
'l

•

• ,·
,-. .

--}

OHIO SCIENTIFIC

ASSEMBLER EDITOR and

EXTENDED MONITOR

REFERENCE MANUAL

■

CHAPTER
.· . ~ . .

· 1. INT-ROD.UCtfCiN~ ('!1.ll.••·~·-· ••••• ;:~ ~ .• ~•~•.i!l·•.1!1•~-:.■~---··.: •••• ~~ •••••• ".~· :..~~--. . . - ·. ·_ . .. ~. '.

. .

2. BUILDING: Bl.OCKS OF ASSEMBLY LANGUAGE u. -~ '" .. ~~ ,. •.
. , . : ,. ::. .· .· .- .·. .) - . '. .· / _. ~,_-,:·· .. . -:

OPERATION . ·SYMSOt.'S -............ ~.--~---~-~···.;. ,. .•••••• q •• ·"·•·!1--••• ~:;.._ • .;.:.~~~;, •• ;~~-.... 'll:.~li

:. < -·. • : •• ,··. • • • .- ' • ••• .:_,_ ·.·, •',,, •••

·CONSTANTS~;. ~~•:a•-•····~······· .. ···~ ~.•.,.~•···· 111 ~•· i.~···"········~··~-~~-•-:~~-"'~.-., .. :..~-~~~~-·•·~···
.,·. ' · .. ·.

c.. µBELs.·. ANO- EXPRE$$i~ • ., •. ~---•--·~ ... · • .,-. ~ •• ~.,----····~~-~: •• ~ •... ..:~ ~:~-...... ~ •. • .. ~tt~•····•·"·•·~~~,;~ .•... ~.~~..:..~~········--::+:·

, - ' ' .·· - .. -.. ' . •. :- ;···. -, . ·,, - .

··A:. ·. REMARKS ~ ~: ~c ~ ; ~.~~~ ~ • ..-~ ~.
. . '•. . , - '_- . : .. . ·. ·:·· ·. : . •' .•·

a. INSmUCTIVE&~--~---~···········~~~---··~----................ ~~----•·~---.· ••• _.-................ ~~ •••..• ~ :,l.~~-~~-:•·~:~.~----· .. ••· ~3-5 " - . . .· - . . -- , .. ·._.·'

(1) · Direct ·.Addtessing·.~ ... ,, •• ; .. ~~· ;~ :;~ ••• ~ 3,4·

(2l lM~lat~. Address~ng ~·-~--··•~··~~~~-• .. •··.,~---~·•·~··••ff••···•··~-····"'!·•· .. ···••4!•• .. ······--~•·,~·~,.~.~·•··•.,·~~· .. • 4
(~) 1.ndexed •·· Addressmg ; •• :········ H.: ... ~~ ~ :. ,..; ...• ~ ..• ~ 4,5

~ (4) ... tndlF~ct 'Add~tnu.••·~~■-'!•··•·• ••~~~--~~~-- -~•~-~., •• ~-:--~~I!••~~ ~--~-■ ••.•·ra~•'! ... ·~••.■--~•-···• ~■-•~•• ".-:.~ • .;~ ~,•.••~~~~I!•~.•·~•·~ .. 5'
- ·. . .· ·,. ·.- .. . ",. -

(5) ·_Implied Acicl~sl-rig~ ... ~--•-···~.,-~.-~.•--··~,•.--•·~~---H ~.~··----~·~··••.•·•~ _:•·~•.••,•-:~---·••~.•~~.•··,•· _ • .-.... _..~-.!••·••.•--•----· 5
. .

c. DlRECTIVES-~.~--••·•··--•····••4!~••·--~• .. .,. ~•!I••··•;. -~ •••• :....~;.. •• · •••••• ~~ ••• .-, •.•• ·: ... ~ ~~-···· • .-•••• ·-. ••••.•.••• ~ ~ 11t~•~•il••········•···· S-7.· . ·-

:(1,) Th9 · LQC:ation .. Coun•r-. ~ •·••·•~l!••ir-••··· ... • ~-..... ~-•• : ~~-• ... ~ ... "' ... · ~ ~~ .. ~ ••• °i~~-~·•·•.~•···•••.••·•····~s~S
(2) Defining·· Labels ~ •• ~ .•••••••• ;; ~ ~~ ~ ~ ; •.••••.• · 6 •.

(3) ~. Lo~i0f1-s ~ . .a:••?••~··~•·~~; •• Q; ;.., ••.•••.• :..-..~ ... ~ •••• ~ •••• 11 ... ~ ~-.. ~111••·-.. ~··~· ~~· :6~7

(a) Byte '!" ~.•· .. ·····,···· .. ;.·· ~~ ... -■~:~---~.•~··•~.-·~~•--■•--·•·:■~• .. ·····• ~~~·••.••.•11!•••-■:•~~.'!•l!l•~.'!"!i••· .. ~·~•~-~~·~···"•••,•· .. ••• ~--·~

(b) .Qbyte •• ,.•·•••il'!" ■. ~ ••••••• :■-aa.,i, .. ~ , •• ~.;~~-~·••••~•~•.••••~l!l•••~ .. '!'~•.••·•«~•••-il.••• ~•~•,lli:.~~-iu,w-■■••~~~-~~~·•·•~.• • ~••~• •••n .. ·6~·7_

(c) Word H••···~ .. ········••.•······ .. ··• .. ~ ~ ·.~ ••••••••••••• u 7··
, . ; ..

. 4. BUILDING ANO EDITING AN. ASSEMBLY LANGUAGE ·souRCE. Fll.E •..... "°~ ~ s
• •• ••• .- ' • : • .- : ',· • I' • • • •

. ·. :. ' .. ~ :·

5:. . ASS,EMBlY COMMANDS~ ~·-·~ ~ ~ .. ·•••·•·• ~ ... ·.l!l~•-.•·· 1!1-• ~·· ~ -...~~.l!J••••:•~-·~ 9 ,

6 •. ·AN EXTENDED .EXAMPLE.(llfERE' ARE MANY SHORT EXAMPLES.IN TH£
PRECEDltro . SECTIONS) ~ ~.~-•·•·,;•~•••··•--·-- 10.13

. . .

7. RUNNING A. MACHINE tAN(lUAGE PROGRAM ~ •• ~ ~ •• ~.;~ •• ~ •• : 14
.· :. ,. .· :

. .

.A. USJHG.·THE•.PROMMONITOR-CASSETTE BASED SYSTEMS_ .. ,~ .. ~ :~ m 14·

B •. USING nte.' DQS. KERt4J:LJ>tSK·. BASED SYSTEMS •••••••••••• ~ .. ~ m ••••••••• 14
-· . . . '

C •. USING· .THE• PROM·MONtTOR-OISK .. BASED
. . -

S.VSTEMS •• ~ ~~ ,(.. ~•••9!•:~•···•·:.~.~.~~;~ "!t ••••••••••••• ~ 14

'

8. TH.E '.EXTENE>E·o.·.MONITOft;·, •• ~~•-.. , ~··•~lli··~· .. •·~ ~ ~ ••. ~ _:.-... ~ •• ~-•···;;. .. ~~~.;~ •.. ~-•:-••·• ·~•-• .. •· t•5.-,t9:

A~, THE EM .. _c·bMMANDs~·~.~ -.~~·--~-:a-~ ~[:-11••··~····••:a••··-··· .. •••• .. ···~~~ -........ ~~~--~···•··~~ :.. 1 ~ 1.7
B•. ·.THE. R ANb M.· COMMANDS IN DETAJt; WlfH EXAMPLES : ••• ,.L.•••·•••m~••••• .. ~••~••• •:11 •
C •. BREAKPOINTS ANO.QJB~GING .• WIT" EXAMPLE$; m••'.···· .. ·•· .. •·•.:· ~i 17 • 19

PAGE

.9 • • , .. · . . . , .. ·, _.

A.:. USR: FUNCTION· ~ ~ .. 20 · .•

8. DISK:! ·~Q.O:...-:~-~!I~•-·· l!IJl•···"·'.-~~ ••••••.•. •~---~~-•• ~-........... ·.ll!,_.~ ••• ~.~· ··~ ... ········~-~ ~··· ... ·~ ~ •• ;..~~---: ••• ~ •• 20 ·
c. ·01sK.f ''XOT~ ~ ~_ ~ ~.: ~'l'"'!••·~~---~-~~ ~ ______ -..... .1!1_•••-···•·······• ~···· 20,21

APPEN.DICES
.·. ', . .·

. A. ASSEMB·LY ·iRRQRS ~~--~.•-···~·~···•-····~·•··•1!1~••·;._, ~ 4;"•~·--·•·!'• ~••····~~ 22.
•• 6502 INSTRUCTION· .ADDRESSING .. MOOES, •..•••.• · ••. .:.: H ; 23

o. os~· .·VtRStON· ·.,oF ASSEMBLERIEDiroR~---~"--·•-~ -.-....... ~····· .. ··---·· .. ••••·•••• .. •••·· .. ··•~······:········2s
E~· CASSETTE' VER$1O~. ·OF · "SSEMBLE~IEDIT:OR~ •• -~:••-~·-•·~·•·• " •••••••••• ~····--~~ _ ~a&~21'
·f. EM· COMMAND·· SUMMARY ~ ... 28'

' . /

G. : ·0$-650· V·EASION OF EM~··············~···•:a.ii••·· .. ·····•·~--"··~···•··· ,. ~.•······· ~ ~: _ •••• ~: •••• -••. 29.
H~- ·cAS.SETTE:·veRSION-· OF. EM ·-··~·······;·····••.•······ .. ·••.•·····.: ~ ~ ~30:
·•~ ROM .MONITOR, COMMANDS _ H .. · 31 ·.

,~ ASCII. TAEiLE. ... _ ... lll ~ ... l! ... ~ ... 'a ~.-.. 132

'K.. CHECKSUM.·· ;'FORM'At ~ _ ... ~~ ~ ... -................................... 33
. . . . ;

-L o&-eso- ·coMuANoS- A"o eRaoRS. ... -...... ,l!.ll•-·· '!~ ~ .. -.................................. ~ -:-.. ~· :a4~3s
. .

M; FLO~TING. POINT STORAGE FORMAt ~ ~ ... ~ 37.
Na !~-.. DIS4SSE-Bl V· TABLE - --.~ _ .. ~ .. ~ ; ~•~· "' : 1.r.= -.3$

• . o .. 6502 .REFERENCE LIST - .. ;;39,40•

IN:D1:X· ... ~ ~ ~ 41,42

ii

CHAPTER 1

INTRODUCTION •
This manual is intended to be an introductory and

reference manual for entering, editing, debugging and
running assembly language programs using the OSI
Assembler/Editor and Extended Monitor. This manual
is not intended to be an introduction to assembly
language programming. See Appendix O for a list of
introductory texts. We shall assume that the reader is
familiar with binary and hexadecimal numbers, the
two's complement system for storing negative numbers,
the architecture of the 6502 microprocessor (registers,
flags, the stack, memory organization) and the rudi
ments of 6502 assembly language. In this manual we will
use the following conventions.

<CR>

<LF>
<BREAK>
t
@

The carriage return key on the
keyboard
The line feed key on the keyboard
The break key on the keyboard
An up-arrow. May be t, A, or
shift-N on some keyboards
The commercial-at. May be shift-P
on some keyboards

We will use the following terms:

BYTE-The standard eight bit unit of storage.

MACIIlNE LANGUAGE-The.language the micropro
cessor understands. For the 6502, each machine
language instruction occupies one to three bytes of

· memory. Hence, a machine language instructor is one 8
bit number, two 8 bit numbers or three 8 bit numbers.
When the microprocessor is running, it is always a
machine language program that is running.

ASSEMBLY LANGUAGE-A symbolic language in
which every line of a program translates into one
machine language instruction. This is in contrast to high
level languages like BASIC or PASCAL in which each
line corresponds to many machine language instruc
tions. While a machine language program consists
entirely of groups of 8 bit numbers, in an assembly
language program, the programmer may use symbolic
names {mnemonics) for the machine instructions.

1

ASSEMBLER-The program which translates an as
sembly language program into machine language. The
OSI Assembler/Editor also contains features which
allow the editing of assembly language programs. While
programmers sometimes say they are writing programs
in "Assembler," it is technically more correct to say
assembly language. An assembler is a large program,
which functions somewhat like a compiler.

ADDRESS-The memory of a 6502 computer is
organized into bytes. Each of these bytes has a unique
number associated with it called its address. Addresses
are usually written as 4-digit hexadecimal numbers. The
first address is $0000. ($ denotes a hexadecimal
number.)

PAGE-Memory is organized into large units called
pages. Each page is 256 bytes. Page 0 consists of those
bytes with addresses $0000 through $00FF, page 1 is
those bytes with addresses $0100 through $01FF, and so
on. Page 0 is important on the 6502, in that instructions •
which refer to page 0 are shorter and execute faster than
instructions that refer to other parts of memory.

EFFECTIVE ADDRESS-Most 6502 instructions make
reference to some byte of memory. The address of that
byte is called the effective address for that instruction.

OBJECT CODE-Machine language. Generally this
refers to the result of assembly of an assembly language
program.

SOURCE CODE-The assembly language program to
be assembled. The assembler translates source into
object.

FILE-A program or group of data. Thus a file may be
an assembly language file, a machine language file or a
source file.

LOCATION COUNTER-When the assembler is as
sembling a source file; it keeps track of wherein memory
(the location) the object code is being put. The location
counter is where that location is kept. Hence, the loca
tion counter is a place in memory that contains an address .

•

CHAPTER 2

• BUILDING BLOCKS OF ASSEMBLY LANGUAGE

Each 6502 assembly language statement is composed
of one or more parts. Each part is built from the
following:

A. OPERATION SYMBOLS

These are three-character codes which the assembler
translates directly into a machine language operation
code. For example, TICA (Transfer register X to register A)
is the operation symbol for the 6502 operation code
(opcode) $8A.

B.CONSTANTS

A constant is a number. On the 6502, a constant is

•
lly an 8 bit (one byte) or 16 bit (two bytes) number.
programmer may use numbers in decimal, binary,

octal or hex (hexadecimal) and may also use character
string constants, which are stored in memory in the 8 bit
ASCII code. These codes are listed in Appendix J.

1) A decimal constant has no prefix.
2) A binary constant is prefixed by a per cent sign

(%).
3) An octal constant is prefixed by a "commercial

at" (@) sign.
4) A hex constant is prefixed by a dollar sign($).
Thus, for example:

26 = % 11010 = @32 = $1A
5) A character string constant is a string of

characters enclosed in single quotes (apostro
phes). (If an apostrophe is to be included in the
string then two consecutive apostrophes must
be used.) Each character in the string is stored
in one byte in memory in the ASCII code. For
example, 'A/3' is stored as $412F 33 and 'P"R'
is stored as $50 22 32.

C. LABELS AND EXPRESSIONS

• label or symbol is a group of characters which looks
like a variable name in BASIC or FORTRAN. A label

2

consists of one to six characters from the set

A-Z
0-9

$

The first character in a label must be a letter. The
characters must be contiguous, that is, there must be no
blanks between the characters. The single letters A, X,
Y, S and P cannot be used as labels, since they refer to
the 6502 registers, and no operation symbols (like JMP,
SEC, BNE) can be used as labels. Examples:

LEGAL
LOOP
END.2
TABL$
START:
XY
LDAX

ILLEGAL
POINTER
$PR
A/B
LOO P
A
LDA

The programmer may also use arithmetic expressions in
a program. An expression may be like an arithmetic
expression in BASIC with no parentheses and no
exponentiation allowed. Evaluation of an expression is
always done left to right without regard to precedence of
operators. Expressions are always evaluated to an
answer of 16 bits or less, with any overflow ignored.
Division is integer division with any remainder ignored.
An expression cannot begin with a minus sign, however,
an expression like 0-1 is allowed, with the answer
appearing in two's complement form if it is negative. For
example, if Q = $50AF and D = 64 then the

EXPRESSION
Q/$100
Q*256
Q/256*256
D+$0A/%1010

EVALUATES TO
$0050
$AF00
$5000
$0007

The assembler also recognizes one predefined label, an
asterisk(*), which denotes the current contents of the
location assignment counter. The assembler can tell
from context if an asterisk means this or multiplica
tion.

· CflAfTER. 3:

. ASSEMBLY LANGUAGE STATEMENTS

There ate three kinds of statement$ that can be :
. entered into an assembly languagesomce program: .(a)·
remarks, ·. (b) ·· instructive statements. and (c) · directive
statements. Each line must begin with a line number.

.A. Rl;MARKS·
A line that beginswith i semicolon (;)is a comnien:t.

Remarks are printed in any listing,but theydonotaffect · ..
the object code producedduring.assembly; In addition,
any line in. a sotJree.progJ'.am can contain con;iments,.as
described below.

B ... INSTRUCTIVES .
. .

These· are .the. act~al assembly language instructi.Q~ •·
thattranslate directly into machine language code. An
assembly language statement has up to four parts called,
fields. The general form. is · ·

. .

label. operation symbof'. ·· aperand .· remarks

The label arid remarks fields are always optionaL Some
stat.e111entS requiretha:ttheoperand· fieldbe.blank.The· ..

· fields may begin in any column and theyare sepat.ated by ·
blanks; It is, however;goodpractice to tabulate the four·
fields in :~lumns,. See Appendix ff for tab characters.

For the statements that require an opetand, the .·.
operand is.either(i) thedatafw the instruction, pr(ii)···•·
the·Effective Address,. or(iil) theinformatiort;need~dto:
calculate. ·tb~.··Effective. Address. To·•·facilitite.some····

. . .

exampleswewiU next descril)e two directive s.tatements.
These willl,e describedin:greaterdetail inthe following
section.

The form :of the .BYTE statement is.·

·. label .. BYTE operand remafks

Thelabei and remarks ·fields are opu'onal. The operand,:
may be' any expression. This directive causes the,
assemblerto generate aone byt¢o,-,nstant at the current'
location in the program.

·. Tiie equals(=).ditective causes a.label to take a value
which is used throughout assembly: The form is.

label = expressio~ remarks
or·

* = expression remarks

The second form sets the location counter to ·the value of
the expression, and thus tells the assemb~r whereto put
the machine . l .. nm•age code . w.h.·. en .· the ·p.rogram ·.is
assembled. ~.. .• •. . .. i

Now back to assembly language instructive state-.
ments .. The 6502 assembly language has five different
addre~i11g forms: · · ·

. 1~ DIRECT ADDRESSING .

The form is·

label op symbol

The label.and remarks fields·are optional. The value of
the operand is the Effective M4fess. TheJnstructions

· · thaLClln be used in the direct addressing mode are

.ARITIIME11C . DA.TAMOVE BOOLE~ · COMPARING

ADC
DEC
INC,
SBC··

mA·
LUX'
LDY·
Sl'A
STX
~TY

,i\No:
BIT

EOR
QRA

·cMP
CPX:
CPY

. , .;Bee·
BCS
BEQ
BMI
BNE
BPL
BVC

. uvs
JMP
JSR

Example

100 *=$100E
120UNO .BYTE 5
130OUO .BYTE 7
140TRES .BYTE 9
150START LOX #1
160 LOA ouo,x
170 LOX #2
180 LOA UNO,X
190 LOY
200 LOA

#1
START-2,Y

For each LDA instruction {lines .160, 180 and 200) the
effective address is $1010, so each. puts a 9 into the
accumulator.

4. INDIRECT ADDRESSING

The form is

label op·symbol (operand)
or

label op symbol (operand,X)
or

label op symbol (operand),Y

remarks

f.emarks

remarks

Only the JMP instruction canbe used in the first form.
The second form is called indexed indirect and the third
is indirect indexed.

In the first form Eff. Ad. = C(operand)
In the second form Eff. Ad. = C(operand + C(X))
In the third form Eff. Ad. = C(operand) + C(Y)
In each the operand must be less than $100, Le., the

operand must be on page 0. For these instrUctions, the
operand is taken to be the address of a .WORD, that is,
a two byte number with the firstbyte containing the
eight low order bits and the second byte containing the
eight high · order bits of the Effective · Address , below.
Hence the two bytes of the 16-bit number are in
reverse order. For example, if C($001B)=$FF and
C($001C) = $2A,. then the Effective Address for the
instrUction

JMP ($001B)

is.$2AFF.
Example:

5; Page 0 constants
10 * = $80
15ADDR1 .BYTE $C1
20 .BYTE $12
2 5ADDA2 .BYTE $C0
30. .BYTE $12
35;
40 * = $12C0
45; more constants

5

50K1
55K2
60K3
65K4
70
75
80
85
90
95

100

.BYTE $FA

.BYTE$FB

.BYTE $FC

. BYTE $FD
LOX #2
LOY #2
LOA ADDA1
LOA ADOA1,X
LOA AOOR1,Y
LOA (ADOR1,X)
LOA (AOOR1),Y

The effect .of each LDA instruction is as follows:

LINE

80
85
90
95

100

E FF.
AD.

$80
$82
$82
$12C0
$12C3

5. ·IMPLIED ADDRESSING

The form.is

ACCUM
(After Skecutlon)
$C1
$C0
$C0
$FA
$FD

•

label op symbol rema.

Theseinstructions · have no operand. They generally
refer to an operation on a flag, a register or a register
pair. Some instructions of this type are SEC(SEt the
Carry flag), INX (/Ncrement the X register) or TXS
(Transfer register X to the Stack pointer). Each
instrUction in this addressing mode produces one byte of
machine language.

C. DIRECTIVES

These assembly language statements d<J not translate
into 6502 machine code •. Directives are iased to tell the
assembler where in memory to put the object code,
define labels and set up. data locations in. memory.

1 .. THE ·LOCATION ··COUNTER

The form is

* = expression

where the expression may contain an *.

For example:

Hi> * = $4408

• 20 LOA #%101
30DATA1 .BYTE $1A
40 *=*+2
50DATA2 .BYTE $F0

The op code for an LDA instruction in the immediate
mode is $A9, hence the LD A instruction is assembled to
$A905. When the program is assembled, the machine
code produced is:

ADORESS (Hex)
$440B
$440C

DATA 1 = $440D
$440E
$440F

DATA2= $4410

CONTENTS (Hex)
$A9
$05
$1A

?
?

$F0

The directive on line 40 causes the assembler to skip the
two bytes with addresses $440E and $440F, so the
contents of these bytes are not changed at assembly
time.. The statement

* = * + 2

allows the programmer to refer to DAT Al as an array of
three elements with an index register (X or Y) acting as
subscript . •
2. DEFINING· LABELS

The form is

label = expression

Example:

10 *=$1BF8
20 W=$12
30 E=2*W+3
40 START LDA #E-W/3
50 J=*-1

The labels in this example have the following values:

LABEL VALUE (Hex)
W $12
E $27

START $1BF8
J $1BF9

When this example is assembled, the location counter
has the value $1BF8 before line 40 is assembled and the
value $1BFA after line 40 is assembled. Hence, when

f:50 is processed, * = $1BFA. Since E is defined in
s of W, an assembly error would result if lines 20
30 were interchanged.

6

3. DATA LOCATIONS

The assembler recognizes three directives which may
be used to set up memory locations with data. The
.BYTE directive is used to define one byte of data and
.DBYTEand .WORD set up two bytes, with .WORD
producing data with the bytes in reverse order, as
required for indirect addressing.

a .. BYTE
The form is

label .BYTE operand remarks

The operand may be one part or several parts separated
by commas. There must be no blanks (except in quotes)
anywhere in the operand because a blank is used to
separate the operand and remarks fields. Each part of
the operand is either an expression or a string of
characters enclosed in single quotes. Each expression or
character in quotes produces one byte of data in
memory. If the value of an expression is more than 8 bits
then only the rightmost 8 bits · are used.
Example:

10 *=$0F0E
20 C=15
30 01 .BYTE 10,$10,@10,%10
40 02 .BYTE C-3,01/$10
50 03 .BYTE 'OSl',0
60 04 .BYTE C/2-8,01/$4

The result, in memory, when this code is assembled,
would be

ADDRESS
01=$0F0E

$0F0F
$0F10
$0F11

02=$0F12
$0F13

03=$0F14
$0F15
$0F16
$0F17

04=$0F18
$0F19

b .. DBYTE
The·form is

CONTENTS
$0A
$10
$08
$02
$0C
$F0
$4F
$53
$49
$00
$FF
$C3

label .DBYTE operand remarks

This directive causes the assemblerto place a two byte
constant into memory. The operand may be a single
expression or several expressions separated by commas.
Character strings in quotes are not allowed.
Example:

10 *=$1E00
20 T=$011D
30 K1 .DBYTE T,T -,-$122
40 K2 .DBYTE K1,*-1

Assembly of this code would produce the . following:

ADDRESS
K1 =$1E00

$1E01
$1E02
$1E03

K2=$1E04
$1E05
$1E06
$1E07

c .. WORD
The form is

CONTENTS
$01
$1D
$FF
$FB
$1E
$00
$1E
$05

7

label .WORD operand remarks

The syntax is the same as for .OBYTE. This directive .•.
also· produces a· two byte constant, but the bytes are
stored in reverse order.
Example:

10 *=$1E00
20 T=$11D
30 1<1 .WORDT,T -122
40 K2 .WORD K1,*-1

Notice the operands are the same as the last example.
Assembly would produce

ADDRESS
K1 =$fE00

$1E01
$1E02
$1E03

K2=$1E04
$1E05
$1E06
$1E07

CONTENTS
$1D
$01
$FB
$FF
$00
$1E
$05
$1E

In 6502 machine·language, addresses must be stored in
this "backwards'' fashion. For example the three byte
instruction

CMP $17FA

is stored in memory as

$CD

$FA.}•·
$17

operation code

address
•

•

CHAPTER 4

.BUILDING AND EDITING AN ASSEMBL V LANGUAGE

SOURCE FILE

The Assembler is loaded by typing ASSEMBLER (or
ASM) in response to the A* prompt in the OS-65D DOS
mode. (This mode is reached by typing EXIT when in
BASIC.) There are several commands that are accepted
by the Assembler/Editor. The Assembler/Editor is
waiting for a command when a period (.) is printed.

automatically inserted into the source file at the place
specified by the line number. If a line is entered with the
same number as a line which is already in the source file,
then the new line replaces the existing line~ Line
numbers must be no larger than 65535. Besides entering
a line into the current source file, the user may also use
one of the following editing commands. Each command
may be abbreviated to its initial letter.

The user may enter a line into the current source file
by typing a line beginning with a line number. The line is

RESEQ Resequences all line numbers in the source file. The first line is assigned line number 10 and the line
numbers increment by 10. After the resequence is finished, the next sequential line number is printed . • PRINT Lists all or part of the current source file. PRINT may be used in the following forms:

PRINT lists the entire file
PRINT line lists one line
PRINT first line - last line lists the specified lines
PRINT first line - lists from the specified line to the end of the file
PRINT - last line lists from the beginning of the file to the specified line.

Any number of the above line specifications, separated by commas, can be used with one PRINT
command.
To direct the output to a printer refer to the DOS IO command the the IO flag bit settings (Appendix L).

DELETE Deletes a line or lines from the file using the same line specifications as PRINT.

INIZ Deletes all lines from the source file. To prevent inadvertently clearing the workspace, the question
"INIZ? (YIN)" is printed after a line beginning with an "I" is entered. The user must enter "YES" (or
"Y") to complete initialization.

When entering commands or source text lines, correc
tions can be made to a line anytime before the carriage
return. A back-arrow (or Shift 0) can be used to delete

single characters. An up-arrow (or Shift N) can be used
to delete the entire line from the file.

• NOTE: CTRL-P toggles device #4 on and off

8

CHAPTER 5

ASSEMBL V COMMANDS

The Assembler recognizes four assembly commands.
Three of the commands give object code listings, and the
fourth assembles the source to object code in memory,
ready (hopefully) for execution. The commands are:

A0 (or A) Gives a full assembly listing. Each line
printed contains:

(1) the line number
(2) the address in memory of the object code
(3) the object code (1-3 bytes)
(4) the source code

On disk systems, the M command may be used to change
the place in memory where the object code is placed by
the A3 command. This command does not affect the
object code itself, only where it is put. For example,
suppose the programmer wants to write a program
which will be assembled to memory starting at address
$3290. Thus the source program would have a line
declaring *=$3290. However, an A3 command could
not be executed, because the machine code produced
would overwrite the source code arid assembly would
not be completed. This can be remedied by use of the M
command to offset the address for the machine code.
For example, if the programmer types

M1000<CR>

and then

A3<CR>

•

If errors are detected in the source, a pointer to the error
and the appropriate error number are printed below the
line with the error. The machine code generated in case
of an error depends on the type of error, but, generally,
is either the appropriate op code byte with a zero
operand or is three NOP bytes. In many cases, this will
result in correct addresses for the rest of the listing. The
next section contains an example of an A0 listing.

A1 Gives an errors-only listing. This command
produces the same output as the full assembly listing but -
for only those lines that contain errors.

then the object code produced will be the same as •
without the M command, but it will be placed in memory

A2 Gives an object tape listing in the standard
checksum format. See Appendix K for a description of
checksum format. The user may save this output on tape
by typing

Save <CR> and then
A2. <CR>

(Note: "SAVE" is used only on cassette versions of
assembler. See Appendix L for· cassette 1/0 for disk
machines.)

A3 Puts the object code into memory ready for
execution. This command produces no listing, unless
there are errors.

9

starting at address $4290. The programmer can then use
the disk command

!SAVE TT,5=4290/N

to save the machine language code, where TI is the
track, S is the sector and N is the number of pages to be
copied to the disk. The code may then (or later) be
recalled to memory at the correct place for execution by
the command

!CALL 3290=TT,S

from the Assembler/Editor orthe ExtendedMonitor or
by

DISK!"CA 3290 = TT,S"

from BASIC.

•

CHAPTER 6

• AN EXAMPLE

Suppose the programmer enters the following pro
gram through the keyboard. The program is a screen

clearing program using indirect addressing.

•

p
10
20
30STAAT
40
50
60
70
80
90

100
110
120
130
140LOOP
150
160
170
180
190
200
210
220
230
240
250

*=$4000
ADDA=$A
LDA ADDA
PHA
LDA ADOA+1
PHA
LOA #$00
STA ADDA+1
LDA #0
STA ADDA
LOX #7
LOY #0
LOA #32
STA (ADDA),Y
INY
BNE LOOP
INC ADDA+1
DEX
BPL LOOP
PLA
STA AODA+1
PLA
STA ADDA
ATS
.ENO

Note: On a ClP computer change:

line 90 to LOA #83
line 110 to LDX #3

; save the page 0 locations
; in case this routine is
; called from BASIC

; set up page 0 locations
; for indirect addressing

; counter
; register for ind. addressing
; blank character in ASCII code

; after 256 locations incr. page

; recover the page 0 info
; & put it back

If the user then enters the A command, the ouput will be:

•

A
10 4000
20 000A
30 4000 A50A START
40 4002 48
50 4003 A508
60 4005 48
70 4006 A9D0
80 4008 8508
90 400A A900

100 400C 850A
110 400E A207

*=$4000
ADDA=$A
LOA ADDA
PHA
LOA ADDR+1
PHA
LOA #$00
STA ADDR+1
LOA #0
STA ADDA
LOX #7

10

; save the page 0 locations
; in case this routine is
; called from BASIC

; set up page 0 locations
; for indirect addressing

; counter

120 4010 A000
130 4012 A920
140 4014 910A LOOP
150 4016 cs
160 4017 D0FB
170 4019 E60B
180 401B CA
190 401C• 10F6
20040tE 68
210 401F 850B
220 4021 68
230 4022 850A
2404024 60
250

For example, the third line is

30 4000 A50A

LDY#0
LOA#32
STA (ADOR},Y
lNY
BNE LOOP
INCADOR+1
DEX
BPL LOOP
PLA
STA ADDR+1
PLA
STAADOR
ATS
.ENO

START

label

; register for ind. addressing
; blank character in ASCII code

; after 256 locations . incr .. page

; recover the page 0 info
; & put it back

LOA ADDA

!operand
operation symbol

; save the page 0 locations
I remarks

machine languageJor this Une
address of the first byte. occupied by· this instruction

line number

There are no· errors in the above assembly. will be put at addresses $4800 through $4824.
If the user enters the A2 command,the output will be

the following, in checksum formatfortape storage. See
Appendix K. for a description of checksum format.

•

If, at this point, the A3command is entered, no output
will result. The assembler will, however, put the
machine code into memory at addresses $4000 through
$4024. If the user (on a disk) system enters

M0800

and·then

A3

; .184000A50A48A50B48A9D0850BA900850AA207 •
A000A920910AC8D009D4

; 0D4018FBE60BCA10F668850B68850A600670

the resulting machine code will be exactly the same but

p

Assume next that the program is entered as. below. Lines
70, 80, 140 and 190 have been changed so that they
contain errors.

10
20
30 START
40
50
60
70
80
90

100
110
120
130
140 LOOP
150
160
170
180

*=$4000
ADDR=$A
LOA ADDA
PHA
LDAADDR+1
PHA
LDA #D0
STAADR+1
LOA #0
STA AOOH
LDX#7
LDY#f/J
LOA #32
STA (ADDA, Y)
INY
BNE LOOP
INC ADOR+1
DEX

; save the page 0 locations
; in case this routine is
; called from 6AS.IC

; set up page 0 locations
; for indirect addressing

; counter
; register for ind. addressing
; blank character in ASCII code

; after 256 locations incr, page

11
•

•
190
200
210
220
230
240
250

BPK LOOP
PLA
STA ADDR+ 1
PLA
STA ADDA
ATS
.END

; recover the page 0 infor
; & put it back

This time the result of an A command will be:
A

10 4000 *=$4000
20 000A= ADDR=$A
30 4000 A50A START LOA ADDA ; save the page 0 locations
40 4002 48 PHA·· ; in case this routine is
50 4003 A50B LOA ADDR+1 ; called from BASIC
60 4005 48 PHA
70 4006 A900 LOA #D0 ; set up page 0 locations

A _..,_l" _______ ------------
E# 18

80 4008 800100 STA ADR+1 ; for indirect addressing
A --------------------------- -----------

E# 19
A -----------

E# 18
90 400B A900 LOA #0

100 4000 850A STA ADDA
110 400F A207 LOX #7 ; counter

• 120 4011 A000 LOY #0 ; register for ind. addressing
130 4013 A920 LOA #32 ; blank character in ASCII code
140 4015 EAEAEA LOOP STA (ADDR,Y)

__ A

E# 7
150 4018 ca INY
160 4019 00Fa BNE LOOP
170 401B E60B INC ADDR+1 ; after 256 locations incr. page
180 4010 CA DEX
190 401E EAEAEA BPK LOOP

A --------------------- -----------------------
E# 6

200 4021 68 PLA ; recover the page 0 info
210 4022 850B STAADDR+1 ; & put it back
220 4024 68 PLA
230 4025 850A STA ADDA
240 4027 60 ATS
250 .END

•
12

An Al command will give the following:
A1

70 4006 A900

LOA 00 ; set up page -0 locations ______ /\
E# 18 • 80 4008 800100 STA ADA+ 1 ; for indirect addressing

---------•• P•----"
E# 19

E# 18
140 4015 EAEAEA LOOP STA (AODR,Y)

.. I\

E# 7
190 401E EAEAEA BPKLOOP

.. i /\

E# 6

•

•
13

CHAPTER 7

• RUNNING A MACHINE LANGUAGE PROGRAM

After an assembly language source program has been
assembled to memory by theA3 command or a machine
language program has been called into memory from
disk or tape, there are several options for running and
testing. The most powerful debugging tool is the
Extended Monitor, which is described in the next
section. The procedure for interfacing a machine
language program with a. BASIC program is also
discussed in Chapter 9.

A. PROM MONITOR-CASSETTE
BASED SYSTEMS

On a cassette based system, the user may exit from the
Assembler/Editor and enter the machine language
Monitor in ROM by typing <BREAK> and then .M
A machine language program in memory may then be
run by typing the entry address and then

G

The user may return from the Monitor in ROM by
typing

.1300 G

provided memory from addresses $0240 through $1390
has not been altered. The Monitor in ROM commands

•
14

are discussed more completely in Appendix I.

B. DOS KERNEL-DISK BASED
SYSTEMS

On a disk based system, the user may type

EXIT (or E)

to enter the DOS kernel and then type

GO XXXX

where XXXX is the entry address of the machine
language program in hex. If the user's program ends
with ah RTS then control will revert to the DOS kernel.
(When in the DOS, the A* prompt appears.)

C. PROM MONITOR-DISK BASED
SYSTEMS

Also a disk system, the user may exit to the Monitor in
ROM by typing

EXIT
and then
REM

The user may return from the Monitor in ROM to the
DOS kernel by typing .2547 G .

THE EXTENDED MONITOR •
The 6502 Extended Monitor is an extensive machine

code debugging aid. It includes the following commands
for

- memory display and modification
memory display and change
memory dump
memoryfill
memory move
memory relocate

- program debugging
disassembly
search for a byte string
search for a character . string
breakpoint· installation· and control
processor register display and change
program execution

- audio cassette . input/output
load
save
view

- hexadecimal arithmetic
calculate
display overflow/remainder

LOADING THE EXTENDED MONITOR
The method for loading the Extended Monitor

depends uport which version you are using. Refer to the
appendix appropriate .10· your system (Appendix Gor
H).

After the Extended Monitor has been loaded, its
prompter, a colon(:), is displayed. This is the Extended
Monitor's command mode.

A. THE EM COMMANDS

Each of the Extended Monitor commands. is listed
below. Any of these commands may be entered
whenever you are in the command mode as indicated by
the colon prompter. Many of the commands also have

15

subcommands which can be entered only after the
primary command has been entered. If an invalid
command is .entered, a ''?" will be printed.

In the command descriptions below, all addresses and
data values.are hexadecimal and. the following abbre
viations or special characters are used:

MEANING
<LF>
<CR>

i

@

the line feed key on the. keyboard
the carriage return (or return) key on
the keyboard
an up arrow character; May be a . j , /\
or a shift/N on some keyboards
a commercial-at character. May be a
shift/P on some keyboards

MEMORY DISPLAY AND MODIFICATION COM
MANDS
@aaaa displays the address and contents

of the location aaaa. New contents
may or· may not· then be entered
(two hex digits) followed by one of
the following:

<LF>
t

l
"

<CR>

Dfflf,tttt

Fffff ,tttt = dd

displays the next location
displays the previous location
displays the same location
prints the contents of the location
as an ASCII or graphic character
exits to the Extended Monitor
command mode

dumps the contents of memory
locations ffff through tttt-L

fills memory locations ffff through
tttt-l with the value dd.

Maaaa = ftlT,tttt moves the contents of memory
from locations. ffffthrough tttt~ 1 to
the memory starting at location

•

aaaa. •
NOTE: The distance ofan upward ·. . .

• '8wia =fflf,tttt

move must be gieatet than the
length of the move or data in•the
· original locations will be. overwrit-.
ten (aaaa> =tttt or aaaa< ffff) •.

relocates (moves the contents of
memory from locations ffff
through tttt-1 to the memory start
ing atlocation aaaa and appropria
tely adjusts all three-byte 6562
instruction operand addresses•that
refer to locations within the range

. of the move. (Adds (aaaa•ffff) to
each operand. address that is
>=ffff and <==tttt-1)~
Note: The Distance of an upward
move must be greater than the
lellgth of the move or data in the
original locations will be overwrit
ten.(aaaa>=tttt or aaaa<ffff).

PROGRAM' DEBl,JGGING ·cOMMANOS

Qfflf dis~ssembles . 6502. machine co<;le
into 6502 mnemonic code . from
memory location ffff up. Disas-
sembly continues for a total of 24
lines-a maximum of 72. bytes. At
completion, it awaits, ·
<LF> disassembles. the next 24
lines,·or
<CR> exits to the Extended
Monitor command .mode·

· N'dd dd>fflf ,tttt searches the contents of· memory
· locations Jfff through tttt-1 for the

We c>ffff ,tttt

stringofl to3data bytes dd; .. dd.
If the string is found then the

· a<idress of the first byte of the first
occurrence of. the stri11.g, is dis•
played and the @ modeis entered.

searches the contents of· memory
locations· ffff through tttt-1 for the
string of 1. to 6 ASCII characters
c ... c. If the string is found then
the address of the first byte of the
first . occurrence of the string is
displayed and the @ mode is
entered •.

installs breakpoint. n (n. == 1.:8) at
address aaaa. The contents of
location aaaa is saved and niay be

16

En

T

C

I

A, X, Y, P, K

<CR>·

restored with the En,cominand . .If
breakpoint n had previously been
assigned it is first restored. When a
breakpoint is "hit" during program
execution it. is. also .,automatically
restored. (See Using Breakpoints
for Program Debugging)

eliminates. breakpoint n (il == t-8) .
and restores the original contents
of the location where it was locat
ed .

goes (transfers program control) to
address aaaa. ·.

prints . a table. of breakpoint ad"
dresses for each breakpoint 1
through 8. An address of.· FFFF
indicates an unassigned break
point.

· continues program execution from:
the locatiOn of the last breakpoint.
This command must oilly be used .
after. a breakpoint has been "hit.''
The byte that was replaced by the
breakpoint (and restored when the
breakpoint was hit) is executed
first ..

prints the address of the last
breakpoint "hit" and the• contents
of the A, X, Y, processor-status (P)
and stackpointer (K) registers as
they existed at that breakpoint.

these five commands print the
contents the as.sociated register.
New contents may or may not then
be entered (two hex digits) fol-

. fowed by one of the following:
prints the contents of the register as
ASCII or graphic character
exits to the Extended l\4onitor
command mode

AUDIO CASSETTE COMMANDS

Sffff,tttt saves· the contents of memory
locations ffff thl'ough tttt-1 by
writing them to the cassette port
(as well as the terminal) in. check
sum format. This function may be
terminated by typing "L" and a

L

V

space. See Appendix K for a
description of checksum format.

loads . into memory the data read
from the cassette port in checksum
format. If a checksum · error is
detected, "ERR" is printed. To
recover, stop the cassette machine,
rewind the tape a short distance
and restart playing it. Type an "L''
to restart the loading. The LOAD
command can be exited at any time
by typing a space.

view the data read from the cas
sette port in checksum format.
Same as Load, above, but displays
the data without modifying memo
ry.

CALCULATOR COMMANDS

Hxxxx,yyyy +

Hxxxx,yyyy

Hxxxx,yyyy*

Hxxxx,yyyy/

0

calculates the sum of the hexadeci
mal values xxxx and yyyy and
prints the result.

same as· above for difference.

same as above for product.

same as above for quotient.

prints the overflow or remainder
from the last multiplication or di
vision. performed with the Hcom
mand.
NOTE: at most 17 characters per
command line are allowed.

B. THE R AND M COMMANDS

The M command moves the contentsof one area of
memory to another area, without change. The R
command moves memory and changes the contents of
those locations which can be interpreted to be the
address portion of a three byte machine. · language
instruction. This address portion is changed only if the
address lies within the range ofthemove. For example,
consider the following sequence of instructions residing
at address $0800 through $0810:

ADDRESS
$800
$803

INSTRUCTION
LDA $2000
JSR $809

17

$806 JMP $1000
$809 LDX $810
$80C STA $D740,X
$80F RTS
$810 .BYTE $A

If the command

M0A00 = 0800,0811

is executed, then the machine code for these instructions
is moved unchanged to memory address $0A00 through
$0Al0. If the command

R0A00=0800,0811

is executed, then the code is moved to locations 0A00
through 0A10 and· becomes

ADDRESS
0A00
0A03
0A06
0A09
0A0C
0A0F
0A10

INSTRUCTION
LDA$2000
JSR $A09
JMP $1000
LDX $Al0
STA$D740,X
RTS
.BYTE $A

•

For the LDX and JSR instructions, the address part of
the instruction is changed, because the two addresses
involved ($809 and$810) are in the range of the move (in
this case between 0800 and 0811). For the remaining •
three byte instructions, the address is not changed. If an
operand is changed, then it is changed by the amount of
the move, that is, if

Raaaa = ffff ,tttt
is executed then

New operand = old operand + (aaaa - ffff)
The use of the R command may cause problems if some
of the locations that are relocated do not contain
machine language instructions, but contain data. For
example,ifthe following three bytes appear as data in a
program at addresses $SHI through $812:

.BYTE $AD

.BYTE $7

.BYTE $8

and the command

R0A08 = 0800,0820

is executed, then the contents .of these three bytes may
be interpreted to be the machine language for the
instruction LDA $807. Then the R command would
change these to

.BYTE $AD

. BYTE $F

.BYTE $A •

One way to prevent this is to use the R command to
relocate the entire program and then use the M
command on the bytes that contain data, to correct any

.stakes like the_ above.

C. BREAKPOINTS AND DEBUGGING

As the name implies, a breakpoint is a point where
the execution of a running program may be "broken" or
interrupted. Using the Extended Monitor, up to eight
breakpoints may.be placedinto a program. When the
program is run (executed) and a breakpoint is encoun
tered, the Extended Monitor is re-entered and prints the
following to document the breakpoint:

Bn@aaaa
A/aa X/xx Y/yy P/pp K/kk

where: n is the breakpoint number 1-8
aaaa is the location where the breakpoint was
encountered
aa is the contents of the accumulator
xx is the contents of the X index register
yy is the contents of the Y index register
pp is the contents of the processor status word
kk is the contents of the stackpointer

To illustrate the use of a breakpoint, consider the
following program:

• 100 *=$4000
120 START LOA #101
140 LOX #2
160 STA $0290,X
180 DEX
200. BNE *-4
220 STA $D29C
240 ATS

When this program is executed, it will print two lower
case e's atthe left margin of the screen and another near
the center. An assembly listing (assembler A command)
yields:

.A
100 · 4000 $ = $4000
120 4000 A965 START
140 4002 A202
160 4004· 9D90D2
1804007 CA
200 4008 D0FA
220 400A 8D9CD2
240 4000 60

LDA #101
LOX #2
STA $D290,X
DEX
BNE *-4
STA $D29C
ATS

Assuming the Oser is working with the Assembler/Edi-·

•
r, the program may now be .. assembled to memory by
e A3 command. The· Extended Monitor may now be

entered (on disk systems) by the command

18

!RETURN EM (or !RE EM)

The computer will respond

EM V2.0

If the user now enters

B1, 4007
B2, 4008
83, 400D

then three breakpoints will be installed in the program.
The T command will produce the following listing:

B1,4007
82,4008
B3,400D
B4,FFFF
B5,FFFF
B6,FFFF
B7,FFFF
B8,FFFF

Note: When you exit and re-enter EM, all breakpoints
are initialized. ·

If the command

G4000

is entered, one "e" will be printed on the screen and the
Extended Monitor will print

81@4007
A/65 X/02 Y/FF P/70 K/FF

indicating that breakpoint #1 has been hit and also the
status of the five registers when the breakpoint . was
encountered. The breakpoint Bl has now been removed
and the DEX instruction has been put back into the
program. If the C command is now entered, the program
will continue execution of just one instruction, the
DEX, the next breakpoint will be hit and the Extended
Monitor will print

82@4008
A/65 X/01 Y/FF P/70 K/FF

If the C command is entered again, then two more e's
will appear and . the· Extended Monitor will print

B3@400D
A/65 X/00 Y/FF P/7F K/FF

All breakpoints have now been eliminated. If the user
now enters

B1,400D

and then

X

l

the Extended Monitor wil[respond with

/00

which is the contents of register X at the time the last
breakpoint was hit. If. the user now types

0A

then that will be· the contents of the X register when
execution is resumed. If the user now types

G4004

then eleven ''e's" will appear on the screen andthe
Extended Monitor will print:

B1@400D
A/65 X/00 Y/FF P/7F K/FF

The· programmer can also change the flow of execution
of the program. For example, if the user now enters

B1,4008
B2,4000
G4000

the Extended Monitor will respond

B1@4008
A/65 X/0JY/FF P/7D K/FF

If the user now enters the C command, execution of the
program will resume and the branch back to

STAD290,X

will be executed. If instead the programmer types

19

p

then the Extended Monitor will respond

/7D

which is the contents of the Processor Status Word atthe
time the breakpoint was hit .. If the user now types

7F

this will be the contents of the Processor Status Word
when execution resumes. Specifically, the Z flag will be
set so that no branch takes place. Hence, if the C
command is entered, one. more e will appear. on· the
screen, and the Extended Monitor will print

B2@400D
A/65 X/01 Y/FF P/7F K/FF

USING THE EM AND THE ASSEMBLER/EDITOR
SIMULTANEOUSLY

On disk based systems, the Exten(ied Monitor and
the Assembler/Editor are.always loaded.into memory
simultaneously. The user may go from one to the other
by typing

!RE AS or !RE EM

The Extended Monitor and Assembler/Editor (on disk
systems) occupy memory from. $0200 through $16FF.
The Extended Monitor uses page 0 locations $C0
through $FF.

•

•

• INTER·FAClNG WITH BASIC

. There ate several. methods that can be used to call a
machine .language routine from a· BASIC program. If a
routine is stored on disk at ttack IT and sector S, then a
BASIC program. may contain .the· statement

OlSKt'CA. XXXX= TT,S"

to bring. the machine .code into memory to hexadecimal .
addresses X}Q{X. The user should take precautions to
,void having a running BASIC program change memory
locations occupied by his macliine language subroutine,

· and riot to· bring in machine code onto your BASIC
program. Beginning at $327E, in the workspace, the ·
BASIC• program and numeric variables are stored,

.. · .. however, string· variables· are stored· at the end of
memory sothat the emiof memorymay not be a "safe"
place for a machine language subroutine. The user can
create a safe place by running the BASIC utility
CHANG:E .. • • •

..
. . .

· A.THEUSR FUNCTION

The user can: cause a BASIC program to branch to
any location in memory inexactly the. same fashion that·
BASIC's builHn fu11ctiorts (like ABS, RND, SIN) are
called. · The appropriate form is

Y=U$R(X)

where. Y can be an1- arithmeticf variable· and X can be
replaced by any arithmetic expression. The address of
the entry point into the user's routine must be POKEd
into memory locations 574 {= 23E hex) and 575 (= 23F
hex). The low order byte of the address goes to 574 and

· the high order byte to 575. (This is the standard 6502
D,1ethod of storing addresses backwards.) .

When Y=USR(X}is executed, control passes to the
POKEd address via a JSR and the value of){ (or
whatever the argument) is loaded into the Floating

. Accumulator, which is on page 0 at addresses -• $AE
through $B3: See appendix M for the format ofoumbers
in the Floating Accumulator. This is all that is done by

. BASIC and nothing is~ stored at Y unless the user's.
routine does it; The value in the.floating Accumulator,

• . floating poi11t format, can be converted to a 16 bit
.... teger(in two's complementif negative)bycalling the ..

20

routine whose address is· stored at addresses ;$0006 and
$0007. This can be done, for example, by

LOA 6
STACALL+1
LOA 7
STA CALL+2

CALL JSR $FFFF

This routine will put its answer at $AE and $AF with the
high order byte of the answer at $AE. If the user wants
to store an answer at Y (assuming Y = USR(X) is in the
BASIC program) then this 16 bit value should be put in
the Y register (low byte) and the A register (high byte)
and then the routine whose address is stored at $0008
and $0009. can be called.

B. DlSKl"GO XXXX"

On. disk based systems, a BASIC program xnay call a
machine language subroutine by this statement, :where
XXXX is the entry address, in hex, ofthe machine •
language routine. The routine must end with an RTS_.
Parameters can be passed to such a routine (or a routine
accessed by the USR function) using POKEs.

C. DISKl"XQT NNNNNN"

This command loads the disk file named NNNNNN to
address $3279·up and then executes·a-JMP to $327E.
Thus the program should be assembled to start at $327E:
Header and track length information are stored at
$3279-$327D, NNNNNN can be the name of a disk file
or a track number. Since $327E is the beginning of
workspace for assembly language progtams, the pros
gi-ammer must offset the assembly to avoid destroying
the source code during assembly. In addition, to allow ·
the program to be stored· on disk,. the user must put, at
address $327D, the number of tracks required to hold
the·machinelanguage program. (Onetrackholds2040
bytes.) For purposes of example, let us assume the
assembled program will use $200 (:.:: 512 decimal)bytes
of• memory and that the Assembler/Editor command

Ml000·• wm · cause the assembler. to assemble ·the· code
without running into the source program in the
workspace. The following sequence of commands will
set up the disk file ready for a DISK!"XQT NNNNNN"
command in a BASIC program. The user's input is
underlined. We assume the program is in the workspace.

.M1000

.A3

.!RE EM

21

EMV2.0
:M 327E=427E,447E
:@3270
327O/dd01 ·.
:!PUT NNNNNN

*Note: This discussion assumes that the workspace
starts at $327E, which is correct for minifloppies. For
eight inch floppies substitute $317Eand subtract $100
from the above locations.

•

•

•

•

APPENDIX A

ASSEMBL V ERRORS

The following descriptions of assembly errors and
their possible causes are provided to facilitate elimina
tion of these errors in an assembly.

1) A, X, Y, Sand Pare Reserved Names
One ofthese reserved names was found in the label
field. No code is generated for a statement with a
reserved name as a label. Use of a reserved name in
an expression will give an "undefined label" error,
error 18.

2) There isn't any.
3) Address Not Valid

An address greater than 65535 (hex FFFF) was
encountered.

4) Forward Reference In Equate, Origin or Reserve
Directive
An expression used in one of these directives
includes a label that hasn't been previously defined
in the assembly source file.

5) Illegal Operand Type For This Instruction
An operand was found which is not defined for the
specified instruction opcode. Refer to Appendix B
for the defined instruction addressing modes.

6) Illegal or Missing Opcode
A defined opcode was not found. Refer to
Appendix B for the defined opcodes.

7) Invalid Expression
An expression was found that is not a valid
sequence of numerical constants and/or labels
separated by valid operators or is not a valid
instruction operand form.

8) Invalid Index-Must Be X Or Y
An indexable instruction was found with an invalid
index. Refer to Appendix B.

9) Label Doesn't Begin With Alphabetic Character
A non-alphabetic character was encountered where
a label was expected.

10) Label Greater Than Six Characters
A string of more than six valid label characters
(A-Z, 0-9, $, ., :) was found before anon-valid label
character. This is a warning message. Assembly
continues using the first six characters of the label.

11) There isn't any.
12) Label Previously Defined

The identified label has previously occurred in the
assembler source file or this occurrence of the label

22

had a different value on pass one than on pass two.
The latter error may be caused by previous errors in
the assembly.

13) Out Of Bounds On Indirect Addressing
An indirect-indexed or indexed-indirect address
does not fall into page zero as required.

14) There isn't any.
15) Ran Off End Of Line

An operand is required and wasn't found before the
end of the line.

16) Relative Branch Out Of Range
The target address of a branch instruction is farther
away than the minus 128 to plus 127 byte range of
the instruction permits.

17) There isn't any.
18) Undefined Label

The identified label is not defined anywhere within
the assembler source file.

19) Forward Reference To Page Zero Memory
This warning message is generated when an
instruction that has both page zero and absolute
addressing modes has an operand that is defined
later in the assembly source file to be a page zero
address. During pass one of the assembly, two bytes
are allocated for the operand since its value is not
yet known. Then during pass two, the operand is
found to require only a single byte so one byte is
wasted. This is usually not a serious error because
the generated code will generally execute as
expected.

20) Immediate Operand Greater Than 255
An · immediate operand expression evaluated to
greater than 255, the maximum value that can be
represented in a single byte immediate operand.

21) There isn't any.
22) There isn't any.
23) There isn't any.
24) There isn't any.
25) Label (Symbol) Table Overflow

The size of the workspace is insufficient to hold the
current source file and a table for all of the labels
encountered in the program. To assemble will
require a reduction in either the size of the program
source file or the number of symbols or an increase
in the size of the workspace.

6502· INSTRUCTION>ADDRESSING MODES

LOAD
INDEX·

TORE.
INDEX

RANCH

AC-:-,Accumulator
IM-Immedi;!lte
zp...:......zerac Page

SEMBLER
·DDRE~SlNG:
ODES

.· ACHINE LAN .. :
.UAGE. · A··. I
DDR.ESSING
ODES . C

ASL LSR ROL ROR X

BIT

CPXCPY

. DECINC

JMP
.JSR

LDX ·
LDY

S1'X
STY

sec BCS BEQ BMl
. BNE BPL BVC BVS

BRK NOP RTI RT ·
CLC CL'D CLI CLV .
DE . YINX INY
PH · •.. ··PLA PLP'
SE D·SEI··

. T YTSX
A TICS

X

.z

p

X

X

·. X

Abs-.Abs9I:ute · .
Rel••-Relative . ·.
In..;,..lndirect•·.·

A R

.b e
s 1

X

X
X

z

•. p

X

X

X

X

A

b
s
X

X

X

X

P b n n• · n
s

y y X y

X

X

Implied
(No Operand) ·

. .

•

•

•

•

•

APPENDIX C

ASSEMBLER/EDITOR STATISTICS

Source File Storage Requirements (per line):

Two bytes for the line number plus,
one byte for each text character plus,
one byte for the line terminator character (0D).

All repeated characters such as a sequence of spaces
occupy only two bytes; one for the character and one for
a repeat count .

24

Symbol Table Storage Requirements:

Six bytes/symbol.
6502 opcodes and reserved names occupy no
symbol table space.

Assembly Speed:
Approximately 600 lines per minute.

APPENDIX D

OS-65O V3.N VERSION OF THE 6502 ASSEMBLER/EDITOR •

In OS-65D V3.N, the Assembler/Editor is loaded
from disk and initiated by typing ASM after the A*
prompter in the DOS kernel command mode. When
ever exiting to the DOS, you can return to the
Assembler/Editor as long as it is loaded by typing
RETURN ASM (or RE ASM).

This version of the 6502 Assembler/Editor contains
the following commands in addition to those described
elsewhere in this manual.

Exit

Hnnnn

Mnnnn

Control-I

Control-C

!Command Line

exits the Assembler/Editor and
transfers control to the OS-65D
kernel which then displays the A*
prompter.

sets the high memory limit to
hexadecimal address nnnn.

sets the memory offset for A3
assemblies to hexadecimal nnnn.

tabs 8 spaces from the current print
position. Also:
CONTROL-U 7 spaces
CONTROL-Y 6 spaces
CONTROL-T 5 spaces
CONTROL-R 4 spaces
CONTROL-E 3 spaces

aborts the current operation.

sends the command line to OS-65D
to be executed, then returns to the
Assembler.

25

This version of the Assembler/Editor occupies memory
from 0200 through 16FF. Its workspfe stal}s at 3179
(3279 in mini-floppy versions) and is utilized as shown
below:

3179,317A

317B,317C

317D
317E

address of start of source (low,
high)-normally 317E
address of end of source + 1 (low,
high)
number of tracks required for source
normal start of source

Note: It is possible to carry the Assembler's symbol
table forward from one assembly to another. To do so,
exit the Assembler after the first assembly and enter the
machine language monitor by typing "RE M". Change •
location 0855 from 0A to 18 and read out the contents of
locations 2F83 and 2F84. Enter the values from these
locations into locations 12F A and 12FB, respectively.
Then re-enter the Assembler by re-entering the DOS
kernel at 2547 and typing "RE AS." Now the symbols
from the first assembly will remain in the symbol table for
reference during the next assembly. Likewise, the
symbols from the first and second assemblies will remain
for the third assembly, etc. ff you want to eliminate all but
the symbols from the first assembly, exit the Assembler
and immediately re-enter it by tying "RE AS." To restore
normal operation of the Assembler, change location 0855
back to 0A. This will cause the symbol table to be cleared
at the beginning of each assembly.

•

I i

• ·cASSETTE VERSION OF ASSEMBLER/EDITOR

Thi$ ve.rsion of the Assembler/Editor is supplied on
an auto-load cassette tape. The following procedure
may be used to loiid the Assembler from tape:

LOADING THE ASSEMBLERIEOITOH ·
1) Apply power to your personal computer then

reset it by depressing the <BREAK> key.
Load the cassette, label up, into the cassette
niachine and turn the cassette machine on with ·
· the volume· at about mid-range.

2) Type ''ML"~
The M initiates the 65VP monitor and the L
starts the auto-load. In a few seconds the four
zeros in the upper left portion of the video
monitor should change to· an incrementing
address .•value· with .a rapidly changing data
field. The value of the addressis dependent on
which auto-load cassette is being read. At this

· time, a checksum loader is beirig read into
memory in 65VP form.at. Upon completion (no
more than 30 seconds}, th.e checksllm loader

· wiU load the rest of the cassette. The Assembler
comes up with the message INIZ? (YIN).
Should achecksum.error qccur, the following
message is printed:

OBJECT LOAD. CHECKSUM ERR

REWIND PASi ERR-TYPE G TO
RESTART

·· Ifa checksum. error consistently happens at the ·
same location~ the cassette is probably. bad.
Contact your· OSI dealer concerning replace,.
ment. However, should checksum errots occur
randomly, at vari<;>us locations, ffis most likely
that there is a problem with th_e cassette
.machine or the connection to the computer.
Check for broken or frayed connections. Make·
sure the playback head and pressure roll
er/capstan· assembly is clean. With a minimal .
. am<>unt of care, no problems with auto-load
cassettes should be encountered.

. . · . The cassette version of the Assembler/Editor permits
• loading and saving source codes in a manner similar to

ROM.BASIC .·. .

TO SAVE SOURCE CODE
Type "SAVE" <CR> (carriage return), type

"PRINT" <line specification>, turn on the cassette
machine in record mode· and hit ·<CR.>. As in ROM.
BASIC, the SAVE mode is disabled by fyping .. LOAD"
<CR> followed·by a space; ·

TO LOAD .PREVIOUSL V RECORDED
SOURCE CODE .

Turn on· cassette. machine in play'., type "LQAD",
wait for leader to pass, then hit <C:R>. The LOAD
mode is disabled by hitting a space.

This version of the Assembler/Editor also provides .
the following commands:

EXlT---causes the computer to·execut.e its reset vector
and display "C/W/M?". Great care mustbe taken never
to type "C", as this will destroy the Assembler/Editor.
The Assembler/Editor may.then be re-entered by typing.
"M 1300 G". . .

CONTROL-I-tabs 8 spaces from the. current· cursor
location.
·the above commands; as .all other ·Assembler/Editor.
commands, may be executed by typing the first letter
only.

.· This version of the ·Assembler/Editor occupies
memory from 0240 through 1390 (hexadecimal). and
requires a minimal total of8K of memory to operate. Its
source file workspace starts at 1391 and' ends at lFFF, as
supplied. The entry location is hex 1300. While running,
all of page zero is used. However, youican exit. the
Assembler/Editor-use page zero and re~enter it by
typing ''M 1300 G". .

The following locations may be changed· in the
cassette version of· the · Assembler/Editor to .suit· your
requirements:

12C9,12CA.:._the low, high memory address ofthe start
of the source .file . workspace. 1391 ·· hex, as• supplied.

llCB,12CC-the low, high memory address of the end
. ofthe source file wotkspace. lFFF, as supplied .

12FC,12FD-the low, high merttory o~t used to bias

26

r
l
j ,.
r

. , '. •'. -. -- : ·:·_ ,

. - : '·· - -,· ... -··. '· ._. ... :· .,.- ..

~acement·Qfobject code during .. ~· A3 asseniblf, i/8' · ..
supplied.

. MA and:-:. Enter. the valu;;i<>m•those,locations
.·· into locations 12FA a11d 12FB, • respe:ctively. Then

. •te-enter the Assembler .by fypfu&•'~.1"3000'\ Now. the
12FE,UFF-tie low$ high ~ddressohhe next av~le, · ·. sylt,lbo~ . from.• the• first. assembly will rem~n in the
source file storage location. These · locations are ~ymboLiable for. reference duting the next assembly.
initializedtotheaddress.ofthestartoftheworkspaceby. Likewise, .. the symbols .from. the• fti:st •. and·. second
the INIZ command and, thereafter, are automaticalJy · assemblies will remain for the third assembly, etc. If you
updated by the EditOt; · · · want to eliminate all but the S}'Dlbols from the first.

Itis possible to carry the Assembler's symbol table
forward fromoneassemblytoanother. Todoso, exit the

· Assembler after the first assembly and enter the ·
machine language 1;t1onitorby "M'' . . Change location·.
0855frQm0AtQ18 and readout the eontents oUocatiol1$

< assembly, exitthe Assembler ancfimmediately re-enter
it bytyping "M1300Q". Torestorenorm,aloperation of
the Assembler, change locati()n 0855 b•ck to 0A. This

.. willcaase.the·symbol table to be cleared at the beginning
of each assembly. · · ·

•

•

APPENDIX F

EXTENDED MONITOR COMMAND SUMMARY

COMMAND

@aaaa

A, X, Y, P or K

Bn,aaaa

C

Dffl'f ,tttt

En

Ffffl',tttt = dd

Gaaaa

Hxxn,yyyy+

I

L

Maaaa = fffl',tttt
Ndd ..• dd>fffl',tttt

0

Qaaaa

Raaaa = fffl',tttt

Sfffl', tttt

T

V

wc ... c>fftT,tttt

FUNCTION

display contents of aaaa

display A, X, Y, P or K from last
break

A, X, Y-processor register
P-processor status
K-stackpointer

enter breakpoint n at aaaa

continue from last breakpoint

dump ffff through tttt-1

eliminate breakpoint n

fill ffff through tttt-1 with dd

go to aaaa

display xxxx + yyyy

display location of last breakpoint

load memory from cassette

move ffff through tttt-1 to aaaa

search ffff through tttt-1 for
dd ... dd

display overflow/remainder from
last H command

disassemble from aaaa

relocate ffff through tttt-1 to aaaa

save ffff through tttt-1 to cassette

display breakpoint table

view from cassette

search ffff through tttt-1 for
c ... c

28

SUBCOMMANDS
(<CR> ALWAYS RETURNS TO ":")

dd-<:hange aaaa {dd=two hex digits)
"-display as character
<LF>-display next location
t -display previous location

/-display same location

dd-<:hange register
"-display as character

(n = 1-8)

(also - , *, /)

SPACE key returns to ":"

(dd ... dd is 1-8 bytes)

<LF> continue disassembly

SPACE key returns to ":"

(c ... c is 1-8 characters)

'. " .. ·, _' ,, ·>·, •.' .·.· .. · ,.,_:. :.· . . , . . • _ .

. ·· EXTENDED' MONtfo~ COMMAND.SUMMARY

COMMANI>

@aaaa

Bn,aaaa,

C

Dffff,tttt

En

:Ffflr,tttt= dd

Gaaaa

Huxx,yyyy+

I

L

Maaaa = fflt,tut

Ft.JNcnoN

display contents of ·aaaa

display A~ X, Y; P or· K from last
break. .

A, X, Y ,;,rocessor repter
P-processor status
l<~tackP9in~r

enter breakpoint n at aaaa .

continue from last breakpoint ·

· dump ffff tht'ough ttmt ·

eliminate breakpoint n

fill ffff tllrough tttt-f with dd

go to aaaa

displaiy xxxx + yyyy

display location of last breakpoint

load memory from cassette

move ffff through tttt-1 to aaaa

Ndd .•• dd>fflf ,tttt · search ffff thtough tttt,;l. fot

0

Qaaaa•

Raaata= mr,tttt
Sfflf,tttt

T

V

wc •.. c>mr,tttt

dd .•. dd< .
,_ ' '

display overfiow/re~der from ·
· la!it .. H command

. disassemble froiµ aaaa

r~locate ffff through tttt'-1 ta: a~
. .

save ffff through tttt-lto cas~tte"

· display breakpoint table

view from Cll!isettd.

search ffff tllrough tttt-l £Qr
c.,.c

SUBCOMMANDS .. . ·... .. .
(<CR> ALWAYS RETURNS TO u:") •·

dd-change aaaa (dd = two hex digits}•·
"~lay as ch~acter •

· · <LF>--display next·. location
f--display· previous· location

l--Oisplay same location.·
.

dd-ch~ge register
"-display as character

(n = 1-8)

SPACE key returns to ~•: ''

• . (dd ... dd is l-8 bytes)

· <LF> continue disassembly

SP ACE key returns to '':"

(c ... c is 1-8;characters}

•

APPENDIX G

• 0S-65D V3.N VERSION OF THE EXTENDED MONITOR

•

•

In OS,65D V3.N, the Extended Monitor is loaded
from disk and initiated by typing EM after the A*
prompter in the DOS kernel command mode. When
ever exiting to the DOS, you can return to the Extended

29

Monitor as long as it is loaded by typing RETURN EM.
This version of the Extended Monitor occupies

memory from 1700 through lFFF and uses page zero
locations C0 through FF.

APPENDIX H

CASSETTE VERSION OF EM

This version of the Extended Monitor is supplied on
a.n auto-load cassette tape. The · following procedure
may be used to load the Extended Monitor from tape:

LOADING THE EXTENDED MONITOR
1) Apply power to your personal computer then

reset it by . depressing the <BREAK> key.
Load the cassette, label up, into the cassette
machineandtumthe cassette machine on with
the volume at about mid-range.

2) Type "ML.

3} The M initiates the 65VP monitor and the L
starts the auto-load. In a few seconds the four
zeros in the upper left portion of the video
monitor should change to an incrementing
address value with a rapidly changing data
field. The value of the address is dependent on
which auto-load cassette is being reared. At this
time, a checksum loader is being read into
memory in 65VP format. Upon completion (no
more than 30 seconds), the checksum loader
will load the rest of the cassette. The Extended
Monitor comes up with the prompter":''.
Should a checksum error occur, the following
message is printed:

OBJECT LOAD CHECKSUM EAR
REWIND PAST ERR-TYPE G TO
RESTART

If a checksum error consistently happens atthe
same location, the cassette is probably bad.
Contact your OSI dealer concerning replace
ment, However, should checksum errors occur

30

randomly, at various locations, it is most likely
that there is a problem with the cassette
machine or the connection to the computer.
Checkfor broken or frayed connections; Make
sure the playback head and pressure roll
er/capstan assembly is clean .. With a. minimal
amount of care, no problems with auto-load
cassettes should be encountered.

This version of the Exte'nded Monitor contains one
additional · instruction for dumping the contents of
memory on the 24 character lP video screen:

COMMAND
Zaaaa

FUNCTION
dumps 8 bytes from aaaa

SUBCOMMAND
<LF> dumps next 8 bytes

This version occupies memory from 0800 through
0FFF and uses page zero locations D0 through FF. The
checksum loader used to load the Extended Monitor
occupies locations 0700 through 07EF.

This version of the Extended Monitor is normally
entered at 0800. This causes the stackpointer tobe set to
£11FF and the breakpoint registers to be initialized.
Under certain circumstances, it may be desirable to
re-enter the Extended Monitor without this initializa
tion. This may be done by entering it at 081F.

There are two free command letters-J and. U, · that
can be utilized. by inserting the address of a command
routine at 0974 · for J or 098A for U. The machine
language command routine must end with an RTS
instruction.

•

•

•

APPENDIX I

ROM MONITOR COMMANDS

In the cassette version, the ROM Monitor is entered
by typing <BREAK> and then M. If BASIC, the
Assembler/Editor, or the Extended Monitor is in
memory when <BREAK> is hit, then the user may
return to it by typing <BREAK> and then W.

On disk systems, the user can also enter the ROM
Monitor by typing <BREAK> and then M, but, if this is
done, then re-entry to BASIC, the Assembler/Editor, or
the Extended Monitor is usually impossible. However,
the disk based usermay also enter the ROM Monitor by
typing ''EXIT" and then "REM". The DOS kernel may
then be re-entered by typing .2547G <CR>. The ROM
Monitor begins at address $FE00.

The ROM Monitor has four command modes:

1) Addressing· Mode
When an address is typed, the address and the
contents of that address are displayed. If the Monitor
is not in the Addressing Mode then it may be entered
by typing a period (.). ·

2) Data Entry Mode
Hexadecimal data may be put into the memory
location whose address is displayed. This mode is

31

entered by typing/. When in this mode, a <CR> will
increase the displayed address by one.

3) Go Mode
If the Monitor is in the Addressing Mode, then typing
a G will cause the Monitor to execute a JMP to the
address currently displayed.

4) Cassette Loader Mode
If in the Addressing Mode, typing L permits the
loading of programs from cassette. Upon typing L, all
ASCII commands are accepted from the audio
cassette input port rather than the keyboard.

Some addresses associated with the monitor ROM are

FE00-Start of Monitor (restart location)
FE0C-Restart with clear screen and no . other
initialization
FE43-Entry to Addressing· mode
FE77-Entry to Data mode

A complete listing of the monitor ROM may be found in
the Appendix of the OSI 65V Primer.

APPENDIX J
ASCII CHARACTER CODES

CODE CHAR CODE CHAR CODE CHAR
00 NUL 28 + 56 V
01 SOH 2C 57 w
02 STX 20 58 X
03 ETX 2E 59 y

04 EOT 2F I SA z

05 ENO 30 0 58 [

06 ACK 31 1 SC I
07 BEL 32 2 50 J
08 BS 33 3 SE I\

09 HT 34 4 SF

0A LF 35 5 60 (Blank)
08 VT 36 6 61 a
0C FF 37 7 62 b
00 CR 38 8 63 C

0E so 39 9 64 d

0F SI 3A 65 e
10 OLE 3B 66 f
11 DC1 3C < 67 g
12 DC2 3D = 68 h
13 DC3 3E > 69

14 DC4 3F ? 6A j
15 NAK 40 @ 68 k
16 SYN 41 A 6C I
17 ETB 42 B 60 m
18 CAN 43 C 6E n

19 EM 44 D SF 0

1A SUB 45 E 70 p
18 ESC 46 F 71 q
1C FS 47 G 72 r
10 GS 48 H 73 s

1E RS 49 I 74 t
1F us 4A J 75 u
20 SP 48 K 76 V

21 4C L 77 w
22

,,
4D M 78 X

23 # 4E N 79 y
24 $ 4F 0 7A z
25 % 50 p 78 {

26 & 51 Q 7C }

27 52 R 7D

28 (53 s 7E • 29) 54 T 7F DEL
2A * 55 u

I
32

•

•

•

APPENDIX K

CHECKSUM FORMAT

The checksum format is as follows for each "record" of data:
;l8aaaadd ... ddcccc

where:

18

aaaa

dd ... dd

cccc

is the start of record character

is the hexadecimal number of data
bytes in the record (24 decimal)

is the address of the first data byte in
the record

are the 24 data bytes

is the checksum-a sum modulo
65536 of all bytes in the record after
10 the start of· record character

33

COMMANDS
ASM ..
BASIC
CALL
NNNN=Tf,S
09
DIRNN .. ··
EM

EXAM NNNN=TI

GONNNN
HOME
INIT

!NIT IT
•. ··· IONN,MM

·· IO, MM
IONN
LOADFILNAM
LOADTI
.MEM
NNNN,MMMM·
PUT FILNAM
PUT TT
:RETASM
RETBAS ·
RETEM
RETMON
SAVE
tt,s = NNNN/P
SELECTX

XQTFILNAM

. ' . . .

Load·the assemblerandextended monitor. Transfercontrol.to:the assembler.·
Load BASIC and transfer control to it;
Load contents of track "Tr',
.sector ~'S;'' to memory locatkln · "NNNN;'; .
Disableerror9.TQisisreqlriredtoreadsomeearlierversiou:fi1:es(V1.5,V2;0).
Print sector map directory of track "NN''. · ·· · · · · .. .
Load the assembler and extended monitor. Transfereontrolto• the extended··
monitor. .. .··.··. ·.···· ·.. . •. · ... ··•·.·.· .. ·•· .. · .. ••····. · ..
Examinetrack'Ii. Load entire track contents, includingforntatting formation,

·. into location "NNNN''. · ·
Transfer control <GO> to location "NNNN".
Reset· track countto .· zero and home. the current drive's head.to track· zero. ·

.· Initialize the entire disk, i.e., erase the entire diskettec(ex'Cept track 0) and
write new formatting information on each track. · ·
Same as "'!NIT'';. but only operates on track "TT''.
Chqesthe.inputI/0 distributorflagto "NN", and the outputflag to "MM'\
Se:e the table at the end of this app¢ndix for 110 flag. $t.ttings.
Changes only the output flag; · •.
Changes only Jhe input flag~· .
1.,;oads named source file, "FILNAM'' .· into memory.
Loads source ·file iritomemory given $tarting tracknumber:"'rr .. ;
Sets the memoiy 110 device input · · ·
pointer .to. "NNNN;', · and the output pointer to ''MMMM:':
Si!ves s<>nrcefile.in memory onthe·named· diskfile·''...-ruNJ\M'\
Saves SQutce file in memory on track "TT;', and follo:wibg traclcs,
Restart the. assembler .. ·.
Restart ·BASIC •.
Restart tne, Extehded•Monitor .. •
Restart the Prom Mo~tor (via· RST ·vector).
Save me~ froi:n location
"NNNN" <ln track "TT" sector 0 $'.' for "P;' pages. · < . · . > , '
Select disk drive;"X" \Vhere''X"·can be, A, B, C,:or,D; . .Seleet ena.blesthe
requested drive and homes the'11ea.d to track 0.·.
Loadthefile, ''flLNAM" as if itwas,a.souree file,.and'transfercontrolto
location$327E.· · . .

NOTE:
--Only the first 2· characters are used in recognizing a command. The rest up to the blaqk are ignored.
--The• line input buffer can. only hold 18 cbarac::ters including th~ return.
-The DOS can be reentered ~t 9543 ($2547) ... · .
---File names must start with an ''A" to ''Z" and can be only 6 characters, long. .
~The. dictionary is always maintained on. disk. This. ·permits the • interchange of .disk~ttes:.
~The following control keys are valid: · · •··
.CONTRQL-Q continue output from a CONTI{OL-S • ··
CONTROL---S stop output to the c~nso~e

••

•

CONTROL-U delete entire line as input
BACKARROW delete the last character typed.
SHIFf-0 delete the last character (polled keyboards)

ERROR NUMBERS
!---Can't read sector (parity error).
2-Can't write sector (reread error).
3-Track zero is write protected against that operation.
4--Diskette is write protected.
5-Seek error (track header doesn't match track).
(5......:-Drive not ready.
7-Syntax error in command line.
~Bad track number.
9-Can't find track header within one rev of diskette.
A----Can't .find sector before one ·requested.
B-Bad sector length value.
C----Can't find that name in directory.
D~Read/Write attempted past end of named file!

MEMORY ALLOCATION
5" Floppies . • • . • • • . • • • . • . • • • • , 8'' Floppies
0000-22FF BASIC or Assembler/Extended Monitor • , • • • • • • • 0000-,.22FF
2W0-22FE Cold start initialization on boot • • • • · • • • • • • • ·. • 2200-22FE
2300-265B Input/Output handlers • • • • • • • • • • · · · · · · · · · · · · · · • · 2300-265B
265C-2A4A Floppy disk drivers · • · · 265C-2A4A
2A4B-2E78 OS-65D V3.2 operating system kernel · ' · · 2A4B-2E78
2E79-2F78 Directory buffer • • • ·. · 2E79-2F78
2F79-3178 Page 0/1 swap buffer •. • • • • • • • • • • • • • • • • • · • · · · · · • · • • • • • • • • • • • • • • • • • • • 2F79-3178
3179-3278 DOS extensions • • • • • • • • • · · · · · · • · • • • - - -
3279-327D Source file header • • • • • • • • • • · • · • • • • •; • • • 3l79-317D
327E- Source file • • • • • • • · • · • 317E

DISKETTE ALLOCATION
5" Floppies • • • • • • • • • • • • • • • • • • • · • · • • • · · • • · • • • • • • • • • • • • • · • • · · · · · · · · • · 8" Floppies
0-1 OS-65D V3.2 (boot-strap-loads to $2200 for 8 pages) , . 0-1
2-6 9½ Digit Microsoft BASIC · · · · · · · · · · · · · · · · · · · :i · · · · · · · ' · 2-4
7-9 Assembler-Editor (if present} · · · · · · · · · · · · · · · · · ·. · 5-6
10-11 Extended Monitor (if present)································ · · · · · · · .. · · · · · · ·7-7
12 Sector !-Directory, page L · 8

Sector 2-Directory, page 2.
Sector 3-BASIC overlays.
Sector 4-GET/PUT overlays

13
14-38
39

Track0/Copier utility. (loads to $0200 for 5 pages). • • • • • • • · · · · · · · · · · · · · · • • · · · · · · · · 1 Sector· 2
User programs and OS-65D utility BASIC programs. • • • • · · · · · · · · • · • · • · • · • • • • • · • · 9-75
Compare routine, on some disks only. • • · 76

1/0 FLAG BIT SETTINGS
INPUT:

Bit 0-ACIA on CPU board (terminal).
BIT !-Keyboard on 540 board.
BIT 2.:._UART on 430/550 board.
BIT 3-NULL.
BIT 4-Memory input (auto incrementing) .
BIT 5-'--Memory buffered disk input.
BIT (5......:-Memory buffered disk input.

35

BIT· 7-550 board ACIA ·. input. As selected by index · at location $2323 (8995 decimal).
OUTPUT:

BIT 0--ACIA on CPU board (terminal).

BIT 1-Video output on 540 board. •. •·t
BIT 2-UARTon430/550 board.
BIT 3-Line printerinterface.
BIT 4--Memory output (auto· incrementing). ·1

BIT 5-Memory buffered disk output. i.!_·

l3IT.6-Memory··buffered· disk output. :
BIT 7--550 board ACIA output. As selected by index.

NOTE: In the ASM $12E0 contains the number of lines per page and is set to top of page after each RE ASM.

36

•

•

•

APPENDIX M

THE FLOATING POINT ACCUMULATOR

The floating accumulator . (F AC) on disk based
systems is located in six bytes on page zero at addresses
$AE-$B3. See Note 2 for BASIC-in--ROM. The FAC is
used during all operations involving numeric variables.
Of interest to end users is the fact that when a BASIC
statement like

Y = USR(formula)

is executed, the value of the formula is loaded into the
FAC before BASIC branches to the user's routine. The
floating point format is

± .m x 28

1) e is the exponent. The byte with address $AE

Examples:

contains e + $80.
2) is the mantissa. The binary point is assumed to be on

the left ofm. mis always normalized, that is, mis left
shifted and e is.decremented until the leftmost bit of
mis 1. Thus, for example, .125 is stored as .1 x 2·11

(binary) instead of .001 x 28• The mantissa is a 32 bit
number and is put into the FAC at $AF, %B0, $81,
$B2.

3) The sign of the floating point number is put into the
sign bit (leftmost bit) · of the byte with address $B3.
This bit is 0 for a positive number and l for a negative
number. The remaining bits are indeterminate and
have no meaning.

Number (decimal)
26.5

floating point (binary)
.110101 X 2131

In FAC (hex)
85D400000000
85D400000080
7F8000000000
7ECCCCCCCD00

--'26.5
.25
.2

- .110101 X 2181

.1 X 2-: 1

.1100 X 2-1•

Note 1: When .2 is converted from decimal to binary, it becomes an infinite repeating number. The bar over the
mantissa indicates that those four bits repeat forever. Thus, the mantissa is

.110011001100110011001100110011001100---
when this is rounded to 32 bits it becomes

.11001100110011001100110011001101

Note 2: For BASIC-in~ROM, the FACis five bytes at addresses $AC-$B0. the exponent (+ $80) isin the first bytc;the
sign is the sign bit of the last byte and the mantissa is the middle three bytes.

37

u)
(X)

LSD

0 I

MSD

0 BRK ORA-IND,X

I BPL ORA-IND,Y

2 JSR AND-IND,X

3 BMI AND-IND',Y

4 RTI EOR-IND,X

5 BVC EOR-IND,Y

6 RTS ADC-IND,X

7 BYS ADC-IND,Y

8 STA-IND,X

9 BCC STA-IND,Y

A LDY-IMM LDA-IND,X

B BCS LDA-IND,Y

C CPY-IMM CMP-IND,X

D BNE CMP-IND,Y

E CPX-IMM SBC-IND,X

F BEQ SBC-IND,Y

LSD-Least Significant Digit
MSD-Most Significant Digit

OPCODE TABLE

2 3 4 5 6 7

ORA-2,Page ASL-Z,Page

ORA-2,Page,X ASL-Z,Page,X

BIT-Z,Page AND-Z,Page ROL-Z,Page

AND-Z,Page,X ROL-Z,Page,X

EOR-Z,Page LSR-2,Page

EOR-2,Page,X LSR-Z,Page,X

ADC-2,Page ROR-Z,Page

ADC-Z,Page,X ROR-Z,Page,X

STY-2,Page STA-2,Page STX-2,Page

STY-Z,Page,X ST A-2,Page,X STX-2,Page, Y

LDX-IMM LDY-2,Page LDA-2,Page LDX-2,Page

LDY-Z,Page,X LDA-2,Page,X LDX-2,Page,Y

CPY-2,Page CMP-Z,Page DEC-2,Page

CMP-2,Page,X DEC-2,Page,X

CPX-2,Page SBC-2,Page INC-2,Page

SBC-2,Page,X INC-Z,Page,X

8 9 A B

PHP ORA-IMM ASL-A

CLC ORA-ABS,Y

PLP AND-IMM ROL-A

SEC AND-ABS,Y

PHA EOR-IMM LSR-A

CLI EOR-ABS,Y

PLA ADC-IMM ROR-A

SE! ADC-ABS,Y

DEY TXA

TYA STA-ABS,Y TXS

TAY LDA-IMM TAX

CLV LDA-ABS,Y TSX

INY CMP-IMM DEX

CLD CMP-ABS,Y

INX SBC-IMM NOP

SED SBC-ABS,Y

C D

ORA-ABS

ORA-ABS,X

BIT-ABS AND-ABS

AND-ABS,X

JMP-ABS EOR-ABS

EOR-ABS,X

JMP-IND ADC-ABS

ADC-ABS,X

STY-ABS STA-ABS

STA-ABS,X

LDY-ABS LDA-ABS

LDY-ABS,X LDA-ABS,X

CPY-ABS CMP-ABS

CMP-ABS,X

CPX-ABS SBC-ABS

SBC-ABS,X

E

ASL-ABS

ASL·ABS,X

ROL-ABS

ROL-ABS,X

LSR-ABS

LSR-ABS,X

ROR-ABS

ROR-ABS,X

STX-ABS

LDX-ABS

LDX-ABS,Y

DEC-ABS

DEC-ABS,X

INC-ABS

INC-ABS,X

F

)>
-a -a
m z
C -><
z

• • • _____ __.._,_ .. ,,,., ... ,.~·,--~ .. --~"-~""'"'-,...------------------'•·~~_.., ---~ .. ·.,.., .. , ,.· --~ .. ~~ ... ---•,-. ----.. -...... -.. ~~

•

•

APPENDIX 0

6502 REFERENCE LIST

1. * How to Program Microcomputers
by William Barden
Howard W. Sams & Company, Inc.
Indianapolis, IN 46268

2. 6502 Software Gourmet Guide and Cookbook
by Robert Findley
SCELBI Publications
20 Hurlbut Street
Elmwood, CT 06110

3. The First Book of KIM

4. Programming a Microcomputer: 6502
by Caxton C. Foster
Addison Wesley Publishing Company, Inc.
Reading, MA 01867

5. 6502 Assembly Language Programming
by Lance Leventhal
Osborne/ McGraw" Hill

6. MCS6500 Microcomputer Family Programming Manual
MOS Technology, Inc.
950 Rittenhouse Road
Norristown, PA 19401

7. MICRO: The 6502 Journal
P.O. Box 6502
Chelmsford, MA 01824

8. SY6500/MCS6500 Microcomputer Family Hardware Manual
Synertek
3050 Coronado Drive
Santa Clara, CA 95051

9. Programming the 6502 (Second Edition)
by Rodney Zaks
Sybex
2344 Sixth Street
Berkeley, CA 94710

10. 6502 Applications Book
by Rodney Zaks
Sybex
2344 Sixth Street
Berkeley, CA 94710

39

1 L 6502 Games
by Rodney Zaks
Sybex
2344 Sixth Street
Berkeley, CA 94710

12. Programming & Interfacing The 6502,. With. Experiments
by Marvin L. De Jong
Howard W. Sams & Co., Inc.
4300 West 62nd Street
Indianapolis, IN. 46268

13. * 65V Primer: The Workbook of Programming· exercises in
machine code, using your machine's built sin 65V monitor
in ROM.
Ohio Scientific
1333 S. Chillicothe Rd.
Aurora, .OH 44202

* Available from OSI

40

• I

•

I
t
f

•

•

INDEX

A

Address•...................................... 1
Addressing

Direct ... 3
Immediate ... 4
Implied ... 5
Indexed ..•............... 4
Indirect•....................................... 5

ASCII Codes .. 3 2
Assembler .. 1

Example ... 10, 11
Assembly

Commands .. 9
Error Codes ,•....... 22
Language., ... 1

At (@) ... 2, 15

B

Back-arrow ... 8, 35
Break ...•.... 1
Breakpoint. ... 17
Byte .. I
.Byte , 3

C

Carriage Return (CR) , 1, 15
Code

Object : I
Source .. I

Constant
Binary .•....•...•....... 2
Decimal. ... 2
Hex ... 2
Octal. ... 2

CTRL
P ... 8
Q •............ , ... 34
s .. 34
u .. 25, 35
+-(Backarrow) •... 35
I. ...•...•.......... ····· 25
Y , 25
T ... 25
R ... 25
E ... 25

D

Delete ... 8
Direct Addressing .. 3
Division .. 2

E

Extended Monitor, ...•. 15
Example .. 10

F

File ... 1

I

Immediate Addressing .. 4
Implied Addressing
Indexed Addressing ... 4
Indirect Addressing .. 5
INIZ ... 8

L

Labels ... 2
Line Feed (LF) .. 1, 15

M

Machine Language•..................... !
Running Program .. 14

M Command ... 9, 17
Monitor (Extended) ... 15

0

Object Code ... 1
Operation Symbols , 2

41

p

Page;:~ .. , ... :.·; .•. ··.u•. , ~ ... ; ;·, ;, ... ; ... ~ ;·; 1:

So~ Code;; o~,J ... , 1
.. :symbol& •.. ~··•··"·"···:····· ~ •. ::: •... ~ .. ,• 2 ..

Print~ :•...•... ~··············"············•········••,:~ 8

R

.R Command.:, •.•... H .. :: ... 11:
RESEQ•. n.~•···•···•• .. ••···•··············••..-.•···•······~••.•··•·>g u

-· . - ..

S:

u~arrowi ····················'.·'·•····;· l,,8~• 15
USR Function ...•......... ,_. .•............ :.; .. ~.'.; •..... ; 20

:SHIFT·
N.~ u l, 8 w
o ~ .. s, .35
P ,:., :••·•.' l

42

