'

MAKRO

An‘extraordinary disk-based macro cross-assembler
for the development of large programs on
Z80 or 8080 machines.

Copyright 1980

Allen Ashley

395 Sierra Madre Villa
Pasadena, CA 91107

(213) 793-5748

SRR e s e

A IR T LR L

:;;;;;;;zzt;;;;;;n,Hf; ;m+»;;;;;:;311;:ﬁf§4;;whﬁ-& S

®297

—

MAKRO

Macro Assembler

MAKRO overlays the CCP portion of CP/M. MAKRO samples location 6 to determine the
start of FBASE and then lays claim to the entire space available for transient
programs. '

The CP/M call to MAKRO is of the form

MAKRO FILE.XYZ

where FILE is the name of the input source file assumed to be type .ASM, and
X, Y and Z are assembly options:

X source file unit{ _
Y object file unit{ - A»BsCsor D

Z 1is the assembly option.
MAKRO generates an object file type.HEX on the designated unit.
The assembly option Z controls generation of the OBJECT file and assembly listing.
The three least significant bits independently control assembler options.

Bit P controls the extent of the assembly. If Bit @ = P, the assembler
skips pass 2, and neither an object file nor pass 2 diagnostics are
available. This option is used to make a quick check of the
source file.

Bit 1 controls the assembly listing. If Bit 1l = @, only assembly diag-
nostics are generated.

Bit 2 controls the generation of the object file. If Bit 2 =8, no
object file is created.
Assembly is normally performed with one of the three pass options:
1 No object file, pass 1 and 2 diagnostics only.
—> 5 Object file, pass 1 and 2 diagnostics only.
—>7 Object file, full assembly listing.

LABELS within MAKRO can be up to 10 characters in length and may contain no special
characters.

Pressing Control-C when entering fi]e names to MAKRO returns control to the DOS.

A .PRN file may be generated by following the assembly option with a drive speci-
fication for the .PRN file: .
MACRO SOURCE.XYZ B:

will generate a .PRN file on drive B.

VS

INTRODUCTION

MAKRO is a powerful disk-based macro assembler for the development of large
programs whose source files may exceed available memory. Both the source and
object files of MAKRO reside on disk, freeing all availablie memory for macro
storage and the construction of symbol tables. MAKRO is an extraordinarily
powerful development tool incorporating many features not commonly available.
The assembler is a working tool which has evolved under the demands generated
by its use.

Program development with MAKRO is a two-step process: the source file is
created, modified and saved on disk using the text editor EDIT; MAKRO
reads the source file and creates the corresponding object file.

MAKRO INPUT/OUTPUT

MAKRO is a two-pass assembler, reading the source file first to construct
a symbol table, then generating the object file on the second pass.

Source code for MAKRO consists of the four fields: Label, Operation, Operand,
and Comments.

(1) A line starting with a semi-colon is interpreted as a comment.

(2) Entries in the label field must be terminated by a colon.. The
label identifier starts with the first non-blank character and
ends with the colon. The colon requirement arpnlies to SET and
EQU operations, and macro definitions.

(3) If a label is present, the operation field begins with the first
non-blank character after the colon.

(4) If no colon (hence no label) is detected, the operation field
begins with the first non-blank character.

(5) A comment field must be preceded by a semi-colon. Trailing
comments preceded by a double semi-colon ;; are tabbed to the
right of the operand field. Ccmments are not allowed on source
lines containing a macro call.

(6) Source lines must be terminated by carriage return/line feed.

The MAKRO user must identify the origin of the object code by an ORG operation
at the start of his source code. Failure to do so will result in the code
being assembled at location p. .

The 1ist output of MAKRO displays the program counter, object code, and a
well-formatted source display. Horizontal tab sets align the label, operation
and operand fields for all source lines. An alphabetized symbol table is
presented at the conclusion of pass 2 of the assembly.

MAKRO utilizes all available memory after the load address. Program constants
and assembTer symbol tables reside in memory immediately after MAKRO. HMacro
text is stored at highest available memory. The region between is used for
macro processing operations.

2-4

—a
]

Entries present in the létel Tield arz maintained in & symdol tzbls. These
eniries ar2 assicred & vzlue 2cual t5 the crogram counter &t the “ime oFf
assembly, excent that 7or tne SET and ZJU cseudc-ocerztiions, the variaoles
Cetined by the jabel 7ield is 2ssicred ihe value ¢f zhe ccerind Ficl4,
Tniries crez<sc in the sYmboi tzble tv tre macro c¢sTinition rater 0

the storage iocation assigned to the :axt 07 the mecrs bocy. The variebles
defined by the label Tield can be usac in the operand fielc of cther insiruc-
tions either 2s datz constants or loczziens

The operation Tield is separatad from the label field by the c*?on. I no
label field is present, the operation field may begin anywnsre on the line.
Entries in the operation field must consist of either a va?wo Z80 instruction,
one of the ssveral pseucc-operations, ¢r & previously detined macro.

The ocerand Ti21d, sepmerated by a blank frcm the coperation Tield, consists of

- an arithmetic expressicn containing ¢re ¢ mors program variables, ccnstants,
or the specizl characters S, @ or %, czcnrecta ad Dy valid ccerztors Evaluztion
of the cperanc {ield is performed using ls-bit intecer ariz-mezic., Cperaticons
recuiring muitinle operands (e.g., MOV A,3 or BIT 3,IX,4) sxzect the orerancds
to be separatsd by a comma. Parametars cassed in 2 macro cali are ssparatad
by commas and terminated by a carriage return.

The special ccerand § refers to the program counter at the start of the instruc-

tion being assembled. (NOTE: some assemblers interpret S as the start of the
next instruction.) The program variable § can be used as any cther program
variable excent that its value changes constantly throughout assembly. The
location counter § allows the user to employ program-relative computations.

MAKRO recognizes two other special operands. The @, when used as an operand,
refers to ths rspetition counter index. The %, as an operzng, refers to the
number 07 &ctuédl parametsrs in the current macro cail.

Assembler constants may be decimal, hexadecimal, octal, or binary. Valid
hexadecimail constants must beg1n with a decimal digit, possibly @, and be
terminatad by the suffix 'H.' Binary constants are tsrminatad by '8' and
may contain only the digits # and 1. Octal constants are terminatad by 'O
and may cortzin only the digits ¢ - 7.

Arithmetic expressions involving string operands must not begin with the string.
Example:

80H + 'A' is valid

'A' + 80H is invalid

PSEUDO OPERATIONS

ASSEMBLER PSEUDO QPERATIQOMS expr = arithmetic expression
ORG expr Define program countar to nnnn.
DS expr Reserve n bytes of storage. The first and last bytes of the

reserved storage area are medified. . An unmodified reserved
area can be created by ORG $+SIZE.

DW expr 16-bit datum definition.

DB expr 8-bit dzta or ASCII character string definition. The operand
may be an ASCII character string enclosed in single quotation
marks. Examples:

DB 5,PDH,'FILE'
DB 'ASCII STRING',PDH

EQU The operand defined by the label field is set equal to the
expression defined by the operand field. This operation is
performed in pass 1 of the assembler and the variable definition
is Tixed by the last such definition encountered in pass 1.

SET The operanc defined by the label is set ecqual to the expression
defined by the cperand field. This operation is performed in
both pass 1 and pass 2 and the replacsment is effected upon
every encounter.

* IF expr expr is evaluated. If the result is zero the scanner skips to
the next ENDIF, END, or end-of-file before resuming assembly.
If the expression evaluates to any non-zero value, assembly
proceeds. Operation is performed in both passes. Read IF as

"SKIP IF ZERO." :

* NIF expr expr is evaluated. If the result is not zero the scanner skips
to the next ENDIF, END, or end-of-file before resuming assembly.
Equivalent to NOT IF. Read NIF as "SKIP IF NOT ZERO."

= ENDIF . Identifies the end of a conditional assembly block.

END expr Terminates assembly. expr is an optional execution address to
which the hex loader will branch after completion of the load.

1 - —

. 3 . -
Ls:c 8 B0 iYWl L REEDLW

[T A N

* Neither the IF nor NIF blocks preceding the ENDIF may contain comments containing
j*fthe END or ENDI character ‘sequences.

2-6

—

ASSEMBLER PSEUD0 OPERATIONS expr = arithmetic expression

USE operand Allows program assembiy to proceed with multiple location count-
ers. he operation is skipped if the cperand has not previously

been defined; however, the definition can aprear after the
reference, to be used by pass 2. The USEZ operation is best
evplained bv example:

ACRG: SET PAZD2H
BORG: SET PBpPoH

USE ACRG; SET code origin tc ACRG
{ copE AT PAPRPH 1]
USE BORG; SET value of ACRG tc PC

SET PC to BORG
L CODE AT 2BPPRH]

USE AQRG; Resume code at end of previous
block which started at AZ99.

{ coor]

USE BORG; Resume code at END of block which
started at BDPS.

The USE instruction can be used to insert program data at the
end of instruction code:

AFTR: SET LAST; Not known on pass 1.
ORG Start; Somewhere.

{ copr]

RESUM: SET §; Remember where we are.
USE AFTR

STRING: DB 'CHARACTERS'
USE RESUM; Resume in-1ine coding.

{ copE 3]

USE AFTR

[MORE DATA]

USE RESUM; Continue

LAST: SET §
END

MACRO Signifies macro definition.

ASSFMBRI ER

MACND

PSFUDO QPFRATIONS expr = arithmetic expression

Signifies end of macro definition

GOTO label

Directs assembler to skip- forward to label tefore resuming
assembly. If label is reached via a GOTO branch, the symbol will
not be entered into the symbol table. If label is reached via

a normal assembly sequence it is treated as an ordinary statement
label. GOTO is used in conjunction with conditional assembly to
effect compliex assembly ssquences. GOTO allows forward refer-
ences only. An invalid Tabel terminates the assembly pass.

IFGZ expr;label

If expr evaluates to zero, the assembler branches forward to
label; otherwise assembly continues.

IFGNZ expr;label 1f expr evaluates to non-zero, the assembler branches forward

to label; otherwise assembly continues. Labels reached by
IFGZ and IFGNZ branches are not entsred into the symbol table.
Note that label must be separated by a semi-colon from the end
of expr.

REPT expr

Repeat block. The value of expr determines the number of times
the repeat block is executed.

"REPND

Defines the end of a repeat block. The portion of source code
bracketed by REPT/REPND is assembled repeatedly.

USR expr

Assembly-time branch to user routine, MAKRO branches to the
address given by the value of expr. The user routine may
utilize all registers. MAKRO may be re-entered by a return RET.
Upon entry to the user routine, the zero flag is set for pass 1
of the assembly, and the DE registers contain the address,
within MAKRO, at which assembly must resume. This pseudo-
operation provides the means for controliling output.

IFEQ STR1,STR2;LABEL Branch to LABEL if character string STR1 is identical

to STRZ.

IFNE STR1,STR2;LABEL Branch to LABEL if character string STR1l is nat identical

to STR2.

2-8

ASSEMBLER PSEUDC OPERATIONS expr = arithmetic excrsssion

IFNEG expr;LABEL Branch to LABEL if expr results in a necztive value.

1FDEF SYMBL;DEFND Branch to DEFND if SYMBL has been enterecd in the symbol tabls.

LIST Turns on full assembly 1isting, restoring any pass options.

NOLST Turns oif full assembly listing, retaining diacnostic and error
messages.

CCMPS STR1,STR2;LABEL Branch to LABEL if character string 2 is greater than
character siring 1. .

LINK FILENAME Merges disk file FILENAMZ into the current assebly. The LINK
pseudc-operation enables the assembly to incluce previcusly cdevel-

oped progrzm modules.

INPUT MAKRO allows the user to cefine program variabies at essembiy time.
The INPUT pseudo-operation accepts an expression from the console
input, evaluates that expression, and assigns the computed vaiue to
the variable defined by the label field.

XPAND Display macro expansion (default case).

NOEXP Suppress macro expansion.

APUSH expr Places the value of expr on the internal assembiy stiack.

LABEL :APOP Similar to SET rpseudo-op except that value of LABEIL is reccvered

from assembly stack. APUSH and APQP are primarily used within neszed
control macros as in FOR/NEXT loops. Such nesting reaquires that the
starting acdress of FOR loops be recovered in reverse sequence by the

following NEXT macros.

FORM Causes page eject (via form feed). (T shodd procek Foan)

TITLE 'PAGE HEADING' Causes corresponding heading to appear on subsequent
pages of the assembly listing. If the TITLE field is empty, MAKRO
~will prompt the user during pass 2 for the page heading. The promct
option 1is exercised by terminating the TITLE pseuco-op with a car-
riage return.

SETQ expr Sets internal label-generating assembly variable to value of expr.
A question mark appearing in the label field is expanded as the
character string representing the hex value defined by SETQ. This
operation was implemented to allow communication between macros.

2-9

ASSEMBLER ERRORS/DIAGNOSTICS

Assembler error and diagnostic messages consist of single character identifiers
which flag some irrzgularity discovered during either pass l_or pass 2 of the

assembly.

-

O xn P» X O W

Phase error: the value of the label has changed betwesn the
two assembly passes.

Label error: missing operation field or invalid destination label.
Undefined program variable.

Value error: the evaluated operand is not consistent with the
operation, ' '

Syntax error.

Opcode error.

Missing label field.

Argument error.
Register error.

Duplicate label.

2-10

MAKRO CONDITIONAL ASSEMBLY

The conditional assembly features of MAKRO include

COMPS String comparison

IFEQ Character string equality
IFNE Character string inequality
IFNEG Branch on negative

IFDEF Branch if defined symbol

1F Skip if zero

NIF Skip if not zero

eNDIF Termination of conditional block
1FGZ Branch to label if zero
1FGNZ Branch to label if not zero
G070 Unconditional tranch

These pssudo-operations enable the prograrmer to direct the assembly by per-
forming a2ssembly time computations. In the simplest arplication, conditional
assembly allows a program to be written with a number of opticns, such as
various input/output modes, with the desired array of options selected by
program switches. A single source code module can thus be used for a
variety of applications. More powerful application of conditional opera-
tions directs the assembly according to results generated during the
assembiy process. An example of this application is given in the discussion
of macro processing.

of evaiuzting an arithmetic expression. The expression begins with the first
non-biznk character after the creration field and encs with a carriage

return cor semi-colon. The latel directed branches IFGZ and IFGNZ include a
destination field following the expression. A semi-colcon must separate

the destination from the expression. The destination field is terminated

by @ blank or carrijage return. Branching is performed in a forward directicn
only, the assembler skipping over source code until the destination label or
end-of-file is detected.

The concditional assembiy operaticns effect their branching upon the results
T
7‘

Treatment of the destination label in label-directed branches requires
discussion. The general form is

8ranch expr; There
else - here

L [i019)
There:

If the branch condition is not satisfied, assembly proceeds in sequence with
else, in which case the destination label (There) may be reached in the
course of assembly. In this, the fall-through case, the destination label is
treated as an ordinary statement label and is entered into the symbol table.
However, if the branch condition is satisfied, the label is reached via a
skip, and normal assembly proceeds with the first character following the
colon at the destination. The destination label is not seen by the assembler.

2-11

The IF/ENDIF and NIF/ENDIF assembly blocks bracket portions of code which are
conditionally assembled or disregarded. The IF block is disregarded if the

corresponding expression evaluates to zero. The NIF block is disregarded if
the expression evaluates to not-zerc. Mnemonically, these conditions refer

to the skip rather than the assembly. '

Nested IF/NIF blocks cannot generally be assembled correctly. Consider
blocks nested as

a IF exprl

b IF expr2

¢ ENDIF hopefully for the inner
[CODE] some code in here

d ENDIF hopefully for the outer

Assembly proceeds as follows:

exprl is evaluated, the assembler skipping to the first ENDIF (¢) if exprl

is zero. If exprl is not zero, expr2 is evaluated, the assembler reaching
the ENDIF (c) regardless of the results. It is seen that CODE is assembled
regardless of the contents of either expression. The second ENDIF (d) is
superfluous, and 1s ignored. There may be applications of such behavior, but
the operation seems more likely to be a source of confusion. Complicated
conditional branching is mcre easily and clearly generated by the label-
directed operations.

A cautionary flag must be raised regarding conditicnal assembly. Phase
changes of assembly variables (change in value between the two assembly
passes) can result in a totally invalid assembly. If such phase changes
cause the course of the assembler through the source code to differ for

pass 1 and pass 2, the resulting assembly is almost certain to fail. You
must remember that any and all branches performed in pass 1 must be repeated
in pass 2.

The character string tests, IFNE and IFEQ, perform a character-by-character
test of the first two parameter strings, conditionally effecting the branch
upon the outcome of the comparison. The forms of these operations are:

IFEQ STR1,STR2;LABEL
IFNE STRI,STRZ;LABEL

- String 1 begins with the first non-blank character after the operation code

/ /-\\

and extends to the character preceding the comma. String 2 includes the
character following the comma through that preceding the semi-colon.

Remember that the destination field must be preceded by a semi-colon and
that the destination label vanishes if the branch is true.

2-12

IFNEG expr;LABEL

expr is evaluated. If the result is negative (15-bit signed arithmetic) the
assembler branches to LABEL. IFNEG, IFGZ and IFGNZ can be combined to effect
any computational branch.)

IFDEF SYMBOL;LABEL

The symbol table is searched for symbol. If the entry is found, assembly skips
to LABEL. IFDEF is used to provide automatic type declaration.

COMPS STR1,STR2;LABEL

A character-by-character comparison is made between STR1 and STR2. [If STR2
is greater than STR1, assembly branches to LABEL. The COMPS pseudc-op is
used to test parameter type in a macro call.

2-13

MAKRO MACRO CAPABILITY

INTRODUCTION TO MACROS

A macro can be considered an assembly language super-instruction with which
the user can invoke many elementary assembly language statements with a
single macro call. Users familiar with FORTRAN utilize a macro in the
FORTRAN statement function. BASIC programs using the DEF FN operation
capitalize upon an eccnomical feature similar to a macro. The PL/1 pre-
processing pass is a macro phase.

Assembly language programming is distinguished from such high level lang-
uages on the basis of the translation from the programmer-oriented lancuage
to the machine-oriented object code. This translation is performed on an
approximately one-to-one basis for assembly language programs -- one
machine instruction for each assembly language instruction. Programs
written in a high level language enjoy greater leverage in that a high
level language statement may result in the generation of many elementary
machine code instructions.

A macro assembler can be regarded as bridging the gap between rudimentary
assembly and high level language programming. Indeed, several high level
languages have been implemented upon an underlying macro structure. A
high level language implemented by macros can furnish the efficiency of
assembly language and the ease of high level programming. Via macros, the
user can design his own open-ended high level language.

MACRO PROCESSING

Interpretation of a macro involves the three steps:
¢ macro definition
e macro call
¢ macro expansion

The macro definition is the means by which the programmer informs the
assembler of the instruction sequence to be effected. Briefly, in the
macro definition the programmer informs the assembler that "when I say
this, I mean that.® The macro definition associates a name (label) with
the sequence of instructions. Subsequent to the definition, the macro

name is used as an entry in the op-code field to invoke the entire instruc-
tion sequence. In order to provide more power and flexibility to the
macro, beyond that which can be furnished by a text editor, the macro

-definition allows certain parameters (dummy) to be included in the defini-

tion. These dummy parameters appear in the operand field of the macro
definition. The assembler recognizes the dummy parameters when they

2-14

appear in the sequence of instructions comprising the body of the macro.

The macro definition thus consists of the following:

NAME: MACRO dummy parameter list
[MACRO BODY]
MACND signals end of definition

The macro call consists of the macro name appearing in the operation (op-
code) field of a subsequent instruction. Actual parameters, zopearing in
the operand field of the macro call, replace the dummy paramstars of the
macro deftinition.

In the macro expansion phase, the instruction sequence representing the
body of the macro is delivered to the assembler. Dummy parameters appear-
ing in the macro body are replaced, in sequence, by the actual parameters
included in the call. With the single macro call, the user has invoked

an entire instruction sequence.

MAKRO deals with the macro definition during pass 1 of the assembly.

Source text, comprising the macro body, is transierred to a temporary
buffer following the symbol table. The source text is scanned for occur-
rences of the durmy parameters which are replaced by the parameter sequence
number. The compressed macro text is then stored uppermost in memory.

Macro expansion must be performed for both passes of the assembly. After
recognizing a macro call, the body of the macro is expanded into the
buffer area, with actual parameters replacing the parameter seguence
values. Assembler input is directed to the expanded text (away from the
mass storage device). Input from the mass storage device is resumed when
the body of the macro is exhausted.

' 2-15

MAKRO IDIOSYNCRACIES '

Tne treatment of macros by MAKRO differs scmewhat from conventicnal tech-
nique. The differences, however, stem from careful cons:d=rat1on, and
MAKRD processing is considerably more powerful than alternative methods.
The primary ceparture frcm cgnvention arises in the tresatment ¢7 macro
parametars. MAKRO ceiays the binding of parametsr values until object
code is generatad {all parameters are call by name, not va]ue) Durmy
parzmeters appearing in the macro definition are tresated as charactier
surlngs which are rscagn ized in the macro bedy regardless of thsir context.
Thus, 1in the cefiniticn

MAX]: MACRO String 1, String 2
[BODY]
MACND

any occurrence of String 1 in the macrc body is regardad as a reference to
the first dummy paramatar. For example

MAX1: MACRO THIS,THAT

DB 'THIS' 5inlS or THAT

OW THAT

LXI H,THIS .
MACND

is treated as reference $o the dummy parameters as

0B '1f 31 or 2
oW 2
LXI H,1

in which the digits represent the parameter seguence.

c
g

Actual parameters, in the macro call, are likewise treatsd without regard
to context in the expansion phase. Character strings representing actual
parameters directly replace the dummy sequence values. Thus the call

MAX1 ALFA,3ETA

generates
DB 'ALFA’ ALFA or BETA
DW BETA
LXI H,ALFA

The revised and expanded body is then delivered to the assembler for inter-
pretation.

2-16

PROCEDURAL AND SYNTACTICAL RULES

Oummy parameters must be at least two characters in length. All characters,
including blanks, in both actual and dummy parameter strings, are considered
significant.

Dummy and actual parameter strings begin with the first non-blank character
in the operand field. Parameter strings are separated by a comma.

A1l labels generated within the macro body assume global status. The special
character = appearing in the macro body is regarded as a reference to a four-
digit hex number which is unicue for each macro expansion. Labels generated
for which global status is undesirabie should te suffixed with the = character.

Thus, within the macro expansion,

LABEL: assumes global status
L=: is local to the current expansion

As a consecuence of pass 1 treatement of the definition, a macro cannot be
globally redefined.

No macro definition may appear within the body of another macro expansion.

Macro expansions may be nested up to ten deep, i.e., up to ten macro calls
can be simultaneously active. (Refer to REPEAT BLOCK discussion).

Scanning for a macro call precedes the search through the op-code table.
Thus a macro can be used to redefine a machine operation. For example, to
trace jump operations the JMP instruction may be replaced by a macro as

JMP: MACRO ADDRESS
PUSH PSW
MVI A,'J'
CALL CHOUT
CALL CHIN
POP PSW
0B PC3H
DW ADDRESS
MACND

which causes the program to display 'J' and await keyboard input before
effecting any JMP.

The number of actual parameters ordinarily agrees with the number of dummy
parameters. Excess actual parameters are ignored. Insufficient actual para-
meters default to the null parameter.

The parameter separation character (default ',') in macro calls can be redefined
at the time of macro definition. If the forma] parameter 1list begins with a
cooma (,) the character immediately following is taken to be the parameter
separation character for subsequent calls of that macro. The first formal
parameter begins with the character following the separation character. This
option is provided to allow syntactically more attractive macro usage.

2-17

10.

11.

12,

13.

The macro definition must precede any reference.

A null actual parameter, represented by two ccnsecutive cormas in the
parameter string of the macro call, results in a null replacement string
in the macro expansion. The first actual parameter is considered null if
the calling parameter string begins with a comma.

The MACND pseudo-instruction may not be preceded by a label field.
MAKRO actual parameters, or portions thereof, enclosed in sguare brackets (1,
are treated as literal blocks and expanded without regard tc any delimiters

contained therein. Each such expansion strips off a matching pair of square
brackets. The brackets must be balanced.

2-18

USING MACROS

Macro calls are typically used to alleviate tiresome seacuences of instruc-
tions, such as in table generation or monitor function references. Thus

CHOUT: MACRO
CALL OUTCH
MACND

or

STATUS: MACRC PORT,STBIT
S=: IN PORT

ANI STBIT

JZ S=

MACND

illustrate the least imaginative exploitation of macro power. Ccmputer
Titerature is filled with awesome examples of the heights which can be
reached by sophisticated macro use. See P.J. Brown, MACRO PROCESSORS,
in which it is revealed that SNOBOL 4 is implemented by macros.

The following illustration of a high level language (BASIC) is presented
in order to suggest more penetrating application of the macro:
TYPE DECLARATION

WORD: MACRO LABEL,VALUE
LABEL: DW VALUE
MACND

STRING: MACRO LABEL,DATA
LABEL: DB 'DATA'

NLABEL:EQU $+1-LABEL If you want string length
MACND
LOOPYR: MACRO LOOP Loop index variable
. . Loop start
LOOPNM: DS 2 Rep counter
MACND

PROGRAM LOOPING

FOR: MACRO LOOP,REPS
LXI H,REPS

SHLD LOOPNM
LOOPST:.SET ¢

MACND

NEXT: MACRO LOOP
LHLD LOOPNM
DCX H
SHLD LOOPNM
L .
JNZ LOOPST 2-19
MACND

ARITHMETIC OPERATIONS

ADDITION: MACRO LEFTARG,RTARG,ANSWER
LxI B,LEFTARG

LXI DO,RTARG

LXI H,ANSWER

CALL FPADD

MACND

Macro expansion in conjunction with conditional assembly offers an especially
powerful assembly combination. To illustrate, refer to the previously defined
ADDITION macro. Now assume that we wished to address the destination (ANSWER)
either directly as shown, or indirsctly (LHLD instead of LXI). Further,

assume that we wish to avoid the cerneration of the instruction entirely if

the destination location is unchanced from a previous operation. Reflect

upon the follawing complex:

ADDITION: MACRO LARG,RARG,ANS,FLAG

LxI B,LARCG

LXI D,RARG

NIF HCON-ANS Check for valid H
GOTO ADDND

ENDIF

IF 1-FLAG Flag is § for indirect
GOTO INDIR

ENDIF

LXT H,ANS Direct

GOTO ADDND

INDIR:LHLD ANS Indirect

GOTO ADDND Gobble label
ADDND: CALL FPADD

HCON: SET ANS

MACND

This macro was designed to illustrate many of the novel features of MAKRO.
Some economy of code could have been effected by use of IFGZ and IFGNZ
pseudo-operations. Note that no labels are generated by a call to this
macro since the destinations INDIR and ADDND are invariably reached by a
GOTO branch. Quite clearly the macro could be expanded to treat the left
and right arguments as well. Complex macrc usage greatly reduces the chance
of coding error, since without macro expansion the chance of correctly
entering a number of such seaquences is minimal. A set of such complex
macros need only be developed once and then merged into the current file.
MAKRO, in conjunction with your macro file, becomes your high level language.

REPETITION CONTROL

MAKRO allows assembly time repetition (looping). A block of assembly code
may be replicated up to 255 times by enclosing the block in REPT/REPND
brackets. The form of the repeat block is

REPT expr
[CODE]
REPND

in which expr is evaluated, truncated to an 8-bit value, znd usad as a loop
repetition factor. Repeat blocks may be nested, and may cccur within a
macro expansion. MAKRO maintains a control stack of lencth 80 bytes. The
maximum depth of nesting is determined by the stack limit.

An active repeat block consumes 10 bytes of the control stack, and an active
macro expansion consumes 8 bytes. Repeat blocks and macro expansions may

be nested in any way so long as the total stack depth does not exceed 80
bytes.

In order to provide some flexibility to the repeat block, MAKRC recognizes
two special operands:

@ is a repeat loop index, counting up from zero, marking progression
of the repeat block.

% is a count of the number of active parameters in the most recent
macro expansion.

MAKRO also allows looping over the actual parameters in & macro expansion.
Such looping is governed by three special characters appearing in the macro
body:

+N Control-N Parameter flag (Press Control and N simultaneously)
+S Control-S Start of macro loop
+4Q Control-Q End of macro loop

The start and end of the macro loop must be bracketed by +S/+Q; the loop is
then repeated over all the actual parameters occurring in the macro call.
Within such a loop, the elements of the parameter sequence are referenced by
two +N's in sequence.

2-21

To illustrate the macro loop, assume we have a series of ASCII strings we
wish to print, and that the sequence and number of these strings to be
printed must vary within our program. Define the macro print all:

PNALL: MACRO

+S Start Joop over all actual parameters
LXI H,+N+N

CALL PRINT

+Q ' End the Toop

MACND

Now we use this macro as
PNALL S1,S2,S3
PNALL S6,S51,589,582,57

The loop control automatically handles the counting and parameter refer-
encing.

2-22

ASSEMBLY TIME INPUT

The INPUT pseudo-operation allows the user to define program variables at
assembly time. Critical program variables, such as the assembly origin
or I/0 port numbers, may be entered as input variables, with their value
determined by console input during pass 1 of the assembly.

As an example, assume that we have developed a program requiring input
from a serial port; however, neither the port number or status mask can
be standardized. We may therefore write the source program with these
variables defined by input:

IPORT: INPUT
IMASK: INPUT

and the status check portion of the program would be
READY:IN IPORT
ANI IMASK
JZ READY
The INPUT pseudo-operation is performed in pass 1 of the assembly. MAKRO

displays the source line and awaits console input. The user may enter any
valid expression which is terminated by a carriage return.

2-23

COMMUNICATION BETWEEN MACROS

The operations APUSH/APOP and SETQ allow communication between related macros.
The function of these operations is exemplified by a conceptual DOIF macro.

As the name implies, the DOIF macro is to generate execution time instructions
to selectively execute ti.e following block of code. For cosmetic considerations,
this macro will utilize '.' as the parameter separation character.

DOIF ,.ARG1.RELATION.ARG2
The macro is invoked as:

DOIF X.GT.Y
The macro must translate into a logical test of RELATION between tha operands
ARGl and ARG2, and JUMP ahead if RELATION is false. While a backward refer-
ence can be effected by the StT pseudo-op, forward references cannot. (Why?)
The forward reference is implemented within the DOIF macro as

PPUSH g=H -
JUMP IF FALSE TO D=

in which the = is uniquely expanded.

A subsequent IFEND macro generates the required label as

QVAL:APQP
SETQ QVAL
D?:

Test your understanding of the above by defining an ELSE macro to be inserted
optionally between the DCIF and IFEND macros.

2-24

CHAINING SOURCE FILES

MAKRO allows a series of source files to be chained together via the LINK
pseudo-operation. the LINK operation is performed at assembly time, producing
an executable object module. The MAKRO LINK operation is performed at the
source code level. The LINK pseudo-operation extends the assembly to include
the named source file(s).

Suppose a main program is being developed which will recuire library modules
FPPACK (a floating point package) and FPOUT (an input/ocutput package). The
main program should then include

LINK FPPACK
LINK FPOUT

Assembly proceeds through the main program and continues through the 1ink
modules in the order given. The LINK pseudo-operation may appear anywhere in
the source code, and LINK modules may themselves contain the LINK operation.

The LINK command, without a file name, acts as the INPUT pseudo-operation.
The source line is displayed, prompting the definition of the link file at
assembly time. Macro library files may be terminated by such a LINK command
to chain the assembly to the current source file. In this case the macro
Tibrary file should be specified as the input file.

The LINK file name must be terminated with a carriage return.

MAKRO EXPRESSION EVALUATION

ARCTUMETC ExXPRESS (0 S

Arithmetic expressions appearing in the operand field of MAKRO instructions
are evaluated according to standard arithmetic rules. The following table
defines the available arithmetic operations and the operator precedence.

Precedence

Cceration Value Definition
(16 Begin parenthetical expression
* 12 Multiplication
/ 12 Division
\ 12 Modulo, integer remainder
+ 11 Addition
- 11 Subtraction
& 8 Logical AND

- or 4 (5t hex) 7 Logical OR

. 7 Logical EXCLUSIVE OR {XOR)
> 6 Right shift, zero fill
< 6 Left shift, zero fill
* (quote) NOT, logical complement
) 5 End parenthetical expression

Expressions containing these operators are evaluated from left to right,
execution of any operation delayed until all preceding operations of prece-
dence value greater than or equal to the pending operation are performed.

The Togical complement refers to the operand or parenthetical expression
immediately following.

In the expressions

A>B, A<B
the left operand (A) is shifted in the indicated direction by B bit positions,
with zero bits shifted in.

The modulo operator \ returns the integer remainder after division. Thus
A\B yields

A-[A/B] *B

where the integer part of the bracketed term is taken. The modulo operator
has precedence equal to *, /. The expression

2-26

22\3 * 5 yields 5 as
(22\2) * 5.
In any expression, the user may insert parentheses to {orce the intended

computational sequence. In the previocus expression, exscution of the
modulo can be delayed by

22\(3*5) = 7

STRING HANDLING PRIMITIVE

Arithmetic operands and the first argument of the IFEQ and IFNE pseudo-
operations may be subject to string secmentation. String segmentation is
invoked if the first character of the operand is a left angle bracket '('.

The two characters immediately following _the. opening bracket are.taken as the
start/finish segmentation_markers. The string argument is taken as the
remaining characters up to but not including the right angie bracket ')'.

The string handling primitive replacas the entire construct with the charac-
ters, if any, contained between the start/finish seamentation characters.

Thus

[N ',
(?212345678§> yields 678
(()ARRAY(JI)) yields JI
B (BARRAY(IJ)) yields ARRAY

The string primitjve is also functional when recognized in the label field and
macro parameter fields. Use of the segmentation primitive can be illustrated
by a conceptual LOAD macro to place the value of the arcument on an operand

Stack. The macro must take appropriate action when the argument is an array
reference:

LOAD:MACRQ ARG
IFEQ {()ARG) ,;SCALAR test for null index
LXI H,{()ARG) else array, get index

LXI D, (B(BARG
DAD D
GOTO QUIT
SCALAR:LXI H,ARG
GOTO QUIT
QUIT: stack operand
MACND

2-27

