ALTAIR
BASIC

REEERENCE MANUAL

ALTAIR 680 BASIC

Altair 680 BASIC is identical to Altair 8800 8K BASIC, Revision
3.2, with a few exceptions. The BASIC Reference Manual for 8800 8K
BASIC is included here. Listed below are the sections of the BASIC
Reference Manual that are applicable to 680 BASIC:
Pages 1-43
Appendices C-H
Appendix K
Appendix M
These introductory pages to the "BASIC Reference Manual® (pages
I through VI) contain several additions to the manual that are needed
when using 680 BASIC.

Loading Altair 680 BASIC
Altair BASIC is loaded into the 680 using the PROM Monitor's L
command. (See the Altair 680 System Monitor Manual for details.)

Initialization Dialog

Starting BASIC:

Use the PROM Monitor's J command to begin execution of BASIC at
address #.

-J 22ea
After you have started BASIC, it will respond:
MEMORY SIZE?

If you type a Carriage Return to MEMORY SIZE?, BASIC will use all
the contiguous memory upwards from location zero that it can find.
BASIC will stop searching when it finds one byte of ROM or non-
existent memory.

If you wish to allocate only part of the Altair's memory to BASIC,
type the number of bytes of memory you wish to allocate in decimal.
This might be done, for instance, if you were using part of the memory
for a machine language subroutine.

BASIC will then ask:

TERMINAL WIDTH?

II

This is to set the output line width for PRINT statements only.
Type in the number of characters for the 1ine width for the particular
terminal or other output device you are using. This may be any number
from 1 to 255, depending on the terminal. If no answer is given (i.e.
a Carriage Return is typed) the line width is set to 72 characters.

Now Altair BASIC will enter a dialog which will allow you to
delete some of the arithmetic functions. Deleting these functions
will give more memory space to store your programs and variables.
However, you will not be able to call the functions you delete. At-
tempting to do so will result in an FC error. The only way to restore
a function that has been deleted is to reload BASIC.

The following is the dialog which will occur:

WANT SIN-COS-TAN-ATN?

Answer "Y" to retain all four of the functions, "N" to delete
all four, or "A" to delete ATN only.

Now BASIC will type out:

XXXX BYTES FREE
MITS ALTAIR bAO BASIC
VERSION Y.Y REV 2.2
COPYRIGHT. 197k BY MITS. INC.

"XXXX" is the number of bytes available for program, variables,
matrix storage and the stack. It does not include string space. Y.Y
is the version number. Z.Z is the revision number.

0K

INP and OUT

The INP and OUT facilities of Altair 8800 BASIC are unnecessary
in 680 BASIC because of the I/0 structure of the 6800 microprocessor.
The 6800 handles I/0 by addressing certain memory locations as ports.
Therefore, to do an input, the PEEK function is used. For example,
suppose memory location 6500010 is an input port for a peripheral.
Then to get the information, simply use

I = PEEK (b5000)

either as a direct or indirect command.

J

To output, use the POKE command. To output an ASCII "A" to the
port addressed by 64000]0, use the statement
POKE L4000. ASC("A")
either as a direct or indirect command.

User Machine Language Interface
A user can call his own machine language functfon by using the
USR function. The user must reserve some memory for this function by
typing a number in response to BASIC's initialization question
MEMORY SIZE?
For example, to reserve 1K of memory for user functions in a 17K machine,
the response would be

16383
The user function may be loaded into memory via the PROM Monitor,
the front panel switches, or the POKE function in BASIC. Prior to call-
ing the user function, the starting address of the function must be
stored in locations 287(10) (high order byte of address) and 288(]0)
(1ow order byte of address). For example, if the user function begins
at 17K, the following procedure should be used.
17K is 4000(16
so 40(16) must be stored in 287(]0)
and 00(16) must be stored in 288(]0)
40(16) is 4 x 16 = 64(10)
and @ is P in any base
so the commands
POKE 287+ b4
and POKE 288+ B
would be used to store the starting address of the user function. The
call to a user function is
Y = USR(X)

X is the argument and must be a number in the range +32767(10) and -32768(]0).

The result of the USR function is returned in Y and must also be in the
range +32767(10) and‘-32768(]0).

I1I

IV

The argument 1s obtained for use in the user function by calling
the routine whose address is given in Tocations P115 and 9116 (hexa-
decimal). Therefore, the instructions

LDX #8115

JSR X
cause the argument to be converted to a signed two byte integer with
the high order byte stored location 174(]0) and the Tow order byte
stored in 175(10).

The result of the function is returned to BASIC by storing the
high order byte in accumulator A, the low order byte in accumulator B,
and calling the routine whose address is given in locations P117 and
P118 (hexadecimal).

For example, the instructions

CLR A

LDA B #3

LDX 0117

JSR X
will return a value of 3 to BASIC. Program control is returned to
BASIC by executing an RTS instruction.

Example USR Function

The USR function described below generates a program delay of 1
second times the argument. The function assumes the argument is be-
tween 1 and 255(10). The value returned to BASIC is always zero.

It is assumed the user answered the memory size question with 16383.

0000) NAM USRFN

0oo02 4000 BRrRG $4000

00003 4000 FE 0115 LDX %0115 GET LOW BYTE OF ARG
00004 4003 AD OO0 JSR X CINTZ B

0000S 4005 Db AF LDA B 17?5 WE ASSUME HIGH BYTE IS O
0000k 4007 CE FY24y WAITL LDX *L2500 THIS L@GP GENERATES
00007 400A 09 WAITZ DEX A DELAY OF ARG*1 SEC
00008 400B 2k FD BNE WALITZ

00009 400D S5A DEC B DECREMENT THE ARG

00010 400E 2k F? BNE WAITL:

00011 4010 4F LR A

00012 4011 FE 0117 LDX s~ 90117 A2B ARE ZER®
00013 *RETURN THE VALUE TO BASIC

00014 4014 BE OO Jmp X (JSR AND RTS)
00015 END

T#TAL ERRRS 00000
NOTE: This function was developed using the Altair 680 Assembly Lan-
guage Development System.

The following BASIC program rings the Teletype bell at 10 second
intervals by calling the USR function above.
5 REM SET UP USR ADDRESS
18 POKE 287-kY
2@ POKE 2088
25 REM RING THE BELL
3@ PRINT CHR$(?)3
35 REM DELAY 10 SECONDS
ug X = USR(10)
45 REM DO IT AGAIN
58 GOTO 3@

680 BASIC I/0 Patch Points
Altair 680 BASIC calls routines in the 680 PROM Monitor to perform

1/0 transfers. The following routines are necessary and the address of

their calls are given.

1) INCH - Input character routine. Reads character from terminal,
strips parity, and returns the resultant 7 bit ASCII char-
acter in accumulator B. Called from location P41F (hex).

2) OUTCH - Output character routine. Sends the ASCII character in ac-
cumulator B to the terminal. Called from location @8AD
(hex).

3) POLCAT - Poll for character routine. Checks input status of terminal.
Returns carry set if character has been typed. Returns
carry clear if no character has been typed. Called from
location P618 (hex).

Baudot Control - C

The Baudot version of the PROM Monitor supports only those Baudot
Teletypes wired for half-duplex operation. It is therefore impossible
to type a control - C while BASIC is doing output. Consequently, BASIC
checks the Baudot bit at location FPP2 and if it indicates the presence
of a Baudot terminal, any character typed while BASIC is executing a
program will be interpreted as a control - C.

VI

\

OO

OO

MITS ALTAIR BASIC

W T W

REFERENCE MANUAL

Table of Contents:

INTRODUCTION..... e terereresieteetarsasaetrasattennan I
GETTING STARTED WITH BASIC......coiveeeraccnnnnes AP §
REFERENCE MATERIAL. ..c.ovieintiinvnoencannnrescanans 23
APPENDICES....... cetesascoaans Cheseaneas cesrecenes ..45
A) HOW TO LOAD BASIC............ ceesesesonans 46
B) INITIALIZATION -DIALOG........... cecessaanes 51
C) ERROR MESSAGES.............c.... ceieeenens 53
D) SPACE HINTS.....ccvvevunennannnnns ceseeaas6
E) SPEED HINTS.......covvevnnnns ceeseense v ...58
F) DERIVED FUNCTIONS...... Ceveieen ceseseranns 59
G) SIMULATED MATH FUNCTIONS.........cccce00..60
H) CONVERTING BASIC PROGRAMS NOT
WRITTEN FOR THE ALTAIR......... sieresaen 62
I) USING THE ACR INTERFACE....... cieens R %)
J) BASIC/MACHINE LANGUAGE INTERFACE.......... 66
K) ASCII CHARACTER CODES............. cesneens69
L) EXTENDED BASIC.......coveevunnn crceranaas .71
M) BASIC TEXTS...ieiieeneenraneconsasnseesessdd

PRINTED IN U.S.A.

© MITS, Inc., 1975 U @

“Creative Electronics”

P.0. BOX 8636
ALBUQUERQUE, NEW MEXICO 87108

ALTAIR ~—— 1115~ BASIC

Supplement & Errata

The following are additions and corrections to the ALTAIR BASIC REFERENCE
MANUAL. Be sure to read this over carefully before continuing.

1) If you are loading BASIC from paper tape, be sure your Serial I/0
board is strapped for eight data bits and no parity bit.

2) On page 53 in Appendix C, the meaning for an "0S" error should read:

Out of String Space. Allocate more string space by using
the "CLEAR" command with an argument (see page 42), and then
run your program again. If you cannot allocate more string
space, try using smaller strings or less string variables.

3) On page 42, under the "CLEAR" command, It is stated that "CLEAR" with
no argument sets the amount of string space to 200 bytes. This is in-
correct. '"CLEAR" with no argument leaves the amount of string space
unchanged. When BASIC is brought up, the amount of string space is
initially set to 50 bytes.

4) On page 30, under the "DATA" statement, the sentence "IN THE 4K VERSION
OF BASIC, DATA STATEMENTS MUST BE THE FIRST STATEMENTS ON A LINE,"
should be changed to read, "IN THE 4K VERSION OF BASIC, A DATA STATE-
MENT MUST BE ALONE ON A LINE."

5) If you desire to use a terminal interfaced to the ALTAIR with a
Parallel I/0 board as your system console, you should load from the
ACR interface (wired for address 6). Use the ACR load procedure de-
scribed in Appendix A, except that you should raise switches 15 § 13
when you start the boot. The Parallel I/0 board must be strapped to
address 0.

6) If you get a checksum error while loading BASIC from a paper tape or a
cassette, you may be able to restart the boot loader at location 0 with
the appropriate sense switch settings. This depends on when the error
occurs. The boot loader is not written over until the last block of
BASIC is being read; which occurs during approximately the last two
feet of a paper tape, or the last 10 to 15 seconds of a cassette. If
the checksum error occurs during the reading of the last block of BASIC,
the boot will be overwritten and you will have to key it in again.

7) The number of nulls punched after a carriage return/line feed does not
need to be set >=3 for Teletypes or >=6 for 30 CPS paper tape terminals,
as described under the "NULL" command on page 23 of the BASIC manual.

In almost all cases, no extra nulls need be punched after a CR/LF on
Teletypes, and a setting of nulls to 3 should be sufficient for 30 CPS
paper tape terminals. If any problems occur when reading tape (the
first few characters of lines are lost), change the null setting to 1
for Teletypes and 4 for 30 CPS terminals.

8) If you have any problems loading BASIC, check to make sure that your
terminal interface board (SIO or PIO) is working properly. Key in the
appropriate echo program from below, and start it at location zero.
Each character typed should be typed or displayed on your terminal. If
this is not the case, first be sure that you are using the correct echo
program. If you are using the correct program, but it is not function-
ing properly, then most likely the interface board or the terminal is
not operating correctly.

In the following program listings, the number to the left of the slash
is the octal address and the number to the right is the octal code for that
address.

FOR REV 0 SERIAL I/O BOARDS WITHOUT THE STATUS BIT MODIFICATION

0/ 333 1/ 000 2/ 34
3/ 040 4 /7 3.2 5, 000
b /¢ 000 ?/ 333 10 / 00L
1} 7 323 12 / 001 13 7/ 303
14 » 000 15 » 000

FOR REV 1 SERIAL I/0 BOARDS (AND REV 0 MODIFIED BOARDS)
0/ 333 1 s 000 2 / 017
37 332 4 / 000 5, 000
b/ 333 7 ¢ 00L 10 / 323
11 7 001 12 ¢ 303 13 7 000
14 »~ 000

FOR PARALLEL I/O BOARDS
0/ 333 1, 000 2/ 34b
3 / 002 4/ 312 5/ 000
kL »~ 000 ?/ 333 10 / 00L
11 / 323 12 / 001 13 / 303
14 ~ 000 15 » 000

For those of you with the book, MY COMPUTER LIKES ME when i speak in
BASIC, by Bob Albrecht, the following information may be helpful.

1) ALTAIR BASIC uses "“NEW" instead of "SCR" to delete the current
program.

2) Use Control-C to stop execution of a program. Use a carriage-
return to stop a program at an "INPUT" statement.

3) You don't need an "END" statement at the end of a BASIC program.

8/25/75

U

Introduction

Before a computer can perform any useful function, it must be “told"
what to do. Unfortunately, at this time, computers are not capable of
understanding English or any other "human" language. This is primarily
because our languages are rich with ambiguities and implied meanings.

The computer must be told precise instructions and the exact sequence of
operations to be performed in order to accomplish any specific task.
Therefore, in order to facilitate human communication with a computer,
programming languages have been developed.

ALTAIR BASIC* is a programming language both easily understood and
simple to use. It serves as an excellent "tool" for applications in
areas such as business, science and education. With only a few hours of
using BASIC, you will find that you can already write programs with an
ease that few other computer languages can duplicate.

Originally developed at Dartmouth University, BASIC language has
found wide acceptance in the computer field. Although it is one of the
simplest computer languages to use, it is very powerful. BASIC uses a
small set of common English words as its “commands". Designed specifi-
cally as an "interactive" language, you can give a command such as
"PRINT 2 + 2", and ALTAIR BASIC will immediately reply with “4". It
isn't necessary to submit a card deck with your program on it and then
wait hours for the results. Instead the full power of the ALTAIR is "at
your fingertips".

Generally, if the computer does not solve a particular problem the
way you expected it to, there is a "Bug" or error in your program, or
else there is an error in the data which the program used to calculate
its answer. If you encounter any errors in BASIC itself, please let us
know and we'll see that it's corrected. Write a letter to us containing
the following information:

1) System Configuration

2) Version of BASIC

3) A detailed description of the error
Include all pertinent information
such as a Tisting of the program in
which the error occurred, the data
placed into the program and BASIC's
printout.

All of the information listed above will be necessary in order to pro-
perly evaluate the problem and correct it as quickly as possible. We
wish to maintain as high a level of quality as possible with all of our
ALTAIR software. ' :

* BASIC is a registered trademark of Dartmouth University.

I

We hope that you enjoy ALTAIR BASIC, and are successful in using it
to solve all of your programming needs.

In order to maintain a maximum quality level in our documentation,
we will be continuously revising this manual. If you have any sugges-
tions on how we can improve it, please let us know.

If you are already familiar with BASIC programming, the following
section may be skipped. Turn directly to the Reference Material on

page 2

NOTE: MITS ALTAIR BASIC is available under license or purchase
agreements. Copying or otherwise distributing MITS software out-
side the terme of such an agreement may be a violation of copyright
laws or the agreement itself.

If any immediate problems with MITS software are encountered, feel
free to give us a call at (505) 265-75653. The Software Department

is at Ext. 3; and the joint authors of the ALTAIR BASIC Interpreter,
Bill Gates, Paul Allen and Monte Davidoff, will be glad to assist you.

Ix

e ———]

1Y e {

CETTING

STARTED |

WITTH

BASIC

—

l

X
o
“Creative Electronics”

This section is not intended to be a detailed course in BASIC pro-
gramming. It will, however, serve as an excellent introduction for those
of you unfamiliar with the language.

The text here will introduce the primary concepts and uses of BASIC
enough to get you started writing programs. For further reading sugges-
tions, see Appendix M.

If your ALTAIR does not have BASIC loaded and running, follow the
procedures in Appendices A § B to bring it up.

We recommend that you try each example in this section as it is pre-
sented. This will enhance your ''feel' for BASIC and how it is used.

Once your I/0 device has typed ' 0K ", you are ready to use ALTAIR
BASIC.

NOTE: All commands te ALTAIR BASIC should end with a earriage
return. The céarriage return tells BASIC that you have finished
typing the command. If you make a typing error, type a back-
arrow (<), usually shift/0, or an underline to eliminate the
last character. Repeated use of " « " will eliminate previous
characters. An at-sign (@) will eliminate the entire line
that you are typing.)

Now, try typing in the following:
PRINT 10-4 (end with carriage return)
ALTAIR BASIC will immediately print:
b
0K
The print statement you typed in was executed as soon as you hit the
carriage return key. BASIC evaluated the formula after the "PRINT' and
then typed out its value, in this case 6.
Now try typing in this:
PRINT 1/2,3*10 ("*" means multiply, "/" means divide)
ALTAIR BASIC will print: ’
.5 30
As you can see, ALTAIR BASIC can do division and multiplication as
well as subtraction. Note how a " , '" (comma) was used in the print com-
mand to print two values instead of just one. The comma divides the 72
character line into 5 columns, each 14 characters wide. The last two of
the positions on the line are not used. The result is a " , " causes

BASIC to skip to the next 14 column field on the terminal, where the’
value 30 was printed.

2

Commands such as the "PRINT" statements you have just typed in are
called Direct Commands. There is another type of command called an In-
direct Command. Every Indirect command begins with a Line Number. A
Line Number is any integer from 0 to 65529.

Try typing in the following lines:

10 PRINT 2+3
20 PRINT 2-3

A sequence of Indirect Commands is called a "Program'". Instead of
executing indirect statements immediately, ALTAIR BASIC saves Indirect
Commands in the ALTAIR's memory. When you type in RUN , BASIC will
execute the lowest numbered indirect statement that has been typed in
first, then the next highest, etc. for as many as were typed in.

Suppose we type in RUN now:
RUN
ALTAIR BASIC will type out:

5
-1
0K
In the example above, we typed in line 10 first and line 20 second.
However, it makes no difference in what order you type in indirect state-
ments. BASIC always puts them into correct numerical order according to

the Line Number.

If we want a listing of the complete program currently in memory,
we type in LIST . Type this in:

LIST
ALTAIR BASIC will reply with:
10 PRINT 2+3
20 PRINT 2-3
0K
Sometimes it is desirable to delete a line of a program altogether.
This is accomplished by typing the Line Number of the line we wish to
delete, followed only by a carriage return.

Type in the following:

10
LIST

ALTAIR BASIC will reply with:

20 PRINT 2-3
oK

We have now deleted line 10 from the program. There is no way to
get it back. To insert a new line 10, just type in 10 followed by the
statement we want BASIC to execute.

Type in the following:

10 PRINT 2*3
LIST

ALTAIR BASIC will reply with:

10 PRINT 2*3
20 PRINT 2-3
0K

There is an easier way to replace line 10 than deleting it and then
inserting a new line. You can do this by just typing the new line 10 and
hitting the carriage return. BASIC throws away the old line 10 and re-
places it with the new one.

Type in the following:

10 PRINT 3-3
LIST

ALTAIR BASIC will reply with:
10 PRINT 3-3
20 PRINT 2-3
0K

It is not recommended that lines be numbered consecutively. It may
become necessary to insert a new line between two existing lines. An in-
crement of 10 between line numbers is generally sufficient.

If you want to erase the complete program currently stored in memory,
type in " NEW ". If you are finished running one program and are about
to read in a new one, be sure to type in " NEW " first. This should be
done in order to prevent a mixture of the old and new programs.

Type in the following:

NEW
ALTAIR BASIC will reply with:

0K

Now type in:
LIST

ALTAIR BASIC will reply with:
0K

Often it is desirable to include text along with answers that are
printed out, in order to explain the meaning of the numbers.

Type in the following:
PRINT "ONE THIRD IS EQUAL TO",1/3
ALTAIR BASIC will reply with:
ONE THIRD IS EQUAL TO -333333
0K
As explained earlier, including a " , " in a print statement causes
it to space over to the next fourteen column field before the value fol-
lowing the " , " is printed.
If we use a " ; " instead of a comma, the value next will be printed

immediately following the previous value.

NOTE: Numbers are always printed with at least one trailing space.
Any text to be printed is always to be enclosed in double quotes.

Try the following examples:

A) PRINT "ONE THIRD IS EQUAL TO';1/3
ONE THIRD IS EQUAL TO -333333

0K
B) PRINT 1,2,3
1 2 3
0K
C) PRINT 1;2;3
I 2 3
oK

D) PRINT -132;-3
-1 2 -3

OK

We will digress for a moment to explain the format of numbers in
ALTAIR BASIC. Numbers are stored internally to over six digits of ac-
curacy. When a number is printed, only six digits are shown. Every
number may also have an exponent (a power of ten scaling factor).

The largest number that may be represented in ALTAIR BASIC is
1.70141*1038, while the smallest positive number is 2.93874*10739,

When a number is printed, the following rules are used to determine
the exact format:

1) If the number is negative, a minus sign (-) is printed.
If the number is positive, a space is printed.

2) If the absolute value of the number is an integer in the
range 0 to 999999, it is printed as an integer.

3) If the absolute value of the number is greater than or
equal to .1 and less than or equal to 999999, it is printed
in fixed point notation, with no exponent.

4) If the number does not fall under categories 2 or 3,
scientific notation is used.

Scientific notation is formatted as follows: SX.XXXXXESTT .
(each X being some integer 0 to 9)

The leading "S'" is the sign of the number, a space for a
positive number and a " - " for a negative one. One non-
zero digit is printed before the decimal point. This is
followed by the decimal point and then the other five digits
of the mantissa. An "E" is then printed (for exponent),
followed by the sign (S) of the exponent; then the two
digits (TT) of the exponent itself. Leading zeroes are
never printed; i.e. the digit before the decimal is never
zero. Also, trailing zeroes are never printed. If there
is only one digit to print after all trailing zeroes are
suppressed, no decimal point is printed. The exponent
sign will be " + " for positive and " - ' for negative.
Two digits of the exponent are always printed; that is
zeroes are not suppressed in the exponent field. The
value of any number expressed thus is the number to the
left of the "E" times 10 raised to the power of the number
to the right of the "E".

No matter what format is used, a space is always printed following
a number. The 8K version of BASIC checks to see if the entire number
will fit on the current line. If not, a carriage return/line feed is
executed before printing the number. ‘

o

The following are examples of various numbers and the output format
ALTAIR BASIC will place them into:

NUMBLR OUTPUT FORMAT
+1 1

-1 -1

6523 b523
-23.460 -23. 4k

1E20 1E+20
~-12.3456E-7 -1.23456E-0k
1.234567E-10 1.23457E-10
1000000 1E+0b
999999 999999

.1 -1

.01 1E-02
.000123 1.23E-04

A number input from the terminal or a numeric constant used in a

BASIC program may have as many digits as desired, up to the maximum length

of a line (72 characters). However, only the first 7 digits are signifi-
cant, and the seventh digit is rounded up.

PRINT 1.2345678901234567890
1.23457

oK

The following is an example of a program that reads a value from the
terminal and uses that value to calculate and print a result:

10 INPUT R
20 PRINT 3.14159*R*R
RUN
7 10
314.159

OK

Here's what's happening. When BASIC encounters the input statement,
it types a question mark (?) on the terminal and then waits for you to
type in a number. When you do (in the above example 10 was typed), execu-
tion continues with the next statement in the program after the variable
(R) has been set (in this case to 10). In the above example, line 20
would now be executed. When the formula after the PRINT statement is
evaluated, the value 10 is substituted for the variable R each time R ap-
pears in the formula. Therefore, the formula becomes 3.14159*10*10, or

-314.159.

If you haven't already guessed, what the program above actually does
is to calculate the area of a circle with the radius "R".

If we wanted to calculate the area of various circles, we could keep
re-running the program over each time for each successive circle. But,
there's an easier way to do it simply by adding another line to the pro-
gram as follows:

30 GOTO 10

RUN

? 10
314.159

?3
28.2743

? 4.7

E9.3977
?

oK

By putting a ' GOTO ' statement on the end of our program, we have
caused it to go back to line 10 after it prints each answer for the suc-
cessive circles. This could have gone on indefinitely, but we decided
to stop after calculating the area for three circles. This was accom-
plished by typing a carriage return to the input statement (thus a blank
line).

NOTE: Typing a carriage return to an input statement in the 4K
version of BASIC will cause a SN error (see Reference Material).

The letter "R" in the program we just used was termed a "variable'.
A variable name can be any alphabetic character and may be followed by
any alphanumeric character.)

’ In the 4K version of BASIC, the second character must be numeric
or omitted. In the 8K version of BASIC, any alphanumeric characters
after the first two are ignored. An alphanumeric character is any let-
ter (A-Z) or any number (0-9).

Below are some examples of legal and illegal variable names:
LEGAL ILLEGAL

IN 4K VERSION
A % (1st character must be alphabetic)
Z1 Z1A (variable name too long)

QR (2nd character must be numeric)
IN 8K VERSION

TP TO (variable names cannot be reserved
PSTG$ words)
COUNT RGOTO (variable names cannot contain

reserved words)

The words used as BASIC statements are "reserved" for this specific
purpose. You cannot use these words as variable names or inside of any
variable name. For instance, "FEND" would be illegal because "END" is a
reserved word.

The following is a list of the reserved words in ALTAIR BASIC:
4K RESERVED WORDS

ABS CLEAR DATA DIM END FOR GOSUB GOTO IF INPUT

INT LET LIST NEW NEXT PRINT READ REM RESTORE

RETURN RND RUN SGN SIN SQR STEP STOP TAB(THEN

TO USR
8K RESERVED WORDS INCLUDE ALL THOSE ABOVE, AND IN ADDITION

ASC AND ATN CHR$ CLOAD . CONT COS CSAVE DEF EXP

FN FRE INP LEFT§ LEN LOG MID§ NULL ON OR NOT

OUT PEEK POKE POS RIGHT$ SPC(STR$ TAN VAL WAIT

Remember, in the 4K version of BASIC variable names are only a letter
or a letter followed by a number. Therefore, there is no possibility of
a conflict with a reserved word. .

Besides having values assigned to variables with an input statement,
you can also set the value of a variable with a LET or assignment state-
ment.

Try the following examples:

A=5
0K

PRINT A,A*2
5 10

0K
LET Z=7

0K

PRINT Z, Z-A
7. 2

0K

As can be seen from the examples, the "LET'" is optional in an assign-
ment statement.

BASIC '‘remembers" the values that have been assigned to variables
using this type of statement. This 'remembering' process uses space in
the ALTAIR's memory to store the data.

The values of variables are thrown away and the space in memory
used to store them is released when one of four things occur:

1) A new line is typed into the program or an old
line is deleted

2) A CLEAR command is typed in
3) A RUN command is typed in
4) NEW is typed in

Another important fact is that if a variable is encountered in a
formula before it is assigned a value, it is automatically assigned the
value zero. Zero is then substituted as the value of the variable in
the particular formula. Try the example below:

PRINT Q,Q+2,Q*2
0 = 1]

oK

Another statement is the REM statement. REM is short for remark.
This statement is used to insert comments or notes into a program. When
BASIC encounters a REM statement the rest of the line is ignored.

This serves mainly as an aid for the programmer himself, and serves
no useful function as far as the operation of the program in solving a
particular problem.

Suppose we wanted to write a program to check if a number is zero
or not. With the statements we've gone over so far this could not be
done. What is needed is a statement which can be used to conditionally
branch to another statement. The "IF-THEN" statement does just that.

Try typing in the following program: (remember, type NEW first)

10 INPUT B

20 IF B=0 THEN 50
30 PRINT "'NON-ZERO"
40 GOTO 10

50 PRINT "'ZERO"

60 GOTO 10

When this program is typed into the ALTAIR and run, it will ask for
a value for B. Type any value you wish in. The ALTAIR will then come to
the "IF" statement. Between the "IF'" and the “THEN" portion of the state-
ment there are two expressions separated by a relationm.

10

A relation is one of the following six symbols:

RELATION MEANING
= EQUAL TO
> GREATER THAN
< LESS THAN
< NOT EQUAL TO
<= LESS THAN OR EQUAL TO
=> GREATER THAN OR EQUAL TO

The IF statement is either true or false, depending upon whether the
two expressions satisfy the relation or not. For example, in the pro-
gram we just did, if O was typed in for B the IF statement would be true
because 0=0. In this case, since the number after the THEN is 50, execu-
tion of the program would continue at line 50. Therefore, "ZERO" would
be printed and then the program would jump back to line 10 (because of
the GOTO statement in line 60).

Suppose a 1 was typed in for B. Since 1=0 is false, the IF state-
ment would be false and the program would continue execution with the
next line. Therefore, "NON-ZERO" would be printed and the GOTO in line
40 would send the program back to line 10.

Now try the following program for comparing two numbers:

10 INPUT A,B

20 IF A<=B THEN 50

30 PRINT "A IS BIGGER"

40 GOTO 10

50 IF A<B THEN 80

60 PRINT "THEY ARE THE SAME"
70 GOTO 10

80 PRINT "B IS BIGGER"

90 GOTO 10

When this program is run, line 10 will input two numbers from the
terminal. At line 20, if A is greater than B, A<=B will be false. This
will cause the next statement to be executed, printing "A IS BIGGER" and
then line 40 sends the computer back to line 10 to begin again.

At line 20, if A has the same value as B, A<=B is true so we go to
line 50. At line 50, since A has the same value as B, A<B is false;
therefore, we go to the following statement and print "THEY ARE THE SAME".
Then line 70 sends us back to the beginning again.

At line 20, if A is smaller than B, A<=B is true so we go to line 50.
At line 50, A<B will be true so we then go to line 80. "B IS BIGGER" is
then printed and again we go back to the beginning.

Try running the last two programs several times. It may make it
easier to understand if you try writing your own program at this time
using the IF-THEN statement. Actually trying programs of your own is
the quickest and easiest way to understand how BASIC works. Remember,
to stop these programs just give a carriage return to the input state-
ment.

[l

One advantage of computers is their ability to pertform repetitive
tasks. Let's take a closer look and see how this works.

Suppose we want a table of square roots from 1 to 10. The BASIC
function for square root is "SQR"; the form being SQR(X), X being the
number you wish the square root calculated from. We could write the pro-
gram as follows:

10 PRINT 1,SQR(1)
20 PRINT 2,SQR(2)
30 PRINT 3,SQR(3)
40 PRINT 4,SQR(4)
50 PRINT 5,SQR(5)
60 PRINT 6,SQR(6)
7¢ PRINT 7,SQR(7)
80 PRINT 8,SQR(8)
90 PRINT 9,SQR(9)
100 PRINT 10,SQR(10)

This program will do the job; however, it is terribly inefficient.
We can improve the program tremendously by using the IF statement just
introduced as follows:

10 N=1

20 PRINT N,SQR(N)
30 N=N+1

40 IF N<=10 THEN 20

When this program is run, its output will look exactly like that of
the 10 statement program above it. Let's look at how it works.

At line 10 we have a LET statement which sets the value of the vari-
able N at 1. At line 20 we print N and the square root of N using its
current value. It thus becomes 20 PRINT 1,SQR(1), and this calculation
is printed out.

At line 30 we use what will appear at first to be a rather unusual
LET statement. Mathematically, the statement N=N+1 is nonsense. However,
the important thing to remember is that in a LET statement, the symbol
" = " does not signify equality. In this case " = " means '"to be replaced
with". All the statement does is to take the current value of N and add
1 to it. Thus, after the first time through line 30, N becomes 2.

At line 40, since N now equals 2, N<=10 is true so the THEN portion
branches us back to line 20, with N now at a value of 2.

The overall result is that lines 20 through 40 are repeated, each
time adding 1 to the value of N. When N finally equals 10 at line 20,
the next line will increment it to 11. This results in a false state-
ment at line 40, and since there are no further statements to the pro-
gram it stops.

This technique is referred to as "looping" or "iteration". Since
it is used quite extensively in programming, there are special BASIC
statements for using it. We can show these with the following pro-
gram.

12

10 FOR N=1 TO 10
20 PRINT N,SQR(N)
30 NEXT N

The output of the program listed above will be exactly the same as
the previous two programs.

At line 10, N is set to equal 1. Line 20 causes the value of N and
the square root of N to be printed. At line 30 we see a new type of
statement. The '"NEXT N" statement causes one to be added to N, and then
if N<=10 we go back to the statement following the "FOR" statement. The
overall operation then is the same as with the previous program.

Notice that the variable following the "FOR" is exactly the same as
the variable after the "NEXT". There is nothing special about the N in
this case. Any variable could be used, as long as they are the same in
both the "FOR" and the "NEXT" statements. For instance, "Z1" could be
substituted everywhere there is an "N'" in the above program and it would
function exactly the same.

Suppose we wanted to print a table of square roots from 10 to 20,
only counting by two's. The following program would perform this task:

10 N=10
20 PRINT N,SQR(N)
30 N=N+2

40 IF N<=20 THEN 20

Note the similar structure between this program and the one listed
on page 12 for printing square roots for the numbers 1 to 10. This pro-
gram can also be written using the "FOR" loop just introduced.

10 FOR N=10 TO 20 STEP 2
20 PRINT N,SQR(N)
30 NEXT N

Notice that the only major difference between this program and the
previous one using "FOR" loops is the addition of the "STEP 2'" clause.
This tells BASIC to add 2 to N each time, instead of 1 as in the
previous program. If no "STEP" is given in a '"FOR" statement, BASIC as-
sumes that one is to be added each time. The "STEP" can be followed by
any expression. '

Suppose we wanted to count backwards from 10 to 1. A program for
doing this would be as follows:

10 I=10

20 PRINT I

30 I=I-1

40 IF I>=1 THEN 20

Notice that we are now checking to see that I is greater than or
equal to the final value. The reason is that we are now counting by a
negative number. In the previous examples it was the opposite, so we
were checking for a variable less than or equal to the final value.

13

The "STEP" statement previously shown can also be used with negative
numbers to accomplish this same purpose. This can be done using the same
format as in the other program, as follows:

10 FOR I=10 TO 1 STEP -1
20 PRINT I
30 NEXT I

"FOR" loops can also be '"nested'". An example of this procedure fol-
lows:

50 NEXT I

Notice that the "NEXT J" comes before the "NEXT I'. This is because
the J-loop is inside of the I-loop. The following program is incorrect;
run it and see what happens.

It does not work because when the "NEXT I'" is encountered, all know-
ledge of the J-loop is lost. This happens because the J-loop is "inside"
of the I-loop.

It is often convenient to be able to select any element in a table
of numbers. BASIC allows this to be done through the use of matrices.

A matrix is a table of numbers. The name of this table, called the
matrix name, is any legal variable name, "A" for example. The matrix
name "A" is distinct and separate from the simple variable "A', and you
could use both in the same program.

To select an element of the table, we subscript "A" : that is to
select the I'th element, we enclose I in parenthesis "(I)" and then fol-
low "A" by this subscript. Therefore, "A(I)" is the I'th element in the
matrix "A".

NOTE: In this section of the manual we will be concerned with

one-dimensional matrices only. (See Reference Material)

"A(I)" is only one element of matrix A, and BASIC must be told how
much space to allocate for the entire matrix.

This is done with a "DIM" statement, using the format "DIM A(15)".
In this case, we have reserved space for the matrix index "I" to go from
0 to 15. Matrix subscripts always start at 0; therefore, in the above
example, we have allowed for 16 numbers in matrix A.

14

b

It "A(1)" is used in a program before it has been dimensioned, BASIC
reserves space for 11 elements (0 through 10).

As an example of how matrices are used, try the following program
to sort a list of 8 numbers with you picking the numbers to be sorted.

10 DIM A(8)
20 FOR I=1 TO 8

30 INPUT A(I)

50 NEXT I

70 F=0

80 FOR I=1 TO 7

90 IF A(I)<=A(I+1) THEN 140
100 T=A(I)

110 A(I)= A(I+1)

120 A(I+1)=T

130 F=1

140 NEXT I

150 IF F=1 THEN 70

160 FOR I=1 TO 8§

170 PRINT A(I),

180 NEXT I

When line 10 is executed, BASIC sets aside space for 9 numeric values,
A(0) through A(8). Lines 20 through 50 get the unsorted list from the
user. The sorting itself is done by going through the list of numbers and
upon finding any two that are not in order, we §witch them. "F" is used
to indicate if any switches were done. If any were done, line 150 tells
BASIC to go back and check some more.

If we did not switch any numbers, or after they are all in order,
lines 160 through 180 will print out the sorted list. Note that a sub-
script can be any expression.

Another useful pair of statements are "GOSUB'" and “'RETURN". If you
have a program that performs the same action in several different places,
you could duplicate the same statements for the action in each place with-
in the program.

The "GOSUB'"-'"RETURN'' statements can be used to avoid this duplication.
When a "GOSUB" is encountered, BASIC branches to the line whose number fol-
lows the '"GOSUB'". However, BASIC remembers where it was in the program
before it branched. When the "RETURN" statement is encountered, BASIC
goes back to the first statement following the last "GOSUB" that was exe-
cuted. Observe the following program.

10 PRINT '"WHAT IS THE NUMBER";

30 GOSUB 100

40 T=N

50 PRINT '"WHAT IS THE SECOND NUMBER";

70 GOSUB 100

80 PRINT "THE SUM OF THE TWO NUMBERS IS",T+N
90 STOP

100 INPUT N

15

110 IF N = INT(N) THEN 140

120 PRINT "SORRY, NUMBER MUST BE AN INTEGER. TRY AGAIN."
130 GOTO 100

140 RETURN

What this program does is to ask for two numbers which must be inte-
gers, and then prints the sum of the two. The subroutine in this pro-
gram is lines 100 to 130. The subroutine asks for a number, and if it
is not an integer, asks for a number again. It will continue to ask until
an integer value is typed in.

The main program prints ' WHAT IS THE NUMBER "', and then calls the
subroutine to get the value of the number into N. When the subroutine
returns (to line 40), the value input is saved in the variable T. This
is done so that when the subroutine is called a second time, the value
of the first number will not be lost.

" WHAT IS THE SECOND NUMBER ' is then printed, and the second value
is entered when the subroutine is again called.

When the subroutine returns the second time, ' THE SUM OF THE TWO
NUMBERS IS " is printed, followed by the value of their sum. T contains
the value of the first number that was entered and N contains the value
of the second number.

The next statement in the program is a "STOP'" statement. This causes
the program to stop execution at line 90. If the "STOP" statement was not
included in the program, we would ''fall into" the subroutine at line 100.
This is undesirable because we would be asked to input another number. If
we did, the subroutine would try to return; and since there was no "GOSUB"
which called the subroutine, an RG error would occur. Each "GOSUB' exe-
cuted in a program should have a matching "RETURN" executed later, and the
opposite applies, i.e. a "RETURN' should be encountered only if it is
part of a subroutine which has been called by a "GOSUB".

Either "'STOP" or "END'" can be used to separate a program from its
subroutines. In the 4K version of BASIC, there is no difference between
the "STOP" and the "END". In the 8K version, 'STOP'" will print a mes-
sage saying at what line the "'STOP" was encountered.

Suppose you had to enter numbers to your program that didn't change
each time the program was run, but you would like it to be easy to change
" them if necessary. BASIC contains special statements for this purpose,
called the "READ" and 'DATA" statements.

Consider the following program:

10 PRINT '"GUESS A NUMBER";

20 INPUT G

30 READ D

40 IF D=-999999 THEN 90

50 IF D<>G THEN 30

60 PRINT '"YOU ARE CORRECT"

70 END

90 PRINT “'BAD GUESS, TRY AGAIN."
95 RESTORE

16

100 GOTO 10
110 DATA 1,393,-39,28,391,-8,0,3.14,90
120 DATA 89,5,10,15,-34,-999999

This is what happens when this program is run. When the "READ"
statement is encountered, the effect is the same as an INPUT statement.
But, instead of getting a number from the terminal, a number is read
from the "DATAY statements.

The first time a number is needed for a READ, the first number in
the first DATA statement is returned. The 'second time one is needed,
the second number in the first DATA statement is returned. When the en-
tire contents of the first DATA statement have been read in this manner,
the second DATA statement will then be used. DATA is always read se-
quentially in this manner, and there may be any number of DATA statements
in your program.

The purpose of this program is to play a little game in which you
try to guess one of the numbers contained in the DATA statements. For
each guess that is typed in, we read through all of the numbers in the
DATA statements until we find one that matches the guess.

If more values are read than there are numbers in the DATA state-
ments, an out of data (OD) error occurs. That is why in line 40 we check
to see if -999999 was read. This is not one of the numbers to be matched,
but is used as a flag to indicate that all of the data (possible correct
guesses) has been read. Therefore, if -999999 was read, we know that the
guess given was incorrect.

Before going back to line 10 for another guess, we need to make the
READ's begin with the first piece of data again. This is the function of
the '"RESTORE". After the RESTORE is encountered, the next piece of data
read will be the first piece in the first DATA statement again.

DATA statements may be placed anywhere within the program. Only
READ statements make use of the DATA statements in a program, and any
other time they are encountered during program execution they will be
ignored.

THE FOLLOWING INFORMATION APPLIES TO THE 8K VERSION
OF BASIC ONLY

A list of characters is referred to as a "String'". MITS, ALTAIR,
~and THIS IS A TEST are all strings. Like numeric variables, string
variables can be assigned specific values. String variables are distin-
guished from numeric variables by a "$" after the variable name.
For example, try the following:
A$=""ALTAIR 8800"
0K
PRINT A$
ALTAIR 8800

oK

In this example, we set the string variable A$ to the string value
"“"ALTAIR 8800". Note that we also enclosed the character string to be as-
signed to A$ in quotes.

Now that we have set A§ to a string value, we can find out what the
length of this value is (the number of characters it contains). We do
this as follows: :

PRINT LEN(A$),LEN("MITS")
1l Y

0K

The "LEN" function returns an integer equal to the number of chara-
cters in a string.

The number of characters in a string expression may range from 0 to
255. A string which contains 0 characters is called the "NULL" string.
Before a string variable is set to a value in the program, it is initial-
ized to the null string. Printing a null string on the terminal will
cause no characters to be printed, and the print head or cursor will not
be advanced to the next column. Try the following:

PRINT LEN(Q$);Q$;3
o 3

oK

Another way to create the null string is: Q$=""
Setting a string variable to the null string can be used to free up
the string space used by a non-null string variable.

Often it is desirable to access parts of a string and manipulate
them. Now that we have set A§ to "ALTAIR 8800", we might want to print
out only the first six characters of A§. We would do so like this:

PRINT LEFT$(A$,6)
ALTAIR

oK

“WLEFTS$" is a string function which returns a string composed of the
leftmost N characters of its string argument. Here's another example:

FOR N=1 TO LEN(AS$):PRINT LEFT$(A$,N):NEXT N
A

AL

ALT

ALTA

ALTAL

ALTAIR

ALTAIR

ALTAIR &

ALTAIR &8

ALTAIR 880
ALTAIR 8800

0K

Since A$ has 11 characters, this loop will be executed with N=1,2,
3,...,10,11. The first time through only the first chatacter will be
printed, the second time the first two characters will be printed, etc.

There is another string function called "RIGHT$" which returns the
right N characters from a string expression. Try substituting "RIGHT$"
for "LEFT$" in the previous example and see what happens.

There is also a string function which allows us to take characters
from the middle of a string. Try the following:

FOR N=1 TO LEN(A$):PRINT MID$(A$,N):NEXT N
ALTAIR 8800
LTAIR 8800
TAIR 8800
AIR 8800

IR &800

R 8800

8800

4800

aoa

oo

]

OK

YMID$" returns a string starting at the Nth position of A§ to the
end (last character) of A$. The first position of the string is posi-
tion 1 and the last possible position of a string is position 255.

Very often it is desirable to extract only the Nth character from
a string. This can be done by calling MID$ with three arguments. The
third argument specifies the number of characters to return.

For example:

FOR N=1 TO LEN(A$):PRINT MID$ (A$,N,1),MID$(A$,N,2) :NEXT N
AL
LT
TA
AI
IR
R
[:]
a8
&0
oo
0

ocooc o> AH> - >

<
~

18

See the Reference Material for more details on the workings of
“LEFT$", “RIGHT$'" and "MID§".

Strings may also be concatenated (put or joined together) through
the use of the '"+'" operator. Try the following:

B$="MITS“+" "+A$
oK

PRINT B$

MITS ALTAIR 8800
0K

Concatenation is especially useful if you wish to take a string apart
and then put it back together with slight modifications. For instance:

C$=LEFT$ (B$,4)+"-"+MID$ (B$,6,6) +"-"+RIGHTS (B$,4)
0K

PRINT C$

MITS-ALTAIR-8800

oK

Sometimes it is desirable to convert a number to its string repre-
sentation and vice-versa. "WVAL" and "“STR$" perform these functions.
Try the following:

STRING$="1567.8"

oK
PRINT VAL (STRING$)

5k7.8
oK
STRING$=STR$ (3.1415)

oK
PRINT STRING$,LEFT$ (STRINGS$,S5)
3.1415 3.14

oK

"STR$" can be used to perform formatted I/O on numbers. You can
convert a number to a string and then use LEFT$, RIGHT$, MID$ and con-
catenation to reformat the number as desired.

“STR$" can also be used to conveniently find out how many print
columns a number will take. For example:

PRINT LEN(STR$(3.157))
b
20

oK

If you have an application where a user is typing in a question such
as "WHAT IS THE VOLUME OF A CYLINDER OF RADIUS 5.36 FEET, OF HEIGHT 5.1
FEET?" you can use "VAL" to extract the numeric values 5.36 and 5.1 from

the question.

For further functions "CHR$" and "'ASC" see Appendix K.

The following program sorts a list of string data and prints out
the sorted list. This program is very similar to the one given earlier

for sorting a

100
110
120
130

140
150
160
170
180
185
187
190
200
210
220
230
240

numeric list.

DIM A$(15):REM ALLOCATE SPACE FOR STRING MATRIX

FOR I=1 TO 15:READ A$(I):NEXT I:REM READ IN STRINGS
F=0:I=1:REM SET EXCHANGE FLAG TO ZERO AND SUBSCRIPT TO 1
IF A$(I)<=A$(I+1) THEN 180:REM DON'T EXCHANGE IF ELEMENTS
IN ORDER

T$=A$ (I+1) :REM USE T$ TO SAVE A$(I+1)

A$(I+1)=A$ (I):REM EXCHANGE TWO CONSECUTIVE ELEMENTS
A$(1)=T§

F=1:REM FLAG THAT WE EXCHANGED TWO ELEMENTS

I=I+1: IF I<15 GOTO 130

REM ONCE WE HAVE MADE A PASS THRU ALL ELEMENTS, CHECK
REM TO SEE IF WE EXCHANGED ANY. IF NOT, DONE SORTING.
IF F THEN 120:REM EQUIVALENT TO IF F<>0 THEN 120

FOR I=1 TO 15:PRINT A$(I):NEXT I: REM PRINT SORTED LIST
REM STRING DATA FOLLOWS

DATA APPLE,DOG,CAT,MITS,ALTAIR,RANDOM

DATA MONDAY,"'***ANSWER**#1" ' FQO"

DATA COMPUTER, FO0O,ELP,MILWAUKEE,SEATTLE,ALBUQUERQUE

2

2

B4slC LANGUABE

B
ﬂ

MIATERIAL

| mEFERENCE

|
/
|
|

L=7u___m-—m‘

COMMANDS

A command is usually given after BASIC has typed OK. This is called
the "Command Level"™. Commands may be used as program statements. Certain
commands, such as LIST, NEW and CLOAD will terminate program execution
when they finish.

NAME EXAMPLE PURPOSE/USE

CLEAR *(SEE PAGE 42 FOR EXAMPLES AND EXPLANATION)

LIST LIST Lists current program
LIST 100 optionally starting at specified line.
List can be control-C'd (BASIC will
finish listing the current line)

NULL NULL 3 (Null command only in 8K version, but
paragraph applicable to 4K version also)
Sets the number of null (ASCII 0) charac-
ters printed after a carriage return/line
feed. The number of nulls printed may
be set from 0 to 71. This is a must for
hardcopy terminals that require a delay
after a CRLF¥ It is necessary to set the
number of nulls typed on CRLF to 0 before
a paper tape of a program is read in from
a Teletype (TELETYPE is a registered
trademark of the TELETYPE CORPORATION) .
In the 8K version, use the null command
to set the number of nulls to zero. In
the 4K version, this is accomplished by
patching location 46 octal to contain the
number of nulls to be typed plus 1.
(Depositing a 1 in location 46 would set
the number of nulls typed to zero.) When
you punch a paper tape of a program using
the list command, null should be set >=3
for 10 CPS terminals, >=6 for 30 CPS ter-
minals. When not making a tape, we recom-
mend that you use a null setting of 0 or 1
for Teletypes, and 2 or 3 for hard copy
30 CPS terminals. A setting of 0 will
work with ‘Teletype compatible CRT's.

RUN RUN Starts execution of the program currently
in memory at the lowest numbered state-
ment. Run deletes all variables (does a
CLEAR) and restores DATA. If you have
stopped your program and wish to continue
execution at some point in the program,
use a direct GOTO statement to start
execution of your program at the desired
line.

2%

*CRLF=carriage return/line feed

RUN 200 (8K version only) optionally starting
at the specified line number

NEW NEW Deletes current program and all variables
THE FOLLOWING COMMANDS ARE IN THE 8K VERSION ONLY

CONT CONT Continues program execution after a
control/C is typed or a STOP statement
is executed. You cannot continue after
any error, after modifying your program,
or before your program has been run.
One of the main purposes of CONT is de-
bugging. Suppose at some point after
running your program, nothing is printed.
This may be because your program is per-
forming some time consuming calculation,
but it may be because you have fallen
into an "infinite loop". An infinite loop
is a series of BASIC statements from
which there is no escape. The ALTAIR will
keep executing the series of statements
over and over, until you intervene or
until power to the ALTAIR is cut off.
If you suspect your program is in an
infinite loop, type in a control/C. 1In
the 8K version, the line number of the
statement BASIC was executing will be
typed out. After BASIC has typed out 0K,
you can use PRINT to type out some of the
values of your variables. After examining
these values you may become satisfied that
your program is functioning correctly.
You should then type in CONT to continue
executing your program where it left off,
or type a direct GOTO statement to resume
execution of the program at a different
line. You could also use assignment (LET)
statements to set some of your variables
to different values. Remember, if you
control/C a program and expect to continue
it later, you must not get any errors or
type in any new program lines. If you
do, you won't be able to continue and will
get a "CN" (continue not) error. It is
impossible to continue a direct command.
CONT always resumes execution at the next
statement to be executed in your program
when control/C was typed.

25

THE FOLLOWING TWO COMMANDS ARE AVAILABLE IN [THE 8K CASSETTH

VERSION ONLY

Loads the program named P from the
cassette tape. A NEW command is auto-
matically done before the CLOAD com-
mand is executed. When done, the CLOAD
will type out 0K as usual. The one-
character program designator may be any
printing character. CSAVE and CLOAD
use I/0 ports 6 & 7.

See Appendix I for more information.

Saves on cassette tape the current pro-
gram in the ALTAIR's memory. The pro-
gram in memory is left unchanged. More
than one program may be stored on cassette
using this command. CSAVE and CLOAD use

See Appendix I for more information

Assigns a value to a variable
The LET is optional

Negation. Note that 0-A is subtraction,
while -A is negation.

CLOAD CLOAD P
CSAVE CSAVE P
I/0 ports 6 & 7.

OPERATORS
SYMBOL SAMPLE STATEMENT PURPQSE/USE
= A=100

LET Z=2.5

- B=-A
4 130 PRINT X+3

(usually a shift/N)

140 X=R*(B*D)
150 PRINT X/1.3
160 Z=R+T+Q
170 J=100-1

Exponentiation (8K version)

(equal to X*X*X in the sample statement)
0+0=1 O to any other power = 0

A+B, with A negative and B not an integer
gives an FC error.

Multiplication

Division

Addition

Subtraction

RULES FOR EVALUATING EXPRESSIONS:

1) Operations of higher precedence are performed before opera-
tions of lower precedence. This means the multiplication and
divisions are performed before additions and subtractions. As
an example, 2+10/5 equals 4, not 2.4. When operations of equal
precedence are found in a formula, the left hand one is executed
first: 6-3+5=8, not -2.

2

J

once in an IF statement.

2)

specified explicitly through the use of parentheses.

The order in which operations are performed can always be

For in-

stance, to add 5 to 3 and then divide that by 4, we would use
If instead we had used 5+3/4, we
would get 5.75 as a result (5 plus 3/4).

(5+3)/4, which equals 2.

The precedence of operators used in evaluating expressions is as
follows, in order beginning with the highest precedence:
Operators listed on the same line have the same precedence.)

(Note:

1)
2) +
3) NEGATION
4y * 7/
5) + -
RELATIONAL OPERATORS:

(equal precedence for
all stix)

(8K VERSION ONLY)

NOT

<>

<
>

v A

FORMULAS ENCLOSED IN PARENTHESIS ARE ALWAYS EVALUATED FIRST
EXPONENTIATION (8K VERSION ONLY)
-X WHERE X MAY BE A FORMULA
MULTIPLICATION AND DIVISION

ADDITION AND SUBTRACTION

EQUAL

NOT EQUAL

LESS THAN

GREATER THAN

LESS THAN OR EQUAL
GREATER THAN OR EQUAL

(These 3 below are Logical Operators)

LOGICAL AND BITWISE "NOT"

LIKE NEGATION, NOT TAKES ONLY THE
FORMULA TO ITS RIGHT AS AN ARGUMENT

AND

9) 0R

LOGICAL AND BITWISE "AND"

LOGICAL AND BITWISE "OR"

In the 4K version of BASIC, relational operators can only be used

However, in the 8K version a relational ex-

pression can be used as part of any expression.

or a value of False (0).

etc.

after the IF is not equal to 0.

Relational Operator expressions will always have a value of True (-1)
Therefore, (5¢4)=0, (5=5)=-1, (4>5)=0, (4<5)=-1,

The THEN clause of an IF statement is executed whenever the formula
That is to say, IF X THEN... is equivalent

to-IF X<>0 THEN... .

21

SYMBOL SAMPLL STATEMENT PURPOSLE/USI:

= 10 IF A=15 THEN 40 Expression Equals Lxpression

<> 70 IF A<>0 THEN 5 Expression Does Not Equal Expression
> 30 IF B>100 THEN & Expression Greater Than Expression
< 1k0 IF B<2 THEN 10 Expression Less Than Expression

<=,=< 180 IF 100<=B+C THEN 10 Expression Less Than Or Equal
To Expression

>=,=> 190 IF @=>R THEN 50 Expression Greater Than Or Equal
To Expression

AND 2 IF A<5 AND B<2 THEN ? (8K Version only) If expression 1
(A<5) AND expression 2 (B<2) are both
true, then branch to line 7

OR IF A<l OR B<2 THEN 2 (8K Version only) If either expres-
sion 1 (A<l) OR expression 2 (B<2) is
true, then branch to line 2

NOT IF NOT @3 THEN 4 . (8K Version only) If expression
"NOT Q3" is true (because Q3 is
false), then branch to line 4
Notei: NOT -1=0 (NOT true=false)

AND, OR and NOT can be used for bit manipulation, and for performing
boolean operations.

These three operators convert their arguments to sixteen bit, signed
two's, complement integers in the range -32768 to +32767. They then per-
form the specified logical operation on them and return a result within
the same range. If the arguments are not in this range, an "FC" error
results.

The operations are performed in bitwise fashion, this means that each
bit of the result is obtained by examining the bit in the same position
for each argument.

The following truth table shows the logical relationship between bits:

OPERATOR ARG. 1 ARG. 2 RESULT
AND 1 1 1
a 1 0
1 0 1]
0 0 0
(eont.)

28

OPERATOR ARG. 1 ARG. 2 RESULT

OR

NOT

Or OOy e
(=1 N =N
O

[l =]

EXAMPLES: (In all of the examples below, leading zerces on binary
numbers are not shown.)

E3 AND 1b=1lb Since 63 equals binary 111111 and 16 equals binary
10000, the result of the AND is binary 10000 or 16.

15 AND 14=1Y4 15 equals binary 1111 and 14 equals binary 1110, so
15 AND 14 equals binary 1110 or 14.

-1 AND &=8 -1 equals binary 1111111111111111 and 8 equals binary
1000, so the result is binary 1000 or 8 decimal.

4 AND 2=0 4 equals binary 100 and 2 equals binary 10, so the
result is binary O because none of the bits in either
argument match to give a 1 bit in the result.

4 OR 2=k Binary 100 OR'd with binary 10 equals binary 110, or
6 decimal.

10 OR 1.0=10 Binary 1010 OR'd with binary 1010 equals binary 1010,
or 10 decimal. -

-1 OR -2=-1 Binary 1111111111111111 (-1) OR'd with binary
1111111111111110 (-2) equals binary 1111111111111111,
or -1.

NOT O=-1 The bit complement of binary 0 to 16 places is sixteen
ones (1111111111111111) or -1. Also NOT -1=0.

NOT X NOT X is equal to -(X+1). This is because to form the
sixteen bit two's complement of the number, you take the
bit (one's) complement and add one.

NOT 1=-2 The sixteen bit complement of 1 is 1111111111111110,
which is equal to -(1+1) or -2.

A typical use of the bitwise operators is to test bits set in the
ALTAIR's inport ports which reflect the state of some external device.

Bit position 7 is the most significant bit of a byte, while position
0 is the least significant.

29

For instance, suppose bit 1 of 1/0 port 5 is O when the door to Room
X is closed, and 1 if the door is open. The following program will print
"Intruder Alert" if the door is opened:

10 IF NOT (INP(5) AND 2) THEN 10 This line will execute over
and over until bit 1 (mask-
ed or selected by the 2) be-
comes a 1. When that happens,
we go to line 20 .

20 PRINT “INTRUDER ALERT" Line 20 will output "INTRUDER
ALERT".

However, we can replace statement 10 with a "WAIT" statement, which
has exactly the same effect.

10 WAIT 5,2 This line delays the execution of the next
statement in the program until bit 1 of
I/0 port 5 becomes 1. The WAIT is much
faster than the equivalent IF statement
and also takes less bytes of program
storage.

The ALTAIR's sense switches may also be used as an input device by

the INP function. The program below prints out any changes in the sense
switches.

10 A=300:REM SET A TO A VALUE THAT WILL FORCE PRINTING
20 J=INP(255):IF J=A THEN 20
30 PRINT J;:A=J:GOTO 20

The following is another useful way of using relational operators:

125 A=-(B>C)*B-(B<=C)*C This statement will set the variable

A to MAX(B,C) = the larger of the two
variables B and C.

STATEMENTS

Note: In the following description of statements, an argument of V
or W denotes a numeric variable, X denotes a numeric expression, X$ de-
notes a string expression and an I or J denotes an expression that is
truncated to an integer before the statement is executed. Truncation
means that any fractional part of the number is lost, e.g. 3.9 becomes
3, 4.0l becomes 4.

An expression is a series of variables, operators, function calls

and constants which after the operations and funetion calls are performed
using the precedence rules, evaluates to a numeric or string value.

A constant is either a number (3.14) or a string literal ("FOO").

30

NAME

DATA

DEF

DIM

EXAMILI:

10 DATA 1.3.-1E3..04

20 DATA '' F00",Z00

100 DEF FNA(V)=V/B+C

110 Z=FNA(3)

113 DIM A(3),B(10)

PURPOSEE/USIE

Specifies data, read from lelft to right.
Information appears in data statements
in the same order as it will be read in
the program. IN THE 4K VERSION OF BASIC,
DATA STATEMENTS MUST BE THE FIRST STATE-
MENTS ON A LINE. Expressions may also
appear in the 4K version data statements.

(8K Version) Strings may be read from
DATA statements. If you want the string
to contain leading spaces (blanks), colons
(:) or commas (,), you must enclose the
string in double quotes. It is impossible
to have a double quote within string data
or a string literal. (""MITS"" is illegal)

(8K Version) The user can define functions
like the built-in functions (SQR, SGN, ABS,
etc.) through the use of the DEF statement.
The name of the function is "FN" followed
by any legal variable name, for example:
FNX, FNJ7, FNKO, FNR2. User defined
functions are restricted to one line. A
function may be.defined to be any expres-
sion, but may only have one argument. In
the example B § C are variables that are
used in the program. Executing the DEF
statement defines the function. User de-
fined functions can be redefined by exe-
cuting another DEF statement for the same
function. User defined string functions
are not allowed. "V" is called the dummy
variable.

Execution of this statement following the
above would cause Z to be set to 3/B+C,
but the value of V would be unchanged.

Allocates space for matrices. All matrix
elements are set to zero by the DIM state-
ment.

114 DIM R3(5,5),D%(2,2,28) (8K Version) Matrices can have more

115 DIM QL(N),Z(2*I)

than one dimension. Up to 255 dimen-
sions are allowed, but due to the re-
striction of 72 characters per line
the practical maximum is about 34
dimensions.
Matrices can be dimensioned dynamically
during program execution. If a matrix
is not explicitly dimensioned with a DIM
statement, it is assumed to be a single
dimensioned matrix of whose single subscript

3

END

FOR

117 A(8)=4

999 END

may range from 0 to 10 (eleven elements).
If this statement was encountered before
a DIM statement for A was found in the
program, it would be as if a DIM A(10)
had been executed previous to the execu-
tion of line 117. All subscripts start
at zero (0), which means that DIM X(100)
really allocates 101 matrix elements.

Terminates program execution without
printing a BREAK message. (see STOP)
CONT after an END statement causes exe-
cution to resume at the statement after
the END statement. END can be used any-
where in the program, and is optional.

300 FOR V=1 TO 9.3 STEP .k (see NEXT statement) V is set

310 FOR v=1 T¢ 7.3

equal to the value of the expres-
sion following the equal sign, in
this case 1. This value is called
the initial value. Then the state-
ments between FOR and NEXT are
executed. The final value is the
value of the expression following
the TO. The step is the value of
the expression following STEP.

When the NEXT statement is encoun-
tered, the step is added to the
variable.

If no STEP was specified, it is
assumed to be one. If the step is
positive and the new value of the
variable is <= the final value (9.3
in this example), or the step value
is negative and the new value of
the variable is => the final value,
then the first statement following
the FOR statement is executed.
Otherwise, the statement following
the NEXT statement is executed.

All FOR loops execute the statements
between the FOR and the NEXT at
least once, even in cases like

FOR V=1 TO O.

315 FOR V=10*N TO 3.4/Q STEP SAR(R) Note that expressions

(formulas) may be used for the in-
itial, final and step values in a
FOR loop. The values of the ex-
pressions are computed only once,
before the body of the FOR....NEXT
loop is executed.

32

GOTO
GOSUB

IF...GOTO

IF...THEN

320 FOR V=1 TO 1 STEP -1 When the statement after the NEXT
is executed, the loop variable is
never equal to the final value,
but is equal to whatever value
‘caused the FOR...NEXT loop to ter-
minate. The statements between
the FOR and its corresponding NEXT
in both examples above (310 § 320)
would be executed 9 times.

330 FOR W=1 TO 10: FOR W=1 TO :NEXT W:NEXT U Error: do not
use nested FOR...NEXT loops with
the same index variable.

FOR loop nesting is limited only
by the available memory.
(see Appendix D)

50 60TO 100 Branches to the statement specified.

10 GOSUB 910 Branches to the specified statement (910)
until a RETURN is encountered; when a
branch is then made to the statement
after the GOSUB. GOSUB nesting is limited
only by the available memory.

(see Appendix D)

32 IF X<=Y+23.4 GOTO 92 (8K Version) Equivalent to IF...THEN,
except that IF...GOTO must be followed
by a line number, while IF...THEN can
be followed by either a line number
or another statement.

IF X<10 THEN 5 Branches to specified statement if the

relation is True.
20 IF X<O THEN PRINT "'X LESS THAN O" Executes all of the

statements on the remainder of the line
after the THEN if the relation is True.
25 IF X=5 THEN 50:Z=A WARNING. The "Z=A" will never be
executed because if the relation is
true, BASIC will branch to line 50.
If the relation is false Basic will
proceed to the line after line 25.
2k IF X<0 THEN PRINT “ERROR, X NEGATIVE': GOTO 350
In this example, if X is less than 0,
the PRINT statement will be executed
and then the GOTO statement will
branch to line 350. If the X was 0 or
positive, BASIC will proceed to
execute the lines after line 26.

3

INPUT

LET

NEXT

ON...GOTO

3 INPUT V,U,U2

S5 INPUT "VALUE";V

300 LET W=X
310 v=5.1

340 NEXT V
345 NEXT

350 NEXT V,Uu

Requests data from the terminal (to be
typed in). Lach value must be separated
from the preceeding value by a comma (,).
The last value typed should be followed
by a carriage return. A "?" is typed as
a prompt character. In the 4K version, a
value typed in as a response to an INPUT
statement may be a formula, such as
2*SIN(.16)-3. However, in the 8K version,
only constants may be typed in as a re-
sponse to an INPUT statement, such as
4.5E-3 or "CAT". If more data was re-
quested in an INPUT statement than was
typed in, a "??" is printed and the rest
of the data should be typed in. If more
data was typed in than was requested,

the extra data will be ignored. The 8K
version will print the warning "EXTRA
IGNORED'" when this happens. ‘The 4K ver-
sion will not print a warning message.
(8K Version) Strings must be input in the
same format as they are specified in DATA
statements.

(8K Version) Optionally types a prompt
string ("WALUE") before requesting data
from the terminal. If carriage return

is typed to an input statement, BASIC
returns to command mode. Typing CONT
after an INPUT command has been inter-
rupted will cause execution to resume at
the INPUT statement.

Assigns a value to a variable.
"LET" is optional.

Marks the end of a FOR loop.

(8K Version) 1f no variable is given,
matches the most recent FOR loop.

(8K Version) A single NEXT may be used
to match multiple FOR statements.
Equivalent to NEXT V:NEXT W.

100 ON I GOTO 10,20,30,40 (8K Version) Branches to the line

indicated by the I'th number after
the GOTO. That is:

IF I=1, THEN GOTO LINE 10

IF I=2, THEN GOTO LINE 20

IF I=3, THEN GOTO LINE 30

IF I=4, THEN GOTO LINE 40.

U

ON. . .GOSUB

ouT

POKE

PRINT

110 ON I 6OSUB 50,0

355 OUT I,J

357 POKE I,dJ

360 PRINT X,Y;Z
370 PRINT
380 PRINT X,Y;

If I=0 or I attempts to select a non-
existent line (>=5 in this case), the
statement after the ON statement is
executed. However, if I is >255 or
<0, [an FC error message will result.
As many line numbers as will fit on
a line can follow an ON...GOTO.

105 ON SGN(X)+2 GOTO 40,50,k0

This statement will branch to line 40
if the expression X is less than zero,
to line 50 if it equals zero, and to
lire 60 if it is greater than zero.

(8K Version) Identical to "ON...GOTO",
except that a subroutine call (GOSUB) is
executed instead of a GOTO. RETURN from
the GOSUB branches to the statement after
the ON...GOSUB.

(8K Version) Sends the byte J to the
output port I. Both I § J must be >=0
and <=255.

(8K Version) The POKE statement stores
the byte specified by its second argu-
ment (J) into the location given by its
first argument (I). The byte to be stored
must be =>0 and <=255, or an FC error will
occur., The address (I) must be =>0 and
<=32767, or an FC error will result.
Careless use of the POKE statement will
probably cause you to 'poke' BASIC to
death; that is, the machine will hang, and
you will have to reload BASIC and will
lose any program you had typed in. A

POKE to a non-existent memory location is
harmless. One of the main uses of POKE

is to pass arguments to machine language
subroutines. (see Appendix J) You could
also use PEEK and POKE to write a memory
diagnostic or an assembler in BASIC.

Prints the value of expressions on the
terminal. If the list of values to be
printed out does not end with a comma (,)

390 PRINT "VALUE IS";A or a semicolon (;), then a Carriage

400 PRINT A2,8,

return/line feed is executed after all the
values have been printed. Strings enclosed
in quotes (") may also be printed. If a
semicolon separates two expressions. in the
list, their values are printed next to

each other.. If a comma appears after an

3

READ

REM

RESTORE

410 PRINT MID%(A%,2);

490 READ V.U

500 REM NOW SET V=0

505 REM SET v=0: V=0
50k V=0: REM SET V=0

510 RESTORE

expression in the list, and the print head
is at print position 56 or more, then a
carriage return/line feed is executed.

If the print head is before print position
56, then spaces are printed until the car-
riage is at the beginning of the next 14
column field (until the carriage is at
column 14, 28, 42 or 56...). If there is no
list of expressions to be printed, as in
line 370 of the examples, then a carriage
return/line feed is executed.

(8K Version) String expressions may be
printed.

Reads data into specified variables from

a DATA statement. The first_piece of data
read will be the first piece of data list-
ed in the first DATA statement of the pro-
gram. The second piece of data read will
be the second piece listed in the first
DATA statement, and so on. When all of
the data have been read from the first
DATA statement, the next piece of data to
be read will be the first piece listed in
the second DATA statement of the program.
Attempting to read more data than there

is in all the DATA statements in a pro-
gram will cause an OD (out of data) error.
In the 4K version, an SN error from a READ
statement can mean the data it was at-
tempting to read from a DATA statement was
improperly formatted. In the 8K version,
the line number given in the SN error will

. refer to the line number where the error

actually is located.

Allows the programmer to put comments in
his program. REM statements are not exe-
cuted, but can be branched to. A REM
statement is terminated by end of line,
but not by a ":".

In this case the V=0 will never be exe-
cuted by BASIC.

In this case V=0 will be executed

Allows the re-reading of DATA statements.
After a RESTORE, the next piece of data
read will be the first piece listed in
the first DATA statement of the program.
The second piece of data read will be

the second piece listed in the first DATA
statement, and so on as in a normal

READ operation.

36

RETURN 50 RETURN

STOP 9000 STOP

WAIT 805 WAIT I,J,K
&0k WAIT I,J

4K INTRINSIC FUNCTIONS

ABS (X) 120 PRINT ABS(X)

INT(X) 140 PRINT INT(X)

RND (X) 170 PRINT RND(X)

Causes a subroutine to return to the
statement after the most recently exe-
cuted GOSUB.

Causes a program to stop execution and to
enter command mode.

(8K Version) Prints BREAK IN LINE 9000.
(as per this example) CONT after a STOP
branches to the statement following the
STOP.

(8K Version) This statement reads the
status of input port I, exclusive OR's

K with the status, and then AND's the re-
sult with J until a non-zero result is
obtained. Execution of the program con-
tinues at the statement following the
WAIT statement. If the WAIT statement
only has two arguments, K is assumed to
be zero. If you are waiting for a bit
to become zero, there should be a one in
the corresponding position of K. I, J
and K must be =>0 and <=255.

Gives the absolute value of the expression
X. ABS returns X if X»>=0, -X otherwise.

Returns the largest integer less than or
equal to its argument X. For example:
INT(.23)=0, INT(7)=7, INT(-.1)=-1, INT
(-2)= -2, INT(1.1)=1.
The following would round X to D decimal
places:

INT(X*104D+.5)/104D

Generates a random number between 0 and 1.

The argument X controls the generation of

random numbers as follows:
X<0 starts a new sequence of random
numbers using X. Calling RND with
the same X starts the same random
number sequence. X=0 gives the last
random number generated. Repeated
calls to RND(0) will always return
the same random number. X>0 gener-
ates a new random number between 0
and 1.
Note that (B-A)*RND(1)+A will gener-
ate a random number between A § B.

3

SGN(X)
SIN(X)

SAR(X)

TAB(I)

USR(I)

8K FUNCTIONS

ATN(X)

COS(X)

EXP (X)

FRE(X)

INP(I)

230 PRINT SGN(X)
190 PRINT SIN(X)

180 PRINT S@R(X)

240 PRINT TAB(I)

200 PRINT USR(I)

Gives 1 if X>0, 0 if X=0, and -1 if X<O0.

Gives the sine of the expression X. X is
interpreted as being in radians. Note:
COS (X)=SIN(X+3.14159/2) and that 1 Radian
=180/P1 degrees=57.2958 degrees; so that
the sine of X degrees= SIN(X/57.2958).

Gives the square root of the argument X.
An FC error will occur if X is less than
zero.

Spaces to the specified print position
(column) on the terminal. May be used
only in PRINT statements. Zero is the
leftmost column on the terminal, 71 the
rightmost. If the carriage is beyond
position I, then no printing is done. I
must be =>0 and <=255.

Calls the user's machine language sub-
routine with the argument I. See POKE,
PEEK and Appendix J.

(Includes all those listed under 4K INTRINSIC FUNCTIONS

plus the following in addition.)

210 PRINT ATN(X)

200 PRINT COS(X)

150 PRINT EXP(X)

2?0 PRINT FRE(O)

2k5 PRINT INP(I)

Gives the arctangent of the argument X.
The result is returned in radians and
ranges from -PI/2 to PI/2. (PI/2=1.5708)

Gives the cosine of the expression X. X
is interpreted as being in radians.

Gives the constant "E" (2.71828) raised
to the power X. (E4X) The maximum
argument that can be passed to EXP with-
out overflow occuring is 87.3365

Gives the number of memory bytes currently
unused by BASIC. Memory allocated for
STRING space is not included in the count
returned by FRE. To find the number of
free bytes in STRING space, call FRE with
a STRING argument. (see FRE under STRING
FUNCTIONS)

Gives the status of (reads a byte from)
input port I. Result is =>0 and <=255.

38

LOG(X) 160 PRINT LOG(X)
PEEK 356 PRINT PEEK(I)
POS(I) 2k0 PRINT POS(I)
SPC(I) 250 PRINT SPC(I)
TAN(X) 200 PRINT TAN(X)
(\‘/ STRINGS (8K Version Only)

Gives the natural (Base L) logarithm of

its argument X. To obtain the Base Y
logarithm of X use the formula LOG(X)/LOG(Y).
Example: The base 10 (common) log of

7 = LOG(7)/ LOG(10).

The PEEK function returns the contents of
memory address I. The value returned will
be =>0 and <=255. If I is >32767 or <0,
an FC error will occur. An attempt to
read a non-existent memory address will
return 255. (see POKE statement)

Gives the current position of the terminal
print head (or cursor on CRT's). The
leftmost character position on the terminal
is position zero and the rightmost is 71.

Prints I space (or blank) characters on
the terminal. May be used only in a
PRINT statement. X must be =>0 and <=255
or an FC error will result.

Gives the tangent of the expression X.
X is interpreted as being in radians.

1) A string may be from 0 to 255 characters in length. All string
variables end in a dollar sign (§); for example, A$, B9$, K$,
HELLOS.

2) String matrices may be dimensioned exactly like numeric matrices.
For instance, DIM A$(10,10) creates a string matrix of 121 elements,
eleven rows by eleven columns (rows 0 to 10 and columns 0 to 10).
Each string matrix element is a complete string, which can be up to

255 characters in length.

3) The total number of characters in use in strings at any time during
program execution cannot execeed the amount of string space, or an
0S error will result.
space so that it can contain the maximum number of characters which
can be used by strings at any one time during program execution.

NAME

EXAMPLE

DIM

25 DIM A%(10,10)

At initialization, you should set up string

PURPOSE/USE
Allocates space for a pointer and length

for each element of a string matrix. No
string space is allocated. See Appendix D.

38

LET 27 LET As="FQ0"+V%
>

<

<=

>=

<>

+ 30 LET Zs=Rs+q%
INPUT 40 INPUT Xs$

READ 50 READ Xs

PRINT b0 PRINT X%

70 PRINT "FOO''+A%

Assigns the value of a string cxpression
to a string variable. LLET is optional.

String comparison operators. Comparison
is made on the basis of ASCII codes, a
character at a time until a difference
is found. If during the comparison of
two strings, the end of one is reached,
the shorter string is considered smaller.
Note that "A " is greater than “A" since
trailing spaces are significant.

String concatentation. The resulting
string must be less than 256 characters
in length or an LS error will occur.

Reads a string from the user's terminal.
String does not have to be quoted; but if
not, leading blanks will be ignored and
the string will be terminated on a “," or
'":" character.

Reads a string from DATA statements within
the program. Strings do not have to be
quoted; but if they are not, they are
terminated on a “,'" or '":'" character or
end of line and leading spaces are ignored.
See DATA for the format of string data.

Prints the string expression on the user's
terminal.

STRING FUNCTIONS (8K Version Only)

ASC(X%) 300 PRINT ASC(X%)
CHR%(I) 275 PRINT CHRs(I)
FRE(X$) 272 PRINT FRE('"")
LEFTS(X%,I)

310 PRINT LEFT®(X%,I)

Returns the ASCII numeric value of the
first character of the string expression
X$. See Appendix K for an ASCII /number
conversion table. An FC error will occur
if X$§ is the null string.

Returns a one character string whose single
character is the ASCII equivalent of the
value of the argument (I) which must be

=>0 and <=255. See Appendix K.

When called with a string argument, FRE
gives the number of free bytes in string
space.

Gives the leftmost I characters of the
string expression X§. If I<=0 or >255
an FC error occurs.

w

—~

LEN(X$) 220 PRINT LEN(X%$)

MIDs(X%,1)
330 PRINT MID%(X%,I)

MIDS(X$,1,J)

340 PRINT MID%(Xs,I,J)

RIGHTS (X%,1)

320 PRINT RIGHT%(X%,I)

STR$(X) 290 PRINT STR¢(X)

VAL(X$) 280 PRINT VAL (X%)

SPECIAL CHARACTERS

CHARACTER USE

Gives the length of the string expression
X$ in characters (bytes). Non-printing
characters and blanks are counted as part
of the length.

MID$ called with two arguments returns
characters from the string expression X$
starting at character position I. If
I>LEN(I$), then MID$ returns a null (zero
length) string. If I<=0 or >255, an FC
€rror occurs.
MID$ called with three arguments returns
a string expression composed of the
characters of the string expression X$
starting at the Ith character for J char-
acters. If I>LEN(X$), MID$ returns a null
string. If I or J <=0 or >255, an FC
error occurs. If J specifies more char-
acters than are left in the string, all
characters from the Ith on are returned.

Gives the rightmost I characters of
the string expression X$. When I<=0
or >255 an FC error will occur. If
I>=LEN(X$) then RIGHT$ returns all of
X$.

Gives a string which is the character
representation of the numeric expression
X. For instance, STR$(3.1)=" 3.1".

Returns the string expression X$ converted
to a number. For instance, VAL("3.1")=3.1.
If the first non-space character of the
string is not a plus (+) or minus (-) sign,
a digit or a decimal point (.) then zero
will be returned.

e Erases current line being typed, and types a carriage
return/line feed. An "@" is usually a shift/P.

« (backarrow or underline) Erases last character typed.
If no more characters are left on the line, types a
carriage return/line feed. '"<" is usually a shift/0.

#

CARRIAGE RETURN A carriage return must end every line typed in. Re-

turns print head or CRT cursor to the first position
(leftmost) on line. A line feed is always executed
after a carriage return.

CONTROL/C Interrupts execution of a program or a list command.

Control/C has effect when a statement finishes exe-
cution, or in the case of interrupting a LIST com-
mand, when a complete line has finished printing. In
both cases a return is made to BASIC's command level
and 0K is typed.

(8K Version) Prints "BREAK IN LINE XXXX'" , where
XXXX is the line number of the next statement to

be executed.

(colon) A colon is used to separate statements on a line.
Colons may be used in direct and indirect statements.
The only limit on the number of statements per line
is the line length. It is not possible to GOTO or
GOSUB to the middle of a line.

(8K Version Only)

CONTROL/0O Typing a Control/O once causes BASIC to suppress all

1)

output until a return is made to command level, an
input statement is encountered, another control/0 is
typed, Oor an error occurs.

Question marks are equivalent to PRINT. For instance,
? 2+2 is equivalent to PRINT 2+2. Question marks can
also be used in indirect statements. 10 ? X, when
listed will be typed as 10 PRINT X.

MISCELLANEQOUS

To read in a paper tape with a program on it (8K Version), type a
control/O and feed in tape. There will be no printing as the tape
is read in. Type control/O again when the tape is through.
Alternatively, set nulls=0 and feed in the paper tape, and when done
reset nulls to the appropriate setting for your terminal.

Each line must be followed by two rubouts, or any other non-printing
character. If there are lines without line numbers (direct commands)
the ALTAIR will fall behind the input coming from paper tape, so
this in not recommending.

Using null in this fashion will produce a listing of your tape in
the 8K version (use control/O method if you don't want a listing).
The null method is the only way to read in a tape in the 4K version.

To read in a paper tape of a program in the 4K version, set the
number of nulls typed on carriage return/line feed to zero by patch-
ing location 46 (octal) to be a 1. Feed in the paper tape. When

4

4

2)

3)

4)

the tape has finished reading, stop the CPU and repatch location 40
to be the appropriate number of null characters (usually 0, so de-
posit a 1). When the tape is finished, BASIC will print SN LRROR
because of the "OK" at the end of the tape.

To punch a paper tape of a program, set the number of nulls to 3 for
110 BAUD terminals (Teletypes) and 6 for 300 BAUD terminals. Then,
type LIST; but, do not type a carriage return.

Now, turn on the terminal's paper tape punch. Put the terminal on
local and hold down the Repeat, Control, Shift and P keys at the same
time. Stop after you Have punched about a 6 to 8 inch leader of
nulls. These nulls will be ignored by BASIC when the paper tape is
read in. Put the terminal back on line.

Now hit carriage return. After the program has finished punching,
put some trailer on the paper tape by holding down the same four
keys as before, with the terminal on local. After you have punched
about a six inch trailer, tear off the paper tape and save for

later use as desired.

Restarting BASIC at location zero (by toggling STOP, Examine loca-
tion 0, and RUN) will cause BASIC to return to command level and
type "OK". However, typing Control/C is preferred because Control/
C is guaranteed not to leave garbage on the stack and in variables,
and a Control C'd program may be continued. (see CONT command)

The maximum line length is 72 characters** If you attempt to type too
many characters into a line, a bell (ASCII 7) is executed, and the
character you typed in will not be echoed. At this point you can
either type backarrow to delete part of the line, or at-sign to delete
thewhole line. The character you typed which caused BASIC to type

the bell is not inserted in the line as it occupies the character
position one beyond the end of the line.

*CLEAR CLEAR Deletes all variables.

CLEAR X (8K Version) Deletes all variables. When
used with an argument "X", sets the amount
of space to be allocated for use by string
variables to the number indicated by its
argument "X'".

10 CLEAR 50 (8K Version) Same as above; but, may be used
at the beginning of a program to set the exact
amount of string space needed, leaving a maxi-
mum amount of memory for the program itself.

NOTE: If no argument is given, the string
space is set at 200 by default., An OM error
will occur if an attempt is made to allocate
more string space than there is available
memory.

**For inputting only.
43

4

g

&l

-

E APPENDICES

WP RGP WP PN AP WL LD PLPLPAPVP N LPVLP LP LPLPNLPNL N LPLPNLD DAL

45

}

APPENDIX A

HOW TO LOAD BASIC

When the ALTAIR is first turned on, there is random garbage in its
memory. BASIC is supplied on a paper tape or audio cassette. Somehow
the information on the paper tape or cassette must be transfered into the
computer. Programs that perform this type of information transfer are
called loaders.

Since initially there is nothing of use in memory; you must toggle
in, using the switches on the front panel, a 20 instruction bootstrap
loader. This loader will then load BASIC.

To load BASIC follow these steps:

1) Turn the ALTAIR on.
2) Raise the STOP switch and RESET switch simultaneously.
3) Turn your terminal (such as a Teletype) to LINE.

Because the instructions must be toggled in via the switches on the
front panel, it is rather inconvenient to specify the positions of each
switch as "up' or "down". Therefore, the switches are arranged in groups
of 3 as indicated by the broken lines below switches 0 through 15. To
specify the positions of each switch, we use the numbers 0 through 7 as

shown below:

3 SWITCH GROUP

OCTAL
LEFTMOST MIDDLE RIGHTMOST NUMBER
Down Down Down 0
Down Down Up 1
Down Up Down 2
Down Up Up 3
Up Down Down 4
Up Down Up 5
Up Up Down 6
Up Up Up 7

So, to put the octal number 315 in switches 0 through 7, the switches
would have the following positions:

7 6 5 4 3 2 1 0 -«—SWITCH
up up DOWN DOWN UP upP DOWN Up ~—POSITION
3 1 5 ~——(OCTAL NO.
46

Note that switches 8 through 15 were not used. Switches 0 through
7 correspond to the switches labeled DATA on the front pancl. A memory
(~/// address would use all 16 switches.

The following program is the bootstrap loader for users loading from
paper tape, and not using a REV 0 Serial I/0 Board.

OCTAL ADDRESS OCTAL DATA
000 041
001 175
002 037 (for 8K; for 4K use 017)
003 061
004 022
005 000
006 333
007 000
010 017
011 330
012 333
013 001
014 275
015 310
016 055
017 167
020 300
021 351
022 003

! 023 000

The following 21 byte bootstrap loader is for users loading from a
paper tape and using a REV 0 Serial I/0 Board on which the update changing
the flag bits has not been made. If the update has been made, use the
above bootstrap loader.

OCTAL ADDRESS OCTAL DATA
000 041
001 175
002 037 (for 8K; for 4K use 017)
003 061
004 023
005 000
006 333
007 000
010 346
011 040
012 310
013 333
014 001
015 275
016 310
017 055
020 167

_”]

OCTAL ADDRESS OCTAL DATA
(cont.)
021 300
022 351
023 003
024 000

The following bootstrap loader is for users with BASIC supplied on

an audio cassette.

D
2)
3)
4)
5)
6)
7)
8)
9)

10)

OCTAL ADDRESS OCTAL DATA
006 041
001 175
002 037 (for 8K; for 4K use 017)
003 061
004 022
005 000
006 333
007 006
010 017
011 330
012 333
013 007
014 275
015 310
016 055
017 167
020 300
021 351
022 003
023 000

To load a bootstrap loader:

Put switches 0 through 15 in the down position.

Raise EXAMINE.

Put 041 (data for address 000) in switches 0 through 7.
Raise DEPOSIT.

Put the data for the next address in switches 0 through 7.
Depress DEPOSIT NEXT.

Repeat steps 5 & 6 until the entire loader is toggled in.
Put switches 0 through 15 in the down position.

Raise EXAMINE.

Check that lights DO through D7 correspond with the data that should
48

3

11)
12)
13)

14)

15)

16)

17)
18)

19)

20)

21)

be in address 000. A light on means the switch was up, a light oft
means the switch was down. So for address 000, lights D1 through D4
and lights D6 § D7 should be off, and lights DO and D5 should be on.

If the correct value is there, go to step 13. If the value is wrong,
continue with step 11.

Put the correct value in switches 0 through 7.
Raise DEPOSIT.
Depress EXAMINE NEXT.

Repeat steps 10 through 13, checking to see that the correct data is
in each corresponding address for the entire loader.

If you encountered any mistakes while checking the loader, go back
now and re-check the whole program to be sure it is corrected.

Put the tape of BASIC into the tape reader. Be sure the tape is
positioned at the beginning of the leader. The leader is the section
of tape at the beginning with 6 out of the 8 holes punched.

If you are loading from audio cassette, put the cassette in the re-
corder. Be sure the tape is fully rewound.

Put switches 0 through 15 in the down poSition.
Raise EXAMINE.

If you have connected to your terminal a REV 0 Serial I/O Board

on which the update changing the flag bits has not been made, raise
switch 14; if you are loading from an audio cassette, raise switch
15 also.

If you have a REV 0 Serial I/0 Board which has been updated, or have
a REV 1 I/0 Board, switch 14 should remain down and switch 15 should
be raised only if you are loading from audio cassette.

Turn on the tape reader and then depress RUN. Be sure RUN is depres-
sed while the reader is still on the leader. Do not depress run be-
fore turning on the reader, since this may cause the tape to be read
incorrectly.

If you are loading from a cassette, turn the cassette recorder to
Play.” Wait 15 seconds and then depress RUN.

Wait for the tape to be read in. This should take about 12 minutes
for 8K BASIC and 6 minutes for 4K BASIC. It takes about 4 minutes
to load 8K BASIC from cassette, and about 2 minutes for 4K BASIC.

Do not move the switches while the tape is being read in.

49

22)

23)

24)

If a C or an O is printed on the terminal as the tape reads in, the
tape has been mis-read and you should start over at step 1 on page
46.

When the tape finishes reading, BASIC should start up and print
MEMORY SIZE?. See Appendix B for the initialization procedure.

If BASIC refuses to load from the Audio Cassette, the ACR Demodulator
may need alignment. The flip side of the cassette contains 90 seconds
of 125's (octal) which were recorded at the same tape speed as BASIC.
Use the Input Test Program described on pages 22 and 28 of the ACR
manual to perform the necessary alignment.

50

(-/,/

— APPENDIX B

INITIALIZATION DIALOG

STARTING BASIC

Leave the sense switches as they were set for loading BASIC (Appen-
dix A). After the initialization dialog is complete, and BASIC types OK,
you are free to use the sense switches as an input device (I/O port 255).

After you have loaded BASIC, it will respond:
MEMORY SIZE?

If you type a carriage return to MEMORY SIZE?, BASIC will use all
the contiguous memory upwards from location zero that it can find. BASIC
will stop searching when it finds one byte of ROM or non-existent memory.

If you wish to allocate only part of the ALTAIR's memory to BASIC,
type the number of bytes of memory you wish to allocate in decimal. This
might be done, for instance, if you were using part of the memory for a
machine language subroutine.

There are 4096 bytes of memory in a 4K system, and 8192 bytes in an
8K system.

BASIC will then ask:

TERMINAL WIDTH? This is to set the output line width for
PRINT statements only. Type in the number
of characters for the line width for the
particular terminal or other output device
you are using. This may be any number
from 1 to 255, depending on the terminal.
If no answer is given (i.e. a carriage
return is typed) the line width is set
to 72 characters.

Now ALTAIR BASIC will enter a dialog which will allow you to delete
some of the arithmetic functions. Deleting these functions will give
more memory space to store your programs and variables. However, you will
not be able to call the functions you delete. Attempting to do so will
result in an FC error. The only way to restore a function that has been
deleted is to reload BASIC.

The following is the dialog which will occur:

4K Version

"WANT SIN? Answer " Y " to retain SIN, SQR and RND.
If you answer " N ', asks next question.
WANT SQR? Answer " Y " to retain SQR and RND.
If you answer " N ", asks next question.
51 '

WANT RND? Answer " Y ' to retain RND.
Answer " N ' to delete RND.

8K Version

WANT SIN-COS-TAN-ATN?

Answer " Y " to retain all four of

the functions, " N " to delete all four,
or " A" to delete ATN only.

Now BASIC will type out:
XXXX BYTES FREE

ALTAIR BASIC VERSION 3.0
[FOUR-K VERSION]

(or)
[EIGHT-K VERSION]

0K

"XXXX" is the number of bytes
available for program, variables,
matrix storage and the stack. It
does not include string space.

You will now be ready to begin using ALTAIR BASIC.

52

APPENDIX C

C < ERROR MESSAGES

After an error occurs, BASIC returns to command level and types OK.
Variable values and the program text remain intact, but the program can
not be continued and all GOSUB and FOR context is lost.

When an error occurs in a direct statement, no line number is printed.

Format of error messages:
Direct Statement ?XX ERROR
Indirect Statement ?XX ERROR IN YYYYY
In both of the above examples, "XX'" will be the error code. The
"YYYYY" will be the line number where the error occured for the indirect

statement.

The following are the possible error codes and their meanings:

ERROR CODE MEANING
4K VERSION
(;// BS Bad Subscript. An attempt was made to reference a
matrix element which is outside the dimensions of the

matrix. In the 8K version, this error can occur if
the wrong number of dimensions are used in a matrix
reference; for instance, LET A(l,1,1)=Z when A has
been dimensioned DIM A(2,2).

DD Double Dimension. After a matrix was dimensioned,
another dimension statement for the same matrix was
encountered. This error often occurs if a matrix
has been given the default dimension 10 because a
statement like A(I)=3 is encountered and then later
in the program a DIM A(100) is found.

FC Function Call error. The parameter passed to a math
or string function was out of range.
FC errors can occur due to:

a) a negative matrix subscript (LET A(-1)=0)

b) an unreasonably large matrix subscript
(>32767)

¢) LOG-negative or zero argument

d) SQR-negative argument

C” 53

I

NF

oD

oM

ov

SN

RG

us

/0

8K

CN

e) A4B with A negative and B not an integer

f) a call to USR before the address of the
machine language subroutine has been
patched in

g) calls to MID$, LEFT$, RIGHT$, INP, OUT,
WAIT, PEEK, POKE, TAB, SPC or ON...GOTO
with an improper argument.

Illegal Direct. You cannot use an INPUT or (in 8K Version)
DEFFN statement as a direct command.

NEXT without FOR. The variable in a NEXT statement
corresponds to no previously executed FOR statement.

Out of Data. A READ statement was executed but all of
the DATA statements in the program have already been
read. The program tried to read too much data or insuf-
ficient data was included in the program.

Out of Memory. Program too large, too many variables,
too many FOR loops, too many GOSUB's, too complicated
an expression or any combination of the above. (see
Appendix D)

Overflow. The result of a calculation was too large to

be represented in BASIC's number format. If an underflow
occurs, zero is given as the result and execution continues
without any error message being printed.

Syntax error. Missing parenthesis in an expression,
illegal character in a line, incorrect punctuation, etc.

RETURN without GOSUB. A RETURN statement was encountered
without a previous GOSUB statement being executed.

Undefined Statement. An attempt was made to GOTO, GOSUB
or THEN to a statement which does not exist.

Division by Zero.

VERSION (Includes all of the previous codes in addition to the

following.)
Continue error. Attempt to continue a program when

none exists, an error occured, or after a new line
was typed into the program.

i

C’

LS

0S

ST

™

UF

Long String. Attempt was made by use of the concatenation
operator to create a string more than 255 characters long.

Out of String Space. Save your program on paper tape or
cassette, reload BASIC and allocate more string space
or use smaller strings or less string variables.

String Temporaries. A string expression was too complex.
Break it into two or more shorter ones.

Type Mismatch. The left hand side of an assignment
statement was a numeric variable and the right hand
side was a string, or vice versa; or, a function which
expected a string argument was given a numeric one or
vice versa.

Undefined Function. Reference was made to a user defined
function which had never been defined.

55

T APPENDIX D

SPACE HINTS

In order to make your program smaller and save space, the following
hints may be useful.

1) Use multiple statements per line. There is a small amount of
overhead (Sbytes) associated with each line in the program. Two of these
five bytes contain the line number of the line in binary. This means
that no matter how many digits you have in your line number (minimum line
number is 0, maximum is 65529), it takes the same number of bytes. Put-
ting as many statements as possible on a line will cut down on the number
of bytes used by your program.

2) Delete all unnecessary spaces from your program. For instance:
10 PRINT X, Y, Z
uses three more bytes than
10 PRINTX,Y,Z
Note: All spaces between the line number and the first non-
blank character are ignored.

3) Delete all REM statements. Each REM statement uses at least
one byte plus the number of bytes in the comment text. For instance,
the statement 130 REM THIS IS A COMMENT uses up 24 bytes of memory.

In the statement 140 X=X+Y: REM UPDATE SUM, the REM uses 14 bytes of
memory including the colon before the REM.

4) Use variables instead of constants. Suppose you use the constant
3.14159 ten times in your program. If you insert a statement
10 P=3.14159
in the program, and use P instead of 3.14159 each time it is needed, you
will save 40 bytes. This will also result in a speed improvement.

5) A program need not end with an END; so, an END statement at
the end of a program may be deleted.

6) Reuse the same variables. If you have a variable T which is used
to hold a temporary result in one part of the program and you need a tem-
porary variable later in your program, use it again. Or, if you are asking
the terminal user to give a YES or NO answer to two different questions
at two different times during the execution of the program, use the same
temporary variable A$ to store the reply.

7) Use GOSUB's to execute sections of program statements that per-
form identical actions.

8) If you are using the 8K version and don't need the features of
the 8K version to run your program, consider using the 4K version in-
stead. This will give you approximately 4.7K to work with in an 8K machine,
as opposed to the 1.6K you have available in an 8K machine running the
8K version of BASIC.

56

9) Use the zero elements of matrices; for instance, A(0), B(0,X).
STORAGLE ALLOCATION INFORMATION

Simple (non-matrix) numeric variables like V use 6 bytes; 2 for the
variable name, and 4 for the value. Simple non-matrix string variables
also-use 6 bytes; 2 for the variable name, 2 for the length, and 2 for a
pointer.

Matrix variables use a minimum of 12 bytes. Two bytes are used for
the variable name, two for the size of the matrix, two for the number of
dimensions and two for each dimension along with four bytes for each of
the matrix elements.

String variables also use one byte of string space for each character
in the string. This is true whether the string variable is a simple string
variable like A$, or an element of a string matrix such as Q1$(5,2).

When a new function is defined by a DEF statement, 6 bytes are used
to store the definition.

Reserved words such as FOR, GOTO or NOT, and the names or the
intrinsic functions such as COS, INT and STR$ take up only one byte of
program storage. All other characters in programs use one byte of pro-
gram storage each.

When a program is being executed, space is dynamically allocated on
the stack as follows:

1) Each active FOR...NEXT loop uses 16 bytes.
2) Each active GOSUB (one that has not returned yet) uses 6 bytes.

3) Each parenthesis encountered in an expression uses 4 bytes and
each temporary result calculated in an expression uses 12 bytes.

a1

" APPENDIX [

SPEED HINTS

The hints below should improve the execution time of your BASIC pro-
gram. Note that some of these hints are the same as those used to decrease
the space used by your programs. This means that in many cases you can
increase the efficiency of both the speed and size of your programs at
the same time.

1) Delete all unnecessary spaces and REM's from the program. This
may cause a small decrease in execution time because BASIC would otherwise
have to ignore or skip over spaces and REM statements.

2) THIS IS PROBABLY THE MOST IMPORTANT SPEED HINT BY A FACTOR OF 10.
Use variables instead of constants. It takes more time to con-
vert a constant to its floating point representation than it does to fetch
the value of a simple or matrix variable. This is especially important
within FOR...NEXT loops or other code that is executed repeatedly.

3) Variables which are encountered first during the execution of
a BASIC program are allocated at the start of the variable table. This
means that a statement such as 5 A=0:B=A:C=A, will place A first, B second,
and C third in the symbol table (assuming line 5 is the first statement
executed in the program). Later in the program, when BASIC finds a refer-
ence to the variable A, it will search only one entry in the symbol table
to find A, two entries to find B and three entries to find C, etc.

4) (8K Version) NEXT statements without the index variable. NEXT
is somewhat faster than NEXT I because no check is made to see if the
variable specified in the NEXT is the same as the variable in the most re-
cent FOR statement.

5) Use the 8K version instead of the 4K version. The 8K version
is about 40% faster than the 4K due to improvements in the floating point
arithmetic routines.

6) The math functions in the 8K version are much faster than their
counterparts simulated in the 4K version. (see Appendix G)

-58

APPENDIX F

DERIVED

FUNCTIONS

The following functions, while not intrinsic to ALTAIR BASIC, can be
calculated using the existing BASIC functions.

FUNCTION

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT
INVERSE COSECANT
INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT
INVERSE HYPERBOLIC
SINE
INVERSE HYPERBOLIC
COSINE
INVERSE HYPERBOLIC
TANGENT
INVERSE HYPERBOLIC
SECANT
INVERSE HYPERBOLIC
COSECANT
INVERSE HYPERBOLIC
COTANGENT

FUNCTION EXPRESSED IN TERMS OF BASIC FUNCTIONS

SEC(X)
CSC(X)
COT (X)
ARCSIN(X)
ARCCOS (X)
ARCSEC (X)
ARCCSC (X)
ARCCOT (X)
SINH(X)
COSH (X)
TANH (X)
SECH(X)
CSCH(X)
COTH(X)

nonow oo

ARGSINH(X)
ARGCOSH(X)
ARGTANH (X)
ARGSECH(X)
ARGCSCH(X)

ARGCOTH(X)

1/C0S(X)
1/SIN(X)
1/TAN(X)

= ATN(X/SQR(-X*X+1))

= -ATN(X/SQR(-X*X+1))+1.5708

= ATN(SQR(X*X-1))+(SGN(X)-1)*1.5708
= ATN(1/SQR(X*X-1)}+(SGN(X)-1)*1.5708
= -ATN(X)+1.5708

(EXP (X) -EXP (-X))/2

(EXP (X)+EXP (-X))/2

-EXP (-X) / (EXP (X)+EXP (-X)) *2+1

2/ (EXP (X)+EXP (-X))

2/ (EXP (X)-EXP (-X))

EXP (-X)/ (EXP (X) -EXP (-X)) *2+1

= LOG(X+SQR (X*X+1))

LOG (X+SQR (X*X-1))

n

LOG((1+X)/ (1-X))/2

LOG((SQR{-X*X+1}+1)/X)

LOG((SGN (X) *SQR (X*X+1)+1)/X)

LOG((X+1)/(X-1))/2

58

APPENDIX G

SIMULATED MATH FUNCTIONS

The following subroutines are intended for 4K BASIC users who want
to use the transcendental functions not built into 4K BASIC. The cor-
responding routines for these functions in the 8K version are much faster
and more accurate. The REM statements in these subroutines are given for
documentation purposes only, and should not be typed in because they take
up a large amount of memory.

The following are the subroutine calls and their 8K equivalents:

8K_EQUIVALENT SUBROUTINE CALL
P9=X94Y9 GOSUB 60030
L9=LOG (X9) GOSUB 60090
E9=EXP (X9) GOSUB 60160
€9=C0S (X9) GOSUB 60240
T9=TAN (X9) GOSUB 60280
A9=ATN(X9) GOSUB 60310

The unneeded subroutines should not be typed in. Please note which
variables are used by each subroutine., Also note that TAN and COS require
that the SIN function be retained when BASIC is loaded and initialized.

L0000 REM EXPONENTIATION: P9=X9TY9

L0010 REM NEED: EXP~ LOG

b0020 REM VARIABLES USED: A3.B9.CF.E9.L9.P9.XT9.Y9

L0030 P9=1 : EF9=0 : IF Y9=0 THEN RETURN

L0040 IF X9<0 THEN IF INT(Y)=YS THEN P9=1-2*YT9+U*INT(Y9/2) : X9=-X9
L0050 IF X9<>0 THEN GOSUB L0090 : X9=Y9*LH : GOSUB LOLLD
bLO0LO P9=PS*ES : RETURN

60070 REM NATURAL LOGARITHM: L9=L0G(X3)

L0080 REM VARIABLES USED: A9.B9.CH-E9.L9.X9

k0090 E9=0 : IF X9<=0 THEN PRINT "LOG FC ERROR": : STOP

L0095 A9=1 : B9=2 : C%=.5 : REM THIS WILL SPEED UP THE FOLLOWING
L0100 IF X9>=A9 THEN X9=CT*X9 : E9=E£9+A9 : GOTO LOLOO

L0LLO IF XA9<C9 THEN XF=B*X9 : E9=£9-A9 : GOTO bOL1lO

k0120 X9=(X3-.707107)/ (X9+.707107) : L9=X9*Xd

k0130 L9=(((-598979*L9+. 9624 71) *LF+2. 88537) *XT+ETF-- 5) * .bTILU?
60135 RETURN

k0140 REM EXPONENTIAL: EF=EXP(X9)

k0150 REM VARIABLES USED: A9.E9.L9.X9

bO1LO L9=INT(1-442?7*X9)+1 : IF L9<127 THEN L0140

&0170 IF X9>0 THEN PRINT "EXP OV ERROR'": : STOP

L0175 E9=0 : RETURN

L0180 E9=-b93L47*L9-XT : A9=1.32988E-3-1-413LLE-Y4*ET

k01490 A9=((A9*ET9-8.30136E-3) *EG+Y4. 1L5?74E-2) *E9

60145 E9=(((A9~-1bkbbb5) *Eq+-5) *EF-1) *E9+1 : A=2

60197 IF L9<=0 THEN A9=.5 : L9=-19 : IF L9=0 THEN RETURN

L0200 FOR X9=L TO LA : E9=A9*ET : NEXT X9 : RETURN

k0210 REM COSINE: C9=COS(X9)

k0220 REM N-B. SIN MUST BE RETAINED AT LOAD-TIME

60230 REM VARIABLES USED: CH.X4

L0240 C=SIN(X9+1.5708) : RETURN

k0250 REM TANGENT: T9=TAN(X9)

L0260 REM NEEDS COS- (SIN MUST BE RETAINED AT LOAD-TIME)

k0270 REM VARIABLES USED: C9.T9.X9

L0280 GOSUB L0240 : T9=SIN(X9)/C9 : RETURN

k0290 REM ARCTANGENT: A9=ATN(X)

60300 REM VARIABLES USED: A9.B9.C9.T9.X9

bO3L0 T=SGN(XT): XF=ABS(XT): (=0 : IF X9>1 THEN C9=1 : X%=1/X9
L0320 A9=X9*X7 : BI=((2.8kL23E~3*A9~1.b1L5?E-2) *AT+Y.29096E-2) *AT
&0330 B3=((((B9-7.5289E-2) *A9+. 10b5L3) *A9-. 142089) *A9+. 19993k) *AT
E0340 A9=((BT--333332) *A+1)*X? ¢ IF (=1 THEN A9=1.5708-A9

k0350 A9=T9*A9 : RETURN

61

__APPENDIX H__

CONVERTING BASIC PROGRAMS NOT WRITTEN FOR THE ALTAIR

Though implementations of BASIC on different computers are in many
ways similar, there are some incompatibilites which you should watch for
if you are planning to convert some BASIC programs that were not written
for the ALTAIR.

1) Matrix subscripts. Some BASICs use " [* and "] " to denote
matrix subscripts. ALTAIR BASIC uses " (" and ")"

2) Strings. A number of BASICs force you to dimension (declare)

the length of strings before you use them. You should Temove all
dimension statements of this type from the program. In some of

these BASICs, a declaration of the form DIM A$(I,J) declares a string
matrix of J elements each of which has a length I. Convert DIM
statements of this type to equivalent ones in ALTAIR BASIC: DIM A$(J).

ALTAIR BASIC uses " + " for string concatenation, not " , " or " § ",

ALTAIR BASIC uses LEFT$, RIGHT$ and MID$ to take substrings of
strings. Other BASICs use A$(I) to access the Ith character of
the string A$, and A$(I,J) to take a substring of A$ from charac-
ter position I to character position J. Convert as follows:

OLD NEW
A$ (1) MID$ (A$,1,1)
A$(1,J) MID$ (A$,1,J-I+1)

This assumes that the reference to a substring of A$ is in an expres-
sion or is on the right side of an assignment. If the reference to
A$ is on the left hand side of an assignment, and X$ is the string
expression used to replace characters in A$, convert as follows:

oL NEW
A$(1)=X$ A$=LEFT$(A$,I—1)+X$+MID$(A$,I+1)
A$(I,J)=X$ A$=LEFT$(A$,I—1)+X$+M1D$(A$,J+1)

3) Multiple assignments. Some BASICs allow statements of the
form: 500 LET B=C=0. This statement would set the variables B
& C to zero.

In 8K ALTAIR BASIC this has an entirely different effect. All the

" ='s " to the right of the first one would be interpreted as logical
comparison operators. This would set the variable B to -1 if C
equaled 0. If C did not equal 0, B would be set to 0. The easiest
way to convert statements like this one is to rewrite them as follows:

62

500 C=0:B=C.

4) Some BASICs use "\ " instead of " : " to delimit multiple
statements per line. Change the " \'s " to " :'s " in the program.

5) Paper tapes punched by other BASICs may have no nulls at the end
of each line, instead of the three per line recommended for use with
ALTAIR BASIC.

To get around this, try to use the tape feed control on the Teletype
to stop the tape from reading as soon as ALTAIR BASIC types a car-
riage return at the end of the line. Wait a second, and then continue
feeding in the tape.

When you have finished reading in the paper tape of the program, be
sure to punch a new tape in ALTAIR BASIC's format. This will save
you from having to repeat this process a second time.

6) Programs which use the MAT functions available in some BASICs

will have to be re-written using FOR...NEXT loops to perform the
appropriate operations.

63

APPENDIX I

USING THE ACR INTERFACE

NOTE: The cassette features, CLOAD and CSAVE, are only
present in 8K BASICs which are distributed on cassette.
8K BASIC on paper tape will give the user about 130 more
bytes of free memory, but it will not recognize the CLOAD
or CSAVE commands.

The CSAVE command saves a program on cassette tape. CSAVE takes one
argument which can be any printing character. CSAVE can be given directly
or in a program. Before giving the CSAVE command start your audio recorder
on Record, noting the position of the tape.

CSAVE writes data on channel 7 and expects the device status from
channel 6. Patches can easily be made to change these channel numbers.

When CSAVE is finished, execution will continue with the next state-
ment. What is written onto the tape is BASIC's internal representation
of the program in memory. The amount of data written onto the tape will
be equal to the size of the program in memory plus seven.

Variable values are not saved on the tape, nor are they affected by
the CSAVE command. The number of nulls being printed on your terminal
at the start of each line has no affect on the CSAVE or CLOAD commands.

CLOAD takes its one character argument just like the CSAVE command.
For example, CLOAD E.

The CLOAD command first executes a “NEW" command, erasing the cur-
rent program and all variable values. The CLOAD command should be given
before you put your cassette recorder on Play.

BASIC will read a byte from channel 7 whenever the character ready
flag comes up on channel 6. When BASIC finds the program on the tape,
it will read all characters received from the tape into memory until it
finds three consecutive zeros which mark the end of the program. Then
BASIC will return to command level and type 'OK".

Statements given on the same line as a CLOAD command are ignored.
The program on the cassette is not in a checksummed format, so the pro-
gram must be checked to make sure it read in properly.

If BASIC does not return to command level and type "OK", it means
that BASIC either never found a file with the right filename character,
or that BASIC found the file but the file never ended with three con-
secutive zeros. By carefully watching the front panel lights, you can
tell if BASIC ever finds a file with the right name.

Stopping the ALTAIR and restarting it at location 0 will prevent
BASIC from searching forever. However, it is likely that there will
either be no program in the machine, or a partial program that has errors.
Typing NEW will always clear out whatever program is in the machine.

Reading and writing data from the cassette is done with the INP, OUT
and WAIT statements. Any block of data written on the tape should have
its beginning marked with a character. The main thing to be careful of
is allowing your program to fall behind while data passes by unread.

Data read from the cassette should be stored in a matrix, since

64

there isn't time to process data as it is being read in. You will pro-
k/, bably want to detect the end of data on the tape with a special character.

65

APPENDIX J

BASIC/MACHINE LANGUAGE INTERFACL

In all versions of BASIC the user can link to a machine language
subroutine. The first step is to set aside enough memory for the sub-
routine. When BASIC asks '"MEMORY SIZE?", you shouldn't type a return,
because BASIC would then write into all of memory trying to find out
how much memory your machine has and then use whatever memory it finds.

The memory that BASIC actually uses is constantly modified, so you
cannot store your machine language routine in those locations.

BASIC always uses memory starting at location 0 and as high upwards
as you let it. BASIC cannot use non-contiguous blocks of memory. There-
fore, it is best to reserve the top locations of memory for your machine
language program.

For example, if you have a 4K machine and want to use a 200 byte sub-
routine, you should set memory size to 3896. Remember, BASIC always ac-
cepts numbers in decimal and that 4K is really 2412=4096 rather than 4000.
Now BASIC will not use any location >= 3896.

If you try to allocate too much memory for your machine language pro-
gram, you will get an OM (out of memory) error. This is because there is
a certain amount of memory that BASIC must have or it will give an OM
error and go back to the "MEMORY SIZE?' question.

The starting location of your routine must be stored in a location
known as 'USRLOC". The exact octal location of USRLOC will be given with
each distributed version of BASIC. It is not the same for the 4K and 8K
versions.

USRLOC for Version 3.0: 8K (both paper tape § cassette) = lll(octal)

4K = 103(octal)

Initially USRLOC is set up to contain the address of "ILLFUN", which
is the routine that gives an FC (function call) error. USRLOC is the two
byte absolute address of the location BASIC calls when USR is invoked.

USR is a function just like ABS or INT and is called as follows:

10 X=USR(3).

When your routine is called the stack pointer is set up and you are
allowed to use up to 8 levels of stack (16 bytes). If you want to use
more, you have to save BASIC's stack pointer (SP), set up your own, and
restore BASIC's before you return back to BASIC.

All of the registers (A, B, C, D, E, H, L and PSW) can be changed.

It is dangerous to modify locations in BASIC itself unless you know what
you are doing. This is unlikely unless you have purchased a source copy
of BASIC. Popping more entries off of the stack than you put on is almost
guaranteed to cause trouble.

To retrieve the argument passed to USR, you must call the routine
whose address is given in location 4 and 5 (DEINT). The low order 8 bits
of an address are always stored in the lower address (4 in this case), and
the high order 8 bits are stored in the next (higher) memory address (5
in this case).

1

WU

The argument to USR is truncated to an integer (calling USR with 3.8
is the same as calling it with 3). If the argument is greater than 32767
or less than -32768, an FC error will result. When DEINT returns, the
two byte signed value of the argument will be in registers D § E. The
high order byte would be in D, the low order byte in E. For instance:
if the argument to USR was -1, D would equal 255 and E would equal 255;
if the argument was 400, D would equal 1 and E would equal 144.

To pass back a value from USR, set up a two byte value in registers
A & B and call the routine whose address is given in locations 6 and 7.

A & B should be set up in the same manner that D § E are when a value is
passed to USR (A should contain the high order byte and B the low order
byte).

If the routine whose address is given in locations 6 and 7 is not
called, the function USR in the user's program will be an identity func-
tion. That is, USR(X) will equal X.

At the end of the USR routine a RET must be done to get back to
BASIC. The BASIC program is completely stopped while USR is being exe-
cuted and the program will not be continued until USR returns.

In the 4K version, the USR routine should not enable interrupts from
a device. 4K BASIC uses the RST 7 location (56 decimal, 70 octal) to store
a subroutine. If an interrupt occurs, this subroutine will be called which
will have an undetermined and undesirable effect on the way BASIC behaves.

In the 8K BASIC, locations 56, 57 and 58 decimal have been set aside
to store a JMP to a user-provided interrupt service routine. Initially
a RET instruction is stored at location 56, so until a user sets up the
call to his interrupt service routine, interrupts will have no effect.

Care must be taken in interrupt routines to save and restore the
stack pointer, (A, B, C, D, E, H § L) and the PSW. Interrupt routines
can pass data using PEEK, and can receive data using POKE.

The interrupt service routine should re-enable interrupts with an EI
instruction before it returns, as interrupts are automatically disabled
when the interrupt occurs. If this procedure is not followed, the inter-
rupt service routine will never '"see' another interrupt.

Though there is only one way of calling a machine language subroutine,
this does not restrict the user to a single subroutine. The argument pas-
sed to USR can be used to determine which routine gets called. Multiple
arguments to a machine language routine can be passed with POKE or through
multiple calls to USR by the BASIC program.

The machine language routine can be loaded from paper tape or cassette
before or after BASIC is loaded. The checksum loader, an unchecksummed
loader, the console switches, or more conveniently the POKE function can be
used to load the routine. ’

A common use of USR for 4K users will be doing IN's and OUT's to
special devices. For example, on a 4K machine a user wants USR to pass
back the value of the front panel switch register:

Answer to MEMORY SIZE? : 4050
USRLOC patched to contain [17,322]=7722 Base 8=4050 decimal

67

At location 4050=7722 Base 8 put:

7722/333 LN 255 5 (255 Base 10=377 Base 8) Get
7723/377 ;the value of the switches in A
77247107 MOV B,A ;B gets low part of answer
7725/257 XRA A ;A gets high part of answer
7726/052 LHLD 6 ;get address of routine
7727/006

7730/000 ;that floats [A,B]

7731/351 PCHL ;80 to that routine which will

;return to BASIC
;with the answer

MORE ON PEEK AND POKE (8K VERSION ONLY)

As mentioned before, POKE can be used to set up your machine language
routine in high memory. BASIC does not restrict which addresses you can
POKE. Modifying USRLOC can be accomplished using two successive calls to
POKE. Patches which a user wishes to include in his BASIC can also be
made using POKE. ,

Using the PEEK function and OUT statement of 8K BASIC, the user can
write a binary dump program in BASIC. Using INP and POKE it is possible
to write a binary loader.

PEEK and POKE can be used to store byte oriented information. When
you initialize BASIC, answer the MEMORY SIZE? question with the amount of
memory in your ALTAIR minus the amount of memory you wish to use as stor-
age for byte formatted data.

You are now free to use the memory in the top of memory in your ALTAIR
as byte storage. See PEEK and POKE in the Reference Material for a further

description of their parameters.

J

DECIMAL CHAR.

000 NUL
001 SOH
002 STX
003 ETX
004 EOT
005 ENQ
006 ACK
007 BEL
008 BS
009 HT
010 LF
011 VT
012 FF
013 CR
014 S0
015 SI
016 DLE
017 DC1
018 DC2
019 DC3
020 DC4
021 NAK
022 SYN
023 ETB
024 CAN
025 EM
026 SUB
027 ESCAPE
028 FS
029 GS
030 RS
031 us
032 SPACE
033 !
034 "
035 #
036 $
037 %
038 &
039 -
040 (
041)
042 *

LF=Line Feed

APPENDIX K

ASCII CHARACTER CODES

DECIMAL CHAR. DECIMAL
043 + 086
044 » 087
045 - 088
046 . 089
047 / 090
048 0 091
049 1 092
050 2 093
051 3 094
052 4 095
053 S 096
054 6 097
055 7 098
056 8 099
057 9 100
058 : 101
059 5 102
060 < 103
061 = 104
062 > 105
063 ? 106
064 e 107
065 A 108
066 B 109
067 C 110
068 D 111
069 E 112
070 F 113
071 G 114
072 H 115
073 I 116
074 J 117
075 K 118
076 L 119
077 M 120
078 N 121
079 0 122
080 P 123
081 Q 124
082 R 125
083 S 126
084 T 127
085 u
FF=Form Feed CR=Carriage Return

:

I h s N X = <

MY E<CLCAVLBOTOBERRNWWRISM@MO LO TP

O —en

m
=

DEL=Rubout

CHR$ is a string function which returns a one character string which
contains the ASCII equivalent of the argument, according to the conversion
table on the preceeding page. ASC takes the first character of a string
and converts it to its ASCII decimal value.

One of the most common uses of CHR$ is to send a special character
to the user's terminal. The most often used of these characters is the
BEL (ASCII 7). Printing this character will cause a bell to ring on some
terminals and a "beep" on many CRT's. This may be used as a preface to
an error message, as a novelty, or just to wake up the user if he has
fallen asleep. (Example: PRINT CHR$(7);)

A major use of special characters is on those CRT's that have cursor
positioning and other special functions (such as turning on a hard copy
printer).

As an example, try sending a form feed (CHR$(12)) to your CRT. On
most CRT's this will usually cause the screen to erase and the cursor to
""home' or move to the upper left corner.

Some CRT's give the user the capability of drawing graphs and curves

in a special point-plotter mode. This feature may easily be taken advan-
tage of through use of ALTAIR BASIC's CHR$ function.

10

TR L

EXTENDED BASIC

When EXTENDED BASIC is sent out, the BASIC manual will be updated
to contain an extensive section about EXTENDED BASIC. Also, at this time
the part of the manual relating to the 4K and 8K versions will be revised
to correct any errors and explain more carefully the areas users are hav-
ing trouble with. This section is here mainly to explain what EXTENDED
BASIC will contain.

INTEGER VARIABLES These are stored as double byte signed quantities
ranging from -32768 to +32767. They take up half as much space as normal
variables and are about ten times as fast for arithmetic. They are denoted
by using a percent sign (%) after the variable name. The user doesn't
have to worry about conversion and can mix integers with other variable
types in expressions. The speed improvement caused by using integers for
loop variables, matrix indices, and as arguments to functions such as
AND, OR or NOT will be substantial. An integer matrix of the same dimen-
sions as a floating point matrix will require half as much memory.

DOUBLE-PRECISION Double-Precision variables are almost the oppo-
site of integer variables, requiring twice as much space (8bytes per value)
and taking 2 to 3 times as long to do arithmetic as single-precision
variables. Double-Precision variables are denoted by using a number sign
(#) after the variable name. They provide over’ 16 digits of accuracy.
Functions like SIN, ATN and EXP will convert their arguments to single-
precision, so the results of these functions will only be good to 6 digits.
Negation, addition, subtraction, multiplication, division, comparision,
input, output and conversion are the only routines that deal with Double-
Precision values. Once again, formulas may freely mix Double-Precision
values with other numeric values and conversion of the other values to
Double-Precision will be done automatically.

PRINT USING Much like COBOL picture claiises or FORTRAN format
statements, PRINT USING provides a BASIC user. with complete control over
his output format. The user can control how many digits of a number are
printed, whether the number is printed in Scientific notation and the
placement of text in output. All of this can be done in the 8K version
using string functions such as STR$§ and MID$, but PRINT USING makes it
much easier.

DISK I/0 EXTENDED BASIC will come in two versions, disk and non-
disk. There will only be a copying charge to switch from one to the
other. With disk features, EXTENDED BASIC will allow the user to save and
recall programs and data files from the ALTAIR FLOPPY DISK. Random ac-
cess as well as sequential access will be provided. Simultaneous use of
multiple data files will be allowed. Utilities will format new disks,
delete files and print directories. These will be BASIC programs using
special BASIC functions to get access to disk information such as file
length, etc. User programs can also access these disk functions, enabling
the user to write his own file access method or other special purpose

n

disk routine. The file format can be changed to allow the use of other
(non-floppy) disks. This type of modification will be done by MITS under
special arrangement.

OTHER FEATURES Other nice features which will be added are:

Fancy Error Messages

An ELSE clause in IF statements

LIST, DELETE commands with line range as arguments

Deleting Matrices in a program

TRACE ON/OFF commands to monitor program flow

EXCHANGE statement to switch variable values (this will speed
up string sorts by at least a factor of two).

Multi-Argument, user defined functions with string arguments
and values allowed

Other features contemplated for future release are:

A multiple user BASIC
Explicit matrix manipulation
Virtual matrices

Statement modifiers

Record I/0
Paramaterized GOSUB
Compilation

Multiple USR functions
"Chaining"

EXTENDED BASIC will use about 11K of memory for its own code (10K
for the non-disk version) leaving 1K free on a 12K machine. It will take
almost 20 minutes to load from -paper tape, 7 minutes from cassette, and
less than 5 seconds to load from disk.

We welcome any suggestions concerning current features or possible
additions of extra features. Just send them to the ALTAIR SOFTWARE

DEPARTMENT.

12

APPENDIX M__

BASIC TEXTS

Below are a few of the many texts that may be helpful in learning
BASIC.

1) BASIC PROGRAMMING, John G. Kemeny, Thomas E Kurtz, 1967, pl4s

2) BASIC, Albrecht, Finkel and Brown, 1973

3) A GUIDED TOUR OF COMPUTER PROGRAMMING IN BASIC, Thomas A Dwyer
and Michael S. Kaufman; Boston: Houghton Mifflin Co., 1973

Books numbered 1 & 2 may be obtained from:
People's Computer Company
P.0. Box 310

Menlo Park, California
94025

They also have other books of interest, such as:
101 BASIC GAMES, Ed. David Ahl, 1974 p250

WHAT TQ DO AFTER YOU HIT RETURN or PCC's FIRST
BOOK OF COMPUTER GAMES

COMPUTER LIB & DREAM MACHINES, Theodore H. Nelson, 1974, p186

73

