AT Thirty Dollars &

Referénce Manual

i

i
i
i

W,

Cromemco

- Cromix-Plus
Programmer’s

Reference Manual

November 1985 023-5014
Rev. C

CROMEMCO, Inc. Copyright ¢ 1984, 1985

P.O. Box 7400 CROMEMCQ, Inc.

280 Bernardo Avenue All Rights Reserved

Mountain View, CA 94039

1

This manual was produced using a Cromemco System Three computer
running under the Cromemeco Cromix Operating.-System. The text was
edited with the Cromemco Cromix Screen Editor. The edited text
was proofread by the Cromemco SpellMaster Program and formatted
by the Cromemco Word Processing System Formatter II.
Camera-ready copy was printed on a Cromemeco 3355B printer.

The. following are registered trademarks of Cromemco, Inec.

C-Net®
Cromemeo
Cromix®
FontMaster®
SlideMaster®
SpellMaster®
System Zero®
System Two®
System Three®
WriteMaster®

The following are trademarks of Cromemco, Inc.

c-10™
CaleMaster ™
Cromix-Plus™
DiskMaster ™
Maximizer ™
System One '™
TeleMaster ™
System 400™

TABLE OF CONTENTS

Chapter 1: INTRODUCTION TO CROMIX SYSTEM CALLS

Summary of System Calls
Signals

Yk

Responses to a Signal

Types of Signals

Sources of Signals

Reception of Signals

The Use of Signals in Application Programs
Signals and Forking a New Process
The Alarm System Call

The Pause System Call

The Sleep System Call

Locks

Shared and Unshared Locks
Conditional and Unconditional Locks
- Locking Schemes

Sample Implementations of Locks

Cromix System Call Errors

Error Conditions

Chapter 2: CROMIX-PLUS SYSTEM CALL DESCRIPTIONS

_alarm (43h)
_boot (56h)
_caccess (27h)
_ecchstat (23h)
_chdup (0Ah)
_chkdev (07h)
_clink (25h)
_close (0Bh)
_create (08h)
_estat (21h)
.delete (06h)
_divd {54h)
_error (1Ch)

—exchg (0Ch)

exee (4Ch)
_exit (46h)
_facaess (26h)
_fehstat (22h)
_fexec (4Bh)
_flink (24h)
_fshell (48h)
_fstat (20h)
_getdate (30h)
_getdir (02h)
-getgroup (36h)

iii

O W WO W O W

17
18
19
20
22
23
24
25
26
29
31
32
33
34
33
36
37
38
40
42
43
45
47
48
49

_getmode (12h) 50

getpos (10h) 51
getprior (38h) 92
_getproe (3Ah) 53
_gettime (32h) ,) 54
-getuser (34h) 55
_indirect (51h) o6
_kill (41h) | o7
_lock (3Eh) : 58
_makdev (00h) 60
_makdir (01h) : 61
_memory (50h) 62
_mount (04h) 63
_mult (53h) 64
_open (09h) 65
_pause (44h) 67
_pipe (0Eh) , 68
_printf (1Bh) 71
_ptrace (4Eh) 73
_rdbyte (16h) 75
rdline (18h) 76
_rdseq (14h) 77
_Setdate (31h) : " 78
_setdir (03h) 79
_setgroup (37h) 80
-setmode’(13h) 81
_setpos (11h) 82
-setprior (39h) 83
_settime (32h) 84
_setuser (35h) 85
—shell (49h) 86
_signal (40h) 88
-Sleep (42h) 89
trunc (0Dh) 90
_uchstat (29h) 91
~unloek (3Fh) : 92
_unmount {05h) 93
_update (52h) 94
_ustat (28h) 95
_version (55h) 96
_wait (45h) 97
_wrbyte (17h) 99
_wrline (19h) 100
_wrseq (15h) 101
Chapter 3: Z80 CROMIX SYSTEM CALL SUMMARY 103

iv

Chapter 4: DISK ALLOCATION UNDER CROMIX~PLUS

System Area
Disk Type Identification
Superblock '
Alternate Track Table

Inode Area

Data Area

LIST OF ILLUSTRATIONS

Figure 4-1: Layout of a Cromix Disk
Figure 4-2: Inode Layout

LIST OF TABLES

Table 3~1: Z80 Cchstat Calls
Table 3-2: Z80 Cstat Calls
Table 3~-3: Z80 Fehstat Calls
Table 3~4: Z80 Fstat Calls

LIST OF APPENDICES

Appendix A: 68000 Equate Listings

/equ/jsy sequ.h
/equ/modeequ.h
/equ/bmodeequ.h
/equ/tmodeequ.h
/equ/ptrace.h

Appendix B: 280 Equate Listings
/equ/jsy sequ.z80
/equ/modeequ.z80
/equ/bmodeequ.z80

Appendix C: ASCII Character Codes

INDEX

113

114
114
115
115
115
116

113
116

108
109
110
111

117

117
123
127
132
133

135
135
140
144

151

153

vi

Cromemco Cromix~Plus Programmer's Reference Manual
1. Introduction to Cromix System Calls

Chapter 1

INTRODUCTION TO CROMIX SYSTEM CALLS

Calls to the Cromix Operating System are formed using a trap #0 followed by
a word specifying the system call number. The Cromemeo 68000 Macro
Assembler (version 01.14 and higher) contains an opceode (JSYS) that forms these
two words in the object code. JSYS takes the Cromix system call number as its
only operand.

The files jsysequ.asm, modeequ.asm, and bmodeequ.asm and tmodeequ.asm
are provided to facilitate programming system calls. These files contain
EQUates for all of the system call numbers and mode options so that the calls
may be made by name and the numbers need not be remembered. To make use

of these files, include them in the source file using the *inelude statement of
the assembler.

For example:

*include 'jsysequ.asm’
*include 'modeequ.asm'

move #stdin, D1 ;standard input channel
move #MD_ISPEED,D2 ;input baud rate

move. #S_2400,D3 ;set to 2400 baud

jsys #_setmode ;system call sets the mode

All system calls require the specified calling parameters. In addition, some
calls return parameters. Parameters are passed in registers as words or long
words, depending on the parameter. Values returned are always.long words.
All registers not specified as containing a returned parameter are preserved
through a system call.

The following list summarizes the Cromix Operating System calls.

Cromemeco Cromix~Plus Programmer's Reference Manual
1. Introduection to Cromix System Calls

SUMMARY OF SYSTEM CALLS

_alarm (43h) sends alarm signal to calling process after # seconds

_boot (56h) boots new operating system

_ecaccess (27h) tests channel access

—cchstat (23h) changes the status of an open file

—.chdup (0Ah) duplicates a channel

—chkdev (07h) verifies presence of a device driver in the operating
Sy stem

—clink (25h) establishes an additional link to an open file

—close (0Bh) closes an open file

—create (08h) creates and opens a file

—estat (21h) returns the status of an open file

~delete (06h) deletes a directory entry

_divd (54h) divides two unsigned 32 bit integers

error (1Ch) displays an error message ,

-.exchg (0Ch) exchanges filenames of two open files

—exee (4Ch) executes a program

—exit (46h) exits from a process

_faccess(26h) tests file access

_fehstat (22h) changes the status of a file

fexec (4Bh) forks and executes a program

flink (24h) establishes a link to a file

fork (47h) forks a user program

_fshell (48h) forks a Shell process

_fstat (20h) returns the status of a file

—getdate (30h) returns the date

getdir (02h) returns the current directory pathname

-getgroup (36h) returns the group id

_getmode (12h) returns the characteristics of a character device

getpos (10h) returns a file pointer

~getprior (38h) returns the priority of the calling process

—getproe (3Ah) returns the PID of the calling process

—gettime (32h) returns the time

—getuser (34h) returns the user id of the current process

_indireet (51h) executes system call identified by number in the DO
register

~kill (41h) sends a signal to a process

_loek (3Eh) assists in implementing inter-process communications

—makdev (00h) creates a new name for a device

_makdir (01h) creates a new directory

—memory (50h) allocates or deallocates memory

~—mount (04h) enables access to a file system

~mult (53h) multiplies two unsigned 32-bit integers

_open (09h) opens a file for access

—pause (44h) suspends execution and waits for a signal

—pipe (0Eh) creates a pipe

—printf (1Bh) generates formatted output

—ptrace (4Eh) runs a process debugger

-rdbyte (16h) reads a byte

_rdline (18h) reads a line

~rdseq (14h) reads the specified number of bytes

_setdate (31h) changes the date

2

Cromemeco Cromix-Plus Programmer's Reference Manual
1. Introduction to Cromix System Calls

_setdir (03h) changes the current directory

_setgroup (37h) changes the group id

—setmode (13h) - changes the characteristics of a character device
_setpos (11h) changes the position of the file pointer
_.setprior (39h) returns the priority of the calling process
_settime (32h) changes the time

—setuser (35h) changes the user id

_shell (49h) initiates a Shell process

signal (40h) sets up a process to receive a signal
_sleep (42h) ' puts a process to sleep

_trune (0Dh) truncates an open file

_uchstat (29h) changes the ststus of a process

_unloek (3Fh) is used to unlock a locking sequence
_unmount (05h) disables access to a file system

.update (52h) updates all open files

_ustat (28h) returns ﬁle status of a process

_version (55h) returns the operating system version number
_wait (45h) waits for the termination of a child process
_wrbyte (17h) writes a byte

_wrline (19h) writes a line

.. wrseq (15h) writes sequential bytes

SIGNALS

A signal carries messages between processes. There are eight types of signals
that can effect eight different responses from a process. The programmer can
choose any one of three responses to each of seven of the eight types of signals.
The SIGKILL signal in all cases, causes a process to be aborted.

Responses to a Signal

When a process receives a signal, the signal can be handled in one of three ways.

1. Ignore the signal.
The process continues as though no signal had been received.

2. Abort the process.
The opersating system terminastes the process. This is equivalent to
execution of the _exit system call.

3. Transfer control.
A user program may establish a location to which control may be
transferred for each type of signal received.

After a signal has been received, the _signal system call must be executed
again in order to be able to receive the next signal.

Cromemeo Cromix—~Plus Programmer's Reference Manual
1. Introduction to Cromix System Calls

Types of Signals

The eight types of signals are enumerated below.

1.

80

sigabort

This is the abort signal generated by a CONTROL~C ty ped at the terminal.
The mode of the terminal must be set to allow CONTROL-C to funetion
(abortenable),

siguser

This is the user signal generated by a character typed at the terminal.
The character that generates this signal is determined and enabled by mode
(sigeharacter and sigenable).

sigkill

This is the kill signal. It cannot be ignored or redirected by the user
program. The kill signal causes the operating system to abort the process
immediately. The kill signal can only be sent to a process by the initiator
of the process or a privileged user.

~ sigterm

This is the terminate signal. It is the default type of signal for the Kill
command of the Shell.

sigalarm
This is the alarm signal. It is sent by the operating system following an
~alarm system call.

sigpipe .
This is the pipe signal. It is sent by the operating system when a pipe
is not being used properly.

sighangup ’
This is a signal sent by the mtty deviece when the phone hangs up, if the
HUPENABLE mode is set.

reserved for future use.

Sources of Signals

Signals may be sent to a process by a user-ty ped character, the Kill command,
the _kill system cail, the _alarm system call, or by a driver.

Reception of Signals

A process may be set up to receive and process a signal by the _signal system
call. If the signal is not ignored and the process has an unsatisfied request for
input or output from a character device such as a terminal or printer, the input
or output request is canceled.

Cromemeco Cromix-Plus Programmer's Reference Manual
1. Introduetion to Cromix System Calls

A child process may be set up by its parent process to ignore or be aborted by
a signal when the parent initiates the child through the _fexee or _fshell
sy stem call. ‘ o

Reactions to signals are determined by the values of the D1 and D2 registers:

Bit S-1 Bit S-1 Child's reaction to signal S

in D1 in D2

0 X same as the parent process
1 0 abort

1 1 ignore

If the child is set up to inherit the parent's reactions and the parent process
is set up to trap the signal, the child process can still be aborted by the signal.
This is because the child process cannot inherit the parent's trap routine.

The _signal system call sets up a process to receive a signal. The type of
signal to be received is loaded in the D2 register. The execution address is
loaded in the A0 register. This is the address to which control is passed once
the signal is received. The previous execution address is returned in the A0
register.

Processes initisted by the Shell are set up to inherit reactions to all signals
from the parent process, except for the sigabort, siguser, and sigterm signals
(these are handled separately).

A process which is run as a detached job by the Shell (through the use of the
symbol & on a command line) is set up by the Shell to ignore sigabort and siguser
and to be aborted by sigterm. A process which runs in the foreground (not
detached) is set up by the Shell to react the same way as the parent process
(except for interactive Shell processes, which are always set up to ignore those
three signals). These features allow the user to abort the current process by
entering CONTROL-C, while not affecting detached processes and allow
implementation of the Shell command kill 0. Additional precaution is taken that
the parent process will not be aborted while the child process is still active.

The _kill system call sends signals to processes. The identification number
of the process to which the signal goes is loaded in the D3 register. The number
of the signal type sent is loaded in the D2 register. A user may only send a
signal to a process which that user initisted. Only a privileged user may send
signals to processes initiated by other users. When a signal is sent to process
0, that signal is sent to all processes initiated from the terminal where the user
who invoked the call logged on. If a privileged user sends SIGUSER to process
1, system shutdown is initiasted. When SIGABORT is sent to process 1, the
Cromix system consults the /ete/ttys file toc log on any terminals that have
been added and log off any deleted terminals.

Cromemeo Cromix~Plus Programmer's Reference Manual
1. Introducticn to Cromix System Calls

If the user program decides to cateh a signal, the signal routine must be written
in assembly language for the following reason. Signal routines are treated as
interrupts in the sense that they must preserve all the registers, including the
Condition Code Register (CCR). In a higher level language this requirement
cannot be met. Of course, it is possible to write only the interface in an
assembly language. The interface will save all required registers, possibly set
up some other registers, and then call a higher level language function to do
the real job.

The Use of Signals in Application Programs

The _signal system call is commonly used to cateh or ignore CONTROL-C
(sigabort) or other signals. A typical example is a text editor. An editor must
cateh or ignore CONTROL-C, entered by the user, to avoid possible disaster
when the editor is terminated in the midst of file modification. By loading the
A0 register with 1 before any _signal system call is made, the programmer
causes the signal to be ignored. To cause the system to perform a specifie
funetion on receiving a CONTROL-C, the programmer loads the A0 register with
an address to which execution passes when the signal is received.

Immediately after a signal is received, the process is automatically set up to
ignore further signals. If the process is to receive and handle any further
signals, the _signal system call must be repeated.

If the A0 register is loaded with 00000000 before a ~signal system call is made,
execution of the process will be aborted when a signal of the type specified
in the D2 register is received. If the _signal sy stem call is not sent, the
process is aborted when any signal is received.

Signals have many uses, but they also have limitations. Signals are designed
to terminate processes or wake them up. Signals sre not interrupts. Signals
can be ignored, but not disabled. Mutual exclusion cannot be easily achieved
with signals. If an application requires that a process receive and process
several signals per second from one or more processes, difficulties with stack
overflow are likely to arise. ' '

The program fragment in the following example catches the sigabort signal sent
- by a CONTROL-C entered on the keyboard. This might be useful in a program
such as an editor in which program termination by a CONTROL-C could cause
data loss.

Cromemeo Cromix~Plus Programmer's Reference Manual
1. Introduection to Cromix System Calls

Program fragment demonstrating the use of the Signal system call
to catech a SIGABORT (°C) signal. The program can only be killed
from another terminal. , ‘

(Must be assembled with -68010 option)

W (22 85 28 ‘ap 90

*include '/equ/jsy sequ.asm’

start: bsr sigsetup
again: bra again
sigsetup:
lea abort_vector, A0 ; Address of routine to handle CONTROL-C
move #sigabort, D2 ; Load signal-type to catch
jsys #_signal ; Make Cromix signal system call
bes error ; If error then jump to error routine
rts ; Else return

; ABORT_VECTOR - Loecation where control is to pass after receiving a
; sigabort signal.
abort_vector:
move CCR.,~(SP)
push.l D0-D2/A0
lea message,Al
maove #stdout, D1
jsys #_printf
bes error
bsr sig setup
pop.l D0-D2/A0
move (SP)+,CCR

Load address of message string
Standard output channel

Print message on console

If error jump to error routine
Set up trap routine again

N3 s W2 wr 3o

rts
errors
move #stderr,D1 ; Channel for error messages
jsys # _error ; Call Cromix to write the error message
move #-1,D3 ; Set error code
jsys # _exit ; Exit to operating system
messages:

de.b 'T do not want to be dead\n\0'

end start

Cromemeo Cromix-Plus Programmer's Reference Manual
1. Introduction to Cromix System Calls

Signals and Forking a New Proeess

Whenever the user forks a new process which does not fiddle with signals, the
forking can be quite simple: the child process should simply ipherit signal
treatment from the parent process. In more complex cases, there is one pitfall
that has to be avoided. It should never happen that the parent process gets
killed while the child process is still alive. If this happens, the grandparent
process, which is most likely an interactive Shell, will wake up and fight his
grandchild process over the characters being input from the terminal. Under
such eircumstances, the user can never tell which process is going to pick up
characters typed on the terminal.

If the child process can set up its own response to signals (it is certainly able
to do so if it is an interactive Shell) the parent process must be much more
careful. A simple solution is for the parent process, before forking the child
process, to set itself up to ignore all signals, storing the old reactions. After
the child terminates, the parent process can restore the reactions to their
original state. This solution is not always satisfactory: if the user presses
CONTROL~-C while the child process is running, the parent process will ignore
it, though the user might have intended to kill both processes.

A reasonably eompleteisolution can be described as follows:
1. Set up to ignore all signals, storing the old reactions.

2. Inspect the old reacticns. If an old reaction was to ignore the signal, keep
it that way. If an old reaction was to abort or to trap the signal, a new
trap is to be installed. The new trap function (one for each signal) should
only note the fact that it was called.

3. Fork a new process with whatever signal reactions are desired, and wait
until it terminstes.

4. Restore the old signal reactions.

5. If a signal was received in the interim, send the same signal to yourself,
thereby causing the same effect (except for the fact that it is postponed).

This deseription is still not complete, as it does not say what should happen
if more than one signal is received in the meantime. This ecan be handled by the
new trap funetions and by the processing after the child process terminates.
New trap functions can simply set a bit in a word initialized to zero and not
establish the trap again. If so, at the end we have a list of signals received
while the child was running. The program can now decide which signal to send
to itself and in what order (if there is more than one).

Cromemeco Cromix~Plus Programmer's Reference Manual
1. Introduection to Cromix System Calls

The Alarm System Call

After a specified number of seconds, the _alarm system call sends an alarm
signal (SIGALARM) to the process that made the system call. The _signal
system call is first used to set up the process for receiving the SIGALARM
signal. A typical use of _alarm provides a time out feature for a program. If
a process must be prevented from hanging on an input request indefinitely, the
process first makes the _alarm system call. The _alarm system call specifies
the number of seconds to wait after making the request for input.

The Pause System Call

The _pause system call is frequently used in conjunction with the _alarm
system call. The _pause call suspends execution of the calling process and
waits for a signal. The _pause call does not require the _signal sy stem call
to set up the process to receive the signal. It is ideal for putting a process
to sleep until another process signals it to continue. The _pause and _alarm
calls can be used together to put a process to sleep for a specified number of
seconds. For example:

sleep10:move.d #10,D3 ; Send Alarm in 10 seconds
jsys # _alarm ; Call Cromix
bes error ; If error then jump to error routine
jsys #_pause ; Wait for a signal
bes error ; If error then jump to error routine

The Sleep System Call

The equivalent of the routine above can be achieved with one system eall,
—Sleep. The _sleep call stops execution of a process for a specified number
of seconds. The result shown above can be accomplished as follows using

-Sleep:
sleepl10:move.l #10,D3 ; Set to go to sleep for 10 seconds
jsys # _sleep ; Call Cromix
bes error ; If error then jump to error routine
Locks

The _loek system call assists in implementing file locks, and allows the
operating system to absorb part of the overhead involved in the procedure. No
locks are imposed by the operating system; this is done by the application
program. The _loek and _unloek calls merely make and delete entries in a
table residing in system memory.

Cromemeco Cromix-Plus Programmer's Reference Manual
1. Introduetion to Cromix System Calls

The _loek system call enters a string in the lock table. This string is the
unique identifier of a record in a file. The string is hereinafter referred to as
the loek sequence. Should another process make a _loek system call using
a lock sequence currently in the lock table, the Cromix Operating System does
one of two things. It either puts the process to sleep until the entry is removed,
or it returns with an error code set. An entry is removed from the table when
the process that made the original _loek system call reverses it with an
unlock system call, followed by the same lock sequence. Any process put
to sleep while attempting to lock that sequence is awakened and allowed to make
an entry in the table.

The problem of record level lock is resolved by preceding any read or write to
a file or record with a _loek system call. This achieves mutual exclusion for
records and avoids the undesirable effects of having multiple processes reading
and writing the same file or record.

The other considerations associated with the _loek system call are the type
of loeck to be made and the character string to be used as the lock sequence.

Shared and Unshared Locks

A shared lock allows other processes access to the lock. Shared locks are
typically used when a file is being read. A shared lock does not prevent other
processes from entering the file, so that a process that is reading a record does
not prevent another process from reading the file. A process attempting to
establish an unshared lock when a shared lock has been granted either is put
to sleep or receives an error.

Unshared locks are typically used during a write to a file, since they prevent
any other process from getting access to the lock sequence. If a process has
an unshared lock, any other process attempting to lock the same sequence either
is put to sleep or receives an error.

Conditional and Unconditional Locks

Locks can be made conditionally or unconditionally. A conditional lock returns
with an error code set if the sequence specified cannot be locked. An
unconditional lock puts the calling process to sleep if the sequence is currently
locked. The process put to sleep awakens when the process that originally
issued the _lock call issues an _unlock call. "

The programmer must decide whether to use a conditional or unconditional lock.
For many applications, putting a process to sleep for a brief period because
another process has locked a file or record does no harm. In other cases, such
a8 maneuver may suspend execution of a program indefinitely while waiting for
some process to unlock a file or record. In this case, a conditional lock may
be used to print an error code informing the user that the record or file is in use.
An ideal strategy might employ both techniques, or use the _alarm system call
to prevent indefinite postponement of file access.

10

Cromemeo Cromix-Plus Programmer's Reference Manual
1. Introduction to Cromix System Calls

Locking Schemes

If more than one program is relying on the _loek system call, a mutually agreed
upon scheme must be devised so that all programs use the same identifier to
reference records in a file. This identifier is the locking sequence and may
contain from one to 16 bytes. An example of a locking sequence is the first 8
bytes of the filename followed by the number of the record to be locked. This
scheme works as long as no two files simultaneously in use have names beginning
with the same eight characters, and as long as two different processes do not
access the same file through two links having different names.

A more elaborate locking scheme uses the file device and inode numbers. The
combination of device and inode numbers is a unique file identifier. The number
of the device on which a file resides can be obtained by using the _fstat system
call. The locking sequence could be composed of a device number followed by
an inode number and a record number.

If the number of available locks is exceeded, the operating system returns from
a _loek system call with an error message. This message merely indicates there
is no room left in the lock table.

A ?deadloek error is returned if the operating system detects a deadlock
condition.

All locks installed by a process are automatically unlocked when the process
is terminated.

Sample Implementations of Locks

The uses of record locks are best shown through illustration. Consider an
inventory management system on a multi-user Cromix system at a music store.
If salesperson A sells a guitar and wishes to decrement the inventory record,
the program would enter a section-of code designed to perform the following
funetions:

1. Request record number to read.

20 Lock the record with a shared, unconditional lock.

3. Read the record.

4, Unlock the record.

11

Cromemeco Cromix-Plus Programmer's Reference Manual
1. Introduction to Cromix System Calls

The program might then inform the salesperson that three guitars are in stock.
The salesperson rings up the sale, decrements the count of guitars in stock to
two, and writes the record to the datebase using an unshared conditional lock
during the write. Difficulties arise if another salesperson, B, also sells a guitar
at the same time. B might read the record st the same time as A, decrement the
inventory, and write the file out to the database. The record shows that two
guitars are in stock, when in fact, there is now only one.

There are several possible solutions to the problem. The simplest is to make
an unshared lock at the time of the original read and perform the unlock only
after the record had been written out. The problem with this scheme is the
potential for barring another user from access to the record for a long time.

A more adequate solution to the problem is to let the system resolve possible
conflicts. All user reads are preceded by a shared lock, whiech permits
simultaneous access of the record by other users. When the modified record is
to be written out, the system checks to see if the record has been modified in
the interim period. If it has not been changed, it is written out. If it has been
changed, the value of the record must be recalculated.

CROMIX SYSTEM CALL ERRORS

If the Cromix Opersting System cannot complete a system call in the normal
manner, for example, when a program tries to open a file which does not exist,
an error condition is generated. This error condition is reflected by the state
of the carry flag which is set or reset by the operating system when returning
from a system call. If the carry flag is reset (=0), the system call completed
its task successfully. If the carry flag is set (=1), the system call ended
abnormally and the error type is returned in the DO register. The D0 register
may then be compared with a value from the error definition table in the
jsysequ.asm file for user exception processing. The carry flag should be
checked after every system call except for the _exit and _error calls. The
—exit call does not return, and if the _error call returns an error, it is possible
to generate an endless loop -~ an error routine which generates an error and
then jumps to itself again.

If the _error system call is executed after a system call that generated an
error, (carry set), an ASCII message equivalent to the error type is sent to the
channel specified by the Dl register. (See the _error system call.)

The following example attempts to open a file that does not exist. When the file
is not found, the program jumps to a create routine. Any other errors fall
through to the _error system call, which displays the error on the console and
then exits to the operating system.

12

Cromemeo Cromix-Plus Programmer's Reference Manual
1. Introduction to Cromix System Calls

lea pathname,A0 ; Pathname of file
move #OP_RDWR,D2 ; Read and write access
jsys #_open ; Open the file
bee open_ok ; No errors, go to open_ok
emp # _notexist, DO ; If file not found
beq create_ijt ; go to create routine
; else let system process the error
move #stderr, D1 ; stderr channel for console
isys #_error ; send the error to the console
move #=-1,D3 ; Value returned to shell
jsys #_exit ; Exit to operating system
open,_ok:move, #0,D3 ; Value returned to shell
jsys #_exit ; Dummy open routine,
; exit to operating system
path._name: de.b ‘/usr/non_existent_file\§’

Error Conditions

If the Cromix Operating System cannot complete a system call in the normal
manner, an error is generated. The operating system flags an error condition
by setting the carry bit in the flag register (the carry flag). A normal return
from a system call is indicated by a reset carry flag.

If an error has occurred (carry flag is set or is equal to one), the DO register
contains the error code. The type of error that was returned may be established
by comparing the DO register with the following list of error codes. Each error
code is preceded by the error number.

29 ?arglist The argument list that was provided is incorrect.

28 ?argtable The argument table is exhausted.

15 ?badeall The system call that was specified is illegal.

1 ?badehan An invalid channel number was specified. The operating system
must be called with a channel number assigned at the time a
file was opened or created.

24 ?badformat The format of the file is bad.

42 ?badfree A block is out of range in the free list.

43 ?badinum The inode number is out of range.

52 7?badio The input or output is bad.

8 ?badname The filename that was specified does not conform to proper
filename syntax. The name is too long or contains illegal

characters.

13

Cromemeco Cromix~Plus Programmer's Reference Manual
1. Introduction to Cromix System Calls

47
34
26

40

27
49
36

31

37

11

10

16

38

22

14

19

30

?badpipe
?badvalue
?edossim

?chnaccess

?corrupt
?deadlock
?devopen

?difdev

2diraccess

2diruse

?endfile

?exists

?2fil access

?fil size
?filtable
?filuse
?fsbusy

?inotsable

. ?ioerror

?isdir

?lektable

An attempt was made to write to a broken pipe.
The specified value was out of range.
The CDOS simulator is required.

An attempt has been made to access a channel which the
current user may not access.

The system image has been corrupted.
A possible deadlock condition has been detected.
a device open error has occurred.

There is a cross device link. File references cannot exist
across disks.

An attempt has been made to access a directory which the
current user may not access. Make sure the pathname does
not include any directories with privileged access.

An attempt was made to delete a directory that was in use.
All files must be deleted from a directory before it may be
deleted.

An end of file condition exists on the file being processed.
There is no data in the file beyond (in a forward direction from)
the current file position.

An attempt has been made to create a file that already exists.

An attempt has been made to open a file to which the current
user has no access.

The size of the file is too big.

The file table has been exhausted.

The requested file is an exclusive access file and was in use.
The requested file system was busy.

The inode table is exhausted.

A physical data transmission error has occurred.

The specified pathname is that of a directory.

The lock table is exhausted.

14

Cromemeo Cromix-Plus Programmer's Reference Manual
1. Introduection to Cromix System Calls

49
17
25
32
13
39
26
45
12
53
21
35

41

18

24

23

30

27

20

44

?1ocked
?mnttable
?nochild
?nodevice
?noinode
?nomsteh
?nomemory
?noproe
?nospace
not 68000
?notblk
?noteconn

?noteromix

?notdir

?notexist

?notmonnt

notopen

?notordin

numlinks

?ovflo

?priv

?readonly

The specified sequence is already locked.

The mount table is exhausted.

There is no child process.

There is no device driver for the referenced device.

No inodes are left.

There is no match on the specified ambiguous pathname.
There is not enough memory. .

The process does not exist.

An sttempt has been made to write to a full disk.
68000 programs cannot be run under Z80.

The specified device is not a block special device.

The requested I/O device was not connected to the system.

The specified disk is not compatible with the Cromix Operating
System.

The specified pathname was not that of a directory.

The specified file does not exist. Make sure that the pathname
properly identifies the desired file.

The specified device was not mounted prior to the call.

The specified channel has not been opened or was closed prior
to the system call. A file must be opened (using the _open
or _create call) prior to being used for 1/0.

The requested file is not an ordinary file.

This operation would have created too many links to the
specified file or device.

An overflow occurred during a divide operation.

An attempt was made to invoke a privileged system call by
other than a privileged user.

The device is mounted for read access only.

15

Cromemeco Cromix-Plus Programmer's Reference Manual
1. Introduction to Cromix System Calls

35

46

a1

33

?runaway
?signal
?tapeio
?toomany

?2usrtable

A runaway program has been aborted.
The system call was aborted.

There has been a tape 1/0 errcr.

All possible channels are already open.

The user process table is exhausted.

16

Cromemeo Cromix~Plus Programmer's Reference Manual
2.Cromix~-Plus System Call Desecriptions

Chapter 2

CROMIX-PLUS SYSTEM CALL DESCRIPTIONS

system call: ~alarm
number: 43h
purpose: This call sends an alarm signal to the calling
process after the specified number of seconds.
user access: all users
summary: move.l <number of seconds>, D3

jsys # _alarm

calling
parameters: D3.L The D3.L register contains either the number of
seconds before an alarm signal is sent to the current
process or a zero to cancel the previous alarm.
return
parameters: none
possible
errors: none

The _alarm call sends an alarm signal to the current process after the specified
number of seconds has elapsed. If the D3.L register is loaded with 0 and the
-alarm call is executed after an alarm has been set up, the previous alarm is
canceled.

17

Cromemeco Cromix~-Plus Programmer's Reference Manual
2. Cromix~Plus System Call Desecriptions

system call:
number:
purpose:
user access:

summary :

calling
parameters:

refurn
parameters:

possible
errors:

_boot

56h

This call boots a new operating sy stem.
privileged user

lea <address of new system>, A0

move.l <size>, D1
jsys #_boot

AQ The A0 register points to the first word of the code
for the new operating system.

D1.L The D1 register contains the length of the new
operating system (in bytes)

none

?priv

The _boot system call saves the given 68000 code and performs a shutdown.
After shutdown, instead of going into an infinite loop, jsys _boot will move
supplied code at address 000000h, load

Di.L = Size of code in bytes
D2.L = Current root device

and then simulate the reset function (i.e., load SP from 000000h, PC from
000004h, and return).

18

Cromemeo Cromix~Plus Programmer's Reference Manual
2. Cromix-Plus System Call Descriptions

system call:
number:
purpose:

user access:

SUMMArys

calling
parameters:

return
parameters:

possible
errors:

—caceess
27h
This call tests channel access.

all users

move <ehannel>, D1
move <{access bits>, D2
jsys #_caccess

D1 The D1 register contains the number of the channel
whose access is to be tested.

D2 The D2 register contains the access bits to be tested.
These bits can be ORed together to test for various
combinations of access privileges. These bits may
be represented by:

AC_READ read
AC_EXEC execute
AC_WRIT write
AC_APND append

The carry flag is reset (=0) if the file represented by the
channel, is allowed to be open for the specified access.

The carry flag is set and the D0 register contains the error
code _fileaccess if the file cannot be open for the specified
access. -

Note: The _caccess call does not test how the file is open.
It tests how the file goyld be opened.

?fileaccess
?notopen

The _caccess call tests the access privileges of an o'pen channel.

19

Cromemeco Cromix~Plus Programmer's Reference Manual
2.Cromix~-Plus System Call Deseriptions

system call:
number:
purpose:
user access:

summary :

calling
parameters:

return
parameters:

passible
errors:

_echstat

23h

This call changes the status of an open file.

see table

move <{channel>, D1

move {status type>, D2

move <new value>, D3

move {access mask>, D4 (only for access)

lea <buffer>, Al {(only for times)

jsys #_cchstat

D1 The Dl register contains the channel number
associated with the open file.

D2 The D2 register contains the status type to be

changed.

For access privilege changes:

D3

D4

For time

Al

The D3 register contains the new value of the
specified status type.

The D4 register contains the mask of the status bits
to be changed:

AC_READ read
AC_EXEC execute
AC_WRIT write
AC _APND append

changing calls:

The register Al points to a 6-byte buffer contain the
new time (ymdhms).

For other status changes:

D3

none

The D3 register contains the new value.

Ifilaccess

?priv
?notopen

20

Cromemeo Cromix-Plus Programmer's Reference Manual
2+ Cromix~Plus System Call Descriptions

The _cchstat call changes the access privileges associsted with a file, the times
associated with a file, the owner id of a file, or the group id of a fi_le.

The file must be open; the channel number is used to identify the file.

Table of Cchstat Calls

* D2 Status Loecation of
Who Register Type New Information
p ST_OWNER owner id D3 = new value
p ST_GROUP group id D3 = new value
p&o ST_AOWNER access owner D3 = value, D4 = mask
p&o ST _AGROUP access group D3 = value, D4 = mask
p&o ST_AOTHER aceess publie D3 = value, D4 = mask
p ST_TCREATE time ereated A1l -> 6 byte buffer
p ST_TMODIFY time last modified Al ~> 6 byte buffer
p ST__TACCESS time last accessed A1l -> 6 byte buffer
p ST_TDUMPED time last dumped Al -> 6 by te buffer
*
p = privileged user
0 = owner

Cromemeo Cromix~Plus Programmer's Reference Manual
2. Cromix—-Plus System Call Deseriptions

system call: - e¢hdup
numbers 0Ah
purpose: This call duplicates a channel.
user access: all users
summary: move <{existing channel>, D1

jsys #_chdup
move.l D2, <duplicate channel>

calling
parameters: D The D1 register contains the existing channel number.
return \),
parameters: D2.L The D2.L register contains the duplicate channel
number assigned by the system.
possible
errors: ?notopen

?toomany

The _ehdup call duplicates a channel and may be used for channel number
manipulation. Please refer to the _pipe system call for additional information.

22

Cromemeco Cromix-Plus Programmer's Reference Manual
2. Cromix-Plus System Call Deseriptions

system call: _chkdev
number: 07h
purpose:: This call verifies the presence of a specified device driver in

the operating system.
user access: all users

summary: move <{ty pe of device>, D2
move <major device number>, D3
move <{minor device number>, D4
jsys #_chkdev

calling
parameters: D2 The D2 register indicates the type of device:
IS_BLOCK block device
IS_CHAR character device
D3 The D3 register contains the major device number.
D4 The D4 register contains the minor device number.
return
parameters: none
possible
errors: ?nodevice

The _chkdev call verifies the presence of a device driver. If the device driver
is present in the operating system, the _chkdev call returns without an error
(carry flag clear). If the deviee driver is not present, the carry flag is set by
the call and an error is returned. ' '

23

Cromemeo Cromix~Plus Programmer’'s Reference Manual
2.Cromix~Plus System Call Descriptions

system call: -clink
number: 25h
purpose: This call establishes an additional link to an open file.
user access: all users
surnmary : move <channel>, D1
lea <new pathname>, Al

jsys #_clink

callin
parametersi D1 The Dl register contains the channel number of the
open file.

Al The Al register points to the file pathname to be
established (i.e., the new pathname). The pathname
must be terminated by a null character.

return
parameters: none
possible
errors: ?badname

?isdir

?numlink s

?diraccess

?exists

?notopen

The _elink call establishes a link from the file open on the specified channel
to the new pathname. The new file pathname must not exist before the _elink
call is made.

24

Cromemco Cromix~Plus Programmer's Reference Manual
2. Cromix-Plus System Call Descriptions

system call: —close
numbers 0Bh
purpose: This call closes ‘an open file.
user access: all users
summary: move <channe1>, D

jsys #_close

calling
parameters: D1 The D1 register contains the channel number of the
open file. ’
return
parameters: none
possible
errors: ?notopen

The _close call flushes all buffers associated with the specified chanhel number
and disassociates the channel number from the file to which it was assigned.

25

Cromemeo Cromix~Plus Programmer's Reference Manual
2. Cromix-Plus System Call Desecriptions

system call: ~Ccreate
number: 08h
purpose: This call creastes and opens a file.
user access: all users
summary : lea <{pathname>, A0

move <access mode>, D2
move <exclusive mask>, D3
jsys #_create

move.l D1, <channel>

calling
parameters: Al The A0 register points to a buffer containing the
pathname of the file to be created and opened. The
pathname must be terminated by a null character.

D2 The D2 register contains the access mode value for
opening the file. The following labels represent the
values of the D2 register required to establish the
desired access mode. The specified access mode is
applicable to the current process.

Nonexelusive access values:

OP_READ read only
OP_WRITE write only
OP_RDWR read/write

OP_APPEND append
Exelusive access values:

OP_XREAD read only
OP_XWRITE write only
OP_XRDWR read/write
OP_XAPPEND append

If exclusive access is desired, one of the four
exclusive access values listed above must be loaded
into the D2 register. This, in conjunction with the
desired exelusion bit(s) in the D3 register, denies
other users access.

The following values may be ORed with the desired
access value (see above) to seleet the truncate option
or conditional option.

26

Cromemeo Cromix-Plus Programmer's Reference Manual
2. Cromix~Plus System Call Deseriptions

return
parameters:

possible
errors:

D3

D1.L

?fil table

Truncate flag:
OP_TRUNCF delete existing data
Conditional flag:

OP_CONDF retuvm error if file
exists

The D3 register contains the mask for exelusive
access. It is inspected only if the D2 register
indicates exclusive access. Each of the specified bits
must be set to prevent the file from being opened by
another process for the specified access. (For
example, "OP_READ indicates that no other process
may open the file with the read access. This does
not exclude another process from opening the file
for read/write access. To exclude all reads,
“OP_READ and "OP_RDWR must be ORed together.)
The following values may be ORed together to set more
than one bit.

Exelusive access bits:

“OP_READ exclude read
“OP_WRITE exclude write
"OP_RDWR exclude read/write
"OP_APPEND exclude append

The D1.L register contains the channel number that
the system assigned to the file.

?badname

?isdir

2diraccess

The _create call creates a file with the specified pathname.

If the file does not exist at the time of the system call, it is crested and opened
with the requested access.

If the file does exist and the conditional flag is set, aﬁ error is returned. If
the file does exist and the conditional flag is reset (=0), the file is opened.

27

Cromemeo Cromix~-Plus Programmer's Reference Manual
2.Cromix~Plus System Call Descriptions

If ‘the file exists and is opened (as specified by the conditional flag), the
existing data is kept if the truncate flag is reset. The data is discarded (the
file is truncated) if the truncate flag is set. A file may only be truncated if the
user has write access to the file.

The channel number that the Cromix Opersating System returns is used for
subsequent access to the file.

The file created has default access privileges. In a standard system, these are
read and execute for group and publie, and read, execute, write, and append for
the owner. :

Cromemeo Cromix~Plus Programmer's Reference Manual
2.Cromix-Plus System Call Descriptions

system call: estat
number: 21h
purpose: This call returns the status of an open file.
user access: all users
summary : move <channel>, D1
move <{status type>, D2
lea <buffer>, Al (if necessary)

jsys #_estat
<{depends on status type>

calling
parameters: D1 The D1 register contains the channel number
associated with the open file.
D2 The D2 register contains the request to the system
for the desired information.
Al The register Al may point to a 6-byte or 128-byte
buffer. Refer to the table.
return
parameters: See table
possible
errors: ?notopen

The _estat call returns channel status information. The file must be open; the
channel number is used to identify the file. Please refer to the following table
of _cstat calls.

29

Cromemeo Cromix~Plus Programmer's Reference Manual
2. Cromix~Plus System Call Descriptions

Table of Cstat Calls

D2 Information -| Location of the
Register Returned Information Returned
ST_ALL all of inode Al -> 128~byte buffer
ST_OWNER owner id D3.L
ST_GROUP group id D3.L
ST _AOWNER access owner D3.L
ST _AGROUP access group D3.L
ST _AOTHER access public D3.L
ST_FTYPE file type D3.L = IS_ORDIN

IS_DIRECT
IS_CHAR
IS_BLOCK
IS_PIPE
ST _SIZE file size- D3.L
ST_NLINKS number of links D3.L
ST_INUM inode number D3.L
ST _TCREATE time created Al -> 6~byte buffer
ST_TMODIFY time last modified Al -> 6-byte buffer
ST_TACCESS time last accessed Al -> 6-byte buffer
ST_TDUMPED time last dumped Al -> 6-byte buffer
ST_DEVNO device number D3.L = major device #
D4.L = minor device #
ST_DEVICE device number D3.L = major device #
D4.L = minor device #
ST_PDEVNO device number D3.L = major device #
D4.L = minor device #

ST_DEVNO returns the device numbers of the device specified in a device file.
If the specified file is not a device file, ST_DEVNO returns zeroces. ST_DEVICE
returns the device numbers of the device on which the specified file resides.

ST_PDEVNO returns the same value as ST_DEVNO except: for block device

number zero the device number of the root device is returned; for character
device number zero the device number of the user's terminal is returned.

30

Cromemeo Cromix~Plus Programmer’s Reference Manual
2. Cromix-Plus System Call Descriptions

system call: delete

number: 06h

purpose: This call deletes a directory entry.
user access: all users

summary : lea <{pathname>, A0

jsys # _delete

calling
parameters: AQ The A0 register points to a buffer containing the path
name of the directory or file to be deleted. The
pathname must be terminated by a null character.
return
parameters: none
possible
errors: ?diraccess
?notexist
?badname

The _delete call sttempts to remove the specified directory entry. If the
removed directory entry is the last link to the file, the file itself is deleted,
the space occupied by the file is released, and its contents are lost.

Write access (to the directory) is required to delete the directory entry.

If the file is open at the time the system call is made and the specified directory
entry is the last link to the file, the directory entry is deleted immedistely.
The file itself is not deleted until the active process closes the file.

In order for a directory to be deleted, it must not

1. contain any files;

2. be the current directory of any user; or
3. be the root directory of a device.

31

Cromemeco Cromix~Plus Programmer's Reference Manual
2. Cromix-Plus System Call Descriptions

system call: ~divd

numbers: 54h

purpose: This call divides two unsigned 32-bit integers.
user access: all users

summary move. <dividend>, D1

move.l <divisor>, D2
jsys # _divd

move.l D3,<quotient>
move.l D4,<remainder>

calling
parameters: D.L 32-bit unsigned dividend
DP2.L 32~bit unsigned divisor
return
parameters: D3.L The D3.L register contains the 32~bit unsigned
quotient.
D4.L The D4.L register contains the 32-bit unsigned
remainder.
possible
errors: ?ovflo

The _divd call returns D3.L = Dl.L / D2.L, D4.L = DL.L % D2.L treated as
unsigned 32-bit integers.

Cromemeo Cromix-Plus Programmer's Reference Manual
2. Cromix-Plus System Call Descriptions

system call: - —error

number: 1Ch

purpose: This call displays an error message.
user access: all users

summary : move <{error number>, D0

move <ehannel>, D1

lea. <pathname>, A0 (if needed)

lea <alternate pathname>, Al (if needed)

jsys # _error

calling
parameters: D0 The DO register contains the error number generated
by a system call

D1 The D1 register contains the channel number. This
channel receives the message and is usually set to
stderr.

AQ Points to the pathname that will be displayed as the
part of error message.

Al Points to the alternate pathname that will be
displayed as part of error message. The error number
returned by a system call has bit 7 set if the error
message should use the alternate pathname.

return
parameters: none
possible
errorss ?notopen

The _error call sends an error message to the specified channel. It should be
called immediately after a system call that generated an error (or registers D0,
A0, and Al must be saved after the system call and restored prior to the _error
call.

Errors may occur during calls to _error; this sets the carry ﬂég.

33

Cromemeo Cromix~-Plus Programmer's Reference Manual
2. Cromix-Plus System Call Deseriptions

system call: ~exehg

number: 0Ch

purpose: This call exchanges the filenames of two open files.
user access: all users

summary: move - <channel number>, D1

move <channel number>, D2
jsys # _exchg

calling
parameters: Dl The D1 register contains the channel number of one
file.
D2 The D2 register conteins the channel number of the
second file.
-return
parameterss none
possible
errors: ?notopen

The _exchg call exchanges the filenames of two open files. After _exchg is
executed, the two filenames remain associated with their original inodes, but
the block pointers of the inodes are changed.

34

Cromemeo Cromix~Plus Programmer's Reference Manual
2. Cromix~-Plus System Call Descriptions

system call:
number:
purpose:
user access:

summary:

calling
parameters:

return
parameters:

possible
errors:

—€xec
4Ch

This call executes a program.

all users

lea <argument list>, Al

lea <{pathname>, A0

jsys # _exec

Al The Al register points to a list of pointers. The list

of pointers is terminated by a null pointer. Each
pointer points to a null-terminated character string.
Each string is an argument passed to the new program.

A0 The A0 register points to the pathname of the file
to be executed. A null character terminates the
pathname.

none (does not return)

notexist
?fil access
?nomemory

The _exec call attempts to load the new program in a free memory area. If there
is no memory available, the _nomemory error is returned.

All echannels opened before the execution of the _exec call are passed to the

new process.

35

Cromemeco Cromix~Plus Programmer's Reference Manual
2. Cromix~Plus System Call Deseriptions

system call: —exit

number: 46h

purpose: This call exits from a process.
user secess: all users

summary: move {termination status> D3

jsys #_exit

calling
parameters: D3 The D3 register contains the termination status to
be passed back to the calling program.
0 termination OK
nonzero abnormal termination
return
parameters: none (does not return)
possible
errors: none

The _exit call provides an exit from an active process. It closes all channels
and unlocks all locks that the current process initiated.

The termination status is a user-defined value that the user wishes Cromix to
pass back to the calling program. Normally, 0 (zero) indicates no error; any
other value indicates an error. (The shell if -err construction tests the
termination status of the last program executed.)

36

Cromemeo Cromix-Plus Programmer's Reference Manual
2. Cromix-Plus System Call Descriptions

system call: _faccess
pumbers 26h
purpose: This call tests file access.
user access: all users
summary: move <access bits>, D2
lea {pathname>, A0
isys #_faccess
calling
parameters: D2 The D2 register contains the access bits to be tested.

These bits can be CRed together to test for various
combinsations of access privileges. These bits may
be represented by:

AC _READ read
AC_EXEC execute
AC_WRIT write
AC_APND append

AD The A0 register points to the pathname of the file
to be tested. The pathname must be terminated by
a null character.

return
parameters: The carry flag is reset (=0) if the file may be accessed as
specified.
The carry flag is set and the D0.L register contains the error
code _fileaccess if the file cannot be accessed as specified.
possible

errors: ?badname
?fileaccess
?notexist

The _faccess call tests the access privileges of a file.

37

Cromemeo Cromix~-Plus Programmer's Reference Manual
2. Cromix~Plus System Call Descriptions

system call:
number:
purpose:
user access:

summary

calling
parameters:

return
parameters:

possible
errors:

fehstat

22h

This call changes the status of a file.

see table

lea <pathname>, A0

move <{status type>, D2

move <new value>, D3 ‘

move <access mask>, D4 (only for access)

lea <buffer>, Al (only for times)

jsys #_cchstat

AD The A0 register points to the pathname of the file
whose status is to be changed.

D2 The D2 register contains the status type to be

changed.

For access privilege changes:

D3

D4

The D3 register contains the new value of the
specified status type.

The D4 register contains the mask of the stastus bits
to be changed:

AC_READ read
AC_EXEC execute
AC_WRIT write
AC _APND append

For time-changing calls:

Al

The register Al points to a 6-byte buffer which
contains the new time (year, month, day, hour,
minutes, seconds).

For other status changes:

D3

none

The D3 register contains the new value.

?fil access

?priv

?notexist
?badname

38

Cromemeco Cromix-Plus Programmer's Reference Manual
2. Cromix~Plus System Call Descriptions

The _fehstat call changes the access privileges associated with a file, the times
associated with a file, the owner id of a file, or the group id of a file.

Table of Fehstat Calls

* D2 Status Loeation of
Who Register Type New Information
p ST _OWNER owner id D3 = new value
p ST _GROUP group id D3 = new value
pé&o ST_AOWNER access owner D3 = value, D4 = mask
péo ST _AGROUP aceess group D3 = value, D4 = mask
p&o - ST _AOTHER access public D3 = value, D4 = mask
p ST_TCREATE time created Al ~> 6-byte buffer
p ST _TMODIFY time last modified Al -> 6-byte buffer
p ST _TACCESS time last accessed Al -> 6-byte buffer
p ST _TDUMPED time last dumped Al -> 6-byte buffer
*
= privileged user
0 = owner

39

Cromemco Cromix-Plus Programmer's Reference Manual
2.Cromix-Plus System Call Deseriptions

system call: fexec
number: 4Bh
purpose: This call forks and executes a program.
user access: all users
summary : lea {argument list>, Al
lea <pathname>, A0

move <{signal mask>, D1
move <signal values>, D2
jsys #_fexec

move.l D3, <new PID>

calling
parameters: Al The Al register points to a list of pointers. The list
of pointers is terminated by a null pointer. Each
pointer points to a null-terminated character string.
Each string is an argument passed to the new program.

AQ The A0 register points to the pathname of the file
to be executed. A null character terminates the
pathname.

D1 The D1 register contains an 8-bit mask whieh indicates
what signals to pass to the child (new) process. If
a bit is reset (=0) then the corresponding bit in the
D2 register is ignored. The child process will either
ignore or be aborted by the signal corresponding to
that bit, depending on whéther the parent ignores or
is aborted by the signal; if the parent process has
provided a trapping routine (i.e., with the _signal
call) the child process will again be aborted as it
cannot inherit trapping routines. If a bit is set (=1),
the corresponding bit of the D2 register determines
what the child process does with the corresponding
signal.

D2 If the corresponding bit in the D1 register is set (=1),
the bit in the D2 register indicates the action to be
taken by the child process when the corresponding
signal is received. A bit that is reset (=0) causes the
child process to abort when that signal is received.
A bit that is set (=1) causes that signal to be ignored.
The kill signal cannot be masked.

return
parameters: D3.L The D3.L register contains the child process id (PID)
number.

40

Cromemeo Cromix-Plus Programmer's Reference Manual
2. Cromix-Plus System Call Deseriptions

possible
errors: ?notexist
?2filaccess
?nomemory
?badname
?usrtable

The _fexec call begins execution of a program and returns contral to the calling
program. This call is similar to the _exec call, except that a new process is
created.

The child process inherits only the channels 0, 1, and 2 (if they are open), but
not all open channels.

Notes

Only signals one through eight can be passed or masked in this call. Bit zero
corresponds to signal one, bit one to signal two, and so on.

41

Cromemeco Cromix~Plus Programmer's Reference Manual
2. Cromix~-Plus System Call Descriptions

system call: _flink
number: 24h
purpose: This eall establishes a link to a file.
user access: all users
summary : lea <old pathname>, A0
lea <{new pathname>, Al

 jsys #_flink

calling
parameters: AQ The A0 register points to the existing file pathname.
The pathname is terminated by a null character.

Al The Al register points to the file pathname to be
established (the new pathname). The pathname must
be terminated by a null character.

return
parameters: none
possible
errors: ?badname

?isdir

?numlink s

?diraccess

?exists

?notexist

The _flink call establishes a link to a file.

42

Cromemeo Cromix-Plus Programmer's Reference Manual
2.Cromix-Plus System Call Descriptions’

system call: _fshell
numbers: 48h
purpose: This call forks a shell process.
user access: all users
summary: lea {argument list>, Al

move {signal mask>, D1
move <signal values>, D2
jsys #_fshell

move.l D3, <new PID>

calling

parameters: Al The Al register points to a list of pointers. The list
of pointers is terminated by a null pointer.
pointer points to a null-terminated character string.
Each string is an argument passed to the new program.

D1 The D1 register contains an 8~bit mask which indicates
what signals to pass to the child (new) process.
a bit is reset (=0) then the corresponding bit in the
D2 register is ignored. The child process will either
ignore or be aborted by the signal corresponding to
that bit, depending on whether the parent ignores or
is aborted by the signal; if the parent process has
provided a trapping routine (i.e., with the _signal
call) the child process will again be sborted, as it
cannot inherit trapping routines. If a bit is set (=1),
the corresponding bit of the D2 register determines
what the child process does with the corresponding

signal.

D2 If the corresponding bit in the DI register is set (=1),
the bit in the D2 register indicates the action to be
taken by the child process when the corresponding
signal is received. A bit that is reset (=0) causes the
child process to abort when that signal is received.
A bit that is set (=1) causes that signal to be ignored.
The kill signal cannot be masked.

return

parameters: D3.L The D3.L register contains the child process id { PID)

number.

possible
errors: ?nomemory

The _fshell call initiates execution of a child shell process which acquires a

new PID.

43

Cromemeo Cromix-Plus Programmer's Reference Manual
2.Cromix~Plus System Call Descriptions

Options

These options are needed only when a program is calling a shell. They are not
useful when a shell is called from the terminal.

The ~c option indicstes that the command line as a whole is passed to the shell.
Shell will treat it as if it were typed from the terminal.

The ~-p option indicates that the command line being passed to the shell is
already broken into separate arguments.

The ~-q option requests that the lines from a command file not be echoed to the
terminal (standard output).

The -z option can be used when forking an interactive Shell (Shell with no
arguments). This option causes the new Shell to ignore CONTROL-Z (End Of
File). If the optionis not set, a CONTROL~-Z character will terminate the Shell.

Naotes

Only signals one through eight can be passed or masked in this call. Bit zero
corresponds to signal one, bit one to signal two, and so on.

The _fshell call expects its arguments to be in one of the following three forms:
Form 1 (passing command filenames)

Al -=> arg 0 =-> "shell\0"
arg 1 -> arg 1 (a command filename)
arg 2 ~-> arg 2 (first argument for command)

0
Form 2 (passing a parsed argument list)
Al -> arg 0 ~=> "shell\Q"

arg 1 -> "-p\0"

arg 2 -> command name

arg 3 ~> command's first argument
arg 4 -> command's second argument

o e s

Form 3 (passing a command line)

Al -> arg 0 ~-> T"shell\O"
arg 1 ,_> n_c\on
arg 2 -> full command line
0

44

Cromemeco Cromix-Plus Programmer’s Reference Manual
2. Cromix~Plus System Call Descriptions

sy stem call: fstat
number: 20h
purpose: This call returns the status of a file.
user access: all users
summary : lea <pathname>, A0
move <{status type>, D2
lea <buffer>, Al (if necessary)

jsys #_fstat

calling
parameters: AD The A0 register points to the pathname of the file
whose status is to be checked.
D2 The D2 register contains the request to the system
for the desired information.
Al The register Al may point to a 6-byte or 128-byte
buffer. Refer to the table.
return
parameters: See table
possible
errors: ?badname

The _fstat call returns file status information. Please refer to the following
table of _fstat calls.

45

Cromemeco Cromix~Plus Programmer’'s Reference Manual

2. Cromix~Plus System Call Deseriptions

Table of Fstat Calls

D2 Information Location of the
Register Returned Returned Information
ST_ALL all of inode Al ~> 128 byte buffer
ST _OWNER owner ide D3.L
ST _GROUP group ide D3.L
ST _AOWNER aecess owner D3.L
ST_AGROUP aceess group D3.L
ST _AOTHER access public D3.L
ST_FTYPE file ty pe D3.L = IS_ORDIN

IS_DIRECT
IS_CHAR
IS_BLOCK
IS_PIPE
ST_SIZE file size D3.L
ST_NLINKS number of links D3.L
ST_INUM inode number D3.L
ST_TCREATE time created Al -> 6 byte buffer
ST _TMODIFY time last modified Al -> 6 byte buffer
ST_TACCESS time last accessed Al -> 6 byte buffer
ST _TDUMPED time last dumped Al -> 6 byte buffer
ST_DEVNO device number D3.L = major device #
D4.L = minor device #
ST_DEVICE device number D3.L = major device #
D4.1L: = minor device 4
ST_PDEVNO device number D3.L = major device #
D4.L = minor device #

ST_DEVNO returns the device numbers of the device specified in a device file.
If the specified file is not a device file, ST_DEVNO returns zeroes. ST_DEVICE
returns the device numbers of the device on which the specified file resides.

ST_PDEVNO returns the same value as ST_DEVNO except: for block device

number zero the device number of the root device is returned; for character
device number zero the device number of the user's terminal is returned.

46

Cromemeo Cromix-Plus Programmer's Reference Manual
2.Cromix~-Plus System Call Descriptions

system call:
number:
purpose:
user access:

summarys:

calling
parameters:

return
parameters:

possible
errors:

getdate

30h

~This call returns the date.

all users

jsys #_getdate

move.d DO, <weekday>

move.l D1, <{year>

move.l D2, <month>

move.l D3, <day>

none

D0.L The DO0.L register contains the day of the week (1
represents Sunday, 2 represents Monday, ete.).

D1.L The Dl.L register contains the year minus 1900. This
means 1983 is represented as 83 and 2004 is 104.

D2.L The D2.L register contains the month (1 represents
January, 2 represents February, ete.).

D3.L The D3.L register contains the day of the month
(between 1 and 31).

none

The _getdate call returns the current day as recorded by the Cromix system

clock.

47

Cromemeo Cromix-Plus Programmer’s Reference Manual
2.Cromix ~Plus System Call Descriptions

system call: -getdir
number: 02h
purpose: This eall returps the current directory pathname.
user access: all users
summary s lea <buffer>, A0

jsys #_getdir

calling
parameters: A0 The A0 register points to a 128 byte buffer for the
pathname of the current directory.
return -
parameters: none
possible
errors: none

The _getdir call returns the pathname of the current directory.

48

Cromemeo Cromix-Plus Programmer's Reference Manual
2. Cromix~Plus System Call Descriptions

system call: ~getgroup

number: d6h

purpose: This call returns the group id.
user access: all users

summary: move <id type>, D2

jsys #_getgroup
move.l D3, <group number requested>

calling
parameters: D2 The D2 register contains a value indicating the type
of identification desired.
ID_EFFECTIVE
ID_LOGIN
ID_PROGRAM
return
parameters: D3.L The D3.L register contains the type of group
identification requested.
possible
errors: none

The _getgroup call returns the group id.

49

Cromemeo Cromix-Plus Programmer's Reference Manual
2. Cromix-Plus System Call Descriptions

system call:
numbers:
purpose:

user access:

SUmMmary :

calling
parameters:

return

parameters:

possible
errors:

-getmode

12h

This call returns the characteristics of a character device.

all users

move <channel>, D1

move <{mode type>, D2

isys #_getmode

move.l D3, <mode value>

D1 The D1 register contains the channel number of the
device,

D2 The D2 register contains the MODE TYPE to be tested.

D3.L The D3 register contains the value of the mode type
specified by the D2 register.

none

The _getmode call returns the characteristics of a character device. For more
mformatlon, refer to the description of the modeequ.asm and bmodeequ.asm

files in appendix A and the Mode utility in the Cromix-Plus User's Reference

Manual,

50

Cromemeo Cromix~Plus Programmer's Reference Manual
2.Cromix-Plus System Call Deseriptions

system call:
number:
purpose:
user access:

summary:

calling
parameters:

return
parameters:

possible
errors:

-getpos:
10h
This call returns a file pointer.

all users
move <{channel number> DIl

jsys #_getpos
move.l D3, <file position>

D1 The D1 register contains the channel number of the
open file.

D3.L The D3.L register contains the current value of the
file pointer. This is a 32-bit unsigned integer.

notopen

The _getpos call returns the logical position of the file.

51

Cromemeco Cromix-Plus Programmer’s Reference Manual
2. Cromix-Plus System Call Descriptions

system call: -getprior
number: 38h ‘
purpose: This call returns the priority of the calling process.
user access: all users
summary s isys #_getprior

move.l D3, <process priority>

calling
parameters: none
return
parameters: D3.L The D3.L register contains the priority number of the
current process (~40 to +40).
possible -
" errors: none

The _getprior call returns the priority number of the calling process. This
number is within the range -40 (highest priority) to +40 (lowest priority).

52

Cromemco Cromix~Plus Programmer's Reference Manual
2.Cromix~-Plus System Call Descriptions

system call: —getproe

number: 3Ah

purpose: This call returns the PID of the calling process.
user access: all users

summary : isys #_getproc

move.l D3, <PID>

calling
parameters: none
return _
parameters: D3.L The D3.L register contains the process id.
possible
errors: none

The _getproc call returns the process id of the calling process.

53

Cromemeco Cromix-Plus Programmer's Reference Manual
2. Cromix-Plus System Call Descriptions

system call:
number:
purpose:
user access:

summarys:

calling
parameters:

. return
parameters:

possible
errors:

-gettime

32h

This call returns the time.

all users

jsys #_gettime

move.d D1, <hour>

move.l D2, <minute>

move.l D3, <second>

‘none

Di.L The Dl1.L register contains the hours portion of the
current time based on a 24~hour clock.

D2.L The D2.L register contains the minutes portion of the
current time. This is the number of minutes since the
current hour started. '

D3.L The D3.L register contains the seconds portion of
the current time. This is the number of seconds since
the current minute started.

none

The _gettime call returns the current time as recorded by the Cromix system

clock.

54

Cromemeo Cromix-Plus Programmer's Reference Manual
2. Cromix-Plus System Call Descriptions

system call:
number:
purpose:
user access:

summary s

calling
parameters:

return
parameters:

possible
errors:

getuser
34h
This call returns the user id of the current process.

all users

move <id type>, D2
jsys #_getuser
move.l D3, <user>

D2 The D2 register contains a value indicating the type
of identification desired.

ID_EFFECTIVE

ID_LCGIN
ID_PROGRAM

D3.L The D3.L register contains the type of id
identification requested.

none

The _getuser call returns the user id.

55

Cromemeo Cromix-Plus Programmer's Reference Manual
2. Cromix-Plus System Call Descriptions

system calls
number:
purpose:

user access:

summary

calling

parameters:

return
parameters:

passible

errors:

_indirect

51h

This call executes the system call identified by the number
in the DO register.

all users

move <call number>, DO

;all other registers as required by the call
jsys # _indirect ~

Do The DO register contains the system call number.

According to system call.

According to system call.

The _indirect call executes a system call identified by the value in the DO
register. Note that this use of the DO register prevents the _error and _wrbyte
system calls from being used with the _indirect system call.

56

Cromemeo Cromix~-Plus Programmers Reference Manual
2. Cromix~-Plus System Call Descriptions

system call: kill
number: 41h
purpose: This call sends a signal to a process.
user access: all users processes initiated by the user

privileged user any process

summarys move <{signal type>, D2
move <{process id>, D3
jsys #_kill
calling)
parameters: D2 The D2 register contains the ty pe of signal to be sent.
D3 The D3 register contains the process id of the process

to which the signal is sent.

return
parameters: none
possible
errors: ?priv
?noproc
?badeall

The _kill call sends a signal to a process. When any signal is received by a
process, the process is aborted unless the _signal system call specifies that
a subroutine be executed or the signal be ignored.

When a signal is received, unless it is ignored, an unsatisfied request for input
or output from a character device is canceled. Examples are reading a buffered
line from a console or writing a line to the printer.

If a signal is sent to process 0, the same type of signal is sent to all processes
that belong to the user invoking the call.

If the user is a privileged user and a SIGUSER signal is sent to process 1, sy stem
shutdown is initiated.

If a SIGABORT signal is sent to process 1, the /ete/ttys file is reexamined.
If an entry has a 0 in the leftmost column, the appropriate terminal is logged
off and all of its processes are terminated. If an entry shows a 1 in that column,
the terminal is logged in if it is not already logged in.

57

Cromemeo Cromix~Plus Programmer's Reference Manual
2.Cromix-Plus System Call Descriptions

system call:
number:
purpose:
user access:

summary

" calling
parameters:

_lock
3Eh

This call
all users
move

move
lea

jsys

bit 0

bit 1

bit 2

assists-in implementing interprocess communications.

<{lock type>, D2
<lock length>, D3
<loek sequence>, Al
#_lock

The D2 register contains the type of lock to be
implemented.

If bit 0 of the D2 register contains 0, the lock may
not be shared; a 1 indicates the lock may be shared.
A shared lock may be used by more than one process.

If bit 1 of the D2 register contains 0, then the lock
is unconditional; a 1 indicates that the lock is
conditional. If a conditional lock fails, a _locked
error is returned. If an unconditional lock fails, the
process is put to sleep until the lock does not fail.
Failure implies that the lock sequence matches the
lock sequence of a prior lock still in effect in one
of the following ways: '

1. A nonsharable lock was requested when a
matehing lock already existed.

2. A sharable lock was requested when a
nonsharable mateching lock already existed.

3. The lock table is full. This returns a _lektable
error to the process. There is space for 16
locks.

If bit 2 of the D2 register contains 0, the lock
sequence is completely determined by the user. If
bit 2 is set, the lock sequence is guaranteed to be
unique. Only processes forked by the _fork system
call will be able to produce the same loeking
sequence.

58

Cromemeo Cromix~Plus Programmer's Reference Manual
2. Cromix~-Plus System Call Deseriptions

D3 The D3 register contains the length of the locking
sequence. This must be a number between 1 and 186.

AO The A0 register points to the locking sequence of 16
or fewer bytes.

return
parameters: none
possible
errors: ?1locked
?deadlock
?1lcktable

59

Cromemeo Cromix~Plus Programmer's Reference Manual
2.Cromix~Plus System Call Descriptions

system call: ~makdev
number: (0h
purpose: This call creates a new name for a device.
user access: privileged user
summary : move {type of device>, D2

move <major device #>, D3
move <minor device #> D4
les <pathname>, AQ

jsys #_makdev

calling
parameters: D2 The D2 register indicates the type of device:
IS_BLOCK block device
IS._.CHAR character device
D3 The D3 register contains the major device number.
D4 The D4 register contains the minor device number.
AQ The A0 register points to the new pathname for the
device. The pathname must be terminated by a null
character.
return
parameters: none
possible
errors: ?hbadname
?exists

The _makdev call assigns a label to an existing device in the operating sy stem.

60

Cromemeo Cromix~Plus Programmer's Reference Manual
2, Cromix-Plus System Call Descriptions

system call: —makdir

numbers: 01h

purpose: This call creates a new directory.
user access: all users

summary: lea <pathname>, A0

isys #_makdir

calling
parameters: AQ The A0 register points to the pathname of the new
directory. The pathname must be terminated by a null
character.
return
parameters: none
possible
errors: ?badname

?exists

The _makdir call creates a new directory.

61

Cromemeo Cromix~Plus Programmer's Reference Manual
2.Cromix~Plus System Call Descriptions

system call: - memory
number: 50h
purpose: This call allocates or deallocates memory.
UsSer access: all users
SLmmary s move.d <mask>, DL (if allocating)

move {type>, D2

move.l <gize>, D3

lea <memory pointer>, A0 (if deallocating)
jsys #_memory

move. A0, <memory pointer> (if allocating)

calling
perameters: Di1.L The D1.L register contains a value which is used only
for allocation. The normal value is zero. A nonzerc
value restricts the address of the memory being
allocated. The pointer returned, if masked with the
given mask, will be zero. For example, to get memory
at a 64K boundary, specify the mask as 0xffff.
D2 The D2 register contains a value indicating the type
of action desired.
0 allocate memory
1 deallocate memory
D3.L Size of memory (in bytes).
A - Pointer to existing memory (if it is to be deallocated).
return
parameters: AQ The A0 register contains the pointer to the memory
obtained (if allocating).
possible
errors: ?nomemory

7?badvalue

For type = 0 the amount of memory defined by the D3.L register will be obtained
from the system and the pointer to it returned in the A0 register. For type =
1 the number of bytes defined by D3.L register and pointed to by A0 register
will be deallocated (returned to the system pool). Only the memory obtained
by the _memory system call should be deallocated. Memory is allocated and
deallocated in 4K chunks. Two consecutive calls to request memory do not
guarantee that the pieces obtained will be consecutive or in any perticular
position relative to the position of the user code.

62

Cromemeo Cromix-Plus Programmer's Reference Manual
2.Cromix~Plus System Call Descriptions

system call: mount -
number: 04h
purpose: ~ This call enables access to a file system.
user access: privileged user
summary: move {type of access>, D2
lea <{dummy pathname>, A0
lea <{block device pathname>, Al

jsys #_mount

calling
parameters: D2 The D2 register indicates the desired access:
0 read/write
1 read only

A0 The AQ register points to a buffer containing the
pathname of the dummy file in whieh the file system
is to be mounted. The pathname must be terminated
by a null character.

Al The Al register points to a buffer containing the
pathname of the block device which contains the file
system to be mounted. The pathname must be
terminated by a null character.

return
parameters: none
possible
errors: mttable

?fsbusy

7notblk

?badname

?notexist

The _mount call declares that a file system is to be mounted on a specified
device. References to the file system pathname refer to the root file of the
mounted file sy stem.

The dummy file pathname is the file system pathname while the file system

remains mounted. When the system is unmounted, the name reverts to dummy
status. .

63

Cromemco Cromix~Plus Programmer’s Reference Manual
2.Cromix-Plus System Call Desecriptions

system call:
number:
purpose:
user aceess:

summary :

calling
parameters:

return

parameters:

possible
errors:

mult

53h

This call multiplies two unsigned 32-bit integers.
all users

move. <multiplicand>, Di

move,l <multiplicator>, D2

jsys #_mult
move.l D3, {product>

Di.L 32-bit unsigned multiplicand

D2.L 32-bit unsigned multiplicator
D3.L The D3 register contains the 32-bit unsigned product.

20vflo

The _mult call returns D3.L = D1.L * D2.L treated as unsigned 32-bit integers.

64

Cromemeo Cromix~Plus Programmer’s Reference Manual
2. Cromix~-Plus System Call Deseriptions

system call: ~open

number: 09h

purpose: This call opens a file for access.
user access: all users

summary : lea <{pathname>, A0

move <access mode>, D2
move <exelusive mask>, D3
jsys #_open

move,l D, <channel>

calling
parameters: AQ The A0 register points to a buffer containing the
pathname of the file to be opened. The pathname must
be terminated by a null character.

D2 The D2 register contains the access mode value for
opening the file. The following labels represent the
values of the D2 register required to establish the
desired access mode. The specified access mode is
applicable to the current process.

Nonexclusive access values:

OP_READ read only
OP_WRITE write only
OP_RDWR read/write

OP_APPEND append
Exelusive access values:

OP_XREAD read only
OP_XWRITE write only
OP_XRDWR read/write
OP_XAPPEND append

If exclusive access is desired, one of the four
exclusive access values listed above must be loaded
into the D2 register. This, in conjunction with the
desired exelusion bit(s) in the D3 register, denies
other users access.

D3 The D3 register contains the mask for exclusive
access. It is inspected only if the D2 register
indicates exclusive access. Each of the specified bits
must be set to prevent the file from being opened by
another process for the specified access. (For
example, "OP_READ indicates that no other process
may open the file with the read access. This does
not exclude another process from opening the file
for read/write access. To exclude all reads,

65

Cromemeo Cromix-Plus Programmer's Reference Manual
2. Cromix~-Plus System Call Descriptions

return
parameters:

possible
errors:

"OP_READ and "OP_RDWR must be ored together.)
The following values may be ored together to set more
than one bit.

Exelusive access bits:

“OP_READ exclude read
“OP_WRITE exclude write
“OP_RDWR exclude read/write
“"OP_APPEND exclude append

D1.L The Dl.L register contains the channel number thst
the system assigned to the file.

?fil table
?badname
?diraccess
?isdir

The _open call assigns a channel number to the specified file. The user is then
allowed to read from and/or write to the file.

66

Cromemeo Cromix~-Plus Programmer's Reference Manual
2.Cromix-Plus System Call Descriptions

system call: —pause -
number: 44h
purpose: This call suspends process execution and waits for a signal.
user access: all users
summary: jsys #_pause
calling
parameters: none
return
parameters: none
possible
errors: none

The _pause call suspends execution of the current process until a signal
generated by the _kill or _alarm system call is received.

67

Cromemeco Cromix~Plus Programmer's Reference Manual
2. Cromix~-Plus System Call Deseripticns

gystem call: —pipe

numbers 0Eh

purpose: This call creates a pipe. .
user access: all users

summarys jsvs #_pipe

move.d D1, <reading side>
move.l D2, <writing side>

calling
parameters: none
return
parameters: D1.L The Di.L register contains the number of the channel
into which the data is read out from the pipe.
D2.L The DZ2.L register contains the number of the channel
from which the data is written into the pipe.
possible
errors: ?toomany

The _pipe system call returns two channel numbers. One channel number is the
writing end of the pipe, the other channel is the reading end of the pipe. You
will end up with two processes, one holding the writing end of the pipe, the
other one holding the reading end of the pipe. The writing process can then
write into the pipe without much ado. If it starts to overfill the pipe, Cromix
will put the writing process to sleep until the reading process makes room in
the pipe. By reading from the pipe, the reading process will wake up the writing
process if it fell asleep. If the reading process reads so far that the pipe
becomes empty, the reading process will go to sleep until the writing process
starts writing and wakes it up. The only time a problem can arise is if the
reading process dies. If the writing process tries to write to the other end of
the pipe while the reading process is dead, Cromix will kill the writing process
by sending the sigpipe signal.

The problem that remains to be solved is how to pass one end of the pipe to
another process. There are two facts which are used to achieve this end:

1. Whenever the system needs a new channel number, it will piek up the
lowest available number.

24 Whenever a process is forked, the child process will inherit the channels
0,1, and 2 (stdin, stdout, and stderr) from the parent process.

Suppose a process wants to fork a child process and talk to it through a pipe.
More specifically, the parent process will do the writing, the process wiil do
the reading. If some other setup is desired, the strategy deseribed below can

68

Cromemeo Cromix~Plus Programmer's Reference Manual
2. Cromix-Plus System Call Descriptions

easily be changed or extended. The solution is to ensure that the child's stdin
channel is going to be the reading end of the pipe.

1. Creste a pipe using the _pipe system call. Let the reading and the writing
channels be called rchan and wchan, respectively.

24 Make a duplicate stdin channel (call it oldstdin), so as not to loose it
completely.

3 Close the stdin ehannel.

4. Duplicate the rchan channel. Step 3 above guarantees that the lowest
channel number available is stdin, so you do not need to pay attention to
what the duplicate channel is. You know it is going to be stdin again.

5. Close the rchan channel. You do not need it anymore, as the reading end
of the pipe is now the stdin channel.

6. Fork the child process (_fexec or _fshell). The child process will inherit
the first three channels from the parent process, which means that the
child's stdin channel is the reading end of the pipe.

7a Here the cleanup operation starts. The parent process wants its own stdin
channel back, so close the stdin channel to ensure that stdin is the lowest
free channel,

8. Duplicate the oldstdin channel. Step 7 guarantees you are going to get
stdin again, so you do not need to pay attention to what you get.

The parent process now has its own channels back. Whatever it writes to the
wehan channel will be received by the child process on its stdin channel. If
the parent process wants to signal the end of the file to the child process it
can simply close the wchan channel. When the child process reaches the end
of pipe and finds the writing end of the pipe closed, the child process will get
an end-of-file on the read operation.

After the parent process has written to the pipe everything it intended, the
parent process should wait until the child terminates. Eventually, the child
process will hit the end of the pipe and presumably terminate. The parent
process can then close the wehan channel, and the pipe completely disappears.

If the parent process wants to read what the child process is going to write,
the above scheme can be easily modified:

1. Create a pipe using the _pipe system call. Let the reading and the writing
channels be called rchan and wchan, respectively. _

2. Make a duplicate stdout channel (eall it oldstdout) so as not to loose it
completely.

3. Close the stdout channel.

69

Cromemeo Cromix~-Plus Programmer’s Reference Manual
2. Cromix-Plus System Call Descriptions

4, Duplicate the wechan channel. Step 3 above guarantees that the lowest
channel number available is stdout, so you do not need to pay attention
to what the duplicate channel is. You know it is going to be stdout again.

Sa Close the wechan channel. You do not need it anymore, as the writing end
of the pipe is now the stdout channel.

6. Fork the child process (_fexeec or _fshell). The child process will inherit
the first three channels from the parent process, which means that the
child's stdout channel is the writing end of the pipe.

7o Here the cleanup operation starts. The parent process wants its own
stdout channel back, so close the stdout channel to ensure that stdout
is the lowést free channel.

8., Duplicate the oldstdout channel. Step 7 guarantees you are going to get
stdout again, so you do not even pay attention to what you get.

The parent process has now its own channels back. Whatever the child process
writes to it's stdout channel will be available on the rehan channel to the parent
process. If the child process wants to signal the end of file to the parent
process it can simply close the stdout channel (normally by jsys _exit). When
the parent process reaches the end of pipe and finds the writing end of the pipe
closed, the parent process will get an end~of-file on the read operation.

There are many other variations possible, including two-way communication.

For this, you need two independent pipes: the final result is achieved by
merging the above two schemes.

70

Cromemeo Cromix-Plus Programmer's Reference Manual
2. Cromix-Plus System Call Descriptions

system call: _printf
number: 1Bh
purpose: This call generates formatted output.
usSer access: all users
summary : move {channel>, D1
lea <control string>, A0

; push all arguments, last first
jsys #_printf
;pop all arguments

calling '
parameters: D1 The D1 register contains the output channel number.
AQ The A0 register points to the null-terminated control
string.
stack All arguments must be pushed onto the stack before
the call (last argument pushed first) and popped off
the stack after the call.
return
parameters: none
possible
errorss notopen

The _printf call generates formatted output.

The null-terminated control string is composed of regular characters and
conversion specifications. Regular characters are copied directly to the output
file. Conversion specifications are introduced by a percent (%) sign and
terminated by the conversion character itself.

The conversion specifications have the following format:
%-3xX%yyyL,z
The percent sign and the conversion character itself (z) are required; all

conversion-specification characters in between are optional.

A minus sign may follow the percent sign. If it is included, the argument is left
justified. Otherwise the argument is right justified.

Following this may be two strings of digits separated by a period (represented
by xxx.yyy). The first of these numbers represents the minimum field width.

71

Cromemeo Cromix~-Plus Programmer's Reference Manual
2. Cromix~-Plus System Call Deseriptions

If it is not included, the minimum field width is assumed to be zero. The second
of these numbers represents the maximum field width. If it is not included, the
maximum- field width is as large as necessary.

If the character L (or 1) appears after this, it signifies that the argument is a
long (32-bit) number. If it is absent, the argument is assumed to be short (16
bits).

If a comma appears before the decimal conversion character, commas appear
in the output (as in 1,000,000). B

The conversion character itself (represeﬁted by z) may be any of the following:

d The argument is converted to a decimal number.

u The argument is converted to an unsigned decimal number.

X The argument is converted to an unsigned hexadecimal number.

c The argument is assumed to be a single character. When this argument
is pushed onto the stack, the character must be in the low-~order byte of

the word pushed.

S The argument is assumed to be a eharacter string. A (4 byte) pointer to
this string must be pushed onto the stack instead of the string itself.

72

Cromemeo Cromix-Plus Programmer's Reference Manual
2. Cromix-Plus System Call Deseriptions

system call:

number:
purpose:

user access:

summary :

calling
parameters:

return
parameters:

possible
errors:

_ptrace
4EH

This call runs a process debugger. Actual function depends
on the function value (refer to the ptrace.h header file)

all users
move
move

les

lea
move.l

isys

D1.W

D2.W

A0.L

Al.L

D3.L

none

?hadvalu
?hoproc

{funetion ecode>, D1
{pid>, D2
<{address>, AQ
<data>, Al

<count>, D3
#_ptrace

The D1.W register contains the funetion code of the
Dtrace call.

The D2.W register contains the process id of the
process being debugged (child pid).

The A0.L register contains the address in the current
(parent) process where information is read from or
written to.

The Al.L register contains the address in the child
process (absolute address) where information is read
from or written to.

The D3.L register contains the number of bytes to
be transferred.

e

The _ptrace system call has the following subfunctions (selected by the value
in the D1.W register:

P_START

The parent process (debugger) issues this call to notify the system
that the next fexec (fshell, fork) system call will fork a debugged
process. The debugged process does not start execution by itself;

it waits for

the parent process to issue a P_RUN, P_TRACE, or

P_TERM ptrace function. (The debugged process behaves as if it
just hit a breakpoint). The pid, address, data, and count arguments
are not used.

73

Cromemeo Cromix-Plus Programmer's Reference Manual
2.Cromix~-Plus System Call Descripticns

P_RDSEQ

P_WRSEQ

P_RDSTA

P_WRSTA

P_RUN

P_TRACE

P_TERM

When the debugged process is in the suspended state, this call reads
D3.L bytes from the (absolute) Al.L address of the D2.W process
into the (sbsoclute) A0.L parent address. The specified process must
be started with the P_START function before the fexec call.

When the debugged process is in the suspended state, this call
writes D3.L bytes to the (absolute) Al.L address of the D2.W
process from the (absolute) A0.L parent address. The specified
process must be started with the P_START function before the fexec
call,

When the debugged process is in the suspended state, this call reads
all of the D2.W process registers (see ptrace.h) into the (absolute)
A0.L parent address. The Al and D3 registers are not used with
this call. The specified process must be started with the P_START
funetion before the fexee call.

When the debugged process is in the suspended state, this call
writes all of the D2.W process registers (see ptrace.h) from the
(absolute) A0.L parent address. Al and D3 registers are not used
with this call. The specified process must be started with the
P_START function before the fexee call.

When the debugged process is in the suspended state, this call
restarts the D2.W process. The parent process normally installs
break points before issuing this call. Breakpoints can be installed
by patching the child code with the TRAP #5 instruction. When the
child process execute the TRAP #5 instruction, it goes into the
suspended state, and the system notifies the parent process with
a sigtrace signal. The specified process must be started with the
P_START function before the fexec call.

When the debugged process is in the suspended state, this call
restarts the D2.W process for the duration of one instruction. After
one instruction is executed, the system notifies the parent process
with a sigtrace signal. The specified process must be started with
the P_START funetion before the fexec call.

When the debugged process is in the suspended state, this call

terminates the D2.W process. The specified process must be started
with the P_START funetion before the fexec call.

74

Cromemeo Cromix~Plus Programmer's Reference Manual
2. Cromix-Plus System Call Descriptions

system call: _rdbyte
number: 16h
purpose: This call reads a byte.

user access: all users
summary: move <channel>, D1

jsys #_rdbyte
move.l D0, <value read>

calling
parameters: D1 The Dl register contains the channel number of the
file. '
return ‘ _
parameters: D0.L The DO0.L register contains the byte read.
possible
errors: ?notopen
?filaccess
?ioerror
?endfile
?signal

The _rdbyte call reads the next sequential byte going toward the end of the
file from the open file on the channel specified.

To eliminste the need for the input to be terminated by a RETURN character,
set the device mode to "raw".

75

Cromemeo Cromix~Plus Programmer's Reference Manual
2. Cromix~Plus System Call Descriptions

system call: ~rdline
numbers: 18h
purpose: This call reads a line.
user access: all users
summary: move <channel>, D1
move. <maximum bytes>, D3
lea <buffer>, A0

jsys #_rdline
meove.l D3, <bytes read>

calling
parameters: D The D1 register conteins the channel number of the
file.
D3.L The D3 register contains the maximum number of bytes
to be read with this call.
AD The A0 register points to the buffer in which the line
is returned.
return
parameters: D3.L The D3 register contains the number of bytes read,
including the line terminator.
possible
errors: ?notopen
?filaccess
?ioerror
?endfile
?signal

The _rdline call reads a line, or a number of sequential bytes moving towards
the end of file, from the file opened on the specified channel.

The buffer is filled with bytes until an end-of ~line indicator (a linefeed or null
character) is encountered.

76

Cromemeo Cromix~-Plus Programmer's Reference Manual
2. Cromix-Plus System Call Descriptions

system call:
numbers
purpose:
user access:

summary s

calling
parameters:

return
parameters:

possible
errors:

rdseq
14h
This call

all users

move
move.l
lea

jsys

" move.l

D1

D3.L

AD

?notopen
?filacces
?ioerror
?endfile
?signal

reads the specified number of bytes.

<{chennel>, D1
<byte eount>, D3
<buffer>, A0

_rdseq

D3, <bytes read>

The D1 register contains the channel number of the
file.

The D3 register contains the number of sequential
bytes to be read from the current position of the file
pointer.

The A0 register points to the buffer where the bytes
are returned.

The D3 register contains the actual number of bytes
read. .

S

The _rdseq call reads the next specified number of bytes, moving towards the
end of file, from the file opened on the specified channel.

77

Cromemeo Cromix-Plus Programmer's Reference Manual
2.Cromix~Plus System Call Descriptions

system call: ~Setdate
number: 31h
purpose: This call changes the date.
user access: privileged user
summary: move {year>, D1

move <month>, D2
move <{day of the month>, D3
jsys # _setdate

calling
parameters: m The D1 register contains the year minus 1900. For
example, 1983 is represented as 83 and 2004 is 104,
D2 The D2 register contains the month (1 represents
January, 2 represents February, ete.).
D3 The D3 register contains the day of the month
(between 1 and 31).
return
parameters: none
possible
errors: ?priv

The _setdate call changes the Cromix system clock to the date specified. The
parameters are binary numbers.

78

Cromemeo Cromix-Plus Programmer's Reference Manual
2. Cromix~Plus System Call Deseriptions

system call: ~sSetdir

number: 03h

purpose: This call changes the current directory.
user access: all users

summary : lea <buffer>, A0

jsys # _setdir

calling :
parameters: Al The A0 register points to the new directory pathname.
The pathname must be terminated by a null character.
return B
parameters: none
possible
errors: ?notdir

?diraccess

The _setdir call changes the current directory to the one specified.

79

Cromemeo Cromix-Plus Programmer's Reference Manual
2.Cromix-Plus System Call Descriptions

system call: ~Setgroup
number: 37h
purpose: This call changes the group id.
user access: all users
summarys move {type of id to change>, D1
move <new id type>, D2
move <new id number>, D3
jsys # _setgroup
calling
parameters: D1 The Dl register contains the type of id tobe changed.
ID_EFFECTIVE
ID_LOGIN
ID_PROGRAM
D2 The D2 register indicates the value of the id type
specified by the D1 register. This value may be the
value of the other id types or the value specified by
the D3 register.
ID_EFFECTIVE
ID_LOGIN
ID_PROGRAM
ID_D3
D3 If the D2 register contains ID_D3, the D3 register
must contain a 16-bit id number.
return
parameters: none
possible
errors: ?priv

The _setgroup call changes the group id of the current process to the one
specified. This call may be invoked only by a privilegzed user when the D2
register contains the value 1D_D3.

80

Cromemeo Cromix-Plus Programmer's Reference Manual
2.Cromix-Plus System Call Descriptions

system call:
numbers:
purpose:

user access:

summary :

calling
parameters:

return
parameters:

possible
errors:

~Setmode

13h

This call changes the characteristics of a character device.

all users

-move <channel>, D1

move <{mode type>, D2

move.l <new value>, D3

move <mask>, D4

jsys # _setmode

move.l D3, <old value>

D1 The D1 register contains the channel number of the
opened device.

D2 The D2 register contains the MODE TYPE to be set.
The D2 register may be loaded with one of the mode
types listed below.

D3.L The D3 register contains the new value of the mode
type specified by the D2 register. Refer to the table
below.

D4 The D4 register, in MD_MODE1l, MD_MODE2, and
MD_MODE3, is a mask indicating whieh characteristics
to change.

D3.L The D3 register contains the previous value of the
mode type specified by the D2 register.

?badvalue

The _setmode call changes the characteristics of a character device. For more
information, refer to the modeequ.asm and bmodeequ.asm files in appendix

A and to the deseription of the Mode utility in the Cromix-Plus User's Reference

Manual.

81

Cromemeco Cromix~Plus Programmer's Reference Manual
2. Cromix-Plus System Call Descriptions

system call:
number:
purpose:
user access:

summary s

calling
parameters:

return
parameters:

possible
errors:

~Setpos

11h

This call changes the position of the file pointer.

all users

move <channel number>, D1

move <mode>, D2

move.l <file pointer>, D3 '

jsys # _setpos

D1 The D1 register contains the channel number of the
open file.

D2 The D2 register contains the mode. This is the
location from and direction to which the file pointer
is established.

FWD_BEGIN forward from the beginning
of the file

FWD_CURRENT forward from the current
position

FWD_END forward past the end of file

BAK_CURRENT backward from the current
position

BAK_END backward from the end of
file

D3.L The D3.L register contains the position change of the
file pointer. This value is 32 bits. It should be
nonneg ative.

none

?notopen

?notblk

?filaccess

The _setpos call changes the file pointer position to the specified logical byte

position.

82

Cromemeo Cromix-Plus Programmer's Reference Manual
2.Cromix-Plus System Call Descriptions

system call: —Setprior

number: 39h

purpose: This call returns the priority of the calling process.
user access: all users

summary : move {priority number>, D3

jsys # _setprior

calling
parameters: D3 The D3 register contains the new priority number (~40
to 40).
return
parameters: none
possible
errors: ?priv

The _setprior call changes the current process priority as specified by the D3
register. The priority number must be between -40 (the highest pricrity) and
40. Only a privileged user may set a priority number between -40 and -1. The
default priority assigned by the operating system is 0.

83

Cromemeo Cromix-Plus Programmer's Reference Manual
2.Cromix-Plus System Call Descriptions

system call:
number:
purpose:
user access:

SUMID arys:

calling
parameters:

return
parameters:

possible
errors:

Settime

32h

This call changes the time.

privileged user

move
move
move

jsys

D1

D2

D3

none

?priv

<hours>, D1
<minutes>, D2
<seconds>, D3
__settime

The D1 register contains the hours portion of the
current time based on a 24~hour clock.

The D2 register contains the minutes portion of the
current time. This is the number of minutes since the
current hour started.

The D3 register contains the seconds portion of the
current time. This is the number of the seconds since
the current minute started. .

The _settime call changes the Cromix system clock to the time specified. The
parameters are binary numbers.

84

Cromemeo Cromix~Plus Programmer's Reference Manual
2. Cromix-Plus System Call Descriptions

system call:
number:
purpose:
user accesss

summarys

calling
parameters:

return
parameters:

possible
errors:

-Ssetuser
35h
This call changes the user id.
all users
move {type of id to change>, D1
move <new id type>, D2
move <new id number>, D3 ;
jsys # _setuser
D1 The D1 register contains the ty pe of id to be changed.
ID_EFFECTIVE
ID_LOGIN
ID_PROGRAM
D2 The D2 register indicates the value of the id type
specified by the DI register. This value may be the
value of the other id types or the value specified by
the D3 register.
ID_EFFECTIVE
ID_LOGIN
ID_PROGRAM
ID_D3
D3 If the D2 register contains ID_D3, the D3 register
must contain a 16-bit id number.
none

7priv

The _setuser call changes the user id of the current process to the one

specified.

This call may be invoked only by a privilegsed user when the D2

register contains the value 1D_D3.

85

Cromemeo Cromix-Plus Programmer's Reference Manual
2.Cromix~-Plus System Call Descriptions

system call: Shell

number: 49h

purpose: This call initiates a shell process.
user access: all users

summary : lea <argument list>, Al

jsys #_fexec

calling
parameters: Al The Al register points to a list of pointers. The list
of pointers is terminated by a null pointer. Each
pointer points to a null-terminated character string.
Each string is an argument passed to the new pregram.
return
parameters: none (does not return)
possible
errors: ?nomemory

The _shell call initiates execution of a shell process. A new PID is not
generated.

Options

These options are needed only when a program is calling a shell. They are not
useful when a shell is called from the terminal.

The -e option indicates that the command line as a whole is passed to the shell.
The shell will treat it as if it was typed from the terminal.

The -p option indicates that the command line being passed to the shell is
already broken into separate arguments.

The ~q option requests that the lines from a command file not be echoed to the
terminal (standard output).

The -z option can be used when forking an interactive Shell (Shell with no
arguments). This option causes the new Shell to ignore CONTROL~-Z (End of
file). If the option n is not set the CONTRCL-Z character will terminate the
Shell. -

86

Cromemeo Cromix~Plus Programmer's Reference Manual
2.Cromix~Plus System Call Descriptions

Notes

The _shell call expects its arguments to be in one of the following three forms:
Form 1 (passing command filenames)

Al -> arg 0 -> TMshell\0"

arg 1 -> arg 1 (a command filename)
arg 2 -> arg 2 (first argument for command)

o 2

Form 2 (passing a parsed argument list)

Al ~> arg 0 ~=> T"shell\0"
arg 1 ~-> "-pg"
arg 2 ~-> command name
arg 3 ~> command's first argument
arg 4 -> command's second argument

0

Form 3 (passing a command line)

Al -> arg 0 ~> "shell\O"
arg 1 -> "-c\O"
arg 2 -> full command line
0

87

Cromemeco Cromix-Plus Programmer's Reference Manual
2. Cromix~Plus System Call Descriptions

system call: _signal
numbers 40h }
purpose: This call sets up a process to receive a signal.
user access: all users
summary : move <{type of signal>, D2
lea <{execution address>, A0

jsys #_signal
move. A0, <old trap address>

. calling
parameters: D2 The D2 register contains the type of signal.
SIGABORT CNTRL-C signal
SIGUSER user—-specifiable key
SIGKILL kill signal (not catchable)
SIGTERM terminate signal
SIGALARM alarm clock signal
SIGPIPE broken pipe
SIGHANGUP modem hangup signal
AD The A0 register contains the program address to which
control is transferred. If the A0 register contains
00000000, the process aborts upon receipt of the
specified signal; if A0 contains 0000001, the signal
is ignored.
return
parameters: Al The A0 register contains the previous execution
address. '
possible
errors: ?badeall

?signal

If the _signal call has been used to set up a subroutine address, control is
passed to the subroutine at the address specified when the signal is received.
The program returns to the point of execution where the signal was received
on encountering an RTS instruction. Further signals of the same kind will be
ignored unless _signal is used to set up the address again. Note that trap
routines must preserve complete system status (all registers, ineluding CCR).

88

Cromemeo Cromix-Plus Programmer's Reference Manual
2. Cromix~Plus System Call Descriptions

system call: —sleep
number: 42h
purpose: This call puts a process to sleep.
user access: all users
summary : move.d <number of seconds to sleep>,D3

jsys #_sleep
move. D3,<number of seconds left>

calling
parameters: D3.L The D3.L register contains the number of seconds the
process is to sleep.
return
parameters: D3.L The D3.L register returns the number of seconds left
if sleeping was aborted by a signal.
possible
errors: none

The _sleep system call is used to put a process to sleep for a specified number
of seconds. This frees processor time for other processes.

89

system call:
numbers:
purpose:
user access:

Summarys

calling
parameters:

return
parameters:

possible
errors:

Cromemeco Cromix~-Plus Programmer's Reference Manual
2. Cromix~Plus System Call Descriptions

trune
0Dh
This call truncates an open file.

all users

move <channel>, D1
jsys #_trunc

D1 The D1 register contains the channel number of the
open file.

none

notopen

The _trune system call deletes the file from the current file pointer position
through the end of file (or extends the file to the current position). This system
call is mainly used to truncate a file to zero length.

90

Cromemeo Cromix-Plus Programmer's Reference Manual
2. Cromix-Plus System Call Descriptions

system call:
number:
purpose:
user access:

summary s

calling
parameters:

return
parameters:

possible
errors:

_uchstat

29H
This

call changes the status of a process.

privileged user

move <{process id>, Dl

move <{status type>, I2

move <new value>, D3

jsys #_uchstat

D1 The Dl register contains the process id of the
selected process. Zero means the current process.

D2 The D2 register contains the status type to be
changed.

D3 The D3 register contains the new value of the
specified status type.

none

?noproc

?priv

The _uchstat call ehanges the process table information of the process identified
id. Process id zero refers to the current process. Only a
privileged user can change the status of processes not his own.

by the process

Table of Uchstat Calls

D2 Status Location of
Register Type New Information
USR_CTTY controlling tty D3.L = new value
USR_PRIOR process priority D3.L = new value
USR _TERM termecap ident D3.L = new value

91

Cromemeo Cromix~Plus Programmer's Reference Manual
2. Cromix-Plus System Call Descriptions

system call: ~unloeck
number: 3Fh
purpose: - This call is used to unlock a locking sequence. -
user access: all users
summary : move <lock type>, D2
move <lock length>, D3
lea <lock sequence>, A0
jsys #_unlock
calling
parameters: D2 The D2 register must contain the

same value as it contained when the corresponding
lock system call was executed.

D3 The D3 register must contain the
same value as it contained when the corresponding
lock system call was executed.

A0 The A0 register must contain the

same value as it contained when the corresponding
lock system call was executed.

return
parameters: none

possible
errors:

The _unloeck call unlocks a locking sequence that was locked by the _lock
system call. Please refer to _lock system call for more information.

92

Cromemeo Cromix~Plus Programmer's Reference Manual
2. Cromix~Plus System Call Descriptions

system call:
number:
purpose:
user access:

summary

calling
parameters:

return
parameters:

possible
Errors:

_unmount
05h
This call disables access to a file system.

privileged user

move <eject flag>, D2

lea <block device pathname>, A0

jsys : #_unmount

D2 If the D2 register contains a 1,

the diskette that is unmounted is ejected. If D2
contains a 0, the diskette is not unmounted.

A0 The A0 register points to a buffer
containing the pathname of the bloeck device which
contains the file system to be unmounted. The
pathname must be terminated by a null character.

none

notmount
?fsbusy
?badname
?notexist

The _unmount call, used in conjunction with _mount, declares that the device
no longer has the previously specified file system.

When the system is unmounted, the file system pathname reverts to being a

dummy pathname.

93

Cromemeo Cromix-Plus Programmer's Reference Manual
2, Cromix-Plus System Call Descriptions

system call: _update
number: 52h
purpose: ‘This call updates all open files.
user access: all users
summary: jsys # _update
calling
parameters: none
return
parameters: none
possible
errors: ?ioerror

The _update call causes all open files to be updasted with the current contents
of their buffers. This is done automatically upon closing a file.

94

Cromemeo Cromix~Plus Programmer's Reference Manual

2. Cromix—Plus System Call

Descriptions

system call: ustat
number: 28H
purposes: This call returns the status of a selected process.
user access: all users
summary : move {process id>, D1
move {status type>, D2
jsys #_ustat '
move.l D3, status value>
calling
parameters D1 The Dl register contains the process id of the
selected process. Zero means the current process.
D2 The D2 register contains the request to the system
for the desired information.
return
parameters: See table
passible
errors: ?noprec
?priv

The _ustat call returns process status information. The process id is used to
identify the process (pid zero selects the current process). Only a privileged
user can read the status of processes not his own.

Table of Ustat Calls

D2 Information Location of the
Register Returned Information Returned
USR_CTTY controlling tty D3.L
USR_PRIOR process priority D3.L
USR_PARENT | pearent processid D3.L
USR_MEMP program address D3.L
USR_MEMS total memory size D3.L
USR_TIME process time (ms) D3.L
USR_CTIME children time (ms) D3.L
USR_USER process owner D3.L
USR_CTIME process group D3.L
USR_TERM termcap ident D3.L

35

Cromemeo Cromix-Plus Programmer's Reference Manﬁal
2. Cromix~Plus System Call Descriptions

system call:
number:
purpose:
user access:

summary :

calling
parameters:

return
parameters:

possible
errors:

version

55h

This call returns the opersating system version number.
all users

jsys #__version

move.l D3, <veprsion number>

none

D3.L The D3.L register contains the Cromix Operating
System version number.

~corrupt

The _version call returns the version number of the operating system.

Note

The version number is encoded in BCD. The version number 20.24, for example,
is returned as 00002024h. ‘

96

Cromemco Cromix-Plus Programmer's Reference Manual
2.Cromix~Plus System Call Deseriptions

system call:
number:
purpose:
user access:

summary :

calling

parameters:

return
parameters:

possible
errors:

—wait
45h
This call waits for the termination of a child process.

all users

move <eonditional flag>, Di
move <{process 1D>, D3

jsys #_wait

move.l D3, <child PID>

move.d D2, <termination status>
move.l D1, <signal number >

D1 If the D1 register equals zero, the call will not return

until a child process has terminated.

If the D1 register equals one, this call returns
immediately. An error is returned if no child process

has terminated. :

D3 If the D3 register contains a zero, this call waits for

the termination of any child process.

If the D3 register is set equal to a process id (PID)
number, this call waits for the termination of the

specified process.

D3.L The D3.L register contains the child process id

number.,

D2.L The D2.L register contains the process termination

status returned by the _exit system call.

D1.L The D1.L register contains the system termination
status. If the D1 register equals zero, the child
process was terminated through _exit. Otherwise,
the D1 register contains the signal number of the
signal that caused the termination and the D2 register

is undefined.

?nochild

97

Cromemeo Cromix~-Plus Programmer's Reference Manual
2.Cromix~Plus System Call Deseriptions

The _wait call informs thé parent process when a child process is no longer
active.,

All processes crested by forking (i.e., _fshell or _fexec) will remain in the
process table after termination with a process status of 'T' until the _wait
sy stem call is made for the child's PID. The wait call must be made after the
child has terminated.

If the call is made before the child process terminates, and the option to not
wait until termination is selected, the child process will remain in the process
table as terminsted until the _wait call is made again. This means that if the
'no wait' option is selected, the _wait call should be made periodically until
no error is returned.

98

Cromemeco Cromix~Plus Programmer’s Reference Manual
2.Cromix~-Plus System Call Descriptions

system call:
number:

purpose:

user access:

summary:

calling
parameters:

return
parametérs:

possible
errors:

_Wwrbyte
17h
This call writes a byte.

all users
move <{channel>, D1

move.b <byte>, DO
jsys #_wrbyte

D1 The D1 register contains the channel number of the
file.

DO The DO register contains the byte to be written.

none

?notopen
?filaccess
?ioerror

The _wrbyte call writes a byte to the file opened on the specified channel.
The byte is written at the current file position. Note that this may overwrite
information previously written to the file.

99

Cromemeo Cromix~Plus Programmer's Reference Manual
2. Cromix-Plus System Call Descriptions

sy stem call: _wrline
number: 19h
purpose: This call writes a line.
user access: all users
summarys: move <{channel>, D1
lea <buffer>, A0

jsys #_wrline
moved D3, <bytes written>

calling
parameters: - Dl The Dl register contains the channel number of the
file.
AD The A0 register points to the buffer where the line
to be written is stored.
return
parameters: D3.L The D3.L register contains the number of bytes
actually written.
possible
errors: ?notopen
?filaccess
?ioerror

The _wrline call writes a line to the file opened on the specified channel. The
bytes are written at the current file position. Note that this may overwrite
information previously written to the file.

Bytes are written until a line terminator (a linefeed or a null character) is

encountered. If the terminator is the line feed character it is written out; if
the terminator is the null character it is not written out.

100

Cromemeo Cromix-Plus Programmer's Reference Manual
2.Cromix-Plus System Call Descriptions

system call: ~wrseq
numbers: 15h
purpose: This call writes sequential bytes.
user access: all users
summary : move <{channel>, D1
move.l <byte count>, D3
lea <buffer>, A0

jsys #_wrseq
move.d D3, <bytes written>

calling
parameters: D1 The D1 register contains the channel number of the
file.
D3.L The D3.L register contains the number of sequential
bytes to be written to the file.
Al The A0 register points to the buffer where the bytes
to be written are stored.
return :
parameters: D3.L The D3 register contains the number of bytes actually
written.
possible
errors: notopen
?filaccess
?icerror

The _wrseq call writes a series of bytes to the file opened on the specified
channel. The bytes are written at the current file position. Note that this may
overwrite information previously written to the file.

101

Cromemeo Cromix-Plus Programmer's Reference Manual

102

Cromemeo Cromix-Plus Programmer's Reference Manual
3. Z80 Cromix System Call Summary

Chapter 3

780 CROMIX SYSTEM CALL SUMMARY

The Cromix-Plus Operating System contains a Z80 emulator capable of running
Z80 programs, even though the operating system itself runs on the 68000.
Consequently, you may wish to write Z80 programs using Z80 Cromix sy stem
calls, to be run under Cromix~Plus. The material in this chapter is provided
for this purpose.

The Z80 Cromix system calls are nearly identical to the 68000 versions
described in the previous chapter. Most operate in exactly the same way. The
only difference is the names of the registers which contain the various
"parameters. In case of an error, the Carry flag is set and the error number is
returned in the a register.

The following table summarizes the Z80 system calls and the registers they use.
For the full description of each call, refer to the previous chapter.

Call Number | Calling Parameters Return Parameters
alarm 43h bl = number of seconds
Lacecess 27h b = channel
¢ = gecess bits
cchstat 23h b = channel ‘ see table 3~1
¢ = status type

de = new value

Lchdup CAh b = existing channel ¢ = duplicate channel
chkdev 07h ¢ = type of device
d = major device number
e = minor device number
L£clink 25h b = channel
de = new pathname
.close 0Bh b = channel
Lereate 08h hl = pathname b = channel

¢ = geecess mode
d = exelusive mode

103

Cromemeo Ci'omix~»Plus Programmer's Reference Manual
3. Z80 Cromix System Call Summary

Call Number | Calling Parameters Return Parameters
cstat 21h de = buffer see table 3-2
b = channel
e = desired information
Adelete 06h hl = pathname
.divd 54h dehl = dividend hl = quotient
be = divisor de = remainder
.error 1Ch a = error number
b = channel
.exchg 0Ch b = channel number
e = channel number
.exec 4Ch de = argument list
hl = pathname
-exit 46h hi = terminstion status
faccess 26h ¢ = gecess bits
hl = pathname
Jfehstat 22h ¢ = status type see table 3-3
de = new value :
hl = pathname
fexec 4Bh b = signal mask hl = new pid
e¢ = signal values
hl = pathname
de = argument list
flink 24h de = new pathname
hl = old pathname
J£shell 48h b = signal mask hl = new pid
¢ = signal values
de = argument list
JSstat 20h ¢ = desired information see table 3~4
‘ hl = pathname
de = buffer
.getdate 30h d = day of the week
‘ e = year -
h = month
1 = day of the month
.getdir 02h hl = buffer

104

Cromemeo Cromix~Plus Programmer's Reference Manual
3. Z80 Cromix System Call Summary

Call Number | Calling Parameters Return Parameters
getgroup 36h e = id type hl = groub id
.getmode 12h b = channel d, de, or dehl = return
value
¢ = mode type
.getpos 10h b = channel dehl = file position
.getprior 38h 1 = priority number
.getproc 3Ah hl = process id
.gettime 32h e = hour
h = minute
1 = second
.getuser 34h ¢ = id type hl = user id
Jndirect 31h a = call number
Other registers are
used according to
call number
Lkill 41h ¢ = signal type
hl = process id
Joek 3Eh ¢ = lock type
de = lock length
hl = lock sequence
“.makdev 00h e = type of device
d = major device number
e = minor device number
hl = pathname
Jmakdir 01h hl = pathname
.mount 04h ¢ = type of access
hl = dummy psathname i
de = device pathname
mult 53h be = multiplier dehl = product
hl = multiplicand
open 09h ¢ = aecess mode b = channel
d = exclusive mode
hl = pathname
.pause 44h

105

Cromemeo Cromix-Plus Pregrammer's Reference Manual
3. 280 Cromix System Call Summary

Call Number | Calling Parameters Return Parameters
.pipe 0Eh b = read channel
¢ = write channel
printf 1Bh b = channel
bkl = control string
Arguments on stack
.rdby te 16h b = channel a = byte
sdline 18h b = channel de = bytes read
de = maximum bytes
hl = buffer
Jdseq 14h b = channel de = bytes read
de = maximum bytes
hl = buffer
.Setdate 31h e = year
h = month
! = day of the month
.setdir 03h bl = pathname
Setgroup 37h b = type to change
¢ = new id type
hl = new group id
Setmode 13h b = channel d, de, or dehl = old
value
¢ = mode type
d = new value
e = mask
.setpos 11h b = channel
: ¢ = mode
dehl = file pointer
setprior 39h 1 = priority number
Settime 33h e = hour
h = minute
1 = second
setuser 35h b = type to change
¢ = new id type
hl = new user id
.shell 49h de = argument list
.signal 40h ¢ = type of sighal hl = previocus address
hl = execution address

106

Cromemeo Cromix~Plus Programmer's Reference Manual
3. Z80 Cromix System Call Summary

Call Number | Calling Parameters Return Parameters
.Sleep 42h hl = seconds to-sleep hl = secohds left
trune 0Dh b = ehannel
Jnloek 3Fh ¢ = lock type
de = lock length “
hl = lock sequence
Jnmount 05h e = eject flag
hl = device pathname
Lupdate 22h
.version 55h hl = version number
wait 45h ¢ = conditional flag de = process status
bl = process id ¢ = system status
hl = ehild pid
Wrbyte 17h a = byte
b = channel
-wrline 19h b = channel de = bytes written
hl = buffer
.Wrseq 15h b = channel de = bytes written
de = byte count
hl = buffer

107

Cromemeo Cromix~Plus Programmer's Reference Manual

3. Z80 Cromix System Call Summary

Table 3~1: Z80 CCHSTAT CALLS

C Status Location of

Who* | Register Type New Information

P ST.OWNER owner id de = new value

p ST.GROUP group id de = new value

p&o ST.AOWNER aceess owner d = new value, e = mask
pé&o ST.AGROUP acecess group d = new value, e = mask
p&o ST.AOTHER access public d = new value, e = mask
D ST.TCREATE time ereated de -> 6-byte buffer

p ST.TMODIFY time last modified de -> 6-byte buffer

o) ST.TACCESS time last accessed de -> 6-byte buffer

p ST.TDUMPED time last dumped de -> 6-byte buffer
*p = privileged user

0 = owner

108

Cromemeo Cromix~Plus Programmer's Reference Manual
3. Z80 Cromix System Call Summary

Table 3-2: Z80 CSTAT CALLS

C Information Loeation of
Register Returned Information
ST.ALL all of inode de -> 128-byte inode buffer
ST.OWNER owner id de
ST.GROUP group id de
ST.AOWNER access owner d
ST.AGROQUP access group d
ST.AOTHER aceess publie d -
ST.FTYPE file type d = IS.ORDIN
IS.DIRECT
IS.CHAR
IS.BLOCK
ST.SIZE file size dehl
ST.NLINKS number of links de
ST.INUM inode number de
ST.TCREATE | time created de ~-> 6~byte buffer
ST ITMODIFY time last modified de -> 6-byte buffer
ST.TACCESS time last accessed | de -> 6-byte buffer
ST.TDUMPED time last dumped de ~> 6-byte buffer
ST.DEVNO device number d = major device number
e = minor device number
ST.DEVICE device number d = major device number
e = minor device number
ST.PDEVNO device number d = major device number
e = minor device number

109

Cromemeo Cromix~Plus Pregrammer’s Reference Manual
3. Z80 Cromix System Call Summary

Table 3-3: Z80 FCHSTAT CALILS

C Status Loecation of

Who* | Register Type New Information

p ST.OWNER owner id de = new value

p ST.GROUP group id de = new value

p&o ST.AOWNER access owner d = new value, e = mask
p&o ST.AGROUP access group d = new value, e = mask
p&o ST.AOTHER access publie d = new value, e = mask
p ST.TCREATE time created de ~> 6~byte buffer

p ST.TMODIFY time last modified de -> 6-byte buffer

p ST.TACCESS time last accessed de -> 6-byte buffer

p ST.TDUMPED time last dumped de ~> 6-byte buffer
*p = privileged user

0 = owner

110

Cromemeo Cromix~-Plus Programmer's Reference Manual
3. 280 Cromix System Call Summary

Table 3~4: Z80 FSTAT CALLS

C Information Location of

Register Returned Information

ST.ALL all of inode de -> 128~-byte inode buffer

ST.OWNER owner id de

ST.GROUP group id de

ST.AOWNER access owner d

ST.AGROUP access group d

ST.AOTHER access publie d

ST.FTYPE file type d = IS.ORDIN
IS.DIRECT
IS.CHAR
IS.BLOCK

ST.SIZE file size dehl

ST.NLINKS number of links de

STINTUM inode number de

ST.TCREATE time created de -> 6-byte buffer

ST.TMODIFY time last modified de ~-> 6-byte buffer

ST.TACCESS time last accessed de -> 6-byte buffer

ST.TDUMPED time last dumped de -> 6~-byte buffer

ST.DEVNO device number d = major device number

e = minor device number
ST.DEVICE device number d = major device number
e = minor device number
ST.PDEVNO device number d = major device number

minor device number

1]
nou

111

Cromemeo Cromix~Plus Programmer's Reference Manual

112

Cromemeo Cromix-Plus Programmer's Reference Manual
4. Disk Allocation Under Cromix-Plus

Chapter 4
DISK ALLOCATION UNDER CROMIX~-PLUS

This chapter describes disk allocation under the Cromix Opersting System. Any

small or large floppy disk or hard disk formatted for use under the Cromix
sy stem is divided into three major sections:

the System Area, Inode Area,
and Data Area. These disks are formatted with a block size of 512 hytes
decimal.
.bytes
120-12F
bytes Disk Type ldentification
0
Boot
512
Superblock

1024

System Area

Boot

10K

Inode Area

Data Area

Figure 4-1: LAYOUT OF A CROMIX DISK

113

Cromemeo Cromix-Plus Programmer's Reference Manual
4. Disk Allccation Under Cromix-Plus :

SYSTEM AREA

The System Area has a default size of 10K bytes for all disk types. Although
it is not recommended, the size of this area can be specified when running the
Makfs (make file system) utility program.

The System Area contains system information required for booting up (boot
tracks) and disk type identification. In addition, it contains the Superblock,
and, for hard disks, the alternate track table and the partition table.

Disk Type Identification

On Crom‘ixﬂ*format"floppy disks, bytes 120 through 127 (in the first block) contain
ASCII-encoded data detailing the type and use of the disk.

Floppy disks have six letters in this position. When formatted for use with the
Cromix Operating System, byte 120 contains a C. Byte 121 contains an S or L,
to indicate a Small (5") or Large (8") floppy disk. Bytes 122-123 contain the
characters SS or DS, indicating a Single Sided or Double Sided Disk. Bytes
124-125 contain the characters SD or DD, indicating a Single Density or Double
Density disk. Bytes 126-127 are not significant, but are reserved for future
use.

Cromix~Plus also supports uniform-format floppy disks, which contain no
identification information in the first block. In uniform format, all tracks are
the same. All sectors are the same size: the sector size might be 128, 256, or
212 bytes.

On hard disks, bytes 68h through 7Fh contain disk type identification. The
following table details this area of the disk.

68~ 69 Number of cylinders, not counting alternate tracks (2 by tes)

6A~6B Number of alternate tracks (2 bytes) '

6C Number of surfaces (1 byte)

6D Number of sectors per track (1 byte)

6E-6F Number of bytes per sector (2 bytes)

70-71 Byte count of start of alternate track table (2 bytes)

72-73 Cylinder number of start of disk (2 bytes)

74-75 Cylinde;' number where alternate tracks are located (2
by tes

76-77 Byte count of start of partition table (2 bytes)

78~7B Hard disk identifier, usually CSTD (4 bytes)

7C-7D Cylinder number where write precompensation starts

T7E~TF Reserved for future use (4 bytes)

114

Cromemeo Cromix-Plus Programmer's Reference Manual
" 4. Disk Allocation Under Cromix~Plus

Superblock

The second block (bytes 512-1023) is the Superblock. This block contains
housekeeping information for the disk, including the Block FPree List and the
Inode Free List.

The Block Free List (sometimes called the Free List) is a stack of 80 4-byte
pointers, preceded by a 2-byte counter. Each pointer in the Block Free List
points te a disk bloek not in use. As information is deleted from the disk, the
Block Free List grows; as information is written to the disk, it shrinks.

The last pointer used (actually, the first pointer in the list) points to a block
on the disk that contains.another Block Free List. When the Block Free List
in the Superblock is exhausted, the next Block Free List is loaded into the
Superblock. When the Block Free List in the Superblock is full, it is moved to
the Data Area of the disk.

The Inode Free List is a stack of 80 2-byte inode numbers preceded by a 2-byte
counter. Each entry in the Inode Free List is the number of an unused inode.
When this stack is exhausted, the Cromix system searches through the inode
table and replenishes the stack with the numbers of additional inodes not in use.

Alternate Track Table

The Alternate Track Table for the hard disk is located at the top of the System
Area, before the Inode Area.

INODE AREA

An inode is a deseriptor for one file; it contains a collection of information
pertaining to the file.

The first 48 bytes contain information on the number of links to the file,
allowable access modes, and most recent access times for various types of
access.

The last 80 bytes of the inode contain 4-byte pointers to the file itself. The
first 16 of these pointers each points to a block of the file. The first pointer
points to the first block (bytes 0-511); the second pointer points to the second
block (bytes 512-1023), and so on. This continues until the whole file has been
pointed to, or until the sixteenth pointer has been used (pointing to bytes
7680-8191). Thus, if the file is 8 Kbytes or smaller, only the first 16 (or fewer)
pointers need be used.

If the file described by the inode is larger than 8 Kbytes, the seventeenth
pointer is used. This pointer points to a bloek of 128 pointers. Each of these
pointers points to a block of the file in a manner similar to the first 16 pointers
described above., Thus the seventeenth pointer describes the next 64 Khytes
of the file.

115

Cromemeco Cromix~-Plus Programmer's Reference Manual
4, Disk Allocation Under Cromix~Plus

7?8 pointers

/ ,‘ 128 pointers

-

™ 128 pointers

\\

// /,/:'

——

///"
- 28 pointers |+ /,{ 128 pointess :/ block
t~4—»‘—° block

128 pointers \»k 128 pomtersﬁ‘* 128 pointers _

: " ~. i ———]

ST

128 pointers —

12? pointers N P \\ block

INODE
48 bytes access and link
information
1 pointer ,____ -
2 pointer F———————u{ Block]
3 pointer —-~————
. —— :
80 . W\/\ e -
bytes . - [_Jblock , block
(4 bytes ﬂ . PPya——" " ~{bioeK
per pointers [~ - :
A S U — - Py block
pointer) . — bl block /L——-J
/ @] - /
. / VS / :
———— // e block V4 :
16 pointer _/ [128 pomters -7~ " isex] P
17 pointer p— /—*{’1—28 ointers [— - i /
. > o //,
18 pointer —_—/ ™| _128 pointers \\\\»A . ///'/ Blotk
T "~ biock .
19 pointer — ~[iock]
-
- :
. U
20 poinier 128 pointers

N\

block

b

block

i

—=~(block

block

.

block

block

block

Figure 4-2: INODE LAYOUT

If the file is larger than 72 Kbytes, the eighteenth pointer is used. This pointer
points to a block of 128 pointers. Each of these points to a block of 128
Thus, the
eighteenth pointer describes the next 8192 Khytes of the file. The nineteenth
pointer extends one more level, covering the next 1,048,576 Kbytes of the file.

pointers. These pointers, in turn, pecint to a bloek in the file.

DATA AREA

The Dsta Area occupies most of the disk. All data on the disk is stored in the

data area. All blocks pointed to by inodes are in this area.

116

Cromemeo Cromix-Plus Programmer's Reference Manual
A. 68000 Equate Listings

Appendix A
68000 EQUATE LISTINGS

[/EQU/JSYSEQU.H

/* Jsysequ.di: Cromemco C I/O header file
Copyright (¢) 1985 by Cromemco, Inc., All Rights Reserved

This file contains declarations of all values which are
used during calls to the Cromix-Plus operating system.

Oct 25, 1985
*/
/*

Standard channel numbers
*/
#define STDIN 0 /* Standard input ehannel
#define STDOUT 1 /* Standard output channel
#define STDERR 2 /* Standard error channel
/*

Access modes for create
*/
#define op_read] /* Read only
#define op_write 1 /* Write only
#define op_rdwr 2 /* Read and write
#define op_append 3 /* Append only
#define op_xread 4 /* Exclusive read only
#define op_xwrite 5 /* Exelusive write only
#define op_xrdwr 6 /* Exelusive read and write
#define op_xappend 7 /* Exelusive append only
#define op_truncf 0x80 /* Truncate on create flag
#define op_condf 0x40 /* Conditional create flag

#define op_force 0x20 /* Force open on block device

117

*/
*/

/*
*/

#define fwd_begin
#define fwd_current
#define fwd_end
#define bak_current
#define bak_end

Modes for setpos system call

/*

Cromemeo Cromix~Plus Programmer's Reference Manual
A. 68000 Equate Listings

/* Forward from the beginning of the file
/* Forward from the current position

/* Forward from the end of the file

/* Backward from the current file position
/* Backward from the end of the file

Status types for _fstat, _ecstat, _fchstat, _cchstat

*/

#define st_all
#define st_owner
#define st_group
#define st_aowner
#define st_agroup
#define st_aother
#define st_ftype
#define st__size
#define st_nlinks
#define st_inum
#define st_device
#define st _tereate
#define st_tmodify
#define st _taccess
#define st_tdumped
#define st_devno
#define st__pdevno

/*

SS’.DOOND‘;O'!)J}QONHO

11
12
13
14
15
16

/* All of inode (128 by tes)

/¥ Owner

/* Group

/¥ Owner access, mask

/* Group access, mask

/* Other access, mask

/* File ty pe, special device #

/* File size

/* Number of links

/* Inode number

/* Device containing inode

/¥ Time created

/* Time last modified

/* Time last accessed

/* Time last dumped

/* Device number if inode is a device
/* Phy s device # if inode is a device

Status types for _ustat, _uchstat

*/

#define usr_ctty
#define usr_prior
#define usr__parent
#define usr_memp
#define usr_mems
#define usr_time
#define usr _ctime
#define usr_user
#define usr_group
#define usr_term

WoamenhwnEo

/* Controlling tty device number
/* Process priority

/* Parent process id

/* Address of user code

/* Size of code memory

/* Process time in miliseconds
/* Children time in miliseconds
/* Effective user id

/* Effective group id

/* Terminal identification

118

*/
*/

*/
*/
*/
*/
*/

*/

*/
*/
*/
*/

/*

File types for st_ftype

*/

#define is_ordin
#define is_direct
#define is_char
#define is_block
#define is__pipe

/’*

P AN O

Cromemeo Cromix-Plus Programmer's Reference Manual
A, 68000 Equate Listings

/* Ordinary file
/* Directory file

/* Character device

/* Block device
/* Pipe file

Mask values for file access flags

*/

#define ac_read
#define ac_exec
#define ac_ writ
#define ac_apnd

/*

Id types and values for _setuser, _getuser, _setgroup, _getgroup */

#define id_effective

#define id__login

#define id_program

#define id_number

/*

Signal types
#define sigabort
#define siguser
#define sigkill
#define sigterm
#define sigalarm
#define sigpipe
#define sighangup

0x01
0x02
0x04
0x08

0
1
2
3

=1 OY O3 L0 DD =

/* Read access bit

/* Execute access bit
/* Write acecess bit
/* Append access bit

/* Effective id
/* Login id
/* Program id

/* 1d contained in idnumber

/* Control-C key

/* User specifiable key

/* Kill signal
/* Terminate
/* Alarm

/* Broken pipe signal

/* Modem hang up
/* Reserved

119

*/
*/
*/
*/

*/
*/

*/

*/
*/
*/

*/
*/
*/
*/

*/
*/

Cromemeo Cromix-Plus Programmer's Reference Manual
A, 68000 Equate Listings

" #define SIGABORT (1 « sigabort - 1)
#define SIGUSER (1 < siguser ~ 1)
#define SIGKILL (1 <« sigkill - 1)
#define SIGTERM (1 « sigterm - 1)
#define SIGALARM (1 << sigalarm - 1)
#define SIGPIPE (1 < sigpipe - 1)
#define SIG HANGUP (1 « sighangup- 1)
/*

Cromix-Plus System Call Numbers

*/

#define _makdev
#define _makdir
#define _getdir
#define _setdir
#define _mount
#define _unmount
#define _delete
#define _chkdev
#define _create
#define _open
#define _chdup
#define _close
#define _exchg
#define _trunc
#define _pipe

#define _getpos
#define _setpos
#define _getmode
#define _setmode
#define _rdseq
#define _wrseq
#define _rdbyte
#define _wrbyte
#define _rdline
#define _wrline

#define __printf
#define _error

#define _fstat
#define _cstat
#define _fehstat
#define _cchstat
#define _flink
#define _clink
#define _facecess
#define _caccess
#define _ustat

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E

0x10
0x11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19

0x1B
0x1C

0x20
0x21
0x22
0x23
0x24
0x25
0x26
0x27
0x28

/* Make device entry

/* Make a directory

/* Get current directory name
/* Change current directory
/* Mount file sy stem

/* Unmount file system

/* Delete file

/* Check for device driver

/* Create & open file

/* Open file

/* Duplicate channel

/* Close file

/* Exchange the contents of two inodes
/* Truncate open file

/* Generate a pipe

/* Get file position

/* Set file position

/* Get device characteristics
/* Set device characteristics
/* Read n bytes

/* Write n by tes

/* Read 1 byte

/* Write 1 byte

/* Read a line

/* Write a line

/* Print formatted string
/* Print error message

/* Get file status (inode)

/* Get channel status (inode)

/¥ Change file status

/* Change channel status

/* Link to file

/* Link to open ehannel

/* Test file access

/* Test channel access

/* Get process table information -

120

#define _uchstat

#define _getdate
#define _setdate
#define _gettime
#define _settime
#define _getuser
#define _setuser
#define _getgroup
#define _setgroup
#define _getprior
#define _setprior
#define _getproc

#define _ksam
#define _lock
#define _uniock
#define _signal
#define _kill
#define _sleep
#define _alarm
#define _pause
#define _wait
#define _exit
#define __fork
#define _fshell
#define _shell

#define _fexec
#define _exec
#define _execz80
#define _ptrece
#define _memory
#define _indirect
#define __update
#define _mult
#define _divd
#define _version
#define _boot

/*

0x29

0x30
0x31
0x32
0%33
0x34
0x35
0x36
0x37
0x38
0x39
0x3A

0x3D
0x3E
0x3F
0x40
0x41
0x42
(ix43
0x44
0x45
0x46
0x47
0x48
0x49

0x4B
0x4C
0x4D
0x4E
0x50
0x51
0x52
0x53
0x54
0x55
0x56

Cromix-Plus error numbers

*/

#define _badchan
#define _toomany
#define _notopen
#define __endfile

#define _jioerror

#define _filtable
#define _notexist
#define _badname

O =3 D Ul O

Cromemeo Cromix-Plus Programmer's Reference Manual
A. 68000 Equate Listings

/* Change process table information

/* Get date

/* Set date

/* Get time

/* Set time

/* Get user id

/* Set user id

/* Get group id

/* Set group id

/* Get the current process priority
/* Set the current process priority
/* Get process id

/* Ksam sy stem call

/* Lock key

/* Unlock key

/* Set up to receive a signal
/* Send a signal

/* Sleep for specified number of secs
/* Set alarm clock

/* Pause for alarm eloek

/* Wait for ehild process

/* Exit process (close files)
/* Fork a process

/* Fork a shell process

/* Transfer to shell process

/* Fork and execute program
/* Execute program

/* Execute z80 program

/* Debug sy stem call

/¥ Allocate user memory

/* System call in DO-register
/* Update disk 1I/O buffers

/¥ Multiply

/* Divide

/* Get sy stem version #

/* Boot new operating system

/* Bad channel #

/* Channel already open
/* Channel not open

/* End~-of ~file

/*1/0 error

/* File table exhausted
/* File does not exist

/* Bad file name

121

*/
/-
*/
*/
*/

*/
*/

Cromemco Cromix~Plus Programmer's Reference Manual

A. 68000 Equate Listings

#define _diraccess
#define _filaccess
#define _exists
#define _nospace
#define _noinode
#define _inotable
#define _badeall
#define _fil size
#define _mnttable
#define _notdir
#define _isdir
#define _priv
#define _notblk
#define _fsbusy
#define _potordin
#define _notmount
#define _pochild
#define _nomemory
#define _ovflo
#define _argtable
#define _arglist
#define _numlinks
#define _difdev
#define _nodevice
#define _usrtable
#define _badvalue
#define _potconn
#define _devopen
#define _diruse
#define _filuse
#define _nomatch
#define _chnaccess
#define _poteromix
#define _badfree
#define _badinum
#define _readonly
#define _noproc
#define _ssignal
#define _badpipe
#define _locked
#define _deadloek
#define _lcktable
#define _tapeio
#define _badio
#define _not68000
#define _badformat
#define _runaway
#define _cdossim
#define _corrupt

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
24
55
56
o7

/* Directory access

/* File access

/* File already exists

/* No disk space left

/* No inodes left

/* Inode table exhausted

/* Illegal system call

/* File size too big

/* Mount table exhausted

/* Not a directory

/* Is a directory

/* Privileged system call

/* Not a block special device
/* File system busy

/* Not an ordinary file_.

/* Device not mounted

/* No ehild processes

/* Not enough memory

/* Divide overflow

/* Argument table exhausted
/* Arg list too big

/* Too many number of links
/* Cross~device link

/* No special device

/* User process table exhausted
/¥ Value out of range

/* 1/0 device not connected
/* Device open error

/* Directory in use (delete)
/* File in use (exclusive access)
/* No match on ambiguous name
/* Channel access

/* Not a eromix disk

/* Bad free list

/* Bad inode number

/* Device mounted for read only
/* Process does not exist

/* System call was aborted
/* Bad call on pipe

/* Locked

/* Deadlecked

/* Lock table exhausted

/* Tape I1/0 error

/* 1/0O error

/* 68000 programs cannot run under Z80

/* Bad file format

/* Runaway program aborted
/* CDOS simul ator required
/* System image corrupted

122

Cromemeo Cromix-Plus Programmer's Reference Manual

A, 68000 Equate Listings

/EQU/MODEEQU.H

/* Modeequ.h:

Cromemeo 68000 C 1/O header file

Copyright (¢) 1985 by Cromemco, Inc., All Rights Reserved

This file contains declarations of all values which are
used in the getmode and setmode Cromix system calls.

Sep 09-85
*/
#define MD_ISPEED 0 /* input speed */
#define MD_OSPEED 1 /* output speed *f
#define MD_MODE1 2 /* flags: RAW, ECHO, ete. */
#define MD_MODED 3 /* delay s for NL, CR, ete. */
#define MD_MODE2 4 /* flags: PAUSE, XFF, etc. */
#define MD_MODE3 5 /* flags: ESCRETN *f
#define MD_ERASE 6 /* auxiliary erase character */
#define MD_DELECHO 1 /* erasure echo character */
#define MD_LKILL 8 /* line kill character */
#define MD_USIGNAL 9 /* user signal key */
#define MD_LENGTH 10 /* page length (lines) */
#define MD_WIDTH 11 /* page width (columns) */
#define MD_BMARG IN 12 /* bottom margin (lines) */
#define MODELEN (MD_BMARGIN + 1)
#define MD_FORMS 254 /* printer forms number */
#define MD_IDENT 255 /* device identification */
/* the following are for SLPT only */
#define SLPT_BSIZE MD_ERASE /* ETX/ACK block size */
/* the following are for TYP only */
#define TYP_CWIDTH 64 /* character width in'1/120 in */
#define TYP_LHEIGHT 65 /* line height in 1/48 in */
#define TYP_LMARGIN 66 /* left margin in columns (1/10) */
/* the following are commands, not displacements in the device structure */
#define MD_STATUS 156 /* flag: eharacter is in one */

. /* of the input queues */
#define MD_IFLUSH 155 /* flush input queues */
#define MD_FNKEYS 152 /* turn function key s on or off */
#define MD_PSIGHTUP 151 /* signal eurrent process if hang up */
#define MD_MODEM 148 /*(QTTY and MTTYs only) */
#define MD_TYP 147 /* (TYPs only) */
/* eontents of D3-register for MD_ISPEED calls to change the baudrate */

123

Cromemeo Cromix-Plus Programmer's Reference Manual

A. 68000 Equate Listings

#define S_HANGUP 0
/* 1
/* 2
#define S_110 3
/* 4
#define S_150 5
/* 6
#define S_300 7
/* 8
#define S_1200 9
/* 10
#define S_2400 11
#define S_4800 12
#define S_9600 13
[14
/¥ 15
#define 5_19200 16
#define S_CTSWAIT 125
#define S_NOCHG 126
#define S_UNINIT 127
#define Sf1_AUTO 0x80

/* hang up dataphone */
50 baud */
75 baud ®f
/* 110 baud */
134.5 baud */
/* 150 baud */
200 baud */
/¥ 300 baud */
600 baud */
/* 1200 baud */
1800 baud */
/* 2400 baud */
/* 4800 baud ®/
/* 9600 baud */
External A */
External B */
/* 19200 baud ’ */

/* wait for clear to send

/* no echange of baudrate

/* uninitialized baudrate

/* (bit 7): input CRs from keyboard to
/* set baud

/* contents of the D3-register & D4~register for MD_MODE1 calls

#define TANDEM 0x01
#define XTAB 0x02
#define LCASE 0x04
#define ECHOQ 0x08
#define CRDEVICE 0x10
#define RAW 0x20
#define ODD 0x40
#define EVEN 0x80

/* expand TABs

/* econvert alphabetics to lower case
/* echo input

/* on input, map CR into NL

/* on output, echo LF or CR as CRLF
/* on input, return after each

/¥ character .
/* and treat "C, ”S, "Q asregular

/* input

/* parity function bits

/* contents of the D3-register & Dd~register for MD_MODED calls

#define NLDELAY 0x03
#define TABDELAY 0x0C
#define CRDELAY 0x30
#define FFDELAY 0x40
#define BSDELAY 0x80

/* (pairs of bits)

/* (single bits)

/* contents of the D3-register & D4-register for MD_MODE2 calls

#define PAUSE A 0x01

#define NOTIMMECHO 0x02

/¥ wait for CNTRL~Q after a page

/* is output
/* do not echo characters
/* ty ped-~ahead

124

*/
*/

*/

*/
*/

*/

*/

*/
*/
*/
*/

Cromemeco Cromix~-Plus Programmer's Reference Manual
A. 68000 Equate Listings

#define NOECNL 0x04 /* do not echo NLs */
#define SGENABLE 0x08 /* user~specifiable key signal enable */
#define ABENABLE 0x10 /* CNTRL-C key signal enable ' */
#define XFF 0x20 /* expand FFs */
#define WRAP 0x40 /* wrap-around if page width is exceeded */
#define SIGALIC - 0x80 /* send siguser signal for each key pushed */
/* contents of the D3~register & D4-register for MD_MODES ealls */
#define ESCRETN 0x01 /* ESC causes input line to be */
/* returned */
#define FNKEYS 0x02 /* enable response to 3102 function key s */
#define HUPENAB 0x04 /* hang up modem when device finally closed */
#define SIGHUPA LL 0x08 /* send sighangup signals to all processes */
/* which use this tty if modem hangs up */
#define CBREAK 0x10 /* on input, return after each character, */
/* no erase, linekill, or eof characters */
#define BINARY 0x20 /* on input, return after each */
/* character, no erase, linekill, opr */
/* eof characters, no output pause or *f

/* output width truncation, treat x-off ,*/
/* x~-on as regular input, no tandem mode*/

/* (ie, no input buff etl), no abort */
/* signal ("C), no user signal, no */
/* changing or checking parity bit, no */
/* delays after control chars as nls, */
/* no echoing, no character */
/* transformations, no function key */
/* decoding. */
#define CRIGNORE 0x40 /* On output, ignore CR and change LF */
/* to CR */
#define DISCARD 0x80 /* discard the device when it is no */
/* longer open */
/* bits of the D3-register for MD_STATUS calls */
#define INOTEMPTY 0x01 /* there is a character in the input */
/* buffer (but if not RAW mode, it won't*/
/* be accessible until a whole line is */
/* entered) */
/* contents of the D3-register for MD_MODEM _getmode call */
#define RXDA 0x01 /* Receiver Data Avaijlable A */
#define TXBE 0x04 /* Transmitter Buffer Empty */
#define DCD 0x08 . /* Data Carrier Detect */
#define CTS 0x20 /* Clear To Send */
#define RXBREAK 0x80 /* Receiver data line broken ®/
/* eontents of the D4-register for MD_MODEM _getmode call */
#define notRI 0x40 /* Not Ringing */
#define notDSR 0x80 /* Data Set not Ready */

125

Cromemeo Cromix~Plus Programmer's Reference Manu al

A. 68000 Equate Listings

/* contents of the D3-register & D4-register for MD_MODEM

#define RTS 0x02
#define TXBREAK 0x10
#define DTR 0x30

/* Request To Send
/* Break the Transmitter line
/* Data Terminal Ready

/* contents of the D3-register for MD_TYP call

#define TYPCHK 0x02
#define TYPPAP 0x04
#define TYPRIB 0x08
#define TYPOFL 0x10

/* The 3355 printer is in check cond.
/* The 3355 printer is out of paper
/* The 3355 printer is out of ribbon
/* The 3355 printer is off-line

/* contents of D3~register for MD_IDENT ecall

#define ID_TTY
#define ID_QTTY
#define ID_LPT
#define ID_TYP
#define ID_SLPT
#define ID_GSLPT
#define ID_CNET
#define ID_FFP
#define ID_SYSTEM
#define ID_TIMER
#define ID_TAPE
#define ID_SCC

DWW oo =3 Dk 0N =D

=t

/* Tuart terminal

/* Quadart or Octart terminal
/* Perallel printer

/* Fully formed printer

/* Serial printer

/* Serial printer on quadart
/* CNET driver

/* FFP processor driver

/* System device

/* Timer device

/* Half inch tape drive

/* SCC terminal

/* Values 12 .. 127 reserved
/* Values 128 .. 255 reserved for user
/* defined drivers and devices

126

_setmode call -

/EQU/BMODEEQU.H

/*

Cromemeo Cromix~-Plus Programmer's Reference Manual
A. 68000 Equate Listings '

Mode definitions for block devices

Cromemco Ine.
Aug 24, 1985
*/

/*

Mcde numbers for getmode and setmode calls

*/

#define BMD_STATUS
#define BMD_FLG1
#define BMD_FLG2
#define BMD_FLG3
#define BMD_SIZE
#define BMD_SEEK
#define BMD_INIT
#define BMD_PRDWRT
#define BMD_RDWRT
#define BMD_RPM
#define BMD_VERSION
#define BMD_PHYC HAR
#define BMD_LDFIRM
#define BMD_SOFT
#define BMD_HARD
#define BMD_RETRY

/*

RO 00 =3 OO Ul o O BN = O

Floppy tape special

*/

#define BMD_RETEN

/*

64

/* Get/set status byte

/* Get/set flagl byte

/* Get/set fleg2 byte

/* Get/set flag3 byte

/* Get number of bytes on device

/* Seek

/* Initialize track

/* Primitive read/write

/* Special read/write

/¥ Get RPM

/* Version number

/* Physical Characteristics

/* Load firmware

/* Accumul ated number of retries

/* Accumulated number of hard errors
/* Number of retries before hard error
/* Values 16 .. 63 reserved

/* Values 64 .. 127 special device modes
/* Values 128 .. 255 reserved for user
/* supplied drivers

numbers

/* Number of tape repositions before
/* aretension

IMI disk special numbers

*/
#define BMD_IMITYPE

/*

64

/* Get ty pe of IMI drive

127

*/

*/

Cromemeo Cromix~Plus Programmer's Reference Manual
A. 68000 Equate Listings

Values returned by BMD_IMITYPE

*/

#define IM_50070
#define IM_5007TW
#define IM_5018H
#define IM_T7710A
#define IM_7710B

/*

0x01
0x02
0x03
0x04
0x05

/* IMI Model 50070
/* IMI Model 5007TW
/* IMI Model 5018 H
/* IMI Model 7710A
/* IMI Model 7710B

Memory driver special numbers

*/

#define BMD_TMEM
#define BMD_SMEM
#define BMD_FMEM
#define BMD_MMEM
#define BMD_CACR

/*

64

65
66
67
68

/* Total memory

/* Sy stem memory

/* Free memory

/* Maximal free memory
/* CACR register

Mode values and masks for BMD_STATUS calls

*/

#define DS_BUSY
#define DS_WANT
#define DE_READ
#define DS_MODF
#define DS_MOUNT
#define DS_HOME
#define DS_BFSTEP
#define DS_VERIFY

/*

0x01
0x02
0x04
0x08
0x10
0x20
0x40
0x80

/* Device Busy (in use)

/* Device Wanted (do wakeup)
/* Read-only device

/* Super-block modified

/* Device mounted

/* Device has been homed

/* Buffered step flag

/* Verify after write

Meode values and masks for BMD_FLG1 calls

*/

#define DF_SMALL
#define DF_DSIDE
#define DF_DDENS
#define DF_DTRACK
#define DF_CROMIX
#define DF_CDOS
#define DF_BACKUP
#define DF_VOICE

/*

0x01
0x02
0x04
0x08
0x10
0x20
0x40
0x80

/* 1=small floppy 0=large flcppy

/* Double sided

/* Double density

/* Double tracked

/* Cromix format disk
/* Cdos format disk

/* Backup format disk
/¥ 0=step l=voice coil

Mode values for BMD_FLG2 calls

*/

128

*/
*/
*/
*/
*/

*/
*/

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

Cromemeco Cromix~Plus Programmer's Reference Manual
A. 68000 Equate Listings

#define D2 _SMALL
#define D2_LARGE
#define D2 _STIC
#define D2 _FSMD
#define D2 _RSMD
#define D2 _UNIFORM
#define D2 _MEMORY
#define D2 _RAM
#define D2 _FTAPE
#define D2_HD

/* Small floppy

/* Large floppy

/* STDC .Hard disk .

/* Fixed part of SMD hard disk

/* Removable part of SMD hard disk
/* Uniform floppy

/* Processor memory

/* RAM disk

/* Floppy tape

/* WDI hard disk

/* Values 10 .. 127 reserved

/* Values 128 .. 255 reserved for user
/* supplied drivers

D=0 Uik wdE=o

/* ,

Mode values and masks for BMD_FLG3 calls
*/ .
#define D3 _WRTPRO 0x01 /* Device is write protected
#define D3_INTRPT 0x02 /* Device interrupts
#define D3 _DUAL 0x04 /* Dual drive
/*

Floppy minor device number definition
*/
#define FDENSITY 0x40 /* 0=double density
#define FSIDES 0x20 /* 0=double sided
#define FDUAL 0x10 /* 1=dual drive (PERSC1)
#define FDTRACK 0x08 /* 1=double tracked
#define FSIZE 0x04 /* 0=8" 1=5"
#define FUNIT 0x03 /* physieal unit number mask
/%

SMD minor device number assignment
*/
#define CONTROLLER 0x80 /* Controller mask
#define DRIVE x40 /* Drive number mask
#define FIXED 0x20 /* Fixed flag mask
#define PARTITION 0xif /* Partition number
/*

Deta structure for BMD_INIT call
*/

ty pedef struet {

unsigned short flags; /* flags (FDENSITY for floppy)

unsigned short side; /* side to be initialized

129

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/

*/
*/
*/

*/
*/
*/
*/

*/
*/

Cromemco Cromix-Plus Programmer's Reference Manual
A. 68000 Equate Listings

unsigned short

unsigned char

} bm_init;

/%
*/

Data structure for

ty pedef struet {

} bm_seek;
/*
Data structure for
*/
ty pedef struct {

unsigned char
unsigned char
unsigned ehar
unsigned char
unsigned short
unsigned short

unsigned short
unsigned char
unsigned long
unsigned long

} bm_rdwrt;

/*
*/
ty pedef

Data structure for

struet {

unsigned ehar
unsigned char
unsigned char
unsigned char
unsigned char
unsighed short
unsigned short
unsigned short
unsigned short

} bm_prdwrt;

/*
*/
/*

track;
*Huf;

BMD_SEEK ecall

status;
ferror; .
serrors;
verify;
side;
track;

/* track to be initialized
/* pointer to track image

/* Return status

/* Fatal error number
/* System error number
/* Verify seek flag

/* side

/* track

BMD_BDWRT call

read;
*pufs
numbers;
blknr;

/* Read/write flag

/* buffer pointer

/* no. of bloeks to read/write
/¥ starting block number

BMD_PRDWRT call

status;
ferror;
serror;
read;
*buf;
numb ers;
sectors
surface;
eylinder;

Status bits primitive operations

STDC */

#define STS_IOERROR
#define STS_NIOERROR
#define STS_SELECT
#define STS_SEEK

0x01
0x02
0x04
0x08

130

/* peturn status

/* fatal error number

/¥ system error number

/* Read/write flag

/* buffer pointer

/* number of sectors to do

/* starting sector number

/* surface number to read/write
/* eylinder number to read/write

/* 1/0 error

/* Non 1/0 error
/* Error on select
/* Error on seek

*/
*/

*/
*/

*/
*/
*/

*/
*/

*/

*/
*/

*/
*/
*/
*/
*/

*/
*/

*/

Cromemeo Cromix-Plus Programmer's Reference Manual

A. 68000 Equate Listings

#define STS_PRD
#define STS_PWR
#define STS_PTX

/* Floppy */

#define FLS_SELECT
#define FLS_HOME
#define FLLS_RDADD
#define FLS_SEEK
#define FLLS_PREAD
#define FLS_READ
#define FLS_WRITE
#define FLS_WTRK

/* SMD */

#define SMS_SELECT
#define SMS_HOME
#define SMS_SEEK
#define SMS_READ
#define SMS_WRITE
#define SMS_HEAD

#define SMS_PREAD
/*

Data structure for
*/

ty pedef struect {
unsigned short
unsigned short
unsigned short

} bm_phy;
/*

0x10
0x20
0x40

0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08

0x01
0x02
0x03
0x04
0x05
0x06
0x07

/* Error on primitive read
/* Error on primitive write
/* Error on transfer.

/* Error on select

/* Error on home

/* Error on read address
/* Error on seek

/* Error on preread

/* Error on read

/* Error on write

/* Error on write track

/* Error on select

/* Error on home

/* Error on seek

/* Error on read

/* Error on write

/* Error on seleet head
/* Error on preread

BMD_PHYCHAR call

surface;
cylinder;
sector;

unsigned short secsiz;

/* number of surfaces on device
/* number of cylinders on device
/* number of sectors/track

/* number of bytes/sector

Data structure for BMD_LDFIRM ecall

*/

ty pedef struet {
unsigned short
unsigned short
unsigned char
} bm_ldfrm;

e
*/

#define LDFRM_DEBUG
#define LDFRM_FIRM

Flags

flags;
count;

- *buf;

0x8d
0x 8f

131

/* flags (see below)
/* number of bytes
/* pointer to firmware

/* Load debugger firmware
/* Load Regular firmware

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/

*/
*/

*/
*/

Cromemeo Cromix-Plus Programmer's Reference Manual
A. 68000 Equate Listings

/EQU/TMODEEQU.H

e as wo M3 MIF g3 wae wa DO

Modeequ.h:

Dec~-18-84
TPABORT equ
TPFMARK equ
TPSECURE equ
TPREWIND equ
TPUNLOAD equ
TPMODE equ
TPFILNO equ
TPBLKNO equ
TPOBLKLN equ
TPIBLKLN equ
TPOBLKS equ
TPSTAT equ
: TPMODE hits
EQFCLOSE equ

196
198
199
200
201
202
203
204
205
206
207
208

7

W@p MBI an P up MO 4o W B0 W 4,

Cromemco 68000 C I/O header file .
Copyright (c¢) 1984 by Cromemco, Ine., All Rights Reserved

This file contains declarations of all values which are
used in the getmode and setmode Cromix system calls, for
TP tape devices.

re-initialize tape driver

write file mark i
security erase

rewind

rewind and unload

mode bits

file number

bloeck number .
block length for next bloeck written
block length of first block read
number of blocks written

; get error (status-2, status-1)

; write EOF to tape when device closes

3 TPSTAT status bits (obtained from PIO input port A)
H These bits are returned in e-register
H Old names are without leading TP

TPDRVBUSY
TPWRRDY
TPRDRDY
TPLOADPT
TPFBUSY
TPONLINE
TPIDENT
TPRDY

equ
equ
equ
equ
equ
equ
equ
equ

DO i DD Lo 1 OO]

B g MO o W g, W

drive busy

FIFO ready for input (used for write)
FIFO output ready (used for read)
load point

formatter busy

on line

ident

ready

; TPSTAT status bits (obtained from PIO input port B)
H These bits are returned in e-register
; Old names are without leading TP

TPHISPEED
TPHARDERR
TPFLMARK
TPCORERR
TPWRPROT
TPEOT
TPRWINDING

equ
equ
equ
equ
equ
equ
equ

O N o 1=

; high speed status

3 hard error

; file mark

; correctable error

; file write~protected

; end of tape

; rewinding

132

Cromemeo Cromix~-Plus Programmer's Reference Manual
A. 68000 Equete Listings

/EQU/PTRACE.H

/’*
Ptrace information
EZ -- Jul 29, 1984
*/

“ ty pedef struet _pte {

unsigned long us_DI[8]; /* User data registers */
unsigned char *us_Al[8]; /* User address registers */
unsigned short us_SR; /* User status register */
unsigned short *us_PC; /* User PC register */
unsigned short us_pstat; /* ptrace status */
unsigned short us_signo; /* user signal number */
short us_tstat; /* terminstion status */
} ptes '
/*
Ptrace commands
*/
#define P_START 0 /* Next fexec is debugged */
#define P._RIBEQ 1 /* Read child memory */
#define P_WRSEQ 2 /* Write child memory */
#define P_RDSTA 2 /* Read child status */
#define P_WRSTA 4 : /* Write child status */
#define P.RUN 5 /* Run child process */
#define P_TRACE 6 /* Trace child process */
#define P_TERM 7 /* Terminete child process */
/*
us_pstat values
*/
#define PS_RUNNING 0 /* Child running, parent asleep */
#define PS_START 1 /* Inpitial state */
#define PS_BREAK 2 /* Trap #5 exception */
#define PS_TRACE 3 /* Trace exception */
#define PS_SIGNAL 4 /* Program aborted by signal */
#define PS_EXIT 5 /* Program terminated */

133

Cromemeo Cromix-Plus Programmer's Reference Manual

134

Cromemeo Cromix~Plus Programmer's Reference Manual

B. Z80 Equate Listings

/EQU/JISYSEQU.Z80

list
:
; Cromemco Inc.
; dJuly 9, 1985

H

stdin
stdout
stderr

arge
argv
arg0
argl
arg 2
arg 3
arg4

; C-register modes for

b

op.read
op.write
op.rdwr
op.append
op.xread
op.xwrite
Op.Xrdwr
op.xappend

op.truncf
op.condf
op.force

Appendix B

Z80 EQUATE LISTINGS

off noxref

equ
equ
equ

equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ

ot

408
42H

o S PRt N N)

create,

=1 o U g O N

80H
40H
20H

; standard input channel
s standard output channel
3 standard error channel

; location for argument count

; location for argument list vector
; arg offset

; arg offset

; arg offset

; arg off set

; arg offset

open

read only

write only

read and write

append only

exclusive read only
exclusive write only
exclusive read and write
exclusive append only

MO 53 WB \ap M0 gy WS g

; truncate on create flag
; conditional create flag
; force open of block device

; C~register file position modes for .setpos

b4

fwd.begin
fwd.current
fwd.end
bak.current
bak.end

equ
equ
equ
equ
equ

; forward from the beginning of the file
; forward from the current file position

; forward from the end of the file

; backward from the current file position
; backward from the end of the file

135

Cromemeco Cromix~Plus Programmer's Reference Manual

B. Z80 Equate Listings

; C-register modes for .fstat, .cstat, .fchstat, .cchstat

b

st.all
st.owner
st.group
st.aowner
st.agroup
st.aother
stfty pe
st.size
stailinks
st.inum
stdevice
st.tereste
stimodify
st.taccess
st.tdumped
st.devno
st.pdevno

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

LIoR IR W IS BN AL N)

l; File types for st.ftype

7

is.ordin
is.direct
is.char
is.block
is.pipe

; Access bits for access flags

9
ac.read
ac.exec
ac.writ
ac.apnd

defl
defl
defl
defl
defl

defl
defl
defl
defl

; C-register modes

2
id.effective
id.ogin
id.program
id.hl

; Signals

b

sigabort
siguser
sigkill
sigterm
sigalarm
sigpipe
‘sighangup

s

equ
equ
equ
equ

defv
defv
defv
defv
defv
defv
defv
defv

for

R ILI N i

W o

o BE ap WO 55 WA g, MO N30 MO pp MO agp WP a3 MO o

B B a3 M G,

0 gy WP o,

.Setuser,

W= o

00 -1 tn s L0 DD

-
’
°
?
.
’
b

MOy I gy WP ap M

3 de

all of inode (128 bytes)
de = owner
de = group

d = owner access, € = mask
d = group access, e = mask
d = other access, e = mask

d = file type
dehl = file size

de = number of links
de = inode number
de = device number of file system containing incde

de-> time created
de~> time last modified
de-> time last accessed

; de~> time last dumped

de = device number if inode is a device
physical device number if inode is a device

ordinary file
directory file
character device
block device
pipe file

; read access bit

execute access bit

; write access bit

append access bit
.getuser, .setgroup, .getgroup
effective id

login id
program id

; id contained in HL register

; CONTROL-C key

user-specifiable key
kill
terminate (catechable)

; alarm clock

broken pipe
modem hang up
reserved

136

Cromemeco Cromix-Plus Programmer’'s Reference Manual
B. Z80 Equate Listings

" 3 System Call Numbers

?

.makdev equ 00H ; makdev(d,e hl)-~-make device entry
.makdir equ 01H ; makdir(hl)--make a directory

.getdir equ 02H ; getdir(hl)--get current directory name
setdir equ 03H ; setdir(hl)~-change current directory
.mount equ (04H ; mount(c,de,hl)--mount file system
Jnmount equ 05H ; unmount(hl)--unmount file system
delete equ 06 H ; delete(hl)~~delete file

«chkdev equ 07TH ; chkdev(d,e)--check for device driver
.create equ 08H ; b=create(c,hl)-—-create & open file
open equ 09H ; b=open(e,hl)~~open file

chdup equ 0AH ; e=chdup(b)-~-duplicate channel

.close equ 0BH ; close(b)--close file

Lexchg equ 0CH ; exchg(b,c)--exchange data in files
.trune equ 0DH ; trune(b)-~truncate open file

«pipe equ 0EH ; bye=pipe()-—create a pipe

H equ 0FH

.getpos equ 10H ; dehl=getpos(b)--get file position
.setpos equ 11H ; setpos(e,dehl)--set file position
.getmode equ 12H ; d=getmode(b,c)-~get device characteristics
.setmede equ 13H ; d=setmode(b,c,d,e)~~set device characteristics
rdseq equ 14H ; de=rdseq(b,de,hl)~-read n bytes
wrseq equ 15H ; de=wrseq(b,de,hl)--write n bytes
.rdby te equ 16H ; a=rdby te(b)--read 1 byte

wWrbyte equ 17H ; wrbyte(b,a)--write 1 byte

.rdline equ 18H ; de=rdline(b,de,hl)~-read a line
-wrline equ 19H ; de=wrline(b,hl)~-write a line

: equ 1AH

. printf ‘ equ 1BH ; printf(b,hl)-~print formatted string
£rror equ 1CH ; error(a,b,de,hl)--print error message
fstat equ 20H ; fstat(e,dehl)--get file status (inode)
cstat equ 21H ; cstat(b,c,de)--get channel status (inode)
fchstat ~ equ 22H ; fchstet(e,deshl)-~change file status
.cehstat equ 23H ; cchstat(b,c,de)-~change channel status
Jflink equ 24H ; flink(de,hl)--link to file

«clink equ 25H ; elink(b,de)--link to open channel
faccess equ 26 H ; faccess(e,hl)--test file access

£ access equ 27TH ; caccess(b,c)~~test channel access

; equ 28H

H equ 29H

.getdate equ 30H ; dye,h,l=getdate()-~get date

.setdate equ 31H ; setdate(e,h,l)~~-set date

gettime equ 32H ; e l=gettime()--get time

settime equ 33H ; settime(e,h,l)~-set time

getuser equ 34H ; de,hl=getuser()--get user id
setuser equ 35H ; setuser{hl)--set user id

.getgroup equ 36H ; deshl=getgroup()--get group id
.Setgroup equ 3TH ; setgroup(hl)--set group id

.getprior equ 38H ; l=getprior()--get process priority
.setprior equ 39H ; setprior(l)--set process priority
getproc equ 3AH ; hl=getproc()--get process id

3 equ 3BH -

137

Cromemeo Cromix-Plus Programmer's Reference Manual
B. Z80 Equate Listings

H equ 3CH

.ksam equ 3DH ; ksam(c,de,hl)~-ksam call

Joek equ 3EH s lock(e ,de,hl)~~lock key

unloek equ 3FH ; unlock(c,de,hl)mum.ock key

.Signal equ 40H ; signal(e,hl)~-set up to receive a signal
-kill equ 41H ; kill(c,hl)msend a signal

.sleep equ 42H ; sleep(hl)-~sleep for hl seconds

.alarm equ 43H s alarm(hl)-~set alarm cloek

.pause equ 44H ; pause()~-pause for alarm ecloek

~wait equ 45H ;s e,dehl=wait()--wait for child process
exit equ 46H s exit(hl)--exit process (close files)

s fork eqgu 47H fork reenirant process

fshell equ 48H ;s fshell(de)~~fork a shell process

.shell equ 49H ; shell(de)-~transfer to shell process

5 . equ 4AH :
Jfexec equ 4BH ; fexec(be,de,hl)~~fork and execute program
£X6ee equ 4CH ; exec(be de,hl)~~execute program

; execz 8l equ 4DH execute z80 program

H equ . 4FH

H equ 4FH

; Jnemory equ 50H allocate memory -

Jdndirect equ 51H ; indirect(a,b,c,de,hl)--system call in A-register
.update equ 52H ; update()-~update disk I/O buffers

Jmult equ 53H ; dehl=mult(be,l)~--multiply

divd equ 54H ; de,hl=divd(dehl,be)~~divide

~version equ 25H ; hl=version()--get system version #
.boot equ 56H ; boot(hl de)~-boot new operating system

form
; Error code definitions

2
?badehan defv

1 ; bad channel #
?toomany defv 2 ; channel already open
?notopen defv 3 ; channel not open
? endfile defv 4 ; end~-of ~file
?ioerror defv 5 s I1/0 error
?filtable defv 6 ; file table exhausted
?notexist defv 7 ; file does not exist
?badname defv 8 ; bad file name
?diraccess defv 9 ; directory access
?fil access defv 10 ; file access
?exists defv 11 ; file already exists
?nospace defv 12 ; no disk space left
?noinode defv 13 ; no inodes left
?inotable defv 14 ; inode table exhausted
?badcall defv 15 ; illegal system call
?fil size defv 16 ; file size too big
7mnttable defv 17 ; mount table exhausted
?notdir defv 18 ; not a directory
?isdir defv 19 ; is a directory
Tpriv defv -20 ; privileged system call
?notblk defv 21 ; not a bloek special device
?fsbusy defv 22 ; file system busy

138

Cromemeo Cromix~Plus Programmer's Reference Manual
B. Z80 Equate Listings

?notordin defv 23 ; not an ordinary file
?notmount defv 24 ; device not mounted
?nochild defv 25 ; no child processes
? nomemory defv 26 ; not enough memory
Tovflo defv 27 ; divide overflow
?argtable defv 28 ; argument table exhausted
?arglist defv 29 ; bad argument list
?numlink s defv 30 ; too many links

" ?difdev defv 31 ; cross—device link
?nodevice defv 32 ; no special device _
?usrtable defv 33 ; user process table exhausted
?badvalue defv 34 ; value out of range
?notconn defv 35 ; 1/0 device not connected
?devopen defv 36 ; device open error
?diruse defv 37 ; directory in use (delete)
?filuse defv 38 s file in use (exelusive access)
?nomateh defv 39 ; no mateh on ambiguous name
?chnaceess defy 40 ; channel access
?noteromix defv 41 ; not a cromix disk
?badfree defv 42 ; bad free list
?hadinum defv 43 ; bad inode number
?readonly defv 44 ; device mounted for read only
?noproc defv 45 ; process does not exist
?signal defv 46 ; system call was aborted
?badpipe defv 47 ; bad call on a pipe
?locked defv 48 ; locked
?deadlock defv 49 ; deadlocked
?lcktable defv 50 ; lock table exhausted
?tapeic defv 51 ; tape I/0O error
7badio defv 52 ; bad 1/0O
7not 68600 defv 53 ; 68000 programs cannot run under Z80
?badformat defv 54 ; bad file format
?runaway defv 55 ; runaway program eborted
?edossim defv 56 ; CDOS simulator required
7eorrupt defv 57 ; system image corrupted

list on,xref

139

Cromemco Cromix~Plus Programmer's Reference Manual
B. 280 Equste Listings

/EQU/MODEEQU.Z80
list off
list noxref ; (use this line only with ASMB version 3.08 or later)

3

; Cromemeo Inc.

; September 9, 1985

; Mode definitions for terminals and printers,

; TTY, QTTY, MTTY, LPT, SLPT, QSLPT, and TYP

; C-register values for .GETMODE and .SETMODE system calls

MD_LENGTH defv 10 page length (lines)

2
MD_ISPEED defv 0 ; input speed
MD_OSPEED defv 1 ; output speed
MD_MODE1 defv 2 ; flags: RAW, ECHO, ete.
MD_MODED defv 3 ; delays for NL, CR, ete.
MD_MODE2 defv 4 ; flags: PAUSE, XFF, etc.
MD_MODE3 defv 5 s flags: CBREAK, VRAW, etc.
MD_ERASE defv 6 ; auxiliary erase character
MD_DELECHO defv 7 ; erasure echo character
MD_LKILL defv 8 s line kill eharacter
MD_USIGNAL defv 9 ; SIGUSER signal key

3
MD_WIDTH defv 11 ; page width (columns)
MD_BMARGIN defv 12 ; bottom margin (lines)
MODELEN defv MD_BMARGIN + 1
MD_FORMS defv - 254 ; printer forms number
MD_IDENT defv 255 ; device identification

; More e-register values for SLPT only
SLPT_BSIZE defv MD_ERASE ;ETX/ACK block size

; More c-register values for TYP only

9

TYP_CWIDTH defv 64 ; character width in 1/120 inches
TYP_LHEIGHT defv 65 ; line height in 1/48 inches
TYP_LMARGIN defv 66 ; left margin in eolumns (1/10 inches)

; More e-register values for .GETMODE and .SETMODE system calls

b

MD_STATUS defv 156 ; check whether input queues empty
MD_IFLUSH defv 155 ; flush input queues

MD_FNKEYS defv 152 ; turn function keys on or off

; d-register = 1 to enable fnkeys
d-register = 0 to disable them

MD_PSIGHUP defv 151 signal current process if hang up

89 4y BE W2

; defv 150 (this value reserved)
MD_MODEM defv 148 (QTTYs and MTTYs only)
MD_TYP defv 147 ;3 (TYP only)

140

Cromemeo Cromix-Plus Programmer's Reference Manual

B. Z80 Equate Listings -

; D-register values for MD_ISPEED baudrate calls

S_HANGUP

T e

110

) e
- .

)

[}

ey

e

300

51200

S_2400
S_4800
S_9600

*

?

S_19200
S_CTSWAIT
S_NOCHG
S_UNINIT
Sfl_AUTO

defv
defv
defv
defv
defv
defy
defv
defv
defv
defv
defv
defv
defv
defv
defv
defv
defv
defv
defv
defv
defv

W oo =V O WM D

el el
L e L0 DD k= O

16
125
126
127
7

.
)
3
H
’
-
’
’
?
.
’
’
.
5
3
b
.
;
.
5
’
.
’
.
3
.
>
5
3
.
’

hang up phone
50 baud

s 75 baud
+ 110 baud

134.5 baud

s 150 baud
s 200 baud

300 baud

s 600 baud

1200 baud

: 1800 baud
s 2400 baud

4800 baud .
9600 baud

External A

External B

19200 baud

wait for Clear To Send

; no change of baudrate

baudrate has not been initialized yet
(bit 7) input CRs from keyboard to set baudr

; D~register & e-register bits for MD_MODE1 calls

?

TANDEM
XTAB
LCASE
ECHO
CRDEVICE

RAW

oDD
EVEN

defv
defv
defv
defv
defv

defv

defv
defv

B G0 o= O

6
7

.
5
.
3
.
H
.
’
’
.
’
’
3
H
’
;
3

send XOFF/XON to control filling of input buf
expand TABs

convert alphabetics to lower case

echo input

; on input, map CR into NL,

on output, change NL to CRLF.

on input, return after each character,

no erase, linekill, or EOF characters,

no output PAUSE or output width truncation,

; treat X-OFF & X-ON as regular input.
parity function bits

; D-register & e-register values for MD_MODED ecalls

9

NLDELAY
TABDELAY
CRDELAY
FFDELAY
BSDELAY

defv
defv
defv
defyv
defv

03H
0CH
30H
40H
80H

-
b
°
b
-
b

°

b
.

?

(pairs of bits)

(single bits)

141

Cromemco Cromix-Plus Programmer's Reference Manual
B. Z80 Equate Listings

D-register & e-register bits for MD_MODE2 calls

wo 33

PAUSE defv 0 ; wait for CONTROL~-@ after .a page is output
NOTIMMECHO defv 1 ; do not echo characters typed-ahead
NOECNL defv 2 ; do not echo NLs
SGENABLE defv 3 ; send SIGUSER signal if MD_USIGNAL key pushed
ABENABLE defv 4 ; send SIGABORT signal if CONTRCL-C key pushed
XFF defv 5 ; expand FFs
WRAP defv 6 ; wrap-around if page width is exceeded
SIGALLC defv 7 ; send SIGUSER signal for every key pushed
; D~register & e-register bits for MD_MODE3 calls
»
ESCRETN defv 0 ; ESC causes input line to be returned
FNKEYS defv 1 ; response to 3102 funetion keys enabled
HUPENAB defv 2 ; hang up modem when device is finally closed
SIGHUPALL defv 3 ; send SIGHANGUP signals to all processes which
; use this TTY device if modem hangs up
CBREAK defv 4 ; on input, return after each character,
; no erase, linekill, or EOF characters.
BINARY defy 5 ; on input, return after each character,
s no erase, linekill, or EOF characters,
; no output PAUSE or output width truncation,
; treat X-OFF & X~-ON as regular input,
; no tandem mode (i.e., no input buffer control),
; no abort signal (CONTROL~C), no user signal,
; no changing or checking parity bit,
; no delays after control chars such as NLs,
; no echoing,
; no character transformations (i.e., ignore
; the LCASE, CRDEV, and XTABS modes)
; no funetion-key decoding.
CRIGNORE defv 6 ; on output, ignore CR and change LF to CR
DISCARD defv 7 ; discard the device when it is no longer open

; D-register bits for MD_STATUS calls

b

INOTEMPTY defv 0 ; there is a character in the input buffer
; (but if not CBREAK, RAW, or BINARY mode,
; it won't be accessible until a whole line
; is entered)

; .GETMODE d-register bits for MD_MODEM calls

?

RXDA defv 0 ; Receiver Data Available
TXBE defv 2 ; Transmitter Buffer Empty
CD defv 3 ; Data Carrier Detect

CTs defv 5 ; Clear To Send

RXBREAK defv 7 ; Receiver data line broken

142

Cromemeo Cromix~Plus Programmer's Reference Manual
B. Z80 Equate Listings ’

; .~GETMODE e~register bits for MD_MODEM calls

9
notRI defv 6 ; Not ringing
notDSR defv 7 ; Data Set not Ready

; .SETMODE d-register and e-register bits

?

RTS defv 1 s Request to Send
TXBREAK defv 4 ; Break the transmitter line
DTR defv (; Data Terminal Ready

; D-register bits for MD_TYP call
3 ;
TYPCHK defv

1 ; the 3355 printer is in a check condition
TYPPAP defv 2 ; the 3355 printer is out of paper
TYPRIB defv 3 ; the 3355 printer is out of ribbon
TYPOFL defv 4 ; the 3355 printer is off-line

; D_register values for MD_IDENT calls

»
ID_TTY defv 0 ; Tuart terminal
ID_QTTY defv 1 ; Quadart or Oetart terminal
ID_LPT defv 2 ; Parallel printer
ID_TYP defv 3 ; Fully formed printer
ID_SLPT defv 4 ; Serial printer
ID_QSLPT defv 5 ; Serial printer on quadart
ID_CNET defv 6 ; CNET driver
ID_FFP defv 7 3 FFP processor driver
ID_SYSTEM defv 8 ; System device
ID_TIMER defyv 9 ; Timer device
ID_TAPE defv 10 ; Half-ineh tape drive
ID_SCC dev 11 ; SCC terminal
; Values 12 through 127 reserved
; Values 128 through 255 reserved for usep~
; defined drivers and devices
list xref ; (use this line only with ASMB version 3.08 or later)
list on

143

Cromemeco Cromix-Plus Programmer's Reference Manual

B. Z80 Equate Listings

/EQU/BMODEEQU.Z80

_ list

5

; Cromemeo Inc.
; August 24, 1985

off , noxref

?
; Mode definitions for block devices

o
7

; C-register values for .GETMODE and .SETMODE system calls

?

BMD_STATUS
BMD_FLG1
BMD_FLG2
BMD_FLG3
BMD_SIZE
BMD_SEEK
BMD_ INIT
BMD_PRDWRT
BMD_RDWRT
BMD_SEEK
BMD_RPM
BMD_VERSION
BMD_PHYC HAR
BMD_LDFIRM
BMD_SOFT
BMD_HARD

BMD_RETRY

5
.
;

BMDD_RETEN

; IMI disk special numbers

a
?

BMD_IMITYPE

.
H

defv
defv
defv
defv
defv
defv
defv
defv
defv
defv
defv
defv
defv
defv
defv
defv

defv

defv

defv

W0 00 00T D b W=D

15

Floppy tape special number

64

64

»
b

P 120 e ap WD R M2 5 WS o wo MO a0 ws WO ap MO S0 .0 an wa Wwe W Wo

’

Get/set status byte

Get/set flagl byte

Get/set flag2 byte

Get/set flag3 byte

Get number of bytes on device

Seek

Initialize track

Primitive read/write

Special read/write

Seek

Get RPM

Version number

Phy sical characteristics

Load firmware

Accumulated number of retries
Accumulated number of hard errors
Values 15 through 127 reserved :
Values 128 through 255 reserved for user-
supplied drivers

Number of retries before hard error

Values 17 .. 63 reserved

Values 64 .. 127 special device modes
Values 128 .. 255 reserved for user
supplied drivers

Number of tape repositions before
a retension

Get type of IMI drive

; Values returned by BMD_IMITYPE

144

Cromemeo Cromix-Plus Programmer's Reference Manual
B. 280 Equate Listings

IM_50070 defv 01H IMI model 50070

9
IM_5007W defv 02H ; IMI model 5007W
IM_5018H defv 03H ; IMI model 5018H
IM_7710A defv 04H ; IMI model 7710A
IM_7710B defv 05H ; IMI model 7710B

; D-register & e-register bits for BMD_STATUS calls

9

DS.BUSY defv 0 ; Device Busy (in use)
DS.WANT defv 1 ; Device Wanted (do wakeup)
DS.READ defv 2 ; Read-only device

DS.MODF defv 3 ; Super-block modified
DS.MOUNT defv 4 ; Device mounted

DS.HOME - defv 5 ; Device has been homed
DS.BESTEP defv 6 ; Buffered step flag
DS.VERIFY defv 7 ; Verify after write

; D-register & e-register bits for BMD_FLG1 calls

2

DF.SMALL defv 0 ; 1=small floppy 0=lerge floppy
DF.DSIDE defv 1 ; Double sided

DF.DDENS defv 2 ; Double density

DF.DTRACK defv 3 ; Double tracked

DF.LCROMIX defv 4 ; Cromix format disk

DF.CDCS defv 5 ; Cdos format disk

DF.BACKUP defv 6 ; Backup format disk

DF.VOICE defv 7 ; 0=step l=voice coil

; D-register values for BMD_FLG2 calls

?

D2.SMALL defv 0 ; Small floppy

D2.LARGE defv 1 ; Large floppy

D2.STDC defv 2 ; STDC hard disk

D2.FSMD defv 3 ; Fixed part of SMD hard disk
D2 .RSMD defv 4 ; Removable part of SMD hard disk
D2 .UNIFORM defv 3 ; Uniform floppy

D2.MEMORY defv 6 ; Processor memory

D2 RAM defv 7 ; RAM disk

D2.FTAPE defv 8 ; Floppy tape

D2.IMI defv 9 ; IMI hard disk

; D-register & e-register bits for BMD_FLG3 calls

’

D3.WRTPRO defv 0 ; Device is write protected
D3.INTRPT defv 1 ; Device interrupts
D3.DUAL defvy 2 ; Dual drive

; Floppy minor device number bits

]

FDENSITY defv 6 ; 0 = double density
FSIDES defv 5 3 0 = double sided
FDUAL defv 4 ; 1 = dual drive (PERSCI)
FDTRACK defv 3 ; 1 = double tracked

145

Cromemeo Cromix~Plus Programmer's Reference Manual

B. Z80 Equate Listings

FSIZE
FUNIT

defv

defv

; SMD minor device

?
CONTROLLER
DRIVE

FIXED
PARTITION

defv
defv
defv
defv

2
03H

number bits

= oo O -3

FH

;

0=8" 1= 5"

; Mask for unit number

; Controller number

s
.
’
.
;

Drive number
Fixed flag
Partition number mask

Data structure for BMD__INIT call .

s w3

" struet 0
inflags defs 2 ; Density from minor deviee number
in.side defs 2 ; Side to initialize
in.track defs 2 s Track to initialize
in.buf defs 4 ; Pointer to track image
in.size defs 0 ; Size of structure
mend
; Data strueture for BMD_SEEK call
?
struet 0
skl.status defs 1 ; Controller status
sk. ferror defs 1 ; Fatal error number
sk.serror defs 1 ; System error number
sk.verify defs 1 ; Verify seek flag
sk.side defs 2 ; Side
sk.track defs 2 ;s Track
sk.size defs 0 ; Size of structure
mend
; Data structure for BMD_RDWRT ecall
9
struct 0
rw.read defs 2 ; Read/write flag
rw.buf defs 4 ; Buffer pointer
rw.number defs 4 3 Number of bloeks
rw.blknr defs 4 ; Starting block number
rw.size defs 0 ; Size of structure
mend

; Data strueture for

s

BMD_PRDWRT ecall

struct 0

prw.status defs 1 ; Controller status
prw.ferror defs 1 ; Fatal error number
prw.serror defs 1 ; System error number
prw.read defs 1 ; Read/write flag
prw.buf defs 4 ; Buffer pointer

. prw.number defs 2 ; Number of seetors to do
prw.sector defs 2 ; Starting seetor number
prw.surface defs 2 ; Surface number to read/write

146

Cromemeo Cromix-Plus Programmer's Reference Manual
B. Z80 Equate Listings

prw.cylinder defs 2 ; Cylinder number to read/write
prw.size defs 0 ; Size of structure
. mend

; Status bits for primitive operations

.
2

sts.ioerror defv 0 ; 10 error

sts.nioerror defv 1 ; Not 10 error
sts.select defv 2 “s Error on select
sts.seek defv 3 ;3 Error on seek

sts.prd defv 4 ; Error on primitive read
sts.pwr defv 5 3 Error on primitive write
sts.ptx defv 6 ; Error on transfer

H

; Floppy status bits

9

fls.select defv 1 ; Error on select
fls.home defv 2 s Error on home
f1s.rdadd defv 3 ; Error on read address
fls.seek defyv 4 s Error on seek

fl s.pread defv 5 ; Error on preread
fls.read “defv 8 : Error on read

fl s.write defv 7 ; Error on write
fls.wtrk defv 8 ; Error on write track
$

; SMD status bits

9

sms.select defv 1 ; Error on select
sms.home defv 2 ; Error on home
sms.seek defv 3 ; Error on seek
smssead defv 4 ; Error on read
sms.write defv) ; Error on write
sms.head defv 6 ; Error on select head
sms.pread defv 7 ; Error on preread

: Data structure for BMD_PHYCHAR call

5

struet 0
phy.surface defs 2 ; Number of surfaces on device
phy.ceylinder defs 2 ; Number of cylinders on device
phy.sector defs 2 ; Number of sectors/track
phy.seesiz defs 2 ; Number of bytes/sector
phy.size defs 0 ; Size of structure

mend

; Data structure for BMD_LDFIRM call

?

struet 0
1df flags defs 2 ; Flags (see below)
1df .count defs 2 ; Number of bytes
1df .buf defs 4 ; Pointer to firmware

147

Cromemeco Cromix-Plus Programmer’s Reference Manual
B. Z80 Equate Listings

1df.size) defs 0 ; Size of structure
mend

LDFRM_DEBUG defv = 8DH ; Load debugger firmware
LDFRM_FIRM defv 8FH ; Load regular firmware

list xref, on

‘Tmodeequ.h: Cromemco 68000 C 1/O header file
Copyright (c¢) 1984 by Cromemeco, Inc., All Rights Reserved
This file contains declarations of all values whieh are
used in the getmode and setmode Cromix system calls, for
TP tape devices.

Wa B3 wa WP B3 wa 32 wo 2P

Dec~18~84
TPABORT defv 196 ; re-initielize tape driver
TPEMARK defv 198 ; write file mark
TPSECURE defv 199 ; security erase
TPREWIND defv 200 ;s rewind
TPUNLOAD defv 201 : rewind and unload
TPMODE defv 202 ; mode bits
TPFILNO defv 203 ; file number
TPBLKNO defv 204 ; bloek number
TPOBLKLN defv 205 ; bloek length for next block written
TPIBLKLN defv 206 3 block length of first block read
TPOBLKS defv 207 ; number of blocks written
TPSTAT defv 208 ; get error (status-2, status-1)
5 TPMODE bits
EOQOFCLOSE defv 7 ; write EOF to tape when device closes
: TPSTAT status bits (obtained from PIO input port A)
s These bits are returned in e~register
H Old names are without leading TP
TPDRVBUSY defv 7 ; drive busy
TPWRRDY defv 6 ; FIFO ready for input (used for write)
TPRDRDY defv 5 ; FIFO output ready (used for read)
TPLOADPT defv 4 ; load point
TPFBUSY defv 3 ; formatter busy
TPONLINE defv 2 ; on line
TPIDENT defv 1 3 ident
TPRDY defv 0 5 ready
; TPSTAT status bits (obtained from PIO input port B)
H These bits are returned in e-register
H Old names are without leading TP
TPHISPEED defy 7 ; high speed status

148

Cromemeo Cromix~Plus Pregrammer's Reference Manual

B. Z80 Equate Listings

TPHARDERR
TPFLMARK
TPCORERR
TPWRPROT
TPEOT
TPRWINDING

defv
defv
defv
defv
defv
defv

O == B O N

s hard error

; file mark

; correctable error

; file write~protected
; end of tape

; rewinding

149

Cromemeo Cromix~Plus Programmer's Reference Manual

150

Cromemeo Cromix-Plus Programmer's Reference Manual

C.ASCII Character Codes

Appendix C

ASCII CHARACTER CODES

HEX CHARACTER HEX CHAR HEX CHAR HEX CHAR
00h NUL (CONTROL-~-8&) 20h SPACE 40h @ 60h ¢
01h SOH (CONTROL-A) 21h ! 41h A 61h a
02h STX (CONTROL-B) 22h " 42h B 62h b
03h ETX (CONTROL-C) 23h # 43h C 63h c
04h EOT (CONTROL-D) 24h $ Lith D 64h d
05h ENQ (CONTROL-E) 25h % 45h E 65h e
06h ACK (CONTROL-F) 26h & U6h F 66h f
0Th BEL (CONTROL~G) 27h ! 47h G 67h g
08n BS (CONTROL-~H) 28h (48n H 68h h
09h HT (CONTROL-I) 29h) 49h I 69h i
0Ah LF (CONTROL~-J) 2Ah * LAh J 6Ah j
0Bh VT (CCNTROL-K) 2Bh + 4Bh K 6Bh k
0Ch FF (CONTROL~L) 2Ch 4Ch L 6Ch 1
0Dh CR (CONTROL-M) 2Dh - 4Dh M 6Dh m
0Eh 30 (CONTROL~N) 2Eh . LEh N 6Eh n
OFh 3SI (CONTROL-O) 2Fh / 4Fh 0 6Fh o
10h DLE (CONTROL-P) 30h 0 50h P 70h p
11h DC1 (CONTROL-Q) 31h 1 51h Q T1h q
12h DC2 (CONTROL-R) 32h 2 52h R 72h r
13h DC3 (CONTROL-S) 33h 3 53h S 73h 3
14h DC4 (CONTROL~-T) 34h a 54h T 74h t
15h NAK (CONTROL-U) 35h 5 55h U 75h u
16h SYN (CONTROL~V) 36h 6 56h v 76h v
17h ETB (CONTROL-W) 37h T 5Th W T77h w
18h CAN (CONTROL-X) 38h 8 58h X 78h X
19h EM (CONTROL-Y) 39h 9 59h ¥ 79h y
14h SUB (CONTROL~-Z) 3Ah : 5Ah Z 7 Ah Z
1Bh ESC (CONTROL~[) 3Bh ; 5Bh { 7Bh {
1Ch FS (CONTROL-\) 3Ch < 5Ch \ 7Ch 1
1Dh GS (CONTROL~-1) 3Dh = 5Dh] 7Dh }
1Eh RS (CONTROL-") 3Eh > 5Eh ~ TEh -
1Fh U3 (CONTROL-_) 3Fh ? 5Fh _ 7Fh DEL

NUL = null DC1 = device control 1

SOH = start of heading DC2 = device control 2

STX = start of text DC3 = device control 3

ETX = end of text DC4 = device control 4

EOT = end of transmission NAK = negative acknowledge

ENQ = enquiry SYN = synchronous idle

ACK = acknowledge ETB = end transmission block

BEL = bell CAN = cancel

BS = backspace EM = end of medium

HT = horizontal tab SUB = substitute

LF = line feed ESC = escape

VT = vertical tab FS = file separator

FF = form feed GS = group separator

CR = carriage return RS = record separator

SO0 = shift out US = unit separator

SI = shift in SP = space

.DLE = data link escape DEL = delete

151

Cromemeco Cromix-Plus Programmer's Reference Manual

152

Cromemeo Cromix-Plus Programmer's Reference Manual
Index

Alternate track table, 114, 115
ASCII character codes, 151

Bloek free list, 115
Bmodeequ.h, 127
Bmodeequ.z80, 144
Boot track, 114

Data area, 113, 115, 116
Disk allocation, 113

Disk format, 113

Disk sections, 113

Disk type identification, 114

Error conditions, 13
Errors, 12

File links, 115
Floppy disks, 114

Incde sarea, 113, 115
Inode free list, 115
Inode numbers, 115

JSYS opeode, 1
Jsy sequ.asm, 1, 12
Jsysequ.h, 117

Jd sy sequ.z80, 135

Lock sequence, 10

Locking schemes, 11

Locks, 9

Locks, conditional and unconditional, 10
Locks, sample implementations, 11
Loeks, shared and unshared, 10

Makfs utility, 114
Modeequ.asm, 1
Modeequ.h, 123
Modeequ.z80, 140

Signel reception, 4
Signal responses, 3
Signal sources, 4

153

Cromemeo Cromix-Plus Programmer's Reference Manual
Index :

Signal types, 4

Signals, 3

Signals in application programs, 6
Superblock, 114, 115

System area, 113, 114

System area contents, 114
System call errors, 12

System call summary, 2

Z80 Cromix system calls, 103

alarm, 9, 10, 17
~boot, 18
~caecess, 19
-cchstat, 20
~chdup, 22
chkdev, 23
—eclink, 24
close, 25
~corrupt, 96
~create, 26
estat, 29
delete, 31
—divd, 32
—error, 12, 33
-exchg, 34
—exee, 35
_exit, 12, 36
_faccess, 37
_fehstat, 38
fexec, 40
flink, 42
_fshell, 43
_fstat, 11, 45
_getdate, 47
—getdir, 48
—getgroup, 49
_getmaode, 50
-getpos, 51
-Egetprior, 52
—getproe, 53
_gettime, 54
-getuser, 55
~indirect, 56
_kill, 57
lock, 2, 10, 11, 58
~makdev, 60
makdir, 61
~memory, 62
—mount, 63
_mult, 64

154

Cromemeo Cromix-Plus Programmer's Reference Manual
Index

open, 65
—pause, 9, 67
—pipe, 68
_printf, 71
-ptrace, 73
~rdbyte, 75
rdline, 76
rdseq, 77
Setdate, 78
setdir, 79
Setgroup, 80 -
Setmode, 81
Setpos, 82
_Setprior, 83
-Settime, 84
-Setuser, 85
~shell, 86 ’
-signal, 9, 88
Sleep, 9, 89
trune, 90
~uchstat, 91
unlock, 9, 10, 92
~unmount, 93
update, 94
Lustat, 95
_version, 96
_wait, 97
wrbyte, 99
wrline, 100
~wrseq, 101

155

(Detach Here)

Reader Responses 10 1ms Jocumentation
Dear Reader,

We have made a sincere effort to provide you with the information you need in this manual. Jf you should find
the documentation deficient or in error, let us know so we can correct it. We appreciate and value your response;
it will be useful in improving the documentation. Please detach and use the Reader Response Card below to send
us your comments.

Thank you for your time and interest in Cromemco products.

Sincerely,

Technical Pablications Manager

(Detach Here)

Cromemco’ Reader Response Card

To: Winthrop A. Stiles 111,
Technical Publications Manager
Re (Manual title):

My System is (Specify configuration):

The following information is incorrect (Please specify page number):

(Fold Here)

The following additional information would be helpful:

What general suggestions do you have for improving this manual?

If you need a response from Cromemco, please print your name, mailing address, and telephone number:

Name;:

Address:

Telephone: ()

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 599 MOUNTAIN VIEW, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Cromemco’

Attn: Winthrop A, Stiles Il
Technical Publications Manager
280 Bernardo Avenue
P.0. Box 7400
Mountain View, CA 94039

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Lromemeo

280 Bernardo Ave.
P.0. Baox 7400
Mountain View, CA 94039

