CROMEMCO PROGRAM DEBUGGER

CHAPTER 1: INTRODUCTION TO DEBUG

The CROMEMCO DEBUG program nakes it possible
to test and debug user programs. DEBUG is loaded
into memory and moved to the highest memory
available below CDOS&. When using & 32K CDOS and
DEBUG, there is 20K left for the user program.

LOADING DEBUG

DEBUG is loaded by typing one of the Icllcwing
commancs from CDOS.

DE3UG
DEBUG filename.ext

where "filename" is the name of the program to be
tested, and “"ext"™ is the file extension. 1In both
cases, DEBUG is loaded into memory directly below
cDhos, The CDOS Jjump instruction located at
location 5H is changed to jump to the start of
DEBUG. This allows locations 6H and 7H to still
point to the lowest available memory location.

The second comnand above is used to load the
file to be tested into memory. If the extension
("ext") is “.HEX", then the file is read as an
INTEL HEX file. Any other extension is read as an
absolute binary file, loaded at 1location 160H.
Note that DEBUG does not load relocatable files,
If an extension is ".REL" it will be loaded in as
if it were binary and will not he executable.

119



CROMEMCO PROGRAM DEBUGGER

CONTROL CHARACTERS

Contrel characters are used in DEBUG and TRACE
to help in entering commands. These control
characters are the same as CDOS uses.

Control-C (°C) go back to CDOS
Control-H ("H) delete character and backspace on CRT

Control-U ("U) delete line

Control-X ("X) delete character and echo

underscore delete character and backspace on CRT
RUBpout (DEL) delete character and backspace on CRT

During a printing (such as from the DM
command) the following characters may be used.

Control-S (°S) stop/start printing. if
printing, this character will
stop the printing. 1If already
stopped, this character will
resume the printing.

break {or any other character) will

abort the printing, prompt, and
wait for the next command.

COMMAND FORMAT

DEBUG is contreolled by one and two character
commands from the terminal. The format is free-
form with respect to spaces. Commas may be used in
place of spaces. In the following, the examples
all dump memory starting at location 1008H and
ending at location 18FrH.

DM120# 18FF (CR)
DM100@51008 (CR)

D M 1000 18FF (CR)
D M 1002 S 1e0 (CR)
DMi1@020,10FF (CR)
DM1002@,S18@ (CR)

D M 1600 , 10FF (CR)

120



CROMEMCO PROGRAM DEBUGGER

@ REGISTER

DEBUG was designed to give flexibility in
testing relocatable programs. The "e"“ register is
used to tell DEBUG where the module you wish to
debug is located. This address car be found from
the map generated by the linking loader "LINK”. To
change the "@" register, type "€ (CR)" on the
console. The computer will then type "@-xxxx "
(where xxxx is the cu-rent value of the register).
The computer will then wait for a new address. 1If
2 CR only is typed, the register remains unchanged.
If an addr2ss and a CR is typed, then the register
will contain the new address. The "g@" register may
now be used as part of an address. The following
example demonstrates its use.

G/@ BA3 1p02

This is an example of the go command. Break
points will be set at the beginning of the current
module, relative location A3H in the current
nodule, and at location 108PH. This feature allows
you to test a module without having to calculate
absolute addresses.

ADDRESS EXPRESSIONS

For additional ease in specifying addresses an
expression can be used. Within these ‘expressions,
addition, subtraction, the "@" register, and the
"$" may be used. The "$" is the current location
of the program counter (P register). If many
modules are being tested, addition can be used to
specify relative addresses.

G/2321+4A3
The preceding example would set a break point

at relative location A3H if the module is located
at 2321H.

121



CROMEMCZO PROGRAM DEBUGGER

SWATH OPERATOR

There are two ways to specify the address
range of many commands. The first is to simply
list the beginning - and end addresses {(and where
appropriate, the destination address). For
example, the first command below programs the range
@ through 13FFH into PROMs starting at location
E4PPH, The second command displays the contents of
memory between addresses E408H and E462H.

PO 13FF E408
DME49P E402

Another way to do the same thing is to use the
Swath operator, "S", to specify the width of the
address range, rather than state the end address
explicitly,

P® 51400 E420
DM E400S3

ERRORS

Any errors made during entering of a command
may be corrected by typing Control-U (“U) to abort
the line or by backspacing and correcting the line,.
If a CR has already been entered and DEBUG detects
an error, the line will not be accepted and a "?"
will be printed. Re-enter the line with the
incorrect data corrected.

122



CROMEMCO PROGRAM DEBUGGER

CHAPTER 2: DEBUG COMMANDS

DEBUG and TRACE commands are described in
detail below. The operator must wait for the
prompt character ("-") before entering the command.

A - Assemble into memory

This command allows in-line assembly language
to be assembled into memory. The command takes the
following format.

A beginning-addr (CR)

The wuser is prompted with the absolute
address, followed by the relative address. DEBUG
reads from the console the assembler mnemonics and
assembles the instruction into memory. The
mnemonics for the various 2-80 instructions can be
found in the 2-88 CPU TECHNICAL MANUAL published by
Mostek and 2Zilog. If there was no error in the
instruction, it is stored in memory and the user is
‘prompted for the next instruction. The rules for
address expressions apply to the addresses in the
assembler mnemonics. In the following example the
"@" register contains 1234H.

A@40

1274 ¢@249' ADD B

1275 @041*' CALL €93
1278 ©6844' JP 1832495
1278 0847 .

The A command terminates when the first blank line
or a line starting with a "." is entered from the
console. If there is an error in the input 1line,
it will not be accepted, a "?" will be printed and
the conscle will be prompted with the addresses
again.

123



CROMEMCO PROGRAM DEBUGGER

DM - DISPLAY MEMORY

The contents of memory are displayed in
hexadecimal form. Each line of the display is -
preceded by the address of the first byte and
followed by the ASCII representation of the
hexadecimal bytes. An example follows:

DM190,S5382

P10 42 41 42 43 44 45 46 47-48 49 4A 4B 4C 4D 4E 4F @ABCDEFGHIJKLMNO
211¢ 50 51 52 53 54 55 56 57-58 59 5A 30 31 32 33 34 PQRSTUVWXYZ81234
f120 35 36 37 38 39 00 00 00-00 00 00 P2 B0 G0 AY G0 56789%..cccausren

The formats of this comiand are as follows.

DM (CR)

DM beginnig-addr (CR)

DM beginning-addr ending-addr (CR)
DM beginning-addr § swath-width (CR)
DM, ending-addr (CR)

DM S5 swath~-width (CR)

The first format displays memory from the
CURRENT display address, initially 108H, and
continues for 8 lines. The second format displays
from the beginning address and continues for 8
lines. The third format displays from the
beginning address -to the ending address. The
fourth format displays from the beginning address
for a 1length specified by the swath-width. The
fifth format displays from the CURRENT display
address to the ending address. The sixth format
displays from the CURRENT display address for a
length specified by the swath-width.

If an "X" is included@ after the "DM", the
relative addresses are also printed. In the
following example assume that the "@" register
contains 1@8H.

DMX100,830

2100 OPOB' 40 41 42 43 44 45 46 47-48 49 4A 4B 4C 4D 4E 4F @ABCDEFGHIJKLMNO
#11p 6010' 58 51 52 53 54 55 56 57-58 59 SA 38 31 32 33 34 PQRSTUVWXY221234
0129 0p9208* 35 36 37 38 39 00 80 00-00 90 PO 00 00 00 00 BF 56789...cccna0es

124



CROMEMCO PROGRAM DEBUGGER

DR - DISPLAY REGISTERS

wWhen DEBUG is re-entered from a break point,
the user registers are saved. The registers may be
displayed at any time by typing the following
command.

-DR (CR)
SZHVNCE A=00 BC=0000 DE=0000 HL=0000 S=0100 P=01060 0102' LD E,A
SZHVNC A'=p0 B'=0000 D'=0020 H'=0000 X=0000 Y=000C I=00

The letters "SZHVNC" on the first row
represent the flags, while on the second row they
represent the prime flags. 1If the flag is on, it
is printed, if the flag is off, a space is printed.
If only the carry and zero flag are set then " Z C"
would be printed. The flags are described below.

s - Sign flag, S5=1 if the MSB of the result
is one, i.e., the result is negative.

zZ - Zero flag, 2Z=1 if the result of an
operation is zero.

H - Half-carry flag, H=l1 if the add operation
produced a carry into the 4th bit of the
accumulator or a subtract operation
produced a borrow from the 4th bit of the
accumulator.

vV - Parity or overflow flag. This flag Iis
affected by arithmetic and logical
operations. If an overflow occurs during
an arithmetic operation, the flag is set
to one. After a logical operation, the
flag is set to 1 if the result of the
operation has even parity.

N - Add/subtract flag, N=1 if the last
operation was a subtraction.

C - Carry flag, C=1 if the operation produced
a carry.

The E flag on the first line is the state of
the interrupt enabled flip-flop (IFF). If
interrupts are enabled, the "E" is printed,
otherwise a space is printed.

125



CROMEMCO PROGRAM DEBUGGER

-DR (CR)
S H NCE

The A register is printed next, followed by
the BC, DE, and HL register pairs and the stack
pointer. The program counter value is then printed
in both absolute and relative. The opcode pointed
to by the program counter is then displayed as an
instruction.

On the second line, the prime registers are
displayed, F' (prime flags), A', BC', DE', and HL'.
The IX, IY, and I (interrrupt page) registers are
printed next. If the disassembled opcode includes
an address, the relative value of this address is
printed as the last thing on the line.

A=p0 BC=0000 DE=0000 HL=0000 S=0000 P=1234 2£10' CALL 1334
SZ NC A'=00 B'=p00Q D'=0000 H'=0000 X=0000 Y=0000 I=00

E - EXAMINE INPUT PORT

The data port is read and displayed as a
hexadecimal number. The format of the command is:

E data-port (CR)

In the following example the data port 3 is
read and displayed on the console.

-E3 (CR)
23

EJ - EJECT DISK

The format of the command follows.
EJ d

Where d is the disk number (A, B, C, D). If the
designated disk is a CROMEMCO DUAL DISK SYSTEM
model PFD, with the eject option, the diskette in
the disk drive will eject.

F - SPECIFY FILE NAME
This command allows the operator to insert
filenames in the two default FCBs (at 5CH and 6CH)
and the command line into the default buffer (at

126

(g11e")



CROMEMCO PROGRAM DEBUGGER

B2H). The example below loads FILE1.COM into the
first FCB and FILE2.COM into the second FCB. The
complete line is also loaded into the default
buffer.

~-FFILE1.COM FILE2.COM OPTION1 OPTION2

This command can be used with the "R" command to
read in disk files.

G - GO
The GO command has the following format.
G(starting-addr)/(breakpoint-1) (breakpoint-2)...(breakpoint-5)

Each of the addresses is optional. If the starting
address is omitted, then the contents of the
program counter is used. The registers are loaded
from the user registers (these are the values
displayed with the DR command). Execution begins
with the starting address or the contents of the
program counter. If break points were specified,
an RST 3PH is inserted at the break point addresses
and a jump instruction is placed at location 30H.
When a breakpoint is executed, control is returned
to DEBUG, and all of the user registers are saved
(the registers may then be displayed with the DR
command). ALL breakpoints are then removed from
the user program. The program counter is displayed
after the breakpoint. Note the following about
breakpoints:

(a) Breakpoints can only be set in programs
residing in RAM. This is because an RST 30H is
inserted at each break point location. {The
original contents of these locations are saved so
that they can be restored after a break point is
executed,)

(b) Up to 5 break points can be set. If an
attempt is made to enter more than 5 break points,
the command will not be accepted.

(c) When a break point is used, a jump
instruction is stored at location 308H. Therefore
locations 3PH, 31H, and 32H are not available to a
user program,

The GO command has an additional feature that

127



CROMEMCO PROGRAM DEBUGGER

is very helpful in debugging a program. A count is
allowed for each break-point. This count is
entered after the break-point and enclosed in
parentheses. This count is the number of times the
program reaches this address before control is
returned to DEBUG. A count of one says to break
the next time the address is reached. In the
example below execution begins at location 1P@H and
will break when address 1@9H is reached for the
second time or when 123H is reached for the first
time.

-Glee/1e9(2) 123

Note that 123 and 123(1) means the same thing.
Also note that the count is a hexadecimal number.
Therefore 123(F) means to break after the address
has been executed for the 15th time.

H - HEXADECIMAL ARITHMETIC

Hexadecimal addition and subtraction may be
performed by this command. The first number to be
printed is the sum of the two input numbers. The
second number to be printed is the difference
between the first number and the second number. 1In
the example following, the first number is 1234 +
321, and the second number is 1234 -321.

-H1234,321
1555 BF1l3

L - LIST IN ASSEMBLER MNEMONICS

The list command is used to list the contents
of memory in assembly language mnemonics. The
formats for this command are.

L (CR)

L starting-addr (CR)

L starting-addr ending-addr (CR)

L starting-addf S swath-width (CR)
L,ending-addr (CR)

L § swath-width (CR)

The first format lists 16 1lines of
disassembled code starting from the current 1list
address. The second format lists 16 lines from the
starting address. The third format lists from the

128



CROMEMCO PROGRAM DEBUGGER

starting address to the ending address. The fourth
format lists from the starting address for a length
specified by the swath width. The fifth format
lists from the current list address to the ending
address. The sixth format lists from the current
address for a length specified by the swath
address.

The first address of the disassembly is the
absolute address. The second address is the
relative address. If the disassembled instruction
contains an address, the absolute address is
printed in the instruction in hexadecimal and the
relative address is printed to the right of the
disassembled 1line. In the example that follows,
the "@" register contains 2800H.

-L@g20 812

3022 ©80#8' ADD B

3961 p8gl' CALL 3200 (6ne0')
3004 ©804' CALL 3243 (2243")
3e07 ©8@7' CALL 3333 (0B833"')

300A @282A' LD A,B

300B @8QB' OR C

3¢0C @980C' JR Z,3200 (08202"')
300F @B8BF' INC HL

3610 @81@°' INC DE

3011 @811' INC BC

312 @#812' LD A,H

M - MOVE MEMORY
The formats of this command follow.

M source-addr source-end destination-addr
M source-addr S swath-width destination-addr

The first format moves the contents of memory
beginning with the source address and ending with
the source-end to the destination address. The
second format uses the swath width to determine the
length of the move.

The move is verified to insure that all bytes
were moved correctly. If an overlapping move was
made, errors will be reported. The error reporting
can be terminated by typing any character. ’

The move command can be used to fill a block
of memory with a constant. In the following

129



CROMEMCO PROGRAM DEBUGGER

example, a zero has been entered into location 1@0H
using the SM command. The following command will
move zeros from location 108H through 1#8H.

-M100 S7 181

Care should be taken not to move memory over DEBUG,
TRACE or CDOS.

O - OUTPUT TO DATA PORT

This command outputs data to a data port. The
following is the command format.

0 data-byte port-number (CR)

P - PROGRAM PROMS

This command allows programming of PROMs. The
following are the command formats.

P source-addr source-end destination-addr
P socurce~-addr S swath-width destination-addr

The first format programs PROMs starting with the
source address and ending with the source-end into
PROMs beginning at the destination address. The
second format -determines the length from the swath
width.

If the length of the source is not a multiple
of 460H or if the destination does not begin at a
4084 boundary, DEBUG will reject the command.
{(Multiples of 40PH end in ‘'@@@', '400', '80@', and
'ceg’.)

Any number of 2788 or 2704 PROMs can be
programmed in the execution of one command as long
as there are enough BYTESAVERS to contain them.
Each PROM is verified with its source after all are
programmed and any discrepancies are printed out.
If no discrepancies are found, a prompt is printed
and the next command may be entered.

Software can be locaded into a PROM in as small
increments as you desire, provided it is added to
previously unused areas of the PROM. This is done
by first using the Move command, "M", to transfer
the contents o¢f the PROM to RAM, adding the new

130



CROMEMCO PROGRAM DEBUGGER

SM - SUBSTITUTE MEMORY

This command is used to substitute memory.
The format of the command follows.

SM starting-addr

DEBUG prints

the absolute address, followed by the

relative address, followed by the contents of the
memory byte. One of the following may then be

entered.

(a)

(b)

(c)

(d)

(e)

(£)

data-byte value. The data byte value
is stored at the address of the
prompt. The address is then
increnented by 1 and displayed on the
next line.

string enclosed in quotes. The string
is stored bejinning at the address of
the prompt. The address is then
incremented past the string and
displayed on the next line.

Any number of (a) and (b) above can be
entered on one line. The address is
then incremented past the bytes that
were stored and the new address is
displayed on the next line.

n.»_ A minus sign does not store a2
byte. The address will be decremented
tc the previous address. The minus
sign can be used to "back up" to a
previous location in case an error has
been made.

(CR) only. If no entry is made on the
line, the memory byte remains
unchanged. The address is incremented
by 1 and displayed on the next line.

period. A period ends the input mode
and returns to the command level.

Iin the example that follows, assume that the

"@" register

-SMelee

contains the value 2800H.

132



CROMEMCO PROGRAM DERBUGGER

2920 ©100' 32 @

291 olel' 17 @e

29p2 9182°' 31 °‘THIS IS AN ASCII STRING'
2919 2119' 7A 'ARAA' 2 81 2 34567839
2928 @l128"' 22

2929 @129' 29

292A P12A* B7 -

2929 £129' 29 .

Sr - SUBSTITUTE REGISTER

The Sr —ommand allows the user registers to be
altered. The letter "r" stands for the register
which is to be changed. The section SUMMARY OF
REGISTER NAMES gives a summary of the names that
can be substituted. When substituting the F and F'
flags, enter the command SF or SF'. DEBUG will
then print the flags that are set and wait for the
operator to enter the names of the registers that
are to be set. If the flags are NOT entered, the
flags are reset. In the following example, the
“SZHC" flacgs are set. After the example is
executed the "2C" flags are set. The lower case
letters are entered by the operator.

-sf
SZH C zc

When sustituting a one byte register, & one
byte value is accepted. When substituting a two
byte register, a two byte value is accepted. If no
value is entered, or if an error occurs, the value
of the register remains unchanged. In the
following example, the A register is changed to
contain 41H,

-Ssa
A=98 41

133



CROMEMCO PROGRAM DEBUGGER

T - TRACE
The format of trace is:

T (CR)
T number-of~lines (CR)

The first format traces the program through one
instruction. The second format traces the program
through "anumber-of-lines" instructions. After
every instruction traced, the values of the user
registers are printed in the same format as the
"DR" command.,

You can trace only through RAM. The trace
command places a break point after the instruction,
loads the registers and executes the instruction.
The break point is then executed and the registers
are resaved., The registers are printed, and the
next instruction is executed unless the count has
reached zero, in which case a prompt is printed and
you may enter the next command.

Tc abort the trace, hit any key on the
console, A prompt will be printed and you may
enter the next command.

TN - TRACE WITH NO PRINTING

The "TN" command is the same as the "T"
command with the exception that after every
instruction is traced, the registers are not
printed. Only the last traced instruction is
printed.

V -~ VERIFY MEMORY

Verify that the block of memory between souce
address and source end contain the same value as
the block beginning at destination address. The
addresses and contents are printed for each
discrepancy found. The following is the format of
this command.

V source-addr source-end destination-addr
V source-addr § swath-width destination-addr

134



CROMEMCO PROGRAM DEBUGGER

This command works by reading bytes from the source
and destination and comparing them. If a
discrepancy is found, the memory is read again for
print-out. Thus, it can happen that a discrepancy
is printed-out with the source and the destinatjon
contents indicated to be the same. This is caused
by a defective memory element.

A discrepancy is printed in the following
order, source address, source contents, destination
contents, destination address. 1In the example that
follows, memory locations 1693l and 19P98H are
defective,

-V & S39 leop

P0P3 32 12 1683
@228 7A 5A lpos

135



