Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215 _ {q

SCIENTIFIC CALCULATOR SOFTWARE

The purpose of this software is to provide a fairly efficient

operating system for controlling the SUDING SCIENTIFIC CALCULATOR
INTERFACE offered by MINI MICRO MART.

The Original software provided by Dr. Suding was too cumbersome
for me, and it required several hardware implementations that

I didn't want. So I wrote a new version that I think should

be able to run on any 8008 based system. The software has been
performing for several weeks flawlessly, and if no bugs have
crept into this documentation you should be in bu51ness.

The followlng are basic system requirements:
1) 8008 based microcomputer, 500 Khz clock (Mark-8, MIL-MOD SCELBI etc)

2) Standard ASCII keyboard, (no lower case characters requlred)
Must have standard shift and Control characters.,

3) SUDING SCIENTIFIC CALCULATOR INTERFACE. My port assignments
are INP 002, OUT 014 , but you may easily change that.
(they are located at 012160 and 012172).

4) 2K of RAM, preferebly starting at 010000 . NOTE: program

may be placed in ROM, since all dynamic storage is external

to the program body. ROM version would use 6 1702 PROMS

(7 if you don't have Monitor-8). 1K of RAM is for USER's Program.

6) MONITOR-8 . This versatile Monitor is highly recommended!
Besides allowing you to run this software without modification,
it also makes the writing of your own software a fairly simple
thing. MONITOR-8 is available through MINI MICRO MART.

I am also going to soon make available a reduced version of
Monitor, called MONITOR-3S8 which will contain JUST those monitor
routines needed to run the Scientific Calculator Software.

This MONITOR-S8 will accept parallel input at any speed up to
about ;00 characters per second, and will deliver a parallel
output that is TVT-II compatlble (maximum speed 450 characters
per second). For those persons who use a TTY instead of a TVT,
I will include instructions on changing the timing constants

in the program so that the parallel output is reduced to a
maximum of slightly less than 10 characters per second. This
will allow you to use a UART to assemble a serial output for
"TTY use. (the same UART will take serial TTY and present
parallel input port with parallel data, or an electronic keyboard
can be be wired in directly, since it is already parallel.)

For users of MONITOR-8 who would like parallel I/0 I will be
making available a program that can reside in ROM and overlay
the first 128 words of MONITOR. Besides parallel I/0 , it will
allow Cassette routine to be called as a RST 010 (a function
that was deleted in the ROM version of MONITOR, but which I

have replaced.)

Bro. Thomas McGahee : ' | _ t’

SYSTEM INITIATION: Starting address is 010200, This will cause

an ERROR message to be printed, and then Controller will print

the Option Table R/L/P: This gives you three choices 1)

RUN the program. 2) LIST the program for verification. 3) PROGRAM.
This allows program to be written and corrected. s

PROGRAM: To write a program keep the following in mind:

CTRL/A = a return to MONITOR-8

CTRL/R = the same as a simple Carriage Return ‘

CTRL/S = Single-Step. This is for program correction(see below{)
CTRL/X = EXIT. Causes a return to Controller.

CR = A CR (Carriage Return) will cause BOTH a CR and a LF.

LF = A simple Line Feed,

DELETE (also called BACKSPACE or RUBOUT) = Backspace and print \.

If a mathematical function/numeral is entered, it will be printed
in PROGRAM and LIST modes, but in RUN mode it will be executed
but not printed... that is, unless ! is in use: see below.

| Causes program steps enclosed between !'s to be BOTH Printed
AND executed during RUN. (It is sort of like a quotation mark
for functions and numerals.. it is extremely usefull).

" Serves to allow the user to insert text into the program.
Anything within quotes is simply quoted back during RUN. Note
that CTRL/A , and CTRL/X cannot be inside quotes, and neither
can & , since these have IMMEDIATE application during PROGRAM
mode. Note also that while CR during PROGRAM will give BOTH

CR and LF, if it is inside quotes it will ONLY give a CR during
run. CTRL/R has NO meaning during RUN if it is INSIDE quotes.
ALL other characters/codes are VALID inside quotes. NOTE that
quotes MUST be closed BEFORE you type & , since this character
indicates the END of your program. : _

SPACES follow this rule during PROGRAM: They are OPTIONAL and
may be freely used and intermixed, EVEN between successive
digits of a numerical entry. However, they MUST be present

after ANY MULTI-KEY FUNCTION entry is complete. In this special
case the space itself is used as an identifier to signal the

end of the entry. (This feature allows you to use Mnemonics
LONGER than two characters. For instance, SI , SIN , SINE ,
SINEWAVE , and SIPFQTWITHABANANA are all interpreted by the
ALPHA-Decoders as the SIne function. Note that a dash is also

OK allowing SINE-OF-THE-NUMBER to be interpreted as SIne. AND,
if you are using a TVT with computer cursor control, then you
can even get a pseudo-space by plugging in a Cursor=-Right command!)

NOTE: In some parts of the program I have caused spaces to be
interpreted as calculator NOP's., This prevents their accidentally
causing a ruckus during certain rather devious and involved

routines .

Bro. Thomas McGahee . C

$ Signifies that you want the program to loop back to the.

beginning . Combined with M+ and RCL , this can be used to

cause incrementing and decrementing runs. ALWAYS follow this
character with a &.

& This is the character which indicates the END of the program.
EVERYTIME this is encountered you will IMMEDIATELY be returned to
Controller. (Note that if it is preceded by $, then during

RUN it will NEVER be reached because the program keeps looping
back to the beginning. The only way to get out of a loop is

via your computer controls. (A panel-induced HLT, or pressing

the TTY RESTART pushbutton on MIL-MOD systems.) :

? Signifies you desire EXTERNAL INPUT. This allows the entry

of variables via the keyboard at various points during the
program. Use a ? at EACH place you want variables to be input.
(See RUN section for more information on using this option).

One note: a SPACE is used as the terminator. Since ALPHABETIC
codes such as SINE require a space just to indicate the end

of the entry of the particular function, then it is plain that

if you are inputting a Multi-Key function ONE SPACE alone will
not terminate External Input, but TWO SPACES will. This allows
you to CHAIN input complex variables under certain circumstances.

CTRL/ Characters other than CTRL/A and CTRL/X may be freely

mixed ANYWHERE in the program, EVEN between successive digit
entries of a single number., PLEASE NOTE that a CR IS NOT NOT NOT,
I REPEAT, IS NOT a space, and is therefore NOT a valid terminator
for multi-key functions. This was done on purpose, to allow a
rather free formatting ; but is a pitfall for the unwary, who
naturally assumes that if he has completed a line he has terminated
a function. NOT SO, my dear friend.

@ Is a rather odd character, and has a correspondingly weird
function. Since much of your program may be stuff that will not
be echoed during execution, and since ALL CTRL/ characters ARE
echoed during execution, how do we avoid CR/LFs being printed
during RUN, when we ONLY needed them during PROGRAM and LIST ?%°?
Simple. We present you with @, the pseudo-CR/LF !!! It is printed
and then executed as a CR/LF during PROGRAM and LIST, but during
RUN it is completely ignored, even if it is between !'s.

NOTE: it is good practice to either include CL CL M+ at the
b?ginning of each program to insure all registers are ZERO, OR
(if you are doing an incrementing run where this would mess
things.up), BEFORE writing the Main program, write CL CL M+ &
as a simple program. Run it once, and all registers are cleared.
Now you can write your incrementing program secure in the
knowledge that it will not start off in some WEIRD place.

Of course, a STARTING constant could also be loaded by M+,

bgt don't forget to CLear Clear FIRST. EG., CL CL M+ LS M+ CL &
will clear X and store your starting constant, 45, -

Bro. Thomas McGahee \ l>

CTRL/S This allows you to SINGLE-STEP through your stored
program. It does not execute anything (unless a & is
encountered, which will cause a return to Controller).

Each time CTRL/S 1is depressed, one stored character will be
retrieved and printed, and the Pointer address adjusted.
Due to the routines used to implement this function you
should not attempt to enter CTRL/S's at a rate faster than
3 or L4 per second. You may think of this as a sort of
skip-forward command. For instance, if you BACKSPACE twice
and then decide you don't want to change anything, hitting
CTRL/S twice will bring you back to where you originally
were, with all original data retained. CTRL/S and DELETE
together comprise a simple but rather effective means for
modifying a program on a one-to-one basis.

NOTE CTRL/S and CTRL/X are NEVER stored in user program, since
they are all interpreted IMMEDIATELY,

CTRL/X Causes your IMMEDIATE EXIT from programming. Controller
will re-type option list., CTRL/X is IMMEDIATE, and it may be
used to get out of the middle of a program after doing a modify
to the beginning of a program, for instance. (Internally

the software also uses CTRL/X.as a do-nothing character. We
make this character serve double-duty in this fashion.)

DELETE(Backspace or Rubout) Causes a double-decrement of the
Pointer address, and prints as a \ . (If you use a TVT, you

may wish to make this actually move the cursor back one space).
Delete may be pushed as many times as you want, provided you

do not backspace MORE characters than you have in your program!
Delete does not really delete, but it DOES move you memory-

wise back one slot, allowing you to REPLACE the character already
stored there. See CTRL/S details for more information.

CR Will get you both CR and LF. This is for operator convenience.
CTRL/R can be used to get ONLY a CR , if this is desired.

LF will generate a single Line Feed .

The next page will discuss functions available.

Bro. Thomas McGahee E;

FUNCTIONS AVAILABLE: The following functions are available to
the user of this software:

(') apostrophe = a calculator NOP.

(left-hand parenthesis. (two levels allowed)

) right-hand parenthesis (two levels allowed)

3 multiplication

+ addition

(,) comma = a single-key implementation of EEX

(-) subtraction (do not confuse w1th a negative SIGN. See CHS)
(.) decimal point

(/) division

(=) Causes answer to be found, AND causes printing of the answer.
(>) DISPLAY the contents of the X register.

The following MULTI-KEY FUNCTIONS MUST consist of AT LEAST

the first two characters shown for each. More than two characters
are allowed, but all CODING is performed on the first two
characters., A SPACE MUST follow the entry of the function code:

E.G., 45 SINE # 2 is 1.414L but 45 SINE#2 is .707 since
SINE*Z is seen by software only as SI .

Note that spaces are NOT required after 31ngle key functions,
so USSINE %2 .is 1.L1L4

ARC (For getting the reciprocal transcendenatl functions)

CO0S (C0Sine)

CHS (used for entering negative mantissas and exponents)

CLR (CLears X) (can also clear all registers except Memory)
DGR (selects degrees or radians mode)

EEX (allows entry of signed exponent)

Etx (&%)
LOG (Log10)

LN (1, the natural log)

M+ (add to Memory)

NOP (calculator NOP does nothing but idle the calculator)
N! (N Factorial)

PI (3.141592 etc.)

RCL (ReCLaim memory)

REC (RECiprocal 1/x)

SIN (SINe)

STO (STOre X in Memory)

Continued on next page...

Bbo. Thomas McGahee : _ ' F=

SQT (SQuare rooT)
TAN (TANgent)

T#X (Ten to the X... 10%)

X+Y (EXChange X and Y)

xtz (x%)

ytx (v%)

NOTE that no DSP DiSPlay code is given, since this function

requires special handling to cause it to print the contents
of the X register., It has been implemented as a single-key(>) code.

NUMERALS :

O ONoONEFEFWN = O

NOTE that since spaces may be freely inserted in program,

an entry like 1 23 L, 56 is interpreted as 123456. A number

is terminated, or specified completely only when it is followed -
by a single-key function or a multi-key function. This means

that CTRL characters and spaces do not terminate numerical entries.
E.G. 11 1 1% 2 . 00 = 2222, This allows you to

give a CR/LF even in the middle of a numerical entry , which is
helpful at times.

LIST: this routine will cause the program you have written to be
listed exactly as it was entered. This allows you to confirm
that it has been correctly programmed and entered. When the &
is encountered, there will be a return to controller. (A return
to controller means that the option list is printed out).

Bro. Thomas McGahee

RUN: This routine will cause your program to be executed.

IF the software finds any blatant errors, such as a multi-key
function that does not exist, you will get an error message
and a return to controller. Thus if software encounters the
function GOBARF, it will print ERROR!' R/L/P:

More subtle errors on your part will simply result in GARBAGE.
Remember the old computer axiom: GARBAGE IN/GARBAGE OUT.

Perhaps the most common errors you will encounter will be:

Not having a space after a multi-key function...

Placing & INSIDE quotation marks...

(An insidious form of this error is only using ONE quotation
mark...resulting in the &% efBectively being in quotation marks!)...
Failing to CLEAR calculator at places where you SHOULD clear it.
Printing stuff you didn't want printed because you forgot to

stop echo with a second ! indicator,.

Then too, to properly use this software you MUST know the
constraings of the MOS Calculator chip itself. READ the calculator
manual through thoroughly SEVERAL times. Most complex
equations you will wish to solve will have to be re-written in
a form the calculator chip can digest. Remember that the
software is really a glorified extension of the calculator's
usual keyboard. (With extras, such as memorizing all the steps,
printing them, and allowing textual messages, of course).

If what you are doing would be wrong if done on the calculator
keyboard, then don't blame the software when it prints out
garbage!

? is a powerful character, allowing external variable input.
Note that it allows more than just the entry of simple numbers,
though!! for instance, in response to a ? you could input the
‘following: I;SSINE SQT REC 32 which will enter the value

equal to . i A
2N (dsme45°)

You may even request to see the value you are inputting, by
simply including = followed by a space as your last input !!
E.G. 1in response to a ? 2#3= (space) would cause 6, to be
printed, indicating that you entered 6.

One caution here: how far you can go in entering complex

functions in a chained fashion is dependent on what is in

the program PRIOR to the ? . Go too far and you may inadvertantly
destroy a necessary previous answer stored in the calculator's
working registers. You have to know each individual program

to know how far you can go before you will create problems.

Again, though, this is a factor dependent on the calculator's
capacity, and not that of the software.

Bro. Thomas McGahee : ’f

Just a few words concerning the OUTPUT, the ANSWERS generated
by the combined Calculator and Software:

Answers can contain UP T0 8 digits in the mantissa, including
a decimal point which is floating. In addition.there can

be a sign preceding the mantissa, a sign preceding the exponent,
and a two-digit exponent. _

When doing up the software I decided to eliminate leading and
" trailing zeroes in a manner similar to that followed by the
calculator itself, The result is a variable-length answer.
For example, the following are typical answers:

1,
123,105 y
22.345 45 Note that a space always separates mantissa and exp.
- =24.03L |
-123.45 =32 here both mantissa and exponent have negative signs.

FO. the F is an ERROR indicator for overflow/underflow.

Because each answer MAY have an exponent printed, it is a good
idea to insure that there is adequate spacing between inter-
mediate answers in a program. For example,

1.234 2 2.456 3 is much easier to interpret than.
1.23422 2.456 3 which is too closely packed.

Software insures that EACH mantissa is followed by a printed space.
Even where no exponent is found, this space will still be printed.
However, there is no built-in safeguard at the end of the

exponent, and you might inadvertently run two numbers together:
you can spot this sometimes, but it is best to build adequate
~spacing into your programs as you write them,

One further caution. The program runs at a reasonable speed,
however some operations require all sorts of JMPS, CALS, etc.,
and this coupled with the fact that we have to STALL while
entering functions to the rather slow calculator chip can mean
that you may over-speed on entering input. The only places that
I have actually experienced this is when using CTRL/S , and
when entering data in response to a ?, Three or four characters
per second is easily handled, but more than this and you may

get Garbage. The best thing to do is to find out what IS the
maximum speed YOUR system will accept CTRL/S's and External
Input, and just be aware of this speed limitation.

Bro. Thomas McGahee . I

SAMPLE PROGRAMS (Just to show a couple of the functions off
to good advantage).

Underlined stuff is Cbmputer-generated response.,

ERROR!

R/L/P:P

CL CL M+ 10 M+ &
R/L/P:L

CL CL M+ 10 M+ &
R/L/P:R

(there is a slight pause .as this silent program is executed,
R/L/P:P setting Memory to 10)
CL 1 M+ CL RCL M " SQUARED IS " xta 1=1 $ &
R/L/P:R :
11. SQUARED IS =1
12. SQUARED IS =1L,
13. SQUARED IS =169.
1L. SQUARED IS =196,
15. SQUARED IS =225,

and output will continue until interrupted by RESTART signal
(in the case of my MIL-MOD-8). .

Note that there is an AUTOMATIC CR/LF generated as soon as the
$ is encountered. This is built right into the software as
part of the initialization routine.

R/L/P:P
CL CL " VARIABLE A "?!3!" VARIABLE B "?" IS "I=1&

R/L/P:R '

¥A§IABLE A 23%2/3> 15.333333% VARIABLE B 2 IS =30.666666
R/L/P:

Note that in this example the ? caused the calculator
to wait for external input terminated by a space, and
in the case of variable A it accepted 23%2/3) , gave
us its value, used this as one variable, accepted the
second variable (2), and gave us the product of our
two variables.

Incidentally, whole gobs of things may be included inside !'s,

even things like ICL 2#%3 SINE SQT = " HELLO " #%5=|
which prints as:
CL 2%#3 SINE SQT =,3233086 HELLO #5=1.616543

The examplesI gave are very simple (and even stupid), but I
hope they demonstrate some of the principles.

Bro. Thomas McGahee ' \Jr

CONCERNING THE SOFTWARE ITSELF...

This is not an optimum implementation of my original ideas
concerning a complete Scientific Calculator operating system.
Among other things, as the program grew I saw places where I
could improve certain subroutines so as to provide the operator
with greater programming freedom and versatility. In expanding
a program which was already pretty far along, I took the easy
way out, and instead of re-structuring the whole thing from
beginning to end, I simply shuffled some sections around, made
a few changes here and there, and threw in a couple of 'patches'
where all else failed. Re-writing would not really save much
memory...definitely not enough to coax me to taking that course |

On the other hand, I realize how disgusting it is to get your
hands on some software only to find that you can't make heads

or tails out of what is going on. For this reason I have gone
to great pains to clearly and completely document the software
itself. In 98% of the software I have placed the functional
description next to the instruction it explains. Wherever it
was possible I have noted where the program is c¢oming from

when it suddenly has another part of the program calling it or
jumping to it. All major routines and subroutines are clearly
indicated by an asterisk. Further, I am including a listing
showing where all LHI and LMI DATA is located, since many persons
may want to re-code this software to run in Banks other than
that which I have written it for. To TRANSLATE this software

to another set of Banks, you have to translate the JMP and CAL
Banks (This includes all classes of JMP and CAL instructions,
for instance JFZ, JFC, JT2, JTC, etcee.). IN addition those

LHI and LMI instructions that are used to set up memory for
storing and retrieving data and codes, must also be translated.
So here's the information you may need:

Locations 010000 = 010177 contain mostly Octal DATA and cannot
be loaded using Symbolic input. Use Monitor LDO routine. :

Load symbolics from 010200 - 012370

Starting Address is 010200 or you may use 010211.
MONITOR uses 013350 - 013377

User's program storage area is from 014003 on,

i ‘ ilor software
012370 - 013350 is available for user patches to tail C
to ggeir own needs’ however, note that my MONITOR-S will use

locations 012370- 013250 |,

i but all prior
ote that RAM must be available from 013350.on,
gofiware could easily be put in PROM since 1t never changes.

INPOO2 at 012172, K& OUT OI4 at 012160

Bro. Thomas McGahee K

LHI DATA 1is stored at the following places:
Address data for '

010201 010 error message
010212 012 controller message
010301 01h Pointer

010312 014 Pointer

010354 014 Pointer

011070 01l Pointer

011102 014 ! Status
011240 010 single-function code storage
011321 01l ! Status

012004 - 010 - Alpha-code storage
012150 010 digit decoding
012207 01L restoring H for Increment Pointer routine

ILMI data is at only one place: 010310 014 Pointer -

MONITOR-8 routines are called as follows:

Monitor address called from
000020 011372
000016 011053
000013 010040
000013 011046
000013 010275
003217 012007
000332 010355
000030 011357

363036 3638 3030 203030 20303030 ST IS0 I 03 _
ROUTINES and SUBROUTINES and other major points of interest

Digit Codes are scattered from 010000 - 010040
Text of ERROR MESSAGE is stored from 010023 - 010032
-- Carriage Return/Line Feed parch from 010041 - 010046
Codes for Single-Key Functions are stored from 010047 - 010071
Multi-Key Function codes are stored from 010072 - 010176
% Routine to call erroe message is from 010200 - 010210
(010200 is our usual starting address)
CONTROLLER is from 010211 - 010255
4 TEXT STRING is from 010256 - 010274
(User may wish to add more specific error messages using this
routine to output the text.)
INITIALIZE POINTER 010275 - 010310
this routine continues on into next routine
INCREMENT POINTER 010311 - 010325
LIST 010326 - 010346

sk

Bro. Thomas McGahee

80 South Sixth

St. Columbus, Ohio 43215

BANK BYTE OCTAL MNEMONICS FUNCTION

010 000 270 Digit code for 8
001 000 not used
‘002 306 Digit code for (F) ERROR
003 266 Digit code for 6 / A routine at 012134
oohL 271 Digit code for 9 / uses the codes
005 264 Digit code for L4 / generated BY the
006 265 Digit code for 5§ / calculator chip
007 000 not used / to recover the
010 262 Digit code for 2 / ASCII codes stored here.
011 000 not used
012 000 not used
013 000 not used
014 263 Digit code for 3
015 . 000 not used
016 000 not used
017 255 Digit code for (-) negative sign
020 260 Digit code for (0) zero
021 000 not used
022 306 Digit code for (F) ERROR
023 215 CR (carriage return) / This is the
02l 212 LF (line feed) / ERROR MESSAGE which
025 305 E / is printed whenever
026 322 R / any error is detected
027 322 R / by program.
030 317 0 / See 010200 for
031 322 R / more details.
032 2h !
033 000 not used
o3y 267 Digit code for 7
035 261 Digit code for 1
036 000 not used
037 230 Digit code for a BLANK (this is a CTRL/X,

which

is a non-printing character.)

Bro. Thomas McGahee

80 South Sixth St. Columbus, Ohio 43215 ':L |

OCTAL MNEMONICS FUNCTION

BANK BYTE
010 0LO 000 Calculator NOP (caused by a space during RUN)
ol 106 CAL 000013 / Called by 011140 in response to
o2 013 / a CR .. gives both CR and LF
o3 000 |
ouly 016 LBI 230 . / then B is loaded with a non-printing
oLs - 230 / CTRL/X |
oué6 007 RET / and then we return (to 011143).
o47 000 (') Apostrophe is a calculator NOP
050 050 (Left-hand parenthesis
051 051 ") Right-hand parenthesis
052 ol # Multiplication
053 oL2 + Addition
o54 oshL (,) Comma is the same as EEX _
055 ou3 (-) Subtraction (NOT & negative SIGN)(See CHS)
- 056 o1 (.) Decimal point
057 045 (/) Division
060 021 0 (Zero) / From 010047 to 010071
061 022 1 / are stored the SINGLE-KEY
062 023 2 / FUNCTION CODES.
063 o024 3 / Access to these codes
o6l 025 L / is controlled by the
055 026 5 /- "Single Function Decode"
066 027 6 / found at 011237,
067 030 7 / Note that numbers and
070 . 031 8 / operations are handled
o7 032 9 / the same way.
072 301 A / The MULTI-KEY FUNCTIONS
073 322 R / such as Sine, Cosine, etc.
o074 033 ARC code / are stored from 010072
075 303 C / to 010176. They are stored
076 317 0 / in a THREE BYTE TABLE format.
077 062 COS code

Bro. Thomas McGahee

80 South Sizth St. Columbus, Ohio 43215

BANK BYTE OCTAL MNEMONICS FUNCTION

010 100 303 c / Access to these codes
101. 310 H / is controlled by the
102 053 CHS code / "Alphabetic Function Decode"
103 303 C / or the "External Alphabetic
104 314 L / Decode" when these call
105 o7l CLR code / the "Three BYTE Search"
106 30l D '/ located at 012001.
107 307 G '
110 072 DGR code / The first two characters
111 305 E / specify the function. Other
112 305 E / characters do not affect
113 05 EEX code / the coding.
1L 305 E
115 336 A |
116 104 ETX code / NOTE: 1‘ (up-arrow) denotes
117 31 L / exponentiation. On TTY it
120 317 0 / prints as an up-arrow,

121 065 LOG code / and on TVT it prints as A .
122 314 L / The up-arrow is a SHIFT N
123 316 N / character. IF you prefer
12, 064 LN code / you may use ## for denoting
125 315 M / exponentiation. Simply
126 253 + / replace 336 code with
127 070 M+ code / the # 252 code at the
130 316 N / following locations:

13 317 0 / 010115 010164 010172 and

132 000 NOP code / 010175,

133 316 N

13, 211 ! / NOTE: the Display code has

135 105 N! code / been implemented as) , a

136 320 P / single-key function, instead
137 31 I / of using a multi-key mnemonic.

(Dis a SHIFT PERIOD (.) character)

Bro. Thomas McGahee

80 South Sixth St. Columbus, Ohio 43215 q

BANK BYTE OCTAL MNEMORNICS FUNCTION
010 140 052 PI code (YT)
141 322 R
142 303 C
143 067 RCL code
140 322 R
145 305 E
146 101 REC code (RECiprocal) ‘
47 323 S / 1/x would not be a proper
150 311 I / alphabetic code, so I
151 061 SIN code / arbitrarily chose REC
152 323 S / as my mnemonic.
153 324 T
154 073 STO code (STOre)
155 323 s
156 321 Q
157 066 SQT code (SQuare rooT)
160 324 T
161 301 A
162 063 TAN code
163 32L T
16L. 336 t
165 103 T4 X code (104 X ...Ten to the X power)
166 330 X / The left-arrow at 010167
167 337 & / denotes the EXCHANGE function.
170 oM XY code / The left-arrow is a SHIFT 0O
1 330 X / which prints as a (_) on a
172 336 1t / TVT. A good alternate mnemonic
173 102 XM 2 code / would be EXChange which
174 33 Y / would code 305..330..071.
175 336) |
176 046 Y X code
177 000 not used

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215 5.

BANK BYTE OCTAL MNEMONICS FUNCTION

010 200 056 LHI 010 % ERROR MESSAGE
201 010 / We set the memory address to
202 066 LLI 023 / 010023 , the start of the
203 023 / error message. '
204 0Oh6 LEI 032 / E defines the END of the message
205 032 / which is at 010032,
206 106 CAL 010256 / Then we call our TEXT STRING
207 256 / routine which prints the message
210 010 / and then we continue into Controller.
211 056 - LHI 012 3 CONTROLLER
212 012 ~/ We set the memory address to
213 066 LLI 224 / 01222l , the start of the
214 224 / Controller message (R/L/P:).
215 0u6 LEI 234 / E defines the END of the message
216 234 / which is at 01223L.
217 106 ‘CAL 010256 / Then we call our TEXT STRING
220 256 / routine to print the message.
221 010
222 106 CAL 011357 / Now get character from Keyboard.
223 357 | |
22l 011
225 074 CPI 2i1 / If the character is a space OR
226 2l / ANY CTRL character
227 140 JTC 010222 / then go get another input.
230 222 / (this allows Home and Erase
231 010 _ / when using a TVT),
232 300 LAA (NOP)
233 300 LAA (NOP)
234, 0OT7hL4 CPI 320 ~/ If we have a P

235 320 : :
236 150 - JTZ 010371 / jump to PROGRAMMER at 010371.
237 . 3N

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215 6

BANK BYTE OCTAL MNEMONICS

FUNCTION

010 240
21
2u2
23
24l
2u5
216
247
250
251
252
253
25l
255
256
257
260
261
262
263
26l
265
266
267

270

271
272
273
274
275
276
277

010

o7l -

322
150
o6l
011
o7L
314
150
326

010

104
200
010
317
106
372
011
304
276
053
060
110
256

010

050

10l

256
010
106
013
000

CPI

JTZ

CPI

JTZ

- JMP

LBM
CAL

LAE
CPL
RT2Z
INL
JFZ

INH
JMP

CAL

322

0110604

3L

010326

010200

011372

010256

010256

000013

3

N N N N

NN N N

/
/
/

Of course, if it was an R
then we would

jump on over to RUN
which starts at 01106L.

Then again, an L

would compel us to
visit the LIST routine
which starts at 010326.

ANY other character is a mistake,
so we jump to ERROR, and from
there go to CONTROLLER again.

TEXT STRING

/
/

NN N N NN NN NN

Get a stored character into B
and call the routine to print it.

Load A with E (END) .

and compare this with the low order
memory address. Return if they match.
If they don't match, increment L

and if there is no carry to worry
about, then jump back to get

more characters from storage.

On a carry we increment H

and then jump back to get

more stored characters.

INITIALIZE POINTER

/
/

So as not to be slobs, we always
start with a CR and a LF.

Bro. Thomas McGahee

BANK BYTE

B0 South Sixth St. Columbus, Ohio 43215 7

OCTAL MNEMONICS

FUNCTION

010 300
301
302
303
304
305
306
307
310
311
312
313
314
315
316
317
320
321
322
323
32l
325
326
327
330
331
332
333
33k
335
336
337

056

014
066
001"
076

. 001

060
076
01
056
014
066
001
106
315
000
106
206
012

357
360

007 . -

106
275
010
106
311
010
317
106
372
011

LHI

LLI

LMI

INL
LMI

LHI

LLI

CAL

CAL

LHM
LLA
RET
CAL

CAL

LBM
CAL

o1k

001

001

01y

01L

001

000315

012206

010275

010311

011372

3

NN NN NN NN

The Program Pointer is in RAM:

the Low order is at 014001 ,

and the High order is at 014002,
We initially store adress 014001
in the Pointer, but it will be
incremented twice before anything
is stored: Program storage, then,
is from RAM 01 003 and on.

INCREMENT POINTER

/
/

NN N N NN NN N

We set the memory to the Pointer
address (014001), Low order.

Then we call the MONITOR-8 routine
to increment the address stored

AT the Pointer location(s).

Call the patch to restore H & L

to the Pointer location.

(I hate patches, but what the heck,)
H gets the High order

and L gets the Low order.,

Memory is set to address in Pointer.

LIST

/

/

/
/

Initialize and Increment Pointer.

Increment the Pointer (again).

B gets the stored character
and we call routine to print it.

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio L3215 i;

BANK BYTE OCTAL MNEMONICS ' FUNCTION

010 340 307 LAM / Get the stored character into A

' 31 106 CAL 011013 / and then call CHECKLIST to see if
342 013 ' / it needs special handling.
343 011
4y 104 JMP 010331 / If you get back here,
'3u5 331 / there are more characters to get--
346 010 / so get busy and do it !
347 0ué LEI 001 # DOUBLE DECREMENT
350 001 / Set E=001 (for counting).
351 334 LDE / Set D=001 too
352 363 LLD / Set Low order to 001
353 056 LHI 01l / and set High order to 014 :
354 014 ' / This sets us to Pointer address.
355 106 CAL 000332 / Now we let MONITOR-8 decrement
356 332 / the adress stored IN the Pointer.
357 000

(used for DELETE indicator)
Then return home. ‘

360 oL DCE / We decrement E ; the first time
361 150 JTZ 010352 / it will go to 000 , and we go back
362 352 / and decrement again-- but the
363 010 '/ next time E goes to 377 , and
36 016 LBI 334 / we load B with ASCII for a \
365 33k | /

/

366 007 RET _
367 300 LAA (NOP)
370 300 LAA (NOP)
371 106 CAL 010275 i PROGRAMMER (loads your program)

372 275 / First, Initialize and Increment
373 010 / the Pointer,

37 106 CAL 010311 / Then increment the Pointer again
375 311 / to get ready to store a character.
376 010 '

377 106 CAL 011357 / Get a character from Keyboard

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215

BANK BYTE

q

OCTAL MNEMONICS. FUNCTION
011 000 357
001 011
002 300 LAA (NOP)
003 300 LAA (NOP) ,
o0l 106 CAL 011013 / Then call the CHECKLIST
005 013 / to see if we have a special
006 oM A / character to take care of.
007 300 LAA (NOP).
010 100 JMP 010374 / Taeke off in search of more
011 37h / Keyboard input !!
012 010’
013 - 074 CPI 377 3% CHECKLIST
01 377 / First we check for a DELETE,
015 150 JTZ 011346 / which requires a Double Decrement
016 346 / (and when done, it returns to
017 011 / the section that called Checklist).
020 o7l CPI 230 / IF it is a CTRL/X it means you
021 230 / want out, so we
022 150 JTZ 010211 / GO to CONTROLLER
023 211 / (Farewell Cruel World---).
o2, 010 |
025 o7h CPI 223 / IF it is a CTRL/S
026 223 / we do something special--
027 110 JFZ 011036 / which is skipped otherwise
1030 036 / by jumping to 011036...
031 011
032 106 CAL 012201 / That something special is to
033 201 / go elsewhere, see what is NOW
o3, 012 / in memory, print it,
035 307 LAM / get it into A for future reference, ‘
036 370 LMA / and in EITHER CASE load the character
037 o7hL CPI 246 / into memory. IF it is (&),

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215

[0

BANK BYTE OCTAL MNEMONICS FUNCTION

011 040 246
oL 150 JTZ 010211 / then we know it is the end
o2 211 | / of the user's program,
oy3 010 / and we go home to Mommy.
o4y OT7L CPI 300 / However, a (@) will cause us
o45 300 / to first have MONITOR-8 give us
oL6 152 CTZ 000013 / a CR and a LF.
oL7 013
050 000
051 o7l CPI 215 / IF it is a CR
052 215 / we also do a LF.
053 152 CTZ 000016 / (MONITOR-8 does it for us).
o5L 016
055 000
056 0O7L4 CPI 222 / IF it is NOT a CTRL/R ,
057 222 / then we are done here
060 013 RFZ ~/ so Return...
061 104 JMP 011370 / But if it IS a CTRL/R
062 370 / we will output a CR and then
063 011 / Return (to List or Programmer).
o6l 106 CAL 010275 # RUN
065 275 / Initialize and Increment Pointer.
066 010
067 056 LHI 01} / We are setting RAM to store the
070 01l / ! STATUS at 014000 , since all
071 066 LLI 000 / our registers will be busy.
072 000
073 250 XRA / XRA sets A=000 ,.. then we set
o7L 370 LMA / the | STATUS to 000 initially.
075 106 CAL 010311 / Increment the Pointer.
076 311 '
077 010

Bro., Thomas McGahee

80 South Sixth St. Columbus, Ohio 43215

BANK BYTE OCTAL MNEMONICS FUNCTION

011 100 307 LAM / Get a character from storage
101 056 LHI 014 | / then set H & L so that the
102 014 / memory references the ! STATUS
103 066 LLI 000 / which is stored at 014,000 .
10l 000
105 074 CPI 24 / IF the character is NOT
106 2l /a (1),
107 110 . JFZ 011123 / then skip to 011123 .
110 123 |
111 011 / But if it IS a (!),
112 317 LBM / then load status info into B,
113 010 INB / increment B
114 301 LAB / transfer B to A so we can
115 - ohh NDI 001 / AND-MASK it so that all we save
116 001 / is the last (LSB) bit.
117 370 LMA / Then store the NEW ! STATUS,
120 104 JMP 011075 / and go back for more characters,

121 075

122 011
123 07L CPI 242 / Perhaps we have a ("),
124 242 ‘
125 150 JTZ 012044 / in which case we go to the
126 ol / QUOTE routine at 01204l .
127 012 ,
130 074 CPI 2uh / IF we find a ($)
131 24k : / we accept the bribe
132 150 JTZ 011064 / and endlessly loop back to the
133 064 / beginning of the user's program.
134 -~ 011 / (This could make me dizzy !!).
135 310 LBA / Just in case, store A in B ,
136 074 CPI 215 / and check for a CR...
137 215

Bro.

Thomas McGahee

80 South Sixth St. Columbus, Ohio 43215

BANK BYTE OCTAL MNEMONICS

FUNCTION

|2

011

1140
11

12
43

Thly
145
146

17

150

151

152
153
154
155
156
157
160
161
162
163
161,
165
166

167

170
171
172
173
1704
175
176
177

152
ol

010
o7l
222
110
152
011

016
215
o7l
24,0
100
165
011

106
372
011

104
075
011

o7h
300
150
075
011

140
203
011

106

304

011.

CTZ

CPI

JFZ

LBI

CPI

JFC

CAL

JMP

CPI

JTZ

JTC

CAL

010041

222

011152

215
240

011165

011372

011075

300

011075

011203

011304

NN N NN N NN N NN N

NN N NN N NN NN N

IF we have a CR, we execute
BOTH a CR AND a LF, and load B
with a harmless CTRL/X .

IF it is NOT a CTRL/R

we skip over

to 011152,

but if it IS a CTRL/R

weload B with the ASCII for a CR.

ANY CTRL character will make

the C flag True:

Other characters will cause a
jump to 011165,

but

CTRL characters will be printed.
and

then

we zip back to 011075 ready to
get more characters,

IF it is a (@)

we do not print it.

(Do not pass GO,

do not collect $ 200), just
get back to work !

IF it is less than 300,

then it is non-alphabetic...
so head for 011203,

IF it IS ALPHABETIC, then
call the ALPHABETIC DECODER
(it will feed the calculator)

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215

13

BANK BYTE OCTAL MNEMONICS FUNCTION

011 200 104 JMP 011075 / (Burp!). After digesting the
201 075 / Alphabetic Soup (so to speak),
202 OM / we set off for more characters,
203 O7hL CPI 246 / IF we have a (&)
204 246 / we know this is the END, so
205 150 JTZ 010211 / Farewell Cruel World,
206 211 / and back to the Controller,
207 010
210 307 LAM / At this time we retrieve
211 07L CPI 001 / the ! STATUS from memory,
212. 001 / and if it is 001 , then
213 152 CTZ 011372 / we print the character in B.
21 372
215 011
216 301 LAB / In any case, make sure A also has
217 o7hL CPI 277 / the character. IF it is a (?)
220 277 / then we head for the
221 150 JTZ 011251 / EXTERNAL INPUT routine
222 251 / at 011251,
223 011
22y 074 CPI 275 / IF we have a (=) or a (D),
225 275 / then we call a rather involved
226 102 CFC 012315 / routine that eventually loads _
227 315 / the proper function into calculator,
230 012 / AND PRINTS THE ANSWER.
231 112 CFZ 011237 / NON-ALPHABETIC characters call
232 237 / the SINGLE-FUNCTION DECODER.
233 011
234, 104 JMP 011075 / We is all done here, so
235 075 / let's go get more characters!
236 011 / (Isn't this FUN ?2?).
237 056 LHI 010 # SINGLE (KEY) FUNCTION DECODER

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215 l‘f

BANK BYTE OCTAL MNEMONICS FUNCTION

011 240 010 / Set H to 010 (Bank address),
2l o2L SUI 200 / strip the character in A
2L2 200 / of its MSB
243 360 LLA / and use this as the BYTE address.
2L 307 LAM / Recover the stored code
2L5 106 CAL 012026 / and cram it down the
2L 6 026 / calculator's throat.
247 012
250 007 RET / Return to get more characters.
251 106 CAL 011357 # EXTERNAL INPUT
252 357 / GET a character from the Keyboard
253 oM / and get it all fixed up properly,
254 300 LAA (NOP) / and check to see if it is a space.
255 300 LAA (NOP)
256 300 LAA (NOP)
257 300 LAA (NOP)
260 150 JTZ 011075 / IF it is a space we know we have
261 075 / finished here, so go back to
262 011 / the RUN program. |
263 074 CPI 300 / IF we have a NON-ALPHABETIC
26l 300 , / character
265 140 JTC 012300 / we go to 012300 to take a
266 300 / closer look at it.
267 012
270 i06 CAL 012257 / But if it IS ALPHABETIC, we éall
271 257 / the EXTERNAL ALPHABETIC DECODER
272 012 / which decodes and stuffs the calc.
273 104 JMP 011251 / Then we check for more
27, 251 / Keyboard input.
275 011
276 106 CAL 011237 / The SINGLE-KEY FUNCTION DECODER
277 237 / handles NON-ALPHABETIC characters.

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215 ,5:

BANK BYTE OCTAL MNEMONICS FUNCTION

011 300 011 A
301 104 JMP 011251 / Upon our return we go looking

302 251 / for more Keyboard input.

303 (O]

304 330 LDA s ALPHABETIC DECODER

305 106 CAL 010311 / LDA stores FIRST character in D.
306 311 / then we increment the pointer
307 010 4

310 347 LEM / and store 2nd character in E,
311 106 CAL 012001 / Perform a THREE BYTE SEARCH

312 001 / which includes decoding and

313 012 / stuffing code into calculator.
314 106 CAL 010347 / Then call DOUBLE DECREMENT

315 347 / which backs us up to where our
316 010 / first ALPHA character was stored.
317 317 LBM / Place stored character in B,

320 056 LHI 014 / Set up memory to recover the

321 014 / ! STATUS at 014000 .

322 066 LLI 000

323 000

324 307 LAM / Get ! STATUS into A, and compare
325 276 CPL / it with L, which is 000 . ,
326 150 JTZ 01133l / If | STATUS is 000, then there is
327 334 / NO echo; skip to 01133l .

330 011

331 106 . CAL 011372 / IF echo was desired, print character
332 372 / in B, :

333 011

33, 301 LAB / Make sure A also has character.
335 07h CPI 240 -/ IF it is a space,

336 20

337 053 RTZ / then we is done--Begone !

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215 ,6

BANK BYTE OCTAL MNEMONICS FUNCTION

011 340 106 CAL 010311 / IF it is NOT a space, then
31T 311 ' / increment the Pointer to set up
342 010 / the next stored character
343 - 104 JMP 011317 / and then loop back for more!
3 317
345 011
346 106 CAL 010347 / =-=Jumped to here from 011015,
347 347 / For DELETE we call DOUBLE DECREMENT,
350 010 / and upon our return we
351 104 JMP 012215 / go to 012215 to print \ and
352 215 / then get sent back home.
353 012 / (you're right, this IS a patch!).
35L 300 LAA (NOP) / (I bet the NOP's gave me away).

355 300 LAA (NOP)

356 300 LAA (NOP)
357 106 CAL 000030 #* KEYBOARD INPUT
360 030 / MONITOR-8 gets the Keyboard input
361 000
362 ool ADI 200 / Replace the MSB since we need it
363 200 : / in output routine.
36L 074 CPI 240 / IF it is a space, set Z flag True
365 240 / for possible branch instructions.
366 007 RET / Finished--go home.
367 300 LAA (NOP) .
370 016 LBI 215 / --011061 wants CTRL/R to be changed
371 215 / to a CR. continue ce.e.
372 106 CAL 000020 % TTY/TVT OUTPUT
373 020 / MONITOR-8 outputs character in B
374 000
375 301 LAB . / We restore character to A
376 o7L CPI 240 / and if it is a space, we set the
377 240 / Z flag True

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215 /7

BANK BYTE OCTAL MNEMONICS FUNCTION

012 000 007 RET / and then head for home.
oo 026 LCI 030 3% THREE BYTE SEARCH (Alpha-decode)
002 030 / If you got here, you must have
003 056 LHI 010 / two characters (in D & E),
ool 010 / so set C (counter) to 030
005 066 LLI 072 / and set memory address at 010072,
006 072 / the start of the stored codes.
007 106 CAL 003217 / Call for MONITOR-8 to execute
010 217 / a Three Byte Search.
011 003

Load recovered code into B

012 317 LBM /

013 302 LAC / and load C (counter) into A.
01L CPI 000 / IF C had 000 it indicates that
015 000 / it was an INVALID CODE,

016 150 JTZ 010200 ~/ so we PANIC and.give an ERROR
017 200 / message and go to Controller,
020 010

021 301 LAB Load valid codes into A
022 106 CAL 012026 / and stuff it into the calculator.

~

023 026

o2 012

025 007 RET / That's all--go home now. ,
026 o7lL CPI 275 # OUTPUT FUNCTIONS (stuff calculator!)
027 275 / If it is NOT a non-coded (=),
030 110 JFZ 012035 / skip to 012035,

03N 035

032 012 .

033 006 LAI 047 -/ If it is an (=), code it

o34 ou7

035 106 CAL 012160 / In any case, stuff the code
036 160 / into the calculator,

037 012

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215 8

FUNCTION

BANK BYTE OCTAL MNEMONICS

012 0uo0 106 CAL 012157 / "IDLE" the calculator.
ou 157
op2 012
ou3 007 RET / Go back where you came from,
oLl 106 CAL 010311 % QUOTE (Jumped to from 01112L)
ous 311 / Increment the Pointer
ou6 010
ou7 307 LAM / Get the character into A,
050 O7L CPI 242 / If we find the closing ("),
051 22 / it means we are finished quoting,
052 150 JTZ 011075 / so go back to the RUN routine,
053 075 |
o5 011
055 310 LBA / If we are still quoting, load B
056 106 CAL 011372 / with the character, and then -
057 372 / print it.
060 011
061 104 JMP 01204k / Now loop back for morel
062 ol
063 012
o6l 006 LAI 211 % DIGIT SELECT
065 211 / Load A with digit #9 code (211),
066 106 CAL 012160 / and cram it into calculator.
067 - 160
070 012
071 104 JMP 01222 / Initially we set E=200 and wait
072 242 / until calculator has valid output.
073 012
o7Lh oLo INE / Now increment E and check to see
075 006 LAI 215 / if we have done all the digits
076 215 / (201=214).
077 n CPE / IF E= 215, then we are done

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215 ,1

BANK BYTE OCTAL MNEMONICS FUNCTION
012 100 053 RTZ / so go on home,

| 101 006 LAI 212 / If we are not finished, check
102 212 ' / and see if this is digit 10 (212).
103 274 CPE / If it is digit 10,
0L 150 JTZ 012124 / jump to 01212l.
105 124
106 012
107 304 LAE / Load A with current digit code
110 106 CAL 012160 / and stuff our digit request code
111 160 / into the calculator.
112 012
113 106 CAL 012172 / Wait for a VALID calculator
1ML 172 / output.
1185 012
116 106 . CAL 012134 / Decode the answer and then
M7 134 / print the answer.
120 012
121 104 JMP 012074 / Now loop back and check for
122 0O7L / the next digit.
123 012
2L, 016 LBI 240 / When it is digit 10 (beginning of
125 2L,0 o / exponent), we load B with ASCII
126 106 CAL 011372 / for a space. We print a space
127 372 / so that things are kept neat
130 01 / and unambiguous,
131 104 JMP 012107 / Then we go back and continue
132 107 / digit output as usual.
133 012 -
134 016 LBI 240 ¢ DIGIT DECODER
135 240 ' / Check: numbers smaller than 240
136 271 CPB / indicate there is a decimal point,
137 140 JTC 012326 '/ and we handle these at 012326 ,

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio A321S

BANK BYTE OCTAL MNEMONICS FUNCTION

012 140 326
11 012
142 016 LBI 04O / Non-decimal point numbers
143 0uo / are bigger by L0, so we
4 221 SUB / subtract 4O (this cuts coding in half)
145 oz2h SUI 200 / Both types of numbers are reduced
14,6 200 _ / by 200. Register A has new code.
147 056 LHI 010 / Bank is 010, and BYTE address is
150 010 / set equal to
151 360 LLA / the new code in A,
152 317 LBM / GET the ASCII from memory into B
153 106 CAL 011372 / and print the answer.
154 372
155 011
156 007 RET / Now you can go home.,
157 250 XRA s IDLE CALCULATOR / XRA sets A=000,
160 131 oUT 014 ¢ STUFF CALCULATOR (with code in A).
161 026 LCI 375 / Calculator is on Output Port 02l
162 375 / in my system. C and D are loaded
163 036 LDI 150 / with constants for delay routine,
164 150
165 104 JMP 012360 / Then we go to our timing loop.
166 360 / (from there we Return home).
167 012)
170 oL6 LEI 200 % INITIALIZE DIGIT COUNT (in E register).
171 200 _ / Initially digit counter is 200.
172 105 INP 002 % WAIT FOR VALID CALCULATOR DATA
173 074 CPI 200 / READ calculator. If the data out
174, 200 / is less than 200, it is invalid,
175 140 JTC 012172 / so here we go loop-the-loop
176 172 / until we DO get a valid READ data.
177 012

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 113215 ;z~,

BANK BYTE OCTAL MNEMONICS FUNCTION

012 200 007 . RET / With a valid code you go home. ‘
201 317 LBM > CTRL/S ROUTINE (called from 011032)
202 106 CAL 011372 / Get a character from memory into B,
203 372 / and print it.
20k 011
205 007 RET / Return (to 011035),
206 . 056 LHI 014 %> PATCH FOR RESTORING MEM. TO POINTER
207 01l / Called from 010320, this patch
210 066 LLI 001 / sets memory to Pointer (014001),
211 001 / then sets memory to address stored
212 307 LAM / in Pointer! Register A gets the
213 060 INL / Low order. Incrementing L sets
214 007 RET / memory to High Order. RETURN (010323).
215 106 CAL 011372 + MORE DELETE PATCHING
216 372 / Called from 011351, this causes
217 011 / the \ to be printed
220 104 JMP 01037L / Then we jump to 01037l
221 374 / to continue Programming routine.
222 010
223 300 LAA (NOP)
22l 215 CR * CONTROLLER MESSAGE (R/L/P:)
225 212 LF / Controller (010211) prints this
226 322 R / simple message. It may be
227 257 / / expanded by up to five more
230 31 L / characters since this message is
231 257 / / followed by 5 LAA (NOP)'s.
232 320 P / Just change the E (END) value
233 272 | / at 010216,
234, 207 CTRL/G / CTRL/G rings the Bell if you
235 300 LAA (NOP) / have one,
236 300 LAA (NOP)
237 300 LAA (NOP)

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215 21

BANK BYTE OCTAL MNEMONICS FUNCTION

- 012 240 300 LAA (NOP)

241 300 LAA (NOP)

2u2 106 CAL 012170 % CHECK FOR END OF CALCULATOR BLANKING
2Lh3 170 / Jumped to from 012071 , this

2Ll 012 / initializes E to 200, waits for
2L5 oLl NDI 007 / calculator output greater than 200 ,
216 007 / AND-MASKS last 3 Bits and

247 o7L CPI 007 / IF the recovered code ends in 7,
250 007 / it indicates BLANKING is still in
251 150 JTZ 0122442 / progress, so we loop back and

252 2l2 / continue looping until we get a
253 012 / code greater than 200 that does
25, 104 JMP 012074 / NOT end in 7. THEN we jump

255 07k '/ to 012074 to start assembling

256 012 / our Answer one digit at a time.
257 . 340 LEA s+ EXTERNAL ALPHABETIC DECODER

260 106 CAL 011357 / Called from 011270... Load first
261 357 / character into E (temporary store).
262 011 / Input another Keyboard character.
263 33 LDE / Move 1st character (E) into D,
26, 34,0 LEA / and 2nd (A) character into E
265 106 CAL 012001 / THEN call a THREE BYTE SEARCH,
266 001 / and include a stuffing of the

267 012 / code into the calculator.,

270 106 CAL 011357 / Coding and stuffing are finished,
271 357 / but more than two characters

272 01 / are allowed, so accept more.

273 110 JFZ 012270 / Keyboard input, and if it is NOT
274 270 / a space, we go back and accept
275 012 / more Keyboard input.

276 007 RET / A space causes us to Return.

277 300 LAA (NOP)

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 1413215 Z;

BANK BYTE OCTAL MNEMONICS FUNCTION

012 300. O7h . CPI 240 % CHECK FOR SPECIAL CASES (= and)
301 210 ‘ /--We jumped here from 011265.
302 11,0 JTC 011251 / ANY CTRL character is not a
303 251 / function, so go back to 011251
30l 011 / for more characters.
305 07! CPI 275 / IF we have (= or >), then we
1306 2785 / will have to
307 102 CFC 012315 / call on 012315 for help.
310 318
311 012
312 10L JMP 011276 / When finished, or if it was not
313 276 / a special case, then jump back
3L 01 / to EXTERNAL routine for morework!
315 106 CAL 0123E0 / AHA! we HAVE (= or >), so we
316 350 / convert it to proper code, stuff
317 012 / the calculator with the fun-~tion,
320. 106 CAL 01206l / Then print the answer by calling
321 o6l / DIGIT SELECT routine.
322 012
323 006 LAI 2117 / Load A with a ('), which will
32 2L7 / decode as a calculator NOP,
325 007 RET / and head off into the sunset!
326 106 CAL 012145 < DECIMAL POINT OUTPUT
327 L% / Called from 012166, this routine
330 012 / first prints the digit itself,
331 015 LBI 256 / then we load B with ASCII for s
332 256 / decimal point,
333 106 CAL 011372 / and then we print the
334 372 / decimal point.
335 011 / We then Return to 012150 to continue
336 007 RET / for more if needed.
337 300 LAA (NOP) / The following nine NOP's are for

possible future expansion.

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio L3215 24

BANK BYTE OCTAL MNEMONIGCS FUNCTION

012 340 300 LAA (NOP) / NOP's are for user expansion
3,1 300 LAA (NOP) / of software.
32 300 LAA (NOP)
313 300 LAA (NOP)
3l 300 - LAA (NOP)
Y5 300 LAA (NOP)
Y6 300 LAA (NOP)
37 300 LAA (NOP)

350 150 JTZ 012026 /--Called from 012374, this routire

151 026 / ives non-roded (=) to

32 012 ' / decoder which codes and stuffs it.
353 006 LAT 03, / But if it is (D), then we give A
3/ 03h | / the DISPLAY code (03L),

355 10 JMP 012026/ Then we stuff it. (Stuffing will
356 026 / inslude printing 'answer').

387 012

360 030 IND # TIMING LOOF

361 110 JFZ 012360 / Feep incrementing D until it goes
362 360 ~/ to 000

363 012

36lL. 020 INC / Increment C , and if it has nnot
365 110 JFZ 012360 / yet reached 000 , then in-rerent
366 360 / D 377 times (octal).

367 012

370 007 RET / Timing is finiched...go on home.
371 300 LAA (NOP)

372 300 LAA (NQP) / These NOP's sre available for

373 300 LAA (NOP) / user expansion of software,

374 - 300 LAA (NOP)
375 300 LAA (NOP)
376 300 LAA (NOP)
377 300 LAA (NOP) / And THAT'S ALL, FOLK3 !

i

Bro. Thomas McGahee 80 South Sixth St. Columbus, Ohio 43215

MINIMUM MONITOR: FOR SCIENTIFIC CALCULATOR

This is a collection of the absolute minimum of software
routines which are needed to support my software for the

SUDING SCIENTIFIC CALCULATOR INTERFACE. I was able to reduce
it a bit further than I originally thought, and the result is
89 instructions/words 1located from 012371 to 013121, Since

my routines are minimal, they reduce the overhead of RAM needed
to'support the Monitor routines to ZERO. This means that the
user now has 013122-013377 free for his own use. You may write
expanded versions of some of my software there, or add patches
of your own to do such things as add extended error messages
and the like.

The input/output routines are for pargllel operation. If you
are using a serial device, then a UART can easily perform the
conversion to/from parallel. Note thatlocations 013005 and
013007 require the user to plug in the values for the time
delay. This allows you to tailor the system I/0 for slow

(110 baud, 10 characters per second) or high speed (can go as
high as 14,000 baud...but most sytems cannot handle that high).
For TVT use I suggest a rate of 50 characters per second max.
This is well under the maximum acceptance speed of the TVT,

and allows for rather wide variations in the system timing.

If you already have a parallel input and output port available,
then you should be able to implement the hardware necessary
for under $2 . I strongly suggest using the 74123 approach
since this always ensures proper settling times for the data.

The hardware/software functions as follows: When told to

get an input character, the software keeps looping and searching
for the MSB (Most Significant Bit) being HIGH. As soon as it
detects this it "echoes" the character to the output port.

Since the MSB is normally kept LOW, and ALL characters have the
MSB HIGH, there will always be a low-to-high transition at the
MSB. This is detected and a negative pulse developed (in most
cases after an additional 100 ns. delay) which informs the TVT

or UART that data is ready to be given to the recieving device.
This same signal resets the MSB of the input port, and méy be

| used to reset the keyboard,(if the keyboard requires a reset

signal). Meanwhile the software causes a delay (this is in the

output routine, which is called by the input routine). This

delay is user-selectable, and determines the maximum speed at

which characters can be printed...and therefore the maximum

speed at which they can be input also.

Besides the I/0 routines, other routines are contained in the

software. All of these routines replace a specific Monitor

routine:

ADDRESS EQUIVALENT MONITOR ADDRESS FUNCTION OF ROUTINE
012371 © 000013 OUTPUT A CARRIAGE RET. + LINE FEED
012376 000016 ' OUTPUT A LINE FEED

013000 000020 PARALLEL OUTPUT

013023 000030 PARALLEL INPUT with ECHO

013045 000070 TIMER

013052 - 000315 - INCREMENT ADDRESS

013075 003217 REERE THREE BYTE TABLE SEARCH
013063 000332 DECREMENT ADDRESS

You will find where these routines should be called from on
page K.

Parellel I/0 Hardware

f ﬁtm m&mas /’;’;‘G'alg_ee
N c ar
Tis RS Flup Rlop Cavses o SRS SRS

MSB To go Hi&H and STARY
HIGH UNTIL "ECHO "

KevBoagp | /5 PekFormeo.

IN MANY SYSTEM s

THE INPUT PoRT MAY
CONS IST SoLELY OF THE

T accerrs IT,

A SINGLE 74/23
Can PrRovide

4

e

,813‘# ONE-SHOT
FUNCTI0nS FoR
ABoUT ¥/S0.
Tks 1s BEST ,

L

100 pf.

U

= — BusS DRIVER (IF IKEY BoARD
STRoBE I-H HAS BUILT IN mMEMoRY.)
‘ e TRI-STATE or
;f rfsi:—boptﬁe ki L (oPTionaL) QPEN-CaLLecTor
tF) Nere $ uss DRIVER
get 1 rom — MSB R =
r—
7BiT - >
PSRALLEL >— y | D47A Buss
ATA FROM (> > | To CPU
KEYBoARD or : N
‘ UART. —
DA’TA ”) — —» __J
¥ INP, OOS5 -
cd e —T>
REAPY - R INPUTA > ! —
STRo BE PorT 1 —— N
/o
TAKES PLACE oF KeyYBoaRD R : CiRcuir |—¢J ADDRESSIN
STROBE ts TVT) =T ilOOn)s T
| T \ neg. PuLse |-'—< ooT
| F You EXPER|IENCE N € —{ MSB —
FALSE CHARACTERS, . = —~ | = —--
ADD A 74121 7 BITS T¢ : : DATA Buss
OR 74123 here TvT Lak UVART J«— — ¢ FRom CPU
] { a —g
T acks IF USING SERiAC | [« | (may Bea 81-pirRecTionse
E0GE and EQuiPMENT] (— < Buss)
GENERATES 4
100 ns PuULse OUT OIS~
LIKE THIS! OVTRUT PoRT
| | 70 GeT 200 n§. pulse youcan use a 74121 or
This Cheaper alteenative wtHickh ¢S JYST A4S
TS will allow : e
exTRA Time good mthis application
FOJQ DATA To TH/S DETETS THE RISING
“setrie” geroe 100 PF £dge oF mMSB SIGNALS

TUT ok VART to accept Data,

Bro Thamas NS Gakee Page of Pages !
80 Scwth Sixth Gt.
Columbus, Otuo ParAaccee T70

43215 °

ANK BYTE

CODE

Prc» ram ' MiNimom Monitap
REV. [oR Scrent/Frc Cﬁecuoqrae
MNEMONICS . FUNCTIONAL D CCRIPTION

|

0/2] Lo
. L

u2

L3

Ly

L5

L6

L7

50

51

52

53

5L

55

56

57

60

61

62

63

6l

65

MINIMuvm MoyyToR

66

67

OccoPlesS or2 372) — 0!3/2/

70

agl2 |3M

0/6

LBl 218 ¥ CEB+LF (olf g€ 000503)

372

215

373

/0€

-

CAL _p/3000 [PRNT cR

374

(o] efe

375

/3

376

o/6

LBl 212

377

2|2

e e e ST NP

Thomss HMcGa' e 6O 3outt S xth S5 . Colunbus, Ohic 43215 5-

o3 VIS
BANK RUTRER QOOTAL 9N T30 TgNee o
Ol3 |ooo | 239 | XErA4 %lﬁﬁfa__/_&(B0TPeT (old 0ooo20)
001 |33 | go7T__0/5 [dle FParallel ootput PorE
002 |'20/ LAB
003 | /8 | gur 0(S /! STUFE cHARACTER nto PolT
0oL — VT, 0/Y 2R 110 ghvd
e o€ | Lcy o S (00! for- VT, 014 4 7v)
006 | 036 | ¢ PIXk———> (342 G- TVT, 060 fR /(0 B4 TTY)
007 e 7
010 T/0g [cac 0/3 095 [ppec 7.46R
011 oys _
012 | 0/3
013 | o6/ | Dek [Becwerment C _and if NoT
L |\ | T2 o/3006 [009, (ool
015 | poé | dez _ | -
016 | or3 |
017 | 280 | X KA %_/a//f oUTPT PorRT
020 | I33 | pu7 0/S |
021 |0/ (A8 / get character wto A
022 | 0? | RET | and Beroen~
023 | /3 | ;j#Pvo5 X Pavallel 1mfer WWeco a/dmozo)
o2k |/0 | 184 /| KEECP CHECKr A9
025 oy | cP) 200 /] INPYT [FoX
026 | 200 _ / MSE H/g94
027 {140 | TTC 013023 [By {ooPir¥T,
030 0273
031 073 [LA 1TI/S FHiGga,
032 | V06 | £2F 04 0/3000 [/ _EcHo the CHAR TR
033 | 0ooo A
o3k | 0/3
035 |ogy eé#zz# PO 121 [STEP AFMTA
036 177 |
1037 1029 CPl_ 00| [chuck pn crbisn

bre. Thomas McGa-.eu 80 Scuth Sixth 3. Golumbus, Ohio /13215 6

PANK BYTE OCTAL MNEVOWIC®C FUNCT (M

o/3ioh0 | oo/ ' 4 |
om {3 | pEZ [Letuen i et TRYA,
L2 | s6¢ | JuP 0028 [acrh A ewbhoacacctor
o3 T2/ [o ptanT Gutrolter
obly | p/o o ' |
ou> | 630! 40 X 7 imerR (o)l o000 020)
oLé | 110 | gF2 0130¢S / Leep /eremanﬁ{l‘g 24
L7 | vus / VwTit T =000
050 0/3
051 | p0? | RE# /[THEN G o HomE
052 13121 ¢Am ¥ /Nclonent Addkess (o/d poo3/5)
053 [oto]| ,ugm /. _GE7T (ow ORIl ERom
o5k {272/ | (cmB [/ MemeRY INTO B, /nvcremeut
055 | @13 | KF2 /[Anvd PAcE N menio By,
056 | 060 | JC [RETURN UMESS we need
057 13172 1 c8m [A CAPRY, To cARRY geT
060 | 0/0 | JWB [High ordef mto B, inchemedl,
061 | 372/ | ¢ mb / E;Toée iT 70 Menay
062 | gop | ReT /[And Be7TdRN.
063 13172 | (M K Decfeme nT Address (dld 920332)
oeh | ol | pcB [/ THIS IS THESAME A S
065 [37/ | (mb [THE "TNCREMENT” RooTinE _
066 | 0601 VL [EXCePT 1T DE&LREMENTS,
067 | 010 |#B >
070 | 613 | R F2
oM 1317 1 BmM
072 {o 1 1| DcA ~
073 |37/ | (m8B
o7k oo | ReT / PeTvR A then dene
075 | Q21| pcc ¥ 3 BYTE TASE SeplcH (o/d 063217
076 | /3| RT2 [DeckemenT C ¢ |F =009, KeTulM
011 1307 cAm [oThepwise _gel AcHARACTER

Bro. Thomag McG inee B0 South Sixth S . Columbus, Ohie 13215 7

BANI BYTE QCT4Y, MNEHMONICS ‘*UN("]‘:"‘N

CT/? 100 {660 | /nc / g7 /Zea/q forl NVEXT cHA RICTER,
101 | 223]| <cpPo [__See /¢ kT Cintacres /mzz//g:

1102 1110] memd sEZ 013115) TF NOT, TMP Yo NeXT 3BYIE

103 (S / Block
10l 013 . '
105 | Bo? | LA [IF]sT mATcHed, geT
106 | 2724 | cpe ! ANCTHER cHALXTR ¢
107 | 110 J’FZ_ 013 (1S [/ I1F NomarcH TJmPTo
110 | (S _ [NEXT I BYTE Block
111 0O(3
12 | @60 nC [1£ BoTH MATHED THEN
113 | 307 CAM / GoToNEXT (ocaTion and
Mk | 00721 EET | GET DATA and G o HemeE .
ns | d6ol (wc [g0 L NEXT 3BYTE
116 | 060 A/ / Block
M1 104 | gmpP c13025 [Anvd TRY AGAIN,
120 Ay
121 o/3
122 ' o
= § 2o 4 /444 fe‘l AAdeA
124 \
125 /
126 \
127)
130
131 \
132 / B
133 (
134 \
135
136 -
137 o

HARDWARE/SOFTWARE WITH "HANDSHAKING" KOk MAXIMUM SPEED.

This hardware/software combination is meant to allow the
output device to operate at maximum possible speed. - Instead
of using timing loops to pre-determine the delay, this system
lets the receiving apparatus signal when it is ready to accept
new data. This 'handshaking' is preceeded and followed by a
delay of at least 100 nanoseconds to insure proper 'settling'

of' data being transferred.

Since Input routine uses the Output routine, we will explain
the Input routine in detail:

A loop causes the computer to keep searching INPUT port until
the M5B goes HIGH, indicating input data is ready. The
sof'tware immediately starts to 'echo' the input by calling the
OUTPUT routine. This routine starts by 'idling' the output
port (insuring that MSB starts out LOW). Then the character is
output, which will always'cause the MSB to go HIGH. Hardware.
detects the MSB low -to- high transistion, causes a 100 nanosecond
'delay, and then delivers a LOW pulse to receiving device, causing
data on output port to be loaded into the device. At the same
time we insure that MSB of input port is high by coupling this
pulse to the RS flip flop. (This is done since output can occur
from computer-generated data as well as from keyboard data, and
we use ﬁhe MSB of the input port to tell us when we are done).
When receiving device has processed information and is ready to
accept a new input a low-to-high transition is sent to the C
one-shot which creates a 100 nanosecond delay. At the end of
this delay the D one-shot creates a RESET pulse for the INPUT
port MS3, All this time the software has been looping, waiting
for the MSB to go low. When the software detects that this has
occured the program flow RETURNS...in this case to the INPUT
routine, which then strips off MSB from data and checks for a
CTRL/A . (a CTRL/A will send you.to the Controller).

Note the following as regards the

the addresses where the Input and

same as those used in the simpler
software from 012371 - 012377
remains unchanged, so consult the

for these sections. See page A-2

software: We have kept
Output routines start the
I1/0 routine. Further, the
and from 013045 - 013121
software for Minimum Monitor

for a listing of what

Monitor routines this sof'tware replaces.

Paraittee L/o HARPDwARE

8y BrRo, THomMAs MeGahee
Fore MINI MICRO MART

/0
For TVT o : |
R Unkr(IncluJes *hand shaking’ for maxinuvm
t SYSTEM S'Peep.)
+5
Kevaoneo N9 FIoK
—— > et IN MANY CASEsS THE
STROGE l‘""'[::i KEYBOARD HAS A MEMoRY,
To KEYBOARD Cr——— and Then The port can
RESET be juvst a Bvss DRweR
/GH: "-5 4V o | J,
/’0/4%:‘ ,,(%-H (SH¥E »—[MSBS | MS8 o |
FRoM TVT , l'] s-s!vsrem f').; INPOT 9 3 SBBIT DATA
vSS
ag,iud>—I ¢ Tkl o T keser | 5| PorT Sof?> | Tocpu
/oons toons 7B'TJ : (o05) 5 _—_: (or Bi-DIRECTINAL,
see note =— INPUT v
BELOW = lam € —)_J
R—
TO TVT l =
T9, 10 P —— /AR
- 8 e I/0
. 3 A .
oK ;'lf’f /OK%J_“;_I’ ¢ DEcopeR :(I/o .
, CIRCVITRY —$ _J ADdIRESSING
Falv— 8T
100ns. toons. T a
«{Mss N
<Jourpor
7817 | & PorT [
OUTPUT ¢ 2:(j 4 §8/T DATA BuSs
e VT | & o15) -, FRom CPU
oR UART 2: —< | (0R Bi-DIRECTIoNAL)
Transmitter L —<

ungf: AY-5-1012 y Com 2502 , 253¢ ofc..

% /f USING A UART , CONNECTI0NS ARE
As Foll ows:
pin 19

(o1d T8,14)

A\
rP o

Pin 23 —<&——
(TD3)
(old 3'9,10)

on Addtisn A URRT REQUIRES

THE Following '
Cannecr PIN (8 (2”04/2)
to ‘KeyBoakp RESET U

and conneclt pPin 19 To
“Key BoarD STRRE INPUT ViA
an |NVERTER ,

ﬂ_%—% :

'.’e‘ Pl’”
cmos

'Xw _Yiw |}

Bro. Thomsas McGahee B0 Seuth: Sirtn 3. (2lumows, Chio 43215

/
Minimom Mo NI TOR W hudshulting
BANK BYTE 2CTAL MNE:(CMN' 38 - yner o
O (3000 | 250 | xRrA S ¥ ouTpy7 ASCII
001 | 183 | ouT oIS S ydfe PolkT
002 30’ LAB p)

003 [133 [ourois & PRINT B
00k | 1) 3| \NP o005
005 [62¢ | crPi _Roo

D) -
(,F mSB of INPVT PokT
JT /S High, LoaP

006 | 200
007 | fO00O JF—'C Q13004 ———
010 | ooy
011 o/32 B

012 T280 | xRa 5
013 [133 | pu7 o015 S idle RoeT

ol | 30/| ¢48 [pel wp B

015 | 002 | RET [/ _Go Home _,
016 | o/3 REZ SN T = smEset— NPT (o untluved froan 03092
017 | 104 | gmp _ol02/ % crhl/t cauded a Retves
020 | 2// “ TJo CAcculaTok ConTéollep

021 0/0 .

022 | 000 | ptused CHer)
023 | 113 | (NP09S ~
o2y /0 LB A]) :

025 | a2¢| cpP/ 200 \(, Loof yNTiC DATA

x WA _ASCi(

026 1200 /S_VACid

o021 1 1§0| TJrc 013023/ CMmSB H/94)

030 023%

o 013

032 | f0€ | CAL o/3000 ECHo _CHAKACTER
033 | poo

03L | 07 o

035 To4y| Noi 477 STIF «FF mMSB
036 |77

037 | 3/0 LbA B and A HHVE DATH

Bro. Thomes McGa-o2 80 South Sixth 3'. Columbus, Ohio /}3215

BANK BYTE OCTAL MNEMONICS FUNCTICN

e 8. T Me- - e et SR g A A SR R TIETS Um0 Y eSS s PIUMC W wm w1 W
t e

0|3 (oo | O | cpP / 03/ D
oht | oo/ /s 1T 4 <TE/4
ow2 | yo4 | TP o3 o/é _contjnved effewbrare,
oL3 | p/¢ ’
ok | 0/3 |
oLS w i -
'036 te pPesT z{_/e.th_idﬁi___'
oL7 | AS _THeE oTHE. _
050 1 M mimum SoFTed ARE
051 , 4?007./”5’

052
053
o5L
055
056
057
060
061
062
063
06l
065
066
067
070
071
072
073
o7h
075
076
077

