L1B-80

LIB-80 is the object time library manager for FORTRAN-80. To run
L1B-80, type:

A>LIB <carriage return>

L1B-80 will respond with a prompt of ''*"'. Each command in L1B-80
either lists information about a library or adds new modules to the
library under construction.

A number of switches are used to control L1B~-80 operation. These
switches are always preceded by a slash:

/0 Octal - set Octal typeout mode for /L command

/H Hex - set Hex typeout mode for /L command (default).

/U List the symbols which would remain undefined on a
search through the file specified.

/L List the modules in the files specified and symbol
definitions they contain.

/C (Create) Throw away the library under construction
and start over.

JE Exit to CP/M. The library under construction (.LIB)
is revised to .REL and any previous copy is deleted.

/R Rename - same as /E but does not exit to CP/M on
completion.

A module is typically a FORTRAN subprogram, main program or a MACR0O-80
assembly that contains ENTRY statements.

The primary function of LIB-80 is to concatenate modules in .REL files
to form a new library. In order to extract modules from previous
libraries or .REL files, a powerful syntax has been devised to specify
ranges of modules within a .REL file.

The simplest way to specify a module within a file is simply to use
the name of the module:

SIN

But a relative quantity plus or minus 255 may also be used. For
example,

SIN+1

specifies the module after SIN and

SIN-1
;specifies the one before it.
Ranges of modules may also be specified by using two dots:

..SIN means all modules up to and including SIN.
SIN.. means all modules for SIN to the end of the file.
SIN..COS means SIN and COS and all the modules in between.
Ranges of modules and relative offsets may also be used in combination:
SIN+1..C0S-1
To select a given module from a file use the name of the file followed
by the module(s) specified enclosed in angle brackets and separated by

commas:

FORLIB <SIN..COS>

or

MYLIB.REL <TEST>
or

BIGLIB.REL <FIRST,MIDDLE,LAST>
etc.

If no modules are selected from a file, then all the modules in the
file are selected:

TESTLIB.REL

Each command to L1B-80 consists of an optional destination filename
which sets the name of the library being created, followed by an equal
sign and the names of the modules specified separated by commas. The
default destination filename is FORLIB.LIB. Examples:

~ *NEWLIB=FILE! <MOD2>, FILE3,TEST
*SIN,COS, TAN,ATAN
Any command specifying a set of modules concatenates the modules
selected onto the end of the last destination filename given.
Therefore,
*FILE1,FILE2 <BIGSUB>, TEST
is equivalent to

*FILE1
*FILE2 <BIGSUB>
*TEST

To list the contents of a file in cross reference format, use/L:

*FORLIB/L

It is important to place a module after another module that refers to
a global symbol in the second module. Otherwise, LINK~80 will not
satisfy the request to load the symbol on its single pass through the
library.

Use /U to list the symbols which could be undefined in a single pass
through a library. |If a module in the library makes a backward refer-
ence to a symbol in another module, /U will list that symbol. Example:

*SYSLIB/U

NOTE: Since certain modules in the standard FORTRAN system are always
force-loaded, they will be listed as undefined by /U but will not
cause a problem when loading FORTRAN programs.

Listings are currently always sent to the terminal; use control-P to
send the listing to the printer.

Sample LIB session:
A>LIB

*TRANLIB=SIN,COS,TAN,ATAN,ALOG
*EXP

*TRANLIB.LIB/U

*TRANLIB.LIB/L

(List of symbols in TRANLIB.LIB)

*/E
A>

Summary of switches and syntax:

/0 Octal - set listing radix

/H Hex - set listing radix

/U List undefineds

/L List cross reference

/C Create - start LIB over

/JE Exit - Rename .LIB to .REL and exit
/R Rename - Rename .L1B to .REL

module: :=module name {+ or - number}

module sequence ::=

module_l ..module | module.. | modulel..module2

file specification::=filename {<module sequence>{, module sequence}>}

command::= {library filename=} {list of file specifications} {list of switches}

Microsoft 8080 FORTRAN IV

FORTRAN-80 .Reference Manual

Addendum to Appendix E, pages 100-101
April, 1978

RANDOM ACCESS DISK FILES

The CP/M and ISIS-II versions of FORTRAN-80 now provide
random disk accessing, i.e., a record may be specified
with a disk READ or WRITE.

The record number is specified by using the REC=n option
in the READ or WRITE statement. For example:

I=10
WRITE (6,20,REC=1,ERR=50) X,Y,Z

-

This program segment writes record 10 on LUN 6. If a
previous record 10 exists, it is written over. If no
record 10 exists, the file is extended to create one.
Any attempt to read a non-existent record results in an
I1/0 error.

The record length of any file accessed randomly is assumed
to be 128 bytes (1 sector). Therefore, it is recommended
that any file you wish to read randomly be created via
FORTRAN (or Microsoft BASIC) random access statements.

Random access files may be created via FORTRAN programs,

by using either binary or formatted WRITE statements. If
the WRITE statement does not cause enough data to be trans-
ferred to fill the record (128 bytes), then the end of the
record is filled with zeros (NULL characters).

ISIS-II DISK FILES

Disk files may now be created and accessed by FORTRAN-80
programs running under ISIS-II. Files are accessed either
sequentially or randomly, as described in Appendix E of the
FORTRAN-80 manual. The only programming difference under
ISIS-II is that the parameters required by the OPEN subrou-
tine have been altered slightly from the form described in

Microscft 8080 FORTRAN IV

FORTRAN-80 Reference Manual

Addendum to Appendix E, pages 100-101
April, 1978

page 2

Appendix E. The form of an OPEN call under ISIS-II is
CALL OPEN (LUN, Filename)

where:

LUN = a Logical Unit Number to be associated with the file
(must be an integer constant or variable with a value between
1 and 10).

Filename = an ASCII name which the operating system will asso-
ciate with the file. The Filename should be a Hollerith or
Literal constant, or a variable or array name where the
variable or array contains the ASCII name. The filename
should be in the form normally required by ISIS~II, i.e., a
device name surrounded by colons, followed by a name of up

to 6 characters, a period, an extension of up to 3 characters,
and a space (or other non-alphanumeric character). The
Filename must be terminated by a non-alphanumeric character.

The following are examples of valid OPEN calls:
CALL OPEN (6, ':F1:FOO.DAT ')
CALL OPEN (1, ':F5:TESTFF.TMP ')
CALL OPEN (10, ':FO:A.DAT ')

CALL OPEN (4, ':F3:A.B ')

Microsoft 8030 FORTRAN 1V
FORTRAN-80 Reference Manual
Addendum

May, 1978

APPENDIX F
FORTRAN-80 Library Subroutines

The FORTRAN-80 library contains a number of subroutines that
may be referenced by the user from FORTRAN or assembly pro-
grams. In the following descriptions, $AC refers to the
floating accumulator; $AC is the address of the low byte of
the mantissa. $AC+3 is the address of the exponent. $DAC
refers to the DOUBLE PRECISION accumulator; $DAC is the ad-
dress of the low byte of the mantissa. $DAC+7 is the address
of the DOUBLE PRECISION exponent.

All arithmetic routines (addition, subtraction, multiplica-
tion, division, exponentiation) adhere to the following
calling conventions.

1. Argument 1 is passed in the registers:
Integer in [HL]
Real in $AC
Double in $DAC

2. Argument 2 is passed either in registers, or in memory
depending upon the type:

a) Integers are passed in [HL], or [DE] if [HL]
contains Argument 1.

b) Real and Double Precision values are passed
in memory pointed to by [HL].
([HL] points to the low byte of the mantlssa)

The following arithmetic routines are contained in the Library:

Function Name Argument 1 Type Argument 2 Type
Addition $AA Real Integer
$AB Real Real
$AQ Double Integer
$AR Double Real
$AU Double Double
Division $D9 Integer Integer
$DA Real Integer
$DB Real Real
$DQ Double Integer
$DR Double Real
$DU Double Double
Exponentiation $E9 Integer Integer
$EA Real Integer
$EB Real Real
$EQ Double Integer
$ER Double Real
$EU Double Double
Multiplication $M9 Integer Integer
$MA Real Integer
$MB Real Real
$MQ Double Integer
$MR Double Real
$MU Double Double
Subtraction $sa Real Integer
$SB Real Real
$S0 Double Integer
$SR Double Real
$su Double Double

[N

Additional Library routines are provided for converting
between value types. Arguments are always passed to and
returned by these conversion routines in the appropriate
registers:

Logical in [A]
Integer in [HL]
Real in $AC

Double in $DAC

Name Function

$CA Integer to Real
$cC Integer to Double
$CH Real to Integer
$CJ Real to Logical
$CK Real to Double
$CX Double to Integer
$CY Double to Real
$C2 Double to Logical

Microsoft FORTRAN-80 User's Manual

Addendum to: SECTION 1
Compiling FORTRAN Programs

May, 1978

The following additions are to be made to Section 1
(Compiling FORTRAN Programs) of the Microsoft FORTRAN-80
User's Manual. :

Page 6
Add to Section 1.1.2 FORTRAN-80 Compilation Switches

Switch Action

M Specifies to the compiler that the generated
code should be in a form which can be loaded
into ROMs. When a /M is specified, the gen-
erated code will differ from normal in the
following ways:

1. FORMATs will be placed in the program
area, with a "JMP" around them.

2. Parameter blocks (for subprogram calls
with more than three parameters) will
be initialized at runtime, rather than
being initialized by the loader.

NOTE

If a FORTRAN program is intended for ROM, the programmer
should be aware of the following ramifications:

1. DATA statements should not be used to initialize RAM.
Such initialization is done by the loader, and will
therefore not be present at execution. Variables and
arrays may be initialized during execution via assign-
ment statements, or by READing into them.

2. FORMATs should not be read into during execution.

3. If the standard library I1I/0 routines are used, DISK
files should not be OPENed on any LUNs other than 6,
7,8,9,10. If other LUNs are needed for Disk 1/0,
$LUNTB should be recompiled with the appropriate
addresses pointing to the Disk driver routine.

Microsoft FORTRAN-80 User's Manual

Addendum tc: SECTION 1
Compiling FORTRAN Programs

May, 1978
Page 2

A library routine, $INIT, sets the stack pointer at the top
of available memory (as indicated by the operating system)
before execution begins.

The calling convention is:

LXI B,<return address>
JMP $INIT

If the generated code is intended for some other machine,
this routine should probably be rewritten.

Microsoft FORTRAN-80 User's Manual

Addenda to: SECTION 2
Linking FORTRAN Programs

May, 1978 !

The following additions are to be made to Section 2
(Linking FORTRAN Programs) of the Microsoft FORTRAN-80
User's Manual.

Page 11-12
Add to Section 2.1.2 LINK-80 Switches

/U and /M also print the origin and end of the program and
data area in addition to selected globals. Example:

DATA 100 200
PROGRAM 1000 2000

The érogram information is only printed if a /D has been
done. Otherwise, the program is stored in the data area.

Switch Action
N If a <filename>/N is specified, the

program will be saved on disk under
the selected name (with a default
extension of .COM for CP/M) when a

/E or /G is done. A jump to the start
of the program is inserted if needed
so the program can run properly (at
100H for CP/M).

P and D /P and /D allow the origin(s) to be
set for the next program loaded. /P
and /D take effect when seen (not de-
ferred), and they have no effect on
programs already loaded. The form is
/P:<address> or /D:<address>, where
<address> is the desired origin in
the current typeout radix. (Default
radix for non-MITS versions is hex.
/0 sets radix to octal; /H to hex.)
LINK~-80 does a default /P:<link origin>+3
(i.e., 103H for CP/M and 4003H for ISIS)
to leave room for the jump.to the start
address. If no /D is given, programs
load as usual, except the area base is

b

Microsoft FORTRAN-80 User's Manual

Addenda to: Section 2
Linking FORTRAN Programs

May, 1978
Page 2
settable. If a /D is given, all Data and
Common areas are loaded starting at the
data origin and the program area at the
program origin. Example:
*/P:200,FO0
DATA 200 300
* /R
*/P:200 /D:400,FO0
DATA 400 480
PROG 200 280
Page 13-14

Add to Section 2.3 Format of LINK Compatible Object Files

Loader type 9 is now in use; it is external + offset.

Tyre 9 has only an A field, there is no B field as pre-
viously documented. The value for type 9 will be added to
the two bytes starting at the current location counter.
This addition is done after a /E or /G is given, so unless
undefineds remain, the effect is external + offset.

This type can also be used to add program and data relatives

or almost any other combination of relocation types. The
assembler, however, only handles the case with externals.

Page 15

Add to Section 2.4 LINK-80 Error Messages

?0ut of Memory has replaced ?Fatal Table Collision

?<file> Not Found has replaced ?File Not Found. The
name of the file not found is printed.

$0Overlaying {g;ggfam] Area

A /D or /P will cause already loaded
data to be destroyed.

—

Microsoft FORTRAN-80 User's Manual

Addenda to: SECTION 2
Linking FORTRAN Programs

May, 1978
Page 3 !
?Intersecting Eg:ig;am] Area

The program and data area intersect
and an address or external chain
entry is in this intersection. The
final value cannot be converted to
a current value since it is in the
area intersection.

?Start Symbol - <name> - Undefined
After a /E: or /G: is given, the
symbol specified was not- defined.

[Above]

[Below] Loader Memory, Move Anyway (Y or N)?

Origin
After a /E or /G was given, either
the data or program area has an ori-
gin or top which lies outside loader
memory (i.e., loader origin to top
of memory). If a Y <cr> is given,
LINK-80 will move the area and con-
tinue. If anything else is given,
LINK-80 will exit. In either case,
if a /N was given, the image will
already have been saved.

?Can't Save Object File
A disk error occurred when the file
was being saved.

Page 15 -
Add Section 2.5 Program Break Information

LINK-80 stores the first free location in a symbol called
$MEMRY if that symbol has been defined by a program loaded.
$MEMRY is set to the top of the data area +1.

NOTE

If /D is given and the data origin is less
than the program area, the user must be sure
there is enough room to keep the program from
being destroyed. This is particularly true
with the disk driver for FORTRAN-80 which uses
$MEMRY to allocate disk buffers and FCB's.

K

5.

Microsoft FORTRAN-80 User's Manual
Addenda to: SECTION 3
The MACRO-80 Assembler

May, 1978

The following additions and corrections are to be made to
Section 3 (The MACRO-80 Assembler) of the Microsoft
FORTRAN-80 User's Manual.

Page 16
Add to Section 3.1.2 MACRO-80 Switches
/C is the Cross Reference Switch.

Page 17

Add to Section 3.3.2 Constants

e. Binary: Numbers consisting of a string
of binary digits (0's and 1's)
followed by a B. (e.g., 101011B)

Page 17

Correction to Section 3.3.3 Labels
Labels need not begin in column 1.

Page 17-18
Replace Section 3.3.5 Address Expressions with the following:

3.3.5 Address Expressions

An address expression consists of a name or a
constant or an address expression + or - an address
expression. An address expression uses the current
assigned address of a name or the 16-bit value of a
constant to form a 16-bit value which, after the
expression is evaluated, is truncated to the field
size required by the operator.

Page 18
Add to Section 3.3.7 Statement Form

Statements may begin in column 1.

Microsoft FORTRAN-80 User's Manual

Addenda to: SECTION 3
The MACRO-80 Assembler

May, 1978 '
Page 2

Page 18
Add Section 3.3.8 Expression Evaluation

Operator precedence during expression evaluation is as
follows:

Parenthesized expressions

HIGH, LOW

*, /, MOD, SHL, SHR

+, =~ (unary and binary)

Relational Operators EQ, LT, LE, GT, GE, NE
Logical NOT

Logical AND

Logical OR, XOR

The Relational, Logical and HIGH/LOW operators must
be separated from their operands by at least one space.

Byte Isolation Operators

The byte isolation operators are as follows:

HIGH Isolate the high order 8 bits
of a 16~bit value

LOW Isolate the low order 8 bits
of a 16~bit value

Example:
IF HIGH VALUE EQ O

The above IF pseudo-op determines whether the high
order byte of VALUE is zero. :

Relational Operators

The relational operators are as follows:

EQ Equal

NE Not equal

LT Less than

LE Less than or equal
GT Greater than

GE Greater than or equal

Microsoft FORTRAN-~80 User's Manual

Addenda to: SECTION 3
The MACRO-80 Assembler

May, 1978
Page 3

These operators yield a true or false result. They are
commonly used in conditional IF pseudo-ops. They must be
separated from their operands by spaces. Example:

IF LABEL1 EQ LABEL2

The above pseudo-op tests the values of LABEL1 and LABEL2
for equality. If the result of the comparison is true,
the assembly language code following the IF pseudo-op is
assembled, otherwise the code is ignored.

Page 18
Add Section 3.3.8 Opcodes as Operands

8080 opcodes are valid one-byte operands. Note that only
the first byte is a valid operand. For example:

MVI A, (JMP)
ADI (CPI)

MVI B, (RNZ)

CPI (INX H)
ACI (LXI B)

MVI Cc, (MOV A,B)

Errors will be generated if more than one byte is included
in the operand -- such as (CPI 5), (LXI B,LABEL1) or
(JMP LABEL2). .

Opcodes used as one-byte operands need not be enclosed in
parentheses.

Page 19
Add to Section 3.3.4 Define Word
Example:

DW 'AB'

Two-byte values are stored in memory in low order byte/high
order byte sequence. The ASCII code representation for
character B is stored, then the character A is stored.

On the object code listing however, the printout for all
two~byte valumes is in high order byte/low order byte
sequence, for easier reading.

Microsoft FORTRAN~80 User's Manual

Addenda to: SECTION 3
The MACRO-80 Assembler

May, 1978
Page 4

Page 22
Add Section 3.4.16 Memory Segment Specification

It is possible to specify that sections of a program be
loaded in absolute, code relative or data relative segments
of memory. The pseudo-ops are:

ASEG For loading in an absolute
segment of memory

DSEG For loading in a data relative
segment of memory

CSEG For loading in a code relative
segment of memory

One of the possible uses of these pseudo-ops is to specify
RAM and ROM segments of memory. The data relative segment
would be RAM, and the code relative segment would be ROM.

After an ASEG, CSEG or DSEG pseudo-op is encountered, all
following code is loaded in that area until a subsequent
ASEG, CSEG or DSEG pseudo-op is encountered.

If none of these three pseudo-ops is specified, the de-
fault condition is to load everything code relative.

Additional flexibility in relocating code is possible
through use of the ORG pseudo-op, which sets the value of
the appropriate program counter, For example:

DSEG Sets the data relative program
ORG 50 counter to a value of 50

TR e

C

Microsoft FORTRAN-80 User's Manual

Addenda to: SECTION 3
» The MACRO-80 Assembler

May, 1978
Page 5

NOTES

1. The Intel operands PAGE and INPAGE will
generate expression errors when used with
CSEG or DSEG pseudo-ops. These errors
are warnings; the assembler ignores the
operands.

2. In version 3.0 of the MACRO-80 Assembler,
references to a particular external symbol
may not be made in more than one memory
segment. For example, an external symbol
EXT1 might be referenced in the code
relative segment, external symbols EXT3,
EXT4 might be referenced in the data
relative segment, but none could be ref-
erenced in more than one memory segment.

Refer to Section 2, Linking FORTRAN Programs, to determine
how these segments are placed in specific areas of memory.

10.

Microsoft FORTRAN-80 User's Manual

Addenda to: SECTION 3
The MACRO-80 Assembler

May, 1978 :
Page 6

Page 24
Add Section 3.8 Cross Reference Facility

The Cross Reference Facility is invoked by typing CREFS80.

In order to generate a cross reference listing, the assembler
must output a special listing file with embedded control
characters. The MACRO-80 command string tells the assembler
to output this special listing file. An additional switch
has been introduced, /C, the cross reference switch. When
the /C switch is encountered in a MACRO-80 command string,
the assembler opens a .CRF file instead of a .LST file.

Examples:

*=TEST/C Assemble file TEST.MAC and
create object file TEST.REL
and cross reference file
TEST.CRF

*T,U=TEST/C Assemble file TEST.MAC and
create object file T.REL
and cross reference file
U.CRF.

When the assembler is finished, it is necessary to call the
cross reference facility by typing CREF80. The command string is:

*listing file=source file

The default extension for the source file is .CRF. The /L
switch is ignored, and any other switch will cause an error
message to be sent to the terminal. Possible command strings
are: :

*=TEST Examine file TEST.CRF and e
generate a cross reference
listing file TEST.LST.

*T=TEST Examine file TEST.CRF and
" generate a cross reference
listing file T.LST.

Microsoft FORTRAN-80 User's Manual

Addenda to: SECTION 3
The MACRO-80 Assembler

May, 1978

Page 7

Cross reference listing files differ from ordinary listing
files in that:

1. Each source statement is numbered.

2. At the end of the listing, variable names appear in

alphabetic order along with the numbers of the lines
on which they are referenced or defined.

FORTRAN-80

Overview

Microsoft's FORTRAN-80 package provides new capabilities for users
of 8080 and Z-80 based microcomputer systems. FORTRAN-80 is comparable
to FORTRAN compilers on large mainframes and minicomputers. All of
ANS! Standard FORTRAN X3.9-1966 is included except the COMPLEX data
type. —~Therefore, users may take advantage of the many applications
programs already written in FORTRAN.

Versions of FORTRAN-80 for the CP/M, 1S15-11, DTC Microfile and
MITS DOS floppy disk operating systems are available off the shelf.
Other versions will be prepared based upon user demand.

Relocatable Code and Library Features

FORTRAN-80 is unique in that it provides a microprocessor FORTRAN
and assembly language development package that generates relocatable
object modules. This means that only the subroutines and system rou-
tines required to run FORTRAN-80 programs are loaded before execution.
Subroutines can be placed in a system library so that users develop a
common set of subroutines that are used in their programs. Also, if
only one module of a program is changed, it is necessary to re-compile
only that module.

The standard library of subroutines supplied with FORTRAN-80
includes:

ABS IABS DABS AINT
INT IDINT AMOD MOD
AMAXO AMAX1 MAXO MAX1
DMAX1 AMINO AMIN1 MINO
MIN1 DMIN1 FLOAT IFIX
S1GN ISIGN- DSIGN DIM
IDIM - SNGL DBLE EXP
DEXP ALOG DLOG ALOG10
DLOG10 SIN DSIN cos
Dcos TANH SQRT DSQRT
ATAN) DATAN ATAN2 DATAN2
DMOD PEEK POKE INP
ouT

The library also contains routines for 32-bit and 6L4-bit floating
point addition, subtraction, multiplication, division, etc. These
routines are among the fastest available for performing these functions
on the 8080.

o

The
Standard:

1.

The

Enhancements

FORTRAN-80 compiler has a number of enhancements of the ANSI

LOGICAL variables which can be used as integer
quantities in the range +127 to -128.

LOGICAL DO loops for tighter, faster execution
of small valued integer loops.

Mixed mode arithmetic.

Hexadecimal constants.

Literals and Holleriths allowed in expressions.
Logical operations on integer data. .AND., .OR.,
.NOT., .XOR. can be used for 16-bit or 8-bit
Boolean operations.

READ/WRITE End of File or Error Condition trans-
fer. END=n and ERR=n (where n is the statement
number) can be included in READ or WRITE statements
to transfer control to the specified statement on

detection of an error or end of file condition.

ENCODE/DECODE for FORMAT operations to memory.

FORTRAN-80 Compiler Characteristics

FORTRAN-80 compiler can compile several hundred statements per

minute in a single pass and needs less than 24K bytes of memory to com-
pile most programs. Any extra available memory will be used by the

compiler

for extended optimizations.

In spite of its émali size, the FORTRAN-80 compiler optimizes the
generated object code in several ways:

1.

Common subexpression elimination. Common subex-
pressions are evaluated once, and the value is
substituted in later occurrences of the subex-
pression.

Peephole Optimization. Small sections of code are
replaced by more compact, faster code in special
cases. Example: [I=1+]1 uses an INX H instruction
instead of a DAD.

Eaat

W,

3. Constant folding. Integer constant expressions
are evaluated at compile time.

4. Branch Optimizations. The number of conditional
jumps in arithmetic and logical IFs is minimized.

Long descriptive error messages are another feature of the com-
piler. For instance:

? Statement unrecognizable

is printed if the compiler scans a statement that is not an assignment
or other FORTRAN statement. The last twenty characters scanned before
the error is dectected are also printed.

The compiler generates a fully symbolic listing of the machine
language being generated. At the end of the listing, the compiler pro-
duces an error summary and tables showing the addresses assigned to
labels, variables and constants. :

Assembler, Linker and Library Manager

A relocating assembler (MACRO-80), relocating linking loader
(LINK-80) and a library manager (L1B-80) are included in the FORTRAN-80

package.

The relocating assembler is compatibie with INTEL's assembler,
except MACRO capability is not provided. The assembler uses approxi-

mately 7K bytes of memory.

LINK-80, the relocating loader, resolves internal and external
references between the object modules loaded. LINK-80 also performs
library searches for system subroutines and generates a load map of .
memory showing the locations of the main program, subroutines and
COMMON areas. LINK-80 requires approximately 4K bytes of memory.

L18-80, the library manager, allows the user to customize libraries
of object modules. LIB-80 can be used to insert, replace or delete ob-
ject modules within a library, or create a new library from scratch.
LIB-80 commands can also list the modules in the library and the symbol
definitions they contain. LIB-80 requires approximately 4K of memory
and uses the rest of memory as a buffer for its editing operations.

Custom 1/0 Drivers

Users may write non-standard 1/0 drivers for each Logical Unit
Number, making the task of interfacing non-standard devices to FORTRAN

programs a straightforward one.

Future Extensions {
During the first quarter of 1978 MACRO capability will be added
to the assembler, and LINK-80 will be modified to handle overlays.
Support
FORTRAN-80 users will receive quick turnaround on bug fixes, and
new versions of FORTRAN~80 will be documented and distributed in an
expedient manner.
A Other Products
Microsoft's complete product line includes FOCAL for the 6502 and
6800, BASIC for the 6502 and 6800, and Altair (8080) BASIC. In addi-
tion, Microsoft has development software that runs on the DEC-10 for
all of these microprocessors.
Pricing

Single Copy Prices:

FORTRAN-80 system (including documentation) $500.00 (‘

FORTRAN-80, MACR0-80, LINK-80, LIB-80 manuals -
and system users guide $ 20.00

OEM and dealer agreements are available upon request.

For more information contact:

- - Steve Wood . . -
General Manager
Microsoft
300 San Mateo NE, Suite 819
Albuquerque, NM 87108
505-262-1486

—_

R e

SOFTWAIE SECTION

SOFTWARE REVIEW

licrosoft FORTRAN for CP/M

Review by Alan R. Miller, Contributing Editor

INTRODUCTION

Digital computers consist of many binary memory cells.
Each of these cells has only two possible states that can be

expressed as: TRUE or FALSE; logic 1 or logic 0; ON or

OFF; etc. Many different computer languages have been
developed to help programmers convert their ideas into this
fundamental binary code.

The programmer encodes concepts into a SOURCE
PROGRAM and then uses another computer program to
convert this source program into a binary OBJECT PRO-
GRAM that the computer can use. FORTRAN, COBOL,
PASCAL, and ALGOL are some of the common computer
languages that do this franslation.

Each type of computer language is especially suitable for a
particular task. A line of a FORTRAN source program such as:

“Z() = SQRT(X()**2 + Y()**2)

may be translated into many lines of computer instructions by
a compiler or interpreter. The source program is generally ma-
chine independent, so that a sorting program written in BASIC
will run on a 6800 microcomputer as well as on an 8080.

In contrast to these high-level computer languages,
assembly language is a low-level computer language that is
more difficult to use, but produces shorter programs that run
faster. And, unlike the higher-level languages, each line of
an assembly-language source program will generally pro-
duce one computer instruction. Besides being more difficult
to use, assembly language has another disadvantage. The
source program is usable only with a specific type of com-
puter. This means that a sorting routine written in 8080
assembly language will not run on a 6800 computer.

FORTRAN and BASIC languages are especially suitable
for mathematical calculations (compared to COBOL, e.g.,
which is useful for the handling of business records). These
high-level programs utilize a separate processing program to
convert the original, user-written source program into the
ultimate binary code needed by the computer.

BASIC source programs are commonly processed by a
BASIC interpreter that resides in the computer memory
along with the user’s original source program. Each line of
the source program is interpreted as it is encountered. Thus
if the instruction:

Y() = X

occurs in a loop that is executed 500 times, the same in-
struction is interpreted 500 times. Exceptions to this are
BASIC-E and CBASIC. For these programs, a preprocessor
first converts the source program into an infermediate pro-
gram, which is then used by a run-time monitor.

ADVANTAGES OF FORTRAN

FORTRAN works a litile differently. Each source program
is first compiled into a relocatable binary object program.
Then a linking loader program places the needed relocatable
modules info memory in such a way that they can be run by
themselves. No run-time monitor or interpreter need be pre-
sent. The advantages of FORTRAN compared to BASIC are
that less memory is required at run-time and the programs

172 INTERFACE AGE

. run faster (once they have been compiled) since only the ulti-

mate binary code resides in memory. BASIC requires an 8K
to 20K-byte run-time interpreter, as well as the original
source code, with all of its comments, to be present in mem-
ory. FORTRAN is faster since the source program instructions
don’t have to be converted each time they are encountered.

A third advantage of FORTRAN, the localization of vari-
ables, may be the most important of all. If a subroutine is
written to sort an array X of length N, it can readily be used to
sort the array Z of length M.

DIMENSION X(30),2(50)
LY
CALL SORT (Z,M)

CALL SORT (Z,M)
LI

SUBROUTINE SORT(X,N)
CIMENSION X{1)
.

RETURN

By contrast, all variables are global in BASIC. This means
that the array Z would have to be copied into the array X and
N would have to be changed to M before the sort routine
could be called a second time: :

10 DIM X(30),2(50)

20 M =50:N =30

60 GOSUB 1000 : REM SORT X
100 N =M

110 FORI=1TON

120 X(I) = Z()

130 NEXT | :

140 GOSUB 1000 : REM SORT 2 -
“ o .

1000 REM SORTING ROUTINE

And if the array X were needed later, it would have to be saved

by the first copying into another array. Of course, there could
be two sort routines, one for X and the other for Z, but this
solution seems fo be even worse.

Yet another advantage of FORTRAN s that there is a
wealth of software available in the mathematics and engi-
neering fields. For example, the IBM Scientific Subroutine
Package contains routines for statistical analysis, curve fit-
ting, and simultaneous solution of linear equations.

One of the greatest disadvantages of FORTRAN is that a
program cannot be debugged as easily as a BASIC program.
Typing a Control-C will stop a BASIC program while it is
running. The user can then print the current values of any of
the variables and even change the values. The program can
then be resumed with a CONT command. This potential
problem can be greatly reduced in FORTRAN, however, by
programming in modular fashion. Thus an input subroutine,
and output subroutine, a sort subroutine, etc., can each be
written, compiled, run, and debugged if necessary. These
modules can then be called by a main program when needed.

Another possible problem with. FORTRAN is that no
check is made fo see if array indexes are out of range. Con-
sider the following example:

MARCH 1979

I e

-nly the ulti-

uires an 8K”

ihe original
>ntin mem-
instructions
wcountered.
lion of vari-
broutine is
y be used to

This means
arry” > and
S0l tine

+ to be saved
there could
r Z, but this

t there is a
s and engi-
Subroutine
s, curve fit-
ns,
AN is that a
IC program.
n while it is
les of any of
irogram can
iis potential
however, by
sy utine,
“ar\aeth be
sary. These
hen needed.
is that no
range, Con-

VARCH 1979

DIMENSION X(103,Y(10)
Vi) = 5 '
X(11) = 8
WRITE (1,101) Y(1)
The value of Y(1) has been changed from 5 to 8. Y(1) was

initially set to 5, but the expression X(11) actually evaluates
to 11 locations past the start of X. In this case-it is also the ad-

dress of Y(1). This potential problem is present:in-almost all-

versions of FORTRAN, . :

-~ MICROSOET FORTRAN -

Microsoft, the organization that produced the MITS

BASICs, and the TRS Level 1l BASIC, now offers a disk- .

based FORTRAN for the 8080 and Z-80 microprocessors.
Versions are available for CP/M, Tektronix, ISIS-ll, DTC
Microfile, and MITS disk operating systems. A net memory
size of 24K bytes, in addition to the disk operating’system
(DOS}, is needed for the compiler. The CP/M version is
reviewed in this article, but the other versions appear to be
similar. The Microsoft CP/M version of FORTRAN is easily
implemented since it uses the CP/M DOS primitives for all
peripheral operations such as disk, console, list output, etc.

THE MANUALS

Three extensive and well-written manuals are provided

with FORTRAN-80:

1. FORTRAN Reference Manual
Language, grammar, and syntax

2. FORTRAN User Manual

a. Use of compiler

b. Run-time error messages
3. Utility Software Manual

a. Assembler

b. Linking loader

c. Library manager

d. Differences for versions

The total documentation runs for 152 pages and comes in
an aftractive and useful ring binder.

CREATING A FORTRAN SOURCE PROGRAM
FORTRAN source programs are generated and edited
with the regular CP/M context editor:
B>A:ED SORT.FOR

The default extension is FOR. ANS! Standard FORTRAN
X3.1966 is utilized except that there are no complex func-
tions. There are also some additional nice features that are
discussed later in this article.

‘ The standard FORTRAN line of 80 characters has the
ormat:

Column 1 - 5 Statement label, a decimal number
Column 7 72- Statement field
Column 72-80 Identification field

And if the statement.is too long:

Column 6 Continuation field (next line)
Column 7 -72 Contiuation of the statement

Comments can be placed between statements:
Column 1 The letter C
Column 2 -72 Text of the comment
USE OF THE ASCH TAB CHARACTER

The ASCI! tab {Control-l) can be used to speed up the typ-
ing and reduce the size of the source program. Enter the
label (line number) first (if any) starting in column 1. Then
type a tab followed by the FORTRAN statement. The com-
piler will interpret the tab as the equivalent number of spaces.

MARCH 1979

- substitute command,in the CP/M editor:

“{The tip-arrow means.that the control key is pressed.).

SOFTWARE REVIEW ~

Thus:

12 <tab> X = 4
has the same meaning as:
12 <6 blanks> X = 4

[f you have existing FORTRAN source programs that use
blanks instead of tabs, they can be converted by using the

TUBMSIL TiAZALAMZ

THE ORDERING OF SOURCE STATEMENTS’

For subprograms, the first line is a SUBROUTINE,
FUNCTION, or BLOCK DATA statement. The next group
of statements (and the first group for a main program) are the
specification statements. They -must appear before any exe-
cutable statements, and miist be in the following order:

" EXTERNAL, DIMENSION, REAL, INTEGER, ETC.
COMMON

EQUIVALENCE

DATA

The executable statements appear next:

A = SQRT(X*X + YY)
IF (I .LT. K) GOTO 28
sTOP

It is 'good programming practice to group the format
statements after the last executable statement (this will usu-

ally be a STOP or RETURN).

100 FORMAT(' PARABOLIC FIT’)
101 FORMAT(1P6E13.2)

The final statement in each program is:
- END

More than one program may be placed into the same file.
This would normally be done if there are subroutines used
only by one main program, or if one of the subroutines called
the others. On the other hand, generaly subprograms such
as a sort routine might be called by several different main
programs. These then should either be placed into separate
files, or combined with several similar routines into a ufility
library.

ADDITIONAL FORTRAN FEATURES

FORTRAN-80 adds some nice features to the standard
ANSI FORTRAN: '

. Logical variables

. Logical DO-loop indices

Mixed-mode arithmetic

ASCH strings in expressions

. Hexadecimal constants

. Logical operations

END= and ERR= in READ and WRIT
. ENCODE and DECODE :
. PEEK and POKE i

10. INP and OUT

FORTRAN considers variables starting with the letters 1
through N 1o be integers, and the others o be real, single-
precision variables. But this default mode can be over-ridden
with specific declarations. Variables can be explicitly declared
as one of four types:

CONOUTAWN=

LOGICAL 1 byte, with & value of TRUE or FALSE ora
number from -128 to 127

INTEGER 2 bytes, 32,768 to 32,767

REAL 4 bytes, 7+ decimal digits

10**-38 10 10**38
INTERFACE AGE 173

.. mum of one ASCII character per byte,

_foed-mode,arirhn\etic means that-an expression such as:

DOUBLE

PRECISION 8 bytes, 16+ decimal digits; same dynamic
range as REAL

There is effectively a fifth type of variable. Any of the above

four variables can be used as a STRING variable, with a maxi-

MIXED MODE-

Y=2*"A+3
is allowed, i.e., the decimal points are not needed on the 2

and the 3. Hexadecimal constants can be defined with either ’

an X oralZ:
" l=zFP and-
J = X'CO'

ASCII strings can be defined in three ways: in a data state-
ment, a replacement statement, or a FORMAT statement.

INTEGER TITLE(10)
DATA TITLE/'NON-",'LINE’,'AR C’, ‘URVE"," FIT"/
or
NO = ‘NO’
or
WRITE {1,101)
« s 0

101 FO}(MAT(‘PRESSURE VS. TEMPERATURE’)

The END = option makes it easy to read data without know-
ing how much there is. The statements:

READ(6,102,END =20)(A{l),1=1,99)
20 N=1-1

can be used to read values into the array A from logical
device 6 (a disk for example) until the end-of-file (EOF) mark
is encountered. Then the statement, labeled 20, sets the cor-
rect number of items read. (Since the EOF mark was also
counted, the total must be reduced by one.)

ENCODE and DECODE operations allow the interconver-
sion of ASCIl and numeric values, much like the VAL and
ASC functions of BASIC. PEEK and POKE allow memory
locations to be read or changed. INP and OUT can be used
to communicate with peripherals.

COMPILER THE FORTRAN SOURCE PROGRAM

At this point, the FORTRAN source programs have been
generated with the CP/M context editor, or copied to a disk
file from paper tape using the CP/M PIP program.

We also use a third method. IBM cards are read info our
campus central computer and saved on disk files there. A
telephone link is then established to our microcomputer us-
ing a modem. The FORTRAN files are transferred over the
telephone line into our computer memory sfarting at 100
HEX. The programs are then saved on a floppy diskette by
using the CP/M SAVE command.

It is possible, of course, to proceed this far without actually
having a FORTRAN compiler, since only the CP/M editor
has been used. You might want to do this in anticipation of
receiving FORTRAN if you have a large library of programs.

THE ACTUAL COMPILING
Source programs are compiled with the command:

F80 =SORT
or
A:F80 =B:SORT

if the compiler is on drive A and the source program is on
drive B. Several programs can be more easily compiled with
the command:

174 INTERFACE AGE

ppifesé tth

F80

* =SORT
*=C:PPLOT

* = B:CURVFIT
“we

In this case, the compiler prompts each new line with an

A Conjrol-C is-used fo indicate the end of the com-

file, the com

word $MAIN will also appear in the list during the compile
procedure.
The compiler produces a relocatable, machine-language

program with the same name as the source file, but with the

file type of REL. During compilation, two types of erfor mes-
sages may be printed: warning and fatal errors. A warning
might occur if a STOP statement were temporarily inserted
into the middle of a program during a debugging session:

WRITE (1,101) X

STOP

X=4
The compiler will discover that there is no way to reach the
statement X = 4 and so issues a warning message. Although
this is not a serious problem, the warning message can be

.avoided by adding the dummy statement:

100 CONTINUE

after the STOP statement.
A fatal error can.occur, for example, if there is an odd
number of parentheses in a statement:
Y = A* (B + LOG(C) .
In this case, it will be necessary fo correct the error using the
CP/M text editor, then recompile the program with F80.

A FORTRAN LISTING FILE

The FORTRAN compiler can be directed to generate a
listing file during the compile process. The switch /L is used
for this purpose.

F80 = SORT/L
This causes an additional file, with the extension PRN to be
produced. It contains the original lines of the source pro-
gram with the corresponding assembly listing of the gener-
ated code, inferspersed throughout.

The PRN file is useful in debugging a program. It can also
be used to increase the efficiency of a frequently used sub-
program. In this case, the program is first written in FOR-
TRAN, then compiled with the /L switch. Finally, the PRN
file can be used as a guide for writing a more efficient
assembly language program.

EXECUTING A FORTRAN PROGRAM

When all of the modules have been successfully compiled.
they can be executed with the linking loader:

L80 MAIN,SUBR1,SUBR2/G

where MAIN, SUBR1, and SUBR2 are the file names of re-
locatable files. (Each may contain several subroutines.) The
slandard FORTRAN library roufines such as ABS, ATAN.
EXP, SIN, etc., are located in a file named FORLIB.REL. If
FORLIB resides on the currently logged-in disk, it will be
automatically searched for the necessary programs. If, how-
ever, the user-written FORTRAN programs are on a different
drive from the FORTRAN processing programs, then the
process is a little more complicated. The drive names mus!
be included and FORLIB must be specifically listed if it is not
on the default drive. For example, the execution command
can be: : .
A>L80 B:MAIN,B:MATHLIB/G

MARCH 1979

{ are:several subprograms within'd single-: :
piterwill list the.hame of each’ subprogram a5t 15
.. encounters it. The filename need-not maich any of the sub-
program narnes. If the file contains a main program, the

©

ne

be
er-

so
1b-

:nt

GOFTWARE SECTION. |

< iRcase 180 and f“'()‘}(l@l&.}’aré onthecu
© A, or B

B>AL80 MAINMATHLIB A:FORLIB/S/G

if B is the default drive. Notice that-the filetype REL is not
entered.

The FORTRAN linking loader will automatically find all
necessary programs, relocate them in memory, then start ex-
ecution if the /G switch has been given. The /S switch im-

mediafely following FORLIB instructs the loader to.search
" “that library for the necessary routines and then load them into
*memory: If the /S switch is not given,:the enlire FORLIB .

library will be loaded into memory.
The absolute memory image can be saved as a disk file of

type COM if the /N switch is set. This will allow the program .

to be more quickly run. But the disadvantage is that the

COM file requires relatively large amounts of disk space.

OUTPUTTING THEDATA® - 7~ ’
At some point in the process, the programmer will want to

see at least some of the results of the calculations. This is ac-
complished in FORTRAN with a WRITE statement.

WRITE (LUN,101) <list>

where LUN is the FORTRAN logical unit number specifying
the particular peripheral, 101 is the line number of the for-
mat statement and <list> is a list of the variables to be written.

Logical unit numbers 1,3,4, and 5 are preassigned to the
system console. An LUN of 2 is preassigned to the list
device and LUN values of 5 through 10 are preassigned o
disk operations. Units 11 through 255 can also be used by
the programmer.

During the development of a new program, it would be ad-
vantageous to first view the results on the video screen of the
system console. This is accomplished by defining the LUN
in the WRITE statements to be 1. Then after-the program is
running satisfactorily, the output can be sent to the line
printer so a permanent copy can be obtained. There are sev-
eral ways in which this can be accomplished.

If the CP/M IOBYTE feature has been implemented, then
the program called STAT can be used to reassign the con-
sole output to the list device:

A>STAT CON:=LST:
When the FORTRAN program is executed again, the results
will appear at the line printer.

Another method would be to input the LUN from the con-
sole near the beginning of the program.

LUN =1
WRITE (1,101)
READ (1,102) NOYES
IF (NOYES .EQ. 'Y’ .OR. NOYES .EQ. ') LUN = 2
. . .
101 FORMAT(* OUTPUT TO LINE PRINTER? ')
102 FORMAT(AT)

This routine only looks at the first character that was entered,
ignoring the rest. Thus, inputting a YES, a Y or a YUP will
send the output to the line printer. Any other answer will
send the output fo the console.

" ABORTING A FORTRAN PROGRAM

Suppose that you would like to generate a stream of ran-
dom numbers so that the calculated values can be examined.

. Then at some point, you would like 1o stop. A Control-C can

be used to abort a BASIC program in this case, but FOR-
TRAN has no such option built in. The INP function provid-
ed by Microsoft, however, can be used for this purpose. The
following routine could be executed after every 100 loops. It
is written for a console status port of decimal 16, and a read-
ready flat at bit O, active high.

MARCH 1979

ogeEin diive .

SOF TWARE'. REVIEW;

INP(16)

RON
DONE = DONE .AND. 1
IF (DONE) STOP

DISK INPUT-OUTPUT
Both sequential and random-disk file access are available
in the CP/M version. FORTRAN logical unit numbers 6 to

10 have been preassigned for. this purpose. The FORTRAN - .
.'s_tafe,_ment: i SR B - .

T WRITE (6,101) (A= TiN) e 2

will place the data into a file named FORTOG.DAf of the cur-

rently logged-in disk.
Alternafively, a more specific method is available. The
command:

 CALLOPEN (6NEWDATARSC'2) | "

will open a file named NEWDATA.ASC on drive B and asso-

ciate it with logical unit number 6. The first argument defines
the logical unit number and must evaluate to an integer. The
second argument is the filename. Notice that it is not in the
usual CP/M format. In this case, the filename must evaluate
a string of exactly 11 ASCII characters and must not contain
the usual decimal point between the primary name and the
extention. The first eight characters are the primary name
and the last three characters are the file type. If the primary
filename is shorter than eight characters, as in the above ex-
ample, the remainder must be filled with blanks.

The third argument of OPEN specifies the disk drive, and
must evaluate to an integer. A zero value refers to the default
drive and the numbers 1 through 4 explicitly specify drives A
through D. Once a file has been opened, it can be read with
the command:

READ (6,102) (B(l),I=1,N)
If data is written to the file with the statement:
WRITE (6,105} A,B,C

then a new file is created. If a file of the same name already
exists, it is erased before the new data is written.
At the end of the disk access, the file should be closed with

the command: :

ENDFILE 6 or

REWIND 6
The latter command closes the file, then reopens it. This
could be used to write data in one format, then read it back in
a different format. (But see the ENCODE and DECODE
commands.) ’

ASSEMBLY-LANGUAGE PROGRAMS
FOR FORTRAN :

The Microsoft FORTRAN compiler converis the user’s
source program into a relocatable machine-language pro-
gram which is in turn converted into binary code. But the
resulting binary code may not be as fast or occupy as small a
memory space as if it had been originally written in assembly
language. The tradeoff is that the FORTRAN source pro-
gram can generally be writen and debugged much more
rapidly than if it had been written in assembly language.
Nevertheless, for short, frequently used ‘subroutines, it is
often advantageous to use assembly language rather than
FORTRAN.

The “Microsoft FORTRAN package contains a macro
assembler that produces compatible, relocatable modules
that can be called from FORTRAN programs in the usual
way. In fact, the programmer wilt not generally be concerned
with whether the relocatable modules were originally written
in FORTRAN or in assembly language.

INTERFACE AGFE 175

Anas urge tunction o
generate real random numbers can be
written, since such a routine is not pro-
vided in the standard library. The algo-
rithm, which appeared in the Octobes
12, 1978, issue of Llectronics is used
to generate a 24-bit integer (Listing 1).

The low-order 23 bits are copied into
the 3-byte mantissa of the FORTRAN
floating-poirit accumulator (at. $AC).
The 24th (high order) bit is.zeroed to

make the "resulting number. positive.

The 8-bit exponent is set to 80 HEX 1o
give a resulting range of 0.5 to 1.0.
The number is then converted to the
usual range of 0 to 1 by using the FOR-

TRAN arithmetic routines. The random.

number is first multiplied by 2 with the
subroutine $MA, then 1 is subtracted
with the subroutine $SA.

Notice that the subroutines $MA and

$SA are declared as external, as is the.

location of the floating-point accumu-
lator $AC. Also the subroutine name
RND, used by the calling FORTRAN
program, is declared to be an entry.
The assembly language random-
number generator can be called from a
FORTRAN program in the usual way:
Y = RND{NSKIP) .
A real random number between O and
1 wilt be placed into the variable Y. The
integer argument instructs the function
fo skip over NSKIP random numbers
before choosing the next number. This
argument can be retrieved with a MOV
AM instruction, since the H,L register
pair points to the least-significant byte
of argument.

THE LIBRARY MANAGER

The CP/M vesion of FORTRAN
contains a program called LIB that can
be used fo build library files of relocat-
able programs. For example, the relo-
catable module of the above random-
number generator can be incorporated
into FORLIB by use of the program
LIB. This makes it unnecessary to

-spedifically list the module RND in the

link command at execution time.

A SPEED COMPARISON

The Microsoft CP/M version of
BASIC is much faster than earlier ver-
sions such as 4.1 EXTENDED, and
also faster than many of the other 8080
or Z2-80 BASICs. A speed comparison
was made between Microsoft BASIC

.and FORTRAN by solving sets of linear

equations. The same algorithm, a
Householder technique, was coded in
both BASIC and FORTRAN. the
BASIC statement:
DEFINT I-N

was used to declare loop variables to be
two-byte integers for faster operation.
The FORTRAN program consistently
produced the solution 8 times faster
than the BASIC version (17 seconds
vs. 135 seconds for 14 equations).[J

176 INTERFACE AGE

FROG

00007

0000
0000

0000
0002
0003/
0005/
0008”
0009’
oooc”
000D
0010
0011/
00127
00137
0014~
0015
0018”
0019
oo1c’

oo1n’
00207
00217
00247
0027/
0024’
002B”
002¢7
002F”
0030
0031
00347
00367
0037
0038
003A”
003D
00407
0043/
0046

00477
00477
0048"
0049
0049
004A°
004E"

$AC
NEXTN

B1

on
Bi

9B
80

01

OF
0009

0049
0047

0019

2 0047

0049

2 0009

0000
0047

0048

0049
7F

80

0002
0000
0001
0000

0025%
0009~
0047

X

~ %~

$MA
WORD2
B2

4

RND! A FORTRAN-CALLARLE FLUNCTION
TO. BENERATE A RANIOM | :

. NUMBER FROM O TO .1 A
METHOD: ELECTRONT 0CT. 12, 1978
USAGE! X = RNIHNFASS)

NFASS IS THE NUMKER OF TIMES TO SKIF
FROGRAMMED RY ALAN R. MILLER
NEW HEXICO TECHs DRRO 87801
© TITLE | RANNOM-NUMRER GENERATOR
i
EXT ACTMAY$5A
ENTRY RND
i
RND' MVI Ryl $SET FOR ONE FASS
MOV ArM FGET ARGUMENT
ANT OFH JTAKE 4 RITS
Jz NEXTN §CHANGE O TO 1
HOV . ByA
NEXTN! LHLE WORDZ2 SHIGH 2
XCHG FEUT IN I
LHLED WORDL FLOW 2 RYTES
DAl H FSHIFT LEFT
MOV T AvE
RAL FEHIFT LEFT
MOV Eve
XRA L FFEEDNRACK
JP SKIP .
INX H
SKIFS SHL.It WORIIL. FHIGH 1 BYTES
XCHG
SHLI WORE? JHIGH 2 RYTES
DCR B FCOUNT
JNZ NEXTN RO IT AGAIN
‘LXT Hr$AC FFOINT TO FAC
LDA Rl $1.0W RYTE
MOV MsA FPUT IN FAC
¢ INX H
LDA B2 $SECOND RYTE
MOV Mrh
INX H
LDA B3 i
ANI 7FH SRIT 7 PLUS
MOV MrA FPUT INTO FAG
INX H
MUI MyBOH $SET EXPONENT
L.XI Hr2 .
CALL $HA PTIMES 2
LXI Hel
CALL $5A FSURTR 1
RET
[
WORDIL:
B1: j0:3 OLH
B2 DR OR1H;
WORN2:
B3 03] 9BH
E4! IR 80H
ENI
"003EX $SA 0044% RNl 00007
00497 WORDIL 0047¢ SKIF 0019
0048° B3 10049' K4 004A°

MARCH 1979

i s

