomes low level when a disk is inserted into the FDD.
(6) TP8 (track 00 sensor)

This is the test point of the tract 00 sensor photo-transistor output. The voltage at this test point should be within the range shown in the Figure on the following page.


Adjust so that the level of the sensor output changes between track 01 (Low level) and track 03 (High level)


TEST POINTS AND CONNECTORS ON THE CONTROL PC BOARD ASSY.

NOTE: When the various signals are extracted, proper test pin should be mounted at the test point since the test point is not equipped with the test pin.
Sufficient caution should be taken for the mounting of test pin and wiring of signal lines because it may cause damage if test pin and other places are short circuited.

\section*{INSTALLING THE OPTIONAL COMMODORE 910 and 920 FLOPPY DRIVES}

In addition to following the general installation instructions given in the manuals for the Commodore 910 and 920 floppy drives the user must also perform the specific procedures for PC40-III installation described below.

\section*{Commodore 910 Floppy Drive}

To install the Commodore 9103.5 inch 720 Kb drive as Drive B: in the PC40-III, the user must do the following:
- Set the drive select jumper to position I.
- The M jumper should be in position 5.
- The R-D jumper should be in position 6.
- The first time you power up, use the Setup utility to identify your second drive (Diskette 2 on the menu) as a \(720 \mathrm{~Kb} \mathbf{3 . 5}\) drive.

\section*{Commodore 920 Floppy Drive}

To install the Commodore 9205.25 inch 360 Kb floppy drive as Drive B: in the PC40-III, the user must do the following:
- Set the drive select jumper to position 1.
- Cut JP6 (located on the bottom side of JP1) in half.
- The first time you power up, use the Setup utility to identify your second drive as a \(\mathbf{3 6 0 K b} \mathbf{5 . 2 5}\) drive.


\section*{Location of Electrical Parts}



\section*{APPENDIX C KEYBOARD SECTION}

\section*{INFORMATION IN THIS SECTION IS FOR REFERENCE ONLY. COMMODORE WILL NOT SUPPLY COMPONENT PARTS FOR OEM ASSEMBLIES.}

\section*{PC40-III KEYBOARD - OPERATIONS}

\section*{THE COMMODORE PC40-III KEYBOARD}

The Commodore PC40-III keyboard is divided into four sections:

\section*{- the Typewriter Area}
— the Special Key/Cursor Key area
- the Numeric Keypad
- the Function Keys

In using the Commodore PC40-III keyboard, note that:
- All the keys (except for the special keys) repeat as long as they are held down.
- You cannot interchange either the numeral zero (0) and the upper case letter \(O\), or the numeral 1 and the lower case letter 1 .
- Keys may be program controlled. This means that their use is defined by the operating system, programming language or application software currently being used. The description of the specific function of these keys can be found in the MS-DOS User's Guide/User's Reference manual, or in the manual for the particular software being used.
In this appendix, whenever combinations of keys are to be pressed, the names of the keys to be pressed are separated by a hyphen. For example, Ctrl-Alt-Del means hold the Ctrl and Alt keys down and then press the Del key at the same time. See Appendix C for a list of special key sequences used in MS-DOS.
The following pages describe each area of the keyboard, including definitions of the individual keys in each area. To make full use of your PC40-III computer, you should become familiar with the names, locations and functions of all the keys.


FIGURE D-1. THE COMMODORE PC4O-III KEYBOARD THE COMMODORE PC40-III KEYBOARD

\section*{THE NUMERIC KEYPAD}

The Numeric Keypad is at the far right of the Commodore PC40-III keyboard. The keys in this section of the keyboard usually function as number and mathematical keys as long as the Num Lock light is on. With the Num Lock light off, you can use certain keys to control the position of the cursor on the screen and perform some special functions. Note that many of the functions of keys in the Special Key/Cursor Key area are available in the Numeric Keypad.

\section*{The NUM LOCK Key}

When the computer is turned on, the Num Lock indicator light located above the Numeric Keypad goes on and the numeric keys 0 through 9 are locked into the numeric functions. To turn off Num Lock, press the Num Lock key and this light goes out. The non-numeric functions on the Numeric Keypad keys (such as scrolling the cursor by using the 2, 4, 6 and 8 keys) can be obtained while Num Lock is on by holding down the Shift key and pressing the required key.

\section*{Controlling the Cursor from the Numeric Keypad}

You can control cursor movement from the Numeric Keypad by using the 2, 4, 6 and 8 keys, as follows:
- the 8 key moves the cursor up
- the 2 key moves the cursor down
- the 6 key moves the cursor to the right
- the 4 key moves the cursor to the left

The cursor moves one line or one character position for each time a key is pressed. The cursor will move continuously as long as you are holding down a key.

\section*{The HOME key}

This key (the 7 key) moves the cursor to the top left corner of the screen, which is known as the Home position.

\section*{The END key}

This key (the 1 key) places the cursor one character position to the right of the last character on the line.

\section*{The PG UP key}

The Pg Up (for "Page Up") key (the 9 key ) is a program controlled key that moves the cursor to the previous page (a full page is 25 lines).

\section*{The PG DN key}

The Pg Dn (for 'Page Down') key (the 3 key) is a program controlled key that moves the cursor to the next page.

\section*{The INS key}

Pressing the Ins (for "Insert") key (the 0 key) turns the Insert function on. Any characters typed while the Insert function is on are inserted at the cursor position. To turn the Insert function off, press the Ins key again. Any characters typed when Insert is off appear at the cursor position, overwriting (i.e., deleting) any character already at the cursor position.

\section*{The DEL key}

Pressing the Del (for "Delete") key (the decimal point key) deletes the character at the cursor position. The cursor remains at that position and all the characters to the right of it move one position to the left.

The +, -, * and / keys
These keys are used for mathematical functions: + for addition, - for subtraction, * for multiplication and / for division. Pressing any one of these keys causes the selected sign to be displayed.

\section*{The ENTER key}

You can press the Enter key on the Numeric Keypad to transmit a command or information to the computer. In other words, pressing this key has the same effect as pressing the Enter key on the main keyboard. This can be a program controlled key.

\section*{THE FUNCTION KEYS}

The Function Keys are the keys located in the horizontal row of keys above the Typing Area, and marked F1 through F12. These keys are program controlled keys - that is, their use is controlled by whatever software you are currently using.

\section*{The DELETE key}

Pressing the Delete key deletes the character at the cursor position. The cursor remains at the position and all the characters to the right of it move one position to the left.

\section*{The HOME key}

This key moves the cursor to the top left corner of the screen, which is known as the Home position.

\section*{The END key}

This key places the cursor one character position to the right of the last character on the line.

\section*{The PAGE UP key}

The Page Up key is a program controlled key that moves the cursor to the previous page (a full page is usually 25 lines) in the program.

\section*{The PAGE DOWN key}

The Page Down key is a program controlled key that moves the cursor to the next page in the program.

\section*{Controlling the Cursor from the Cursor Keypad}

Cursor movement is program controlled - that is, cursor movement is defined and enabled by the operating system or application software currently being used. Note that in MS-DOS only the left and right cursor keys are active.
There are four cursor keys located in the Cursor Keypad located at the bottom of the keyboard, between the Typewriter Area and the Numeric Keypad. You can also move the cursor by using the 2, 4, 6, and 8 keys in the Numeric Keypad (see below). The cursor is controlled from the Cursor Keypad as follows:
- the up arrow key moves the cursor up
- the down arrow key moves the cursor down
- the right arrow key moves the cursor to the right
- the left arrow key moves the cursor to the left

The cursor moves one line or one character position for each time a key is pressed. The cursor will move continuously as long as you are holding down a key.

\section*{THE SPECIAL KEY/CURSOR KEY AREA}

This area contains 13 keys, including a four key cursor keypad at the bottom and some special keys. Certain keys have dual functions (e.g., Pause/Break).

\section*{The PRINT SCREEN/SYSTEM REQUEST key}

This is a dual function key. The Print Screen (PrtSc) function is used to give a printed copy of the information displayed on the screea. Alpha/numeric characters displayed on the screen, such as program listings, can be printed on any type of printer (daisy wheel, dotmatrix, laser, thermal, ink jet, etc.) printers. Graphics information cannot be reproduced on a daisy wheel printer and, depending on the software being run, may require a specific printer driver to be rendered fully. . . The System Request (SysRq) function is program controlled.

\section*{The SCROLL LOCK Key}

This is a program controlled key. It is used typically to halt the scrolling of information on the screen. Usually, to resume scrolling, you press the key again.

\section*{The PAUSE/BREAK key}

This is a dual function key. The Pause function is used typically to halt program execution temporarily.
The Break function is program controlled. It is activated by pressing Shift and Pause together. Under MS-DOS, Ctrl-Break has the same function as Ctrl-C: that is, it aborts the command currently being executed. In GW-BASIC, the Break key is used with the Ctrl key (i.e., in a Ctrl-Break sequence) to stop a program when it is running.

\section*{The INSERT key}

Pressing the Insert key turns the Insert function on. Any characters typed while the Insert function is on are inserted at the cursor position, without overwriting (i.e., deleting) any character already at the cursor position. To turn the Insert function off, press the Ins key again. Any character typed when Insert is off appears at the cursor position and overwrites any character already at the cursor position.

\section*{The ALT key}

There are two Alt (for "Alternate") keys, located at either end of the Space Bar in the bottom row of typing keys. The Alt key has a number of uses:
- Pressing the Alt key simultaneously with the Ctrl and Del keys restarts (or "reboots") MS-DOS.
- Within the GW-BASIC Interpreter, holding down the Alt key and pressing a single alphabetic key A through Z allows you to enter a GW-BASIC keyword automatically. This is fully described in the GW-BASIC Manual.
- Special characters can be entered using the Alt key and the number keys on the numeric keypad to the right of the main keyboard. Hold down the Alt key, type the three digit ASCII code for the required character and then release the Alt key. The character is then displayed. A list of ASCII character codes is shown in Appendix C of the GW-BASIC User's Guide.

\section*{The CTRL key}

There are two Ctrl (for "Control") keys, located at either end of the bottom row of typing keys. The Ctrl key is a program controlled key. It is also used in conjunction with other keys to perform various control functions for MS-DOS.

\section*{The ESC key}

The Esc (for "Escape") key, located at the far left of the top row of the keyboard, is a program controlled key.

\section*{The TAB key}

This is the key with small horizontal arrows pointing left and right. The Tab key is located at the far left of the second from the top row of the typing keys. This key is used to set and remove tabs.

\section*{The Space Bar}

This is the large key extending most of the way across the bottom of the main keyboard. This key is similar in location and function to the space bar on a typewriter. The Space Bar moves the cursor to the right, inserting spaces as it moves. If there are any characters in the path of the cursor movement, they are erased.

\section*{THE TYPEWRITER AREA}

The Typewriter Area contains a standard (QWERTY) typing keyboard and some additional keys.

\section*{The SHIFT keys}

There are two Shift keys in the Typewriter Area. They are oversized keys with an upward pointing arrow, and are located at each end of the row above the Space Bar. Holding down either Shift key and pressing any of the alphabetic keys causes the letter shown on that key to be displayed in upper case. In addition, the Shift keys are often used with other keys to perform special functions.
If the Caps Lock or Num Lock light is on, pressing the SHIFT key cancels the effect. For example, if Caps Lock is on and you hold down the SHIFT key and press the A key, then the lower case letter (i.e., a) is displayed.

\section*{The CAPS LOCK key}

Pressing the Caps Lock key at the left side of the middle row of typing keys locks the characters A through Z into the upper case position. When you first press the Caps Lock key, an indicator light located above the Numeric Keypad goes on. To release the Caps Lock key, you press the key again and this light goes out.
Lower case characters can be obtained while the Caps Lock light is on by holding down the SHIFT key and pressing the required letter key.

\section*{The BACKSPACE key}

This is an oversized key located on the far right side of the top row of the main keyboard, and having a small horizontal arrow pointing left. Pressing the Back space key causes the character to the LEFT of the cursor to be erased, while the cursor and any characters to the RIGHT of the cursor move one position to the left.

\section*{The ENTER key}

There are two Enter keys: one on the main keyboard, and one in the Numeric Keypad. The Enter key on the main keyboard is located at the right side of the middle row. On the top of this key is a right-angled arrow that points left. You must press the Enter key to transmit a command or information to the computer. The Enter key (which can be program controlled) may be referred to as a Return key or as a CR (Carriage Return) key in some program documentation.

\section*{PC40-III KEYBOARD - HARDWARE}
\begin{tabular}{|c||c|}
\hline Commodore P/N & Country \\
\hline \(312702-01\) & United Kingdom \\
\(312709-02\) & United States \\
\(312702-03\) & German \\
\(312702-04\) & Italian \\
\(312702-05\) & French \\
\(312702-06\) & Spain \\
\(312702-07\) & Dutch \\
\(312702-08\) & Denmark \\
\(312702-09\) & Norway \\
\(312702-10\) & Sweden/Finland \\
\hline
\end{tabular}

\section*{Key Scan Codes}

All keys have two different 8 bits codes, a "Make" -code and a "Break" -code. (except \(\ddagger\)-marked keys) These codes only differ in the MSB (bit 7).
Make-code : MSB \(=0\)
Break-code : \(\mathrm{MSB}=1\)
A "Make"-code is transmitted once a key is depressed.
A 'Break"'-code is transmitted for any released key.
\(\ddagger\)-marked keys have custom output codes.
See code table-4.

\section*{Clock and Data Signals}
(1) Data - The transmitted serial data that consists of 1 start bit followed by 8 bits scan code. Data is transmitted LSB first.
(2) Clock - The synchronizing signal that gives timing to nine bits of transmitted data.

\section*{16 Characters FIF0 Buffer}

The keyboard has a 16 characters FIF0 buffer for serial data transmission.
When a key is on or off, the corresponding code is once stored into FIF0 buffer in accordance with the regular sequence of switch-on or switch-off keys and then transmitted in the sequence. However, the keys after 16th keys are ignored on account of buffer full.

\section*{Auto repeat function}

The keyboard has auto-repeat feature on all keys.
When a key is depressed, the corresponding "Make"-code is transmitted with clock. If the key is held down for more than 500 ms with any other keys off, the keyboard keeps on sending the code with clock at the rate of 10.89 characters per second until the data key is off or another new key is on.
In case of the plural key on, only the last on-key data code is transmitted like that.

\section*{Handshake feature}

The keyboard senses the clock line at intervals of approx. 10 ms during key scanning. On sensing the clock line low, resenses the line low or not for approx. 3.5 ms .
Confirming the line low, stops key-scanning and transmitting the data. After that the keyboard waits until the clock line high. The line high, sends status data "Hex AA". Then the keyboard clears FIF0 buffer and all LEDs get dark.

\section*{Caps Lock, Num Lock and Scroll Lock indication}

Depressing the "Caps-Lock", 'Num-Lock", and "Scroll-Lock" keys turn on each of their LED's indication. The color of these LED's is green.
This state is latched until the key is depressed for the second time. Pressing the "Caps-Lock", "Num-Lock" and "ScrollLock" keys, in conjunction with the "Ctrl" key is not toggle each of their LED's status. If the clock line is tied low for more than 3.5 ms , these LEDs are turned off after the clock line high.

\section*{Data format}


\section*{ELECTRICAL REQUIREMENT}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Device Description } & \multicolumn{1}{c|}{ Parameter } \\
\hline Keyswitch Contact & 12 Vdc with 200 micro-second pulse width \(1 / 50\) duty cycle 1 mA maximum rating. \\
\hline Keyswitch Bounce & 5 millisecond initial, 10 millisecond over lifetime. \\
\hline \begin{tabular}{l} 
Keyswitch Contact \\
Resistance
\end{tabular} & 1,000 ohms - maximum \\
\hline Keyswitch Capacitance & 500 pF - maximum \\
\hline \begin{tabular}{l} 
Withstanding Voltage \\
(Dielectric)
\end{tabular} & \(250 \mathrm{Vac} @\) one (1) minute \\
\hline Voltage - Vcc & \(+5 \mathrm{Vdc}, \pm 0.25 \mathrm{Vdc}\) \\
\hline Current & \(300 \mathrm{~mA}-\) maximum \\
\hline Output Logic & ' 1 '" \(=2.4 \mathrm{Vdc}-\) minimum; ' 0 '" \(=0.4 \mathrm{Vdc}-\) maximum \\
\hline Rollover & \(\mathrm{N}-\) Key rollover shall be provided on all keyswitches. \\
\hline Reset & Keyboard circuitry shall allow for internal power on reset. \\
\hline
\end{tabular}

\section*{MECHANICAL PARAMETER}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Keyswitches } & \multicolumn{1}{c|}{ Requirements } \\
\hline Operating Force & 51 grams (Typical) \\
\hline Zero Travel Force & \(15 \pm 10\) grams at 0.5 mm Travel \\
\hline Full Travel Force & \(90 \pm 25\) grams at 0.5 mm Above Full Travel. \\
\hline Key Travel & \(4.3 \pm 0.5 \mathrm{~mm} ; 4.0 \pm 0.5 \mathrm{~mm}\) \\
\hline Key Wobble & 0.7 mm, Maximum: \((+) 300\) grams Force Applied to Top of Key in any Direction. \\
\hline
\end{tabular}

\section*{ENVIRONMENTAL SPECIFICATION}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Description } & \\
\hline Operating Temperature & -5 deg C to +50 deg C \\
\hline Operating Humidity & \(20 \%\) to \(80 \% \mathrm{RH}\), non-condensing \\
\hline Operating Altitude & 0 to 3,000 meters \\
\hline Storage Temperature & -20 deg C to +65 deg C \\
\hline Storage Humidity & \(5 \%\) to \(95 \% \mathrm{RH}\), non-condensing \\
\hline Storage Altitude & 0 to 15,000 meters \\
\hline Shock (impact) & \(30-\mathrm{G} @ 21\) mseconds, \(1 / 2\) sine, two (2) shocks in each of six (6) planes (directions). \\
\hline
\end{tabular}

\section*{RELIABILITY REQUIREMENT}

MTBF: 20,000 Hours MTTR: 0.5 Hour.
Switch Operating Life: Standard Key - Five (5) Million Cycles; Function Key - Three (3) Million Cycles.


KEYBOARD ARRANGEMENT

CIRCUIT DIAGRAM
FOR REFERENCE ONLY
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{PARTS LIST} \\
\hline Symbol & Name \\
\hline IC1 & 8049 CPU \\
\hline IC2, 3 & 7406 N \\
\hline D1, D12 & Diode 1S2473 \\
\hline & \(100 \mathrm{k} \Omega \pm 5 \% 1 / 8 \mathrm{~W}\) \\
\hline R1, R5 & \(4.7 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}\) \\
\hline R6, R8 & \(2 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}\) \\
\hline R9, R10 & \(22 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}\) \\
\hline R11, R13 & \(270 \Omega \pm 5 \% 1 / 4 \mathrm{~W}\) \\
\hline C1 & \(50 \mathrm{~V} 1 \mu \mathrm{~F}\) \\
\hline C1 & \(16 \mathrm{~V} 47 \mu \mathrm{~F}\) \\
\hline C2 & \(16 \mathrm{~V} 4.7 \mu \mathrm{~F}\) \\
\hline C3, C6 & \(12 \mathrm{~V} 0.1 \mu \mathrm{~F}\) \\
\hline C7, C9 & 50 V 1000 pF \\
\hline C10 & CSC300 \\
\hline XT & CERA LOCK CSA 6.00MT \\
\hline LED1, LED3 & LED \\
\hline L1, L2 & Choke Coil \\
\hline
\end{tabular}
Num Scr Ca
APPENDIX D
OPTIONS SECTION- VIDEO PARAMETERS- 1403 MONITOR SPECS- 1352 MOUSE SPECS
INFORMATION IN THIS SECTION IS FOR REFERENCE ONLY. COMMODORE WILL NOT SUPPLY COMPONENT PARTS FOR OEM ASSEMBLIES.

\section*{PC40-111 VIDEO MODES}

\section*{VIDEO MODE NOTES}

The Onboard Video Adapter is \(100 \%\) IBM VGA compatible and can also be placed in CGA and MDA hardware compatible video modes. The Hardware MDA mode also is \(100 \%\) Hercules compatible and will run all Hercules software. The Hardware CGA mode also includes Plantronics mode which can be exploited by any software which understands Plantronics special registers.
The PC40-III video output is always VGA compatible with a 31.5 KHz horizontal rate; vertical rate is either 60 or 70 Hz , depending on the VGA mode.
Dip switches 1,2 and 3 in the CONFIG Control (located at the rear of the PC40-III) are used to set the default video mode. The switch settings are described clearly on the PC40-III's back label. The choices are as follows:
\begin{tabular}{ll} 
DISABLE VIDEO & - disables onboard video adapter \\
MDA/HERCULES & - sets hardware compatible MDA/Hercules mode. \\
CGA & - sets hardware compatible CGA/Plantronics mode. \\
VGA AUTO & - detects whether attached monitor is MONO or COLOR: \\
& If MONO is detected, VGA mode 7 is set. \\
& If COLOR is detected, VGA mode 2 is set. \\
& (See Video Mode Characteristics table in this appendix.) \\
VGA COLOR & - sets VGA color mode 2 by default regardless of monitor. \\
VGA MONO & - sets VGA mono mode 7 by default regardless of monitor. \\
\(\mathbf{1 3 2 x 4 3}\) & - sets extended 132 column, 43 row text mode regardless of monitor. \\
\(\mathbf{1 3 2 x 2 5}\) & - sets extended 132 column, 25 row text mode regardless of monitor
\end{tabular}

NOTE: EGA is a subset of VGA. EGA-based software will work when the system is configured as a VGA adapter.

\section*{USING THE VMODE UTILITY TO CHANGE VIDEO MODES}

The VMODE utility provides a software method to change video modes. Just select the mode you want from the following table: then type the corresponding command and press Enter.
\begin{tabular}{ll}
\(\quad\)\begin{tabular}{rl}
\(\quad\) Video Mode
\end{tabular} & \begin{tabular}{l} 
Command \\
Hardware CGA
\end{tabular} \\
Hardware MDA/HERC & Vmode \(-\mathbf{c}\) \\
Vmode \(-\mathbf{m}\) \\
VGA Color & Vmode \(-\mathbf{v c}\) \\
VGA Mono & Vmode \(-\mathbf{v m}\) \\
132x25 Text & Vmode \(-\mathbf{t 1}\) \\
132x43 Text & Vmode \(-\mathbf{t 2}\) \\
Help & Vmode \(-\mathbf{h}\)
\end{tabular}

Invoking VMODE with the Help key will display the information in the table above, so if you are not sure of a command just type Vmode -h.
IMPORTANT: If you change the video mode setting by the hardware method, you must reboot the system before the changes will take effect. Video mode changes made by the VMODE utility or the MS-DOS MODE command will take effect immediately.

VIDEO MODE CHARACTERISTICS
ALPHANUMERIC MODES
\begin{tabular}{llllll} 
MODE \# & COL X ROW & CHAR MATRIX & RESOLUTION & COLORS & STANDARD \\
0,1 & \(40 \times 25\) & \(8 \times 8\) & \(320 \times 200\) & 16 & CGA (1) \\
& & \(9 \times 16\) & \(360 \times 400\) & 16 OF 256K & VGA (2) \\
2,3 & \(80 \times 25\) & \(8 \times 8\) & \(640 \times 200\) & 16 & CGA (1) \\
& & \(9 \times 16\) & \(720 \times 400\) & 16 OF 256K & VGA (2) \\
7 & \(80 \times 25\) & \(9 \times 14\) & \(720 \times 350\) & MONOCHROME & MDA \\
& & \(9 \times 16\) & \(720 \times 400\) & MONOCHROME & VGA (2) \\
54 & \(132 \times 43\) & \(7 \times 9\) & \(924 \times 387\) & COLOR & ENHANCED \\
55 & \(132 \times 25\) & \(7 \times 16\) & \(924 \times 400\) & COLOR & ENHANCED \\
56 & \(132 \times 43\) & \(7 \times 9\) & \(924 \times 387\) & MONOCHROME & ENHANCED \\
57 & \(132 \times 25\) & \(7 \times 16\) & \(924 \times 400\) & MONOCHROME & ENHANCED
\end{tabular}

\section*{GRAPHICS MODES:}
\begin{tabular}{llll}
4,5 & \(320 \times 200\) & 4 & CGA (1) \\
& & 4 OF 256 K & VGA 182\()\) \\
6 & \(640 \times 200\) & 2 & CGA \\
& & 2 OF 256 K & VGA \((1 \& 2)\) \\
D & \(320 \times 200\) & 16 OF 256 K & VGA (1) \\
E & \(640 \times 200\) & 16 OF 256 K & VGA 1\()\) \\
F & \(640 \times 350\) & MONOCHROME & VGA \\
10 & \(640 \times 350\) & 16 OF 256 K & VGA \\
11 & \(640 \times 480\) & 2 OF 256 K & VGA/MCGA \\
12 & \(640 \times 480\) & 16 OF 256 K & VGA \\
13 & \(320 \times 200\) & 256 OF 256 K & VGA/MCGA
\end{tabular}

\section*{NOTES:}
(1) All 200 line modes are double scanned for 400 line resolution.
(2) The VGA implementation of these modes is the default.

\section*{VIDEO SIGNALS}
\begin{tabular}{lcccc} 
Vertical & \multicolumn{1}{c}{ Horizontal sync } & \multicolumn{2}{c}{ Vertical sync } \\
Resolution & Frequency & Polarity & Frequency & Polarity \\
350 lines & 31.5 KHz & + & 70.1 Hz & - \\
400 lines & 31.5 KHz & - & 70.1 Hz & + \\
480 lines & 31.5 KHz & - & 59.9 Hz & - \\
600 lines* & 35.2 KHz & - & 56.2 Hz & - \\
*Requires an Analog MultiSync \(^{\circledR}\) & compatible monitor.
\end{tabular}

\section*{HERCULES GRAPHICS MODE - PROGRAMMING NOTES}

This mode is essentially a bitmapped version of the MDA. The video dot clock ( 16.257 Mhz ) and the screen resolution ( \(720 \times 348\) pixels) are identical. The memory requirement to hold one full display is just less than 32 Kbytes : therefore, two display pages are available.

Page0: address b000:0000h to b000:7FFFh
Pagel: address b000:8000h to b000:FFFFh
NOTE: Page 1 occupies address space used by CGA video memory. DO NOT switch to this page if an EXPANSION CGA adapter is installed. Hardware damage to the EXPANSION card or the motherboard may result!
The relevant registers are:

> Hercules Enable Register - I/O addr 3bfh
> bit0: 0 - disable setting graphics mode 1 - enable setting graphics mode
> bit 1: \(\quad 0\)-disable changing graphics pages 1 - enable changing graphics pages
> Mode Register - I/O addr 3b8h
> bit 1: 0 - disable Hercules mode (default MDA)
> 1 - enable Hercules graphics
> bit3: 0 - video disable
> 1-video enable
> bit5: 0 - blink disable
> 1-blink enable
> bit7: 0 - Hercules Page0
> 1-Hercules Page1

\section*{Hercules 6845 CRTC parameters:}
\begin{tabular}{rrr} 
register & \#0 & 36 h \\
\(\# 1\) & 2 dh \\
\(\# 2\) & 2 fh \\
\(\# 3\) & 07 h \\
\(\# 4\) & 5 bh \\
\(\# 5\) & 00 h \\
\(\# 6\) & 57 h \\
\(\# 7\) & 53 h \\
\#8 & 02 h \\
\#9 & 03 h \\
\#a & 00 h \\
\#b & 00 h \\
\#c & 00 h \\
\#d & 00 h
\end{tabular}

Locating specific pixels within the bitmap may be performed with the following equation:
byte offset \(=\left(8192^{*}(\mathrm{Y} \bmod 4)\right)+(90 * \operatorname{INT}(\mathrm{Y} \bmod 4))+\mathrm{INT}(\mathrm{X} / 8) ;\) bit position \(=7-(\mathrm{X} \bmod 8)\) :
where: \(0<=\mathrm{X}<=719\)
\[
0<=\mathrm{Y}<=347
\]

\section*{PLANTRONICS COLOR PLUS MODE(S) - PROGRAMMING NOTES}

This mode is an enhancement to the graphics modes of the CGA. The dot clock is 14.318 Mhz in the \(640 \times 200\) mode and 7.16 Mhz in the \(320 \times 200\) mode. The \(640 \times 200\) mode offers a choice of 4 out of 16 colors per pixel vs. black \& white in the CGA mode with the same resolution. The \(320 \times 200\) mode offers 16 out of 16 colors vs. 4 out of 16 colors for the comparable CGA mode.
\[
\begin{aligned}
& \text { Plantronics } 6845 \text { CRTC parameters: } \\
& \text { (actually the same as CGA } 320 \times 200 \& 640 \times 200 \text { ) } \\
& \text { register \#0 38h } \\
& \text { \#1 28h } \\
& \text { \#2 2dh } \\
& \text { \#3 0ah } \\
& \text { \#4 7fh } \\
& \text { \#5 06h } \\
& \text { \#6 64h } \\
& \text { \#7 70h } \\
& \text { \#8 02h } \\
& \text { \#9 01h } \\
& \text { \#a 06h } \\
& \text { \#b 07h } \\
& \text { \#c 00h } \\
& \text { \#d 00h }
\end{aligned}
\]

The 32 K bytes of display RAM are divided into two bit planes.
Plane0 - Even scan lines @ addr b000:8000h to b000:9f3fh Plane1 — Even scan lines @ addr b000:c000h to b000:df3fh
Odd scan lines @ addr b000:a000h to b000:bf3fh Odd scan lines @ addr b000:e000h to b000:ff3fh
320x200 16 color BIT ORGANIZATION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline bplane\# & bit 7 & bit 6 & bit 5 & bit 4 & bit 3 & bit 2 & bit 1 & bit 0 \\
\hline plane0 & c 1 & c 0 & c 1 & c 0 & c 1 & c 0 & c 1 & c 0 \\
\hline plane1 & c 3 & c 2 & c 3 & c 2 & c 3 & c 2 & c 3 & c 2 \\
\hline pixel\# & \multicolumn{9}{|c|}{ pixel 0} & \multicolumn{7}{|c|}{ pixel 1} & pixel 2 & pixel 3 \\
\hline
\end{tabular}

640x200 4 color BIT ORGANIZATION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline bplane\# & bit 7 & bit6 & bit5 & bit4 & bit3 & bit2 & bit1 & bit0 \\
\hline plane0 & co & c0 & co & c0 & co & c0 & co & c 0 \\
\hline plane1 & c 1 & cl & c 1 & cl & c 1 & cl & c 1 & c 1 \\
\hline pixel\# & pixel0 & pixel1 & pixel2 & pixel3 & pixel4 & pixel5 & pixel6 & pixel7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathbf{c 2} / \mathbf{1}\) & \(\mathbf{c 1} / \mathbf{R}\) & \(\mathbf{c 0} / \mathbf{G}\) & \(\mathbf{c 3} / \mathbf{B}\) & COLOR \\
\hline 0 & 0 & 0 & 0 & black \\
\hline 0 & 0 & 0 & 1 & blue \\
\hline 0 & 0 & 1 & 0 & green \\
\hline 0 & 0 & 1 & 1 & cyan \\
\hline 0 & 1 & 0 & 0 & red \\
\hline 0 & 1 & 0 & 1 & magenta \\
\hline 0 & 1 & 1 & 0 & brown \\
\hline 0 & 0 & 0 & 1 & white \\
\hline 1 & 0 & 0 & 0 & gray \\
\hline 1 & 0 & 1 & 1 & It. blue \\
\hline 1 & 0 & 0 & 1 & lt. green \\
\hline 1 & 1 & 0 & 0 & lt. cyan \\
\hline 1 & 1 & 1 & 1 & lt. red \\
\hline 1 & 1 & 1 & 0 & lt. magenta \\
\hline 1 & 1 & 1 & yellow \\
\hline 1 & & 1 & bright white \\
\hline
\end{tabular}

Autoconfig examines the expansion bus for any expansion Advanced Video Adapter BIOS in the 0C0000h — 0C7FFFh memory range. If an expansion video BIOS is found, then an external VGA or EGA controller is assumed to be on the bus and the onboard VGA controller is disabled to avoid conflict. If an expansion video BIOS is not found, the video output is configured in accordance with the default CONFIG Control video setting (see Appendices F and H), as defined by the CONFIG dip switches 1,2 and 3.
You can add an expansion MDA or CGA compatible controller in conjunction with the onboard VGA controller to provide two video screens. (This makes many CAD packages easier to use.)
NOTE: When using the PC40-III's onboard video controller, a VGA compatible monitor such as Commodore Models 1403 and 1450 (monochrome) or 1950 (color) must be connected to the 15 pin video output connector (no matter what video mode you have selected).

If you want to use two video screens, there are several things you should remember. First, you should use a CGA, MDA or compatible adapter - one that has no BIOS ROM of any kind.
Also, if you were to use an MDA/Herc adapter (monochrome) and you have the CONFIG switches set for VGA color, the PC40-III will boot using your VGA monitor and you will see a blinking cursor on your monochrome monitor, indicating that it has been initialized.
If, while using the MDA/Herc adapter in the expansion port, you have the CONFIG switches on the back of the System Unit set to MDA/Herc, your PC40-III will use the monochrome monitor as the boot monitor and the VGA monitor will be initialized with the blinking cursor.

In either case, you can switch between the VGA and the monochrome monitors by using the MS-DOS MODE command. The syntax for the MODE command is as follows:
- MODE MONO - sets the MDA as the default monitor
- MODE co80
- places the onboard VGA adapter into 80 column mode and sets it as the default monitor
- MODE co40 - places the onboard VGA adapter into 40 column mode and sets it as the default monitor

\section*{VIDEO DIP SWITCHES}

Dip switches 1, 2 and 3 are set in combinations as shown below to enable the various video modes that the PC40-III supports.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{DISABLE VIDEO MDA/HERC.} & WWh \\
\hline & B4M \\
\hline & 123 \\
\hline CGA & SuTH \\
\hline \multirow[t]{2}{*}{VGA AUTO.} & Dum \\
\hline & 123 \\
\hline & \% \\
\hline \multirow[t]{2}{*}{VGA MONO.} & \\
\hline & 6nen \\
\hline & F\%rom \\
\hline 132 COL. X 43 ROW & 0 \\
\hline \multirow[t]{2}{*}{132 COL. X 25 ROW} & chan \\
\hline & 123 \\
\hline
\end{tabular}

WARNING: POWER OFF UNIT BEFORE CHANGING DIP SWITCHES

\section*{PIN DFFINITIONS FOR VIDEO PORT}

PIN DEFINITIONS FOR MULTISYNC ADAPTER CABLE


NEC Multisync \(\qquad\) to \(\qquad\) VGA

DB9 Female
DB 15 Male
\(\left.\begin{array}{ccc}1 & \begin{array}{c}\text { RED } \\ 2\end{array} & 1 \\ 3 & \frac{\text { GREEN }}{\text { BLUE }} & 2 \\ 4 & \frac{\text { HORIZONTAL }}{\text { VERTICAL }} & 3 \\ 5 & & 13 \\ 6 \\ 7 \\ 8\end{array}\right\}\)

NOTE: Many Multisync monitors come equipped with a compatible adapter.

1403 BLOCK DIAGRAM

1403 VIDEO AND POWER UNIT


\section*{1403 MONOCHROME VGA COMPATIBLE MONITOR}

\section*{SERVICE MANUAL AVAILABLE UNDER CBM PART NUMBER 314882-01}

\section*{1. Cathode Ray Tube (CRT)}

Size
: 14 inch diagonal (DM-3014)
15 inch diagonal (DM-3015)
Deflection Angle
: 90 degrees
Neck Diameter
: \(20 \phi\)
Face Treatment : dark glass, non-glare
Phosphor : H192 or equivalent
2. Power Requirements

Power source \(\quad: 110 / 220\) volts AC, 0.55 Amp.
Power consumption : 50 watts
3. Deflection Characteristics

Horizontal
Frequency \(: 31.468 \mathrm{KHz}\)
Blanking time : 5.72 usec
Vertical
Frequency \(: 50 / 60 / 70 \mathrm{~Hz}\)
Vertical
Blanking time :
a. 50 Hz
\begin{tabular}{ll}
480 lines & \(: 4.236 \mathrm{msec}\) \\
400 lines & \(: 6.844 \mathrm{msec}\) \\
350 lines & \(: 8.496 \mathrm{msec}\)
\end{tabular}
b. 60 Hz

480 lines \(: 0.905 \mathrm{msec}\)
400 lines \(: 3.511 \mathrm{msec}\)
350 lines \(: 5.163 \mathrm{msec}\)
c. 70 Hz

400 lines \(: 1.130 \mathrm{msec}\)
350 lines \(: 2.728 \mathrm{msec}\)
4. Video Response

Bandwidth \(: 30 \mathrm{MHz}(-3 \mathrm{~dB})\)
Rise time : 15 nsec max.
Fall time : 15 nsec max.
Characters : Up to 64 gray shades
Horizontal resolution : 640/720 pixels
Vertical resolution : \(350 / 400 / 480\) lines


\section*{5. Display Format}

Character format : \(8 \times 14\) matrix
\[
\begin{aligned}
& 8 \times 16 \\
& 9 \times 16
\end{aligned}
\]

Capacity : 80 characters \(\times 25\) rows
80 characters x 30 rows
6. Input Signal

Video signal \(\quad: 0-0.7 \mathrm{Vpp}\)
Horizontal drive : 3.5 Vpp
Vertical drive : 3.5 Vpp
7. Display Performance

Picture
DM-3014
DM-3015
Horizontal \(: 240 \mathrm{~mm} \pm 3 \mathrm{~mm} \quad 250 \mathrm{~mm} \pm 3 \mathrm{~mm}\)
Vertical \(: 180 \mathrm{~mm} \pm 3 \mathrm{~mm} \quad 190 \mathrm{~mm} \pm 3 \mathrm{~mm}\)
Linearity : Character height or width will not vary for more than \(10 \%\) from the average character size.

\section*{8. Geometric Distortion}

DM-3014 :
\begin{tabular}{|c|c|}
\hline Horizontal & \(: \pm 2 \mathrm{~mm}\) \\
\hline Vertical & \(\pm 2 \mathrm{~mm}\) \\
\hline DM-3015 & \\
\hline Horizontal & \(: \pm 3 \mathrm{~mm}\) \\
\hline Vertical & \(\pm 3 \mathrm{~mm}\) \\
\hline
\end{tabular}
9. Video Cable Input Signal


Pin 2 - Video
Pin 5 - Self test
Pin 7 - Ground
Pin 10 - Ground
Pin 13 - H-sync
Pin 14 -V-sync

\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ CONNECTION TABLE } \\
\hline PIN NO. & \multicolumn{1}{|c|}{ FUNCTION } \\
\hline 1 & \(\mathrm{Y}_{\mathrm{B}}\) \\
\hline 2 & \(\mathrm{X}_{\mathrm{A}}\) \\
\hline 3 & \(\mathrm{Y}_{\mathrm{A}}\) \\
\hline 4 & \(\mathrm{X}_{\mathrm{B}}\) \\
\hline 5 & NC \\
\hline 6 & BUTTON \#1 (LEFT) \\
\hline 7 & +5 V \\
\hline 8 & GND \\
\hline 9 & BUTTON \#2 (RIGHT) \\
\hline
\end{tabular}


\section*{APPENDIX E}

\section*{TECHNICAL UPDATES}

***************** FOR IMMEDIATE RELEASE ******************

PC40-III VIDEO REPAIR TIP: IC/SOCKET CONTACT PROBLEMS.
THE PC40-III VIDEO CONTROLLER CHIP, PVGA-1A PN\# 390302-01, LOCATED AT U101, CAN EXHIBIT A NUMBER OF DIFFERENT SYMPTOMS IF A POOR CONTACT EXISTS BETWEEN THE IC AND THE 100 PIN PLCC ( PLASTIC LEADED CHIP CARRIER ).

THE SYMPTOMS INCLUDE, BUT ARE NOT LIMITED TO THE FOLLOWING:
```

- NO VIDEO - LOSS OF VIDEO SYNC
- SCRAMBLED TEXT - CONTINUOUS SCROLLING OF SCREEN

```

NOTE: VIDEO MODE SWITCHES ON THE BACK OF UNIT SHOULD BE SET TO VGA COLOR ( 1 UP, 2 DOWN, 3 DOWN ), SEE PAGE 64 IN PC40-III OPERATIONS GUIDE. THIS MODE INSURES THAT SOFTWARE USING COLOR MODES WILL RUN ON A MONOCHROME MONITOR.

IT WILL BE NECESSARY TO REMOVE THE DRIVE SUB-CHASSIS TO LOCATE U101.
1) TO INSURE PROPER CONTACT BETWEEN THE VIDEO CONTROLLER IC AND THE 100 PIN SOCKET (PLCC), INSERT THE IC ALL THE WAY DOWN INTO THE SOCKET BY APPLYING PRESSURE TO THE CORNERS OF THE IC WITH YOUR FINGERS.

WARNING: DO NOT ATTEMPT TO REMOVE THE VIDEO CONTROLLER IC FROM THE SOCKET WITHOUT THE PROPER IC EXTRACTOR. THIS TOOL IS AVAILABLE FROM COMMODORE PARTS PN\# 314874-01, DEALER COST IS \(\$ 20.00\).
2) CHECK THAT GOOD CONTACT EXISTS WITH ALL SOCKETTED CHIPS.
3) USE STATIC-PROTECTION PROCEDURES, ( SERVICER AND HARDWARE MUST BE AT THE SAME VOLTAGE POTENTIAL TO AVOID ELECTRO-STATIC DISCHARGE ).
[ NOTE: THIS BULLETIN IS IN ON-LINE ISSUE 25. ]

Computer Systems Division
1200 Wilson Drive
West Chester, PA 19380```


[^0]:    MultiSync is a registered trademark of NEC

