The DOC document t：tie is：
Telidon Videotex Presentation Level Protocol： Augmented Picture Description Instruetions

CRC Technical Note 709
and further information can be obtained through：
Department of Communications
Information Services
300 Sla亡ar St．
Ottawa，Ontario K1A OCS

EIA STANDARDS

The two other standards referenced in this guide are published by the Electronic Industries Association（EIA）． They are not necessary to the understanding of their application to the display genarator，but like the videotex standards mentioned above，they are listed here if you need technical details in their respective areas．

1．EIA RS－232－C
Interface Between Data Terminal Equipment and Daia Communication Equipment Employing Serial Binary Data Interchange

2．EIA RS－170
Electrical Perfermance Standards－Monochrome Television Stuoio Facilities
further information on either of these standards can be obtained through：

```
-Electronic.Industries Associztion
Engineering Department
2001 Eye Street, N.W.
Washington D.C. 2000S
```


TABLES

1	11
2	12
3	13
4	17

```
Connector Pin Functions
DIP Functions
Coaxial Connector Functions
Function Codes
```

```
Colour Raster Display Generator,
    Block Diagram
Card Dimensions and Connector Types
Parts Location
Header Fage
ASCII Code Table
Code Extension in a 7-bit Environment
Operation Code and Data Field Assignments
8-bit Opcode Byte
Opcode Facilities
Structure of a Block of 3 Data Bytes
Control Opcodes
Character Rotation
Discrete Text Sizes
Set Colour Operand
Status Commands ACcessed through
    the Control (Status) Opcode
Cl Contral Set
Sequential PDIs Defining an Image
```

DRAWINGS
D3811

```
S Sheets Logic Diagram
    (at end of Chapter 2)
```


INTRODUCTION

This user's guide provides information on the Colour Raster Display Generator (CRDG) MkJ Circuit Card Assembly designed and manufactured by Norpak Limited. The guide consists of three chapters (general information, hardware and software descriptions) and two appendices. Read the unpacking warning notes on page 6 before handing the cireuit card.

The (CRDG) is a single circuit card assembly with a seci microprocessor interface operating with alphanumeric/geometric videotex software in ROM. The card has a variety of applications, such as in process control systems to ereate and display flow diagrams and control symbology, as a colour output device to generate user-originated graphics and text, or to communicate through a modem with a database to select and display pages of information. The card contains interfaces for a keypad or keyboard input device, and full-duplex serial communications.

The alphanumeric/geometric software uses the ficture Description Instruction (PDI) protocol defined in the American ATBT Presentation Level Protocol Videotex Standard, and the Canadian Department of Communications' Technical Note 709, Videotex Presentation Level Protocol: Augmented Picture Description Instructions. These functionally identical documents define the PDI set used by the software to decode user keyboard inputs for computer graphics applications or the database videotex codes. Refer to the Appendix .

SYSTEM DEFINITION

The Colour Raster Display Generator is intended for use in business or home systems containing at least an RGB colour monitor and a keypad or keyboard, for graphics generation when connected to a host processor, and a communications modem for videotex data base access.

A keypad or keyboard is required to interact with the database or host computer. In the Telidon videotex mode the user will issue commands to instruct the database to search forward or backward for an index or page of information, display a preyious index or page, pause, erase or resend current page.

VIDEOTEX

Videotex is the name for two-way (interactive) public aceess information services that disseminate information or provide for transactional services from public information suppliers. The alpha-geometric Telidon system uses simple geometric shapes, called primitives, and text characters to define the image, so that the picture is built up in finely detailed areas rather than line by line. See Example in Chapter 3. The geometric shapes and text eharacters are described by Picture Description Instructions (PDIs).

PICTURE DESCRIPTION INSTRUCTIONS

The PDIs are codes formed from the 7 -bit, 128-character ASCII subset and are used to define geometric primitives for videa display. They define graphical and textual information in a concise alphanumeric/geometric code set which comprises the primitive identifier, its attribute and numeric location data. The primitive is the graphic shape; the attribute is its colour and whether it is to be drawn in outline or filled, and the text size; the numeric location data defines the sereen co-ordinates on which the primitive is to be losated. The PDIs are described in greater detail in Chapter 3.

The defined geometric primitives are summarized below.

CONTROL - provides control over the modes of the drawing commands. One of its major functions is to set up a value or colour of an object.

UNPACKING

The Colour Raster Generator Card is supplied in a cardboard package, and is protected by a bubble-foam wrapping and an anti-static bag. A separate bag in the box contains the coaxial connectors.

WARNING

```
Do not remove the circuit card
from the anti-static bag until
you and the anti-static bag
have been grounded.
Static electrical discharges
can cause damage to electronic
components and RAM.
Do not touch the gold-plated
edge connector tinger (the
acid on the skin surface can
cause cortosion on the
connector fingers, resulting
in poor conmections.
```


CHAPTER 2

HARDWARE DESCRIPTION

INTRODUCTION

This chapter provides hardware specifications, circuit card dimensions, connector pin-outs, logic schematic diagram, parts location diagram and part lists. Connector pin assignments, signal names and voltage levels are given in Tables 1. to_ 3. The listed parts can be obtained at any commercial elē̄tronics supplier. However, the four proms, two masked ROMs and the EPROM (Figure 3 , U4N, USN, USL to UGL) contain the Telidon videotex software and must be purchased from Norpak.

SPECIFICATIONS

Environmental

The Colour Raster Display Generator is designed for a normal business or home operating environment.ô̂ 10 degrees to 40 degrees C (50 to 104 degrees F) at a humidity of 10 to 90% non-condensing.

Power

The de power requirements are:

$$
\begin{array}{r}
5 V, 1.5 \mathrm{~A} \\
12 V_{1} \\
-12.4 \mathrm{~A} \\
-12
\end{array}
$$

Communications

```
- RS-232-C full duplex serial communication through Canmon
    connector DB 25P (see Figure 3)
- 己aud rates, independent transmit/receive,
    8 strap-selectable rates (see Table 1) at 75, 150
    300, 600, 1200, 2400, 4800, 9600.
- Parity, strap selectable (see Table 2), at odd, even or
    no parity (mark or space).
```

```
Display
- 200 (y axis) by 256 (x axis) by 4-bit high speed raster
video RAM
- 8 gray levels (black to white), blinking white and transparent pixel content.
- b colours: blue, red, magenta, green, cyan, yellou
- E character sizes, with a maximum of 20 lines of 40 characters
- RS-170 level RGB video and composita sync outputs: through BNC connectors. Flicker free RGB is 526 line, 60 Hz
```


ASSEMBLY

Because the six coaxial connectors can be mounted on the card, as shown in Figure 2, or in a convenient place on an enclosure in which the card is housed, the connectors and miscellaneous hardware are supplied in a separate bag.

If the connectors are to be mounted on the card they should be loosely assembled on the strip supplied, then located on the card with the flat ground pin on the card solder side and the round conductor pin on the component side. The pins should be centred on the rectangulat soldet pads, then soldered to both sides of the card. Do not use excessive or prolonged heat. When the soldered joints have cooled, tightan the connector securing nuts.

If the connectors are to be mounted on an enclosure they should be connected to the card through suitable lengths of RG-59U coaxial cable.

The miscellaneous hardware is for use on the multi-pin connectors $P 1$ and $P 2$, as required.

BLOCK DIAGRAM DESCRIPTION

The block diagram, Figure 1 , shows the card functions in simplified form. The microprocessor (6809 up) accesses the Monitor Controller, RAM and ROM through the Control/Address/Data Bus. The Monitor Controller produces signals for the RAM address for video refresh, and for video timing (horizontal and vertical syne and blanking). RAM contains the program and display memory and ROM contains the video decoding memory. The video circuit decodes the data signals to provide the RGB _Video signal outputs.

An Asynchronous Communications Interface Adapter (ACIA) converts the bus parallel data to a serial bit stream for transmission on a serial data line. It also converts received serial data to parallel data for processing in the up. Similarly, a Parallel Interfaca Adapter (PIA) interfaces the keypad or keyboard data before it is applied to the bus.

Figure 1 Colour Raster Display Generator, Block Diagram

PIN NO.	VOLTAGE/SIGNAL
j2 POWER	
10.11.12	+12V 0.5 AMP
8.9	- 12 V 0.1 AMP CURRENTS
5,5,7	+5 V 1.3 AMP
1,2,3,4	GND
P1 XEYPAD	
1	DATA 8IT OH (LSE)-INPUT
2	1
3	2
4	3
5	4
6	3
7	6
8	DATA BIT 7H (MSB)-INPUT
9	STROBE L -INPUT
10	NOT USED
11	GNO
12	+5V
13	+12Y
14	-12V
15	GND
P2 RS 232 PORT	
1	GNO
2	TRANSMIT DATA-OUTPUT (TX)
3	RECEIVE DATA-INPUT (RX)
4	REQUEST TO SEND-OUTPUT (RTS)
5	CLEAR TO SEND-INPUT (CTS)
6	NOT USED
7	GNO
8	DATA CARRIER DETECTED-INPUT (DCD)
9,10,11	MOT USED
12	NOT USED
13.14 .15 .16 .17	NOT USED
18	-12 V
19	NOT USED
20	DATA TERMINAL READY-OUTPUT (OTR)
21.22,23.24	NOT USED
25	NOT USED
8E JUMPERS	$\begin{aligned} & \text { FVALUE OF BIT } 8 \\ & \text { O-OUT } \\ & \text { RECEIVE } \end{aligned}$
	I-IN * * PARITY FOR
PIN 2-15 . 1-16	PARITY ANO RE
	$\left.\begin{array}{l} \text { SPACE } \\ \text { MARK } \end{array}\right] *$ ALL 7 DATA BITS
	EVEN $) \sim 1$ STOP BIT
00	ODD $]^{\text {a }}$ -
3-14	VIDEO
0	60 kz

Table 2 DIP Functions

bal of

8102
Table 3 Coaxial Connector Functions

Connestor	Function
RGB	```Colour signals, 75 ohm, RS-170 (0.7 v).```
SYNC	```Composite syne signal, 75 ohm, RS-170 (0.3 v), NTSC compatible - no serration or equalizaڭion pulses.```
TV	Not applicable; used only for special monitor (Electrohome CSO). (TTL, contral - high during Telidon mode, low during $T V$ mode.)
XPAR	Not applicable; used to control a graphic overlay keỵing device.

Figure 3

man	\cdots	\cdots	\%	F	${ }^{\text {an }}$
19:9		7	I		\pm
隹:	17				!
416	!	0		1	16
and	7				I
	$7{ }^{10}$				i
\%014	10				I
	12				I
0720	ii				0
			-	-	
2716	20	is		Ii	ii
1711	4				ii
4 n 10.000	21				i2

$r \begin{aligned} & 2 \\ & j \\ & p \\ & 0\end{aligned}$
3.9

IC，TTL， 7400, NANL，IINFUT	FAIRCHILD MFG	$7400 \mathrm{~F} \cdot \mathrm{C}$	U7S
IC，TTL，74LSOO，NANI，IINFUT	FAIFCHILD MFG	74L500PC	U29
IC，TTL，74LSOJ，NAND，בINFUT，OC	FAIRCHILJ MFG	74 LSOJFC	U1ON
IC，TTL， 7404 ，HEX，INUERTER	FAIFCHILD．MFG	$7404 F \mathrm{C}$	U2D．U4D
IL，TTL，74LSO4，HEX，INUERTER	FAIRCHILD MFG	74L504FC	U9」，U38
IC，TTL，74L308，AN［1，İNFUT	FAIKEHILD MFG	$74.508 P \mathrm{C}$	U35，44B
16，TTL，TALSIO，NAND，JINFUT	FAIRCHILI MFG	74LS：OFC	U2S
IC，TTL，74LS74，FLIF，FLOP，LIUAL， 4	FAIFCHILD MFG	74LS74FC	UTF，U2E，U7N，U7」
IC，TTL，74S74，IUALI，FLIF，FLDP	FAIKCHILI MFG	74574FC	USU
IC，TTL，74LSIE7，QUAL，IINFحT，MPX	FAIELHILS MFG	74LS157PC	U8D
IC，TTL，74LS166，8EIT，SHIFT，REG	FAIKCKILD MFG	74LSIS6PC	UFN，UJN，U2R，U3R
IC，TTL，74LSこ44，OCTAL，RUSIRIUER	FAIFCHILI MFG	74L5244F．G	USR，UAR
IC，TTL，74LSこ4E，OCTAL，TRANSCEIU	FAIFCHILD MFG	74LSE45FC	U4S
IC，TTL，74SEET，QUA［1，ITNPUT，AFP，	FAIFCHILD MFG	74SこETFC	UAE，UJE，U3G，UAG
15，TTL，74LS367，HEX，HUSDRIU，TRI	FAIKCHILD MFG	74LS367F6	U6R
IC，TTL，74LSJ73，OCTAL，LATCH	FAIFEHILD MFG	74L5373FC	U3J．U3L，U2J．」2L
IC，TTL，74LS390，IUAL，LICCALE，CDU	FAIFCHILD MFG	74LSJ90FC	U8J
IC，UF， 68 AO9，8\＆IT，AICRO，1．SMHz	motokola mfg	MCSBA09	46 O
IL，UF，＇AAL，FEEIPMERAL，I／O	MOTOROLA MFG	mCSBAİ	475
IC，UF，SBA4S，CRTC	moturola mag	MCbsads	U56
：C，UF，S8AEO．ACIA	MOTOROLA MFG	HC68ASO	U78
IC，UIG，CMOS．MC14111，EIT－सATE，F	MOTOROLA MFG	MC14412	U6B
IC，INTF，UIG，QUAT，7E188，RSこ32， 0	motorola meg	MC1488	U8R，U98
IC，INTF，UIG，QUAL，TS189，KSこ3こ，	hotokola mag	MC1489	U9D．U100
IL，INTF，DIG，8TİDQUALI，EUSTRANS	NO UENLIOR FOUNİ	NO COMA．P／N FRIND	UAL，U4J
IC，KAM， 1116.16 K 1 ，150，137SNS	motoriola mfg	MCM4126BF＝$=15$	ALL UI＇S
TKANSISTOR，NFN，TO－18	hamiliton aunet m	2M914	Q2
TFANSIUCER，3－12U，4OMA，2600hm， 7	FANASONIE MFG	A14R06C	TDI
XTAL，1．843こセHZ，：0こ\％，H174	CTS MFG	MPO18	XTL2
ITAL，10．739MKZ	CTS MFG	S1032－2－BA	XTLI
IL，DAC，8FIT，135NS，MULTIPLYING	NATIONAL MFG	SIACOBOQLCN	UBP
IC，NES，8U，T0－92	MOTOKOLA MFG	MC73L08	UR1
IC，$E \mathrm{E}$ ，－5U，TO－ここ0	TO HE INFUT AT	LA7905C	UR2
HIDDE，SIGNAL，HO－35	hamiliton aunet m	：N914	82，02，03
TKANSISTOR，NFN，TO－18	hamiliton aunet m	こM2ここの	04．07－1．
TKANSISTOR，NFN，T0－92	HAMILTON AUNET M	2N3904	01，5，6
TKANSISTOR，PNP，TO－92	HAMILTON AUNET A	2N3906	03
CONH，D／SUR，ISPIN，FEMALE	CANNON MFG	DAISS	P1
CDN ，II／SUR，ISFIN，MALE	CANHON MFG	bR25P	P2
CDN，FINC，REEEP，ISOLATED	AMPIUENOL MFG	31－010	S，X，TU，R，G，B
CONN，HAFER，．ISb，I2FIN．MALE，R．A	MOLEX MFt	09－88－2129	12
CON，SOCKET，IC，こ4F，UIP，LOW，TIN	CAMEION MFG	703－5324－01－04こここ	USLTU6L，
	ROHERTSON－NUGENT	［CN－133－5J－T	DIP3，4
RES，VAR，SOK，IOT，1／4U，CER，TOF	becrman mag	－8ひたらけK	R51
KES，VAF，＝00／0HM， $107,1 /$ HW，CER，${ }^{\text {a }}$	gecrman mfg	66山ki＝00．	K57
RES，FIXEI，JJ／OMM，TRANS，ISPIN，U	ALLEN GRADLEY MF	316R3JO	U＝5
RES．FIXEI，4，7R，FULLUE，I OFIN． 11	ALLEN WKAILEY MF	3164472	U6N
RES，FIXED． $10 \mathrm{O} /$ OHM，FULLUF，16F．IN	ALLEN SFIALLEY MF	3164103	U8G
KES，FIXEII，1／OKM，Ė，1／4L，CAK	FHILIFS MFG	CRESTOLE／：OMm	R3ニ， 233
KES，FIXED．33／OKK，52，1／4W．CAR	FMILIF＇S MFG	CRこETOLS．33 0Mm	R40．49，50．
RES，FIXEII， $68 / 0 \mathrm{HK}, \mathrm{SZ,1/4U.CAF}$	FHILIFS MFG	CRここTKLS／68 OHm	R64，R68，R66，R77
REE．FIXEIT，100／0HM，Ė，1／4 H，CAK	FHILIFS MFG	CREE $025 / 100$ 0wm	K． 38.80
RES，FIXEI， $120 / 0 \mathrm{KM}, \mathrm{EX,1/4W,CAK}$	FHILIFS MFG	Crizetol e／izo Ohe	र65．67，69，78
RES，FIXEI，ここ0／OHM，Ez，1／4L，CAK	ALLEN SRAULEEY MF	C5－291－5	F：17
	FMILIES MFG	CRESTDLS／6こ0 Orv	6161，62，d3
KES，FIXEII．470／0MA，Š，1：4U．CAR	FMILIFS MFG	CRESTOLS／ 470 OM－	に．，
KES，FIXF．L，1K／OHM，S\％，1，4W，CAK	allen skathey mf	CF－10こ－5	213， 5 S3，81，82，79，83
FES，FIXEI， 1 ，JK／OMA，EZ，1， $4 \mathrm{~W}, \mathrm{CAR}$	FHILIFSS MFG	CRここTOLS／7．3k	K．E8．59，60
KES．FIXEI，こ．こM／OHM，Ez．1／4U．CAR	HMILIFS MFG	CRこちTOLSノこKこ	$\begin{aligned} & \text { F9,6,14,15,160i8, } \\ & 19,71,75,74 \end{aligned}$
RES，FIXEI，J．JK／OHM，5Z，1／4U．CAR	FHILIFS MFG	CR25TOLS／3xJ	だこ
RES，FIXEI，4，7K／UHM，EZ，：／4W，CAK	ALLEN FRAllley mf	C8－472－5	53，4，48，73，76
RES，FIXEII，：OK／OHM，ES， $1 / 4 \mathrm{HW,CMR}$	allen hrall	C5－103－5	「34
	FHILIFS MFG	CRこ5TOLS／47K	F．56
RES．FIXEN， 1 SM／OHM，SZ，1／4W，CAR	FHILIFS MEG	LRこごOLS／：SM OHS	たこ0
KES．FIXEIT．1．2N／OHA，ここ．1／4山，CAK	FHIL：FFS MFG	CRここTOLS／1K2	R54
	ALLEN GRALLEY MF	CFーこアこ－S	K 75
	FHILIFS MFG	CF゙こSTULS／8K2	Re5．
CAF，CER，KALIA ，S¢OFF， $102,1000 \mathrm{C}$	CINTRALAR MFG	－b－5s1	597
	ERIE MFG	5121－050－651－10こ4	C：1
CAF，CLR，FALILAL，0．1UT，20\％，SOV，Z	ERIE mFG	3121－050－25U－10＝9	$\begin{aligned} & 69.610 . c: 20 c 13 \\ & c=2-71,073-95 \end{aligned}$
CAF，TANT，RALITAL，IUF，こ心－， 3 SU	ITT MFG	TAG1．OM 35	c2．14
CAF，ALUA，AXIAL，10UF，50／102，50U	SIEMENS MTE	R41313－A5106－T	С－．8，15．16－2i
	NORFAR LTD	36－05383－02	U51
FRNG．［FFKOM，An3．+ －It＋CDMMON．8n＊	NOKPAK LTD	36－05383－01	U6L
FFROG，EINKOM，MKJ．FIII + ， 2 ， 6 OR2	NORFAR LID	$36-0 \pm 342-02$	U7L
	nokrax Liti	36－03499－01	U86
	notrian LTt	36－03487－02	บ96
FRUJG，KUM，AUTRESS，DECDEER	NUKFAAL LTD	36－03488－01	UEN
FFUG，RUM，ALHEFSE，DECDIEK	NORFAN LTD	36－03408－02	U4N
	RURIELISUN－NUSENT	$\mathrm{FC-7e}$	21F3，4
CDN ，SCKLU．LUCA，T／EUK，FEMALE		205817－1	P1， $\mathrm{C}=$
	CFINTRALAB MFG	ロn－3jo	C：14－6
	CENIFALAB MFG	いいーここ！	C96
CNIL．FIXEIT＝－ $219 \mathrm{H}, 10 \mathrm{z}$	cclevan mag	：537－＝0	ᄂ1
CAI，CLER，NALIAL，4700FF，：02，100U	ERJE MFG	CNO5PX472：	$F:$
CAl，CTh，killial， 2 OrF， $10 \%, 1000 \mathrm{~V}$	CEENIKMIAP MTG	［1ヶ－2？	2？

CHAPTER 3
SOFTWARE DESCRIPTION

INTRODUCTION

This chapter is divided into two sections. The first section provides details of the keypad or keyboard code functions, code entry and the screen header page. The second section provides a description of picture description instruetions. The desctiption is a condensed version of the data available through the CRC̄ Technical Note No. 709 referenced in Appendix B, and should provide sufficient information to satisfy the needs of most users.

FUNCTION CODES
The function codes that manipulate the data base are listed in Table 4, which provides the hexadecimal code, its symbol and data base iristruction.

CODE ENTRY

Keypad
Except for the codes for $T V, E$ and $V(E O, E A$ and $F 2$) all the codes are echoed locally as entered and displayed as a character, digit or symbol in the bottom left corner of the scteen.

The digits 0 to 9 and page movement symbols $F, .,<, \geqslant$, // and $\widehat{a r e r e c o r d ~ a c t i v a t e d ; ~ t h a t ~ i s, ~ t h e y ~ a r e ~ e c h o e d ~ o n ~}$ sereen as entered, but are not transmitted through the serial port until (Proceed) is entered.

Keyboard
If a keyboard is used, there is no local echo of the characters. The codes are as defined in the 7-bit ASCII table, Figure 5 , and the MSB is zero. Transmissions are character activated; that is, each charactar is transmitted as its relevant key is pressed.

header page

When the EO code is issued twice the screen will display a header page in the format shown below. The sereen will clear, then display a black screen with a white line border with 16 rectangles across the bottom of the bordered area. The leftmost rectangle will display black, followed by siz shades of gray, then white, then blue, red, magenta, green, cyan, yellow, blinking white and XPAR. The product name, software number and version level are displayed to the right of the colour bar. After a few seconds the scteen clears arid the system is ready for use.

Figure 4 Header Page

PICTURE DESCRIPTION INSTRUCTIONS

INTRODUCTION

This section describes the method of storing and communicating visual images and textual information through the use of Picture Description Instruetions, and associated data, such that the resolution of stored images is virtually independent of terminal configurations, communication networks and data base construetion.

The storing and communication protocol is a major subset of the North American Videotex coding standard adopted in principle by the American National Standards Institute (ANSI) and the Canadian Standards Association (CSA). It represents the interim level of implementation specified by the Canadian Videotext Consultative Committee (cvcc).

Pigtures are essentially described by a set of geometric drawing primitives (such as point, line, arc) specified in various locations in the picture to be displayed. Similarly, text is described as a group of characters to be displayed at certain locations on the screen. Therefore, PDIs can describe practically all textual and graphical images.

Dniy a feu basie instructions, each with numetic operands, are needed to describe practically all graphic images. These basic geometric primitives were chosen because of their simplicity and their ability to define practically all image types.

A command is also required to change from graphic to alphanumeric mode for textual messages. This function is performed by the Shift in (SI) command from a set of control codes universally used in the transmission of tex vual messages. Similarly, the Shift Out (SD) control code is used to change back to the graphics mode. The alphanumerie mode is the mode of operation entered by default, or the way in which a terminal should operate when first suitched on. In this way, a subset of the FDI code can be used for business or simple alphanumeric terminals which may only respond to textual information.

CODING

The (CRDG) PDI instructions are a set of codes operating in the フーbit environment. TEXT is defined by CSA Standard Z 243.4. -1973 (identical to ASCII). The ASCII code table is shown in Figure 5. The code is defined to include the code table positions $2 / 0$ and $7 / 15$ within the definitions of the individual code tables. The nomenclature N / π indicates a single character from column $N_{\text {t }}$ row ni e. g., $1 / 11$ is ESC. The characters in columns 0 and 1 surrounded by a heavy black border are reserved for communication transmission protocol. Only the controls DCI (ilow control pause) and DC3 (flow control resume) have an effect on the terminal. The shaded characters in columns 2 to 7 are those that may vary between national versions of this code table. (In Canada, an alternate code fable can be defined where these characters are replaced by French characters.)

Figure b shous the code extension technique used to establish alternate meanings for the 7 -bit code combinations.

In the alpha-geometric coding, the display is composed of pictorial drawings that are defined as geometric primitives transmitted to the terminal as drauing commands.

Geometric Primitives
The pictorial coding scheme is based on geometric primitives. Each drawing primitive is specified as cartesian coordinates to describe the positions, end-points, or vertices of each drawing operation. Geometric drawing.s are defined as the drawing primitives: POINT, LINE, ARC, RECTANGLE and POLYGON.

Drawing Position
Drawings are positionally independent, therefore, drawing primitives may overlay each other and redefine the orawing at that position.

Figure 6 Code Extension in a 7-Bit Environment

Coordinate System

The coordinate specifications are based on a Cartesian 0 to 1 numbering scheme.

The numbering system is referenced to the display screen and consists of coordinates ranging from 0 to 1 in both x and y axes, with coordinate values being specified as fractions of this range. The coordinates are encoded in two's complement notation and specified as signed numbers to a minimum accuracy of 3 bits, including the sign bit. Increased accuracy is obtained by additional increments of 3 bits. Unused least significant bits are truncated when the coordinates are defined to a greater accuracy than can be handled by the terminal.

The display for television sereens which have non-square visible areas map into the square drawing area number system so that the origin (0,0) remains in the lower left corner within the. screen margins. On a teievision-like display with a $4: 3$ aspect ratio, this corresponds to a range of 0 to 0.99 in the x axis, and 0 to approximately 0.75 in the y axis. Drawing commands addressing the entire square 0 to 1 grid are permissible, but only the circumscribed $4: 3$ area is visible.

Pictute Resolution
Any number of physical picture elements may be implemented. Hence, picture resolution depends on terminal manufacturers. The resolution implemented on the colour raster generator is 256 pixels in the x axis and 200 in the y axis.
...

DRAWING COMMANDS.

General
Drawing sommands consist of Operational Codes (opeodes) and their associated parameters.

Opcodes describe the types of drawing operation.
Following the apcode byte is one block, or more, of additional bytes of data to describe one or more (x, y) coordinate positions. Each block of data for the (x, y) coordinates normally (by default) contains 3 bytes (9 bits accuracyl, however, from 1 to S bytes may be used depending on the degree of resolution desired.

Figure 7 shows the code table for the opeodes and numeric data bytes.

The structure of the opeode byte is shown in Figure 8 .

Figure 8 S-bit Opcode Byte

Dpcode Definitions
POINT -sets the drawing point to any position ain the display space and optionally draws a dot.

LINE -draws a line based on the two given end points.
ARC -draws a circular arc based on three points; the start point, a point on the are and the end point of the are. A circle results when the start and end points are coincidental and the point on the are defines the opposite end of the diameter. If only 2 points are transmitted then a circle is drawn in which the end point is assumed to be identical to the first point. ti additionai, oumerie daba is

Ehord may be fililed

RECTANGLE - draws a rectangle based on a specified width and height. The rectangle may be in outline or may be a filled-in area.

POLYGON - draws a closed polygon or arbitrary shape specified by the vertices. The polygon may be in outline or may be a filled-in area. The maximum number of vertices is limited to 25\%.5.

CONTROL - provides control over the modes or attributes of the drawing commands.

opcode facilities

Each geometric primitive opcode has four variants;
these are defined by the facility bits (b2 and bi) as shown in Figure 9. Facility field interpretations are given below.

OPCODE	X	FACILITY					
POINT	X	01	001	INVS	VIS	ABS	REL
LINE	X	01	010	JOIN	SET	ABS	REL
ARC	X	011	JOIN	SET	OUTLINE	FILL	
RECTANGLE	X	01	100	JOIN	SET	OUTLINE	FILL
POLYGON	X	01	101	JOIN	SET	OUTLINE	FILL
INCREMENTAL	X	01	110				
CONTROL	X	01	111				

Figute 9 Opcode Facilities

```
If b己 is binary I
```

a) POINT a visible point is drawn on the display sereen.
b) LINE, ARC, the initial drawing position is specified

RECTANGLE,
POLYGON within the data bytes as absolute (x, y) coordinates, i. e., the initial point is Set.

```
If b2 is binary 0
```

a) POINT an invisible point is located on the display screen.
b) LINE, ARC, the initial drawing position is the same point RECTANGLE, POLYGON as the final drawing position of the previous opcode, i.e., the current drawing is joined to the previous drawing.

If bl is binary 1
a) POINT the (dx, dy) coordinates are relative displacements to the preceding coordinate specifications.
b) LINE the (dx, dy) coordinates for the final drawing position of a line segment are relative displacements from the initial drawing position of that line segment.
c) ARC. the interior areas established are filled. RECTANGLE, POLYGON

Î bl is binary 0

a)	POINT	the $\langle x, y\rangle$ coordinates of the point are absolute values.
b)	LINE	the (x, y) coordinates of the final drawing position of the line segment are absolute values.
c)	ARC, RECTANGLE, POLYGON	the drawings are outlined.

OPCODE NUMERIC DATA

The numeric data bytes associated with an opcode immediately follow the opeode byte and are recognized when the flag bit (b7) is binary 1. Any number of blocks of data bytes defining pairs of coordinates or drawing displacements may follow the drawing opeode. Any presentation level code other than from the numeric data portion of the code table terminates the sequence of data blocks. Transmission level codes have no effect at the presentation level as they should have been removed by lower layer processes.

The default number of data bytes that forms a block that defines a pair of x, y coordinates is 3. The structure of the data block is shown in Figure 10.

Figure 10 Structure of a Block of 3 Data Bytes

REPEATED QPCODE OFERATION

For each of the POINT, LINE and RECTANGLE opoodes, repeated drawing operations will automatically be effected if the numerical data field following the opcode byte contains more than one complete set of coordinate specifications. The repeated orawing feature allows concatenated drawings to be effected without having to repeat the opcode.

FIELD
The FIELD PDI establishes a rectangular active drawing area (field) on the screen, which is used by commands such as Text. The first block of data following the opeode gives the coordinates of the origin of the rectangular active drawing area. The next (and last) block of data gives the dimensions of the field as dx and dy. After a Field PDI is executed, the current drawing point is set to the origin point of the area.

GEDMETRIC CONTROL OPCODES
General
The Control opcodes establish the display attributes and drawing states of the terminal for subsequent pictorial drawing, text or other presentation level commands. The eight Control opcodes are given in Figure 11.

RESET is used to selectively reinitialize the drawing state and attribute parameters and to perform the function of clearing the display screen and other defined-tables.

DOMAIN is used to establish operand parameter length and the logical pixel size.

TEXT is used to control parameters related to the attributes of TEXT characters.

TEXTURE provides control of texture attributes that determine the method of filling areas for subsequent drawing commands and that determine the texture for lines and outlines. \qquad
SET COLQUR specifies colour values for use in drawing commands or for insertion into the colour map.

WAIT causes a delay of a specific time in processing data.

Figure 11 Control Opeodes

Attributes

A number of drawing attributas may be applied to the drawing commands, and uhere appropriate, to the other text and graphic commands. Attributes are defined by appropriately coded sequences as described below. Once an attribute is defined. it remains valid until the attribute is redefined or cleared to its default state. In the implementation of attributes, the levels of sophistication and complexity are left to the discretion of the implamenter.

Domain

The integer value of bits bl and b2 of the first byte of the operand (plus one) gives the length of subsequent single-value operands (such as colour map table addresses) in bytes. The integer value of bits b3, b4, b5, of the first byte of the operand (plus one) gives the length of subsequent multi-value operands (such as coordinate specificationsi in bytes.

Bit 6 of the first byte of the operand gives the dimensionality of the coordinate specification. Zero indicates two dimensional (2D) mode, and one indicates three dimensional (3D) mode. The definition of 3D mode is reserved for further study and the card defaults to $2 D$ mode.

If an operand is shorter than the specified operand length, then the operand is padded with zeros. If the operand is longer than the specified operand length, then the command is repeated with the subsequent numeric data taken as the new operarid.

Text
Bits 1 and 2 of the first byte of the operand determine the rotation of text characters, as shown in the table below and in Figure 12.

$b 2$	$b 1$	Rotation (degrees)	
0	0	0	(default)
0	1	90	
-1	0	180	
1	1	270	

Figure 12 Character Rotation

Bits 3 and 4 of the first byte determine the direction of the text eursor path, as follows:

```
            64 b3 cursor movement
            0 0 right (default)
            0 l 1 left
            1 0 up
            1 1 down
    Bits 5 and b of the first byte determine the
inter-character spacing in units of the character field
dimension lying parallel to the character path, as follows:
bb bs inter-character spacing
\begin{tabular}{llc}
0 & 0 & 1 (default) \\
0 & 1 & 1.25 \\
1 & 0 & 1.5 \\
1 & 1 & proportional spacing
\end{tabular}
Bits 1 and 2 of the second byte determine the inter-rou spacing in units of the character field dimension lying perpendicular to the character path, as follows:
b2 b1 inter-row spacing
\begin{tabular}{lll}
0 & 0 & 1 (default) \\
0 & 1 & 1.25 \\
1 & 0 & 1.5 \\
1 & 1 & 2
\end{tabular}
Bits 3 and 4 of the second byte determine the relationship between movement of the text cursor and movement of the graphics drawing point, as follows:
\begin{tabular}{lll}
64 & \(b 3\) & move parameters \\
0 & 0 & move together (default) \\
0 & 1 & cursor leads \\
1 & 0 & drauing point leads \\
1 & 1 & move independentiy
\end{tabular}
```

Bits 5 and 6 of the second byte determine the cursor display style, as follows:

66	$b 5$	cutsor style
0	0	underscore (default)
0	1	block
1	0	stoss hair
1	1	sustom (manufacturer defined)

The remaining bytes specify the dimensions of the character field $d x$ (width) and dy (height). This continuous text size specification maps to the nearest available size.

The supplementary character set of aceents and diacritical marks can provide the ability to aceent any text character by using the non-spacing aceents specified below:

$$
\text { -(4/1) }(4 / 2) \sim(4 / 3) *(4 / 4)^{\cdots}(4 / 8),(4 / 11)
$$

In addition, these spacing characters can be implemented:

$$
j(2 / 1) \dot{i}(3 / 15) \quad \ll(2 / 11) \quad \text { i> }(3 / 11)
$$

These characters reside by default in code table GC and can be accessed by the SS2 code (1/9in co set) followed by the code indicated above.

Figure 13 illustrates a range of text sizes that can be established based on only two character shape tables which differ by a factor of approximately 1. 5, and the double and half size of each. This provides a psychologically pleasing aproximation to a continuous range of character sizes.

Figure 13
Discrate Text Sizes

The text character origin is located at the bottom left of the full character font, below any danglers, and not at the base of the upper case character.

Texture
Bits 1 arid 2 of the first byte of the operand determine the line texture attributes as follows:

b2	bi	line texture
0	0	solid $\langle d e t a u l t$)
0	1	dotted
0	0	dashed
1	1	dot dashed

The line texture pattern is referenced to the absolute coordinate grid of the display screen so that the texture pattern aligns between drawing commands.

If bit 3 of the first byte is 1, then filled rectangles, ares and polygons are highlighted by explicitly drawing the perimeter. If bit 3 of the first byte is 0 . then there is no highlight.

Bits 4, 5 and 6 determine the texture pattern for filled rectangles, arcs and polygons, as follows:

$b 6$	$b 5$	$b 4$	texture pattern
0	0	0	solid (default)
0	0	1	vertical hatehing
0	1	0	horizontal hatching
0	1	1	cross hatehing
1	0	0	dot pattern
1	0	1	+45 degree lines
1	1	0	-45 degree lines
1	1	1	45 degree cross hatching

Set Colour
The set colour opcode specifies the colour attribute of the drawings or text that follows. The code is flexible and permits the future definition of colours defined as shades of the basic colours. However, this card uses only 6 fixed colours and 8 gray shades, ranging from black to white inelusive.

The number of data bytes is variable and the sequence is terminated on the appearance of another opcode. Less significant bits for colour information are truncated where they are not used. The bit assignments of the data bytes are shown in Figure 14.

Figure 14 Set Colour Operand

Wait
The Wait command causes a delay of a specific time in processing and display.

The length of wait is specified in tenths of a second by the first associated parameter byte (b bits for up to 3.3 seconds). Each additional parameter byte causes an additional delay.

Reset
If bit 1 of the first byte is 1 , then the domain parameters are reset to their default values.

Bits 2 and 3 of byte 1 determine the colour mode and/or the in-use colour, as follows:
b3 b2

0	0	no action
0	1	selectcolour mode 0 and
1	0	initialize implicit colour map
1	0	reservedfor
1	additional colours	

Bits 4,5 and 6 of byte 1 clear the screen and/or border areas, as follows:

$b 6$	$b 5$	$b 4$
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

```
no action
clear screen to black
clear screen to in-use drawing
colout
clear border to black*
clear border to im-use drauing
colour*
elear screen and border* to
in-use drawing colour
elaat screen to in-use draming
colour-border* to black
clear screen and border to black
(* reserved for control of a
    screen border; not implemented
    on this (ard)
```

If bl of the second byte is 1 , the text parameters are set to thair default values and the cursor is sent to the home position (top left character position on the screen).

If b4 of the second byte is 1 , the texture attributes are set to their default values.

If no operand follows the Reset command, a complete reset is indicated (i.e., as if both operand bytes were set to all ones).

If one operand follows the Reset command, the second byte is padded with zeros.

Control (Status) Sub-commands
To comply with the existing international standard recommendations, an additional method of defining several of the control commands is implemented. These commands produce the same effects or combination of effects as the control opcodes. They are merely alternate ways of accessing the same functions.

The Wait control opcode may be interpreted as a control status code which introduces a number of sub-commands. The numerical data byte following the opcode indicates the sub-command. The wait function operates as one of the sub-commands.

The Control Status control commands begin with a Control Status opcode followed by a code chosen from Figure 15. The tone control code defines a shade of gray as consecutive bits of gray level intensity rather than as RGB levels. The Text Format code permits text parameters to be defined explicitly. For text format control, bs specifies word break, and b4 and b3 the text rotationi b2 and bl of an additional data byte specify spacing. Bits b3, b2 and bl define the text character size as tabulated in Figure 13. Bit b' indicates double height. For Text Set, two additional French characters can be specified by a binary 2 in bits b2 and b1.

Figure 15 Status Commands Aceessed through the
Control (Status) Dpeode

The CI Control Set code table shown in Figure 16 provides additional control facilities, many of which are reserved for additional features. The control commands are described below.

REPEAT

The last text character received is repeated a specified number of times. Bits bt through bl of the next character received specify the repeat count.

REPEAT to EDL
The last Text character received is repeated to the last character position along the current character path, within the screen or active drawing area.

REVERSE VIDED
Enter peverse video mode. Any Text character received subsequent to this control code is complemented within the current character field prior to its display.

NORMAL VIDED
Enter normal video mode. The action of the Reverse Video control code is terminated.

SMALL TEXT
Reserved

MED TEXT
The character field dimensions are set to $d x=0.03125$, $d y=0.047$ (approx) to provide a 16 row by 32 character display.

NGRMAL TEXT
The character field dimensions are set to their default values of $d x=0.025, d y=0.0375$ (approx) to provide a 20 row by 40 character display.

DOUBLE HEIGHT

The vertical dimension of the character field is set to tuice its default size. The horizontal dimension of the character field is set to its default size.

DOUBLE SIZE
The horizontal and vertical dimensions of the character field are set to twice their respective default sizes.

WORD WRAP ON
Enter word wrap mode. All text is broken on word boundaries at end of line conditions. A word boundary is delineated by a space character, a format effector control character, a drawing command from the geometric sets, a maximum line length, or, optionally a punctuation character.

WORD WRAP DFF
Exit word wrap mode. All text is broken at character boundaries at end of line conditions.

SCROLL ON
Enter seroll mode. If an APD or an APU would cause the text cursor to be advance past the edge of the active drawing area, the entire contents of the display are scrolled to bring the cursor back within the active drawing area.

SCROLL DFF

Exit scroll mode. If an $A P D$ or an APU would cause the text cursor to be advanced past the edge of the active drawing area, it is instead moved to the opposite edge of the active drawing area.

UNDERLINE START

Enter underline mode. All characters received from the alphanumeric or supplementary graphics set will be displayed underlined.

UNDERLINE STOP

```
    Exit underline mode.
```


BLINK START

Establish blinking colour. Any teat or graphics codes received while in this colour and mode will cause the resulting text or graphic to flash intermittently. Bink is terminated when another colour is specified.

Figure $16 \quad C 1$ Control Set

CO TEXT CURSQR CONTROL CODES

dEFAULT CONDITIONS

The default conditions for the alphanumetic coding scheme attributes are summarized below:

Colour mode: $\quad 0$
In-use colour: White
Single-value length
(colour map address):
1 byte
Multi-value length (coordinate data):
3 bytes
Dimensionality:
Text rotation:
Character path:
Inter-character spacing:
Inter-row spacing:
Move parameters:

Cutsor style:
Cursor display:
Character field dimensions:
Line texture:
Texture pattern:
Highlight:
Fexture mask size:
Underifine mode:
2 D
O (horizontal)
To the right
1 (width of curpent
character field)
1 (height of current
character field)
Text cursor and graphics
drawing point move
together
Underscore
0ff
$d x=0.025, d y=0.04$ (approx)
Solid
Solid
No highlight
$d x=0.025, d y=0.04$ (approx)

Word wrap mode:
Off
Dff

EXAMPLE

An example of the drauing sequence for a single picture
is shown in Figure 17.

(a)
(b)
(c)
(d)
(e)
(f)
(g)

NOTE 1. Positional and dimensional data is transmitted as 3 byte operands of sequential information to provide a resolution of one part in $\$ 256$.

NOTE 2. Sequential POIs specify the order in wich the total image is dram. Thus, newly defined areas may overlay previously drawn parts of the image and allows more efficient coding of the total picture.
MOTE 3. The simple drawing shom above can be described with 108 bytes of information using PDIS.

Figure 17 Sequential PDIs Defining an Image

APPENDIX A

GLOSSARY


```
Drawing point - a logical indicator of the screen position
    at which the next geometric graphic primitive will
    commence execution.
Escape sequence - a two, three or four byte code extension sequence beginning with the ESC character. A three character escape sequence contains an intermediate character (I) and ends with a final character (F), and is used primarily to designate a set from the graphics repertory as one of the four active G sets. Two charactet escape sequences contain only a final character (F) and are one method by uhich code sets are invoked into the in-use table.
Final character - the last charaster of an escape sequence.
\(G\) set - There are four \(G\) sets, GO, G1, G2, and G3, each of which comprises 96 character positions arranged in 6 columns of 16 rous.
Geometric ǵraphic primitive - a locally stored picture drawing algorithm that can be called via a specified opcode and associated operand(s).
Graphic repertory - the collection of available code tables that are subject to designation as one of the \(G\) sets.
In-use - refers to the code sets or attributes that will be used to interpret or be applied to subsequentiy received commands.
Intermediate charaster - the character which occurs between the ESC character and the final character in an escape sequence.
Invoke - to bring one of the four active \(G\) sets into the in-use code table.
Opcode - a one byte, presentation level character that initiates the execution of a locally stored geometrie primitive or control operation. An opcooe may be followed by one or more operands.
Operand - a single or multiple byte string from the numerie data field of the PDI set that is used to specify control, attribute, or coordinate parameters required by the opcode.
```

```
PDI - Picture Description Instruction. A PDI is composed of
    an opeode followed by one or more operands and
    constitutes an executable picture drawing or control
    command.
Pixel - The smallest graphical umit that can be displayed
    on a screen (also called a pel).
Relative coordinates - an ordered pair of signed numbers
    between -1 and i (non-inclusive) that specify (in two's
    complement arithmetic) either the new location of the
    drawing point with respect to the old location of the
    drawing point, when used with a geometric primitive
    PDI, or the dimensions of a given field when used with
    one af the control commands.
Single shift - an invocation of a code set into the in-use table that afferts only the interpretation of the next character received. Interpretation then automatically reverts to the previous contents of the table. (This is also referted to as non-locking shift.)
TEXT - pre-defined pixel patterns which, when called, are drawn with a set of pre-selected attributes at positions on the screen indicated by the cursor.
Unit screen - the virtual display address space within which all PDIs are executed and TEXT characters are displayed. The dimensions of the unit screen are 0 to 1 in the horizontal ( \(x\) ) and vertical ( \(y\) ) dimensions.
```


APPENDIX B

REFERENCED DOCUMENTS

videdtex

To promote compatibility in videotex information techniques the Bell System has adopted a presentation level protocol for use with the Canadian-designed Telidon videotax system. The protocol is defined in two functionally identical documents, one American and one Canadian, concerned with the "formats, pules, and procedures adopted for the encoding of text, graphics and display control information for videotex applications". The documents are highly technical and will not be of general interest. Chapter 3 of this guide provides a condensed version of the PDI strusture at a level adequate for: most users.

Should you be interestad in the technical detalls of videotex protocol, further details can be obtained from either of the following sources.

The ATzT document title is:
Presentation Level Pfotocol Videotex Standard

Bell System, May 1981,
and further information cah beobtained through:
Manager, Information Management Flanning and Development
American Telephone and Telegraph Company 5 Wood Hollow Road Parsippany $\mathrm{N} J 07054$

