Part No. 023-4047

Cromemco’
68000 Pascal

Instruction Manual

CROMEMCO, Inc.
280 Bernardo Avenue
Mountain View, CA. 94043

Thirty Five Doliars

April 1983

Instruction Manual

CROMEMCO, Inc.
280 Bernardo Avenue
Mountain View, CA. 94043

Part No. 023-4047

Copyright© 1982
CROMEMCO, Inc.
All Rights Reserved

April 1983

This manual was produced using a Cromemco
System Three computer with a Cromemco HDD-22
Hard Disk Storage System running under the
Cromemco Cromix B Operating System. The text
was edited with the Cromemco Cromix Screen
Editor. The edited text was proofread by the
Cromemco SpellMaster™ Program and format-
ted by the Cromemco Word Processing System
Formatter II. Camera-ready copy was printed
on a Cromemco 3355B printer.

PREFACE

This Pascal Reference Manual describes the Pascal
Programming language as implemented by Cromemco.
Throughout this manual, "Cromemco Pascal" 1is to mean
that version of Pascal as implemented by Cromemco.

Cromemco Pascal implements the Pascal language as
defined in the proposed ISO Standard that appearec in
Pascal News, Number 20, December 1980. The Appendices
to this manual describe areas where Cromemco Pascal

deviates from the ISO standard.

In common with many Pascal implementations, Cromemco
Pascal has extensions. These mainly derive from ideas
implemented in the UCSD Pascal System. Primarily, those
extensions revolve around facilities for compiling code
modules separately. The other major areas of extension
are concerned with input and output facilities, and with
standard procedures and functions. Differences from
UCSD Pascal are noted in the Appendices.

Some parts of this manual follow the layout of the
"pascal User Manual and Report" by Kathleen Jensen and
Niklaus Wirth. The phrase "Jensen and Wirth" is used to

refer to that book.

This manual 1is a reference manual for Cromemco Pascal.
It is not intended as a user manual or a tutorial.
Readers are expected to already have some grasp of
programming concepts, terminology, and have at least a
minimal understanding of Pascal.

TABLE OF CONTENTS

Chapter 1: INTRODUCTION

bt bt
L4 L]
W N

Overview of this Manual
Overview of the Pascal Language
Metalanguage

Elementary Lexical Constructs
1.4.1 Alphabet

Pascal Identifiers
Numbers

Pascal Strings

Pascal Labels

Basic Symbols
Conventions for Spaces
Comments

SO N SO N N N
O AU W

L R = S P

Chapter 2: DEFINING DATA TYPES

NN
L L]
~

Chapter 3: DECLARING AND REFERENCING VARIABLES

W WwWw Ww
.
W

Defining Constants

2.1.1 Predefined Constants
Standard Types

Defining Data Types

Simple Types

2.4.1 Scalar Types

2,4.2 Subrange Types
Structured Types

2.5.1 Array Types

2 String Types

3 Record Types

4 Set Types
5
t

. o
o o

ot uTn

File Types
er Types

n
Identical Types
Assignment Compatible Types

NN HI-NDND NN

e o R O e o
~N3g -
B

Declaring Variables

Predeclared Variables

Establishing Variables

Lifetimes of Variables

3.4.1 Global Variables

3.4.2 Lifetime of Formal Parameters
3.4.3 Lifetime of Dynamic Variables
Referencing or Accessing Variables
3.5.1 Entire Variables

3.5.2 Component Variables

e Identity and Assignment Compatibility

17

17
18
18
20
21
21
21
22
23
24
25
27
27
28
29
29
30

31
31

32
32
32
33
33
33
34
34

3.5.2.1 Referencing Indexed Variables

3.5.2.2 Referencing Strings

3.5.2.3 Referencing Fields of Records

3.5.2.4 Referencing File Buffers
3.5.3 Pointer Referenced Variables

Chapter 4: EXPRESSIONS

4.1

S
* .

=W

tors in Expressions

Address Evaluation Operator
NOT Operator

Multiplying Operators
Adding Operators

Sign Operators

Relational Operators
Comparison of Scalars
Comparison of Booleans
Direct Pointer Comparison
String Comparison

Set Comparison

. Noncomparable Types

Out of Range Values

Order or Evaluation in Expressions
Compile Time Constant Expressions
4,4.1 Dead Code Elimination

r

e s s s e o g
= bt b e b b b et e e et e (D
* @ * @

= 0 0~ U W N D

- O

.« o o e e
. o o

o A N S N O G o}

[}
N

Chapter 5: STATEMENTS

5.1

5.2
5.3
5.4

5.
5

Statement Labels

5.1.1 Scope of Statement Labels
Assignment Statements

5.2.1 Assignments to Variables and Functions
Procedure Reference EStatement

Structured Statements

5.4.1 BEGIN .. END - Compound Statements
2 IF .. THEN .. ELSE Statement

3 CASE Statements

4 WHILE .. DO Statements

5 REPEAT .. UNTIL Statements

6 FOR .. DO Statements

The GOTO Statement

Chapter 6: INPUT AND OUTPUT

6.1

General File Handling Procedures

6.1.1 The File. Buffer Variable

6.1.2 GET - Get Component from File
6.1.3 PUT - Append Component to a File
6.1.4 RESET - Position to Start of File

34
35
35
36

2
9

37

37
38
38
38
40
41
41
42
43
43
43
44
45
45
45
45
46

49
49
49
49
50
51
51
51
53
54
55
55
56
57

59

59
59
60
61
61

6.1.5 REWRITE - Create or Overwrite a File
6.1.6 The Buffering Option on RESET and
REWRITE
6.2 Text File Handling Procedures
6.2.1 READ and READLN Intrinsics
6.2.2 READ from a File of Any Type
6.2.3 WRITE and WRITELN Intrinsics
6.2.4 Write Parameters

6.2.4,1 Integer Element

6.2.4.2 Real or Double Element
6.2.4.3 Scalar Subrange Element
6.2.4,4 Character Element
6.2.4.5 String Element or Packed

Array of Char

6.2.4.6 Boolean Element

6.2.5 WRITE to File of any Type

6.2.6 SEEK - Random Access to Typed Files

6.2.7 CLOSE - Close a File
6.3 Block Input/Output Intrinsics

6.3.1 BLOCKREAD - Read Block from File

6.3.2 BLOCKWRITE -~ Write Block to File

6.4 TIORESULT - Return Input-Output Result

Chapter 7: PROGRAM STRUCTURE

7.1 Compilation Units
7.2 Declarations and Scope of Identifiers
7.3 Program Heading
7.3.1 Predeclared Variables
7.3.1.1 ARGC and ARGV - Access to
Command Line
7.4 Declarations
7.4.1 L.abel Declarations
T.4.2 Constant Definition
7.4.3 Type Definition
7.4.4 Variable Declaration
7.5 Procedure and Function Declaration
7.5.1 External and Forward Attributes
7.5.2 Parameters for Procedures and

Functions

7.5.2.1 Value Parameters

7.5.2.2 Variable Parameters

7.5.2.3 Procedure and Function
Parameters

Chapter 8: STANDARD PROCEDURES AND FUNCTIONS

8.1 String Manipulation Facilities
8.1.1 LENGTH - Determine String Length
8.1.2 COPY - Copy a Substring
8.1.3 CONCAT - Concatenate Strings

62

62
63
63
64
64
65
66
66
67

€7
67
68
68
69
70
70
71
72

73

73
75
77
77

78
78
78
78
79
79
79
81

82
82
83

83

85
85

86
87

8.3

8.6

8.7

POS - Match a Substring in a String
SCANEQ and SCANNE - Scan for Character
DELETE - Delete Characters from String
INSERT - Insert Characters into String
Allocation Procedures
NEW - Allocate Storage
DISPOSE - Dispose of Allocated Storage
MARK - Mark Position of Heap
RELEASE - Release Allocated Memory
MEMAVAIL - Determine Available Memory
metic Functions

ABRS - Compute Absolute Value

SOR - Compute Square of a Number

SIN - Trigonometric Sine

COS - Trigonometric Cosine

ARCTAN - Trigonometric Arctangent

EXP - Compute Exponential of Value

PWROFTEN - Compute Ten to a Power

LN - Natural Logarithm of Value

SQRT - Square Root of Value
cates or Boolean Attributes

ODD - Test Integer for 0dd or Even

EOLN - Determine if End of Line Read

EOF - Determine if End of File Read

Conversion Functions

TRUNC - Truncate to Nearest Integer

ROUND - Round to Nearest Integer

ORD - Convert Type to Integer Value

ORD4 - Convert to Long Integer

CHR - Integer to Character Representation

Standard Functions

SUCC - Determine Successor of Value

PRED - Determine Predecessor of Value
llaneous Low Level Routines

MOVELEFT and MOVERIGHT

FILLCHAR - Fill a Storage Region with a

e o s (T e »
e« & o M s
Ko}
]

s o o 5 s o
® o 8 o s (T e

¢« o o
. L]

s N s o
e Qi

e) e .
« (T e e

e (s o
e (D o o

(oY
NEONOHRK UL WO WNHRF WO NOAUIE WO RHD UL W D oy Ul

H- o
NN D AATNUIUIN U S B LD WWWWWWWWWH RN DD RO

Character

8.7.3 SIZEOF - Determine Size of Data Element
or Type

8.7.4 POINTER - Convert Integer Expression to
Pointer

Control Procedures

8.8.1 EXIT - Exit from Procedure
.8.2 HALT - Terminate Program with Return Value
8.3 CALL - Call Up Another Program

Chapter 9: RUNNING THE PASCAL COMPILER

9.1

Compiler Options

88
g8
89
90
90
91
92
92
93
93
94
54
94
94
94
94
94
95
95
85
95
95
95
96
96
%6

96
97

97
97

97

98
98

99
100
100

100
100

101
102

103

104

Appendix A: PASCAL SYSTEH ERROR MESSAGES

Compile Time Lexical Errors
Compile Time Syntactic Errors
Compile Time Semantic Errors

Specific Limitations of the Compiler

Input/Output Errors
Code Generation Errors
IORESULT Error Codes

Codes Returned from the Halt Procedure

Appendix B: PASCAL LANGUAGE SYNTAX

Predefined Identifiers
Pascal Syntax Definitions

Appendix C: DIFFERENCES FROM ISO PASCAL

Appendix D: RELATIONSHIP TO UCSD PASCAL

Differences from UCSD Pascal

Appendix E: DATA REPRESENTATIONS
Storage Allocation

Packing Methods
Parameter Passing Mechanism

Appendix F: BIBLIOGRAPHY

109

109
109
110

112
112
113
113
113

115

115
116

125

127

127

131

131
139
142

147

Cromemce Pascal Instruction Manual

l.

Introduction

Chapter 1

INTRODUCTION

Pascal is a "modern" computer programming language
designed by Professor Niklaus Wirth (of the
Eidgenossiche Technische Hocheschule, Zurich,
Switzerland) in reaction to the perceived disorder of
contemporary programming languages. Originally intended
as an aid to teaching rigorous and disciplined computer
programming, Pascal has since gained international
acceptance as a programming language for a multiplicity
of applications ranging from writing compilers
(including Pascal compilers) to controlling a grain
elevator. Pascal 1is not an acronym for anything.
Pascal is named after Blaise Pascal, the 17th century
philosopher and mathematician.

Pascal is one of the many derivatives of Algol-60.

Algol introduced the notion of nested control
structures such as if..then..else that form the basis of
today's structured programming methods. In addition to
the control structures, Pascal goes one step further
with the notion that data structures play at least as
important a part in rigorous programming as do control
structures. The absence of an adequate data structuring
notation was seen as Algol's most obvious deficiency.

Pascal's major contribution to the advance 1in
programming technology is the concept of user definable
data types. This provides powerful facilities for
defining new data types and data structures in terms of
a few basic types.

This reference manual describes the Pascal language as
implemented by Cromemco. Throughout, the term "Cromemco
Pascal" means the Pascal implementation as described in
this reference manual.

OVERVIEW OF THIS MANUAL

The overall layout of this manual loosely follows that
of the "Pascal User Manual and Report", by Kathleen
Jensen and Niklaus Wirth. There is somewhat more detail
in this reference manual than in Jensen and Wirth.

In general, the order that topics are presented in is:
first some narrative introductory material, then formal
descriptions, followed by examples.

Cromemco Pascal Instruction Manual

l.

Introducticn

This chapter 1s an introduction to Pascal terms and
concepts. It contains an overview of the Pascal
language. There is a description of the metalanguage
that this manual uses to describe the Pascal Language.
Finally there are descriptions of the basic elements of

Pascal.

Chapter 2 introduces the concepts of data types and
discusses the notations by which data types are defined
and declared.

Chapter 3 describes the means whereby variables are
declared and referenced.

Chapter 4 describes Pascal expressions which are used to
derive new data values.

Chapter 5 presents Pascal statements and how they are
used to achieve computing actions.

Chapter 6 covers Pascal input and output facilities.

Chapter 7 describes Program Structure in Pascal,
including the ideas of independent compilation units.

Chapter 8 describes Pascal standard procedures and
functions, that is, those "built in" facilities of the
language that a user program need not provide.

Chapter 9 describes how to run the Pascal compiler. 1In
chapter 9 can also be found compiler options that direct
some of the compiler's actions.

Appendix A is a list of Pascal diagnostic messages.

Appendix B provides a summary of the Pascal language
syntax.

Appendix C covers the differences between Cromemco
Pascal and 1SO standard Pascal.

Appendix D covers the differences between Cromemco
Pascal and UCSD Pascal.

Appendix E covers machine-dependent issues such as data
representation, data packing and parameter passing.

There is a bibliography of Pascal related literature in
Appendix F.

Cromemco Pascal Instruction Manual

l.

Introduction

OVERVIEW OF TEBE PASCAL LANGUAGE

A Pascal program consists of a series of declarations
and statements. Declarations serve to define program
objects. Statements determine actions to be performed
upon such objects. These two things, declaraticns and
statements, serve to describe a computer program.

Definable Pascal objects include variables, functions,
procedures, and files. Declaring an instance of an
object requires an identifier and, usually, a type
description. An object's identifier serves to identify
that object so that it can be referenced later. The
type associated with an object defines its operational
characteristics, and in some cases, indicates a
referential notation.

It is important to note that all user supplied objects
must be fully described, especially as to their type.
Pascal 1is unlike many other programming languages in
that it does not supply any default attributes for
undeclared identifiers.

One of Pascal's strongest points is the ability for
users to define new types. Pascal supplies a small
number of predefined or basic types, such as integer.
Pascal then supplies notations for defining new (user
defined) types, both in terms of the basic types, and in
terms of other user defined types.

A type can be described directly in a declaration, or, a
type can be referenced by a type identifier which, in
turn, must be defined by another explicit type
declaration.

In general, a Pascal object is only subject to
operations that lie inside of a domain indicated by its
type. For example, most binary operators are restricted
to objects of the same type (for instance, characters
and integers cannot be added directly). These
operational constraints are rigid, as are the rules for
type identity and assignment compatibility. Departures
from the rules have to be spelled out explicitly in
terms of conversion functions.

The basic data type is the scalar type, often referred
to as an enumerated type. A scalar definition indicates
an ordered set of values, where each identifier in the
set stands for a specific value.

In addition to the definable scalar types, there are
five standard basic types, namely integer, 1longint,
char (acter), real, and Boolean types. With the

3

Cromemco Pascal Instruction Manual

l.

Introduction

exception of the Boolean type, their values are denoted
by numbers or quoted characters, instead of by
identifiers.

A type may also be defined as a subrange of a scalar
type by indicating the lower and upper bounds of the
subrange.

Structured types are aggregates, defined by describing
the types of their components, and by indicating a
structuring method. The structuring methods differ in
the way that components of a structured variable are
selected, and in the operations that they can
participate 1in. Pascal provides five basic ways to
construct an aggregate object, namely array, record,
set, string, and file.

An array has components which are all of the same type.
A component is selected by a computable index. The type
of such an index must be a scalar, and is determined at
the time the array is declared.

A record has components called fields which need not bke
all of the same type. A field selector for a component
of a record is an identifier that is uniquely associated
with the component to be selected. Unlike an array
element index, a field selector is not a computable
quantity. The field selectors are defined at the same
time that the record is defined. A record type may
consist of several variants. This means that different
variables of the same record type may actually contain
different structures. That is, the number and types of
the components may differ between different instances of
the same type. The particular variant which the
specific variable assumes is indicated by a field called
the taq field, common to all variants of that record.

A set is a homogeneous collection of elements selected
from some base type. The base type might be a user
defined scalar type or a subrange of some scalar type
such as integer or char. A Pascal set is the collection
of values comprising the powerset of the base type.
That means, the set of all subsets of that base type.

A string data type is a sequence of characters whose
length can vary dynamically during program execution. A
string has a maximum length (its static length) which is
determined when it is defined. There are a rich set of
intrinsic procedures and functions to manipulate

strings.

Cromemco Pascal Instruction Manual

l.

Introduction

A file is a sequence of components of the same type.
The sequence is normally associated with external
storage or input and output devices, so that files are
the means whereby a Pascal program communicates with the
world outside of the computer. Files can be sequential
such that there is a natural ordering, and only one
component of the file is accessible at any one time, or
they can be random, such that any given component of the
file is accessible on demand.

Explicitly declared variables are called static, in that
they are known at compile time (lexically static). A
declaration associates an identifier with the variable.
The identifier is subsequently used to refer to that
variable. In contrast to static variables, dynamic
variables are created by executable statements. Such a
dynamic creation of a variable yields a pointer {(which
substitutes for an explicit declaration), that 1is
subsequently used to refer to the dynamically allocated
variable. Any given pointer variable may only assume
values pointing to variables of a specific type, and is
said to be bound to that type. A pointer may be
assigned to other pointer variables of the same type.
Any pointer can assume the value nil - a universal
pointer that is not bound to a specific type.

The assignment statement is the fundamental Pascal
statement. It assigns a newly computed value to a
variable or a component of a variable. New values are
obtained by evaluating expressions. Expressions consist
of variables, constants, sets, operators, and functions,
operating on specified objects, to produce new values.
Operands of expressions are either declared in the
program, or are standard Pascal entities, Pascal
defines a fixed set of operators that can be considered
to define a mapping from given operand types into result
types. Operators encompass the four groups: (1)
arithmetic operators, (2) Boolean operators, (3) set
operators, and (4) relaticnal operators.

A procedure statement causes execution of a designated
procedure, This is known as activating or c¢alling the
procedure. Assignment and procedure statements are the

basic elements of structured statements. Structured
statements specify sequential, selective, or repetitive
execution of their component statements. Sequential

execution is obtained by the compound statement;
Conditional and selective execution by the if statement
and the case statement; Repetitive execution is
specified by the while statement, the repeat statement,
or the for statement.

Cromemco Pascal Instruction Manual

1.

Introduction

A statement can be given a name (an identifier), and
subsequently be referenced via that name. The statement
is then called a procedure, and its declaration is a
procedure declaration. A procedure declaration can
itself contain type declarations, variable declarations,
and further procedure declarations. These subsequent
declarations can only be referenced within that
procedure, and are thus said to be local to the
procedure. The program text that comprises a procedure
body is called the scope of any identifiers declared
local to that procedure. Since procedures may be
declared local to other procedures, scopes may be
nested., Objects declared in the main program block, not
local to any procedure, are said to be global, in that
their scope is that of the entire program,

A procedure can have a number of parameters (determined
at procedure declaration time), each parameter being
denoted by an identifier called the formal parameter.
When a procedure is activated, each of the formal
parameters has an actual quantity substituted such that
that quantity is accessed by reference to the formal
parameter identifier. These gquantities are called
actual parameters. There are three sorts of parameters,
namely value parameters, variable parameters, and
procedure or function parameters. A value parameter is
an actual parameter which is evaluated once. The formal
parameter then represents a local variable conveniently
initialized to the value of the actual parameter,. In
the case of a variable parameter, the actual parameter
is a variable - the formal parameter actually references
and can alter that variable. Possible array indexes are
evaluated before activation of the procedure or
function. In the case of a procedure or function
parameter, the actual parameter is a procedure or
function identifier.

Functions are declared in the same way as procedures.
The difference is that a function returns a value.
Pascal functions have intuitive similarities to the
mathematical notion - a function is a computational
entity that is applied to some arguments and generates a
result, Pascal functions differ from the rigorous
mathematical notion of functions in that they can have
side effects. The type of the returned value must be
specified as part of the function declaration.
Functions can only return scalar types or pointer types.
A function reference must appear in the context of an
expression.,

Pascal procedures and functions are inherently
recursive. That means that a procedure or function can
call itself anew before the current activation is

6

Cromemco Pascal Instruction Manual

1'

Introducticon

complete. On each activaticn, a fresh set of local data
is created. Recursive activation can be direct (the
reference is contained within the procedure or function
itself) or indirect (the reference is from another
procedure or function which in turn is referenced from
the current procedure or function).

METALANGUAGE

A "metalanguage" 1is a collection of notations that
describe another language. In this case the language
being described is Pascal. The metalanguage used in
this manual to describe Pascal is a modified version of
the ubiquitous Backus-Naur Form, or BNF (first used to
describe Algol). A description of the metalanguage
follows. :

Syntactic constructs enclosed between "angle brackets" <
and > define the basic language elements. Every
language construct should eventually be defined in terms
of basic lexical constructs defined in the remainder of
this Charpter.

A construct appearing outside the angle brackets stands
for itself, that is, it is supposed to be self denoting.
Such a construct is known as a terminal symbol.
Terminal symbols and reserved words appear in bold face
text throucghout this manual.

The symbol ::= is to be read "defined as".

The symbol .. means "through", indicating an ordered
sequence of things where only the start and end elements
are specified. (The reader is left to infer the middle
elements). For example, the notation 'a' .. 'z' means
"the ordered collection starting with the letter 'a',
ending with the letter 'z', and containing the letters
'b', 'c¢'....'x', 'y' in between". In other words, all
the lower case letters.

The "vertical bar" symbol | is read as "or". It
separates sequences of elements that represent a choice
of one out of many.

The metalanguage construct {...} (elements inside
braces) enclose elements which are to be repeated "zero
to many times". Although the braces are also used as
one of the forms of comment delimiters in Pascal, this
should not cause any ambiguity. The one case where
ambiguity would occur is in the definition of comments,
and this is explicitly pointed out at that time.

7

Cromemco Pascal Instruction Manual
1. Introduction

It is recognized that the syntactic descriptions are not
completely rigorous in that they do not cover semantic
issues. For example, the syntactic definition of a
decimal number does not mention how big a number can be.
Where the formal descriptions fall short they are
augmented with narrative English prose.

ELEMENTARY LEXICAL CONSTRUCTS

Pascal language lexical units - identifiers, basic
symbols, and constants - are constructed from one or
more (juxtaposed) elements of the alphabet described
below.

Alphabet

Cromemco Pascal uses an extended form of the ASCII
character set for all text related processing. ASCII is
the American Standard Code for Information Interchange.
There are 128 characters in the ASCII character set: 52
letters (upper case 'A' thru 'Z', and lower case 'a'
thru 'z'), 10 digits, space (often called "blank"), 33
"control codes"™ (such as "carriage return" and "line
feed"), and 32 graphic characters such as colon, equals
sign, and so on, Pascal also allows an additional 128
values to be used as data values, for a total of 256
possible data values.

The Pascal compiler recognizes the following alphabet or
character set:
<letter> ::= 'A' ,. 'Z' and 'a' .. 'z', and '_'
<digit> ::= '0' .. '9'
<hex digit> ::= <digit> | 'a' .. '£' ['A' .. 'F!

<ASCII graphic characters> ::=

e An
AN
~ A\
_4/*

!
+
@

v /-
~e) o~

-
~

oo'

— e

Pascal Identifiers

Pascal Identifiers serve to denote constants, variables,
procedures, and other language objects.

<identifier> ::= <letter> { <letter> | <digit> }

8

Cromemco Pascal Instruction Manual
1. Introducticn

A Pascal identifier must start with a letter. It can
contain letters, digits, and the underline character.
The underline is usually used to mark off spaces in the
identifier to provide for readable and meaningful names.
A Pascal identifier may be any length, but only the
first 8 characters are significant to the compiler.
Upper and lower case letters are all "folded" to a
single case in the compiler, making them equivalent.

Examples of Identifiers

here_and_there August_1979 Steve_and_Jeff
_X25 Tau_Epsilon_Xi DragonsEgg
UPanddown upandDOWN upANDdown

The last three identifiers in the examples are
equivalent because the compiler folds letters to a
single case.

Examples of Invalid Identifiers

lst_character_must_be_a_letter

mustn't_have_odd_#S$" [_characters_in_it

1.4.3 Numbers
Numbers are used to denote integer, real and double data

elements. Integers are assumed to be in the decimal
number base, unless designated as a hexadecimal number.

<unsigned integer> ::= <digit> {<digit>}
<unsigned real> ::=
<unsigned integer>.<unsigned integer>

| <unsigned integer>.<unsigned integer> E<scale factor>
| <unsigned integer> E<scale factor>
| <unsigned integer>.<unsigned integer> D<scale factor>
| <unsigned integer> D<scale factor>

<unsigned number> ::= <unsigned integer> | <unsigned real>

<scale factor> ::= <unsigned integer> | <sign><unsigned integer>

<hex number> ::= $<hex digit> {<hex digit>}
9

Cromemco Pascal Instruction Manual
1. Introducticon

Hexadecimal numbers are considered unsigned, unless they
are explicitly written as 32-bit values with the most
significant bit a one. For instance, the value S$ffff is
65535 and not -1. The value Sffffffff is a negative

number.

integer numbers are represented internally in the two's
complement notation. As a consequence, there 1is one
more negative integer than there are positive integers.

Values of type double are designated by a letter D
preceding the exponent part of the number.

Examples of Valid Numbers

666 { unsigned decimal integer }
+99 -457 { signed decimal numbers }
$3e8 { a hexadecimal number }
0.0 { the real number zero }
3.14159

{

1.23D10 a double number}

Examples of Invalid Numbers

5. { should be a digit after the point
.618 { should be a digit before the point
5.E10 { should be a digit after the point
2FC9 { 1Invalid decimal number
F034 { An identifier, not a hex number
1.4.4 Pascal Strings

Sequences of characters enclosed in apostrophes are
called strings. Strings of one character are constants
of type char. A string of "n" characters, where "n" is
greater than one, is an ambiguous constant that is
either a string value, or is a value of the type packed
array [1 .. n] of char; The exact type of such a string
constant is determined from the context in which it
appears.

A string constant which is just simply two juxtaposed
apostrophes '' represents a variable string constant of
length zero.

Cromemco Pascal provides for entering any character
value into a string by coding its two-digit hexadecimal
value preceded by a reverse slash \. This means that
nonprinting characters such as "BEL" and "ETX" may be
entered into a string. A \ sign followed by a

10

Cromemco Pascal Instruction Manual
1. Introduction

nonhexadecimal digit is simply that character. Thus
'\Y' is equivalent to 'Y', "\\' represents '\' and "\3X'
represents '\03X', This last case is interesting 1in
that leading zeros are implicit in the hexadecimal
number if there is only one hexadecimal digit followed
by a nonhexadecimal digit. :

An apostrophe in a string is represented by two
juxtaposed apostrophes. The rules for reverse slash

character representations above means that an apostrophe
can also be represented by the string '"\'' or '\27'.

<string> ::= '<character> {<character>}'

<character value> ::= \<two digit hexadecimal number>

Examples of Strings
'This is a string constant'
'This string has an embedded '' apostrophe’
'here is how to get a \07 bell character in a string'

'to get a back slash, just type \\'

Pascal Labels

A label is used to mark statements as the potential
target of a goto statement.

Pascal labels are unsigned integer constants in the
range 0 .. 9999.

<label> ::= <unsigned integer>

Basic Symbols

Pascal has a set of "basic symbols" which the compiler
uses for specific purposes in the language. These basic
symbols include selected identifiers (reserved words),
graphic characters, and pairs of graphic characters.
These basic symbols are used as Kkeywords, operators,
delimiters and separators. Such symbols are introduced
throughout the body of this manual.

Note that user-defined identifiers may not be the same
as any Pascal reserved word.

11

Cromemco Pascal Instruction Manual

1.

Introduction

Identifiers (reserved words) used as basic symbols are
shown in this manual in bold faced typefont. For
example, procedure, else, and type are Pascal reserved
words.

There are two lists of basic symbols shown below. One
is a list of Pascal reserved words and the other is a
list of the special graphic symbols that Pascal uses.

Pascal Reserved Words

and end label program until
array file mod record uses
begin for nil repeat var
case function not set while
const goto of string with
div if or then

do implementation otherwise to

downto in packed type

else interface procedure unit

12

Cromemco Pascal Instruction Manual

l.

Introduction

-e

Pascal Special Symbols

Adding Operator.

Subtracting Operator.

Multiplying Operator.

Division Operator (for real) data types).
Assignment Operator.

Terminates a Pascal Compilation Unit;
Separates integer from fraction in a real
number; Indicates reference to a field of a
record.

Separates items in lists.

Statement and Declaration Separator.

used after case labels, statement 1labels,
variable and parameter descriptions.

string delimiter.

Relational equality operator; Used in constant
and type definition.

Relational operator for inequality.
Relational operator for "less than".

Relational operator for "less than or equal
to".

Relational operator for "greater than or equal
to".

Relational operator for “"greater than".
encloses lists of elements; encloses parts of

expressions that are to be considered
indivisible factors.

13

Cromemco Pascal Instruction Manual
1. Introductiocn

1.4.7

[and] encloses array subscripts and lists of set
elements.

{ and } comment delimiters.

(* and *) are an alternative form of comment delimiters.
- pointer dereference operator.

.e indicates a range of elements.

Conventions for Spaces

Spaces (also called blanks) are used to separate lexical
items. Identifiers, reserved words and constants must
not abut each other, neither may they contain embedded
spaces. Multiple-character basic symbols such as <=
must not contain embedded spaces.

Other than that, spaces may be used freely (to improve
program readability for instance). They have no effect,
outside of character and string constants, where a space
represents itself.

Comments

Comments in Pascal may appear anywhere that a space may
appear, and in fact, serve the same purpose as do
spaces. But note that a comment within a string
constant is part of the string constant and is not
really a comment. Pascal comments are enclosed between
braces {...} or between the characters (* and *).

<comment> ::= { <any printable characters except "}">
| (* <any printable characters except "*)"

In the description above, the braces enclosing the
comment are the comment delimiters, not metalanguage
symbols.

For historical reasons, Pascal accepts two forms of
comment delimiters. The open and close braces {"} can
be used where the character set provides such, Most
modern computer systems and terminals accommodate those
characters. Those systems which do not accommodate the
full ASCII character set can use the alternative forms
of (* and *) to delimit comments.

14

Cromemco Pascal Instruction Manual
1. Introduction

Comments that start with one kind of opening delimiter
must end with the corresponding closing delimiter. For

example:

{ this Pascal comment is enclosed in braces }

(* this comment uses the alternative delimiter *)

{ this Pascal comment would go on for ever because ¥*)

(* does not close the comment. For that we need a

closing brace }

Pascal comments can span multiple lines, thus providing
a "block comment" capability.

15

Cromemco Pascal Instruction Manual

l6

Cromemco Pascal Instruction Manual
2. Defining Data Types

Chapter 2

DEFINING DATA TYPES

One of Pascal's major attractions is the ease with which
users can describe and manipulate data. An important
aspect of structured programming technology 1is the
ability to structure data as well as control statements.
This is provided in Pascal through the noticn of a data

type.

A type defines a collection of values that a variable,
constant or expression may take on. A type has an
associated size, but of itself reserves no storage
space. Storage is only reserved when a variable is
declared as an instance of that type. Although Pascal
data types can be quite complex, they are ultimately
composed of simple unstructured components. An example
is the predefined type integer. 1Its size is two bytes
(16 bits). The set of wvalues 1t contains is -32768,
co ey "'l, 0, 1.--, 32767.

In addition to having a size and a set of values, a type
has a collection of operations in which values of that
type can participate.

Pascal provides a number of predefined types (some of
which were described in Chapter 1), as well as the means
for users to define their own types. Section 2.2 of
this Chapter describes all predefined Pascal types.

Type constructors are the means by which users can
define their own types. Structured type constructors
facilitate the definition of new and larger types based
upon other existing types as components.

DEFINING CONSTANTS

A literal constant is a value that denotes itself - its
value is manifest from its appearance. The integer 1776
and the string 'Manilla' are literal constants. A
constant definition introduces an identifier that is a
synonym for a constant. Using the identifier is
equivalent to using the associated literal constant.
Whereas the string "3.14159" is a literal constant, an
ijdentifier called "Pi" could be defined which is a
synonym for the number. The identifier is then known as
a constant identifier, or just a constant.

17

Cromemco Pascal Instruction Manual
2. Defining Data Types

<constant identifier> ::= <identifier>

<constant> ::= <unsigned number>
| <sign> <unsigned number>
| <constant identifier>
| <sign> <constant identifier>
| {string>

<constant definition> ::= <identifier> = <constant>;
The definition above means that a constant may be
defined to be another constant, but prohibits constant
expressions.

Predefined Constants

Pascal provides three constants that are automatically

declared as part of the language. The three constants
are:

true Represents the truth value for a Boolean type.

false Represents the falsity value for a Boolean
type.

maxint An integer constant representing the largest
integer that Pascal can store. Maxint is

currently defined as 32767.

Examples of Constant Definitions

Liters_per_bottle = 0.750; { standard bottle is 750 ml
Bottles_per_Case = 12; { standard case

first_vowel = ‘a'; { a char constant

Winery = 'Chateau Montelena'; { a string constant
Carriage_Return = '\0d'; { carriage return character

STANDARD TYPES

Cromemco Pascal has seven predefined types available:

integer integer type represents an implementation
defined subset of the integers. It is

equivalent to a subrange defined by a type
definition that looks like:

18

N Cmgmad oyt Syt St

Cromemco Pascal Instruction Manual
2. Defining Data Types

longint

real

double

Boolean

integer = -32768 .. 32767

The integer data type therefore occupies 16
bits of data storage.

is a long integer type. It is equivalent to a
subrange defined by a type definition that

looks like:
longint = -2147483648 .. 2147483647

The longint data type therefore occupies 32
bits of data storage.

real type is a subset of the continuum of real
numbers. Reals are represented in the
"floating point" format which consists of a
fractional part (a mantissa) and an exponent.
The range of real numbers is approximately
-3.4E38 .. +3.4E38, with a precision of
approximately seven decimal places. In
addition, the real data type can take on
"extreme values", such as plus infinity, minus
infinity, and "Not a Number" (abbreviated
NaN), which arise from overflow and division
by zero. There is a detailed discussion of
extreme values in appendix E - "Data
Representation"”.

double type is a double precision form of the
real data type described above, and is a
subset of the continuum of real numbers.
Double numbers are represented in the
"floating point" format which consists of a
fractional part (a mantissa) and an exponent.
The range of double numbers is approximately
-1.8D308 .. +1.8D308, with a precision of
approximately 16 decimal places. In addition,
the double data type can take on "extreme
values", such as plus infinity, minus
infinity, and "Not a Number" (abbreviated
NaN), which arise from overflow and division
by zero. There is a detailed discussion of
extreme values in appendix E - "Data
Representations”,

Boolean type represents the ordered set of
"truth values" whose constant denotations are
false and true, Boolean is conceptually
equivalent to an ordinal type specified by a
type definition that looks like:

19

Cromemco Pascal Instruction Manual
2. Defining Data Types

Boolean = (false, true)

char character type defines the set of 256 values
of the ASCII character set, and is equivalent
to the subrange defined by a type definition
that looks like:

char = '"\00' .. '\ff’

An unpacked char data item occupies one word
or 16 bits of data storage. A packed char
data item occupies one byte or 8 bits of data
storage.

text is equivalent to a packed file of char.

interactive is a file type the same as that of text,
except that the standard procedures READLN
and WRITELN treat the end-of-line in a way
that is more suitable for interactive
(terminal) devices.

DEFINING DATA TYPES

Pascal data types (or just types for short), are used to
define sets of values that Pascal variables may assume
and in many cases, a notation for referencing such
variables. Pascal provides a small number of predefined
types, reserved identifiers for these types, and a
notation for defining new types in terms of existing
types.

Type declarations introduce new (user defined) types,
and identifiers for those newly-declared types.

<type spec> ::= <type identifier> = <Pascal type>;

Type declarations can be used for purposes of brevity,
clarity and accuracy. Once declared, a type may be
referred to elsewhere in the program by its declared
type—-identifier,

20

Cromemco Pascal Instruction Manual
2. Defining Data Types

SIMPLE TYPES

Simple types are those that have neither structure nor
components. The simple types are as follows:

<simple type> ::= <scalar type>
| <standard type>
| <subrange type>
| <type identifier>

Scalar Types

A scalar type defines a well-ordered set of values by
enumerating the identifiers that denote those values. A
scalar type is also known as an genumerated type or an
ordinal type. An ordinal type is represented by the
ordered set of integers 0, 1, 2, 3,r, with the
first identifier begin 0, up to the last identifier
which is "n"-1, where "n" is the number of identifiers
in the list.

<scalar type> ::= (<identifier> {,<identifier>})

Examples of Scalar Type Definitions

salad_greens (Spinach, Lettuce, Coriander,

Escarole, Watercress);

(Fillette, Bottle, Magnum, Marie_Jeanne,

bottle_sizes

Jeroboam, Imperial)

mealtimes = (Breakfast, Elevenses, Lunch, AfternoonTea, Dinner)

Subrange Types

A subrange type represents a subrange of values of
another scalar type. It is defined by a lower and an
upper bound. The lower bound must not be greater than
the upper bound, and both bounds must be of identical
scalar types.

Values from a subrange and values from its parent range

(or another subrange of its parent range) can be
assigned to each other and can enter into the operations

of assignment, comparison, and other binary operations.

21

[

Cromemco Pascal Instruction Manual
2. Defining Data Types

<{subrange type> ::=
<subrange type identifier> | <lower> .., <upper>

<lower> ::= <signed scalar constant>
<upper> ::= <signed scalar constant>

Examples of Subrange Type Definitions

0 .. 15;

1 .. 366;

0 .. 32767;

|a' . Izl;

(red, orange, yellow, green, blue);
red .. yellow;

green .. blue;

small_integer
days_in_year
positive_integer
lower_case_letters
colors

hot_colors
cold_colors

nom g oyn

hues red .. blue;
weekdays Monday .. Friday;
weekends Saturday .. Sunday:;
2.5 STRUCTURED TYPES

Structured types represent collections of objects. They
are defined by describing their element types and
indicating a structuring method. These differ in the
accessing mechanisms and in the notation used to select
elements from the collection.

Pascal makes available five structuring methods: array,
string, set, record and file. Each type is described in
the subsections to follow.

A structured type may be given the packed storage
attribute. This "advises" the compiler that the
structure is to use data storage economically, by
packing the components of the structure densely.
Packing is often achieved at a cost of larger code size
and slower execution speed. Furthermore, a component of
a packed variable can not be passed as a var parameter
to a procedure or function (this restriction applies to
components of packed array of char). A full discussion
on how components are packed can be found in the
Appendices.

22

Cromemco Pascal Instruction Manual
2. Defining Data Types

<structured type> ::= <unpacked structured type>
| packed <unpacked structured type>

<unpacked structured type> ::= <array type>
| <string type>
| <record type>
| <set type>
| <file type>

2.5.1 ARRAY TYPES

An array type is a structure consisting of a fixed
number of components, all of the same type (called the
component type). Array elements are designated by
indexes, which are values belonging to the so-called
index type. The array type-definition specifies the
component type as well as the index type.

<array type> ::= array [<index list>] of <type>

<index list> ::= <simple type> {, <simple type>}

If "n" index types are specified, the array is an "n"
dimensional array. Note that the above definition for
an array type means that there are two alternative ways
of specifying an array. By definition, a component of
an array can be another array type. Thus a three
dimensional array could be specified as follows:

blivet

array [1..10, 11..20, 21..30] of blimps;

array [1..10] of array [11..20] of
array [21..30] of blimps;

widget

The alternative forms of specifying array types are
equivalent. The first form can be thought of as a
shorthand notation for the second £form. There is a
similar choice of notations when specifying the index
elements for accessing an array component.

When the index type is a subrange of the type integer,
the type:

packed array [1 .. n] of char

23

Cromemco Pascal Instruction Manual
2. Defining Data Types

is a special case. Objects of this type can be assigned
and compared as single entities, whereas arrays of other
data types must be assigned and compared element by
element. A literal string constant can be assigned to a
packed array of char providing that the lengths are the
same. The type of a literal string of length 'n', where
'n' is greater than 1 is the type:

packed array [1 .. n] of char

An object of type packed array of char can be assigned
and compared up to a maximum length of 255 characters.
See chapters 4 and 5 for details.

Examples of Array Type Definitions

rows =1 .. 3;
columns = 1 ,. 4;

bottle_gquantities = array [bottle_sizes] of integer;

standard_case = packed array [rows]
of array [columns]
of bottles;

token = packed array [1 .. 100] of char;

String Types

Cromemco Pascal has a structured type constructor called
string. A string variable has a maximum length (called
its static length) which is determined when the string
is defined. A string variable also has a dynamic length
which can vary over the range 0 through its static
length during execution of a program, The standard
function LENGTH can be used to determine the string's
dynamic length. The maximum static length of a string
variable is 255 characters.

Strings can be manipulated by standard Pascal syntax, or
by using string handling intrinsics, described in the
Chapter on "Standard Procedures and Functions"”.

11

<string type> ::= string [<static length>]

{static length> ::= integer constant in the range 1 .. 255

24

Cromemco Pascal Instruction Manual
2. Defining Data Types

A string constant which is '' (two Jjuxtaposed
apostrophes) represents a null or zero—-length string.

Example of String Type Definition

manilla = string[100];
punched_card = string[80];

2.5.3 Record Types

A record type is a structure consisting of a fixed
number of components that may be of different types.
For each component, or £field of the record, the
definition specifies both a type and an identifier used
to reference the field. The scope of these field
jdentifiers is the definition of the record itself.
This means that the same field identifier may appear in
more than one record. A field identifier 1is also
accessible within a field designator when referring to a
variable of this record type.

Record components which are themselves records do not
inherit the packing attribute of the containing record.
Each component which is a record has independent packing
attributes.

A variant record caters to the need for a record
composed of a portion which is always the same, plus one
or more variants whose layouts differ between different
instances of the record. The specific variant that is
selected in any given instance is determined by an
optional tag field. Such a structure is called a
variant record or a discriminated union. The tag field
is often called a discriminant. The tag field's value
indicates which variant the record assumes at a given
time. Each variant structure is identified via a case
label which is a constant of the tag field's type.
Referencing a field of a variant that is inconsistent
with the tag fields's value is a serious programming
error.,

= record <field list> end;

{record type> ::

:= <fixed part>
l
l

<field list> :
<fixed part> ; <variant part>
{variant part>

<fixed part> ::= <record section> {; <record section>}
<record section)> ::= <field identifier list> : <type>
<field identifier list> ::= <field identifier> {,<field identifier>}

25

Cromemco Pascal Instruction Manual
2. Defining Data Types

<variant part> ::=
case {<tag field>} <type identifier> of <variant list>
¢variant list> ::= <variant> {; <variant>}
<variant> ::= <case label list> : (<Kfield 1list>)
<case label list> ::= <case label> {, <case label>}
<case label> ::= <constant>
<tag field> ::= <identifier>:

Note that the <tag field> is optional in a variant
record definition.

Examples of Record Type Definitions

the example to follow illustrates an
ordinary record called ComplexNumber,
which contains two fields, namely the
real part and the imaginary part.
ComplexNumber = record
RealPart: real;
Imaginary: real;
end;

[ana Y Waaa VEUN
S g S Semd

The example below illustrates a variant
record type which has different sections
that are accessed depending on the tags.
First we define an enumerated type which
is used as the variant case selector.
shapes = (rectangle, triangle, circle, polygon);

vt gt Mo e o

angle = -180 .. +180;

PositionRec = record
Xx_position: real;
y_position: real;
case whatshape: shapes of
rectangle: (base: real;
height: real);
triangle: (base: real;
height: real;
skew: angle);
circle: (radius: real);
polygon: (SideCount: integer;
radius: real);
end;

26

Cromemco Pascal Instruction Manual
2. Defining Data Types

Set Types

A set type definition serves to define the base type
that the set is to use in future manipulations. Sets
are limited to 2032 elements. The range of the set
elements must be within the range 0 .. 2031.

<set type> ::= set of <simple type>

Examples of Set Type Definitions
salad_base = set of salad_greens;
dressings = set of salad_dressings;

lower_case = set of ‘'a' .. 'z,

File Types

A file type defines a sequence of elements. A file is
usually associated with external storage devices or
communication devices. Cromemco Pascal supports the
standard Pascal typed files, untyped files and an
interactive file type more suitable for terminals.

When a file variable "f" with components of type "T" is
declared, there is an additional implied declaration of
a so called buffer variable or "window", also of type
"T", This window is referenced by the notation f£" where
"f" jis the file variable. This window is used in
conjunction with the GET and PUT procedures (see the
Chapter on "Input and Output") and serves to append
components to the file when writing, and to access the
components when reading from the file.

<file type> ::= file of <type>
l file

Cromemco Pascal supports untyped files. An untyped file
can be considered to not have a window variable. Such
files must be accessed using the BLOCKREAD and
BLOCKWRITE functions described in the Chapter on "Input
and Output”.

A file of the pre-defined type text can be considered to
be defined by a type definition of the form:

27

Cromemco Pascal Instruction Manual
2. Defining Data Types

text = packed file of char;

Such a file is special in that the range of its

components (characters) are extended to include an
end-of-line marker. Such a file can then be
conveniently structured into lines. The EOLN predicate
described in the Chapter on "Standard Procedures and
Functions" covers how the end-of-line is detected.

Cromemco Pascal also supports an interactive file type
which display different behavior in the way that the
READ, READLN and RESET intrinsics work. The differences
are covered in the Chapter on "Input and Output®". An
interactive file is more suitable for use with

interactive terminals.
Examples of File Type Definitions
block_access = file;

numbers - = file of integer;

Capping_Line file of bottles;

i

Terminal interactive;

legible_file text;

POINTER TYPES

Explicitly declared variables are accessible by
reference to the identifier used to declare them. Such
variables are accessible during the activation (scope)
of the procedure in which they are declared. These
variables are called static, that is, lexically static.

Variables may also be created dynamically, in other
words, with no correlation to the program structure.
These dynamic variables are created via the procedure
NEW. Since such variables do not have an associated
name, they are accessed via a pointer value which is
generated when the variable is allocated. A pointer
type is therefore a value which points to a variable of
a specific type.

There is a universal pointer value called nil, which

belongs to any pointer type. It represents a pointer
which points to no element.

28

Cromemco Pascal Instruction Manual
2. Defining Data Types

<pointer type> ::= “<Ktype identifier>

Examples of Pointer Type Definitions

blackboard = record
long_side: integer;
short_side: integer;
end;

cue = “blackboard;

TwoWay = record
next: “TwoWay;
previous: "“TwoWay:;
stuff: array[0 .. 10] of integer;
end;

SymTree = record
name: string[31l];
LeftNode: “SymTree;
RightNode: “SymTree;
end;

TYPE IDENTITY AND ASSIGNMENT COMPATIBILITY

Pascal has strict type checking such that objects of one
type cannot be combined in operations with objects of a

different type. There are two major concepts to be
described here, namely identical types and assignment

compatible types.

Identical Types

Two types, Tl and T2 are considered identical under the
following conditions:

. Tl and T2 are the same type.

. Tl is declared as synonymous with another type T3,
where T2 and T3 are identical.

29

Cromemco Pascal Instruction Manual
2. Defining Data Types

2.7.2

Examples of Type Identity

type_x = integer;
type_y = integer;
type_l = set of char;
type_2 = set of char;

id_type = type_1l;

In the above example, the types "type_x" and "type_y"
are identical, because they are defined to be the same
type, integer. The types "type_l" and "type_2" are not
identical, since they occur in different type
definitions. The types "type_l" and "id_type" are
identical however, because "id_type" is defined to be
the same as "type_1l1". '

Assignment Compatible Types
A value of type Tl 1is considered to be assignment
compatible with a variable of type T2 if any of the

following conditions are true:

. Tl and T2 are identical and do not contain a file as
a component,

. Tl is a subrange of T2, or
. T2 is a subrange of Tl, or
. Tl and T2 are subranges of identical types.

. Tl is assignment compatible with integer and T2 is
real or double.

. Tl and T2 are both variable string types.

. Tl and T2 are sets of elements of types T3 and T4,
and T3 is assignment compatible to T4.

30

Cromemco Pascal Instruction Manual
3. Declaring and Referencing Variables

3‘1

Chapter 3

DECLARING AND REFERENCING VARIABLES

This chapter covers two topics. First there is a
discussion of how Pascal variables are declared in terms

of the data types described in the previous Chapter.
Then there is a description of the way that variables of
different types are accessed or referenced.

DECLARING VARIABLES

A variable has a type and a storage area in memory. At
any given time, a variable takes on one value out of the
collection of values that define its type. A variable
is initially undefined, and remains so until it is
initialized by an explicit assignment.

All variables in a Pascal program must be declared
explicitly and prior to their use.

Variable declarations consist of a list of identifiers
that represent the variables, followed by the type of

the variable.

<variable declaration> :
<identifier>

.
.

{,<identifier>}: <data type>:

Examples of Declaring Variables
Impedance: ComplexNumber; { a record variable
ChainHead: TwoWay; { another record
TreeTop: SymTree; { and another
First, Middle, Last: integer; { plain integers
ValueFile: Numbers; { a file variable
CurChar: char; { a character variable
Omega: real; { a real variable

PREDECLARED VARIABLES

Cromemco Pascal has five pre-declared variables. These
are:

31

Nt fd gt o) g A Vgt

Cromemco Pascal Instruction Manual
3. Declaring and Referencing Variables

3.3

input, output and stderr
default files associated with the
standard input, the standard output,
and the standard error output file,

respectively.

argc and argv are variables which provide access to
the command 1line that invoked the

current Pascal program.

These pre-declared variables are covered in detail in
the Chapter entitled "Program Structure”.

ESTABLISHING VARIABLES
Establishing a variable is a process that involves:
1. Determination of the variable's type.

2. Allocation of storage for the values that the
variable takes on. “

Explicitly declared variables are automatically
established on each entry to the procedure or function
block in which they are declared. "Global" wvariables
(declared in the outermost block) are established once
and only once.

Formal parameters of procedures or functions are
automatically established on each activation of that
procedure or function.

So-called "dynamic" variables are explicitly established
by storage management operations (for type determination
and storage allocaticn), and by assignment operations

(for initialization).

LIFETIMES OF VARIABLES
The lifetime of a local variable is that of the block in

which it is declared. Allocation occurs on each entry
to that block, and de-allocation occurs on each exit

from that block.

Global Variables

Global variables are those variables declared in the
outermost block (in the program block). The lifetime of

32

Cromemco Pascal Instruction Manual
3. Declaring and Referencing Variables

such global variables is the lifetime of the entire
program.

Lifetime of Formal Parameters

The lifetime of a formal parameter is the lifetime of
the procedure or function which that formal parameter is
a part of. The formal parameter becomes established
upon each entry to the procedure or function, and
becomes undefined upon exit from the procedure or
function.

Lifetime of Dynamic Variables

Dynamic variables are established (but not initialized)
by an explicit allocation operation (such as NEW).
Dynamic variables become undefined when they are
explicitly freed, or when no pointer variable points to
them. Note that generally a pointer value has a finite
lifetime which may be different from that of the pointer
variable that can point to it. Local variables
belonging to procedures and functions, cease to exist on
exit from the block in which they were declared.
Dynamic variables, on the other hand, cease to exist
when they are explicitly freed or when no pointer
variable points to them. Attempts to reference
nonexistent variables beyond their lifetimes is a
programming error, usually with undesirable results from
the programmer's viewpoint.

REFERENCING OR ACCESSING VARIABLES

The method by which a variable or a component of a
variable is accessed differs depending on the
structuring method used in the type definition for that
variable. There are three basic access methods:

1. An entire variable is a variable of a simple type
(no structure). An entire variable is referenced

simply by giving its name.

2, A com nt iab is a variable of array,
record or file type. The access methods are
explained below.

3. A referenced variable 1is accessed through a

pointer.

33

Cromemco Pascal Instruction Manual
3. Declaring and Referencing Variables

3.5.2.1

<variable> ::= <entire variable>
| <component variable>
| <referenced variable>

Entire Variables

An entire variable is denoted by its identifier. Since
an entire variable has no structure, its identifier
alone is enough to reference it.

<entire variable)> ::= <variable identifier>

Examples of Entire Variable References

ChickenTeeth
GiddyGoatHorns
First

Component Variables

A component of a variable is denoted by the variable
followed by some selector that specifies the component.
The form of the selector depends on the structuring
method used to access the variable.

= <indexed variable>
| <field designator>
] <file buffer>

{component variable> ::

Referencing Indexed Variables

A component of an "n"-dimensional array variable is
denoted by the variable followed by "n" index
expressions. An entire array (which can be a component)
of an array can be denoted by giving "n"-1 index
expressions. In such a case, the entire last dimension
of the array is indicated. This occurs when an entire
array or an entire subarray is passed as an actual
parameter to a procedure Or function.

<indexed variable> ::= <array variable> <subscript list>

<subscript list> ::= [<expression> {,<expression>}]
| [<expression>] {[<expression>]

34

Cromemco Pascal Instruction Manual
3. Declaring and Referencing Variables

The {,<expression>} in the definition above implies that
there are as many expressions in the subscript list as
there are dimensions in the array variable., Just as in
defining an array type, there are two alternative
methods for referencing an array variable. Either the
subscripts can be listed, separated by commas, inside
the brackets, or there can be a list of bracketed
subscript expressions.

The index expression types must correspond with the
index types declared in the array type definition.

Examples of Array Variable References
ladder [top]
stairs[flight] [step]

Footing[Left, Center, Right]

3.5.2.2 Referencing Strings

string variables can be referenced as single entities
(when the entire string is being operated upon) or
single characters from a string can be referenced just
like a packed array of char. Values can be assigned to
string variables using assignment statements, string
intrinsics or the READ or READLN procedure. String
indexing is based from one (1) so that the expression on
the string "s":

s [LENGTH (s)]

correctly yields the last character in the string. It
is an error to reference a string "s" with an index less
than one (1) or greater than LENGTH(s).

3.5.2.3 Referencing Fields of Records
A component of a record variable is denoted by the
record variable followed by the component's field

identifier. The field identifiers are separated by
periods.

<field designator> ::= <record variable>.<field identifier>

35

Cromemco Pascal Instruction Manual
3, Declaring and Referencing Variables

3.5.2.4

It is an error to reference a field of a variant record
that is inconsistent with the tag field for that
variant.

Examples of Accessing Fields in Record Variables

{ The first example is a simple field reference }
impedance.RealPart

{ The second example illustrates a reference
to a field of an array of records
bottles [BurgundyType].)Loire
{ The third example illustrates a
deeply nested field reference }
King_Caractacus.Court.Ladies.Faces.Noses
Referencing Pile Buffers
At any time, only the one component determined by the
current file position (read/write head) is directly
accessible. This component is called the "current file
component"”, and is represented by the file's buffer
variable.
<file buffer> ::= <file variable>”

<file variable> ::= <variable>
Pointer Referenced Variables

<referenced variable> ::= <pointer variable>”
<pointer variable> ::= <variable>

If "p" is a variable which is a pointer to type nr"*, "p"
means the pointer variable and its pointer value,

whereas "p " means the variable of type "T" that "p"
references.
Examples of Pointer Reference

TreeTop.LeftNode” { Left Node in the tree variable }

cue”.longside " { gets Long Side of Blackboard }

36

Cromemco Pascal Instruction Manual
4, Expressions

Chapter 4

EXPRESSIONS

An expression is a construct which defines the rules of
computation for creating a value by performing
operations (specified by operators) on operands
(specified by variables, constants, and function
references). These newly-created values can then be
used in assignment statements or can be used (in
conditional expressions) to control subsequent program
actions.

<unsigned constant> ::= <unsigned number>

l <string>

| <constant identifier>
| nil

<factor> ::= <variable>

| <unsigned constant>

| <function designator>

| <{set constructor>

| (<expression>)

| not <factor>

= [<element> {,<element>}]

= <{expression>

| <expression> .. <expression>

<set constructor>
<element>

<term>

:= <factor>
| <term> <multiplying operator> <factor>

= <term>
| <simple expr> <adding operator’> <{term>
| <adding operator> <term>

<simple expr> ::

<expression> ::=
<simple expr>
| <simple expr> <relational operator> <simple expr>

4.1 OPERATORS IN EXPRESSIONS

Operators perform operations on a value or a pair of
values to produce a new value. Most operators are
defined only on basic types, though some are defined on
most types. The following subsections define the
applicable range, as well as the result, of the defined
operators.

37

Cromemco Pascal Instruction Manual
4, Expressions

With the exception of the @ operator, an operation on a
variable or field which has an undefined value, produces
an undefined result.

Address Evaluation Operator

The @ operator generates the address of a variable, user

procedure or user function. Its precedence is above
that of all other operators, but below that of array
indexing and record field referencing. It can be

applied to unpacked fields of records and unpacked array
elements and to the dynamic variables pointed to by a
pointer. It cannot be applied to components of any
packed structure.

Examples of the € Operator

@Uncle_Bill generates the address of a variable
named "Uncle_Bill".

@TypeWheel [tilde] generates the address of the

"tilde"th element of the array
"TypeWheel".

NOT Operator

The not operator applies to factors of type Boolean or
integer.

When applied to type Boolean, the meaning is negation.
That is, not true = false, and not false = true.

When applied to type integer, the not operator negates
all the bits in the value. That is, it performs a one's
complement negation of each bit in the operand. The
result of applying the not operator to a value of type
integer is type integer.

Multiplying Operators

The multiplying operators have the next highest
precedence after the not operator.

<multiplying operator> ::= * | / | div | mod | and

38

Cromemco Pascal Instruction Manual
4. Expressions

The following table shows the multiplying operators, the
permissible types of their operands, and the result
types. Operands of the * (multiplication) and /
(division) operators can be mixed integer, real and
double data types.

If both operands of the * operator are of type integer,
the result is of type integer.

If either operand is of type double, the other operand
is converted to type double, and the result is of type
double. Otherwise, if either operand is of type real,
the result is of type real. The result of the /
operator is either real, or in the case when one or both
operands are of type double, the result is of type

double.
Fom o ——————— e e 4
| Operator | Operation | Operands | Result
o o —— e e R ittt L LT fmm +
I * | multiplication | real, double, | real, double,
| I | or integer | or integer
| I | |
| | set intersection | any set type T | T
fmm - frm—————— e ————— o e fomm +
| / | division | real, double, | real
I | | or integer | double
ittt o e Fm o +
| div | division with | integer | integer
I | truncation | i
Fmm e ——— Fmm e e fmmm +
| mod | modulus | integer | integer
fmm——————— ettt fom—————— e +
| | logical and | Boolean | Boolean
I and l I |
| | bitwise and | integer | integer
tommm Form———————— e o ——— fmmm e ———— +

The div operator applies to values of type integer only
and represents truncating division. div always
truncates towards zero. It is an error to divide by
zero., If the signs of the operands are the same, the
result is positive; if the signs are different, the
result is negative.

The mod operator defines the modulus operation between

two values of type integer. It is an error if the right
operand of mod is zero. The interpretation of mod is:

39

Cromemco
4. Expres
4,1.4
+_.___
| ope
+.____
] +
|
|
I
+.___._
l -
I
|
I
+._..._._
I
| or
I
+____

Pascal Instruction Manual
sions

mod b = a - (a div b) * b

Y]

When applied to operands of type Boolean, the and
operator produces a result of type Boolean as one might
expect. When applied to operands of type integer
however, the and operator performs a bitwise logical and
on the operands and produces a result of type integer.

Adding Operators

The adding operators have the next highest precedence
after the multiplying operators.

<adding operator> ::= + | - | or

The following table shows the adding operators, their
permissible operand types, and the result types.
Operands of the + (addition) and - subtraction operators
can be mixed integer, real, and double data types.

If both operands of the + or - operator are of type
integer, the result is of type integer.

If either operand is of type double, the other operand
is converted to type double, and the result is also of
type double. Otherwise, if either operand is of type
real, the result is also of type real.

—————— e e o e e e e e o
rator | Operation | Operand types | result type |
—————— e T T
| addition | real, double, | real, double, |
| | or integer | or integer |
I I I I
| set union | any set type T | T |
—————— e e e e e e e e
| subtraction | real, double, | real, double, |
| | or integer | or integer I
I I I I
| set difference | any set type T | T |
—————— o e e e e — e
| logical or | Boolean | Boolean I
l ! I I
| bitwise or | integer | integer |
—————— s ittt b

40

Cromemco Pascal Instruction Manual
4., Expressions

When applied to operands of type Boolean, the or
operator produces a result of type Boolean as one might
expect. When applied to operands of type integer
however, the or operator performs a bitwise logical or
on the operands and produces a result of type integer.

Sign Operators

The "+" and "-" signs can be used as unary operators.
They apply to integer, real and double types only.
Applying a unary operator to a data type produces a
result which is the same data type as that of the

operand.
<{sign operator> ::= + | -

The table below shows the sign operators, their
permissible operand types and .their result types.

tmm—— i ——— fmm—— Fommm————— e o ———————————— +
| operator | operation | operand types | result type |
fmm fm———————— frm——————— fmm—————— +
| + | identity | real, double, | real, double |
| [| or integer | or integer |
o e e e E e +
| - | negation | real, double, | real, double, |
| | | or integer | or integer I
fmm— o o ———————— e fmm————— +

Relational Operators

The following table shows the relational operators,
their permissible operand types, and the result type.

41

Cromemco Pascal Instruction Manual
4, Expressions

fmm e ——— e fommm
| operator | operand types | result type
Fomm o e e fmm e
| | any scalar or subrange type |

I =< | set type | Boolean

I | pointer type l

I | packed array of char |

| | string [

Fmm——————— o e
| | any scalar or subrange type | Boolean

| <= >= | set type] |

| | packed array of char |

| | string]

fmm— o ———————— fmm——————
| < > | any scalar or subrange type | Boolean

| | packed array of char |

| | string 1

fmm o e e e e fmm
| in | any scalar or subrange type | Boolean

l | and its set type respectively. |

fmm———————— o e e e Eatatatat L

Note that all scalar types define ordered sets of
values.

Comparison of Scalars

All six relational operators (£, <=, >, >=, = and <>)
are defined between operands of the same scalar type.

For operands of type integer, real, or double, the
operators have their usual meaning. Operands of
integer, real, and double data types are considered to
form a hierarchy, with the integer data type at the
bottom of the pecking order the double data type at the
top, and the real data type in the middle. If the
operands are of different numeric types, the lower type
of operand is converted (or promoted) to the type of the
other operand prior to the comparison. For example, in
the expression:

integer type < double type

The integer operand is converted to double before the
comparison is made.

For operands of type Boolean the relaticn false < true
defines the ordering.

42

-+

Cromemco Pascal Instruction Manual
4, Expressions

4.1.9

4.1.10

For operands of type char the relaticn "a" op "b" holds
if and only if the relation ORD(a) op ORD (b), holds,
where op denotes any of the six comparison operators and
ord is the mapping function from type char to type
integer defined by the ASCII collating sequence.

For operands of any ordinal type "T", "a" = "b" if and
only if, "a" and "b" are the same value; "a < b" if and
only if, "a" precedes "b" in the ordered list of values
that define "T",

Comparison of Booleans

If "p" and "q" are Boolean expressions, "p = g" means
equivalence, and "p <= g" means implication of "g" by
LU n
p".

Direct Pointer Comparison

Two direct pointers can be compared if they are pointers
to identical types. To compare pointers of differing
types, take their ORD. (See the Chapter on "Standard
Procedures and Functions").

Pointers may be compared for equality or inequality
only.

Two pointers with the value nil are always equal.

String Comparison

All six relational coperators may be applied to string
operands. The relational operators compare both packed
array of char and string values.

In the case of a packed array of char, both operands
must be the same size, The maximum length of string
comparison of values of packed array of char is 255
characters. That is, a variable whose declaration is
like:

var
strtype: packed array [l .. 255] of char;

is the largest string variable that. can be compared in
one operation.

43

Cromemco Pascal Instruction Manual
4., Expressions

4.1911

In the case of string comparison, the operands may be of
different sizes. If the operands are of different
sizes, trailing spaces are significant. That is, the
string

IAI
compares less than the string

IA '

Comparison of string operands or packed array of char
operands denotes alphabetical ordering according to the
ASCII character set collating sequence.

Note that because a string data type is represented
differently from a packed array of char, they cannot be
compared with each other. On the other hand, a
character string constant is of ambiguous type, and so a
string constant can be compared either to a string
operand or to a packed array of char operand, because
the type of the string constant is converted to the type
of the other operand in comparison operations.

Set Comparison

The relation "scalar_value" in "some_set" is true if the
"scalar_value" is a member of the "some_set". The base
type of the set must be the same as, or a subrange of,
the type of the scalar.

The set operations = (identical to), and <> (different
from), <= (is included in), and >= (includes) are

defined between two set values of the same base type.
For two sets "S1" and "S2" of the same base type:

Sl = S2 is true if all members of S1 are contained in
S2, and all members of S2 are contained in S1.
S1 <> 82 1is true when Sl = 82 is false.

Sl <= S2 is true if all members of S1 are also members
of S2.

S1 >= 82 is true if all members of S2 are also members
of Sl.

44

Cromemco Pascal Instruction Manual
4. Expressions

1.1.12

Noncomparable Types

Certain Pascal types cannot be compared. These include
files, arrays, variant records, and records containing
fields of noncomparable types. The exception to this
rule is that packed array of char operands can be
compared if they are the same size.

OUT OF RANGE VALUES

It is possible that expression evaluation can yield
results which are outside of the range of values for a
given data type. Expressions involving the real and
double data types can generate several different extreme
values.

The extreme value of positive or negative infinity is a
result either of overflow, or by dividing a nonzero
value by 0.0.

Underflow generates a value of zero.

Dividing 0.0 by 0.0 generates a value of Not a Number
(NaN) .

Appendix E - "Data Representations”™ contains a

description of the extreme values and their behavior in
comparisons.

ORDER OR EVALUATION IN EXPRESSIONS

The rules of composition for expressions specify
operator precedence according to five operator classes.
The precedence is as follows:

1. The "address of" 8 operator has the highest
precedence.

2. Then the not operator.

3. Then the multiplying operators.

4, Then the adding operators.

5. The lowest precedence is the relational operators.
Operators at the same precedence level are applied left
to right, except where parentheses are used to override

the normal order of evaluation. The order in which

45

Cromemco Pascal Instruction Manual
4, Expressions

operators are applied is according to the rules above.
The precise order of operand evaluation is undefined.
Some operands may not be evaluated at all, if the value
of the expression can be determined without the value of
that particular operand.

COMPILE TIME CONSTANT EXPRESSIONS

The Pascal compiler evaluates certain types of integer
and Boolean constant expressions at compile time.
integer expressions consisting of constant expression
operands and the following operators are folded into
constant expressions:

Binary Operators = <> + -
Unary Operators =

Boolean expressions consisting of constant expression
operands and the following operators are folded into
constant expressions:

Binary Operators = <> and or
Unary Cperators not

Dead Code Elimination

The Pascal compiler recognizes code of the form:

if FALSE then

statement_1
else .
statement_2

and generates code for statement_2 only. Similarly, if
the Boolean expression is TRUE, only statement_ 1l is
generated. Constant expression which fold into
constants are recognized as constant TRUE or FALSE,
This feature facilitates keeping several versions of
similar source in the same file without adding extra
generated code after the code is compiled.

46

Cromemco Pascal Instruction Manual
4, Expressions

Example of Conditional Compilation

const
version = 10;

if version = 7 then
writeln('Too o0ld!)

else
writeln('Not too old!');

The code fragment above, with the-constant "version" set
equal to 10, has the same effect as a code fragment like

this:

writeln('Not too old!');

47

Cromemco Pascal Instruction Manual

48

Cromemco Pascal Instruction Manual
5. Statements

5.1

5.2

Chapter 5

STATEMENTS

Statements denote algorithmic actions, and are said to
be executable. Statements define the actions that are
to be performed on program objects that were introduced
via type and variable declarations, discussed earlier in
this manual.

STATEMENT LABELS

A statement can be labelled by preceding it with an
unsigned integer constant in the range 0 .. 9999,
followed by a colon,. The statement can then be
explicitly referred to by a goto statement.

Scope of Statement Labels

The scope of a statement label is the body of the
procedure or function in which the label is declared.
This means that a goto statement cannot transfer control
into a procedure or function body from outside the
procedure or function.

ASSIGNMENT STATEMENTS

The assignment statement replaces the current value of a
variable with a new value derived from expression
evaluation, or defines the value that a function
variable returns.

<assignment statement> ::=
<variable> := <expression>

| <function identifier> := <expression>

Assignments to Variables and Functions

The part to the left of the assignment symbol (the :=)
is evaluated to obtain a reference to some variable.
The expression on the right side is evaluated to obtain
a value. The referenced variable's current value is
discarded and replaced with the expression's value.

49

Cromemco Pascal Instruction Manual
5. Statements

The variable on the left hand side of an assignment
statement must be assignment compatible with the type of
the expression on the right hand side.

A string value may be assigned to a variable of type
packed array of char, providing that the string value is
the same length as the array object. The maximum length
of such an assignment is 255 characters.

Examples of Assignment Statements

X 1= 5 { simple assignment to variable 1}

y := x * 10 + 18 { assignment of expression }

ch := CHR(10) { assignment of function value }

rope := 'hemp' { string assignment }

poke := POINTER($200) v

poke”™ := 0 { clobber the system vector }
5.3 PROCEDURE REFERENCE STATEMENT

A procedure reference statement creates an environment
for execution of the specified procedure and transfers
control to that procedure.

<procedure call statement> ::=
{procedure identifier><actual parameter list>
| <procedure identifier>

<actual parameter list> ::=
(<actual parameter> {;<actual parameter>} }
= <expression>
| <procedure identifier>
| <function identifier>

<actual parameter> ::

The actual parameter list must be compatible with the
formal parameter 1list of the procedure. An actual
parameter corresponds to the formal parameter which
occupies the same ordinal position in the formal
parameter list.

Only formal parameters that are value parameters can
have an actual parameter which is an <expression>,
Value parameters must be assignment compatible with the
type of the formal parameter.

Formal parameters that are wvar parameters must have
actual parameters that are identical types. In

50

Cromemco Pascal Instruction Manual
5. Statements

addition, the actual parameters must not be packed
objects or components of packed objects.

5.4 STRUCTURED STATEMENTS
Structured statements are constructs composed of

statement lists. They provide scope control, selective
execution, or repetitive execution of the constituent
statement lists.

<{structured statement> ::= <begin statement>

| <if statement>

[<while statement>

l {repeat statement>
l <for statement>
I

<case statement>

5.4.1 BEGIN .. END - Compound Statements

A begin statement specifies execution of a statement
list. Exit from the statement list is either through
completing execution of the last statement in the
statement list, or through explicit transfer of control.

<begin statement> ::= begin <statement list> end
<statement list> ::= <statement> {; <statement>}

5.4.2 IF .. THEN .. ELSE Statements

The if statement specifies that another statement be
executed (or not) depending on the truth (or falsity) of
a conditional expression. If the value of the
conditional expression is true, the statement is
executed. If the value of the conditional expression is
false, either no subsequent statement is executed, or
the statement following an else clause is executed.

<if statement> ::=
if <Boolean expression> then <statement>
| if <Boolean expression> then <statement> else <statement>
Because Pascal statements are open forms, it is possible
to construct a chain of else if clauses to select "one
out of many different conditions”.

51

Cromemco Pascal Instruction Manual

5'

Statements

In common with similar languages, Pascal has what is
called the "dangling else" problem. If an if statement
contains another if statement as a subordinate, when an
else clause is encountered, which if statement does the
else clause apply to? In Pascal, the else clause
matches the most recent if statement that does not have
an else clause. One of the examples below clarifies

this point.

Examples of If Statements

{ example of a simple if statement }
if day in [Monday .. Friday] then
Get_up_and_go
else
Roll_over

{ an if statement with a
compound block }
if sun > yardarm then :
begin
make_cocktails;
prepare_snacks;

relax
end
else
flog_on
{ an else if chain }
if weather = raining then
sleep_in

else if 1lawn = wet then
clip_the_hedge

else if grass > 6 then
mow_the_lawn

else
turn_on_lawn_sprinklers

{ A dangling else clause }
if condition_1 then { 1 1}
if condition_2 then { 2 1}
if condition_3 then { 3 }
eseses Statements
else { goes with statement 1 }
esses Statements ...c.

else { goes with statement 2 }
.sses. Statements
else { goes with statement 3 }

eesss Statements cee.e

52

Cromemco Pascal Instruction Manual
5. Statements

CASE Statements

A case statement selects one of its component statements
depending on the value of an expression. The expression
is called the case selector. Bach of the component
statements is tagged with one or more simple scalar
constants. The tags are called selection specifications
(<selection specs> for short). If the value of the
selector matches that of one of the statement tags, that
statement is executed. If the selector value matches
none of the statement selection specifications, the
statement (if any) following an otherwise symbol is
executed.

Note that this Pascal implementation differs from the
IS0 standard in the provision of the otherwise clause.
ISO Pascal has no provision for "what to do if none of
the case selectors match the selector expression.”
Strict Pascal considers this situation a run-time error.

<case statement> ::= case <expression> of <cases>

{ otherwise: <statement>} end
{cases> : <a case> {<a case>}
<{a case>

<selection spec> {, <selection spec>} : <statement>;

<selection spec> ::= <scalar constant>

Case selectors and the statement tags must be nonreal
scalar types. In addition, the case selectors and the
statement tags must be of assignment compatible types.

It must be stressed that the selection specifications
which the component statements are tagged with are not
labels in the Pascal sense, and as such, cannot be used
as the target of a goto statement, and neither should
they appear in any label declaration part.

53

Cromemco Pascal Instruction Manual
5. Statements

Examples of Case Statements
case wine_type of

Champagne:
Anything_goes;

Cabernet:
Roast_Lamb;

Chardonnay:
Veal_Piccata;

otherwise:
Hamburger;
end

WHILE .. DO Statements

A while statement controls repetitive execution of
another statement until evaluation of a Boolean
expression becomes false.

<while statement> ::= while <expression> do <statement>

The <statement)> is repeated while the value of
<expression> remains true. The <expression> must be of
type Boolean. When <expression> becomes false, control
passes to the statement after the while statement. If
the value of <expression> is false at the time that the
while statement is encountered for the first time, the
subordinate statement is never executed at all. Thus
the while statement provides a means to "do nothing
gracefully". Contrast this behavior with the repeat
statement described below.

Example of WHILE Statement

while bytes_to_go > 0 do
begin
if Dbytes_to_go <= BlockSize then
TransferLength := bytes_to_go
else
TransferLength := BlockSize;
DoTransfer;
bytes_to_go :
BlockNumber :
end

= bytes_to_go - TransferLength;
= BlockNumber + 1

54

Cromemco Pascal Instruction Manual
5. Statements

J.4.5 REPEAT .. UNTIL Statements

The repeat statement controls the repetitive execution
of a list of statements. The statements are executed
until the condition at the end of the statement
evaluates to true, The form of a repeat statement is:

{repeat statement> ::= repeat <statement list> until <expression>

The expression controlling repetition must be of type
Boolean, The statement between the repeat and until
symbols is executed repeatedly until the expression
becomes true. Note that the body of a repeat statement
is always executed at least once, since the terminaticn
test is at the end. Contrast this behavior with the
while statement described in the previous subsection.

Example of Repeat Statement

repeat
consume_glassfull;
refill_glass;
until (Champagne_Volume <= 0) or (Consumer = Blotto);

5.4.6 FOR .. DO Statements

The for statement executes its subordinate statement
repeatedly, while a progression of values is assigned to

a control variable of the for statement.

<for statement> ::=
for <control variable> := <for list> do <statement>

<for list> ::= <initial value> to <final value>
| <initial value)> downto <final value>

<control variable> ::= <identifier>

<initial value>
<final wvalue>

{expression>
<expression>

13
.
.
.

se oo

The control variable is set to the initial wvalue. After
every iteration the control variable is either
incremented (to) or decremented (downto) until its value
is greater than or less than the final value.

55

Cromemco Pascal Instruction Manual
5. Statements

The control variable, the initial wvalue, and the final
value, must all be of the same scalar type or a subrange
of that scalar type. No part of the statement
controlled by the for statement may alter the control
variable during the execution of the for statement.

Neither the control variable, nor the initial value, nor
the final value, may be of type real. The control
variable must be local to the procedure or function that
contains the for statement.

The value of the control variable is undefined on normal
termination from the for statement. If the for

statement is exited prematurely (via a goto statement),
the value of the control variable is defined.

Examples of the FOR Statement

{ initialize an array to zero }
for index := 1 to 100 do
rowl[index] := 0

{ scan from the end of an array }
for where := 200 downto 1 do
if what[where] = thing then
foundit := true

5.5 THE WITH STATEMENT

The with statement provides a "shorthand" notation for
referring to fields in a record. The with statement
effectively "opens the scope" that contains field
identifiers of a specified record variable.

<with statement> ::=
with <record variable> {,<record variable>}
do <statement>

Wwithin the body of the with statement, fields of the
specified record variable do not need to be qualified by
the name of the record.

If there is a local variable "x" and a field "x" in a
record which is the subject of a with statement, the
statement:

with x do

56

Cromemco Pascal Instruction Manual

5.

Statements

"hides" the local variable "x" until the end of the
with statement.

A with statement which has multiple <record variable>
fields is interpreted as nested with statements. The
statement:

with record_1, record_2, record_3 do
is equivalent to the statement:

with record_1 do
with record_2 do
with record_3 do
eesss Statement

Example of the WITH Statement

var
TreeTop: SymTree;

with TreeTop do

begin
LeftNode := nil;
RightNode := nil
end { with }

This is a shorthand for the following statements

TreeTop.LeftNode := nil;
TreeTop.RightNode := nil

THE GOTO STATEMENT

The goto statement names as its successor, a labelled
statement designated by a label.

<{goto statement> ::= goto <label>

The following should be noted concerning the goto

statement and the label that it designates:

57

Cromemco Pascal Instruction Manual
5. Statements

The scope of a label 1is the procedure in which that
label is defined. Therefore it is not possible (nor
valid) to jump into a procedure from outside that
procedure.

Every label in a procedure must be declared in the label
declaration part at the head of the procedure.
Example of Goto Statement

if status = error then
goto 9999 { exit to end of procedure }

58

Cromemco Pascal Instruction Manual
6. Input and Output

Chapter 6

INPUT AND OUTPUT

Input and Output facilities provide the means whereby a
Pascal program can communicate with the world outside
the computer system on which it runs.

Cromemco Pascal supports the input-output facilities as
defined by standard Pascal, and additionally supports
untyped (block access) files, interactive files, random
access to typed files and unit input-output (direct
access to the devices on the system).

GENERAL FILE HANDLING PROCEDURES

This Section covers the standard Pascal procedures for
handling files of any type. The four supplied
procedures are GET, PUT, RESET and REWRITE.

The File Buffer Variable

A Pascal file of some_type is a segquential file - its
components appear in strict sequential order (ignore the
SEEK procedure for the duration of this discussion).
Writing implies appending a component to the end of the
file. Reading implies that the next component in
sequence is obtained from the file. The following
discussion applies only to typed files.

Associated with each typed file variable there is an
implicit "buffer variable", often called the file
"window". The buffer variable can be thought of as a
place holder where the current file component is held.
The buffer variable holds the next available component
when reading. When writing, it holds the component that
will be appended to the file by a PUT procedure call.

For a given file variable "f", the buffer variable is
referenced by the notation "£"". Consider the following
declarations:

type
whammo = file of gobion;

var
frammis: whammo;

Curcomp: gobion;

59

Cromemco Pascal Instruction Manual
6. Input and Output

When the file "frammis" is opened for reading via the
RESET procedure call, the first component of the file is
in the buffer variable. An assignment statement of the

form:
CurComp := frammis”;

assigns the contents of the buffer variable to the
variable "CurComp". The next component from the file is
moved into the buffer variable by a GET procedure call.

When the file "frammis" is opened for writing via the
REWRITE procedure call, the buffer variable 1is
undefined. An assignment of the form:

frammis® := CurComp;

assigns the value of the variable "CurComp" to the
buffer variable,. A subsequent PUT procedure call
appends the contents of the buffer variable to the file
"frammis". The contents of the buffer variable become
undefined until another assignment defines it.

For files of type interactive the handling of the buffer
variable is different. In standard Pascal, when a file
is RESET, the first element of the file is read and
placed in the file buffer variable. means that the
system would expect the user to type a character at the
terminal, else the system would "hang”. Thus a RESET on
an interactive file does not perform an immediate GET.
This affects the way that EOLN functions. When an
end-of-line is read, EOLN becomes true and the character
read is a space.

GET - Get Component from File
The procedure GET obtains the next element from a file
(assuming there is a next element to be obtained). A
call on the GET procedure of the form:

GET(file)
advances the current file position to the next component

in the file. The value of this component is then
assigned to the buffer variable file”.

60

Cromemco Pascal Instruction Manual
6. Input and Output

If there was no "next component" in the file, the value
of the buffer variable is undefined and the predicate
EOF(file) becomes true.

If the predicate EOF(file) is already true, a GET(file)
(in other words, trying to read past end-of-file) has an
undefined result.

PUT - Append Component to a File

A call on the PUT procedure of the form:
PUT (file)

appends the value of the buffer variable file to the
file "file". The value of file becomes undefined after
the call to PUT. The predicate EOF(file) becomes true
after the PUT.

If the predicate EOF(file) was false before the call to
PUT (in other words, there were intervening GET's on the
file), the call to PUT has an undefined result.

RESET - Position to Start of File

A call to the RESET procedure of the form:
RESET(file, string [, buffering option])

resets the current file position to the beginning of the
file. If the file is not empty, the first element of
the file is assigned to the buffer variable file® and
the predicate EOF(file) becomes false. If the file is
empty, the buffer variable file” is undefined and the
predicate EOF(file) becomes true.

If the file is an interactive file, RESET does not read
the first element of the file.

Cromemco Pascal provides for a second parameter to
RESET. This parameter is the name of an existing disk
file or device, The parameter takes the form of a
string constant or variable.

The third parameter to RESET is an option to determine
whether the file is buffered or unbuffered. The

buffering option may be specified as the keyword

61

Cromemco Pascal Instruction Manual
6. Input and Output

BUFFERED or UNBUFFERED, and it is described in the
subsection following REWRITE, below.

REWRITE - Create or Overwrite a File

The REWRITE procedure creates a new file of a specified
name and discards any existing file of the same name.

Thus a call of the form:
REWRITE (file, string [,buffering optionl])

discards the current value of the file variable "file",
effectively creating a new file. The value of the
buffer variable "file”" is undefined and the predicate
EOF (file) becomes true. '

Cromemco Pascal provides for a second parameter to
REWRITE, This parameter is the name of a disk file.
The parameter can be a string variable or constant,
REWRITE always creates a temporary file of the specified
name. Upon closing the file, it can either be
discarded, or the existing file (if any) can be
replaced.

The third parameter to RESET is an option to determine
whether the file is buffered or unbuffered. The
buffering option may be specified as the keyword
BUFFERED or UNBUFFERED, and it is described 1in the
subsection below,

The Buffering Option on RESET and REWRITE

The optional "buffering option" parameter to RESET and
REWRITE can be specified as either BUFFERED or
UNBUFFERED. On some operating systems, there is a
significant difference in throughput between buffered
and unbuffered input/output.

Normally, buffered input/output is much more efficient
than unbuffered input output. But, there can also be
undesirable side effects in buffered input/output, most
notably that output does not appear at a terminal until
a full buffer has been collected.

The "buffering option" parameter provides a means to
request either buffered or unbuffered input/output for
the file specified in the RESET or REWRITE request. A
given operating system might well override the request,
depending on the nature of the device on which the file

62

Cromemco Pascal Instruction Manual
6. Input and Output

resides. The standard situation is unbuffered
input/output, in the absence of the "buffering option”
parameter.

6.2 TEXT FILE HANDLING PROCEDURES

Pascal provides standard procedures for controlling
text~-file input and output. These procedures apply to
files of type text or interactive.

6.2.1 READ and READLN Intrinsics

READ and READLN read character strings representing
numbers from a textfile and convert them into their
internal representations. There is more on converting
numbers later in this subsection.

READ (vl, V2, ..., VD)
is equivalent to a

READ (input, vl, v2, ..., Vn)

READ (file’ Vl' V2' * e oy Vn)
is equivalent to a sequence of READ procedure

calls as follows:

READ (file, vl);
READ(file, v2); eoee
READ(file, wvn)

If "ch" is a variable of type char, the two programs
displayed here are equivalent:

var var
ch: char; ch: char;
rasp: file of char; rasp: file of char;
begin begin
READ (rasp, ch) ch := rasp”;
GET (rasp)
end end

63

Cromemco Pascal Instruction Manual
6. Input and Output

If "v" is a variable of type integer, any subrange of
integer, or real, the procedure reference:

READ (file, v)

reads a sequence of characters from the file referenced
by "file". The sequence of characters should form a
valid number according to Pascal's rules for numbers
(described in Chapter 1). When the number is formed it
is then assigned to the variable "v". Blank lines and
spaces preceding the number are skipped in the file.
Reals are read 1in the same way as integers. Booleans
cannot be read via a READ or READLN call. Structured
types cannot be read.

If the sequence of characters read from the file do not
form a valid number according to the syntax rules, one
of two actions are taken: if I/0 checking is on, the
Pascal run-time system issues an error diagnostic; if
I/0 checking is off, READ or READLN return zero (0) and
the IORESULT code is set. See the Appendices for a list
of I/0 error codes.

READ From a File of Any Type

The READ procedure can also read from a file of any
type. A READ procedure call of the form:

READ(file, v1, V2, «e., VNn):
is equivalent to the sequence:

:= file”; GET(file);
v2 := file”; GET (file);
vn := file”; GET (file);
GET (FILE);
where the "vn" are the list of variables to read into.

Note that the type of each variable in the list must be
identical to the type of the elements in the file.

WRITE and WRITELN Intrinsics

The WRITE and WRITELN intrinsics append character

strings to a textfile., Usually the character strings
are generated by converting one or more Write

64

Cromemco Pascal Instruction Manual
6. Input and Output

parameters (see below) from their machine

representations into external representations.

The procedure WRITELN differs from the procedure WRITE
only in that WRITELN sends an end-of-line to the output
file after the write is complete,.

<write intrinsic)> ::= WRITE(<file> <write parameters>);

<writeln intrinsic> ::= WRITELN(<Kfile> <write parameters>);
| WRITELN; :

<file> ::= <file variable>,

<write parameters> ::= <write parameter> {, <write parameter>}

The <file> parameter in all cases is a file variable
which refers to the file on which to append character
strings, If the <file> parameter is omitted, output is
written to file output (the computer standard output).

Write Parameters

The WRITE and WRITELN procedures can control the format
of the individual elements that are written. Each
parameter to WRITE or WRITELN is of the form:

<write parameter> ::= <element>
| <element>:<field width>
| <element>:<field width>:<fraction size>

<element> ::= is the value to be written.
(see descriptions below)

<field width> ::= <integer expression>

<fraction size> ::= <integer expression>

<element> is the value to be written. It may be of type
char, integer, real, double, Boolean, string or packed

array of char.

<field width> and <fraction size> are optional. If
<fraction size> is present, <field width> must also be

present.

<field width> specifies the size of the output field
into which the converted value is written. If the

65

Cromemco Pascal Instruction Manual
6. Input and Output

6.2'4.1

6'2'4.2

converted value is smaller than <field width>, the field
is filled out with leading spaces.

<fraction size> is only applicable when the <element> is
of type real or double (see below).

Integer Element

The value of the integer expression is converted into a
string representation of that expression in the base 10.
The resulting string is placed right justified into the
output field if a field width greater than needed is
specified. If <field width> is too small to contain the
resulting character string, the output field is expanded
until it can contain the output string. If the integer
expression is negative in value, a minus sign precedes
the leftmost significant digit in the field. If the
integer expression is positive, no space precedes the
character string unless the <field width> 1is greater
than the number of characters to be printed. If <field
width> is omitted, the default field width is eight (8)

characters.

Real or Double Element

A real or double element is converted much the same as
an integer element, except that there can be a
specificaticon for the number of digits after the decimal
point. In this case, <fraction size> specifies the
number of digits to appear after the decimal point. The
converted value is then written in so called "fixed
point" notation. If <fraction size> is omitted, the
converted number is written out in the floating or
exponential notation. The diagram below illustrates the
different forms of writing real elements.

WRITE (number:f)
results in a number of the form:

*X.yYYYYE tnn

where "f" is the total number of characters in the
converted number. There is one digit before the decimal
point and "f"-7 digits after the decimal point.

WRITE (number:f:w)
results in a number of the form:

XXX.YYY

66

Cromemco Pascal Instruction Manual
6. Input and Output

where "f" is the total number of characters (including
the decimal point), and "w" is the number of digits
after the decimal point.

The extreme real and double values are printed as
follows: positive infinity prints as a row of + signs;
negative infinity prints as a row of - signs; NaN (Not a
Number) prints as a row of ? marks.

6.2.4.3 Scalar Subrange Element

A write parameter which is a scalar subrange is handled
exactly as the scalar range of which it is a subrange.

6.2.4.4 Character Element

A write parameter which is a character is output as a
single string character right justified in the output
field. If <field width> is greater than one (1), the
field is filled with leading spaces.

Furthermore, an <element> of type char means that the
two programs displayed below are equivalent.

WRITE (file, <char expression>:field width>)
is equivalent to

file™ = ' '; { these two statements repeated
PUT(file); <field width> -~ 1 times }
file” := <char expression>; PUT (file)

6.2.4.5 String Element or Packed Array of Char

A write parameter which is a string or packed array of
char expression is placed right Jjustified into the
output field with leading spaces. If <field width> is
less than the dynamic length of the string expression,
the output field is expanded to contain the string. If
<field width> is omitted, the output field is the
minimum length needed to hold the string.

6.2.4.6 Boolean Element

An expression which is of type Boolean is written as cne
of the standard reserved words Palse or True. If <field
width> is greater than the length of the resulting
string (5 for "False"; 4 for "True"), the string is

67

Cromemco Pascal Instruction Manual
6. Input and Output

written with leading spaces. If <field width> is less
than the length of the string, the field is expanded to
contain the string. If the value of the expression is
not a valid Boolean, the string "UNDEF" is printed.

6.2.5 WRITE to file of any type
The WRITE intrinsic can also write to a file of any
type. A WRITE procedure call of the form:

WRITE (file, exprl, expr2, ..., exprn);
is equivalent to the sequence:

file” := exprl; PUT(file);
file” := expr2; PUT(file);
file” := exprn; PUT(file);

where the exprn are a list of expressions to be written
to the file,

Note that the type of each expression in the list must
be the same as the type of the elements in the file.
Integer subranges are converted to the proper length as
needed.

6.2.6 SEEK - Random Access to Typed Files

Cromemco Pascal supports random access to files of
specific types. The SEEK procedure has two parameters,
namely the file variable and an integer specifying the
record number to which the file window should be moved.
SEEK can only be applied to typed files that are not
text files. The format of SEEK is:

procedure SEEK(file: file_type; position: longint);

file is the file variable for the specified file.

position is the number of the record to which the file
window is to be moved. Records are numbered
sequentially from zero (0).

SEEK moves the file window to the "position"th record in

the file specified by "file". The EOF and EOLN
predicates are set to false.

68

Cromemco Pascal Instruction Manual
6. Input and Output

6.2.7

An attempt to PUT a record beyond the physical end of
file sets the EOF predicate true. The physical end of
file is the place where the next record in the file
would overwrite another file on the storage device.

If a GET or PUT is not performed between two SEEK
procedures, the contents of the file window are
undefined.

CLOSE - Close a File

CLOSE removes the association of a file variable with an
external file. A CLOSE procedure call marks the file as
closed. The file variable for that file is then
undefined. If a file is already closed, a CLOSE call
does nothing. The form of the CLOSE procedure is:

procedure CLOSE(file [, close_option]);

file is a file variable.

close_option is an optional parameter that controls
the disposition of the closed file.
"close_option" can be one of the
following:

normal The state of the file is set to
closed. If the file was opened
with a RESET procedure call,
the "normal" option means that
the file is retained in the
file system. If the file was
opened with a REWRITE procedure
call, the "normal” option means
that the file is removed from
the file system. The "normal"
option is the default.

lock makes the file permanent in the
disk system if it is a disk
file. Any existing file of the
same name is removed from the
file system. If the file is
not a disk file, a "normal"
close is done,

purge deletes the file from the file
system 1f the file 1is on a
block-structured device. If
the file associated with "file"

69

Cromemco Pascal Instruction Manual

6. Input and Cutput

6.3.1

is a device instead of a
block-structured volume, the
device is set off-line. If no
physical device or file is
associated with "file", a
"normal" close is done.

crunch is the same as the "lock"
option but in addition,
truncates the file at the point
at which it was last accessed.
That is, the end of the file is
the position at which the last
PUT or GET was performed.

BLOCK INPUT/OUTPUT INTRINSICS

BLOCKREAD and BLOCKWRITE support random (block level)
access to untyped files only.

BLOCKREAD - Read Block from File

BLOCKREAD reads specific blocks from an untyped file.
The function definition is:

function BLOCKREAD(file, where, blocks [,relblock]):

file

where

blocks

relblock

is an untyped file.

is a variable of any type. The variable must
be large enough to contain the number of
blocks requested.

is an integer value which specifies the number
of blocks to read from the file.

is an optional parameter. If "relblock" is
present, it represents the block number at
which to start reading from. Blocks are
numbered relative to zero (0).

if "relblock" is omitted, it implies a
sequential read of the next block in the file.
When the file is opened, or when the file is
reset, the starting block number is set to
zero (0). Thus a BLOCKREAD with the
"relblock" parameter omitted starts reading
from block zero, and reads sequential blocks

70

integer;

Cromemco Pascal Instruction Manual
6. Input and Output

on every subsequent call that has the
"relblock" parameter omitted.

The return value of BLOCKREAD is the number of blocks
actually read. If the value is zero, it indicates
either end-of-file or an error condition. If the value
is greater than zero, it indicates the number of blocks
read. If the return value is less than the number of
blocks specified in the function call, it is possible
that an end-of-file was encountered during the read.

6.3.2 BLOCKWRITE - Write Block to File
BLOCKWRITE writes specific blocks to an untyped f£file.

The function definition is:

function BLOCKWRITE(file, where, blocks [,relblock]): integer;

file is an untyped file.

where is a variable of any type. It must be large
enough to contain the number of blocks to be
transferred.

blocks is an integer value which specifies the number

of blocks to write to the file.

relblock is an optional parameter. If "relblock" is
present, it represents the block number at
which to start writing to. Blocks are
numbered relative to zero (0).

if "relblock" is omitted, it implies a
sequential write of the next block in the
file. When the file is opened, or when the
file is reset, the starting block number is
set to zero (0). Thus a BLOCKWRITE with the
"relblock" parameter omitted starts writing to
block zero, and writes blocks sequentially on
every subsequent call that has the "relblock™
parameter omitted.

The return value of BLOCKWRITE is the number of blocks
that were actually written. If the return value is
zero, it means either that there was an error or that
there is no room for the blocks on the device. If the
value is greater than zero, it indicates the number of
blocks written,. If the return value is less than the
number of blocks specified, it means that the
end~-of-file was encountered.

71

Cromemco Pascal Instruction Manual
6. Input and Output

IORESULT -~ RETURN INPUT-OUTPUT RESULT

IORESULT is a function that can be used after an
input-output operation to check on the validity of the
operation. The function definition is:

function IORESULT: integer;

Use of the IORESULT function is only appropriate if I/O
checking has been turned off. The S$I- compiler option
turns checking off. If I/0 checking is on (as it is by
default) or turned on via the $I+ compiler option, any
I/0 error generates a nonrecoverable run-time error.

If I/0 checking has been turned off, I/O errors do not
generate run-time errors, and the programmer can then
use IORESULT to check the completion status of each
input/output operation.

The value of IORESULT is zero if an input-ocutput
operation has a normal completion, If the value is
nonzero, it indicates some form of error has occurred.
See the appendices for a list of error codes.

Example of Using IORESULT

{$1-} { Turn off the I/0 Checking }
type

data_file = file of text:
var

data: data_file;

RESET (DATA, '/SOURCE/PRINTER');
if IORESULT <> 0 then begin { <> 0 = problem }
REWRITE (data, '/source/printer'); { so create it
if IORESULT <> 0 then begin ‘
WRITELN('Cannot create printer file');
HALT
end
end

In the above example, the $I- comment toggle turns off
the I/O checking for that part of the program. The
IORESULT function returns a nonzero value to mean that
the file could not be RESET, so the program then tries a
REWRITE statement, If that fails, then the program
halts.

72

}

Cromemco Pascal Instruction Manual
7. Program Structure

Chapter 7

PROGRAM STRUCTURE

A Pascal program is a collection of declarations and
statements which is meant to be translated, via a
compilation process, into a relocatable object-module.
Object modules obtained from other, separate
compilations can be combined, via a linking process,
into a form suitable for execution.

The collection of declarations and statements may also
include compiler directives which control the
compilation, and do not change the meaning of the
program. .

COMPILATION UNITS

Cromemco Pascal implements independent compilation via
the unit concept of UCSD Pascal. A compilation unit is
either a program (a main program), or a unit. A
complete executable program consists of a single
program and zero or more units.

A program is a main program, consisting of all the
statements between a program statement and an end.
statement. The main program is described in more detail
later in this chapter, in the section entitled "Program

Heading".

A unit is a collection of declarations and statements
packaged so as to make parts of the declarations in the
unit public to other parts of the same compilation unit
or separate compilation units. Units are useful for
sharing common code among different programs or as a
means to avoid compiling a huge program every time one
line is changed. Units are compiled separately.

A program or unit that uses another unit is known as a
"host". A host uses other units' declarations by naming
them in uses declarations. The uses clause appears
after a program heading or it appears in a unit at the
start of the interface sections (see below).

A unit contains two major parts, namely an interface
part which describes how other units view this unit, and
an implementation part which supplies the actual body of
code to implement this unit.

73

Cromemco Pascal Instruction Manual
7. Program Structure

<unit> ::= unit <identifier>;
<interface part>
<implementation part>
end.

<interface part> ::= interface
<uses clause>
<constant definition part>
<type definition part>
<variable definition part>
<procedure and function declaraticn part>

<implementation part> ::=
implementation
<label declaration part>
<constant definition part>
<type definition part>
<variable definition part>
{procedure and function declaration part>

<uses clause> ::= uses <identifier> {,<identifier>}

The interface part declares constants, types, variables,
procedures and functions that are globally available. A
host program that uses that unit has access to those
objects just as if they had been declared in the host
program itself.

Procedures and functions declared in the interface part
consist only of the procedure or function name and the
description of the formal parameters. These
declarations serve as procedure or function prototypes -
there is no executable code associated with them. This
is equivalent to a forward declaration except that no
forward attribute is allowed.

The implementation part follows the interface part.
Local objects are declared first, then the global
procedures and functions are declared. Formal
parameters and function result type declaratiocns are
omitted from the implementation part, since they were
already declared in the interface part.

A unit can consist entirely of interface declarations

(constants, types and variables). There need not be any
procedure or function declarations.

74

Cromemco Pascal Instruction Manual
7. Program Structure

The overall layout of a unit is like this:

unit GanipGanop;

interface { This part declares the }
interface section }

~

This part is optional if
GanipGanop does not use any
things from other units
Note that any declarations
imported from other units are
also public to any unit that
uses GanipGanop.
{e.... declarations and
procedure headings
for the GanipGanop unit.
All these declaraticns and procedure
headings are PUBLIC to other units}

uses names of
other units

Mt N Mt gt gt At Nyt

implementation { This part declares the }
{ implementation section }
{ee... declarations and
code for the GanipGanop unit.
All these declarations and code are
PRIVATE to GanipGanop}
end. { of the GanipGanop unit }

7.2 DECLARATIONS AND SCOPE OF IDENTIFIERS

Declarations introduce program objects, together with
their identifiers, which denote these objects elsewhere
in a program.

<declaration> ::= <label declaration>
| <constant declaration>
| <type declaration>
| <variable declaration>
| <procedure or function declaration>

The program region (over which all uses of an identifier
are associated with the same object) is called the
scope of the identifier. Within a compilation unit,
such a region is either a unit body or a block body. In
the case of a unit, the scope is a declaraticn list. 1In
the case of a block, the scope is a statement 1list
preceded by an optional declaration list.

75

Cromemco Pascal Instruction Manual

7.

Program Structure

The scope of an identifier is determined by the context
in which it was declared.

A program or a unit is a static construct intended to
control the scope of identifiers according to these
rules:

1. The scope of an identifier declared at the
outermost level of a program is the body of that
program.

2. The scope of an identifier listed in the interface
part of a unit is the body of that unit, and is
also extended "outwards" to any other unit that
uses that unit.

3. Identifiers declared at the outermost level of the
implementation part of a unit have the entire body
of that unit as their scope, but are private to
that unit.

Procedure or function blocks also control the scope of
identifiers. There are both similarities with, and
differences from, programs or units.

Like programs or units, blocks control the scope of
identifiers.,

Unlike programs or units, blocks control the processing
of declarations and determine when the declarations take
effect.

The block-structured scope rules are as follows:

1. The scope of an identifier declared in the
declaration 1list of a block is the body of that
block.

2. If the scope of an identifier includes another
block, its scope is extended "inward" to include
the body of that inner block, unless the body
contains a re-declaration of that identifier.

3. An identifier which 1is declared as a formal
parameter of a procedure or function has as its
scope the body of that procedure or function.

4, Field selectors are identifiers introduced as part
of the definition of a record type for the purpose
of selecting fields of records. The scope of a
field selector 1is the record in which it is
declared., As with the nesting of procedures, the
existence of an inner scope identifier masks the

76

Cromemco Pascal Instruction Manual
7. Program Structure

7.3.1

accessibility of any outer identifiers of the same
name, Field selectors must be unique within the
declaration of a record.

5. Identifiers must be unique within the bounds of a
given scope. ‘

PROGRAM HEADING

The program statement identifies the main program for a
Pascal compilation. In Cromemco Pascal, the program
header is scanned but otherwise ignored. A program has
the same form as a procedure declaration except for the
heading.

{program)> ::= <program heading> {<uses clause>} <block>.

<program heading> ::=
program <identifier> {(<program parameters>)};

<program parameters> ::= <identifier> {,<identifier>}

The identifier following the word program is the program
name., It has no further meaning inside the program.
The program parameters are optional. No global
identifiers in the program may have the same name as any
of the program parameters.

Predeclared Variables

SVS Pascal supplies five pre-declared variables. First
there are standard files:

input is the standard file from which console input
can be done via READ and READLN statements,

output is the standard file to which console output
is directed via WRITE and WRITELN statements,

stderr is the standard error cutput file. On those
operating system which support a separate file
for error responses, stderr is connected to
that stream.

Then there are the two variables associated with

obtaining arguments from the operating system command
line (see the next subject heading below):

77

Cromemco Pascal Instruction Manual
7. Program Structure

7.3.1.1

argc is a count of the number of arguments supplied
on the command line.

argv is an array of pointers to the character
strings containing the command line arguments.

ARGC and ARGV - Access to Command Line

As mentioned above, "argc" and "argv" provide access to
the Pascal program's command line as the user typed it.
"argc" and "argv" can be considered to be defined by a
declaration of the form:

type
pstring = “string;

var
argc: integer;
argv: arrayl[l .. argc] of pstring;

Each element of argv contains a separate field from the
command line that invoked this Pascal program. If
"argc" is zero (0), no attempt should be made to
reference "argv". The first element of "argv" is the
first parameter from the command line. The name of the
command itself is not available. Avoid assigning to any
element of "argv".

DECLARATIONS

Label Declarations
The label declaration part declares all labels (which
tag statements) in the statement part of the block.

<label declaration part> ::= 1label <label> {, <label>}:

Constant Definition
The constant definition part declares all constant names

and their associated values that are local to the
procedure or function definition.

78

Cromemco Pascal Instruction Manual
7. Program Structure

7.4.3

7.4.4

<ceonstant definition part> ::= const <constant definition list>

<constant definition list)> ::=
<constant definition> {<constant definition)>’

Type Definition

The type definition part contains all the type
definitions that are local to the procedure or function
definition.

<type definition part> ::= type <type definition list>

<type definition list> ::= <type definition> {<type definition>}

Variable Declaration

The variable declaration part contains a definition of
all the variables that are local to the procedure or
function.

<variable declaration part> ::= var <variable declaraticn list>

<variable declaration list> ::=
<variable declaration> {<variable declaration>}

PROCEDURE AND FUNCTION DECLARATION

A procedure declaration or a function declaration

associates an identifier (the procedure or function
name) with a collection of declaraticns and statements.
A Pascal statement can then cause that procedure to be
executed (activated) by giving its name in a procedure
reference statement. A function declaration is similar
to that of a procedure with the additional capability
that a function can compute and return a value, called
the value of the function. A function is referenced by
giving its name in an expression, when the value of the
function appears as a factor in that expression.

The type of value that a function returns is specified
when the function is declared. The function return
value is the value last assigned to its function
identifier before a return is made £from the function.
Returning from a function without ever assigning a value
to the function designator (for the current activation
of the function) produces an undefined result (usually

79

Cromemco Pascal Instruction Manual
7. Program Structure

with undesirable results from the programmer's
viewpoint).

Using a procedure or function identifier within the
declaration of that procedure or function implies
recursive activation of that procedure or function,
except when a function identifier appears on the left
hand side of an assignment statement, (implying
assignment to the function variable rather than
recursive activation - see below).

<procedure declaration> ::= <procedure heading> <block>

<block> ::= <label definition part>
<constant definition part>
<type definition part>
<variable declaration part>
<procedure and function declaration part>
<{statement part>

<statement part> ::= begin <statement list> end
<statement list> ::= <statement> {; <statements>}

All the definition and declaration parts above are
optional, with the exception of the <statement part>.

The procedure heading specifies the identifier that
names the procedure, and any formal parameters for that

procedure,

Procedure parameters are either yalue parameters,

varjable parameters, or procedure or function

parameters.

80

Cromemco Pascal Instruction Manual
7. Program Structure

<procedure heading> ::=
procedure <identifier>; {<attribute>;}
| procedure <identifier> (<formal parameters>); {<attribute>;}

<function heading> ::=
function <identifier>: <result type>; {<attribute>;}
| function <identifier>(<formal parameters<); {<attribute>;}

<formal parameters)> ::=
<formal parameter> {;<formal parameter>}

<formal parameter> ::=
{parameter group>
| var <parameter group>
| <procedure heading>
| <function heading>

<parameter group> ::=
<identifier> {,<identifier>}:<type identifier>

<attribute> ::= external | forward | cexternal

<result type> ::= <simple type>

Note that the "External" and "Forward" attributes are
optional.

7.5.1 External and Porward Attributes

A Pascal host can use routines that are separately
compiled or assembled in languages other than Pascal.
To use an external routine, the host must make a
procedure or function declaration for that external
routine just as if it is a Pascal routine that is
declared in this compilation unit or another compilation
unit. The declaration is then followed by the external
attribute to indicate that the body routine does not
appear in the current compilation unit. External
routines must conform with the Pascal calling
conventions and data representation methods as defined
in appendix E - "Data Representations". The cexternal
attribute means that the compiler generates calls to
external procedures in a manner which is compatible with
the SVS C compiler.

Pascal normally dictates that procedures and functions
be declared before they can be referenced. There are
cases when program layout makes this impossikle, such
that a procedure or function must be referenced before
it can be declared. The forward attribute indicates
that the particular procedure or function declaration

81

Cromemco Pascal Instruction Manual
7. Program Structure

7.5.2.1

consists only of the header, and that the body of that
procedure or function appears later in the program
source text, possible after it is referenced. A
forward-declared procedure or function, then, is
actually declared in two distinct parts: its header or
prototype is declared, with the forward attribute,
before any reference is ever made to it; at some later
point in the program source text, its body is declared.
At this later point, the formal parameter section must
not appear.

Parameters for Procedures and Functions

Parameters (also called arguments) provide a dynamic
substitution method such that a procedure or function
can process different sets of data in different
activations.

There is a correspondence between the formal parameters
declared in a procedure or function heading and the
actual parameters supplied when the procedure or
function is activated.

The procedure or function heading declares a list of
formal parameters. These are "dummy" variables that are
assigned values when the procedure or function is
activated.

A reference to the procedure or function supplies a list
of actual parameters that are substituted for the formal
parameters, which then become local variables
initialized to the value of the actual parameters.

There are four kinds of formal parameters:

. Value parameters.

. Variable or Reference parameters.
. Procedure parameters.

. Function parameters.

A parameter group without a preceding specifier, implies
that the parameter is a value parameter. The next
subsection describes parameters in more detail.

Value Parameters

Value parameters are those whose formal parameter
declaration has no symbol marking them as one of the
other three forms. The corresponding actual parameter
must be an expression. In the body of the procedure or
function, the formal parameter is initialized to the

82

Cromemco Pascal Instruction Manual
7. Program Structure

7.5.2.2

7.5.2.3

value of the expression at the time the procedure cr
function is activated. The formal parameter is then
just like a local variable. The value of the formal
parameter may be changed by assignment - the actual
parameter remains unchanged.

Variable Parameters

Variable parameters, also called reference parameters,

are those whose declarations start with the symbol var
(for variable). The actual parameter must be a variable
of a type which is identical to that of the formal
parameter, The formal parameter directly represents,
and can change, the actual parameter's value during the
entire execution of the procedure or function.

var actual parameters must be distinct actual variables.
It is a programming error to supply the same variable to
more than one actual parameter in a procedure or
function reference.

All index computations, field selection and pointer
dereferencing are done at the time the procedure or
function reference is made.

Procedure and Function Parameters

Procedure and Function parameters are the names and
parameter lists of procedures or functions that can be

referenced by the current procedure. These parameters
are indicated by the symbol procedure or function in the
formal parameter declarations. Such procedures or

functions are called parametric. Actual parameters to
parametric procedures and functions must be of identical
type to those declared in the formal parameter

declarations.

Examples of Procedure and Function Declarations

{ a procedure with only value parameters }
procedure ByTheBook (Chapter, Verse: integer);
begin
Chapter := 1; { does not change the caller's
version of Chapter }
end;

{ a procedure with variable parameters '}
procedure Change(var winds: integer):

83

Cromemco Pascal Instruction Manual
7. Program Structure

begin
winds:= 76; { Changes the caller's version }

end:;

{ the Ackerman function }
function Ackerman(m, n: integer): integer;
begin

if m =0 then
Ackerman :=n + 1
else if n = 0 then
Ackerman := Ackerman(m - 1, 1)
else
Ackerman := Ackerman(m - 1, Ackerman{(m, n - 1))

end;

{ parametric function parameter }
function 1Integrate(lo, hi: real;
what (x: real): real): real;
var
start: integer;
finish: integer;
point: integer;
current: real;
sum: real; '

begin
start := TRUNC(1lo):
finish := ROUND(hi);
sum := 0.0;

for point := start to finish do
begin

current := point;

sum := sum + what (current);

end;
Integrate := sum / finish - start;

end

84

Cromemco Pascal Instruction Manual

8.

Standard Procedures and Functions

Chapter 8
STANDARD PROCEDURES AND FUNCTIONS
Cromemco Pascal (in common with other Pascal
implementations) supplies a number of standard ("built
in") procedures and functions. This Chapter covers
those. The standard procedures and functions fall into
several logically related groups, as follows:

. String Manipulation. These intrinsics handle the
Cromemco Pascal dynamic string types.

. Memory Management. These intrinsics deal with dynamic
memory allocation and de-allocation,

. Arithmetic Functions.
. Boolean Predicates.
. Conversion Functions.

. Miscellaneous Low Level Procedures and Functions.

STRING MANIPULATION FACILITIES

This section discusses those facilities for manipulating
string data types in Pascal. Here is a brief summary of
the facilities:

CONCAT concatenate a number of strings into one
string.

COPY Extract substring of a string.

DELETE delete characters from a string.

INSERT insert characters into a string.

LENGTH determine the current dynamic length of a
string.

POS Scan for a pattern within a string.

SCANEQ and SCANNE
scan for a specific character within a string.

85

Cromemco Pascal Instruction Manual
8. Standard Procedures and Functions

8.1.1 LENGTH - Determine String Length

LENGTH is an integer function that returns the length of
a string expression. The function definition is:

function LENGTH (source: string): integer;

LENGTH returns an integer value which is the dynamic
length of the string "source"

The length of the string '' is zero (0).

Examples of LENGTH

alphabet := 'abcdefghljklmnopqrstuvwxyz'°

WRITELN (LENGTH (alphabet), ° P
alphabet{1], ' !
alphabet[LENGTH(alphabet)], ' Yy

LENGTH('')):

the following output is displayed

26 a z 0

8.1.2 COPY -~ Copy a Substring

COPY returns a string which is a substring of another
string. The function definition is:

function COPY(source: string;
index: integer;
size: integer): string;

COPY returns a string which is a substring of the string

"source",. COPY extracts "size"™ characters from
"source", starting at the character position given by
"index"

The first character in the string is numbered 1.

If "index" is negative or zero, the result is a null
string.

If "index" is greater than LENGTH (source), the result is
a null string.

86

Cromemco Pascal Instruction Manual
8. Standard Prccedures and Functions

If "index" + "size" is greater than LENGTH(source), the
result is a string which extends from "index"™ to
LENGTH (source).

Example of COPY

var left: string[100];
middle: string[100];
right: string[100];
title: string[255];

title := 'Left Side. Middle Part. Right Side.';
left := COPY(title, 1, 10):

middle := COPY¥(title, 12, 12):

right := COPY(title, 25, 11);

WRITELN(left);

WRITELN (middle);

WRITELN(right);

This should generate the output:
Left Side.

Middle Part.
Right Side.

'CONCAT - Concatenate Strings

CONCAT returns a string result, which is the
concatenation of its (string) parameters. The function
definition of CONCAT is:

function CONCAT (sl: string;
s2: string;
sn: string): string;

Each of the "Sn" is a string variable or a string
constant or a literal value. There may be any number of
source strings, each separated by a comma from the next.
There must be at least two source strings.

Example of CONCAT

title := CONCAT('Here', ', there', ', and everywhere');
WRITELN(title);

87

Cromemco Pascal Instruction Manual
8. Standard Proccedures and Functions

This should generate the output:
Here, there, and everywhere

8.1.4 POS - Match a Substring in a String
POS is used for string matching. The function
definition is:

function POS (pattern: string;
inwhat: string): integer;

POS scans from left to right trying to find an instance
of the string "pattern"™ in the string "inwhat". If a
match is found, POS returns an integer value that is the
position in "inwhat" at which the "pattern" starts to
match.

If there is no match, the result is zero (0).
If "pattern" is longer than "inwhat", the result is zero
(0), or no match.

Example of POS
herbs := 'Basil, Chervil, Fennel, Tarragon';
WRITELN(POS('Chervil', herbs), ' ', POS('Nutmeg',
herbs));

This should generate the output:

8.1.5 SCANEQ and SCANNE - Scan for Character
SCANEQ and SCANNE search a character array until they

find (SCANEQ) or do not find (SCANNE) a specified
character in the array. The function definitions are:

function SCANEQ(len: integer; what: char; object): integer;
function SCANNE(len: integer; what: char; object): integer;

88

Cromemco Pascal Instruction Manual
8. Standard Procedures and Functions

8.1.6

SCANxx scans "object" for "len" characters, or until the
character "what" is found (SCANEQ) or not £found
(SCANNE)., The result is the offset into "object" where
the scan stopped. If the character "what" is not found
(SCANEQ) or is found (SCANNE), SCANxx returns the value
"len"., If the "len" parameter is positive, scanning is
from left to right; if the "len" parameter is negative,
the scan proceeds from right to left, and a negative
value is returned.

Note that the SCANxx functions simply look at bytes in
memory. They ignore any higher level structure that the
user might perceive or might have imposed on the object.
Thus "object™ is simply an address in memory at which to
begin scanning (or in the case where "len" is negative,
to end the scan). Thus, for example, if the programmer
were to do a SCANEQ on a data type of string[80], the
length byte of that string would also be scanned, and
the results might be unexpected.

DELETE - Delete Characters from String

DELETE removes a specified number of characters from a
string. The procedure definition is:

procedure DELETE (destination: string;
index: integer;
size: integer);

"destination" is a string. "index" and "size" are
integers.,

DELETE removes "size" characters from "destination",
starting at the position specified by "index".

If "index" is greater than LENGTH(destination), there is
no action taken.

If "index" is negative or zero, there is no action
taken.

If "index" + "size" is greater than LENGTH(destination),-
DELETE removes all characters from "index" up to the end
of the "destination" string.

89

Cromemco Pascal Instruction Manual
8. Standard Procedures and Functions

8.1.7

8.2

Example of DELETE

var large: string[100];

large := 'A long exhausting rally, eh what, chaps’;
DELETE(large, 8, 11);
WRITELN(large);

This should generate the output:
A long rally, eh what, chaps

INSERT - Insert Characters into String

INSERT inserts one character string into another
character string at a specified place. The procedure
definition is:

procedure INSERT (source: string;
destination: string;
index: integer);

The "source" string is inserted into the "destination"
string at a position determined by the value of "index".

If the length of the result string is greater than the
static length of the destination string, the result
varies depending on whether run-time range checking is
on or off:

. If range checking is on (the $R+ option), a run-time
error is generated.

. If range checking is off (the $R- option), the result
string is truncated to fit into the declared length of
the destination string.

STORAGE ALLOCATION PROCEDURES

Dynamically allocated storage is held in a large common
storage pool, called a "heap®. Storage is allocated
from that pool by using the procedure NEW, Storage is
released back to the pool (de-allocated) by using the
DISPOSE procedure, Alternatively, some Pascal
implementations handle memory de-allocation via the MARK
and RELEASE procedures, Cromemco Pascal provides MARK
and RELEASE for compatibility.

90

Cromemco Pascal Instruction Manual
8. Standard Procedures and Functions

8.2.1

NEW is responsible for allocating storage.
DISPOSE is responsible for de-allocating storage.

MARK provides a means to "remember" the current top
of the heap.

RELEASE releases memory from a previously MARK'ed
point.

MEMAVAII. determines the amount of memory available for
allocation.

NEW - Allocate Storage

The procedure NEW allocates dynamically available
storage. If "p" is a variable of type pointer to "T",
NEW(p) allocates storage for a variable of type "T" and
assigns a pointer to that storage to the variable "p".
There are two forms of the NEW procedure reference:

NEW (p) allocates a new variable "v", and assigns the
pointer reference of "v" to the pointer
variable "p". If the type of "v" is a variant
record, storage is allocated for the largest
variant of the record. Storage for a specific
variant can be allocated by using the second
form of the NEW procedure, as follows:

NEW(p, tl, £2,¢¢¢ tn)
allocates a variable of the variant, with tag

fields tl1 .. tn. The tag fields must be
listed contiguously and in the order of their
declaration in the variant record type
definition.

If NEW is used to allocate storage for a specific
variant record, the subsequent call to DISPOSE must use
exactly the same variant, Any mismatch between the
variants specified on the call to NEW and those on the
DISPOSE call can damage the integrity of the heap,
causing strange behavior at best and system crashes at
worst.

NEW checks MEMAVAIL to determine whether enough memory

exists to allocate the requested storage. If the
storage is not available a run—-time error message

"No room in heap"”
will be issued and the program will be terminated.

91

Cromemco Pascal Instruction Manual
8. Standard Procedures and Functions

Example of NEW
const UpperLimit = 255;

type _
LArray = arrayl[l .. UpperLimit] of integer;

ArrayAddr = "LArray;

var
head: ArrayAddr;

begin NEW (head) ;
head”™[1] := 0; { =zero £ill array '}
MOVELEFT (head”[1], head”[2],
SIZEOF(integer)* (UpperLimit - 1));
cesoe ANd SO ON eccess
end

DISPOSE - Dispose of Allocated Storage

DISPOSE de-allocates dynamically allocated storage. The
procedure reference:

DISPOSE (p};

de-allocates the storage referenced by the pointer
variable "p". DISPOSE does not return the de-allocated
storage to the memory storage pool available for
allocation.

Upon return from DISPOSE, the pointer variable "p
contains the value nil.

Attempts to DISPOSE using a pointer variable that
contains nil is a no-op and is ignored.

If NEW was used to allocate a variable with a specific
variant, DISPOSE should be called with exactly the same
variant, else the heap is likely to be corrupted.

MARK - Mark Position of Heap

MARK is used to "remember" the current position of the
top of heap. MARK and RELEASE are used together to
de-allocate memory and return the top of the heap to a
previously MARK'ed point. For example, a procedure
might, upon entry, MARK the heap top, then allocate
large numbers of variables, and then, just prior to

92

Cromemco Pascal Instruction Manual
8. Standard Prccedures and Functions

8.2.4

exiting, RELEASE all the allocated memory. Such a
situation might occur, for instance, in allocating the
local symbol table for an assembly unit. At the end of
the unit, all the local labels need to disappear - MARK
and RELEASE provide a handy means to dispose of storage
in bulk. The procedure definition-of MARK is:

procedure MARK (HeapPointer: “anything);

"HeapPointer" must be a pointer - the pointer type is
irrelevant but conventionally it is a pointer to a
longint. "HeapPointer" must not be used for any purpose
other than as a MARK pointer.

RELEASE - Release Allocated Memory

RELEASE is used to cut the heap back to a point
previously MARK'ed. The procedure definition of RELEASE

is:
procedure RELEASE (HeapPointer: “anything);

As for MARK, "HeapPointer" is a pointer of any type but
conventionally is a pointer to 1longint. RELEASE cuts
the heap back to the place indicated by "HeapPointer".
"HeapPointer" must have been properly initialized by a
previous call to MARK. MARK's and RELEASE's must be
matched properly.

MEMAVAIL - Determine Available Memory
MEMAVAIL returns the number of bytes available for

allocation in the storage pool. The function definition
of MEMAVAIL is:

function MEMAVAIL: longint;

93

Cromemco Pascal Instruction Manual
8. Standard Procedures and Functions

8.3

8.3.1

8.3.2

8.3 .3

8.3'4

8.3.5

8.3.6

ARITEMETIC FUNCTIONS

ABS - Compute Absolute Value

ABS(x) computes the absolute value of its argument "x",
The type of the result is the same as the type of "x"
which must be either integer, real or double.

SQR - Compute Square of a Number

SOR(x) computes the square of "x", that is, it computes
x*x, The type of the result is the same as the type of
"x", which must be either integer, real or double.

SIN - Trigonometric Sine

SIN(x) computes the trigonometric sine of the argument
"x". The type of "x" may be either integer, real or
double. The return type of SIN is always real or
double. The argument is in radians.

COS - Trigonometric Cosine

COS(x) computes the trigonometric cosine of the argument
"x", The type of "x" may be either integer, real or
double. The return type of COS is always real or
double. The argument is in radians.

ARCTAN - Trigonometric Arctangent

ARCTAN (x) computes the trigonometric arctangent of the
argument "x". The type of "x" may be either integer,
real or double. The return type of ARCTAN is always
real or double.

EXP - Compute Exponential of Value

EXP(x) computes the exponential of the argument "x".
The type of "x" may be either integer, real or double.

The return type of EXP is always real or double.

94

Cromemco Pascal Instruction Manual
8. Standard Procedures and Functions

8.3.7

8.3.8

8.3.9

PWROFTEN -~ Compute Ten to a Power

The function PWROFTEN(x) returns a value which is 10
raised to the power specified by the argument. The
function definition is:

function pwroften (exponent: integer): real;

The valid range of the "exponent" argument is -38 ..
+38,

LN - Natural Logarithm of Value

LN(x) computes the natural logarithm of the argument
"x". The type of "x" may be either integer, real or
double. The return type of LN is always real or double.
It is an error to supply an argument less than or equal
to zero.

SORT - Square Root of Value

SORT (x) computes the square root of the argument "x".
The type of "x" may be either integer, real or double.
The return type of SQRT is always real or double. It is
an error to supply an argument less than or equal to
Zero.

PREDICATES OR BOOLEAN ATTRIBUTES

ODD - Test Integer for 0Odd or Even

ODD(x) determines if the argument is odd or even. The
type of the argument "x" must be integer. The result is
" n

true if "x" is an odd number, false if "x" is an even
number.

EOLN - Determine if End of Line Read
The function EOLN returns true if the textfile position
is at an end-of-line character. Otherwise the EGCLN

function returns false. EOLN is only defined for files
whose components are of type text or interactive.

95

Cromemco Pascal Instruction Manual
8. Standard Procedures and Functions

8.5.2

EOF - Determine if End of File Read

The function ECF returns true if a read from a file
encounters an end-of-file, EOF returns false in all
other cases. To set EOF true for a file attached to the

console, the EOF character must be typed. In Cromemco
Pascal this is Control-Z. For a textfile, EOF being

true implies that EOLN is true as well.

If a file is closed, EOF returns true. After a RESET
takes place, EOF is false for the RESET file. If EOF
becomes true during a GET or a READ, the data obtained

is not valid.

VALUE CONVERSION FUNCTIONS

TRUONC - Truncate to Nearest Integer

The function TRUNC(x) truncates its argument "x" to the
nearest integer. "x" must be of type real or double.
If the result of truncating the argument "x" cannot be
stored in an integer variable, the maximum integer value
is returned.

For x >= 0, the result is the largest integer <= x.

For x < 0, the result is the smallest integer >= x.

ROUND - Round to Nearest Integer

The function ROUND(x) rounds its argument "x" to the
nearest integer. "x" must be of type real or double.
The result is of type integer. If the result of
rounding the argument "x" cannot be stored in an
integer variable, the maximum integer value is returned.

For x >= 0, the result is TRUNC(x+0.5).

For x < 0, the result is TRUNC(x-0.5).

ORD - Convert Type to Integer Value

The function ORD(x) returns an integer which is the
ordinal number of the argument "x" in the set of values
defined by the type of "x". The argument "x" can be any
nonreal scalar. For example:

96

Cromemco Pascal Instruction Manual
8. Standard Procedures and Functions

8.5.4

8.5.5

8.6

8.6.1

8.6.2

var
one_letter : char:
converted : integer;

begin
one_letter := 'm';
converted := ORD(one_letter);

At the end of this program fragment, the variable
"converted" has the value 109, since that is the ordinal
position of lower case 'm' in the ASCII character set.

ORD4 - Convert to Long Integer

The function ORD4(x) returns a longint which is the
ordinal number of the argument "x". As for ORD, the
argument "x" can be any nonfloating point scalar.

CHR - Integer to Character Representation

The function CHR(x) converts its argument "x" to a
character, The argument "x" must be an integer. The
result type of CHR is the character whose ordinal number
is "x". The argument must therefore lie in the range
0 .. 255 for CHR to return a valid result.

OTHER STANDARD FUNCTIONS

SUCC - Determine Successor of Value

The function SUCC(x) accepts an argument which is any
scalar type except real or double. The result of SUCC
is the successor value of the argument, if such a
successor value exists.

SUCC(x) is undefined if "x" does not have a successor
value.

PRED - Determine Predecessor of Value

The function PRED(x) accepts an argument which is any
scalar type except real or double. The result of PRED

is the predecessor value of the argument, if such a
predecessor value exists.

97

Cromemco Pascal Instruction Manual
8. Standard Prccedures and Functions

8.7

8.7.1

PRED (x) is undefined if "x" does not have a predecessor
value.

MISCELLANEOUS LOW LEVEL ROUTINES

MOVELEFT and MOVERIGHT

MOVELEFT and MOVERIGHT transfer a number of bytes from a
source to a destination. MOVELEFT starts at the
leftmost byte in the source (the first byte), while
MOVERIGHT starts at the rightmost byte in the source
(the last byte). In all cases the source and
destination strings can overlap, with the appropriate
undesired results if the move is in the wrong direction.
The format of MOVELEFT and MOVERIGHT is:

procedure MOVELEFT(var source, var destination,

length) ;
procedure MOVERIGHT(var source, var destination,
length) ;
source is the place to move bytes from.
destination is the place to move bytes to.
length is an integer specifying the number of

bytes to move.

"source" and "destination" can be any sort of type. If
either "source" or "destination" is an array, the array
can be subscripted. If either "source" or "destination"
is a record, a field specification can be given.

For a MOVELEFT, the byte at "source" is moved to
"destination" and so on until the byte at
"source"+"length"-1 is moved to
"destination"+"length"-1. For a MOVERIGHT, the move
starts from the other end, so that the byte at
"source"+"length"~1 is moved to "destination"+"length"-1
and so on until the byte at "source" is moved to

"destination”.

Neither MOVELEFT nor MOVERIGHT perform any range
checking. They should therefore be used with a modicum
of caution.

98

Cromemco Pascal Instruction Manual
8. Standard Procedures and Functions

8.7.2

Example of MOVELEFT

The example shown below illustrates how MOVELEFT can be
used to "zero fill" an array.

var
manifold: array{l .. 100] of -128 .. 127;

manifold{l] := 0O; { place an initial zero }
MOVELEFT (manifold[l], manifold{2], 99);

FILLCHAR - Fill a Storage Region With a Character

FILLCHAR 1is a procedure that replicates a byte
throughout a region of storage. The procedure
definition of FILLCHAR is:

procedure
FILLCHAR (var address; integer count; char byte);

address is the address of an arbitrary storage
location in memory. Note that 'address' is a
var parameter to FILLCHAR, soO it may not be
the address of a packed object.

count is the number of times that the next parameter
- 'byte' should be replicated.

byte is a single character value which is
replicated throughout the region of storage
starting at 'address' and ending at
'address'+count'-1.

Example of FILLCHAR

The example shown below illustrates how FILLCHAR can be

used to "space f£ill" a print buffer

var

printbuf: array[l .. 256] of char;

FILLCHAR(printbuf, 256, ' ';

99

Cromemco Pascal Instruction Manual
8. Standard Procedures and Functions

8.7.3

8.7.4

SIZEOF - Determine Size of Data Element or Type

SIZEOF is a function that returns the number of bytes
that a variable or type is allocated. The function
definition of SIZEOF is:

function SIZEOF (identifier): integer;

where "identifier" is a variable name or a type
identifier. The SIZEOF function is particularly useful
as a parameter to MOVELEFT or MOVERIGHT, or in
performing unit input-output, where the number of bytes
to transfer must be known.

POINTER - Convert Integer Expression to Pointer
POINTER converts an integer expression to a pointer
value. The function definition of POINTER is:

function POINTER (expression): universal;

POINTER converts the "expression", which must be an
integer expression, to a pointer value. The result type
of POINTER is a "universal" pointer type that has the
type of nil, which means that it may be assigned to any
pointer variable.

CONTROL PROCEDURES

EXIT - Exit from Procedure

EXIT provides the means to "get out of" a procedure

prematurely. EXIT finds especial use in recursive
applications such as expression evaluators or
tree-walking procedures. Its effect 1is to cause an

immediate (and clean) return from a named procedure or
function. The procedure definition of EXIT is:

EXIT (name) ;

100

Cromemco Pascal Instruction Manual
8. Standard Prccedures and Functions

8.8.2

where "name" is the name of the procedure or function to
be exited.

If the "name" parameter is the name o¢f a recursive

procedure or function, the most recent activation of
that procedure or function is terminated.

Files that are local to an EXIT'ed procedure or function
are not implicitly closed upon exit - they must be
closed explicitly before the EXIT statement.

If an EXIT statement is made inside a function before
any assignment is made to the function identifier, the
result of the function is undefined.

EXIT is exactly the same as a goto a label at the end of
the named procedure or function.

HALT - Terminate Program with Return Value

The HALT procedure terminates the currently executing
program, HALT returns a value to the host operating
system to indicate a successful termination or an error
termination. The procedure definition of the HALT
procedure is:

HALT(i: integer);

The "i" parameter is optional. If the "i" parameter is
omitted, by simply executing a:

HALT

statement, the correct "no error" code is returned to
the host operating system.

The HALT procedure also returns a value to the CALL
function, described below.

A list of the values which the HALT procedure can return

can be found in appendix A - "Messages from the Pascal
System".

101

Cromemco Pascal Instruction Manual
8. Standard Procedures and Functions

CALL - Call up Another Program

The CALL function requests the host operating system to
execute another program. The function definition of

CALL is:

function CALL(pathname: string:

var infile, outfile: interactive | text;
fargv: ?; fargc: integer): integer;

The parameters to the CALL function are:

pathname

is a string containing the pathname of the
file in which the program resides which is to
be run. The definition of what constitutes a
pathname is operating system dependent.

infile and outfile

fargv

fargc

specify the standard input and standard output
for the program specified by "pathname". In
addition, the definition specifies whether the
standard input and standard output files for
that program are text files residing in the
file system, or the user's terminal.

is an array of pointers to strings consisting
of the options and filename arguments for the
program in question.

is an integer count of the number of arguments
in "fargv".

The value returned from the CALL function is either the
value which a program returns via a HALT call, or is one
of the operating system error codes. A list of the
values which the HALT procedure can return can be found
in appendix A - "Messages from the Pascal System"”.

102

Cromemco Pascal Instruction Manual
9. Running the Pascal Compiler

Chapter 9

RUNNING THE PASCAL COMPILER

This Chapter covers two topics, namely, how to run the
Pascal compiler itself, and then a description of the
compiler options that may be entered as comments in
Pascal source text.

The Pascal compiler accepts source programs written in
the Pascal language as defined in this reference manual
and generates self-relocatable object code output. An
optional listing file containing the source statements
and error diagnostics can be generated. An optional
error summary file may also be generated. The Pascal
compiler is run by giving the following command line:

pascal sfile -l1lfile -gofile -gefile —-jifile

where "sfile" is the name of a file containing the
Pascal source program. The source is expected to be on
a file with a ".Pas" suffix. If the user omits the
" pas" suffix from the source file name on the command
list, the compiler appends a ".Pas" suffix to the name
before accessing the source file.

Command line options are designated by a "-" sign
followed by a letter (shown underlined in the command
line above). The argqument for that option immediately
follows the option letter as shown. The options are:

"lfile" is the name of the file to receive the
compiler generated listing. If omitted, a
listing is not generated. In this case,
errors are directed to the standard output and
the standard input is polled for a "continue"
or an "abort" response.

"ofile" is the name of the file to receive the
generated relocatable object code. The
generated object code is placed on a file with
an ".obj" suffix. If omitted from the command
line, the object code output is written to a
file with the same name as the source file
(minus the ".,Pas" suffix) with a suffix of
".obj" appended.

"ifile" is the name of the file which is the
intermediate or scratch file used by the
compiler. This file is normally discarded

103

Cromemco Pascal Instruction Manual
9. Running the Pascal Compiler

when the compilation completes. An ".i"
suffix is appended to the file name if the
user does not specify it on the command line.
If the user omits the "ifile" from the command
line, the intermediate output is placed on a
file with the same name as the source file
(minus the ".Pas" suffix) with a ".i" suffix
appended.

"efile" is the name of a file to receive the compiler
error summary. An ".e" suffix is appended to
the file name if the user does not specify it
on the command line. An error summary file is
not generated unless it is requested by the
"-e" option.

Examples of Running the PascalACompiler

pascal world

In this simplest of all examples, the Pascal compiler
compiles the source in the file "world.Pas". There is
no listing file, so any errors are directed to the
standard output. The object code and intermediate text
are placed on files "world.obj" and "world.i",
respectively.

pascal creation -lcosmos.list -olesson

This example illustrates the use of the command 1line
options. The source text is on a file called
"creation.Pas", the 1listing appears on a file called
"cosmos.list" and the relocatable object code appears on
a file called "lesson.obj.

COMPILER OPTIONS

Pascal compile-~time options are introduced via toggles
embedded in comments. Comment toggle format is like:

(*ST params¥*)
or
{ST params}

104

Cromemco Pascal Instruction Manual
9. Running the Pascal Compiler

where either the (* and *) form, or the { and } form of
comment delimiters may be used.

The toggle must immediately follow the opening comment
delimiter, with no intervening spaces.

A comment toggle is always introduced by a $ sign. The
$ sign is followed by the toggle letter, either in upper
or lower case, followed by the parameters for that
toggle. Compiler options that are followed by a + or =
may be given in a list:

{SC+,I+,L— .ee.}

There must not be any spaces after the commas in the
list. Scanning of a list of compiler options terminates
if any incorrect syntax is encountered.

Compiler options do not obey any of the Pascal scope

rules, Once an option is selected by a toggle, it
remains in effect until another toggle in the source
text de-selects that option. Compiler options are

described in the list below.

$SC+ or SC- Turns Code generation on (+) or off (-).
This is done on a procedure by procedure
basis. The value of the options at the
end of a procedure controls code
generation. The default is C+.

SE filename starts listing Errors to the file
specified by "filename". Also see the SL
option below.

$I filename Include the file specified by "filename"
at this point in the source.

SI+ or SI- Turn automatic Input/Output checks on (+)
or off (-). The default is I+.

SL filename Make a compilation Listing on the file
specified by "filename". If a listing
file already exists, that file is closed
and saved before the new file is opened.

SI,+ or SL- Turn Listing on (+) or off (-) without
changing the 1listing file name. The
listing filename must be specified before
turning listing on. The default is SL+
(listing on) when a 1listing files has

105

Cromemco Pascal Instruction Manual
9. Running the Pascal Compiler

SM+ or SM-

SP+ or S$P-

$SQ+ or S$Q-

SR+ or SR-

$S segment

been specified on the compiler's command
line or SL- (listing off) when a listing
file was not specified., When the 1list
option is on, the listing is directed to
whatever list file was specified on the
Pascal compiler's command line.

The $M+ option specifies that the Pascal
run-time system should check the stack
and heap for overflow upon entry to each
procedure, The S$M+ option enables the
check. The SM- option disables the
check. The default setting is S$SM-
(disable the check).

Specifies whether the Pascal compiler
should prompt the user for corrective
action when errors are detected. The S$P+
option indicates that the compiler should
prompt the user as to whether to continue
the compilation when errors are detected.
The $P- option disables the prompting
feature. This feature is also available
via the -p or +p option on the compiler
command line. The default setting of the
SP option is operating system dependent.

Controls the amount of messages that the
Pascal compiler prints while compiling a
program. The $Q+ option results in fewer
messages. The $0- option results in more
messages. The default setting of the $Q
option depends upon the operating system
on which the Pascal system is running.

Turns Range checking on (+) or off (-).
At present, range checking is done in
assignment statements, on array indexes,
and for string value parameters. The
default is S$R+.

Places code modules into the Segment
specified by "segment". The default
segment name is ! ' (eight
spaces), which is where the main program
and all built-in support code is always
linked. All other code can be placed
into any segment.

106

Cromemco Pascal Instruction Manual
9. Running the Pascal Compiler

SU filename

$%$+ or S$%-

Searches for subsequent Units in the file
specified by "filename".

Specifies that the percent sign % is a
valid character (+) or is not a valid
character (-) in identifiers. The
default is $%-.

107

Cromemco Pascal Instruction Manual

108

Cromemco Pascal Instruction Manual
A. Pascal System Error Message

Appendix A

PASCAL SYSTEM ERROR MESSAGE

This appendix describes the error messages that the
Pascal system generates.

COMPILE TIME LEXICAL ERRORS

10
11
12
13

14
15

16

17

18

Too many digits

Digit expected after ',' in a real number

Integer Overflow

Digit expected in the exponent of a real number

End of line encountered in a string constant
Invalid character in input

Premature end of file in source program

Extra characters encountered after the end of the
program

End of file encountered in a comment

COMPILE TIME SYNTACTIC ERRORS

20
21
22
23
24
25
26
27
28
29

30
31
32

33
34
35
36
37
38
39

40

41
42

43

Illegal symbol

Error in simple type

Error in declaration part

Error in parameter list of a procedure or function
Error in constant

Error in type

Error in field list of a record declaration

Error in factor of an expression

Error in variable

Identifier expected

Integer expected
' expected
expected
expected
expected
expected
expected
expected
expected
expected

oo 00—

':=!'" expected

program keyword expected
of keyword expected
begin keyword expected

109

Cromemco Pascal Instruction Manual
A. Pascal System Error Message

44

46
47

48
49

50
51
52

end keyword expected

then keyword expected

until keyword expected

do keyword expected

to or downto keyword expected
file keyword expected

if keyword expected

. (period) expected
implementation keyword expected
interface keyword expected

COMPILE TIME SEMANTIC ERRORS

100
101
102

103
104
105
106
107
108

109

110
111
112

113
114

115
116
117
118
119

120
121

122
123

124

125
126

Identifier declared twice in the same block
Identifier is not of the appropriate class
Identifier not declared

Sign not allowed

Number expected

Lower bound exceeds upper bound
Incompatible subrange types

Type of constant must be integer

Type must not be real

Tagfield must be a scalar or subrange

Type incompatible with tagfield type

Index type must not be real

Index type must be scalar or subrange

Index type must not be integer or longint
Unsatisfied forward reference

Forward reference type identifier cannot appear in
a variable declaration

Forward declaration - repetition of parameter 1list
not allowed
Forward declared function - repetition of result

type not allowed

Function result type must be scalar, subrange, or
pointer

File is not allowed as a value parameter

Missing result type in function declaration
F-format for real type only

Error in type of parameter to a standard function
Error in type of parameter to a standard procedure
Number of actual parameters does not agree with
declaration

Illegal parameter substitution

Result type of parametric function does not agree
with declaration

110

Cromemco Pascal Instruction Manual
A, Pascal System Error Message

127
128
129

130
131
132
133
134
135
136

137
138

139

140

141
142

143
144
145
146
147

148
149

150
151

152

153
154

155
156
157
158
159

160

161
162

163

164
165

166
167

168
169

Expression is not of set type
Only tests for equality allowed
Strict inclusion not allowed

Comparison of file variables not allowed
Illegal type of operand(s)

Operand type must be boolean

Set element type must be scalar or subrange
Set element types not compatible

Type of variable is not array or string

Index type is not compatible with declaration
Type of variable is not record

Type of variable must be file or pointer
Illegal type of loop control variable

Illegal Expression type

Assignment of files not allowed

Case selector incompatible with selecting
expression

Subrange bounds must be scalar

Operand type conflict

Assignment to standard function is not allowed
Assignment to formal function is not allowed
No such field in this record

Type error in read

Actual parameter must be a variable

Multiply defined case selector

Missing corresponding variant declaraticn

real or string tagfields not allowed in variant
record

Previous declaration was not forward

Substitution of standard procedure or function not
allowed

Multiple defined label

Multiple declared label

Undefined label

Undeclared label

Value parameter expected

Multiple defined record variant

File not allowed here
Unknown compiler directive (not external or

forward)

Variable cannot be a packed field

Set of real is not allowed

A field of a packed record cannot be a var
parameter

Case selector expression must be a scalar or a
subrange

String sizes must be equal

String too long

Value out of range

111

Cromemco Pascal Instruction Manual
A, Pascal System Error Messade

176
171

172

173
174

175
176

190

Cannot take the address of a standard procedure or
function

Assignment to function result must be done inside
that function

Control variable ¢f a for statement must be local
BUFFERED or UNBUFFERED expected

NORMAL, LOCK, PURGE, or CRUNCH expected

File variable expected

Must be within the procedure or function being
exited.

No such unit in this file

SPECIFIC LIMITATIONS OF THE COMPILER

300

301
302

303
304
305
306
307
308
309

310
311

312
313

314

315

350
351

Too many nested record scopes

Set limits out of range

String limits out of range

Too many nested procedures or functions
Too many nested include or uses files
Include not allowed in interface section
Pack and unpack are not implemented

Too many units

Set constant out of range

Maximum comparable packed array of char is of size
255 characters

Too many nested with statements

Too many nested function reference

Record too big (maximum size is 32766 bytes)

Too many elements in an array, or array too big
(maximum size of an array is 32766 bytes, or
maximum number of elements is 32766 elements)

Too many variables in one scope (the maximum
allowed is 32766 bytes in any one scope, including
the global level)

Too many bytes of value parameters (maximum allowed
is 32766 bytes in any one scope).

Procedure too large
File name in option too long

INPUT/OUTPUT ERRORS

400

401

402
403

404

Not enough room for code file
Error in rereading code file
Error in reopening text file
Unable to open uses file
Error in reading uses file

112

Cromemco Pascal Instruction Manual
A, Pascal System Error Message

405 Error in opening include file

406 Error in rereading previously read text block
407 ©Not enough room for intermediate code file
408 Error in writing code file

409 Error in reading intermediate code file

410 Unable to open listing file

CODE GENERATION ERRORS

1000+ Code generator errors - in theory should never
happen

IORESULT ERROR CODES

The codes 1listed below are those that the IORESULT
function returns.

No Error

File read error

File write error

File seek error

File open error

File close error

File not open error

Read past end of file
Integer read error
Floating point read error

WO~ BWNKO

CODES RETURNED FROM THE HALT PROCEDURE

The codes listed below are those that the HALT procedure
returns either to the operating system, or to the CALL
function.

No Error - indicates a good result

No room in memory for code

Cannot read the executable code file

File is not a code file

File must be linked before it can be executed
Cannot open the code file

Too many processes

Not enough space for data (stack space)

N OB WNDHE O

If the HALT procedure returns a code of less than zero,
the shell halts. This feature is for use in shell

scripts.

113

Cromemco Pascal Instruction Manual
A, Pascal System Error Message

If the HALT procedure returns a code of greater than 7,
the shell simply prints the error number, but continues.
Such error codes are available for user programs to
convey information to other user programs.

114

Cromemco Pascal Instruction Manual
B. Pascal Language Syntax

Appendix B
PASCAL LANGUAGE SYNTAX
«ess "what is the use of repeating all that stuff", said

the Mock Turtle, "if you don't explain it as you go
along., It's by far the most confusing thing I ever

heard!"

Lewis Carroll. Through the Looking Glass

PREDEFINED IDENTIFIERS

Constants
maxint TRUE FALSE

Iypes
Boolean interactive longint text
char integer real double

Variab
Argc Argv Input Qutput
Stderr

Procedures
CLOSE HALT bPUT
DELETE INSERT READ
DISPOSE MARK READLN
EXIT MOVELEFT RELEASE
FILLCHAR MOVERIGHT RESET WRITE
GET NEW REWRITE WRITELN

PAGE SEEK

Functions
ABS EQOF ORD SCANNE
ARCTAN EOLN ORD4 SIN
BLOCKREAD EXP POINTER SIZEOF
BLOCKWRITE IORESULT POS SQOR
CHR LENGTH PRED SQRT
CONCAT LN PWROFTE SUCC
COPY MEMAVAIL ROUND TRUNC
COoSs ODD SCANEQ

115

Cromemco Pascal Instruction Manual
B. Pascal Language Syntax

PASCAL SYNTAX DEFINITIONS

Syntactic constructs enclosed between "angle brackets"
< and > define the basic language elements. Every
language construct should eventually be defined in terms
of basic lexical constructs defined in the remainder of
this Chapter.

A construct appearing outside the angle brackets stands
for itself, that is, it is supposed to be self denoting.
Such a construct is known as a terminal symbol.
Terminal symbols and reserved words appear in bold face
text throughout this manual.

The symbol ::= is to be read "defined as”.

The symbol .. means "through", indicating an ordered
sequence of things where only the start and end elements
are specified. (The reader is left to infer the middle
elements). For example, the notation 'a' .. 'z' means
"the ordered collection starting with the letter 'a',
ending with the letter 'z', and containing the letters
'b', 'c¢'....'x', 'y' in between". In other words, all
the lower case letters.

The "vertical bar" symbol | is read as "or". It
separates sequences of elements that represent a choice
of one out of many.

The metalanguage construct {...} (elements inside
braces) enclose elements which are to be repeated "zero
to many times". Although the braces are also used as
one of the forms of comment delimiters in Pascal, this
should not cause any ambiguity. The one case where
ambiguity would occur is in the definition of comments,
and this is explicitly pointed out at that time.

The Pascal compiler recognizes the following alphabet or
character set:

<letter> ::= 'A' .. 'Z' ‘'a' ,. 'z', and

<digit> ::= '0' .. '9"

<hex digit> ::= <digit> | 'a' .. 'f' |
<ASCII graphic characters> ::= 1 " # § % & ' () * =
+ =, ./ <>72 _\ I
e~ 1~ {}r:]

<identifier> ::= <letter> { <letter> | <digit> }

1lle

Cromemco Pascal Instruction Manual
B. Pascal Language Syntax

<unsigned integer> ::= <digit> {<digit>}
<unsigned real> ::=
<unsigned integer>.<unsigned integer>
| <unsigned integer>.<unsigned integer>E<scale factor>
| <unsigned integer>E<scale factor>
| <unsigned integer>.<unsigned integer>D<scale factor>
| <unsigned integer>D<scale factor>
<unsigned number> ::= <unsigned integer> | <unsigned real>
<scale factor> ::= <unsigned integer> | <sign><unsigned integer>
<sign> s:= + | -
<hex number> ::= $<hex digit> {<hex digit>}
<string> ::= '<character> {<character>}'
<character value> ::= \<two digit hexadecimal number>
<label> ::= <unsigned integer>

<comment> ::= { <any printable characters except "}"> }
| (* <any printable characters except "*)"> ¥*)

<any printable character> includes carriage-return, line-feed,
tab, and so on.

<constant identifier> ::= <identifier>
= <unsigned number>

<sign> <unsigned number>

{constant> ::
|
] <constant identifier>
|
I

<sign> <constant identifier>
<string>

<constant definition)> ::= <identifier> = <constant>

<type declaration> ::= type <type spec> {;<type spec>}
<type spec> ::= <type identifier> = <Pascal type>
<simple type> ::= <scalar type>
| <standard type>
| <{subrange type>
| <type identifier>
<scalar type> ::= (<identifier> {,<identifier>})

{subrange type> ::=
<subrange type identifier> | <lower> .. <upper>

117

Cromemco Pascal Instruction Manual
B, Pascal Languade Syntax

<lower> ::= <signed scalar constant>
<upper> ::= <signed scalar constant>
<structured type> ::= <unpacked structured type>

| packed <unpacked structured type>
<unpacked structured type> ::= <array type>
| <string type>
<record type>

I
| <{set type>
| <file type>

<array type> ::= array [<index list>] of <type>
<index list> ::= <simple type> {, <simple type>}

<component type> ::= <type>

<string type> ::= string[<static length>]

<static length> ::= integer constant in the range 1 .. 255

<record type> ::= record <field list> end;
<field list> ::= <fixed part>
I <fixed part> ; <variant part>
I <variant part>

<fixed part> ::= <record section> {; <record section>}
<record section> ::= <field identifier list> : <type>
<field identifier list)> ::= <field identifier> {,<field identifier>}

<variant part> ::=
case {<tag field>} <type identifier> of <variant list>
<variant list> ::= <variant> {; <variant>}
<variant)> ::= <case label list> : (<field 1list>)
<case label list)> ::= <case label> {, <case label>}
<case label> ::= <constant>
<tag field> ::= <identifier>:

{set type> ::= set of <simple type>

<file type> ::= file of <type)
l file

<pointer type> ::= “<type identifier>
<variable declaration> ::=

118

Cromemco Pascal Instruction Manual

B. Pascal Language Syntax

<identifier> {,<identifier>}:

<variable>

<data type>;

:¢= <entire variable>

| <component variable>
| <referenced variable>

<entire variable>

<component variable>

<indexed variable>

<subscript list>

<field designator>

<file buffer>
<file variable>

e o=
o o
s s =
LR 2

<variable identifier>

<indexed variable>
<field designator>
! <file buffer>

-ol_‘

:= <array variable> <subscript list>

[<expression> {,<expression>}]
[<expression>] {,[<expression>]}

.=
.

:= <record variable>.<field identifier>

file variable>”

<
<variable>

<referenced variable> ::= <pointer variable>”

<pointer variable> ::= <variable>

<unsigned constant>

<factor>

<{set constructor>
<element>

<term>

<simple expr>

::= <unsigned number>
| {string>
| <constant identifier>
| nil

= <variable>

| <unsigned constant>

| <function designator>
| <set constructor>

| (<expression>)

| not <factor>
<element> {,<element>}]

expression>
<expression> ..

= [
t= <
| <expression>

<factor>
<term> <multiplying operator> <factor>

<term>
<simple expr> <adding operator> <term>
<adding operator> <term>

119

Cromemco Pascal Instruction Manual
B. Pascal Language Syntax

{expression> ::=
<simple expr>
| <simple expr> <relational operator> <simple expr>

<relational operator>

<multiplying operator> ::=* | / | div | mod | and
<adding operator> ::= + | - | or
<sign operator> ::= + | -
ti= = | <O >'l < | >] <=1 in

<assignment statement> ::=
Kvariable> := <expression>

] <function identifier> := <expression>

<procedure call statement> ::=
<procedure identifier><actual parameter list>

| <procedure identifier>

<actual parameter list> ::¢=
(<actual parameter> {,<actual parameter>})

<expression>

<actual parameter> ::=
| <procedure identifier>
!

<function identifier>

<begin statement>
<if statement>

<Kstructured statement> ::=
|
| <while statement>
[
|
|

{repeat statement>
<for statement>
<case statement>

<begin statement> ::= begin <statement list> end

<statement list> ::= <statement> {; <statement>}

<if statement> ::=
if <Boolean expression> then <statement>

| if <Boolean expression> then <statement> else <statement>

120

Cromemco Pascal Instruction Manual

Bo

Pascal Language Syntax

{case statement> ::= case <expression> of <{cases>
{ otherwise: <statement>} end

:= <a case> { ; <a case>}
<a case> ::=
<{selection spec> { , <selection spec>} : <statement>

<selection spec> ::= <simple constant scalar expression>
<while statement> ::= while <expression> do <statement>
{repeat statement)> ::= repeat <statement> until <expression>
<for statement)> ::=

for <control variable> := <for list> do <statement>

<for list> ::= <initial value> to <final value>
| <initial value> downto <final value>

{control variable> ::= <identifier>

<initial value>
<final value>

= <expression>
= <expression>

<with statement)> =

with <record variable> { ,<record variable>}
do <statement>

<goto statement> ::= goto <label>

<unit> ::= unit <identifier>;
<interface part>
<implementation part>
end.

<interface part> ::= interface
<uses clause>
<constant definition part>
<type definition part>
<variable definition part>
{procedure and function
declaration part>
<implementation part> ::=
implementation
<label declaration part>
<constant definition part>
<type definition part>

121

Cromemco Pascal Instruction Manual
B. Pascal Language Syntax

<variable definition part>
<procedure and function declaration part.

<uses clause> ::= uses <unit name> { ,<unit name>}

<declaration> ::= <constant declaration>
l <type declaration>
| <variable declaration>
| <procedure or function declaration>

<program> ::= <program heading> <block>.

<program heading> ::=
program <identifier> (<program parameters>);

{program paiameters> ::= <identifier> {,<identifier>}
<label declaration part> ::= label <label> {, <label>};

<constant definition part> ::= const <constant definition list>;

<constant definition list>

<constant definition> {: <constant definition>}

<type definition part> ::= type <type definition list);

<type definition list> ::= <type definition> {; <type definition>}

<variable declaration part> ::= var <variable declaration list>

<variable declaration list> ::=
<variable declaration> {;<variable declaration>}

<procedure heading> <block>

<procedure declaration> ::=
::= <function heading> <block>

<function declaration>

<block> ::= <label definition part>
<constant definition part>
<type definition part>
<variable declaration part>
<procedure and function declaration part>
<statement part>

<statement part>

: begin <statement list> end
{statement list> : <

statement> {; <statement>}

122

Cromemco Pascal Instruction Manual
B. Pascal Language Syntax

<procedure heading> ::=
procedure <identifier>; {<attribute>;}
| procedure <identifier> (<formal parameters>);
{<attribute>;}
<function heading> ::= '
{<attribute>;}

function <identifier>:<result type>;

| function <identifier> (<formal parameters>):
<result type>; {<attribute>;}

<formal parameters> ::= <formal parameter> {;<formal parameter>}

<formal parameter)> ::= <parameter group>
| wvar <parameter group>

| <procedure heading>
| <function heading>

<parameter group> ::=
<identifier> {,<identifier>}:<type identifier>
external | forward | cexternal

<attribute> ::=
1= <simple type>

{result type>

123

Cromemco Pascal Instruction Manual

124

Cromemco Pascal Instruction Manual
C. Differences from ISC Pascal

Appendix C

DIFFERENCES FROM ISO PASCAL

Myself when young did eagerly frequent

Doctor and Saint, and heard great argument
About it and about: but evermore

Came out by the same door as in I went.

cessssess Omar Khayyam, The Rubaiyat

The International Standards Organization (ISO) and the
American National Standards Institute (ANSI) are engaged
in a joint effort to define a Pascal Standard.

In general, Cromemco Pascal conforms to the (proposed)
ISO Pascal standard as defined in Pascal User Group
News, Number 20, December 1980. There are however some
differences that are spelled out here.

In Cromemco Pascal, only eight characters are
significant in identifiers.

The Pascal standard procedures PACK and UNPACK are not
supplied.

Conformant arrays are not implemented in accordance with
the level 0 (U.S) standard.

There is a small difference in the way that a text file
is handled if the text file is associated with an
interactive terminal.

There is a string basic data type implemented.

There is a double basic data type implemented. The
double data type is a double precision real data type.

There is an otherwise clause in the case statement.
This provides for a "what to do if the case selector
matches none of the cases". Standard Pascal considers

this situation an error.
Cromemco Pascal implements a longint data type, which

occupies four bytes instead of the two bytes of the
standard integer data type.

125

Cromemco Pascal Instruction Manual
C. Differences from ISO Pascal

The and, or, and not operators can be applied to
operands of type integer as well as operands of type
Boolean. When applied to operands of type integer,
these operators perform bitwise logical and, logical or,
and logical not operations on their operands.

Cromemco Pascal supports many extensions. These mainly
derive from the UCSD P-System.

126

Cromemco Pascal Instruction Manual
D. Relationship to UCSD Pascal

Appendix D

RELATIONSHIP TO UCSD PASCAL

The University of California at San Diego (UCSD)
implemented a widely used Pascal system, oriented
towards small, personal computer systems. This
implementation is known as UCSD Pascal.

Cromemco Pascal uses a number of ideas from UCSD Pascal.
The main areas where Cromemco Pascal conforms to UCSD
Pascal are:

1. Independent compilation is supported through the
unit concept of UCSD Pascal. The interface,
implementation and uses statements are implemented.

2, There is an include capability.

3. Many of the UCSD Pascal compatible standard
procedures and functions are implemented the same
as UCSD Pascal.

DIFFERENCES FROM UCSD PASCAL

In Cromemco Pascal, the underline character _ 1is
significant in identifiers. In UCSD Pascal it is
ignored so that the identifiers "Space_Out" and
"SpaceOut" are identical. 1In Cromemco Pascal they are
considered two different identifiers.

Cromemco Pascal supports a long integer type, with the
predefined type name 1longint. The UCSD construct
integer[nn] is not implemented.

There is a double basic data type implemented. The
double data type is a double precision real data type.

Fields of packed records and elements of packed arrays
can never be passed as reference parameters to
procedures, even in those places where UCSD Pascal
allows.

The ISO Pascal string type packed array[low..high] of
char must have a lower bound of 1 to be compatible with
literal strings, or to be used in array comparisons.
UCSD Pascal allows any lower bound.

Cromemco Pascal does not have the reserved word segment.
Consequently there is no segment procedure or segment

127

Cromemco Pascal Instruction Manual
D. Relationship to UCSD Pascal

function. To segment a Cromemco Pascal program, use the
$S compiler option, which directs the compiler to place
generated object code in a named segment. See the
Chapter on "Running the Compiler". That Chapter
contains a section on compiler options.

Cromemco Pascal does not implement unit initialization
code.

Cromemco Pascal does not supply special units such as
APPLESTUFF or TURTLEGRAPHICS.

Cromemco Pascal does not have any default string length.
Instead of the declaration

var x: string;
use the declaration
var x: string[80];
Cromemco Pascal does not have a predefined file called

"keyboard".

Cromemco Pascal implements sets with elements 0 thru
4095, whereas UCSD Pascal implements 0 thru 511.

Packing algorithms for arrays and records are different.
Internal storage for sets is different.

Cromemco Pascal does not support comparison of arrays
and records, with the single exception that packed
array[l..n] of char can be compared.

Predefined string procedures and functions must have
string variable or string literal parameters. That is,
not packed array of char or char variable parameters.

Cromemco Pascal does not implement the procedure STR,
since there is no integer[nn] type.

The file procedures RESET and REWRITE require two
parameters, namely (file,string).

End-of-file character from the keyboard is Control-2Z
instead of Control-C.

128

Cromemco Pascal Instruction Manual
D. Relationship to UCSD Pascal

Cromemco Pascal text files must be declared as packed
file of char.

Cromemco Pascal text file reads allow additional
parameters of packed array of char.

Cromemco Pascal text file writes allow additional
parameters of packed array of char and Boolean.

Cromemco Pascal does not implement UNIT input/output.
Cromemco Pascal does not implement TREESEARCH.

Cromemco Pascal limits the EXIT procedure to exiting
statically compiled procedures or functions or the
main-program. The argument to EXIT must be the name of
the routine to exit. That is, EXIT(PROGRAM) is not
allowed.

The MEMAVAIL procedure returns the number of bytes of
available memory. The return parameter is of the type
longint. See the Section on "Memory Management”.

Cromemco Pascal implements two procedures SCANEQ (scan
equal) and SCANNE (scan not equal), whereas UCSD Pascal
implements a single SCAN procedure with a = or <>
parameter.

Cromemco Pascal does not have any INTRINSIC units.

Cromemco Pascal does not implement the unit
initialization section in units.

Cromemco Pascal implements an optional otherwise clause
in case statements. If the otherwise clause is present,
it must be the last statement. For example:

case huh of
1: do_this;
3,5: do_that;
otherwise:
do_the_other:
end;

Cromemco Pascal implements'true global goto statements.

The UCSD Pascal {$G+} compiler option is not needed in
order to use goto statements.

Cromemco Pascal has predeclared variables ARGC and ARGV
that describe the number and value of any parameters
passed from the command line to a running program.

129

Cromemco Pascal Instruction Manual
D. Relationship to UCSD Pascal

Procedures and functions may be passed as parameters.
The implementation is consistent with the proposed ISO
standard Pascal.

ORD (Boolean Expression) works properly in Cromemco
Pascal,

The mod operator works properly in Cromemco Pascal.

Cromemco Pascal has added the unary operator @, which
stands for "address of". Placing the @ in front of a
variable, function, or procedure, generates the address
of that entity. The type returned is the type of nil,
that is, it can be assigned to any pointer variable.
The @ operator does not work with most of the predefined
procedures and functions such as ORD or READLN.

Cromemco Pascal has added the function ORD4, It is the
same as ORD except that it returns a 32-bit integer.

All integer arithmetic operations are done at a
precision of either 16 or 32 bits, depending on the
maximum size of any arguments. The rules are similar to
FORTRAN's single and double precision reals.

Cromemco Pascal statement labels are restricted to the
range 0 thru 9999, as in the ISO Pascal standard.

Cromemco Pascal provides for hexadecimal integer
constants. A hexadecimal constant is prefixed with a $§
sign., Hexadecimal numbers must be 32 bits long to be
considered signed numbers, that 1is, SFFFF represents
65536, not -1. To represent -1, code the hexadecimal
constant SFFFFFFFF.

The and, or, and not operators can be applied to
operands of type integer as well as operands of type
Boolean, When applied to operands of type integer,
these operators perform bitwise logical and, logical or,
and logical not operations on their operands.

130

Cromemco Pascal Instruction Manual
E. Data Representations

Appendix E

DATA REPRESENTATIONS

This Appendix describes the ways that Cromemco Pascal
represents data in storage, how that data is packed for
data objects that have the packed storage attribute, and
the mechanisms for passing parameters to procedures and
functions, This Appendix is intended as a guide to
those programmers who wish to write modules in languages
other than Pascal and have those modules interface to
Pascal.

STORAGE ALLOCATION

This Section describes the way in which storage is
allocated to variables of various types. The storage
allocation described here is for unpacked items.

In general, any word value is always aligned on a word
boundary. Anything larger than a word is also aligned
on a word boundary. Values that can fit into a single
byte are aligned on a byte boundary.

A Boolean variable
occupies one byte of storage, aligned on a byte
boundary. A value of 0 represents the value false.
A value of 1 represents the value true. Any other
value is an "undefined" Boolean value.

A scalar (ordinal) type
of 128 elements or 1less, occupies one byte of
storage, aligned on a byte boundary. If there are
more than 128 elements in the scalar types, it then
occupies a word. Scalar types are assigned the
values 0, 1, 2, eeeee.r n-1, where "n" 1is the
cardinal number of elements in the scalar.

Subrange elements
in the range -128 .. 127 occupy one byte, aligned
on a byte boundary. A subrange element in the
range -32768 .. 32767 occupies one word, aligned
on a word boundary. A subrange element greater
than that occupies two words, aligned on a word
boundary.

An unpacked char element

is considered to be a subrange of 0 .. 255. This
means that it occupies a word.

131

Cromemco Pascal Instruction Manual
E. Data Representations

An integer element

occupies one word, aligned on a word boundary.

A longint element

real

occupies two words, aligned on a word boundary.

elements

occupy two words, aligned on a word boundary. Y
real element has a sign bit, an 8-bit exponent and
a 23-bit mantissa. Cromemco Pascal real elements
conform to the IEEE standard for reals as defined
in the March 1981 Computer magazine. The layout of
a real element is shown below. The range of real
numbers is approximately -3.4E-38 .. +3.4E38, with
a precision of approximately seven decimal places.
Normal arithmetic operation upon real data types
can result in the "extreme values" of plus
infinity, minus infinity, or Not a Number (NaN).
These are described below.

double elements

occupy four words, aligned on a word boundary. A
double element has a sign bit, an 1ll-bit exponent
and a 52-bit mantissa. SVS Pascal double elements
conform to the IEEE standard for double precision
as defined in the March 1981 Computer magazine.
The layout of a double element is shown below. The
range of double numbers 1is approximately
-1.8D-308 .. +1.8D308, with a precision of
approximately 16 decimal places. Normal arithmetic
operations upon double data types can result in the
"extreme values" of plus infinity, minus infinity,
or Not a Number (NaN). These are described below.

Whatever the size of the data element in question, the

most

significant bit of the data element is always in

the lowest numbered byte of however many bytes are
required to represent that object. The diagrams below
should clarify this.

132

Cromemco Pascal Instruction Manual
E. Data Representations

Representation of Integers

bit --> 7 0
fm——————— +
8-bit integer | byte 0 |
fm——————— +
15 0
fommm fmm e ———— +
integer | byte 0 | byte 1 |
pmmm————— e +
31 0
pmmm e tom fmmmm fmm e ——— +
longint | byte 0 | byte 1 | byte 2 | byte 3 |
Fom e fmm—————— o ——— fmmm————— +

Representation of Reals and double diagrams

real amd double data diagrams elements are represented
according to the proposed IEEE standard as defined in
Computer magazine of March, 1981. The diagram below
illustrates the representation.

31 30 23 22 0

frmm e ———————— o e e e e e e e +
| 8 | Exponent I Mantissa |
S o e e e e e e +

The format for a real or single-precision flocating-point
number is as shown above. The three field of a real are
as follows:

. A one-bit sign bit designated by "S" in the diagram
above,

. An 8-bit biased exponent.

. A 23-bit mantissa.

63 62 52 51 0
s et L D e e e e — +
| s | Exponent | Mantissa |
o —— e o ———— +

I I ' |

| ! Mantissa (52 + 1 bits)
| Exponent, biased by 1023
i

133

Cromemco Pascal Instruction Manual
E. Data Representations

Double Data Representation
The parts of double numbers are as follows:

. a one-bit sign bit designated by "S" in the diagrams
above. The sign bit is a 1 if, and only if, the
number is negative,

. an 11 bit biased exponent, The values of all zeros
and all ones are reserved values for the exponent.

. @ normalized 52-bit mantissa, with the high-order 1
bit "hidden". '

A real or double number is represented by the form:

2 exponent-bias % 1 f

where 'f' is the bits in the mantissa.

Normalized real and double numbers are said to contain a
"hidden" bit, providing for one more bit of precision
than would normally be the case.

Representation of Extreme Numbers

When real or double data elements are stored in the
system, there arises the question of how to represent
"values" such as positive and negative infinity. The
discussion below describes the representations of these
extreme numbers, and their behavior in expression
evaluation.

zero (signed) 1is represented by an exponent of =zero,
and a mantissa of zero.

denormalized numbers
are a product of "gradual underflow".
They are nonzero numbers with an exponent

of zero, The form of a denormalized
number is:

2 exponent-bias+l % ¢ f

where 'f' is the bits in the mantissa.

134

Cromemco Pascal Instruct
E. Data Representations

signed infinity

ion Manual

(that is, affine infinity) is represented
by the largest value that the exponent
can assume (all ones), and a =zero
mantissa.

Not—-a-Number (NaN)

Normalized real
"hidden" bit,
than would norm

is represented by the largest value that
the exponent can assume (all ones), and a
nonzero mantissa. The sign is usually
ignored.

and double numbers are said to contain a

providing for one more bit of precision

ally be the case,

Hexadecimal Representation of Selected Numbers

Fmm———————— o —— o e e e +
| Value | real | double I
o ————— e o e o —————————————— +
| +0 | 00000000 | 0000000000000000 |
| -0 | 80000000 | 8000000000000000 |
| | ! I
I +1.0 | 3F800000 | 3FF0000000000000 |
|| -1.0 | BF800000 | BFF0000000000000 |

| [!
| +2.0 | 40000000 | 4000000000000000 |
| +3,0 | 40400000 | 4008000000000000 |
l | l I
| +Infinity | 7F800000 | 7FF0000000000000 |
| =Infinity | FF800000 | FFF0000000000000 |
[| | |
] NaN | 7F8xxxxx | TFFXXXXXXXXXXXXX |
e —————— o ————— o —————————— e +

Deviations from the Proposed IEEE Standard

Deviations from the proposed IEEE standard in this

implementation

are as follows:

. affine mapping for infinites,

normalizing mode for denormalized numbers,

. rounds approximately to nearest - 7 or more guard bits

are computed,

but the "sticky" bit is not,

. exception flags are not implemented,

. conversion
implemented.

between binary and decimal is not

135

Cromemco Pascal Instruction Manual
E. Data Representations

Arithmetic Operations on Extreme Values

This subsection describes the results derived from
applying the basic arithmetic operations on combinations
of extreme values and ordinary values.

No traps or any other exception actions are taken.

All inputs are assumed to be positive. Overflow,
underflow, and cancellation are assumed not to happen.

In all the tables below, the abbreviations have the
following meanings:

o ————————— e e e e i e e +

| Abbreviation | Meaning |

o ————————— e o e e e e e e +

| Den | Denormalized Number]

! Num | Normalized Number |

| Inf | Infinity (positive or negative) |

| NaN | Not a Number [

| Uno | Unordered |

e o +

+ ———

| Addition and Subtraction

Fmm e ——————— e o e e e e et e e e e e +

I Left I Right Operand

| Operand | 0 | Den | Num | Inf | NaN

| fm——————— o B o o o e +

I 0 | 0 | Den | Num | Inf | NaN

o —————— fm——————— e —— fom e ———— fm e ——— tm————— +

| Den | Den | Den | Num | Inf | NaN

fmmm——————— o —————— o fm—————— fmm————— tm e +

| Num] Num | Num | Num | Inf [NaN

o —————— Fm——————— Fm o ——— Fmm————— tm—————— o +

| Inf | Iinf | Inf | Inf | Note 1| NaN

Fmm———————— e ——————— o —————— o ———— R fom e —— +

] Nan | NaN | NaN | NaN | NaN | NaN

e —————— Fmm————— o —————— e o ———— o +
Note 1: Inf + Inf = Inf; Inf - Inf = NaN

136

Cromemco Pascal Instruction Manual

Data Representations

E.

I
e e e e e e e e

Multiplication

|

o e s e e i et e e S o B Bt e e e e P e e ot et e B e e e o o e e am ohe

I
I
I

NaN
NaN

I
!

Inf
NaN

I
I

I

Right Operand
Den |

I
I

s et B

e Num
ittt B e e
0

I

NaN

I

Inf

Num

I I

Den !

T e Bttt et

I

] Num | Num | Inf |

"

Num]

et T e B et B

NaN
NaN | Inf | Inf | Inf | NaN |

Inf !

I

i e i Sttt St S e

NaN | NaN | NaN | NaN | NaN |

I

Nan

s s Sttt e e S S P S e et e
e e e e e

o e e e e e

I
| Inf | NaN |
T B et ettt R S

Num

Division
Right Operand
Den |

0

Left |
[

Operand

I
I
I

| NaN |

0

I

0

0

NaN |

0

| NaN |

0

Inf | Num | Num |

I

T B et Ll S e
Den

e B R Rttt Lt

] NaN |

0

Inf | Num | Num |

Num

Inf | Inf | Inf | NaN | ©NaN |

I

e ——————— e e e e e e e e e
Inft

T s Dttt B e

I

NaN | NaN | NaN | NaN | ©NaN |

|

Nan

 Eiaamatat T R A ettt e L T ettt
Comparison

e et

I
e e e e e

I
I

NaN

| Inf

Num

Right Operand
Den |

I

0

e R e et St T

Left
Operand

] Uno |

<

<

<

I

0

|
I

o e e e}

| Uno |

<

<

o e e e e

>

Den |

| Uno |

<

>

I

>

I

Num

T et e B s Rttt &

Uno |

>

I

>

>

I

T s ettt et e R P e

Inf

Uno | Uno | Uno | Uno | Uno |-
T T T e s Cea et S e s

Nan]

137

Cromemco Pascal Instruction Manual
E. Data Representations

Notes:

NaN compared with NaN is Unordered, and also results in
inequality.

+0 compares equal to -0.

o e o o o e e e e e +
l Max]
o e o e e e e e e e e e +
| Left | Right Operand l
| Operand | 0 | Den | Num | Inf | ©NaN |
[o ——— Fmm————— o Fm—————— o —— +
| 0] 0 | Den | Num | Inf | NaN |
Frm————————— tm—————— fm————— tm—————— o ————— o +
| Den | Den | Den | Num | Inf | NaN |
fm————————— e e o o e e o o o e e e fm e ——— o +
| Num { Num | Num | Num | Inf | NaN |
fmm———————— fm————— fm—————— e ———— o ———— fm—————— +
I Inf | Inf | Inf | Inf | 1Inf | NaN |
fmm————————— tm—————— fm—————— o ———— o ————— fm—————— +
| Nan | NaN | NaN | NaN | NaN | NaN |
Fo———————— tm—————— o ——— o ———— Fom————— o ————— +
e e o e e e e e e e e e e +
| Min l
o o e e e e o —————— e e +
| Left | Right Operand [
| Operand | 0 | Den | Num | Inf | NaN |
| B et e o o o e B o o o e e o e o e +
I 0 | 0 I 0 I 0 I 0 | NaN |
Fomm - ———— o ———— Ao e m o ———— fmm————— o ———— +
| Den | 0 | Den | Den | Den | NaN |
Fmm———————— o ———— Fm—————— Fm————— tm—————— R +
| Num ! 0 | Den | Num | Num | ©NaN |
fmm———————— fm—————— Fmmm——— fmm————— o ————— o ——— +
| Inf | 0 | Den | Num | Inf | NaN |
o ———— fom—————— o ———— o ———— o e Fm————— +
| Nan | NaN | NaN | NaN | NaN | NaN |
fmmm——————— Fm————— fm e ———— fm————— it Fmm————— +

Representation of Sets

Cromemco Pascal represents a set like a "giant integer”.
The zero'th element of a set is always present in the
set Suppose that a type and a variable are defined as in
this example.

138

Cromemco Pascal Instruction Manual
E. Data Representations

type
days_in_year = set of 1 .. 366;

var
blarg: days_in_year;

The representation for the variable "blarg" is as in the
diagram below:

bit =--> 366

e m e e e — e e e e ——
byte—> I 0 l | I I e e s 0000 0000 ' l l
N R D SR SR R R R

The number of bytes required to contain this a set of
1 .. 366 is 366/8 which is 46 bytes. The storage is
allocated accordingly as shown in the above diagram.
The value 366 mod 8 is 6, and there is one unfilled bit
in the least significant byte of the set.

Representation of Arrays

Components of unpacked arrays and records are allocated
contiguously as defined above. There is no attempt made
tc conserve space in units smaller than bytes.

Arrays are stored in row order, that is, the last index
varies fastest. This follows from the strict definition
that a multi-dimensional array in Pascal is actually an:

array[first index] of array([second index]
of array[n'th index] of whatever type:
Representation of Pointers

Pointers always occupy four bytes. The nil pointer is
represented by a value of zero (0).

PACKING METHODS

Packed records are expensive in terms of the amount of
generated code needed to reference a field of a packed
record. In general, avoid packing records unless there
are many more instances of a particular records than
there are references to it.

139

Cromemco Pascal Instruction Manual
E. Data Representations

Components of a packed record are allocated in the order
in which they appear. Components never cross word
boundaries.,. The allocator never backtracks to £ill in
holes in the structure.

Within a word, components are allocated on bit
boundaries. The allocation proceeds from the most
significant end of the word towards the least
significant end. If there is not enough room in the
current word for a component, a hole is left in the
current word, and the next word is started.

After allocation, it is possible that the allocator
might shift and expand fields in a word. For example, a
signed field might be expanded to use the remainder of a
word for faster access, or two 5-bit fields might be
allocated a full byte each. The diagrams below provide
graphic illustrations of the packing methods. In each
case, a type definition is given, followed by a diagram
of how that type is allocated.

packed record
as: 0 o 73
char;
0 .. 3;
Boolean;
0 .. 3;

ooQOU

packed record
as: 0 .. 4095;

b: char;

end;

bit --> 15 11 0
Fom e —————— e e o e e e e e e e e e o o +
| extended ... a I
o e o e e e +
15 0
e o i e e e e e e o e e e +
l b |
o e e e e e e e +

140

Cromemco Pascal Instruction Manual
E. Data Representations

packed record
a: 0 .. 63;
b: 0 .. 63;

end;
bit --> 15 10 9 4 3 0
o ————————————— o e e o ———————— +
| a | b [hole |
o ———_—————————— o —————————— o e e e e e e +
The record above is allocated as in the above
picture, but will be re-allocated as shown below.
bit --> 15 14 13 8 7 6 5 0
o ——— o ——————————————— e e e e o e +
I a l b I
e ——— fmmm—————————————— o ————— e —————————————— +

packed record
a: ~-1024 ,. +1023;
b: 0 .. 7:

end;

bit --> 15 5 4 3 2 0
o e tmm e —— fmm——————— +
| a | hole | b |
e e e et e e e o ———— +

In the last example above, the signed subrange field was
moved up to the 1left hand end of the word and sign
extended for faster access.

Packed arrays are also code consuming, with one
exception: packed array of char is treated as a special
case, and the generated code is compact.

Elements of packed arrays are stored with multiple
values in a byte whenever more than one value can fit in
a byte. Elements are allocated on 1, 2, 4 or 8-bit
boundaries. This only happens when the value requires 4
bits or less. 3-bit values are stored in 4 bits.

The first value in a packed array is stored in the
lowest numbered bit position of the lowest addressed
(that is, the most significant) byte. Subsequent values
are stored in the next available higher numbered bit
positions in that byte. When the first byte is £full,
the same positions are used in the next higher addressed
byte. Consider the following examples:

141

Cromemco Pascal Instruction Manual
E. Data Representations

a: packed array[l .. 12] of boolean;

byte 1 bit O
e D it ekt matatatat ettt T B
| a8 | a7 | a6 | a5 | a4 | a3 | a2 | al |
et R S e aatatalal LT e
byte 2

e s Baadala salatateats St Tl R
| «ee. Unused | al2] all| alo0| a9 |
il T e s tatatatat SRt R P B S
var

b: packed array([3 ..8] of 0 .. 3;

byte 1 bit 0
T s aatatatt B e s &
I alé6] | al5] | al4] | al3] |
B i St e R s At Tt Rt 2
byte 2

Fr b e e e e e e e e e o
| eeese Unused oeo. | al8] | al7] |
Rt R ket B s s T LTS
var

: packed array|[0 .. 2] of 0 .. 7

c: packed array(0 .. 2] of 0 .. 15;

byte 1 bit 0
B aialeh Datalata St e e e 2
| alll l alo0] l
et et St e e R R R &
byte 2

D it S e kSt e
| eesee Unused | al[2] {
b et S e e s

PARAMETER PASSING MECHANISM

This Section describes the way in which parameters are
passed in Cromemco Pascal.

142

Cromemco Pascal Instruction Manual
E. Data Representations

Parameters are passed on the stack. Parameters are
pushed onto the stack in order in which they are
declared in procedure and function declarations.

If the callee is a function, room for the function
result is allocated on the stack before any parameters
are pushed.

If the callee is not a procedure or function at the
global level, the static link is the last thing pushed
onto the stack before the routine is called.

Upon return from a routine, all parameters are discarded
from the stack. The only thing that should be on the
stack upon return, is a function result.

var parameters (call by reference) always have a
four-byte pointer to the variable pushed onto the stack.

Value parameters are divided into the three categories
of sets, doubles, and everything else.

The caller always pushes set's onto the stack. A set
which occupies one byte is pushed with a move.b
instruction. A set which occupies more storage than one
byte is pushed with the least significant element in the
most significant word. Thus the representation of a
set on the stack is the same as the representation in
memory.

The caller always pushes doubles onto the stack as well,
This is usually accomplished by two move.,l instructions
in such a manner that the representation a double on the
stack is the same as the representation in memory (that
is, with the sign bit in the lowest addressed byte).
Other value parameters are pushed as follows:
. A one-byte value is pushed with a move.b instruction.
. A two-byte value is pushed with a move.w instruction.
. A four-byte value is pushed with a move.l instruction.
. If a value is 1longer than four bytes, and not a
double, the address of the data is pushed onto the
stack and the called procedure or function copies the
data into local storage.
Procedure and function parameters are pushed as follows:

. the address of the procedure or function 1is pushed
onto the stack.

143

Cromemco Pascal Instruction Manual
E. Data Representations

. the static link is then pushed onto the stack if the
procedure or function is not at the global
(outermost) level. If the procedure or function is
global (at the outermost level), the value nil(0) is
pushed onto the stack instead of the static link.

Limitations on Size of Variables

There is no limitation on the number of bytes
allocatable for variables. However, a maximum of 30K
bytes of yalue parameters cannot be exceeded.
- Furthermore, when more than 30K bytes of variables exist
in either the main program's global scope, or in any
local scope of a procedure or function (but not unit
globals), the largest values will be accessed via a
pointer, resulting in somewhat slower code. This
mechanism is transparent to the user, so that no changes

to source code are required.

Global variables in units are accessed via 32-bit
absolute addressing modes. Therefore the pointer
mechanism does not apply to units with more than 30K

bytes of globals.
The maximum size of a record variable is 32K bytes.

There is no limitation on the size of variables which
can be allocated by the NEW procedure.

Compiler Generated Linker Names

This section describes the manner in which the Pascal
compiler generates names of local and global procedures
so that the Linker can resolve external references at

link time.

Procedures which are global (or external) are given the
names which the user assigns to them. The compiler
converts all such names to upper case, and truncates
them to eight characters in length.

Procedures which are local (not visible in the global
scope) are assigned names of the form:

sSnnn

where 'nnn' is a decimal number. The numbers may
possibly have trailing spaces. Procedures of the same
name but in different scopes have different names. In

144

Cromemco Pascal Instruction Manual
E. Data Representations

other words, all local names in a given compilaticn unit
are unique,

When the 1linker or 1librarian sees a collection of
compiled units, the local names may be renumbered, but
the actual name that the user assigned to the procedures
are carried along with the number.

145

Cromemco Pascal Instruction Manual

146

Cromemco Pascal Instruction Manual
F. Bibliography

Appendix F

BIBLIOGRAPHY

This appendix is a short bibliography of Pascal related
literature.

The Programming Language Pascal. By Niklaus Wirth.
Acta Informatica, 1, pp 35-63. 1971.

Pascal User Manual and Report. Kathleen Jensen and

Niklaus Wirth.
Springer-Verlag. 1974.

Beginner's Guide to the UCSD Pascal System. Kenneth
Bowles.
Byte books. 1980.

Software Tools in Pascal. Kernighan and Plauger.
Addison Wesley. 1981.

IS0 Standard for Pascal appeared in the Pascal
Newsletter, number 20, December 1980, published by the
Pascal User's Group, and in SIGPLAN Notices, April 1980,
Published by ACM.

In addition to the references above, there is a Pascal

Users' Group (known as PUG) which publishes a newsletter
about Pascal.

147

Cromemco Pascal Instruction Manual
Index

ABS, 94

Accessing variables, 33

Adding operators, 40

Address evaluation operator, 38

ARCTAN, 94

Argc, 78

Argv, 78

Arithmetic functions, 94

Arithmetic operations on extreme values, 136
Array types, 23

Arrays, representation, 139

ASCII character set, 8

Assignment Compatibility, 29

Assignment compatikility types, 30
Assignment statements, 49

Assignments to variables and functions, 49

Basic symbols, 11

Begin statements, 51

Block input/output intrinsics, 70
BLOCKREAD, 70

BLOCKWRITE, 71

Boolean, 19

Boolean attributes, 95

Boolean element, 67

Buffering option of REWRITE, 62
Buffering option on RESET, 62

CALL, 102

Case statements, 53

Char, 20

Character element, 67

CHR, 97

CLOSE, 69

Code generation errors, 113

Codes returned from the halt procedure, 113
Comparison of booleans, 43
Comparison of scalars, 42
Compilation units, 73

Compile time constant expressions, 46
Compile time lexical errors, 109
Compile time semantic errors, 110
Compile time syntactic errors, 109
Compiler generated linker names, 144
Compiler limitations, 112

Compiler options, 104

Component variables, 34

CONCAT, 87

Constant definition, 78

Constants, 17

Control procedures, 100

148

Cromemco Pascal Instruction Manual
Index

Conventions for spaces, 14
COPY, 86
C0s, 94

Data representations, 131

Data types, 20

Dead code elimination, 46
Declarations, 78

Declarations of identifiers, 75
Declaring variables, 31

DELETE, 89

Direct pointer comparison, 43
DISPOSE, 92

Do statement, 54, 55

Double, 19

Double data representation, 134
Double diagrams, 133

Double diagrams, representation, 133
Double element, 66

Dynamic variables, 33

Elementary lexical constructs, 8
Else statement, 51

End statements, 51

Entire variables, 34

EOF, 96

EOLN, 95

Error message, 109

Establishing variables, 32
Evaluation in expressions, 45
EXIT, 100

EXP, 94

Expressions, 37

External attributes, 8l

Extreme numbers, 134

Extreme numbers, representation, 134

Fields of records, 35
File buffer variable, 59
File buffers, 36

File handling procedures, 59
File types, 27

FILLCHAR, 99

For statement, 55

Formal parameters, 33
Forward attributes, 81
Function declaration, 79
Function parameter, 83
FUNCTIONS, 85

145

Cromemco Pascal Instruction Manual
Index

GET, 60

Global, 32

Global variables, 32
Goto statement, 57

HALT, 101
Hexadecimal numbers, 135

Identical types, 29
Identifiers, 8

IEEE standard, 135

If statement, 51

Indexed variables, 34
Input, 59

Input/output errors, 112
INSERT, 90

Integer, 18

Integer element, 66
Integers, representation, 133
IORESULT, 72

IORESULT error codes, 113
ISO Pascal, 125

Label declarations, 78

Labels, 11

Language syntax, 115

LENGTH, 86

Limitations on size of variables, 144
LN, 95

Longint, 19

Low level routines, 98

MARK, 92

MEMAVAIL, 93
Metalanguage, 7

MOVELEFT, 98

MOVERIGHT, 98

Multiplying operators, 38

NEW, 91

Noncomparable types, 45
Not operator, 38
Numbers, 9

OoDD, 95
Operators in expressions, 37

150

Cromemco Pascal Instruction Manual
Index

ORD, 96

ORD4, 97

Order in expressions, 45
Out of range values, 45
Output, 59

Packed array of char, 67

Packing methods, 139

Parameter passing mechanism, 142
Parameters for procedures and functions, 82
POINTER, 100

Pointer referenced variables, 36
Pointer types, 28

Pointers, representation, 139
POS, 88

PRED, 97

Predeclared variables, 31, 77
Predefined constants, 18
Predefined identifiers, 115
Predicates attributes, 95
Procedure declaration, 79
Procedure parameters, 83
Procedure reference statement, 50
PROCEDURES, 85

Program heading, 77

Program structure, 73

PUT, 61

PWROFTEN, 95

READ, 64

Read intrinsic, 63

Readln intrinsic, 63

Real, 19

Real element, 66

Reals diagram, 133

Reals, representation, 133
Record types, 25
Referencing variables, 33
Relational operators, 41
RELEASE, 93

Repeat statement, 55
RESET, 61

REWRITE, 62

ROUND, 96

Running the pascal compiler, 103

Scalar subrange element, 67
Scalar types, 21

SCANEQ, 88

SCANNE, 88

151

Cromemco Pascal Instruction Manual
Index

Scope of identifiers, 75
Scope of statement labels, 49
SEEK, 68

Set comparison, 44

Set types, 27

Sets, 138

Sets, representation, 138
Sign operators, 41

Simple types, 21

SIN, 94

SIZEOF, 100

Special symbols, 13

SQR, 94

SQRT, 95

Standard functions, 97
Standard types, 18

Statement labels, 49
Statements, 49

Storage allocation, 131
Storage allocation procedures, 90
String comparison, 43

String element, 67

String manipulation facilities, 85
String types, 24

Strings, 10, 35

Structured statements, 51
Structured types, 22

Subrange types, 21

succ, 97

Syntax definitions, 116

Text, 20

Text file handling procedures, 63
Then statement, 51

TRUNC, 96

Type definition, 79

Type identity, 29

UCSD Pascal, 127
Until statement, 55

Value cenversion functions, 96
Value parameters, 82

Variable declaration, 79
Variable parameters, 83
Variables, 32, 144

While statement, 54
With statement, 56

152

Cromemco Pascal Instruction Manual
Index

WRITE, 68

WRITE intrinsic, 64
WRITE parameters, 65
WRITELN intrinsic, 64

153

Cromemco Software Update Service Note 68000 PASCAL - 1

Date: 982
Product:_ PAS-DS and PAS-DL

Release: 1

Date production of this version began: _Oct, 1, 1982 on 8%
Oct, 1, 1982 on 5"

First serial number with this version: 1-100000 on 8"
1-100000 on 5"

SUMMARY

This is the first release of Cromemco 68000 Pascal Programming
Language version 01.00. This note supplements the Cromemco
68000 Pascal Instruction Manual dated September 1982, part
number 023-4047, .

Cromemco recommends that users subscribe to the Software Update
Service in order to receive future releases and additional
documentation concerning this product.

OPERATING INSTRUCTIONS

Cromemco 68000 Pascal must be run under 68000 Cromix™ Operating
System, version 20.05 or higher.

Setting Up

To transfer the Pascal software from the distribution diskette
into appropriate directories on the root device, use the
install.cmd file on the Pascal diskette. As a privileged user,
mount the diskette into a file and make that file the current
directory. Run install.cmd by typing:

install
Running the Pascal Compiler
The following commands will compile and link a Pascal program

named filename.pas:

023-9552

Cromemco Software Update Service Note
68000 PASCAL release 1.0

pascal filename
code filename.i
crolinker filename /usr/lib/paslib

For convenience, a command file, pas.cmd, is provided to
compile and link a Pascal program. The syntax for calling this
command file is

pas filename

Compiler Options

The —-q compiler option will cause the compiler to display
memory usage statistics after compilation:

pascal filename -g

The $M+ compiler switch will cause the compiler to generate
code to check for stack or heap overflow. The instruction
{$M+} should appear at the top of the source program. The
default is $M-,

Link Options

The -h$XXX link option will cause the linker to allocate XXX
bytes (hexadecimal) of memory for heap space:

crolinker filename paslib -hS$XXX

Memory Requirements

This version of Pascal is configured for a system with 256
Kbytes of memory. Should you encounter memory restrictions
when compiling a program, the compiler, code generator and
linker may be patched to use more memory provided that 256
Kbytes of extra memory exists in your system. Presently
pascal.bin is configured to run in 128K of memory. The
following patches configure pascal.bin to run in 192K of
memory. Use the Patch utility to modify pascal.bin as follows:

change location 8h to 00
9h to 03
Ah to 00
Bh to 00

Cromemco Software Update Service Note
68000 PASCAL release 1.0

If you patch pascal.bin then you should also patch code.bin and
crolinker.bin as follows:

code,bin:

change location 8h to 00
9h to 02
Ah to 40
Bh to 00

1ink bin:
change location 8h to 00
9h to 01

Ah to FO
Bh to 00

TEMPORARY LIMITATIONS
This version of Pascal is limited to a maximum of 32766 bytes

of memory for variables, per scope. This limitation will be
removed in a future update of Pascal.

KNOWN BUGS

EOF is not detected when reading from text files.

VERSION NUMBER SUMMARY

pascal.bin
code.bin
crolinker.bin

b
L] L] L]
coo

023-9556

Cromemco Software Update Service Note PASCAL-2

Date: January 31, 1983

Product:_PAS-DIL _and PAS-DS

Release: 2

Date production of this version began: Jan., 31, 1983

First serial number with this version: 2=-100000 on_ 8"
2=-100000 on 5"

SUMMARY

- Version 1.1 of Cromemco 68000 Pascal Programming Language is

now available and updates the previous release version 1.0.
This version contains fixes for several previously existing
bugs. Version 1.1 includes a new type double, allowing use
of double-precision real numbers.

ENHANCEMENTS
Double Precision

Double precision values are now available in Pascal.
Variables declared as type double will be of this type.

Values of type double are designated by a letter D preceding
the exponent part of the number. Double elements occupy four
words, aligned on a word boundary. The range of double
numbers is approximately -1.8D-308 .. +1.8D308, with a
precision of approximately 15 decimal places.

Operators and functions allowing arguments of type double
are: *, /, 4+, -, =, <, <=, >=, <, >, ABS, SQR, SIN, COS,
ARCTAN, EXP, LN, SQRT, TRUNC and ROUND.

A double element has a sign bit, an ll-bit exponent and a
52-bit mantissa. Cromemco Pascal double elements conform to
the IEEE standard for double precision as defined in the
March 1981 Computer magazine. The layout of a double element
is shown on the next page.

Cromemco Software Update Service Note
68000 Pascal Release 2

Representation of Doubles

l

| l Mantissa (52 + 1 bits)
I Exponent, biased by 1023
i

The parts of double numbers are as follows:
. a one-bit sign bit designated by S in the diagram

above., The sign bit is a 1 if and only if the
number is negative.

. an 11 bit biased exponent. The values of all zeros
and all ones are reserved values for the exponent.

. a normalized 52-bit mantissa, with the high-order 1
bit "hidden."

A real or double number is represented by the form:

exponent-bias
2 * 1.f

where f is the bits in the mantissa.

Other Enhancements

The previous 32K byte size limitation for arrays has
been removed. Arrays may now be as large as the system
memory configuration will allow. The elements of the
array have a 32K byte size limit, however.

The previous 32K byte size limitation for variables, per
scope, has been removed.

NEW and DISPOSE now can allocate variables of sizes
larger than 32766 bytes.

SEEK accepts record numbers greater than 32767.

AND, OR and NOT operations can now be done on integers.
When applied to integer operands, the operators perform
a bitwise logical. The result is of type integer.

DIV and MOD for 32 bit integers are much faster.
) .

Cromemco Software Update Service Note
68000 Pascal Release 2

Variable names are now significant to 31 characters
"within one compiled module. Note that the Crolinker
permits a maximum external symbol name of 8 characters,
which applies to identifiers defined in
separately-compiled units.

A new program, Configure has been added to the
distribution diskette. Configure will make the
necessary patches to the pascal.bin, code.bin and
crolinker.bin files to enable these files to execute on
either a 256K-memory system or on a 512K-memory system.
These files are shipped to run on a 256K-memory system.
A user with 512K of memory can run Configure to patch
these files to execute in more memory to compile and
link larger programs. To run the program, type

configure

and respond to the program's prompts.

CORRECTIONS TO THE MANUAL

The following corrections apply to the Cromemco 68000
Pascal Instruction Manual dated September 1982, part
number 023-4047:

Section 6.2.7: The PURGE option of the CLOSE procedure
is not implemented and should be deleted from the
manual.

Section 6.4: The UNITBUSY, UNITCLEAR, UNITSTATUS,
UNITREAD and UNITWRITE procedures are not implemented.
Section 6.4 should be deleted from the manual.

Section 8.2.1: If NEW fails to allocate storage due to
lack of memory it will not return nil. A run-time error
message

"No room in heap"

will be issued and the program will terminate.

Cromemco Software Update Service Note
68000 Pascal Release 2

Section 8.2.2: DISPOSE does not return defallocated
storage to the pool of memory which is available for
allocation.

Section 8.4.3: The EOF character for a file attached to
the console is CONTROL-Z, not CONTROL-D as stated in the
manual.

Appendix A: The IORESULT values in Appendix A are
incorrect. The following values should be used:

No Error

File read error

File write error

File seek error

File open error

File close error

File not open error

Read past end of file
Integer read error
Floating point read error

o~ saWoHO

Appendix B: The GOTOXY procedure 1listed in the
Predefined Identifiers section of Appendix B is not
implemented, and should be deleted from the manual.

Appendix E: The discussion about packed records
contains an error. The manual should state that
allocation of components of a packed record proceeds
from the most significant end of the word to the least
significant end. Accordingly, the diagrams representing
the 4 examples of packed records should show the fields
within a word in reverse order.

LIMITATIONS

The compiler will not accept compiler options from the
command line which are typed in upper case. The options
must be typed in lower case.

The names of undefined variables displayed on the screen
by Crolinker cannot be redirected to a file.

Cromemco Software Update Service Note
68000 Pascal Release 2

CORRECTIONS
The SEEK function now works.

EOF is now detected when reading variables of type real
from text files.

Previously IORESULT would not indicate an error if a
nondigit character was input to the READ or READLN
functions which were reading integer variables.
IORESULT now returns an error number.

Previously Crolinker generated the error message
"cannot open list file"

if a non-privileged user was using Crolinker. This has
been fixed.

Previously the compiler would not open a file for
compilation if a nonprivileged user tried to compile a
file for which the user had only read access, but did
not have read/write access. This has been fixed.

Previously if a 1list file specified on the compile
command line with the =1 option already existed, the
original 1list file would not be truncated if the
original 1list file was longer than the new list file.
This has been fixed.

The RESET function will now try to open a file for
read-only access if an attempt to open the file for
read-write access had been unsuccessful.

The REWRITE function will now discard a file of the same
name if it already exists.

KNOWN BUGS

A double argument passed to the SIN, COS, ARCTAN, EXP,
LN, and SQRT functions cause the program to abort.

A double parameter passed to the ROUND function causes
an undefined reference %_IDNINT at link time.

A list file generated by the compiler with the -1 option
may not preserve original tab spacing of the source
file.

Cromemco Software Update Service Note
68000 Pascal Release 2

VERSION SUMMARY

File Version
Pascal.bin 1.1
Code.bin 1.1
Crolinker.bin 1.1
Configure.bin 0.0

023-9565

Cromemco Software Update Service Note PASCAL-=3

Date: May 31, 1983
Product:_ PAS-DL and PAS-DS
Release: _3

Date production of this version began: May, 13, 1983 on 8"

First serial number with this version: - on_8"

SUMMARY

Cromemco 68000 Pascal Programming Language version 1l.la,
dated May 2, 1983, is now available and updates version l.l.
This version contains fixes for some previous bugs and other
improvements, including improved error recovery.

CHANGES
The default for the $M compiler switch has been set to ON, so
the compiler will automatically generate code to check for
stack or heap overflow.
The command file install.cmd no longer links the compiler,
code generator, or linker into the /bin directory.
Accordingly, the pas.cmd command file searches the
/usr/pkg/pasd directory for these files.
Confiqgure Program
The Configure program is supplied to configure the 68000
compiler, code generator, and linker to execute in the amount
of memory specified by the user. The command line has the
form

configure -s Kbytes filename ...
or

configure -s Kbytes ~p package_name ...

where filename can be any pathname.

Cromemco Software Update Service Note
PASCAL Release 3

The options are:

-S Kbytes; Kbytes is the number of kilobytes of memory in
which the compiler, code generator or linker will run.
The value of Kbytes may range from 128 to 6,000.

-p package name; next argqument(s) must be from the set
cccd, pasd, and ford, which refer to the 68000 compilers
for C, Pascal and FORTRAN, accordingly. Configure will
change the following files for the selected package:

cced: /usr/pkg/cccd/c.bin
/usr/pkg/cccd/code.bin
/usr/pkg/cccd/crolinker.bin

ford: /usr/pkg/ford/fortran.bin
/usr/pkg/ford/code.bin
/usr/pkg/ford/crolinker.bin

pasd: /usr/pkg/pasd/pascal.bin
/usr/pkg/pasd/code.bin
/usr/pkg/pasd/crolinker.bin

Configure runs interactively if no arguments are typed on the
command line. Configure then prompts the user for the proper
arguments.

CORRECTIONS TO THE MANUAL

The following corrections apply to the Cromemco 68000 Pascal
Instruction Manual, dated April 1983, part number 023-4047.

Section 6.4: Add the following:

Note the IORESULT function does not check the validity of the
BLOCKREAD and BLOCKWRITE operations.

Section 7.1: The paragraph referring to the uses clause
should read:

A program or unit that uses another unit is known as a
"host." A host uses other units' declarations by naming them
in uses declarations. The uses clause appears after a
program heading or it appears in a unit at the start of the
interface sections. The uses clause is used in conjunction
with the $U compiler option. The units will be searched for
in the file specified by the most recent $U0 option, The
filename in the $U option is that of the .obj file which
contains the unit. Note this .obj file must exist prior to
compiling the file which contains the uses clause. The
separate .obj files must then be linked together.

2

Cromemco Software Update Service Note
PASCAL Release 3

Section 9.1: The description for the $0U compiler option
should be:

SU filename Searches for subsequent units in the file
specified by "filename," which must have a
-Obj extension.

Section 9.2: Crolinker Program

The format for using Crolinker is:
crolinker file_1 ... file_n paslib option_1 ... option_m

Where file_l1 ... file_n are the names of the .obj files to be
linked. The .o0bj extension may be omitted.

The following options are available in Crolinker:

-ofilename The -o option specifies the name of the
executable output file. If omitted, the
output file is written to a file with the same
name as the first file that is linked with a
.bin extension appended.

—-1filename The =1 option specifies the name of the file
to which the map listing is written, If
omitted, the map will appear at the screen.

-h $XXX The -h option causes Crolinker to allocate XXX
bytes (hexadecimal) of memory for heap space.

Crolinker produces a map listing as directed by the following
options, where '+' enables the switch and '-' disables the
switch:

+A -A Alphabetical List (except system entries)
+M -M Memory Map

+S =S System Entries

+U0 =U Unreferenced Entries

If a list file is specified, the map option defaults are +A,
-M, -S and -U.

Crolinker runs interactively if no arguments are listed on
the command line,

Cromemco Software Update Service Note
PASCAL Release 3

The prompt
Listing file -

accepts the -h and map list options and the name of the file
which will contain the map listing. Typing a ? 1in response
to this prompt displays the map options.

The prompt
Output file -
accepts the name of the file to which the executable program

will be written.

The prompt
Input file [.OBJ] -

accepts the names of the input files. The prompt repeats
until only a RETURN is typed.

Appendix C: The paragraph referring to identifiers should
read:

In Cromemco Pascal, 31 characters are significant in
jdentifiers. Note, however, that Crolinker permits a maximum
external symbol name of 8 characters, which applies to
identifiers defined in separately compiled units.

BUGS THAT HAVE BEEN FIXED

Arguments of type double can now be passed to the SIN, COS,
ARCTAN, EXP, LN, and SQRT functions.

A parameter of type double that is passed to the ROUND
function no longer generates an undefined reference %_IDNINT
at link time. ’

The list of undefined references from Crolinker can now be
redirected to a file.

Cromemco Software Update Service Note
PASCAL Release 3

LIMITATIONS

There is a code size limit of 16K bytes for the main program,
and each procedure and function.

There is a code size limit of 1K bytes per statement.

Case statements currently generate 2 bytes of memory for each
value between the lowest case label value and the highest
case label value, whether or not the intermediary case labels
exist. If the difference between the high and low case label
values is too large, the 1K byte limit of code per statement
may be exceeded. In this case, the compiler will generate
the message

"Procedure too large."

KNOWN BUGS

If a field of a record is an array which exceeds 32K bytes,
the compiler may not detect the 32K byte size limitation for
records.

The COPY and CONCAT functions used with the relational
equality operator may cause the code generator to issue an
error. For example,

if copy(stringl, intl, int2) = string2

VERSION NUMBER SUMMARY

Pascal l.1la 2-May-83
Code 1.2 31-Mar-83
Crolinker 1.2 22-Feb-83
Configure 0.02 '

i < o by g 4] .. & i & o
'?“mmmmw % Computers Yoday

BRSO AE L MOUNTAIN WAEW, 16 34045

CROMEMIO™ Software is licensed by Cromemeo, Inc. to customers only on the condition that the Customer agrees 1o the
terms set forth in this agreemaent. you agree o these terms, you must (il out the registration form on the opposite side
and return it o Cromemco, Inc. by mail before using the enclosed CROMEMUOQ sofoware. This license sgreemnent applia
1o all CROMEMUD software. “"CROMEMCO Software” includes the object code f{)r CROPAEMCO Software computer pro-
grams, whether supplied on an Binch or 5-inch floppy diskette or any other mediom, and all associated documentation

prt:w:ded by Cromemnao, Inc

1y License
Crememos, e agrees o grant, and the Licensee [subsaaquently referred wy any emgdoves of the Customer The Custor
70 a3 fjmt«mwr\ agrecs 0 200ept on the following terms and conditians assemble or allow others to disassernhle the
a sransferable and ronexchsive license to use the CROMERMEO e, The ‘uw‘t{mmfz 3
Sciftsvare enclosed with this ARFPeENt. si0g, andsior d
damag 3

s Rm?rmamm o Lige the b

it Hcense autharizes the custounes to use the CROMAEMCO Sofrware APFOOTIate 1KY proves
pbject code fernt only and onby on tho single CROMEMUO disassembling,
e designaied on »he (_x_zkrumwc A 1.‘1‘,-1_1’(1!1(;51 mrm A

ROMEME
im “ar that this dar

&
The

Tesrmm

icey tives friore ﬁn* date on
fware package and
ed oy hvi Lstomer

(. .
€ mmen-» o 3 s{ﬂm “the
: ws{s-m bu? .m y

Custormer FRust ac qmw & sc*wraw ‘«U?t‘—‘&".ﬂ(
nge '>f)1“wr1w hm ween [Ao

A e pauk
s arsy patt thereod on any e
¢ (‘4;’1;1L't>°r systemn. Neither the lizense grant teutd e
k{)\,ii MG Softw

fare 1o which it applies n
s arvise pransferred by the Custor
written consent of Cromamen, Inc

nth after the date of termination of the fivense granted
rent, the Customer will certify 1o Cromemce, ?'n tim‘;
smess best efforts and to the best of the Customes's
al srd all copies, i whaole or in part, in any form,
Software have been returned to Crommmen, Inc,

31 Back-up Copies of Prograws
The: custismer sy ke back-up tu.’;:m of ¢
sramie as required for the Luqmm iy
Castomes adtain ¢ 5
tinn of all such €13y
JO-t wrc ;ermmr—

v, provided that the
& number and foca-
~ - N

Custorner shalf be
v, o course, that
re reconded.

I3 Enhancements and Updates

The version of software supplied with this package was current at the

t»mc of manufaciure of this packsge imm i Lo time enhancements
o wpddstes are moade to Cromemco Softwars packages. Cromenen, Inc.

wni fasue updates and enhancements nniv 10 custonress who have suh-

scribed 1o the Cromemeo Software Update Program and paid the annusl

subscription fes,

ted Materials
¥ ot copy, in whole of in pat,
: docwrentation, or related raterial
printed form, Additionsl coples of such prmii’d
tained from a Cromer Ceaber

‘:n:J f ware: P r\‘
Cromeren,
materiabs me

wcdable form of o CROMEM-
ate with a terminal or Hne
- ing. Ho other modifications
. }i(\-‘&dﬂ:‘ without the express written
Y, EP(Crormemen, Inc. will srrcrvider 0 supRon
tware that has been modified.

ey hE‘ ma; ‘
pernissian of € P EEY
for CROMEATO St

0‘ Capyight Notices and Legends

CROMEMIO Software s mp.y,riy,ghmd t Cromemen, bao, and o some
Canes, Cromensen, res sofbware sapphiers, The Customer apgrees
Mt e vemouse any copyright notices or any confidential or proprietary
my CROMEMEO Sofvwars, and the Dustamer agrees 1o
produce such sotices and legends on any oopbes or medifications of
CROMEMED Software made By the Customwey as permitted hersin

71 Mondisclosuse
The custamer BETLES NOE L0 srevide, disclose, or otheredse mghke avail-
abile any CROMEMCOD Software to any purson other than the Customer
o itx (‘mpirwv(‘s for purpases necessary to the Customers use of the
CROMEMUG Sofrware as avthorized h£ redry. The Customey agress that
u?i I «,p s of CROMAENMCD Software will be stricthy safepuarded sgainst
i ‘r{"ﬁ(;ﬂ\ oF use by persons not m;thm')szi by Cromemcn,
CROMEMIO Softeare and that the Customers will take
25 zm? necessary to profiibit the violation of this agreement

gt

diskette contains the

i Thim

Tt

pascal. i

paslib. ob; The

rund i

coce. Bin i

&Y iﬁﬁawmaﬁia

cyalinker. bin The GAMAH 1inker which reads the
omhiect file produced by code.bin
: wri-time Library for

srecubtabhle use

raelocatable
amﬂ sgarches
roub ines nE
T’c.

-
et

CeEmnnary

create

&

Ryl

A tewt Filie compd le-t ine

BTV

Cr@ . ont & a@mv@ﬂi@wf mﬁmmaﬁd Ffile which can be used Lo

£ anc ink &

mrd e

HEET DPOEran
pommand File which will irnstal
Ry &I?" gdiskette onto & Dromix s

this command, changs the gwrent dirvectory
girectory in which this diskette

ﬂd tyma

% 4oy

H

i

.‘.. o

leseument . o T

IMVOICE # 1323570

S0LD TO

M

PHOME D1z

SHIFFRIRNG

i)

SHH

im

301

i

DETE

FRODUCT

FECIAL

45140

DESCRIPTION

R H.

COMPUTER SOLUTIONS INC.
OME EAST STEWSRT STREETY
Dy TOMN OMIO 45409
?E it ?1 G??“ii’

i-:‘.- PPN “‘E’&,‘

USTOMER ORDER # TOWNY

Wy BI LS INEURSMCE #

ORDER SHIP BR-DREDER PRICE Eat LT

i BEFE.00

\f'..'ll

¥5.

L'i

a4 i i] 5

EMOUNT PaTD
TEMDERED

CHEMGEE

3]

. 138

2395 .00
E2aR, 7
#6000
BEH70 .70

SUBTOTAL
Tax &%
LESS CREDIT
TOTAL

