C All'ﬂil' 680 Assembly

Language Development Sysiem

Table of Contents

1-Introduction........................... 1

2-TextEditor ... 2

(B-Assembler.................... 28
4 - Operating

Procedures 36

(©oooes 1976 ‘
2450 Alamo SE/Albuquerque, NM 87106/505-243-7821

CHAPTER 1 GENERAL INFORMATION

1-1. INTRODUCTION

This manual describes the use of the Altair 680 Text Editor and
Assembler package. Chapter 1 of this manual discusses the general
characteristics of the software package. The Text Editor is discussed
in Chapter 2 and the Assembler in Chapter 3. Chapter 4 gives details
concerning the operating procedures of the Editor/Assembler package.

1-2. GENERAL DESCRIPTION

The Altair 680 Text Editor and Assembler facilitate the development
of assembly language programs for the M6800 MPU.

The Text Editor may be used to create or modify alphanumeric text.
In particular, the Editor provides an easy means to create and modify
source programs for input to the 680 Assembler. This interactive Editor
offers character, line, and character string manipulation commands.

The 680 Assembler is used to translate M6800 MPU source programs
written in assembly code mnemonics into machine executable object code.

CHAPTER 2 ALTAIR 680 EDITOR

2-1. INTRODUCTION

The Altair 680 Text Editor may be used to create or modify alpha-
numeric text. In particular, the Text Editor facilitates the creation,
correction, and modification of M6800 MPU source programs.

2-2. EDITOR INPUT
The Resident Editor accepts input text from:
System Reader Device.
System Console Device (terminal keyboard).
Commands to the Editor are supplied from the System Console Device.

2-3. EDITOR QUTPUT

The 680 Editor produces an output file on the System Punch Device.
In addition, the Editor may be used to print selected portions of the
edited text on the System Printer Device (terminal printer).

2-4. EDITOR OPERATION

The 680 Editor accepts input text from either the System Console
Device or the System Reader Device and accepts edit commands from the
System Console Device. During a typical edit operation, input text is
transferred to the edit buffer. After editing, information in the buffer
is transferred to the System Punch Device.

Edit operations may be performed on either characters or lines.
The Editor assumes a character is any ASCII character. Non-printing
characters such as CR and EOT are treated as characters by the Editor
and can be manipulated accordingly. A 1ine is a collection of charac-
ters delimited by Carriage Returns.

NOTE
When processing input text from the System Console Device, the
Editor echoes a Line Feed with each Carriage Return entered.
Text entered from the System Reader Device need not. include
Line Feed characters, since they will be supplied automatically
following Carriage Returns in the Editor output.

Edit operations are performed on portions of the text held in an
edit buffer in the 680 memory. A buffer pointer is maintained to specify
a character location within the edit buffer. Certain of the edit oper-
ations are performed on 1lines or characters located with respect to the
buffer pointer. It is convenient to think of this pointer as being
Tocated between two characters. As shown in the example below, the
buffer pointer is located between the E and X of TEXT.

2-5, LOADING THE EDITOR

Two versions of the Editor are supplied. The first version, which
is designed to be co-resident with the Assembler, is supplied on a tape
marked

ALTAIR 680 ASSEMBLER/EDITOR
If the Assembler and Editor are to be used together, this tape should be
loaded. (See Chapter 7 for details on operating procedures for the
Assembler and Editor.) The second version, which is designed for stand
alone operation of the Editor, is supplied on a tape marked
ALTAIR 680 EDITOR

If only the Editor is to be used, this tape should be Toaded.

2-6. EDITOR INITIATION

The Editor is started by using the PROM Monitor's J command to begin
execution at P1p7. Starting the Editor at P1p7 causes the Edit Buffer to
be cleared. If it is necessary to re-enter the Editor for the purpose of
editing text which is already contained in the Edit Buffer, execution
should begin at address P10A.

2-7. EDITOR COMMANDS

The Editor prints "@" at the left margin as a prompt whenever it is
waiting for a command. Commands to the Editor are single characters
entered from the System Console Device. Some Editor commands have argu-
ments associated with them. Editor commands must be terminated by two
ESC ($1B) characters. (Since CR is a legal text character, it could not
be used for command termination.) The two ESC characters mark the end
of a command and cause the Editor to begin execution.

NOTE
Since ESC is a non-printing character, the Editor echoes ngH
whenever ESC is entered.

The Editor commands are described in the following paragraphs and
summarized in Table 2-1. For purposes of description, the commands are
grouped into four categories.

Input/Output Operations
Buffer Pointer Operations
Edit Operations

Exit Editor

2-7.1 INPUT/OUTPUT OPERATIONS

Input/Output Operations control the transfer of information between
the edit buffer and the System Reader Device, System Punch Device, and
the System Printer Device.

2-7.1.1 A--APPEND
FORMAT: A
DESCRIPTION: The Append command causes input text to be transferred
from the System Reader Device and appended to the Edit buffer. The
transfer is terminated by one of the following conditions.

1. End of file character ($1A)

2. MWorkspace full
Null, rubout, LF, ESC, Backspace (Control H), Cancel (Control X),
Readeron, Punchon, Readeroff, Punchoff, and EOF characters are deleted
from the input text.
EXAMPLE: Assume that the Editor has been loaded into memory and is
running. Also assume that a tape containing the following information
has been loaded into the System Reader Device.

10 NAM PGM{(CR) (LF)

20 OTP M MEMORY FILE OPTION(CR) (LF)

30 OPT O OUTPUT OBJECT TAPES(CR) (LF)

40 OPT S SELECT PRINTING SYMBOLS{CR) (LF)

S0 ORG 8192(CR) (LF)

L0 LDA B ADDR(CR) (LF)

70 COUNT EQU @8 @ INDICATES OCTAL(CR) (LF)

80 START LDS *STACK INZ STACK POINTER(CR) (LF)
90 LDX ADDR(CR) (LF)

100 LDPA B #COUNT IMMEDIATE ADDRESSING(CR) (LF)
110 BACK LDA A 10 DIRECT ADDRESSING(CR) (LF)
120 CMP A 24X INDEXED ADDRESSING(CR) (LF)

130 BEQ FOUND RELATIVE ADDRESSING(CR) (LF)

140 DEX IMPLIED ADDRESSING(CR) (LF)

150 DEC B ACCUMULATOR ONLY ADDRESSING(CR) (LF)
160 BNE BACK(CR) (LF)

170 WAI WAIT FOR INTERRUPT(CR) (LF)

180 SPC 1{CR) (LF)

190 FOUND JSR SUBRTN JUMP TO SUBROUTINE(CR) (LF)
200 JMP START EXTENDED ADDRESSING(CR) (LF)

210 *COMMENT STATEMENT NOTE TRUNCATION D123455789012345L789(CR) (LF)
220 SUBRTN TAB COMMENT FIELD TRUNCATION 0123456789(CR) (LF)
230 ORA A BYTE SET MOST SIGNIFICANT BIT(CR) (LF)

240 RTS RETURN FROM SUBROUTINE(CR) (LF)

250 SPC 2(¢R) (LF)

260 RMB 20 SCRATCH AREA FOR STACK(CR) (LF)

270 STACK RMB 1 START OF STACK(CR) (LF)

280 BYTE FOR %80 FORM CONSTANT BYTE(CR) (LF)

270 FCB #10-%4 & INDICATES HEXADECIMAL(CR) (LF)

300 ADDR FDB DATA FORM CONSTANT DOUBLE BYTE(CR) (LF)

310 DATA FCC 'SET' FORM CONSTANT DATA STRING (ASCII) (CR) (LF)
320 END(CR) (LF)

330 MON(CR) (LF) (EOT)

A--APPEND (continued)
Entering the A command Toads the contents of the tape into the edit
buffer.

CA%s

@

NOTE
The following examples assume that the contents of the tape listed
above are the only contents of the edit buffer. Remember that Line
Feeds are not entered into the edit buffer. User entries in the
examples will be underlined with $ indicating ESC. Notice that a
minimum of two spaces are required between a line number and an
instruction without a label and only one space is used between a
1ine number and label.

2-7.1.2 E--END EDIT OPERATION

FORMAT: E

DESCRIPTION: The End command terminates the edit operation and causes
the contents of the edit buffer to be transferred to the System Punch
Device followed by an EOF and blank trailer. Upon completion, the Editor
prints "@" and waits for further commands. The contents of the edit
buffer are still available for editing. The buffer pointer remains at
its previous position. The E command does not cause leader to be punched.

2-7.1.3 F--TAPE LEADER/TRAILER

FORMAT: F

DESCRIPTION: The Tape Leader/Trailer command writes fifty NULL charac-
ters to the System Punch Device. This command may be used to produce
Leader/Trailer for paper tapes.

2-7.1.4 P--PUNCH

FORMAT: nP

n is a positive decimal integer less than 256. If omitted, the value is
assumed to be 1.

DESCRIPTION: The Punch command causes a specified number of lines (n),
beginning with the line specified by the buffer pointer, to be written
from the edit buffer to the System Punch Device. The 1lines are deleted
from the edit buffer. If a negative number n is entered, the negative
sign is ignored and a positive n number of 1ines are punched.

2-7.1.5 T--TYPE

FORMAT: nT

n is a decimal integer in the range -254 < n < 255. If omitted, the
value is assumed to be 1.

DESCRIPTION: The type command causes a specified number of lines (n)
to be printed on the System Console Device. If n is positive, the
first Tine typed is the current line (the 1ine indicated by the current
position of the buffer pointer). If n is negative, the n lines pre-
ceding the current line are typed. If fewer than n lines exist follow-
ing (preceding) the end (beginning) of the edit buffer, only these lines
are typed.

T--TYPE (continued)
EXAMPLE:

05Tes

40 OPT S SELECT PRINTING SYMBOLS

50 ORG 8192

kO LDA B ADDR

70 COUNT EQU @8 @ INDICATES OCTAL
80 START LDS #STACK INZ STACK POINTER

GOTS%

@-10T4%

10 NAM PGM

20 OTP M MEMORY FILE OPTION
30 OPT 0 OUTPUT OBJECT TAPES

eTss
40 OPT S SELECT PRINTING SYMBOLS

The 5T types the five lines following the buffer pointer location. Note
that the buffer pointer is currently at the beginning of the fourth line
of the edit buffer.

No lines are printed by the OT command. If the buffer pointer is inside
a line, the OT command will print the characters from the beginning of
the line to the buffer pointer.

The -10T command prints the lines from the current buffer pointer loca-
tion to the beginning of the edit buffer since there are less than 10
Tines from the buffer pointer to the beginning of the edit buffer.

The command T prints the single line following the buffer pointer, since
the Editor assumes a one preceeds the T.

2-7.2 BUFFER POINTER OPERATIONS
Buffer pointer operations are used to manipulate the position of
the edit buffer pointer.

2-7.2.1 B--BEGINNING

FORMAT: B ‘

DESCRIPTION: The Beginning command moves the edit buffer pointer to the
beginning of the edit buffer.

EXAMPLE:

eTss
40 OPT S SELECT PRINTING SYMBOLS

eBes

eTss
10 NAM PGM

The line printed by the first T command is the fourth Tine in the edit
buffer indicating that the buffer pointer is at the beginning of the
fourth 1line.

The B command moves the buffer pointer to the beginning of the edit
buffer.

The final T command causes the first 1ine to be printed out confirming
that the buffer pointer is at the beginning of the edit buffer.

2-7.2.2 Z--END OF BUFFER

FORMAT: 1

DESCRIPTION: The End of Buffer command moves the edit buffer pointer
to the end of the edit buffer.

EXAMPLE:

eTss
10 NAM PGM

ezss

B-1Tes
330 MON

snitially the buffer pointer is at the beginning of the edit buffer, as
~he first T command indicates by printing the first line.

Yhe Z command moves the buffer pointer to the end of the edit buffer.

The -1T command prints the Tine immediately preceeding the buffer pointer
;ocation, in this case the last Tine of the edit buffer.

2-7.2.3 MOVE CHARACTER POINTER

T'ORMAT: nM

r, is a decimal integer in the range -254 < n <255. 1If omitted, the
value is assumed to be 1. .

LESCRIPTION: The Move Character Pointer command moves the edit buffer
Fointer according to the number of characters specified by n. If n is
rositive, the pointer is moved forward n characters. If negative, the
tointer is moved back n characters. If fewer than n characters are
present between the initial buffer pointer and the end (beginning) of
the edit buffer, the pointer is moved to the end (beginning) of the
Euffer.

EXAMPLE:

CuTes

10 NAM PGM

20 OTP M MEMORY FILE OPTION

30 OPT 0 OUTPUT OBJECT TAPES

40 OPT S SELECT PRINTING SYMBOLS

CE)

@2Ts
NAM PGM
20 OTP M MEMORY FILE OPTION

0-1T#s
10
GaMss

@Tss
20 OTP M MEMORY FILE OPTION

@-1Ms=

0Tes ,

The 4T command prints the first 4 Tines of the edit buffer indicating
that the buffer pointer is at the beginning of the edit buffer.

The 3M command moves the buffer pointer forward 3 characters.

The 2T command demonstrates this by printing the current line, beginning
at the buffer pointer location, and the next line.

The -1T command prints the previous line, which in this case is the in-
formation from the beginning of the edit buffer to the current buffer
pointer location.

1

12

The buffer pointer is moved forward eight characters by the 8M command.
Now the buffer pointer is at the beginning of the second 1ine in the
edit buffer as the T command demonstrates.

The -1M command moves the buffer pointer back one character to just
before the Carriage Return at the end of the first line of the edit
buffer. Now the T command prints only the Carriage Return, which is
the remainder of the 1ine it is in, and a Line Feed.

2-7.2.4 L--LINE

FORMAT: nL

n is a decimal integer in the range -254 < n < 255. If omitted, the
value is assumed to be 1.

DESCRIPTION: The Line command moves the edit buffer pointer according
to the number of lines specified by n. If n is positive, the pointer is
moved forward n lines. If negative, the pointer is moved backward n
lines. A value of 0 causes the pointer to be moved to the beginning of
the current Tine. If fewer than n lines are present between the initial
buffer pointer and the end (beginning) of the edit buffer, the pointer
is moved to the end (beginning) of the buffer.

NOTE
The 680 Editor considers a Tine to be a sequence of characters
delimited by Carriage Returns.

EXAMPLE:

euTes

10 NAM PGM

20 OTP M MEMORY FILE OPTION

30 OPT 0 OUTPUT OBJECT TAPES

40 OPT S SELECT PRINTING SYMBOLS

@3

Tss
40 OPT S SELECT PRINTING SYMBOLS

@-CLes

0Tss
20 OTP M MEMORY FILE OPTION

@8Mes

eTss
M MEMORY FILE OPTION

@OL%s

eTes
20 0TP M MEMORY FILE OPTION

The 4T command prints the first four Tines of the edit buffer indicating
that the buffer pointer is at the beginning of the edit buffer.

The 3L command moves the buffer pointer forward three lines.

The T command then prints the fourth line of the edit buffer.

The -2L command moves the buffer pointer back two lines.

Now, the T command prints the second line of the edit buffer.

The 8M command moves the buffer pointer forward eight characters.

This is confirmed by the T command which prints only a portion of the
second edit buffer line.

The command OL causes the buffer pointer to move to the beginning of the
Tine that it is currently in.

The final T command illustrates that the buffer pointer did move to the
beginning of the second Tline.

13

14

2-7.2.5 S--SEARCH

FORMAT: Sstring

The "string" argument is a string of 16 characters or lessy made up of
any ASCII characters,except ESC and BREAK.

DESCRIPTION: The Search command causes a search of the edit buffer for
the first occurrence of the specified string. The search begins at the
buffer location specified by the current position of the buffer pointer.
The search may be terminated in two ways:

(1) A match with the specified string is found. In this case, the
buffer pointer is positioned immediately after the last char-
acter of the matched string.

(2) The search reaches the end of the edit buffer. In this case,

a message

CAN'T FIND "string"
is printed. When no match is found, the buffer pointer remains
in its initial position.

EXAMPLE:
oBss
@Synss

@res
OPT S SELECT PRINTING SYMBOLS

esoTPss

CAN'T FIND "OTP"
e

eS0TPes

@OLSs

oThs
20 OTP M MEMORY FILE OPTION

The B command sets the buffer pointer at the beginning of the edit
buffer. ‘

The S40 command searches for 40.

Since the Editor came back with @, it found 40 and positioned the buffer
pointer immediately after it. The T command demonstrates this by print-
ing the portion of the line numbered 40 which follows the 40. Note that
if 1ine numbers are included in the program being edited, the Search
command can be used to easily move the buffer pointer to any given line
by searching for the appropriate 1ine number.

The SOTP command searches for OTP.

The Editor printed CAN'T FIND "OTP" indicating that OTP does not occur
between the current buffer pointer location and the end of the edit
buffer.

Now OTP is searched for again by re-entering the command SOTP.

This time the Editor prints only @, indicating that it found OTP. The
OL command moves the buffer pointer to the beginning of the 1ine contain-
ing OTP.

The T command prints the line containing OTP.

2-7.3 INSERT/DELETE/CHANGE OPERATIONS

These operations permit the insertion of text into the edit buffer,
deletion of text in the buffer, or replacement of an existing character
string with another string.

2-7.3.1 1--INSERT

FORMAT: Itext

The "text" argument may include any ASCII characters except ESC and
CANCEL.

16

DESCRIPTION: The Insert command is used to insert lines or characters
of text into the edit buffer. Text is inserted at the location specified
by the current buffer pointer. Following the Insert operation, the
pointer 1s positioned after the last character of inserted text. The
ASCII characters Null, Rubout, Linefeed, Backspace, Readeron, Punchon,
Readeroff, and Punchoff are deleted from the inserted text by the Editor.

EXAMPLE:
Gpes
02Tes

10 NAM PGM
20 OTP M MEMORY FILE OPTION

@I15 * REVISION 1
o8

egss

@3Tss

10 NAM PGM

15 * REVISION 1

20 OTP M MEMORY FILE OPTION

The B command sets the buffer pointer at the beginning of the edit
buffer.

The 2T command prints the first two 1ines of the edit buffer.

The 2M command moves the buffer pointer to immediately past the 0 to
10.

The I (Space) command inserts a space at the current location of the
buffer pointer.

The L command moves the buffer pointer to the beginning of the next
line so that a line can be inserted between the 1ines numbered 10 and 20.
The 115 *REVISION 1 (Carriage Return) command then inserts the line
numbered 15 between the 1ines numbered 10 and 20.

The B command sets the buffer pointer at the beginning of the edit
buffer.

The 3T command then prints the first three lines of the edit buffer and
confirms that the information was inserted.

2-7.3.2 D--DELETE CHARACTERS

FORMAT: nD

n is a decimal integer in the range -254 < n < 255. If omitted, the
value is assumed to be 1.

DESCRIPTION: The Delete Characters command deletes n characters from
the edit buffer, beginning at the current position of the edit buffer
pointer. If n is positive, n characters following the current pointer
position are deleted. If negative, n characters preceding the current
pointer position are deleted. If there are less than n characters be-
tween the edit buffer pointer and the end (beginning) of the edit
buffer, then the characters will be deleted and the buffer pointer will
point to the end (beginning) of the edit buffer.

EXAMPLE:
@Bss

euTsS

10 NAM PGM

L5 * REVISION 1

20 OTP M MEMORY FILE OPTION
30 OPT 0 OUTPUT OBJECT TAPES

17

eS158%
O]

@STAPESS$%
@-1Dss

G-4Tss

10 NAM PGM

15 * REVISION 1

20 OTP M MEMORY FILE OPTION
30 OPT O QUTPUT OBJECT TAPE
e

The B command sets the buffer pointer at the beginning of the edit buffer.
The 4T command prints the first four 1ines of the edit buffer.

The S15 command searches for 15 and locates the buffer pointer fmmedi-
ately after it.

The D command deletes the character after the buffer pointer, in this
case a space.

The STAPES command searches for TAPES and positions the buffer pointer
immediately after it.

The -1D command deletes the character before the buffer pointer, which
is the S of TAPES.

The -4T command prints the four lines preceeding the buffer pointer and
confirms that the changes were made.

2-7.3.3 K--KILL (DELETE) LINES

FORMAT: nK

n is a decimal integer in the range -254 < n < 255. If omitted, the
value is assumed to be 1.

DESCRIPTION: The Kill Lines command is similar to the Delete Characters
command, except that n specifies a number of lines to be deleted from the
edit buffer, rather than a number of characters. If n is positive, n
lines following the current pointer position are deleted. If negative,

n lines preceding the current position are deleted. If fewer than n
lines remain between the current pointer position and the end (beginning)
of the edit buffer, then the lines are deleted and the buffer pointer
will point to the end (beginning) of the edit buffer.

’

b,

If n is zero, the characters between the buffer pointer and the immed-
iately preceeding Carriage Return will be deleted.

EXAMPLES:
oges

07788

10 NAM PGM

15 * REVISION 1

20 OTP M MEMORY FILE OPTION

30 OPT 0 QUTPUT OBJECT TAPE

40 OPT S SELECT PRINTING SYMBOLS
50 ORG 8192

&0 LDA B ADDR

@ShOss

CrTes

10 NAM PGM

15 * REVISION 1

20 OTP M MEMORY FILE OPTION

30 OPT 0 OUTPUT OBJECT TAPE

40 OPT S SELECT PRINTING SYMBOLS
50 ORG 8192

70 COUNT EQU @8 @ INDICATES OCTAL

19

20

The B command sets the buffer pointer to the beginning of the edit
buffer.

The 7T command prints the first seven lines of the edit buffer.

The S60 command searches for 60 and sets the buffer pointer immediately
after it.

The OL command moves the buffer pointer to the beginning of the line
numbered 60.)

The K command deletes the line that the buffer pointer is currently at.
If the buffer pointer were somewhere else besides the beginning of a
line, the K command would delete the characters from the buffer pointer
through the following Carriage Return.

40. The B command sets the buffer pointer to the beginning of the edit
buffer,

The 7T command prints the first seven lines of the edit buffer confirm-
ing that the 1ine numbered 60 was deleted.

2-7.3.4 C--CHANGE
FORMAT: Cstringl$string2
"string 1" and "string 2" are strings of 16 ASCII characters or less.
These strings may include any ASCII characters except ESC and BREAK.
The two strings need not be of the same length.
DESCRIPTION: The Change command searches the edit buffer from the
current buffer pointer position. When the first occurrence of "string
1" is found, those characters are changed to "string 2". The buffer
pointer will be moved to the end of "string 2".
If "string 1" cannot be found, the message

CAN'T FIND "string 1"
is printed, and the position of the buffer pointer is unchanged.

EXAMPLE:
@Bss

05Tss

10 NAM PGM

15 * REVISION 1

20 OTP M MEMORY FILE OPTION
30 OPT 0 OUTPUT OBJECT TAPE

40 OPT S SELECT PRINTING SYMBOLS

@CSYMBOLS$0F SYMBOLS$%

@COTP0PTSS
CAN'T FIND "OTP"
Bss

@COTP$OPTSS
GBss

@5Tes

10 NAM PGM

15 * REVISION 1

20 OPT M MEMORY FILE OPTION

30 OPT O OUTPUT OBJECT TAPE

40 OPT S SELECT PRINTING OF SYMBOLS

The B command sets the buffer pointer at the beginning of the edit
buffer.

The 5T command then prints the first five Tines of the edit buffer.

The CSYMBOLS$OF SYMBOLS command searches for SYMBOLS and substitutes for
it OF SYMBOLS. The COTP$OPT command searches for OTP. However, the
Editor prints CAN'T FIND "OTP" indicating that OTP does not occur be-

tween the current buffer pointer location and the end of the edit buffer.

The B command moves the buffer pointer to the beginning of the edit buf-
fer so that the complete edit buffer can be searched for OTP.

This time the command COTP$OPT locates OTP and substitutes OPT for it.
The B command sets the buffer pointer at the beginning of the edit
buffer.

The 5T command prints the first five lines of the edit buffer and con-
firms that the changes were made.

2

22

2-7.4 EXITING THE EDITOR

2-7.4.1 X--EXIT

FORMAT: X

DESCRIPTION: The EXIT command causes control to be returned to the 680
PROM Monitor.

2-7.4.2 G--GO TO ASSEMBLER
FORMAT: G
DESCRIPTION: The GO TO ASSEMBLER command transfers control to the 680
Assembler. If the Assembler is not in memory, the message

ASSEMBLER NOT IN MEMORY
is printed on the System Console Device and control returns to the 680
PROM Monitor.

2-7.5 EDITOR COMMAND CHAINING

The Altair 680 Editor can accept sequences of edit commands and
associated arguments, terminated by two ESC characters. Commands with
arguments which follow them must be separated from subsequent commands
with a single ESC character.

Two ESC characters mark the end of a command string and cause the
Editor to begin execution. Commands in a string are executed from left-
to-right, in the order in which they were entered. Al1 commands pre-
ceeding an illegal command in the command chain are executed.

EDITOR COMMAND CHAINING EXAMPLES
The following example assumes that the information contained on
the tape in the Append Example is the only contents of the edit buffer.

@B8TSS

10 NAM PGM

20 OTP M MEMORY FILE OPTION

30 OPT O OUTPUT OBJECT TAPES

40 OPT S SELECT PRINTING SYMBOLS
50 ORG 8172

kO LDA B ADDR

70 COUNT EQU @8 @ INDICATES OCTAL

23

80 START LDS #STACK INZ STACK POINTER

@2MI $OLTCS%%
10 NAM PGM

@SLO%0L KSESDITTIHOL TCOTPSOPTSS
70 COUNT EQU @3 @ INDICATES OCTAL

CAN'T FIND “"OTP"
@BTSOTP$OPT

@BCOTPOPTBLILS * REVISION 1
$SSYMBOLSS ?MIOF $%

@BATESS

10 NAM PGM

15 * REVISION 1

20 OPT M MEMORY FILE OPTION

30 OPT 0 OUTPUT OBJECT TAPE

40 OPT S SELECT PRINTING OF SYMBOLS
50 ORG 8192

70 COUNT EQU @3 @ INDICATES OCTAL

80 START LDS #STACK INZ STACK POINTER

The B8T command chain sets the buffer pointer at the beginning of
the edit buffer and then prints the first eight lines of the buffer.
The next command chain, 2MI $OLTCS$$, does the following:
Moves the buffer pointer forward two characters (2m).
Inserts a space (I $).
Moves the buffer pointer to the beginning of the current Tine (OL).
Prints the line (T). A
Moves the buffer pointer to just after the next S in the buffer,
which is in TAPES, and then deletes the S (CS$$). Note that the C
command can be used to delete character by not including a string 2
in the command. However, when used in this manner, the C command

Ol & W N -~
¢ e e e .

24

can only occur as an individual command or at the end of a command
chain since two ESC characters must occur together to the deletion
of string 2.
The command chain

S60$0LKS@$DI993$0LTCOTPSOPTSS

performs the following actions:

D AW N~
¢ e e s e e

Searches for 60 and moves the buffer pointer to just after it (S60%).
Moves the buffer pointer to the beginning of the 1ine it is in (OL).
Deletes the 1ine (K).

Searches for @ and moves the buffer pointer to just after it (S@$).
Deletes the next character, which is 8 (D).

Inserts a 3 (I9(backspace)3$). Note that a 9 was erroneously entered
and was deleted using a backspace (Control H) character. The back-
space character may be used to delete as many previous characters

in a command as required. The Editor prints the character deleted
by each backspace.

Moves the buffer pointer to the beginning of the Tine the buffer
pointer is currently in (OL).

Types the line the buffer pointer is currently at (T).

Searches for OTP (COTP$OPT$$). But the Editor does not find it be-
tween the current buffer pointer location and the end of the buffer,
as it indicates by printing CAN'T FIND "OTP".

The command chain BTSOTP$OPT was not executed since a Control X

character terminated the command chain. The Control X character deletes
all commands up to the last prompt and prints another prompt.

The command chain BCOTPOPTBLI1S * REVISION 1(CR)$SSYMBOLS$-7MIOF

$$ does the following:

1.
2.

Moves the buffer pointer to the beginning of the edit buffer (B).
Changes OTP to OPT and moves the buffer pointer to just after OPT
(COTP$OPTS).

Moves the buffer pointer back to the beginning of the edit buffer
(B).

Moves the buffer pointer to the beginning of the next line (L).

Inserts the 1ine 15 * REVISION 1 at the current buffer pointer loca-
tion (I15 * REVISION 1 (CR)$). Note that to insert a line the buf-
fer pointer is moved to the beginning of the Tine that is to follow
the inserted Tine. Then the 1ine is inserted using the I command.

A Carriage Return should be the last character of the inserted Tine.
Searches for SYMBOLS and moves the buffer pointer to Just after it
(SSYMBOLS$).

Moves the buffer pointer back seven characters (-7M) which puts it
at the beginning of SYMBOLS.

Inserts OF(space) at the current buffer pointer location (OF $$).
The following actions are performed by the command chain BSTE:
Moves the buffer pointer to the beginning of the edit buffer (B).
Prints the eight lines following the current buffer pointer location
(8T).

Ends editing on the contents of the edit buffer by punching a tape -
of the buffer contents and any remaining tape in the System Reader
Device (E).

2-8 EDITOR MESSAGES

Table 2-2 lists and identifies the Editor messages.

25

26

COMMAND
A

Cstringl$
string2
nD
E

G
Istring

nK
nL
nM
nP

Sstring

nT

Control A

Control X

TABLE 2-1 EDITOR COMMAND SUMMARY
DESCRIPTION

Append. Appends input text from the System Reader Device
to the edit buffer.
Beginning. Moves the edit buffer pointer to the beginning
of the edit buffer.
Change. Replaces the first occurrence of “"string 1" with
"string 2".
Delete. Deletes n characters from the edit buffer.
End. Terminates an edit operation by writing the contents
of the edit buffer to the output tape.
Tape Leader/Trailer. Writes 50 NULL characters to the System
Punch Device.
Go to Assembler. Passes control to the Altair 680 Assembler.
Insert. Inserts characters or lines of text into the edit
buffer.
Ki1l Tines. Deletes n lines from the edit buffer.
Line. Moves the edit buffer point n lines.
Move character pointer. Moves the edit buffer pointer n
characters.
Punch. Punches n lines from the edit buffer to the System
Punch Device.
Search. Searches the edit buffer for the first occurrence
of "string".
Type. Types n lines from the edit buffer to the System
Console Device.
Exit. Returns control to the 680 PROM Monitor.
End of edit buffer. Moves the edit buffer pointer to the
end of the edit buffer.
Causes the last character entered in the command mode to be
typed on the System Console Device and deleted from the
command.
Causes all commands following the last prompt to be deleted
and another prompt to be typed.

N

TABLE 2-2. ALTAIR 680 EDITOR MESSAGES

MESSAGE
ALTAIR 680 EDITOR N.N.

(]
nn ????
CAN'T FIND "string"

BELL

ASSEMBLER NOT IN
MEMORY

Printed upon initiation of Editor. Revision

is specified by n.n.

Prompt. Editor is waiting for a command.
I1legal command.

Editor cannot find the string specified by
Search or Change command.

The Editor rings the bell in the System Console
Device when the user attempts to enter further
commands into a full command buffer. The user
must delete (backspace) two characters in order
to terminate the command with two ESC characters.
Printed when the G command is issued and the 680
Assembler is not in memory.

21

28

CHAPTER 3 ALTAIR 680 ASSEMBLER

3-1. INTRODUCTION

The Altair 680 Assembler is used to translate M6800 MPU source
programs written in assembly language mnemonics into machine executable
object code. The format of the 680 assembly code source language fs
fully described in Chapter III of the Altair 680 Programming Manual.

3-2. ASSEMBLER INPUT

Commands to direct the operation of the 680 Assembler are input
from the System Console Device. Source language programs may be input
to the Assembler from the System Reader Device or read directly from an
area in memory designated as the Text Buffer.

3-3. ASSEMBLER OUTPUT

The Assembler produces output in three forms:
1) An assembly listing
2) An object tape
3) A machine file (object program image in memory)

The assembly 1isting includes both a formatted output of the source
program and a 1isting of the generated machine instructions. This list-
ing is produced on the System Printer Device.

The object output is optionally written to the System Punch Device.
Object tapes are punched in the format required for loading via the 680
PROM Monitor.

" The memory file (OPT M) feature of the Assembler permits the object
code to be loaded directly into memory during assembly. This feature
facilitates execution of a program immediately after assembly, elimin-
ating the need to punch and load an object tape.

3-4. LOADING THE ASSEMBLER

The Assembler is supplied on a tape labelled ALTAIR 680 ASSEMBLER/
EDITOR which contains both the Assembler and Text Editor. This tape is
loaded into memory using the PROM Monitor's L command. (See the 680
System Monitor Manual.)

3-5. ASSEMBLER INITIATION

If space for a user program 1s to be reserved in memory, then prior
to starting the Assembler, the PROM Monitor's M and N commands should be
used to deposit the address of the last memory location to be used by
the Assembler into ENDSYS (locations D4 and D5). If this {s not done,
the Assembler will automatically determine the amount of contiguous RAM
available and use all of it.

To start the Assembler, use the Monitor's J command and start exe-
cution at P1PE. The Assembler will print the message

ALTAIR 680 ASSEMBLER X.X
where X.X is the version number of the Assembler.

If the Editor is in memory at the time the Assembler is started,
the Assembler will ask the user if the Editor should be overwritten.
Type Y (YES) or N (NO) followed by a Carriage Return to indicate whether
the Editor should be overwritten.

3-6. ASSEMBLER OPERATION

The Altair 680 Assembler is a two-pass assembler. That is, the
Assembler must read a source program twice--once to build a symbol table,
and a second time to produce the assembled output. In response to the
Assembler prompt message

ENTER PASS

select the appropriate response from the 1ist of responses below. A1l
responses must be terminated by a Carriage Return.

AR - The PR response reads a source tape into the Text Buffer. Reading
of the tape terminates when a control Z character is encountered.
Once the source file is stored in the Text Buffer, the Assembler
must still execute pass 1 and pass 2. However, since the time
required for the Assembler to read the source from memory is neg-
ligible, total assembly time can be reduced by as much as 50%.
This method of assembly must be used whenever a source tape is
assembled without the use of a controllable paper tape reader.

28

30

fc -

15 -

2L -

2T -

NOTE
If the Editor is also in memory, a source file read into the
Text Buffer using the @R pass will be available for editing
when the Editor is re-entered.

The AC response clears the Text Buffer. In order to assemble a
program other than the program currently stored in the Text Buffer,
it 1s necessary to first clear the Text Buffer.

The 1P pass reads the source file (either from the System Reader
Device or the Text Buffer) and produces a table of symbols which
appear in the program and their corresponding numeric values. This
table is used during pass 2 to evaluate the operand field of in-
structions which reference these symbols. Program syntax is also
checked on pass 1, and errors are listed.

The 1S pass is identical to the 1P pass with the exception that it
does not clear the symbol table prior to reading the source file.
This is useful in the assembly of multiple source tapes, as it
permits all symbols to be known to each assembly.

The 2L pass rereads the source file (either from the System Ready
Device or the Text Buffer) and uses information in the symbol table
to produce an assembly 1isting. Error messages are listed, and a
machine file is created if the OPT M directive has been specified.

The 2T pass is identical to the 2L pass except that it produces an
object tape rather than an assembly 1isting. Error messages are
listed, and a machine file is created if the OPT M directive has
been specified.

c

E - The E response causes control to be transferred to the 680 Editor
if it is in memory. If the Editor is not in memory, an error
message will bei printed and control will return to the PROM Monitor.

X - The X response causes control to be transferred to the 680 PROM
Monitor.

3-7. USE OF THE MEMORY FILE OPTION

The memory file option allows the object code generated to be
loaded directly into memory during pass two. The memory file option
is specified by including an OPT M directive in the source program.

In order to use the memory file option, the address of the last
memory byte to be used by the Assembler must be deposited into ENDSYS,
locations D4-D5 (see Chapter 4, Procedure 1, Steps 2 and 3). This
permits the Assembler to load the object code into memory locations
above the address specified in ENDSYS. Any attempt to assemble a pro-
gram that loads into locations less than or equal to the address spec-
ified in ENDSYS causes an error to be printed and the object code will
not be loaded. Attempts to assemble into non-existent or faulty memory
are also flagged as errors during the assembly process. When using the
OPT M feature as described in Chapter 4, it is possible to have the pro-
gram take advantage of the direct addressing mode by using locations
0000 - 0063 for temporary storage. The rest of page 0 is reserved for
system use.

3

3-8. THE OPT DIRECTIVE
The OPT directive 1is used to control the assembly output. Multiple
comma-separated options may be specified with a single statement.

OPT O

(object tape)
OPT NOO

OPT M

(memory file)
OPT NOM

OPT S

(print symbols)
OPT NOS

OPT NOL

(no Tisting)
OPT L

OPT NOP

(no page)

OPT P

OPT NOG

(no generate)
OPT G

2

The assembler will generate object tape (selected
by default).

No object tape.

The assembler will write machine code to memory.

No memory (selected by default).

The assembler will print the symbols at the end of
Pass 2.

No printing of symbols (selected by default).

The assembler will not print a 1isting of the
assembled data.

The 1isting of assembled data will be printed (sel-
ected by default).

The assembler will inhibit format paging of the
assembly listing (selected by default).

The Tisting will be paged.

Causes only 1 1ine of data to be 1isted from the
assembler directions FCC, FCB, FDB.

A1l data generated by the FCC, FCB and FDB direc-
tions will be printed (selected by default).

3-9. ASSEMBLER ERROR MESSAGES
The following is a numerical 1ist of Assembler error messages and
their meanings.

PPT - No END statement in program.

#92 - Editor not in memory. An attempt was made to transfer control to
the Editor while it was not in memory.

PP3 - Undefined opcode. The symbol in the opcode field is not a valid
opcode mnemonic or directive.

Pp4 - Text Buffer full. While reading a source file into the Text
Buffer, the Text Buffer became full.

PP5 - Label error. The statement label field is not terminated.

PP6 - NAM directive error. The NAM directive is not the first source
statement, it is missing, or it occurs more than once in the same
source program,

Pp7 - Label or opcode error. The label or opcode symbol does not begin
with an alphabetic character.

Pp8 - Syntax error. The program statement is syntactically incorrect.

#P9 - Byte overflow. An expression converted to a value greater than
255 (decimal).

P1p - OPT directive error. The structure of the OPT directive is syn-
tactically incorrect or the option is undefined.

P11 - Branch error. The branch count is beyond the relative byte's
range. The allowable range is:

(*+2) - 128 < D < (*+2) + 127
where: * = address of the first byte of the branch instruction.
D = address of the destination of the branch instruction.

P12 - I1legal addressing mode. The specified addressing mode is not
allowed with the specified opcode.

P13 - Directive operand error. The directive's operand field is in
error,

§14 - Redefined label. The statement label was previously defined. The
first value is retained.

3

34

P15 -

P16 -

P17 -

g18 -

P19 -

Redefined symbol. The symbol has been previously defined. The
first value 1s retained.

Undefined symbol. The symbol does not appear in a label field.
Symbol table overflow. The symbol table has overflowed. The new
symbol was not stored and all references to it will be flagged
as errors,

Memory file error. An attempt was made to store object code
below the address specified in ENDSYS. The object code was not
Toaded.

Faulty or non-existent memory. The memory file option attempted
to store object code into faulty or non-existent RAM.

ADDENDA TO CHAPTERS 2 AND 3

The number of NULLs transmitted after each CRLF (Carriage Return/
Line Feed) 1s initially set to @. This can be altered by depositing
the desired number of NULLs into location CE. For example, to set the
number of NULLs to 3, the Monitor command

-N BOCE 2@ 23
would be used.

35

36

CHAPTER 4. PROGRAM DEVELOPMENT PROCEDURES

4-1. INTRODUCTION

This chapter describes two procedures for program development using
the 680 Editor and Assembler.

The first procedure outlined requires the Editor and Assembler to
be co-resident in memory and uses the Edit Buffer to transfer the source
program from the Editor to the Assembler. Since considerable time is
saved by eliminating the creation and reading of external files, this
procedure should be used whenever the amount of available memory permits.

The second procedure involves loading the Editor and Assembler inde-
pendently of each other and using the tape that is generated by the Editor
to transfer the source program to the Assembler. Although this procedure
requires more I/0 time, it uses less memory, thus permitting development
of larger programs.

4-2., PROCEDURE 1
1) Use the PROM Monitor's L command to load the tape marked Altair 680

ASSEMBLER/EDITOR into memory.

2

~

Estimate the amount of memory the assembled program will require.
Subtract that amount from the address of the highest memory location.
The result will be the address of the last memory location to be used
by the Assembler and Editor.

3) Use the PROM Monitor's M and N commands to deposit the address deter-
mined in Step 2 into ENDSYS (locations D4 and D5). This allows the
rest of the memory to be used for the program under development. (In
the example, ENDSYS is set to 3FFF hexadecimal which is 16K-1.) The
sample program assembles into memory starting at location 4990.

4) Start the Editor by using the PROM Monitor's J command to begin exe-
cution at location §197.

()
~

Using the Editor commands outlined in Chapter 2, enter the program on
the System Console Device and edit as necessary.

6) Use the Editor's G command to transfer control to the Assembler.
7) Respond N (No) to the Assembler's question, "OVERWRITE EDITOR?".

8) Type 1P when the Assembler prompts, "ENTER PASS". This causes the
Assembler to execute Pass 1 of the assembly by reading the program
from the Edit Buffer.

9) If no errors are indicated by the Assembler, proceed to step 13.
Otherwise, follow steps 10 through 12. (In the example, two errors
were indicated.)

10) Type E in response to the Assembler's prompt, "ENTER PASS" to re-
enter the Editor.

11) Use the Editor to make the necessary corrections to the source pro-
gram.

12) Go back to step 6.

13) Type 2L when the Assembler prompts, "ENTER PASS". This causes an
assembly Tisting to be produced which proves invaluable during pro-
gram debugging. Since the machire file option was specified (OPT M),

the object code is assembled into memory during the 2L pass.

14) If no assembly errors are indicated during the 2L pass, proceed to
step 15. Otherwise, go back to step 10.

15) Type X in response to the Assembler's prompt, "ENTER PASS". This
causes control to be returned to the PROM Monitor.

16) Use the PROM Monitor's J command to begin execution at the start of
the program.

17) Test and debug the program as necessary.

31

38

18) If the program performs properly, proceed to step 21. Otherwise,
follow steps 19-20.

19) Use the Monitor's J command to re-enter the Editor at Tocation P1PA.

20) Go back to step 11.

21) At this point the program has been fully developed. It may be desir-
able to perform steps 22-26 through to create a source tape and an
object tape for future use.

22) Use the Monitor's J command to re-enter the Editor at location P1gA.

Use the Editor's F and E commands to punch a source tape of the
program.

23

~

24) Use the Editor's G command to pass control to the Assembler.

25) Execute pass 1P of the Assembler.

~

26) Execute pass 2T of the Assembler to punch an object tape of the pro-
gram.

oL
S10400F3rros8
59

«M 00D4 00 3F
<N 00DS 00 FF
*J 0107

ALTAIR 680 EDITOR 1.0

o1 NAM STICKS
ePT P

OPT S

@PT NOG

OPT M

RESET EQU SFFFE PROM MINITIR RESET VECTBR

GUTCH EQU SFF8! PROM MINITOR BUTPUT CHAR
INCH EQU SFFOO PROM MINITGR INPUT CHAR
STACK EQU 30 STACK VILL BE @N PAGE ZERG
ORG $4000 SET L3C COUNTER T8 16K
START LDS #STACK INIT THE STACK P@INTER
LDX #INTRS INTRGDUCE MYSELF
BSR PMESS
LDA A #21 INIT PILE T 21 STICKS
HUMAN BSR EVAL PRINT #3F STICKS
RETAD! LDX #ASK ASK HOW MANY
BSR PMESS
JSR INCH GET RESPONSE
CMP B #°'1 1S IT A 17

, Q GKRESP YES, RESP@NSE 1S 0K

_ GMP B #'2 N@, HBV ABOUT A 27
BEQ OKRESP YES, RESPONSE 1S @K
LDX #ERRMES N@, SEND ERRSR MESSAGE
BSR PMESS .

BRA RETAD! ASK THEM AGAIN

OKRESP SUB B #'0 SUBTRACT ASCII ZERd

PSH A SAVE # IN PILE

SBA SUBTRACT WHAT THEY T@6K

BPL ALLAK NBN NEGATIVE-ALL 0K

PUL,A THERE AREN'T THAT MANY

LDX #ERRM2 SEND AN ERRGR MESSAGE

BSR PMESS .

BRA RETADI ASK THEM AGAIN

ALLOK INS TAKE GARBAGE OFF STACK

BSR EVAL PRINT AND CHECK

PSH A SAVE # @F STICKS

LDA B #2 I'LL TAKE 2 STICKS IF

SUB3 SUB A #3 PILE CBNTAINS MULT OF 3

BEQ TAKEM GTHERVISE 1°LL TAKE 1

BPL SUB3

DEC B

TAKEM PUL A RESTORE PILE

SBA SUBTRACT WHAT I T98K

LDX #1TAKE INFARM THE HUMAN AS 10 HEV
~ ADD B #'0 MANY STICKS 1 T8@K

(LU STa B 7;X

39

BSR PMESS PRINT MESSAGE

BRA HUMAN GIVE HIM AN@ THER CHANCE

. : .

#* PMESS PRINTS A CHAR STRING PGINTED ¥ BY X
STOPS WHEN IT FINDS CHAR VITH BIT 7 oM

HESSl INX BUMP PEINTER

PMESS LDA B X GET CHAR @F STRING

JSR GUTCH SEND IT T80 TERMINAL

BPL PMESS! CONTINUE IF BIT 7 1S LoV
RTS RETURN IF BIT 7 1S HIGH

*

#* EVAL PRINTS THE NUMBER 8F STICKS

* REMAINING IN THE PILE AND DETERMINES
* IF THE GAME IS OVER AND WH@ WaN

*

EVAL LDX #NUMSTK POINT T8 #F STICKS MESSAGE
LDA B #SFF CONVERT # OF STICKS T9 DECIMAL
PSH A

SUBI0 ING B AND PRINT 1IT

SUB A #10

BCC suslo

ADD B #°0 PUT THE # IN THE MESSAGE

STA B 18.X

ADD A #072

STA A 17,X

PUL A ~

BSR PMESS ;

TST A 1S PILE REDUCED T8 ZER$?

BEQ DINE YES, GAME 1S @VER

RTS Nd, KEEP N PLAYING

DINETSX WHO WON?

LDX X IF WE WAULD RETURN T8¢

CPX #RETADI RETAD! THEN HE WON

BNE 1DID

LDX #HEWON THE HUMAN WON

BRA PRINT

IDID LDX #IVON

PRINT BSR PMESS

LDX RESET G BACK T@ PRM MENITOR

JMP X

»

* HERE ARE THE MESSAGES

*

INTRG FCB 015,012 CARRIAGE RETURN LINE FEED
FCC /LET'S PLAY ST!CKS/

FCB #15,612

FCC /VWE HAVE A PILE @F STICKS/

FCB #15,012

FCC /NE TAKE TURNS REMOVING | OR 2 STICKS/
FCB #15,012

FCC /THE PERS@N (BR CIMPUTER) WH8 TAKES THE LAST STICK L8SES/

FCB #15,0212
40

NUMSTK FUB 015,012

FCC /THERE ARE MOV STIGKS/

FCB ¥15,0212

ASK FCC 7RSV MANY STICKS D§ YU T‘Kﬂ?/

FCB 9240

ITAXE FCC /1 TAKE s’f!c‘/

FcB 0323 ~

HEWIN FCC /7YSU wy - YOU PROBABLY cﬂn‘r“l '/
FCB e15,0212

IWN FGC /1 “' ~ AS USUALIIII'/

FCB 615,9212

ERRMES FCB 018,012

FCC /Y8U CAN ONLY TAKE l @R 2 ST!GKS!/

FCB ¥15,0212

ERRM2 FCB 015,012,7

FCC /YBU CAN'T Do m’“ll/

FCB #15,012 -

FCC /71 TOMMAND YSU 19 TAKE THE 1 REMAINING Srlcxlll/
FCB .1500212

ALTAIR 680 ASSEMBLER 1.0
GVERVRITE ERITOR? N
ENTER PASS 1P

b,

*2++ERROR 008
=xx*«ERROR 012
00030 4029 00 0000 PUL,A THERE AREN'T THAT MANY

»kexERRSR 003 .
00078 4070 00 FFFE DINETSX VHG WON?

ENTER PASS E :
ALTAIR 680 EDITOR 1.0

#BCPUL,ASPUL ASCDINETSXSDINE TSXSGSS
ALTAIR 680 ASSEMBLER 1.0

OVERVRITE ERITOR? N

ENTER PASS 1P

ENTER PASS 2L

4

PAGE

00003
00002
00003
00004
00008
00006
00007
00008
00009
00010Q
ooolt
00012
00013
00014a
00013
00016
00017
00018
00019
00020
00021
00022
00023
00023
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054

42

oot

4000
4000
4003
4006
4008
&00A
400C
a0oFr
4011

4014
4016
4018
401A
401C
A01F
4021

4023
4028
4026
4027
4029
402A
402D
402F
4031

4032
4034
4035
4037
4039
403B
403D
403E
403F
4040
4043
4045
4047
4049

4048
404C

STICKS

4148
30
07
03
BF

00

RESET
eUTCH
INCH

STACK

START

HUMAN.
RETAD1

GXRESP

ALLAK

SuB3

TAKEM

* % % *

PMESSI

NAM
§PT
8PT
#PT
oPT
EQU
EQU
EQU
EQu
6RG
LDS
LDX
BSR
LDA
BSR
LDX
BSR
JSR
CnuP
BEQ

CMP B

BEQ
LDX
BSR
BRA
SuUB
PSH
SBA
BPL
PUL
LDX
BSR
BRA
INS
BSR
PSH
LDA

>w

w>

SUB A
BEQ

BPL
DEC
PUL
SBA
LDX
ADD
STA
BSR
BRA

INX

>w

PMESS LDA B

STICKS
s

P

NG

M
SFFFE
SFrel
S$FFOO
30
$4000
#STACK
JINTRS
PMESS
#21
EVAL
#ASK
PMESS
INGH -
1
8RRESP
#2
@KRESP
#ERRMES
PMESS |
RETADI1
#'0

ALLSK

#ERRM2
PMESS .
RETAD!

EVAL

#2

3
TAKENM
SUB3

#1TAKE
4'0
7:X
PMESS
HUMAN

X

PAIM MSNITSR RESET VECTSR
PROM NSNITSR SUTPUT CHAR
PROM MINITIR INPUT CHAR
STACK VILL BE 6N PAGE ZERS
SET L8C COUNTER T9 16K
INIT TRE STACK PSINTER
INTRODUCE NYSELF

INIT PILE T9 21 STICKS
PRINT #8F STICKS
ASK HOV MANY

GET RESPANSE

15 1T A 1?7

YES, RESPONSE IS 9K
N8, HOW AB3UT A 27
YES, RESPONSE IS @K
N@, SEND ERRSR MESSAGE

ASK THEM AGAIN

SUBTRACT ASCI: ZERS
SAVE ¢ IN PILE

SUBTRACT WHAT THEY TOoX
NON NEGATIVE~ALL 8K
THERE AREN'T THAT MANY
SEND AN ERROR MESSAGE

ASK THEM AGAIN
TAKE GARBAGE @FF STACK
PRINT AND CHECK ;
SAVE # OF STICKS ,
1'LL TAKE 2 STICKS IF
PILE CONTAINS MULT 8F 3
@THERVISE 1°LL TAKE I

RESTORE PILE

SUBTRACT WHAT I T@OK
INFORM THE HUMAN AS T9 H8WV
MANY STICKS I Ta0X

PRINT MESSAGE
GIVE HIM ANGTHER CHANCE

PMESS PRINTS A CHAR STRING PJINTED T¢ BY X
ST@PS WHEN IT FINDS CHAR WITH BIT 7 ON

BUMP PAINTER
GET CHAR @F STRING

00058
-~ 00036
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
(_npoos1
00082
00083
00084
00085
00086
00087
00088
00089
0009Q
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
001.04
00105
0106
\-50101
00108

404E
4051
4033

4054
4057
4059
405A
4058
405D
405K
4061

4063
4065
4067
4068
406A
406B
406D
406E
406F
4071

4074
4076
4079
407B
407E
4080
4083

4085
4087
4098
409A
40B2
40Ba
40D8
400A
4111
4113
4118
412C
412E
414A
4148
4159
415A
4174

STICKS

BD
39

CE
Cé
3¢
5C
80
24
CB
E7
8
A7
32
8D
4D
27
39
30

8cC
26
CE
20
CE
8D
FE
6E

oD
4Cc
oD
$7
op
$7
oD
54
oD
oD
54
oD
48
AQ
49
D3
59
oD

rrat
rs

a113

JSR
BPL
RTS

SUTCH . SEND IT T8 TERMINAL
PNESSI CONTINUE IF BIT 7 1S LV
"' RETURN IF BIT 7 IS MIGH -

»

* EVAL PRINTS THE NUMBER @F STICKS

= REMAINING IN THE PILE AND DETERMINES
I¥ THE GAME IS @VER AND VNG WON

EVAL

suBio

1D1D
PRINT

* HERE
*
INTRS

NUMSTK

ASK
ITAKE
HEWN

LDX
LDA B
PSH A
INC B
SUB A
BCC
ADD B
STA B
ADD A
STA A
PUL A
BSR
TST A
BEQ
RTS
TSX
LDX
CPX
BNE
LDX
BRA
LDX
BSR
LDX
JNP

MUMSTX PSINT T8 #0F STICKS MESSAG
ssrr CONVERT # 8F STICKS T¢ DEC

AND PRINT IT
s10.
suBio
£°0 PUT THE # IN THE MESSAGE
16X '
072
17,

PMESS .
1S PILE REDUCED T@ ZERS?
DONE YES, GAME IS @VER
N3, XEEP W PLAYING
VHS wan?
X .. 1F VE WOULD RETURN T@
:BETADI RETAD! THEN HE WN
DID)))
#HEWIN THE HUMAN WON
PRINT '
1IN
PMESS
RESET 68 BACK T3 PRIM MENITOR
X

ARE THE MESSAGES"

FCB
FCC
FCB
FCC
FCB
FCC
FCB
FCC
FCB
FCB
FCC
FCB
FCC
FCB
FCC
FCB
FCC
FCB

€15,012 CARRIAGE RETURN LINE FEED
/LET'S PLAY STICKS/

S, 812

/WE HAVE A PILE BF STICKS/

815,012

/WE TAKE TURNS REMSVING | @R 2 ST1
815,012

/THE PERSIN (@R CeMPUTER) WHO TAKE
15,0212

e15,e12

/THERE ARE NOW STICKS/

15,0212

/HOV MANY STICKS D8 YQU TARE?/
#240

/1 TAKE STICK/

€323

/Y0U WN - Y@U PROBABLY CHEATED! 1/
15,0212 -

43

PAGE

00109
00110
00111
oo112
00113
001 14
00L1%
00116
00117
00118
ool19

RESET
SUTCH
INCH
STACK
START
HUMAN .
RETAD!
BKRESP
ALLOK
SUB3
TAKEM .
PMESS1
PMESS
EVAL
SUB1O
DONE
IDID
PRINT
INTRO
NUMSTK
ASK
ITAKE
HEW2ON
IWON
ERRMES
ERRM2

003

417C
4191
4193
4195
41BS
41B7
A1BA
4iCE
4100
4IFE

FFFE
FF81

FFQO
O0IE
4000
400A
400C
4023
4031

4037
403E
4048
404C
4054
405A
406E
407B
407E
4085
4113
4l12E
414B
4154
417C
4193
41B7

STICKS

49
oD
oD
59
oD
oD
59
oD
49
oD

T3TAL ERRIRS 00000

4

1veN
ERRMES

FCC
FCB
rcs
FCC
FCB
FCB
b
b 2]
FCC
FCB
END

/% WN - AS USUALII111/

s15,0212 R

e15,012 .

/YU CAN SNLY TAKE 1 SR 2 STICKS1/
ss,e81e. ' T
015,012,7

/Y8U GAN'T DS THATI11/

sis,e12 - T .

/1 TEMMAND YSU T¢ TAKE THE | RENAL
15,0212 -

ENTER PASS X
L ed 4000
_LET*S PLAY STICKS
WVE RAVE A PILE OF STICKS
VE TAKE TURNS REMOVING)} SR 2 STICKXS
THE PERSON (@R COMPUTER) VHS TAKES TME LAST STICX LOSES

THERE ARE N@V 21 STICKS .

WV MANY STICKS D§ YOU TAKE? 3

Y8U CAN ONLY TAKE | @R 2 STICKS!

HIV MANY STICKS D8 Y8U TAKE? 2

THERE ARE NOV 19 STICKS

1 TAKE I ST1CKS

THERE ARE NOW 18 STICKS .o

HIV MANY STICKS D8 YU TAKE? |

THERE ARE N6W 17 STICKS

1 TAKE 1 STICKS

THERE ARE N6V 16 STICKS .

HIV MANY STICKS D& YQU TAKE? 2

THERE ARE NGV 14 STICKS

I TAKE § STICKS

THERE ARE NGOV 13 STICKS)

HIV MANY STICKS D& YOU TAKE? 2

THERE ARE NOV 11 STICKS

1 TAKE 1| STICKS

THERE ARE NOV 10 STICKS ;

HBV MANY STICKS D& Y8U TAKE? 2
QJ}HERE ARE NGV 08 STICKS

1 TAKE 1 STICKS

THERE ARE N@W 07 STICKS .

HIV MANY STICKS D& YBU TAKE? 2

THERE ARE NOV 0S8 STICKS

I TAXE 1 STICKS

THERE ARE N8V 04 STICKS .

HOV MANY STICKS D3 YOU TAKE? 2

THERE ARE NOV 02 STICKS

1 TAKE 1 STICKS .

THERE ARE NOVW 01 STICKS .

HBV MANY STICKS D@ YU TAKE? 2

YBU CAN'T D& THATII!

! CAMMARD YOU T8 TAKE THE | REMAINING STICK!I!

HIW MANY STICKS D@ YOU TAKE? |

THERE ARE N@V 00 STICKS

I WBN - AS USUALtIt1!

.

Steps 23 through 26 of Procedure 1 are not
hown on the output.)

48

END OF RAM
ENDSYS (3FFF)
Dynamically
Allocated
1C81
15Fp
p20p

£1pp

Ppop

User Area

Assembler Symbol Table

Edit Buffer

Editor

Assembler

I/0 Routines

Scratch Pad

Memory Map for Procedure 1

4-3.

1)

2

~

3)

PROCEDURE 2
NOTE
No output is shown for this procedure as it would be essentially
identical to the output of Procedure 1.

Use the Monitor's L command to load the tape marked ALTAIR 680 EDITOR.

Use the Monitor's J command to begin execution of the Editor at
9197.

Using the Editor commands outlined in Chapter 2, enter the program
on the System Console Device and edit as necessary.

Use the Editor's F and E commands to punch a source tape of the
program.

Use the Editor's X command to return to the Monitor.

Load the tape marked ALTAIR 680 ASSEMBLER/EDITOR.

Start execution of the Assembler at P1gE.
Respond Y (Yes) to the question "OVERWRITE EDITOR?".

Place the source tape in the System Reader Device.

10) Type 1P when the Assembler prompts, "ENTER PASS".

11) If no errors are indicated, proceed to step 18. Otherwise, follow

steps 12-17.

12) Type X in response to the prompt, "ENTER PASS". Control will be

returned to the Monitor.

13) Reload the tape marked ALTAIR 680 EDITOR.

41

48

14) Start execution at p197.

15) Use the A (Append) command to read the source tape from the System
Reader Device into the Edit Buffer.

16) Edit the program as necessary.

17) Go back to step 4.

18) Type 2L to the prompt, "ENTER PASS".
19) An assembly listing will be produced.

20) If errors are indicated, go back to step 12. Otherwise, proceed
to step 21.

21) Type 2T in response to the prompt, “ENTER PASS".

22) An object tape of the program will be punched on the System Punch
Device.

23) Type X in response to the prompt, "ENTER PASS", to return to the
Monitor.

24) Use the Monitor's L command to load the object tape.
25) Test and debug the program.

26) If the program performs properly, the development procedure is
complete. Otherwise, go back to step 13.

~

L

END OF RAM

p9pB

p29p

prop

pege

END OF RAM

15F9

panp

piog

popo

Edit Buffer

Ed{tor

I/0 Routines

Scratch Pad

Editor

Assembler Symbol Table

Assembler

1/0 Routines

Scratch Pad

Assembler

Memory Maps for Procedure 2

4

