
Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215

SCIENTIFIC CALCULATOR SOFTWARE

The purpose of this software is to provide a fairly efficient
operating system for controlling the SUDING SCIENTIFIC CALCULATOR
INTERFACE offered by MINI MICRO MART.

The original software provided by Dr. Suding was too cumbersome
for me, and it required several hardware implementations that
I didn't want. So I wrote a new version that I think should
be able to run on any 8008 based system. The software has been
performing for several weeks flawlessly, and if no bugs have
crept into this documentation you should be in business.

The following are basic system requirements:
1) 8008 based microcomputer, 500 Khz clock (Mark-8,MIL-MOD,SCELBI etc)

2) Standard ASCII keyboard, (no lower case characters required).
Must have standard shift and Control characters.

3) SUDING SCIENTIFIC CALCULATOR INTERFACE. My port assignments
are INP 002, OUT 014 , but you may easily change that.
(they are located at 012160 and 012172).

4) 2K of RAM, preferably starting at 010000 . NOTE: program
may be placed in ROM, since all dynamic storage is external
to the program body. ROM version would use 6 1702 PROMS
(7 if you don't have Monitor-8). 1K of RAM is for USER's Program.

6) MONITOR-8 . This versatile Monitor is highly recommended!
Besides allowing you to run this software without modification,
it also makes the writing of your own software a fairly simple
thing. 	MONITOR-8 is available through MINI MICRO MART.
I am also going to soon make available a reduced version of
Monitor, called MONITOR-S8 which will contain JUST those monitor
routines needed to run the Scientific Calculator Software.
This MONITOR-S8 will accept parallel input at any speed up to
about 400 characters per second, and will deliver a parallel
output that is TVT-II compatible (maximum speed 450 characters
per second). 	For those persons who use a TTY instead of a TVT,
I will include instructions on changing the timing constants
in the program so that the parallel output is reduced to a
maximum of slightly less than 10 characters per second. This
will allow you to use a UART to assemble a serial output for
TTY use. (the same UART will take serial TTY and present
parallel input port with parallel data, or an electronic keyboard
can be be wired in directly, since it is already parallel.)
For users of MONITOR-8 who would like parallel I/O I will be
making available a program that can reside in ROM and overlay
the first 128 words of MONITOR. Besides parallel I/O , it will
allow Cassette routine to be called as a RST 010 (a function
that was deleted in the ROM version of MONITOR, but which I
have replaced.)

Bro. Thomas McGahee

SYSTEM INITIATION: Starting address is 010200. This will cause
an ERROR message to be printed, and then Controller will print
the Option Taule R/L/P: 	This gives you three choices 1)
RUN the program. 2) LIST the program for verification. 3) PROGRAM.
This allows program to be written and corrected.

PROGRAM: To write a program keep the following in mind:
CTRL/A = a return to MONITOR-8
CTRL/R = the same as a simple Carriage Return
CTRL/S = Single-Step. This is for program correction see below.)
CTRL/X = EXIT. Causes a return to Controller.

CR = A CR (Carriage Return) will cause BOTH a CR and a LF.
LF = A simple Line Feed.

DELETE (also called BACKSPACE or RUBOUT) = Backspace and print \.

If a mathematical function/numeral is entered, it will be printed
in PROGRAM and LIST modes, but in RUN mode it will be executed
but not printed... that is, unless ! is in use: see below.

! Causes program steps enclosed between I's to be BOTH Printed
AND executed during RUN. (It is sort of like a quotation mark
for functions and numerals.. it is extremely useful!).

" Serves to allow the user to insert text into the program.
Anything within quotes is simply quoted back during RUN. Note
that CTRL/A , and CTRL/X cannot be inside quotes, and neither
can & , since these have IMMEDIATE application during PROGRAM
mode. Note also that while CR during PROGRAM will give BOTH
CR and LF, if it is inside quotes it will ONLY give a CR during
run. CTRL/R has NO meaning during RUN if it is INSIDE quotes.
ALL other characters/codes are VALID inside quotes. NOTE that
quotes MUST be closed BEFORE you type & , since this character
indicates the END of your program.

SPACES follow this rule during PROGRAM: They are OPTIONAL and
may be freely used and intermixed, EVEN between successive
digits of a numerical entry. However, they MUST be present
after ANY MULTI-KEY FUNCTION entry is complete. In this special
case the space itself is used as an identifier to signal the
end of the entry. (This feature allows you to use Mnemonics
LONGER than two characters. For instance, SI , SIN , SINE ,
SINEWAVE , and SIPFQTWITHABANANA are all interpreted by the
ALPHA-Decoders as the SIne function. Note that a dash is also
OK allowing SINE-OF-THE-NUMBER to be interpreted as SIne. AND,
if you are using a TVT with computer cursor control, then you
can even get a pseudo-space by plugging in a Cursor-Right command!)

NOTE: In some parts of the program I have caused spaces to be
interpreted as calculator NOP's. This prevents their accidentally
causing a ruckus during certain rather devious and involved
routines .

Bro. Thomas McGahee

$ Signifies that you want the program to loop back to the
beginning . Combined with M+ and RCL , this can be used to
cause incrementing and cecrementing runs. ALWAYS follow this
character with a &.

& 	This is the character which indicates the. END of the program.
EVERYTIME this is encountered you will IMMEDIATELY be returned to
Controller. (Note that if it is preceded by $, then during
RUN it will NEVER be reached because the program keeps looping
back to the beginning. The only way to get out of a loop is
via your computer controls. (A panel-induced HLT, or pressing
the TTY RESTART pushbutton on MIL-MOD systems.)

? Signifies you desire EXTERNAL INPUT.
of variables via the keyboard at various
program. Use a ? at EACH place you want
(See RUN section for more information on
One note: a SPACE is used as the terminator. Since ALPHABETIC
codes such as SINE require a space just to indicate the end
of the entry of the particular function, then it is plain that
if you are inputting a Multi-Key function ONE SPACE alone will
not terminate External Input, but TWO SPACES will. This allows
you to CHAIN input complex variables under certain circumstances.

CTRL/ Characters other than CTRL/A and CTRL/X may be freely
mixed ANYWHERE in the program, EVEN between successive digit
entries of a single number. PLEASE NOTE that a CR IS NOT NOT NOT,
I REPEAT, IS NOT a space, and is therefore NOT a valid term ator
for multi-key functions. This was done on purpose, to allow a
rather free formatting ; but is a pitfall for the unwary, who
naturally assumes that if he has completed a line he has terminated
a function. NOT SO, my dear friend.

@ Is a rather odd character, and has a correspondingly weird
function. Since much of your program may be stuff that will not
be echoed during execution, and since ALL CTRL/ characters ARE
echoed during execution, now do we avoid CR/LFs being printed
during RUN, when we ONLY needed them during PROGRAM and LIST ???
Simple. We present you with @, the pseudo-CR/LF !!! It is printed
and then executed as a CR/LF during PROGRAM and LIST, but during
RUN it is completely ignored, even if it is between l's.

NOTE: it is good practice to either include CL CL M+ at the
beginning of each program to insure all registers are ZERO, OR
(if you are doing an incrementing run where this would mess
things up), BEFORE writing the Main program, write CL CL M+ &
as a simple program. Run it once, and all registers are cleared.
Now you can write your incrementing program secure in the
knowledge that it will not start off in some WEIRD place.
Of course, a STARTING constant could also be loaded by M+,
but don't forget to CLear clear FIRST. -Pla. CL CL M+ 45 M+ CL &
will clear X and store your starting constant,45.

This allows the entry
points during the
variables to be input.
using this option).

Bro. Thomas McGahee

CTRL/S This allows you to SINGLE-STEP through your stored
program. It does not execute anything (unless a & is
encountered, which will cause a return to Controller).
Each time CTRL/S is depressed, one stored character will be
retrieved and printed, and the Pointer address adjusted.
Due to the routines used to implement this function you
should not attempt to enter CTRL/S's at a rate faster than
3 or 4 per second. 	You may think of this as a sort of
skip-forward command. For instance, if you BACKSPACE twice
and then decide you don'',; want to change anything, hitting
CTRL/S twice will bring you back to where you originally
were, with all original data retained. CTRL/S and DELETE
together comprise a simple but rather effective means for
modifying a program on a one-to-one basis.

NOTE CTRL/S and CTRL/X are NEVER stored in user program, since
they are all interpreted IMMEDIATELY.

CTRL/X Causes your IMMEDIATE EXIT from programming. Controller
will re-type option list. CTRL/X is IMMEDIATE, and it may be
used to get out of the middle of a program after doing a modify
to the beginning of a program, for instance. 	(Internally
the software also uses CIRL/X as a do-nothing character. We
make this character serve double-duty in this fashion.)

DELETE(Backspace or Rubout) Causes a double-decrement of the
Pointer address, and prints as a\ . (If you use a TVT, you
may wish to make this actually move the cursor back one space).
Delete may be pushed as many times as you want, provided you
do not backspace MORE characters than you have in your program!
Delete does not really delete, but it DOES move you memory-
wise back one slot, allowing you to REPLACE the character already
stored there. See CTRL/S details for more information.

CR Will get you both CR and LF. This is for operator convenience.

CTRL/R can be used to get ONLY a CR , if this is desired.

LF will generate a single Line Feed .

The next page will discuss functions available.

Bro. Thomas McGahee
	 E

FUNCTIONS AVAILABLE: The following functions are available to
the user of this software:

apostrophe = a calctlator NOP.
left-hand parenthesis. (two levels allowed)
right-hand parenthesis (two levels allowed)
multiplication
addition
comma = a single-key implementation of EEX
subtraction (do not confuse with a negative SIGN. See CHS)
decimal point
division

(=) 	Causes answer to be found, AND causes printing of the answer.
(>) DISPLAY the contents of the X register.

The following MULTI-KEY FUNCTIONS MUST consist of AT LEAST
the first two characters shown for each. More than two characters
are allowed, but all COD:NG is performed on the first two
characters. A SPACE MUST follow the entry of the function code:

E.G. 45 SINE * 2 	is 1.414 	but 45 SINE*2 is .707 since
SINE*2 is seen by software only as SI .

Note that spaces are NOT required after single-key functions,
so 45SINE *2 	is 1.414

ARC (For getting the reciprocal transcendenatl functions)
COS (COSine)
CHS (used for entering negative mantissas and exponents)
CLR (CLears X) (can also clear all registers except Memory).
DGR (selects degrees or radians mode)
EEX (allows entry of signed exponent)

EtX (ex)
LOG (Log10)

LN (ln 	the natural log)

M+ (add to Memory)
NOP (calculator NOP does nothing but idle the calculator)
NI (N Factorial)
PI (3.141592 etc.)
RCL (ReCLaim memory)
REC (RECiprocal 	1/x)
SIN (SINe)
STO (STOre X in Memory)

Continued on next page...

Bro. Thomas McGahee

SQT (SQuare rooT)
TAN (TANgent)

TtX (Ten to the X... 10m)

X4--Y (EXChange X and Y)

Xt2 (x2)

ytx (Yx)

NOTE that no DSP DiSPlay code is given, since this function
requires special handling to cause it to print the contents
of the X register. It has been implemented as a single-key()0)code.

NUMERALS:

0
1
2
3
4
5
6
7
8
9

NOTE that since spaces may be freely inserted in program,
an entry like 1 23 4 56 is interpreted as 123456. A number
is terminated, or specified completely only when it is followed
by a single-key function or a multi-key function. This means
that CTRL characters and spaces do not terminate numerical entries.
E.G. 	11 1 1* 	2 . 00 = 2222. 	This allows you to
give a CR/LF even in the middle of a numerical entry , which is
helpful at times.

LIST: this routine will cause the program you have written to be
listed exactly as it was entered. This allows you to confirm
that it has been correctly programmed and entered. When the &
is encountered, there will be a return to controller. (A return
to controller means that the option list is printed out).

Bro. Thomas McGahee

RUN: This routine will cause your program to be executed.
IF the software finds any blatant errors, such as a multi-key
function that does not exist, you will get an error message
and a return to controller. Thus if software encounters the
function GOBARF, it will print ERROR! R/L/P:

More subtle errors on your part will simply result in GARBAGE.
Remember the old computer axiom: GARBAGE IN/GARBAGE OUT.

Perhaps the most common errors you will encounter will be:
Not having a space after a multi-key function...
Placing & INSIDE quotation marks...
(An insidious form of this error is only using ONE quotation
mark...resulting in the & effectively being in quotation marks!)...
Failing to CLEAR calculator at places where you SHOULD clear it.
Printing stuff you didn't want printed because you forgot to
stop echo with a second ! indicator.

Then too, to properly use this software you MUST know the
constraints of the MOS Calculator chip itself. READ the calculator
manual through thoroughly SEVERAL times. Most complex
equations you will wish to solve will have to be re-written in
a form the calculator chip can digest. Remember that the
software is really a glorified extension of the calculator's
usual keyboard. (With extras, such as memorizing all the steps,
printing them, and allowing textual messages, of course).
If what you are doing would be wrong if done on the calculator
keyboard, then don't blame the software when it prints out
garbage!

? is a powerful character, allowing external variable input.
Note that it allows more -,han just the entry of simple numbers,
though!! for instance, in response to a ? you could input the
following: 45SINE SQT REC *2 	which will enter the value
equal to 	=

NIsME45`
You may even request to see the value you are inputting, by
simply including = followed by a space as your last input !!
E.G. in response to a ? 	2*3= (space) would cause 6. to be
printed, indicating that you entered 6.

One caution here: how far you can go in entering complex
functions in a chained fashion is dependent on what is in
the program PRIOR to the ? . Go too far and you may inadvertantly
destroy a necessary previous answer stored in the calculator's
working registers. You have to know each individual program
to know how far you can go before you will create problems.
Again, though, this is a factor dependent on the calculator's
capacity, and not that of the software.

Bro. Thomas McGahee

Just a few words concerning the OUTPUT, the ANSWERS generated
by the co#bined Calculator and Software:

Answers can contain UP TO 8 digits in the mantissa, including
a decimal point which is floating. In addition there can
be a sign preceding the mantissa, a sign preceding the exponent,
and a two-digit exponent.

When doing up the software I decided to eliminate leading and
trailing zeroes in a manner similar to that followed by the
calculator itself. The result is a variable-length answer.
For example, the following are typical answers:
1.
123.405
22.345 45 	Note that a space always separates mantissa and exp.
-24.034
-123.45 -32 	here both mantissa and exponent have negative signs.

FO. 	the F is an ERROR indicator for overflow/underflow.

Because each answer MAY have an exponent printed, it is a good
idea to insure that there is adequate spacing between inter-
mediate answers in a program. 	For example,
1.234 2 	2.456 3 	is much easier to interpret than
1.23422 2.456 3 	which is too closely packed.

Software insures that EACH mantissa is followed by a printed space.
Even where no exponent is found, this space will still be printed.
However, there is no built-in safeguard at the end of the
exponent, and you might inadvertently run two numbers together:
you can spot this sometimes, but it is best to build adequate
spacing into your programs as you write them.

One further caution. The program runs at a reasonable speed,
however some operations require all sorts of JMPS, CALS, etc.,
and this coupled with the fact that we have to STALL while
entering functions to the rather slow calculator chip can mean
that you may over-speed on entering input. The only places that
I have actually experienced this is when using CTRL/S , and
when entering data in response to a ?. Three or four characters
per second is easily handled, but more than this and you may
get Garbage. The best thing to do is to find out what IS the
maximum speed YOUR system will accept CTRL/Sts and External
Input, and just be aware of this speed limitation.

Bro. Thomas McGahee
	

I

SAMPLE PROGRAMS (Just to show a couple of the functions off
to good advantage).

Underlined stuff is Computer-generated response.

ERROR!
R/L/P:P
CL CL M+ 10 M+ &
R/L/P:L
CL CL M+ 10 M+ &
R/L/P:R

(there is a slight pause as this silent program is executed,
R/L/P:P 	 setting Memory to 10)
CL 1 M+ CL RCL >" SQUARED IS " Xt2 !=! $ &
R/L/P:R
11. SQUARED IS =121.
12. SQUARED IS =144.
13. SQUARED IS =139.
14. SQUARED IS =196.
15. SQUARED IS =225.

and output will continue until interrupted by RESTART signal
(in the case of my MIL-MOD-8).

Note that there is an AUTOMATIC CR/LF generated as soon as the
$ is encountered. This is built right into the software as
part of the initialization routine.

ERROR!
R/L/P:P
CL CL " VARIABLE A ”9 !*!" VARIABLE B 	IS "!=!&
R/L/P:R
VARIABLE A 23*2/3> 15.333333* VARIABLE B 2 IS =30.666666

R/L/P:
Note that in this example the ? caused the calculator
to wait for external input terminated by a space, and
in the case of variable A it accepted 23*2/3) 	, gave
us its value, used this as one variable, accepted the
second variable (2), and gave us the product of our
two variables.

Incidentally, whole gobs of things may be included inside !'s,
even things like 	!CL 2*3 SINE SQT 	= " HELLO " *5=!
which prints as:
CL 2*3 SINE SQT 	=.3233086 HELLO *5=1.616543

The examplesI gave are very simple (and even stupid), but I
hope they demonstrate some of the principles.

Bro. Thomas McGahee

CONCERNING THE SOFTWARE ITSELF...

This is not an optimum implementation of my original ideas
concerning a complete Scientific Calculator operating system.
Among other things, as the program grew I saw places where I
could improve certain subroutines so as to provide the operator
with greater programming freedom and versatility. In expanding
a program which was already pretty far along, I took the easy
way out, and instead of re-structuring the whole thing from
beginning to end, I simply shuffled some sections around, made
a few changes here and there, and threw in a couple of 'patches'
where all else failed. Re-writing would not really save much
memory...definitely not enough to coax me to taking that course

On the other hand, I realfLze how disgusting it is to get your
hands on some software only to find that you can't make heads
or tails out of what is going on. For this reason I have gone
to great pains to clearly and completely document the software
itself. In 98% of the software I have placed the functional
description next to the instruction it explains. Wherever it
was possible I have noted where the program is coming from
when it suddenly has another part of the program calling it or
jumping to it. 	All major routines and subroutines are clearly
indicated by an asterisk. Further, I am including a listing
showing where all LHI and .LMI DATA is located, since many persons
may want to re-code this software to run in Banks other than
that which I have written it for. To TRANSLATE this software
to another set of Banks, you have to translate the JMP and CAL
Banks (This includes all classes of JMP and CAL instructions,
for instance JFZ, JFC, JTZ, JTC, etc...). IN addition those
LHI and LMI instructions that are used to set up memory for
storing and retrieving data. and codes, must also be translated.
So here's the information you may need:

Locations 010000 - 010177 contain mostly Octal DATA and cannot
be loaded using Symbolic input. Use Monitor LDO routine.

Load symbolics from 010200 - 012370

Starting Address is 010200 	or you may use 010211.

MONITOR uses 013350 - 013377

User's program storage area is from 014003 on,

012370 - 013350 is available for user patches to tailor software
to their own needs, however, note that my MONITOR-S will use
locations 012370- 013250 .

Note that RAM must be available from 013350 on, but all prior
software could easily be put in PROM since it never changes.

110001. at 012172, Gf" 0 OT 014 at 012160

Bro. Thomas McGahee
	

K

LHI 	DATA is

data Address

01 0201 010
010212 012
010301 014
010312 014
010354 014
011070 014
011102 014
011240 010
011321 014
01 2004 010
01 21 50 010
012207 014

stored at the following places:

for

error message
controller message
Pointer
Pointer
Pointer
Pointer
! Status
single-function code storage
! Status
Alpha-code storage
digit decoding
restoring H for Increment Pointer routine

LMI data is at only one place: 010310 	014 	Pointer

MONITOR-8 routines are called as follows:
Monitor address 	called from
000020 011372
000016 011053
00001 3 010040
000013 011046
00001 3 010275
00321 7 012007
000332 010355
000030 011357

ROUTINES and SUBROUTINES 	and other major points of interest

* Digit Codes are scattered from 010000 - 010040
* Text of ERROR MESSAGE is stored from 010023 - 010032
-- Carriage Return/Line Feed parch from 010041 - 010046
* Codes for Single-Key Functions are stored from 010047 - 010071
* Multi-Key Function codes are stored from 010072 - 010176
* Routine to call error message is from 010200 - 010210

(010200 is our usual starting address)
CONTROLLER is from 010211 - 010255
TEXT STRING is from 010256 - 010274
(User may wish to add more specific error messages using this
routine to output the text.)

INITIALIZE POINTER 010275 - 010310
this routine continues on into next routine

INCREMENT POINTER 010311 - 010325
LIST 010326 - 010346

l3ro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215
	

I

BANK BYTE OCTAL MNEMONICS 	 FUNCTION

010 000 	270 	Digit code for 8

001 	000 	not used

002 	306 	Digit code for (F) ERROR

003 	266 	Digit code for 6 	/ A routine at 012134

004 	271 	Digit code for 9 	/uses the codes

005 	264 	Digit code for 4 / generated BY the
006 	265 	Digit code for 5 	/ calculator chip
007 	000 	not used 	 / to recover the

010 	262 	Digit code for 2 	/ ASCII codes stored here.

011 	000 	not used

012 	000 	not used

013 	000 	not used

014 	263 	Digit code for 3

015 	000 	not used

016 	000 	not used

017 	255 	Digit code for (-) negative sign
020 	260 	Digit code for (0) zero

021 	000 	not used

022 	306 	Digit code for (F) ERROR

023 	215 	CR (carriage return) / This is the
024 	212 	LF (line feed) 	/ ERROR MESSAGE which
025 	305 	E 	 / is printed whenever
026 	322 	R 	 / any error is detected
027 	322 	R 	 / by program.
030 	317 	0 	 / See 010200 for
031 	322 	R 	 / more details.
032 241

033 	000 	not used
034 	267 	Digit code for 7
035 	261 	Digit code for 1
036 	000 	not used
037 	230 	Digit code for a BLANK (this is a CTRL/X,

which is a non-printing character.)

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215

BANK BYTE OCTAL MNEMONICS 	 FUNCTION

010 	040

041

042

043
044

045
046

000

106

013

000

016

230

007

Calculator NOP (caused by a space during RUN)

CAL 000013 	/ Called by 011140 in response to

/ a CR .. gives both CR and LF

LBI 230. 	/ then B is loaded with a non-printing

/ CTRL/X

RET 	/ and then we return 	(to 011143).

047 000 (') Apostrophe is a calculator NOP

050 050 (Left-hand parenthesis

051 051) RLght-hand parenthesis

052 044 * Multiplication

053 042 + Addition

054 054 (,) Comma is the same as EEX
055 043 (-) Subtraction 	(NOT a negative SIGN)(See CHS)
056 041 (.) Decimal point

057 045 (/) Division

060 021 0 (Zero) 	/ From 010047 to 010071
061 022 1 	 / are stored the SINGLE-KEY
062 023 2 	 / FUNCTION CODES.
063 024 3 	 / Access to these codes
064 025 4 	 / is controlled by the
065 026 5 	 / "Single Function Decode"
066 027 6 	 / found at 011237.
067 030 7 	 / Note that numbers and
070 031 8 	 / operations are handled
071 032 9 	 / the same way.
072 301 A 	 / The MULTI-KEY FUNCTIONS
073 322 R 	 / such as Sine, Cosine, etc.
074 033 ARC code 	/ are stored from. 010072
075 303 C 	 / to 010176. 	They are stored
076 317 0 	 / in a THREE BYTE TABLE format.
077 062 COS code

Bro. Thomas McGahee 60 South Sixth St. Columbus, Ohio 43215
	

3

BANK BYTE OCTAL MNEMONICS 	 FUNCTION

010 100 303 C 	 / Access to these codes

101 310 H 	 / is controlled by the

102 053 CHS code 	/ "Alphabetic Function Decode"

103 303 C 	 / or the "External Alphabetic

104 314 L 	 / Decode" when these call

105 074 CLR code 	/ the "Three BYTE Search"

106 304 D 	 / located at 012C)01.

107 307 G

110 072 DGR code 	/ The first two characters

111 305 E 	 / specify the function. Other

112 305 E 	 / characters do not affect

113 054 EEX code 	/ the coding.

114 305 E

115 336 tA
116 104 E T X code 	/ NOTE: t 	(up-arrow) denotes

117 314 L 	 / exponentiation. On TTY it

120 317 0 	 / prints as an up-arrow,

121 065 LOG code 	/ and on TVT it prints as " .

122 314 L 	 / The up-arrow is a SHIFT N

123 316 N 	 / character. 	IF you prefer

124 064 LN code 	/ you may use ** for denoting

125 315 M 	 / exponentiation. Simply

126 253 + 	 / replace 336 code with

127 070 M+ 	code 	/ the * 252 code at the

130 316 N 	 / following locations:

131 317 0 	 / 010115 	010164 	010172 and
132 000 NOP code 	/ 010175.

133 316 N

134 2141 1 	 / NOTE: the Display code has

135 105 NI 	code 	/ been implemented as > , a
136 320 P 	 / single-key function, 	instead
137 311 I 	 / of using a multi-key mnemonic.

(> is a SHIFT PERIOD (.) character)

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215 	14

BANK BYTE OCTAL MNEMONICS 	 FUNCTION

010 140 052 	PI code (W)
141 	322

142 303

143 	067 	RCL code

144 322

145 305
146 	101 	REC code (RECiprocal)

147 	323 	S 	 / 1/x would not be a proper

150 	311 	I 	 / alphabetic code, so I

151 	061 	SIN code 	/ arbitrarily chose REC

152 	323 	S 	 / as my mnemonic.

153 324
154 	073 	STO code (STOre)
155 323
156 	321
157 	066 	SQT code (SQuare rooT)
160 324
161 	301 	A
162 	063 	TAN code
163 324
164 336
165 	103 	Tt X code (1014 X ...Ten to the X power)
166 	330 	X 	 / The left-arrow at 010167
167 	337 	4- 	 / denotes the EXCHANGE function.
170 	071 	X4-Y code 	/ The left-arrow is a SHIFT 0
171 	330 	X 	 / which prints as a (_) on a
172 	336 	T 	 / TVT. A good alternate mnemonic
173 	102 	X t 2 code 	/ would be EXChange which
174 	331 	Y 	 / would code 305..330..071.
175 336
176 	046 	Y t X code
177 	000 	not used

Bro. Thomas McGahee 	80 South Sixth St. 	Columbus, Ohio 43215

BANK BYTE 	OCTAL 	MNEMONICS 	 FUNCTION

010 	200

201

202

203

056

010

066

023

LHI 010

LLI 023

* ERROR MESSAGE

/ We set the memory address to

/ 010023 , the start of the

/ error message.

204 046 LEI 032 / E defines the END of the message

205 032 / which is at 010032.

206 106 CAL 010256 / Then we call our TEXT STRING

207 256 / routine which prints the message

210 010 / and then we continue into Controller.

211 056 LHI 012 * CONTROLLER

212 012 / We set the memory address to

213 066 LLI 224 / 012224 , the start of the

214 224 / Controller message 	(R/L/P:).

215 046 LEI 234 / E defines the END of the message

216 234 / which is at 012234.

217 106 CAL 010256 / Then we call our TEXT STRING

220 256 / routine to print the message.

221 010

222 106 CAL 011357 / Now get character from Keyboard.

223 357

224 011

225 074 CPI 241 / If the character is a space OR

226 241 / ANY CTRL character
227 140 JTC 010222 / then go get another input.
230 222 / 	(this allows Home and Erase
231 010 / when using a TVT).
232 300 LAA (NOP)
233 300 LAA 	(NOP)

234 074 CPI 320 / If we have a P
235 320

236 150 JTZ 010371 / jump to PROGRAMMER at 010371.
237 371

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215 	6
BANK BYTE OCTAL MNEMONICS FUNCTION

010 	240 010

241 074 CPI 322 / Of course, 	if it was an R

242 322 / then we would

243 150 JTZ 011064 / jump on over to RUN

244 064 / which starts at 011064.

245 011

246 074 CPI 	314 / Then again, an L

247 314 / would compel us to

250 150 JTZ 010326 / visit the LIST routine

251 326 / which starts at 010326.

252 010

253 1014. JMP 010200 / ANY other character is a mistake,

254 200 / so we jump to ERROR, and from

255 010 / there go to CONTROLLER again.

256 317 LBM * TEXT STRING

257 106 CAL 011372 / Get a stored character into B

260 372 / and call the routine to print it.

261 011

262 304 LAE / Load A with E (END)

263 276 CPL / and compare this with the low order

264 053 RTZ / memory address. Return if they match.

265 060 INL / If they don't match, increment L
266 110 JFZ 010256 / and if there is no carry to worry
267 256 / about, then jump back to get
270 010 / more characters from storage.
271 050 INH / On a carry we increment H
272 104 JMP 010256 / and then jump back to get
273 256 / more stored characters.

274 010

275 106 CAL 000013 * INITIALIZE POINTER
276 013 / So as not to be slobs, we always
277 000 / start with a CR and a LF.

3ro. Thomas McGahee X30 South Sixth St. Columbus, Ohio 43215 	7

BANK BYTE OCTAL MNEMONICS FUNCTION

010 300 056 LHI 014 / The Program Pointer is in RAM:

301 014 / the Low order is at 01 14001 	,

302 066 LLI 001 / and the High order is at 014002.

303 001 / We initially store adress 014001

304 076 LMI 001 / in the Pointer, but it will be

305 001 / incremented twice before anything

306 060 INL / is stored: 	Program storage, then,

307 076 LMI 014 / is from RAM 01 003 and on.

310 014

311 056 LHI 014 * INCREMENT POINTER

312 014 / We set the memory to the Pointer

313 066 LLI 001 / address 	(014001), Low order.

314 001

315 106 CAL 000315 / Then we call the MONITOR-8 routine

316 315 / to increment the address stored

317 000 / AT the Pointer location(s).

320 106 CAL 012205 / Call the patch to restore H & L

321 206 / to the Pointer location.

322 012 / (I hate patches, but what the heck.)

323 357 LHM / H gets the High order

324 360 LLA / and L gets the Low order.

325 007 RET / Memory is set to address in Pointer.
326 106 CAL 010275 * LIST

327 275 / Initialize and Increment Pointer.
330 010

331 106 CAL 010311 / Increment the Pointer (again).
332 311

333 010

334 317 LBM / B gets the stored character
335 106 CAL 011372 / and we call routine to print it.
336 372

337 011

Bro. Thomas McGahee 	80 South Sixth St. 	Columbus, Ohio 43215

BANK BYTE 	OCTAL 	MNEMONICS 	 FUNCTION

010 340 307 LAM / Get the stored character into A

341 106 CAL 011013 / and then call CHECKLIST to see if

342 013 / it needs special handling.

343 011

344 104 JMP 010331 / If you get back here,

345 331 / there are more characters to get--

346 010 / so get busy and do it !

347 046 LEI 001 DOUBLE DECREMENT

350 001 / Set E=001 	(for counting).

351 334 LDE / Set D=001 	too

352 363 LLD / Set Low order to 001

353 056 LHI 014 / and set High order to 014 :

354 014 / This sets us to Pointer address.

355 106 CAL 000332 / Now we let MONITOR-8 decrement

356 332 / the adress stored IN the Pointer.

357 000

360 041 DCE / We decrement E ; the first time

361 150 JTZ 010352 / it will go to 000 , and we go back

362 352 / and decrement again-- but the

363 010 / next time E goes to 377 , and

364 016 LBI 334 / we load B with ASCII for a \

365 334 / (used for DELETE indicator)

366 007 RET / Then return home.

367 300 LAA (NOP)

370 300 LAA (NOP)

371 106 CAL 010275 * PROGRAMMER (loads your program

372 275 / First, Initialize and Increment

373 010 / the Pointer.

374 106 CAL 010311 / Then increment the Pointer again

375 311 / to get ready to store a character.
376 010

377 106 CAL 011357 / Get a character from Keyboard

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215

BANK BYTE OCTAL MNEMONICS. FUNCTION

011 	000

001

002

003

004

005

357

011

300

300

106

013

LAA 	(NOP)

LAA 	(NOP)

CAL 011013 / Then call the CHECKLIST

/ to see if we have a special

006 011 / character to take care of.

007 300 LAA (NOP)

010 104 JMP 010374 / Take off in search of more

011 374 / Keyboard input !!

012 010

013 074 CPI 377 * CHECKLIST

014 377 / First we check for a DELETE,

015 150 JTZ 011346 / which requires a Double Decrement

016 346 / (and when done, it returns to

017 011 / the section that called Checklist).

020 074 CPI 230 / IF it is a CTRL/X it means you
021 230 / want out, so we
022 150 JTZ 010211 / GO to CONTROLLER
023 211 / 	(Farewell Cruel World---).
024 010

025 074 CPI 223 / IF it is a CTRL/S
026 223 / we do something special--
027 110 JFZ 011036 / which is skipped otherwise
030 036 / by jumping to 011036...
031 011

032 106 CAL 012201 / That something special is to
033 201 / go elsewhere, see what is NOW

034 012 / in memory, print it,
035 307 LAM / get it into A for future reference,
036 370 LMA / and in EITHER CASE load the character
037 074 CPI 246 / into memory. IF it is 	(&),

Bro. Thomas McGahee 	f3O South Sixth St. 	Columbus, Ohio 43215

BANK BYTE 	OCTAL 	MNEMONICS 	 FUNCTION

011 	040

041

246

150 JTZ 010211 / then we know it is the end

042 211 / of the user's program,

043 010 / and we go home to Mommy.

044 074 CPI 300 / However, a (@) will cause us

045 300 / to first have MONITOR-8 give us

046 152 CTZ 000013 / a CR and a LF.

047 013

050 000

051 074 CPI 215 / IF it is a CR

052 215 / we also do a LF.

053 152 CTZ 000016 / (MONITOR-8 does it for us).

054 016

055 000

056 074 CPI 222 / IF it is NOT a CTRL/R ,
057 222 / then we are done here
060 013 RFZ / so Return...
061 104 JMP 011370 / But if it IS a CTRL/R
062 370 / we will output a CR and then
063 011 / Return (to List or Programmer).
064 106 CAL 010275 * RUN
065 275 / Initialize and Increment Pointer.
066 010

067 056 LHI 014 / We are setting RAM to store the
070 014 / ! STATUS. at 014000 , 	since all
071 066 LLI 000 / our registers will be busy.
072 000

073 250 XRA / XRA sets A=000 ... then we set
074 370 LMA / the 	STATUS to 000 initially.
075 106 CAL 010311 / Increment the Pointer.
076 311

077 010

/0

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215

BANK BYTE OCTAL MNEMONICS FUNCTION

011 	100 307 LAM / Get a character from storage

101 056 LHI 014 / then set H & L so that the

102 014 / memory references the ! STATUS

103 066 LLI 000 / which is stored at 014000 .

104 000

105 074 CPI 241 / IF the character is NOT

106 241 / 	a 	(!) ,

107 110 JFZ 011123 / then skip to 011123 .

110 123

111 011 / But 	if it IS a 	(!),

112 317 LBM / then load status info into B,

113 010 INB / increment B

114 301 LAB / transfer B to A so we can

115 044 NDI 001 / AND-MASK it so that all we save

116 001 / is the last 	(LSB) 	bit.
117 370 LMA / Then store the NEW ! STATUS,

120 104 JMP 011075 / and go back for more characters.

121 075

122 011

123 074 CPI 242 / Perhaps we have a ("),
124 242

125 150 JTZ 012044 / in which case we go to the

126 044 / QUOTE routine at 012044 .

127 012

130 074 CPI 244 / IF we find a ($)

131 244 / we accept the bribe

132 150 JTZ 011064 / and endlessly loop back to the
133 064 / beginning of the user's program.

134 011 / 	(This could make me dizzy 	!!).
135 310 LBA / Just in case, 	store A in B 	,
136 074 CPI 215 / and check for a CR...
137 215

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215 	12

BANK BYTE OCTAL MNEMONICS

011 140 152 CTZ 0100)41

141 041

142 010

143 074 CPI 222

144 222

145 110 JFZ 011152

146 152

147 011

150 016 LBI 215

151 215

152 074 CPI 240

153 240
154 100 JFC 011165
155 165

156 011

157 106 CAL 011372

160 372

161 011

162 104 JMP 011075
163 075

164 011

165 074 CPI 300
166 300

167 150 JTZ 011075
170 075
171 011

172 140 JTC 011203
173 203

174 011

175 106 CAL 011304
176 304
177 011

FUNCTION

/ IF we have a CR, we execute

/ BOTH a CR AND a LF, and load B

/ with a harmless CTRL/X .

/ IF it is NOT a CTRL/R

/ we skip over

/ to 011152.

/ but if it IS a CTRL/R

/ weload B with the ASCII for a CR.

/ ANY CTRL character will make

/ the C flag True:

/ Other characters will cause a

/ jump to 011165,

/ but

/ CTRL characters will be printed.

/ and

/ then

/ we zip back to 011075 ready to

/ get more characters.

/ IF it is a (@)

/ we do not print it.

/ (Do not pass GO,

/ do not collect $ 200), just

/ get back to work !

/ IF it is less than 300,

/ then it is non-alphabetic...

/ so head for 011203.

/ IF it IS ALPHABETIC, then

/ call the ALPHABETIC DECODER

/ (it will feed the calculator

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215 	

13
BANK BYTE OCTAL MNEMONICS

011 200 104 JMP 011075

201 075

202 011

203 074 CPI 246

204 246

205 150 JTZ 010211

206 211

207 010

210 307 LAM

211 074 CPI 001

212 001

213 152 CTZ 011372

214 372
215 011

216 301 LAB

217 074 CPI 277
220 277

221 150 JTZ 011251
222 251

223 011

224 074 CPI 275
225 275

226 102 CFC 012315
227 315

230 012

231 112 CFZ 011237

232 237

233 011

234 104 JMP C)11075
235 075

236 011

237 056 LHI 010

FUNCTION

/ (Burp!). After digesting the

/ Alphabetic Soup (so to speak),

/ we set off for more characters.

/ IF we have a (&)

/ we know this is the END, so

/ Farewell Cruel World,

/ and back to the Controller.

/ At this time we retrieve

/ the ! STATUS from memory,

/ and if it is 001 , then

/ we print the character in B.

/ In any case, make sure A also has

/ the character. IF it is a (?)

/ then we head for the

/ EXTERNAL INPUT routine

/ at 011251.

/ IF we have a (=) or a (i>),

/ then we call a rather involved

/ routine that eventually loads

/ the proper function into calculator,

/ AND PRINTS THE ANSWER.

/ NON-ALPHABETIC characters call

/ the SINGLE-FUNCTION DECODER.

/ We is all done here, so

/ let's go get more characters!

/ (Isn't this FUN ???).

* SINGLE (KEY) FUNCTION DECODER

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215

BANK BYTE 	OCTAL 	MNEMONICS 	 FUNCTION

011 240 010 / Set H to 010 	(Bank address),

241 024 SUI 200 / strip the character in A

242 200 / of its MSB

243 360 LLA / and use this as the BYTE address.

244 307 LAM / Recover the stored code

245 106 CAL 012026 / and cram it down the

246 026 / calculator's throat.

247 012

250 007 RET / Return to get more characters.

251 106 CAL 011357 * EXTERNAL INPUT

252 357 / GET a character from the Keyboard

253 011 / and get it all fixed up properly,

254 300 LAA (NOP) / and check to see if it is a space.

255 300 LAA 	(NOP)

256 300 LAA (NOP)

257 300 LAA (NOP)

260 150 JTZ 011075 / IF it is a space we know we have

261 075 / finished here, so go back to

262 011 / the RUN program.

263 074 CPI 300 / IF we have a NON-ALPHABETIC

264 300 / character

265 140 JTC 012300 / we go to 012300 to take a

266 300 / closer look at it.
267 012

270 106 CAL 012257 / But if it IS ALPHABETIC, we call
271 257 / the EXTERNAL ALPHABETIC DECODER
272 012 / which decodes and stuffs the calc.
273 104 JMP 011251 / Then we check for more

274 251 / Keyboard input.

275 011
276 106 CAL 011237 / The SINGLE-KEY FUNCTION DECODER
277 237 / handles NON-ALPHABETIC characters.

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215 	lc
BANK BYTE OCTAL MNEMONICS FUNCTION

011 	300

301

302

303

304

011

104

251

011

330

JMP 011251

LDA

/ Upon our return we go looking

/ for more Keyboard input.

* ALPHABETIC DECODER

305 106 CAL 010311 / LDA stores FIRST character in D.

306 311 / then we increment the pointer

307 010

310 347 LEM / and store 2nd character in E.

311 106 CAL 012001 / Perform a THREE BYTE SEARCH

312 001 / which includes decoding and

313 012 / stuffing code into calculator.

314 106 CAL 010347 / Then call DOUBLE DECREMENT

315 347 / which backs us up to where our
316 010 / first ALPHA character was stored.

317 317 LBM / Place stored character in B.

320 056 LHI 014 / Set up memory to recover the

321 014 / ! STATUS at 014000 .

322 066 LLI 000

323 000

324 307 LAM / Get ! STATUS into A, and compare

325 276 CPL / it with L, which is 000

326 150 JTZ 011334 / If ! STATUS is 000, then there is

327 334 / NO echo; 	skip to 011334 .

330 011

331 106 CAL 011372 / IF echo was desired, print character

332 372 / in B.

333 011

334 301 LAB / Make sure A also has character.

335 074 CPI 240 / IF it is a space,

336 240

337 053 RTZ / then we is done--Begone !

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215 	/15

BANK BYTE OCTAL MNEMONICS FUNCTION

011 340 106 CAL 010311 / IF it is NOT a space, then

341 311 / increment the Pointer to set up

342 010 / the next stored character

343 104 JMP 011317 / and then loop back for more!

344 317

345 011

346 106 CAL 010347 / --Jumped to here from 011015.

347 347 / For DELETE we call DOUBLE DECREMENT,

350 010 / and upon our return we

351 104 JMP 012215 / go to 012215 to print 	\ and

352 215 / then get sent back home.

353 012 / 	(you're right, 	this IS a patch!).

354 300 LAA 	(NOP) / (I bet the NOP's gave me away).

355 300 LAA 	(NOP)

356 300 LAA (NOP)

357 106 CAL 000030 * KEYBOARD INPUT

360 030 / MONITOR-8 gets the Keyboard input

361 000

362 004 ADI 200 / Replace the MSB since we need it

363 200 / in output routine.

364 074 CPI 240 / IF it is a space, set Z flag True

365 240 / for possible branch instructions.

366 007 RET / Finished--go home.
367 300 LAA 	(NOP)

370 016 LBI 215 / --011061 wants CTRL/R to be changed
371 215 / to a CR. 	continue 	
372 106 CAL 000020 * TTY/TVT OUTPUT
373 020 / MONITOR-8 outputs character in B
374 000

375 301 LAB / We restore character to A

376 074 CPI 240 / and if it is a space, we set the
377 240 / Z flag True

/7 Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215

BANK BYTE OCTAL MNEMONICS FUNCTION

012 	000

001

002

003

004

005

007

026

030

056

010

066

RET

LCI 030

LHI 010

LLI 072

/ and then head for home.

* THREE BYTE SEARCH (Alpha-decode)

/ If you got here, you must have

/ two characters 	(in D & E),

/ so set C 	(counter) to 030

/ and set memory address at 010072,

006 072 / the start of the stored codes,

007 106 CAL 003217 / Call for MONITOR-8 to execute

010 217 / a Three Byte Search.

011 003

012 317 LBM / Load recovered code into B

013 302 LAC / and load C 	(counter) 	into A.

014 CPI 000 / IF C had 000 it indicates that

015 000 / it was an INVALID CODE,
016 150 JTZ 010200 / so we PANIC and give an ERROR
017 200 / message and go to Controller.
020 010

021 301 LAB / Load valid codes into A
022 106 CAL 012026 / and stuff it into the calculator.
023 026

024 012

025 007 RET / That's all--go home now.
026 074 CPI 275 * OUTPUT FUNCTIONS (stuff calculator!)
027 275 / If it is NOT a non-coded 	(=),
030 110 JFZ 012035 / skip to 012035.
031 035

032 012

033 006 LAI 047 / If it is an 	(=), 	code it
034 047
035 106 CAL 012160 / In any case, 	stuff the code
036 160 / into the calculator.
037 012

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215
	

/9

BANK BYTE OCTAL MNEMONICS FUNCTION

012 040 106 CAL 012157 / "IDLE" the calculator.

041 157
042 012

043 007 RET / Go back where you came from.

044 106 CAL 010311 * QUOTE (Jumped to from 011124)

045 311 / Increment the Pointer

046 010

047 307 LAM / Get the character into A.

050 074 CPI 242 / If we find the closing ("),
051 242 / it means we are finished quoting,
052 150 JTZ 011075 / so go back to the RUN routine.
053 075

054 011

055 310 LBA / If we are still quoting, load B
056 106 CAL 011372 / with the character, and then
057 372 / print it.
060 011

061 104 JMP 012044 / Now loop back for morel
062 044
063 012

064 006 LAI 211 * DIGIT SELECT
065 211 / Load A with digit #9 code 	(211),
066 106 CAL 012160 / and cram it into calculator.
067 160

070 012

071 104 JMP 012242 / Initially we set E=200 and wait
072 242 / until calculator has valid output.
073 012

074 040 INE / Now increment E and check to see
075 006 LAI 215 / if we have done all the digits
076 215 / 	(201-214).
077 274 CPE / IF E= 215, then we are done

Bro. Thomas McGahee 80 South Sixth St. 	Columbus, Ohio 43215 	pir

BANK BYTE 	OCTAL 	MNEMONICS 	 FUNCTION

012 100 053 RTZ / so go on home.

101 006 LAI 212 / If we are not finished, check

102 212 / and see if this is digit 10 (212).

103 274 CPE / If it 	is digit 10,

104 150 JTZ 012124 / jump to 012124.

105 1214_

106 012

107 304 LAE / Load A with current digit code

110 106 CAL 012160 / and stuff our digit request code

111 160 / into the calculator.

112 012

113 106 CAL 012172 / Wait for a VALID calculator

114 172 / output.
115 012

116 106 CAL 012134 / Decode the answer and then

117 1 34 / print the answer.

120 012

121 104 JMP 012074 / Now loop back and check for

122 074 / the next digit.
123 012

124 016 LBI 240 / When it is digit 10 (beginning of
125 240 / exponent), we load B with ASCII
126 106 CAL 011372 / for a space. 	We print a space
127 372 / so that things are kept neat
130 011 / and unambiguous.
131 104 JMP 012107 / Then we go back and continue
132 107 / digit output as usual.
133 012

134 016 LBI 240 * DIGIT DECODER

135 214.0 / Check: numbers smaller than 240
136 271 CPB / indicate there is a decimal point,
137 140 JTC 012326 / and we handle these at 012326 .

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215

2 0

BANK BYTE OCTAL MNEMONICS FUNCTION

012 	140

141

326

012

142 016 LBI 040 / Non-decimal point numbers

143 040 / are bigger by 40, so we

1 4-4 221 SUB / subtract 40 (this cuts coding in half)

145 024 SUI 200 / Both types of numbers are reduced

146 200 / by 200. Register A has new code.

14_7 056 LHI 010 / Bank is 010, and BYTE address is

15o 010 / set equal to

151 360 LLA / the new code in A.

152 317 LBM / GET the ASCII from memory into B

153 106 CAL 011372 / and print the answer.

154 372

155 011

156 007 RET / Now you can go home.

157 250 XRA * IDLE CALCULATOR 	/ XRA sets A=000,

160 131 OUT 014 * STUFF CALCULATOR (with code in A).

161 026 LCI 375 / Calculator is on Output Port 024
162 375 / in my system. 	C and D are loaded

163 036 LDI 150 / with constants for delay routine,

164 150

165 104 JMP 012360 / Then we go to our timing loop.

166 360 / (from there we Return home).

167 012

170 046 LEI 200 * INITIALIZE DIGIT COUNT 	(in E register).
1 71 200 /Initially digit counter is 200.
172 105 INP 002 * WAIT FOR VALID CALCULATOR DATA
1 73 074 CPI 200 / READ calculator. 	If the data out

1 74 200 / is less than 200, 	it is 	invalid,
175 140 JTC 012172 / so here we go loop-the-loop
176 172 / until we DO get a valid READ data.
177 012

Bro. Thomas McGahee 	80 South Sixth St. Columbus, Ohio 	4321

BANK BYTE 	OCTAL 	MNEMONICS 	 FUNCTION

012 200 007 RET / With a valid code you go home.

201 317 LBM * CTRL/S ROUTINE 	(called from 011032)

202 106 CAL 011372 / Get a character from memory into B,

203 372 / and print it.

204 011

205 007 RET / Return (to 011035).

206 056 LHI 014 * PATCH FOR RESTORING MEM. TO POINTER

207 014 / Called from 010320, this patch

210 066 LLI 001 / sets memory to Pointer (014001),

211 001 / then sets memory to address stored

212 307 LAM / in Pointer! 	Register A gets the

213 060 INL / Low order. Incrementing L sets

214 007 RET / memory to High Order. RETURN (010323).

215 106 CAL 011372 * MORE DELETE PATCHING

216 372 / Called from 011351, this causes

217 011 / the \ to be printed
220 104 JMP 010374 / Then we jump to 010374

221 374 / to continue Programming routine.

222 010

223 300 LAA (NOP)
224 215 CR * CONTROLLER MESSAGE (R/L/P:)
225 212 LF / Controller 	(010211) prints this
226 322 R / simple message. 	It may be
227 257 / expanded by up to five more
230 314 L / characters since this message is
231 257 / followed by 5 LAA 	(NOP)'s.
232 320 P / Just change the E (END) value
233 272 / at 010216.

234 207 CTRL/G / CTRL/G rings the Bell if you
235 300 LAA (NOP) / have one.
236 300 LAA 	(NOP)
237 300 LAA (NOP)

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215 21

BANK BYTE OCTAL MNEMONICS FUNCTION

012 	240

241

242

243

244

.300

300

106

170

012

LAA (NOP)

LAA (NOP)

CAL 012170 * CHECK FOR END OF CALCULATOR BLANKING

/ Jumped to from 012071 	, this

/ initializes E to 200, waits for

245 044 NDI 007 / calculator output greater than 200

246 007 / AND-MASKS last 3 Bits and

247 074 CPI 007 / IF the recovered code ends in 7,

250 007 / it indicates BLANKING is still in

251 150 JTZ 012242 / progress, so we loop back and

252 242 / continue looping until we get a

253 012 / code greater than 200 that does

254 104 JMP 012074 / NOT end in 7. 	THEN we jump

255 074 / to 012074 to start assembling

256 012 / our Answer one digit at a time.

257 340 LEA * EXTERNAL ALPHABETIC DECODER

260 106 CAL 011357 / Called from 011270... 	Load first

261 357 / character into E (temporary store).
262 011 / Input another Keyboard character.

263 334 LDE / Move 1st character 	(E) 	into D,

264 340 LEA / and 2nd (A) character into E
265 106 CAL 012001 / THEN call a THREE BYTE SEARCH,
266 001 / and include a stuffing of the
267 012 / code into the calculator.
270 106 CAL 011357 / Coding and stuffing are finished,
271 357 / but more than two characters
272 011 / are allowed, 	so accept more.
273 110 JFZ 012270 Keyboard input, and if it is NOT
274 270 / a space, we go back and accept
275 012 / more Keyboard input.
276 007 RET / A space causes us to Return.
277 300 LAA (NOP)

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 143215 	2

BANK BYTE OCTAL MNEMONICS FUNCTION

012 300 074 CPI 240 * CHECK FOR SPECIAL CASES (= and>)

301 240 /--We 	jumped here from 011265.

302 140 JTC 	011251 / ANY CTRL character is not a

303 251 / function, 	so go back to 011251

304 011 / for more characters.

305 074 CPI 275 / IF we have 	(= or)), 	then we

306 275 / will have to

307 102 CFC 012315 / call on 012315 for help.

310 315

311 012

312 10h JMP 011276 / When finished, 	or if it was not

313 276 / a special 	case, 	then jump back

31h 011 / to EXTERNAL routine for morework!

315 106 CAL 012350 / AHA! we HAVE 	(= or >), 	so we

316 350 / convert it to proper code, 	stuff

317 012 / the calculator with the 	fun':tion,

320 106 CAL 012064 / Then print the answer by calling

321 064 / DIGIT SELECT routine.

32? 01?

323 006 LAI 	2117 / Load A with a 	('), which will

32h P47 / decode as a calculator NOP,

325 007 RET / and head off into the sunset!

326 106 CAL 012145 * DECIMAL POINT OUTPUT

327 145 / Called from 012166, 	this routine
330 012 / first prints 	the digit 	itself,
331 015 LBI 256 / then we load B with ASCII for a
332 256 / decimal point,

333 106 CAL 011372 / and then we print the

334 372 / decimal point.

335 011 / We then Return to 01 21 50 to continue
336 007 RET / for more if needed.

337 300 LAA 	(NOP) / The following nine NOP's are for

possible future expansion.

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 4.3,215 .

24

BANK BYTE OCTAL MNEMONICS FUNCTION

012 340 300 LAA (NOP) / NOP's are for user expansion

3L 1 300 LAA (NOP) / of software.

342 300 LAA (NOP)

343 300 LAA (NOP)

344 300 LAA (NOP)

345 300 LAA (NOP)

3)16 300 LAA (NOP)

347 300 LAA (NOP)

Y,0 150 JTZ 012026 /--Called 	from 01231 c., 	this 	routine

3[=,1 026 rive.; non-coded 	(-.) 	to

3t;2 012 / decoder which codes and stuffs

353 006 LAT 034 / But if it is 	(›), 	then we give A

354 0311 / the DISPLAY code 	(034),

355 10h JMP 01.2026 / Then we stuff it. 	(stuffing will

356 026 / include printing 	'answer?).

357 01 2

360 030 IND * TIMING LOOP

361 110 JFZ 012360 / Keep 	incrementing D until it Foes

362 360 / to 000

363 012

364- 020 INC / Increment C 	, 	and if it has not

365 110 JFZ 012360 / yet reached 000 	, 	then in'I re

366 360 / 	377 	times 	(octal).

367 012

370 007 RET ,' Timing 	is 	fini2hed...go on home.

371 300 LAA (N0P)

372 300 LAA (Nop) / These NOP's are available for

373 300 LAA (NOP) / user expansion of software.

374 300 LAA (N0P)

375 300 LAA (NOP)

376 300 LAA (NOP)

377 300 LAA (NOP) / And THAT'S ALL, 	FOLY.3 	!

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215

MINIMUM MONITOR: FOR SCIENTIFIC CALCULATOR

This is a collection of the absolute minimum of software

routines which are needed to support my software for the

SUDING SCIENTIFIC CALCULATOR INTERFACE. I was able to reduce

it a bit further than I originally thought, and the result is

89 instructions/words located from 012371 to 013121. Since

my routines are minimal, they reduce the overhead of RAM needed

to support the Monitor routines to ZERO. This means that the

user now has 013122-013377 free for his own use. You may write

expanded versions of some of my software there, or add patches

of your own to do such things as add extended error messages

and the like.

The input/output routines are for parellel operation. If you

are using a serial device, then a UART can easily perform the

conversion to/from parallel. Note thatlocations 013005 and

013007 require the user to plug in the values for the time

delay. This allows you to tailor the system I/O for slow

(110 baud, 10 characters per second) or high speed (can go as

high as 14,000 baud...but most sytems cannot handle that high).

For TVT use I suggest a rate of 450 characters per second max.

This is well under the maximum acceptance speed of the TVT,

and allows for rather wide variations in the system timing.

If you already have a parallel input and output port available,

then you should be able to implement the hardware necessary

for under $2 . 	I strongly suggest using the 74123 approach

since this always ensures proper settling times for the data.

The hardware/software functions as follows: When told to

get an input character, the software keeps looping and searching

for the MSB (Most Significant Bit) being HIGH. As soon as it

detects this it "echoes" the character to the output port.

Since the MSB is normally kept LOW, and ALL characters have the

MSB HIGH, there will always be a low-to-high transition at the

MSB. This is detected and a negative pulse developed (in most

cases after an additional 100 ns. delay) which informs the TVT

or UART that data is ready to be given to the recieving device.

This same signal resets the MSB of the input port, and may be

used to reset the keyboard,(if the keyboard requires a reset

signal). Meanwhile the software causes a delay (this is in the

output routine, which is called by the input routine). This

delay is user-selectable, and determines the maximum speed at

which characters can be printed...and therefore the maximum

speed at which they can be input also.

Besides

software

routine:

ADDRESS

the I/O routines, other routines are contained in the

All of these routines replace a specific Monitor

EQUIVALENT MONITOR ADDRESS 	FUNCTION OF ROUTINE

012371 00001 3 OUTPUT A CARRIAGE RET. + LINE FEED

012376 00001 6 OUTPUT A LINE FEED

01 3000 000020 PARALLEL OUTPUT

01 3023 000030 PARALLEL INPUT with ECHO

01 3045 000070 TIMER

01 3052 000315 INCREMENT ADDRESS

013075 00321 7 DIME THREE BYTE TABLE SEARCH
013063 000332 DECREMENT ADDRESS

You will find where these routines should be called from on

page K.

2

INR

r/o
DECODER --4)DeCODER
ciawir -4 ADD/an/Ng'

—< our

1 	

M S B —c

—4

Parallel I/o Hardware 	 3

By Bre.Thomas dicealiee
fae. Miivi Micro Mart-

11-

'Tiffs RS Rip F-Cop catiseS
4/18 to go HIG-H. and ST4Y

VAirtt. "ECHO II

/s PERFoRmeD.

IN MANI/ SY STEm s
THE INPUT PoRT MAY
CONS IST sptez,v OF THE
FRISS .DIZivER (IF KEY BoARD
HAS SUI LT IN ivieivioity)

TRI-STATE 0/2

c
OPEN-CoLLEcToc
Buss DRiVeR

Key so ARp

sTIZoBt

if keyboar-d recwires
o, reset Pulse) -k-hei.t
get it from Mere M513 —or

—
--4

A4 TA Buss
To C Pv

IF You EXPERIENce
FALSE CHARACTERS
ADD A 7411Z1
ox74112. 3 here
TH Ar rRielieRs
ON RIS/N CT

EDGE and
9eNex4res 4

nS PULSe
Like' THIS;

7 SITS ro

TvT Lo. R ()ma-
IF USING sIERiFic
E4ui Pm6A(7-3

— —
DATA Buss

FROM CPU

SER 8I-D/RE;cTioN4z.
BvSS)

OUT 015

OUTPUT Po Cr

701T
R AUEL

DATA FROM

Ket/(3042P OR
WART;

INEts1001_4. DATA
READY

STRO 156

(To "Fir oR. OW— IT

TAKES PLACE of KeV8onD

STRAP to TtIT)

INPUT
PORT

n5.
neg. Pulse

This will allow
exTRil Time
Fo DATA To

'serrce" AeFdee
TUT accePrs IT.

A sitvaGE 1q123
can Pkoaide
Rent ONE-Sitor
Ft/venoms pose
4-8o0T 07.50.
-rib's BEST

To.
6-ET 200 PIS, pulse you cart use a 741/2t ore

This Cheape62 ouYeaefrtafive wHicH is JiArT ifS
good m this appliCatioPt

TINs Dt-reers 7 /E Ris/No-
Edge oF 01s6 and Sio-NoicS
Ti/ToR. Ut4RT to accept Detect,

iF

4' Bra4nasat,--,caLe
80 Sae./ h xth a.

Caw-tido/is, Ohio
"
	

rot er) 	inemet Noniect
Foe S"-csit`iFIC cecci

PAR Attee 2"7o

a.3 e 	crf 	Paget;

ANK BYTE CODE MNEMONICS 	FUNCTIONAL D::L CRIPTION
as~sarrr

,

0/2 40
• 41

4.2 ,
4.3
44 _
45

. 46 —__
47
50
51
52
53 _.
54
55
56
57 _
60
61

.....
0

62

63

64
65 0/A0,44 in MON/ rdt

.

..
66 0 cr.qPi es 	0/2 37/ 0/3/Z/

67
7o

0/2 3 71 0/6 L_Bi 21C 	-it- C R -* 6 F (def likoe coo a /3 ?

372 z_)5-- ,.
373 /O CAL 	0/3 O 00 	/ 1:),e/Ar cR ----
3 74 006 _ 	_

....... 3 75 0 /3

376 0/6 £43/ 2 1Z 	* 	L. F (0/0/ oc a oi ()

.--mszamp.sw.ace=ellaPeamumixEr avarse_.-: pau,..-.

TI UN 1":, BA 	r

013 / 1-cif/e/(/r/5- fri/owl
C'7 6 0/800o / EC/fa 	chiA,e6cnve

0 coq
400 177
679 cp

-6=f4 	-zgoz?' NQI 177 1 ,c-7--Bp 0764 MS

0 o I 	l c /IL? /07 crPy,f

* "Pgettge(OUTPUT (/cl 00002d)
/ die Raralle/ oatioat Poet-

LA 8

r O is- 	/ STUFF c-ff,4,24cre-,C m per
xxx ---> (o 	riir) 	/4b //o,eged Try)

o 3 6 1 4- 	xAk 	> (342 f-,7-Tvr, Dto 	//d sad 7TY)

	bereemest C mite/ er Nor
000 e 00P

/4//e oariaci Pcver

et 6% Airotete/e 1,411-d

ei K d Re TaR .A/
• Paicall-e/ inAir u-1/6--cHo (1c1 000 030)

rc C/16e40_,
CP/ 200

.TI 	o/3 o23 / Sy Cesop/04/q1
023

oI3

001

002

003

004

005

006

007

010

011

012
013

014

015

016

017

020

021

022

023

024

025

026

027

030

031

032

033

034

035

036

037

01_3 I 000 Zgo X P4
/33 	al07--- o /5-

/3 3
oia‘

/06 	eAC o/ 3 oc/S Thfa.
oq5
0/3 	
o f/ 	D cL

4011V 	 /3 Doh
006 %for
Of 3
2So
/33

3a/
o 7

/13
3/0
o 7y

o

/06
O06

q

/ 	Fooe 	
s-8Ni 3A!

hors 	 xth 	C';:lunbus , Ohic)4_321

j3ro Thom 	Mc,Ga - e4; 	80 SoutTh Sixth S , GoluaLbus , Ohio 43215 	6

BANK BYTE ()OWL MNP:ONICcJ
	

FUNCT C

MO 0 6 /

)41 	- ot 3 EFE 4,/,‘„,.., ,;(fri.,,7' cerkV,01- ,
)42 / ei V 3-44 p 0 	O 	 a c7,e6 il coopeafont-e-r_zz-ha--/- _
)43 .2 ((e, //'_,Iteirt,kt Z7-7 Ca era/tee(' ‘
)44 0/0

45 0 30 . / A / # 	704e-2 	(ou 000 o20)

)11'6 /10 g-F2 0)30415 	/ 	otdeeP Ille,esientilfy D.
)47 p45 / UNTIL ir = ocio
)50 0i 3

)51 do? A7E-7- / Ttleoti a d Home-
)52 3 1 7 6 644 7)‘' /4)(temeol- Aid, es-s 	(dd voo 3(s-'
)53 o I 0 IN g / cie7 t ow oRde,e FRom
)54 3 7 / &/45; / Memok sd /Arra Z, Mir ge""

)55 413 /°F 2 / ANd it#9ce /0, i friefrioer.
)56 	1 06 0 pt) c / Re 7j, ,ti avecsr we. need
)57 f 3/7 z.- /3,4/ /4 col RR V, To CA rAy 9eT
)60 010 pv s / Hi A oRelek /iffy 23) MCOPooroiri
)61 371 6,4,14 sToiee iT To /lieesioleV
)62 007 RET- el/vei Per Cali/.
)63 	T 317 1 i gm -X- eecife.vie ,-tT- A:arcs-5 Ce a d 6° 33 23
)614. 01 f pc (3 / 	7- ///s /s 7-1freChmE AS
)6 5 3 7/ L/14 6 / Tile" 7/1/CRE/VENT-4. RooriAle"
)66 060 INC_ / eArCe Pr IT Decoet-meA/Tr,
)67 o f0 IN6
170 0 /3 1Z FO
171 317 L f3tvi
.72 0 i i Deis

173 37 / LM e
)74 o07 (ZET / Ase7ed/24/ rAilfen(37-ni
)75 021 p cc -4c 	g gyrc 7-4-4(6-- Se-i9,ecti 	Coid e) 6 3 2 J7:

176 0 , 3 Q.-r-?. Der,efrie itT C 0- IF =rood j •fervie
177 307 L A nfl / orheRcvise ger A c-#440/7tre-oe

BANK. BYTE 0CTA7, MNTTi'IONICS 	 FUNCTTflN

105 30
106 	27 if

Loe1-4 	 /F /ST AletTcHeei gel
P 	 / '4overlie/2 CHIV2firrek,

/ 1F NO MArchf Tiyl P to
I(S / NEXT nrre $(0ele

06 	 / 151Liee ci el 1,7 fog Ne;l're#409cre•g)
c Po 	 J__5ee if /fir eltiMere.0 M4 7 lies,

102 J / / 0 txpipplo _2-__F .e- 0 1/ /is / _pc* •V•07' nip ta NEYT 3ssire-
103 	I (_3- 	 / EyocA•
104. 013

/ 100 C OO

101 273

Q 5/3 0 7 him/ 71)9 /96.A/Ni
0 75-

121 0/3
122

123

124

125
126

107

110

111

112

113

114

115

116

117

120

O60 fruc
0 60 	/e,t/

Mel kj-44

0/3 	

06 0 IA)

307 C.,Vvi
007 ee-r-

110

127

130

131

132

133

134
135

136
137

/7€' &7H in6rateb 1716-0t/
/ ad To "le-Yr e 000%0 4/ a M

/ aer tom eimal 0.40 HemE

/ go a-- NeXT MO'
/ 	ock

Bro. Thomae Mc(Laec 60 South !ixth S o Columbus, Ohio 43215
	7

HARDWARE/SOFTWARE WITH "HANDSHAKING" FOh MAXIMUM SPEED.

This hardware/software combination is meant to allow the

output device to operate at maximum possible speed. Instead

of using timing loops to pre-determine the delay, this system

lets the receiving apparatus signal when it is ready to accept

new data. This 'handshaking' is preceeded and followed by a

delay of at least 100 nanoseconds to insure proper 'settling'

of data being transferred.

Since Input routine uses the Output routine, we will explain

the Input routine in detail:

A loop causes the computer to keep searching INPUT port until

the MSB goes HIGH, indicating input data is ready. The

software immediately starts to 'echo' the input by calling the

OUTPUT routine. This routine starts by 'idling' the output

port (insuring that MSB starts out LOW). Then the character is

output, which will always cause the MSB to go HIGH. Hardware

detects the MSB low -to- high transistion, causes a 100 nanosecond

delay, and then delivers a LOW pulse to receiving device, causing

data on output port to be loaded into the device. At the same

time we insure that MSB of input port is high by coupling this

pulse to the RS flip flop. (This is done since output can occur

from computer-generated data as well as from keyboard data, and

we use the MSB of the input port to tell us when we are done).

When receiving device has processed information and is ready to

accept a new input a lOw-to-high transition is sent to the C

one-shot which creates a 100 nanosecond delay. At the end of,

this delay the D one-shot creates a RESET pulse for the INPUT

port MS3. All this time the software has been looping, waiting

for the MSB to go low. When the software detects that this has

occured the program flow RETURNS....in this case to the INPUT

routine, which then strips off' MSB from data and checks for a

CTRL/A . (a CTRL/A will send you to the Controller).

Note the following as regards the

the addresses where the Input and

same as those used in the simpler

software from 012371 - 012377

remains unchanged, so consult the

for these sections. See page A-2

software: We have kept

Output routines start the

I/O routine. Further, the

and from 013045 - 013121 	'

software for Minimum Monitor

for a listing of what

Monitor routines this software replaces.

FROM TVT

J8, I+

/oo ns
see note

BELOW

h
mml

PARA CGEC 1/0 FI 07RP WARE

FOR rvr og wiRei — jiicludes vhd"ciskakill9 , For
SYSTEM SPEEP.)

Nn ax i 	1.4A

By BRIO, T-Horr4.5 McG-Ailee

Fog MINI MICRO MART

FROM
1161'1304RD

STROBE

To keY604120
FIESET

+5
/ pf

To TVT

/o <
+5

cr: /c:K 	p

/0ons.

s-I
Stareni

l
yerier

7131T
I N POT

loons.

M56

IN MANS/ cASES TOE
KG-v soolito HAS 4 meislogy)
arid TkeK TIio port c et_v•

Busbe just a Bu DRiveR
4,

	m Se

	 4)

S D

005) 	

• —+

V
• -->
	 R

NP.

rio
ADDRESS/N!•

----< OUT

+5-
log

o it
/oohs

11.1914
	

/0K

114 POT
poRT

(

I/O
Decooeg
cilecoirRy

8 811" DATA
suss

To c Pu

oR BI -DIREnimmt;

7 SIT
OUTPUT
to TV T

o RT
"rap N S tE-er

Ui4RT= AV-S.- 1012 1 Conn 2502 l 2534 ctc..

* /f USING- A DART, ComitiecrioNs ARE
AS FOCI. OwS:

PIN 1 9
(14 1.9)14)

Pin 23

(TDS)

(0 a ,79, to)

1080

OOTPuT
PORT

(015)

8 81T DATA BOSS
FROMel C Pt/

OR B/-DIREcTio/4/40

1;11 r4chd 16'on R UORT REavIRES

r#c Fottowi
Connect- P/N le (?DAR)
to 	'key BoAeo ferSE7- 11—

a.i.t.41 Cokineer PIN /9

ge""" 4772036// /NPVT Vi

an /Nye R TER ,

i .e. Nei lci

cities _11

Bro. Thorn 	McGnhee 	 S 	, 	 „ Ohl° 43215

I/
mitlieloti OA (o 111 	u(iut,,t)sttak;t&I)

BANK 137TE 	(:;rTh L 	NNE", C 	3.5 •
	

7••t1;('11 .
••••••••••WW1•••••.....

0 (3 000
001

25o XRA

153
	

our 615

ooTpo-r-

/We po6eT 	
002 	30 1 LA 13
003 	/33 our oig 	3 Poe /Air 13 	
004 	11 3 IN P 005
005 	o7(' CPI ,2o0 	___LE /PISS of IfrPor PORT.
006 zod 	 /S H1711) Loop
007 	/o o .3" Pc 6)/3004/ 	
010 004
011

012 250
013

014

015

I33
4.4At' 444 8 3 0/ 	 / L48

007 Rer 	/ Gc htcme

XRR

Our OAS)77-e rbor

016 0/3 RF2 	- 	//020 T Cc 14 1'1'4 v-ecrrec, 4,‘.0/30q

JMA 0/6 // 	crAveit cd444144. a Adtoit4,
cAcco tala0 Cowteolle* .

000
	

Cffc
113 	(NP oo s //1/Peir fi-Sc i f

074 C Fi 100
o

0/3

/ 406 CAL 4011660
	

e-c(Jo cm4,464creit
0 0
0 /3

017

020

021

022

023

024

025

026

027

030

031

032

033

034

035
036

tog
2-/I

olD

o14
117

3/0 48A

IS-0 ,TTC oie3a3
023

ND// 7 7

Loo utvric D/47'04

_Leys '8 H/94) 	

sne7, effr 40,1•6

V4(id

037 3/6 LiSt+ 	 dtmcf 4 hoopoe 14r4

11ro. Thomas McGa-,o1 	80 South Sixth 3'. Columbus, Ohio 10215

12

BANK BYTE OCTAL MNEYONICS
	

FUNCT201
; 1. 1... 0___ 	6 n_____. r . . 67 .„..p..,.. /.. 	_ :1, e. I

is ,rof. cre(J'?)41 	0 0 (
)42 /09 T/P(' 67/3 0/‘ c4rwliincleet eltet4)4344
)43 D(G
)14. O/3 ."
)45 t
)46 /-6LI? 	ke.0 7- tz- the riffenr
)47 / 	its 	71/ 6-- 	o7 -1/6- t
)50 Ali tsi um. S 0 Eredthit.- _Ali
)51 Poor, Net-) _
)52
)53

)54
_

)55

)56
_

)57
)60

)61

)62

)63

)64

)65

)66

;67

170

)71

)72

)73

)74

;75

176

)77

